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Ensuring the correctness of safety-critical systems, such as in railway control systems, is as
important as ever. To achieve this, machine-assisted theorem proving is increasingly used in
the railway domain. Tools such as Z3 [12] are employed to formally prove that such systems
meet the required standards (see e.g. the papers by our group [1, 7]). However, any of these
solvers may have flaws or implement optimisations that produce incorrect results. To increase
trust, proof checking offers an independent check of the Z3 output. We are developing a verified
proof checker for Z3 using its new Reverse Unit Propagation (RUP) format. As a first step, we
have focused on propositional formulae in conjunctive normal form (CNF) [17]. The new RUP
proof format was introduced to the Z3 theorem prover in September 2022, replacing resolution
[2]. Proof checking for other proof formats for SAT and SMT solving has been performed in,
e.g., [3, 5, 4, 8, 26, 11, 27, 13, 9].

The notion of a RUP proof was introduced by van Gelder [15, 14] in 2008. It addresses
the issue that resolution proofs can be too lengthy to store feasibly while still allowing efficient
checking. The underlying concept is proof verification by Goldberg and Novikov [16], where unit
propagation checks unsatisfiability without storing full resolution proofs. Van Gelder refined
this into RUP, requiring each derived clause to cause a contradiction when added, making proofs
more compact and efficient.

RUP takes logical statements written in CNF, where each clause is a disjunction of literals
tx1, . . . , xnu. Negation of a literal xi simply switches from xi to ␣xi, or vice versa. A formula
is a conjunction of clauses. Z3 deals with formulae not in CNF by translating them using the
Tseitin transformation [25, 22, 20].

The goal of a SAT or SMT solver is to decide whether clauses Γ are unsatisfiable, which
means Γ entails falsity. Intermediate steps of a proof of unsatisfiability derive from Γ a set
of clauses ∆, such that the conjunction of the clauses in Γ entails all clauses in ∆, with the
ultimate proof including the empty clause in ∆.

A RUP inference of a clause C “ tx1, , . . . , xnu from assumptions (clauses) Γ is correct, if
from Γ1 :“ Γ, t␣x1u, . . . , t␣xnu we can derive the empty clause tu using unit-clause propagation
only. A RUP proof from an initial clause set Γ0 is a sequence of clauses Ci, for i ě 1, such that
for all i Ci is a RUP inference from Γi´1, where Γj “ Γj´1 Y tCju, for j ě 1. If some Cj is
the empty clause tu, the sequence is called a RUP refutation [15]. Checking a RUP inference is
done as follows: Divide Γ1 into non-unit clauses Γnunit (clauses of length ě 2) and unit clauses
Γunit (clauses of length 1). If an empty clause is found, then we have derived falsity, and hence
Γ was already unsatisfiable. Then, we repeatedly do the following, as long as Γunit ­“ H: pick
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one unit clause txu P Γunit and remove it from Γunit. Next, we carry out unit clause resolution
with all clauses c in Γunit Y Γnunit. If c contains x, then it is implied by txu and is therefore
removed. Otherwise, if c contains ␣x, then a unit resolution of c with txu derives c1 :“ czt␣xu.
We replace c by c1; if it has length ě 2, it will be in Γnunit, and if it has length 1, in Γunit. If it
has length 0, then we have derived tu, so the RUP inference is verified, and we exit the loop. If
c does not contain x or ␣x, it is kept. Once we have applied unit resolution with txu to all the
clauses in Γunit Y Γnunit, we repeat the process. After each step, the literal x and its negation
do not occur anymore in Γunit Y Γnunit, and no new literals have been created, so eventually
the loop terminates because Γunit is empty. If we have not derived tu by then, then tu is not
derivable by unit clause propagation, thus the verification of the RUP inference fails.

At each step, all formulae in ΓunitYΓnunit are derivable from Γ using unit clause resolution;
therefore, they are entailed. If the procedure succeeds, then Γ1 entails falsity and is therefore
unsatisfiable. Thus, by classical logic (we have tertium non datur for the Boolean variables) it
follows that Γ entails tx1, . . . , xnu. We leave the full proof of completeness to a future article.

We have formalised the logic in Rocq [23] (formally called Coq [10]) and written a procedure
that checks the proofs from Z3 and ensures that all RUP inferences are correct. For examples
using more complex logical formulae or involving other data structures, such as integers sup-
ported by Z3, our checker verifies their correctness as well. However, verification of these rules
is left for future work. For CNF formulae, Rocq creates only assumptions, deletions, subsump-
tions, and RUP inference rules. For RUP inferences, our system currently creates proofs which
derive falsity from the assumptions and negated unit clauses using unit resolution. We have
a proof in Rocq that if this proof is correct, the assumptions plus the negated unit clauses
entail falsity and, therefore, the assumptions entail the formula in question. If all the generated
proofs are correct, we have a proof in Rocq that the Z3 proof is correct. Therefore, if Z3 returns
unsatisfiable, the assumptions are shown to be unsatisfiable.

Functions to check RUP inferences can be extracted from Rocq [23] into executable code
using Rocq’s extraction mechanism [21], typically to OCaml or Haskell. Extraction to other
languages is possible, for example, C using the Codegen package [24]. Extraction to C sup-
ports basic types like numbers and lists, but complex types need extra handling or may not
be supported. This is problematic for dependent types or higher-order functions lacking C
equivalents.

Currently, proofs of correctness for RUP rely on generating all intermediate resolution proofs
for each RUP inference. In fact, generating these proofs may be desirable when working with
critical systems. Although having a proof that the checker is correct provides a high level of
trust, there remains a remote possibility that an inconsistency in Rocq was used. Genuine
bugs are occasionally detected in theorem provers. Therefore, having independently verifiable
proof logs would allow for an even higher level of trust. The additional generated intermediate
resolution proofs make it easier and therefore more trustworthy to verify the RUP proofs.

As a prototype, we are working on the verification of RUP inferences and Z3 proofs in Agda
(see the GitHub repository [6]). Induction-recursion, as supported by Agda, is very beneficial
in this project: we define proofs inductively while recursively deriving their conclusion. As a
first step, we created a resolution proof of falsity from the assumptions and negated literals,
provided that the RUP inference is correct. Therefore, these assumptions and negated literals
are unsatisfiable. Although it is not of direct use for the industrial application – Agda does not
allow compiling into C – the verification in Agda will, once completed, enable the integration
of Z3 proofs into Agda. This advances our effort to incorporate automated theorem proving
into Agda for verifying railway interlocking systems, a collaboration between Setzer and Kanso
[19, 18].
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