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ABSTRACT
Meixner [J. London Math. Soc. s1-9(1), 6–13 (1934)] proved that there exist exactly five classes of orthogonal Sheffer sequences: Hermite
polynomials which are orthogonal with respect to Gaussian distribution, Charlier polynomials orthogonal with respect to Poisson dis-
tribution, Laguerre polynomials orthogonal with respect to gamma distribution, Meixner polynomials of the first kind, orthogonal with
respect to negative binomial distribution, and Meixner polynomials of the second kind, orthogonal with respect to Meixner distribu-
tion. The Segal–Bargmann transform provides a unitary isomorphism between the L2-space of the Gaussian distribution and the Fock or
Segal–Bargmann space of entire functions. This construction was also extended to the case of the Poisson distribution. The present paper
deals with the latter three classes of orthogonal Sheffer sequences. By using a set of nonlinear coherent states, we construct and study a gen-
eralized Segal–Bargmann transform which is a unitary isomorphism between the L2-space of the orthogonality measure and a certain Fock
space of entire functions. To derive our results, we use normal ordering in generalized Weyl algebras that are naturally associated with the
orthogonal Sheffer sequences.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0257878

I. INTRODUCTION
Fock spaces play a fundamental role in quantum mechanics as well as in infinite-dimensional analysis and probability, both classical

and noncommutative (quantum), see e.g., Refs. 13, 31, and 33. Roughly speaking, a symmetric Fock space is an infinite orthogonal sum of
symmetric n-particle Hilbert spaces. There exists an alternative description of a symmetric Fock space as a space of holomorphic functions.
Such a space is usually called the Segal–Bargmann space.

Let us briefly discuss the Segal–Bargmann construction in the one-dimensional case. Bargmann9 defined a Hilbert space F(C) as the
closure of polynomials over C in the L2-space L2

(C, ν). Here ν is the Gaussian measure on C given by ν(dz) = π−1 exp(−∣z∣2)dA(z), where
dA(z) is the Lebesgue measure on C. The monomials (zn

)
∞
n=0 form an orthogonal basis for F(C) with (zm, zn

)F(C) = n! δm,n. Here and
below, δm,n denotes the Kronecker delta. The F(C) consists of entire functions φ(z) = ∑∞n=0 fnzn that satisfy∑∞n=0 ∣ fn∣

2 n! <∞. The F(C) is a
reproducing kernel Hilbert space with reproducing kernel K(z,w) = ∑∞n=0 (n!)−1

(z̄w)n.
Let μ be the standard Gaussian distribution on R and let (hn)

∞
n=0 be the sequence of monic Hermite polynomials that form an orthogonal

basis for L2
(R,μ). The Segal–Bargmann transform is the unitary operator S : L2

(R,μ)→ F(C) that satisfies (S hn)(z) = zn. This operator
has a representation through the coherent states:

E(x, z) =
∞

∑
n=0

zn

n!
hn(x) = exp(−

1
2
(z2
− 2xz)), x ∈ R, z ∈ C.
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More precisely, for f ∈ L2
(R,μ) and z ∈ C, one has (S f )(z) = ∫R f (x)E(x, z) μ(dx). For a fixed z ∈ C, E(⋅, z) is an eigenfunction of the

lowering operator in L2
(R,μ) with eigenvalue z. More exactly, if we define the (unbounded) lowering operator ∂− in L2

(R,μ) by ∂−hn =

nhn−1, then ∂−E(⋅, z) = z E(⋅, z). For z real, the operator S can also be written as

(S f )(z) = ∫
R

f (x + z) μ(dx), f ∈ L2
(R,μ), z ∈ R. (1.1)

Let also ∂+ denote the raising operator for the Hermite polynomials: ∂+hn = hn+1. Then, the operator of multiplication by the variable
x in L2

(R,μ) has the form ∂+ + ∂−. Hence, under the Segal–Bargmann transform S, this operator goes over to the operator Z +D, where Z
is the multiplication by the variable z in F(C), and D is the differentiation in F(C). In this setting, the operators Z and D are adjoint of each
other. Note that these operators satisfy the commutation relation [D, Z] = 1, hence they are generators of a Weyl algebra, see e.g., Ref. 29,
Chap. 5.

The Segal–Bargmann transform for the Gaussian measure admits an extension to both the multivariate case9 and an infinite-dimensional
case, see e.g., Refs. 20 and 32, Sec. 3.3.

Asai et al.8 constructed a counterpart of the Segal–Bargmann transform in the case of the Poisson distribution with parameter σ > 0:
πσ(dξ) = e−σ∑∞n=0

1
n! σ

n δn(dξ) (δn denoting the Dirac measure at n). Define the Gaussian measure νσ on C by

νσ(dz) =
1
πσ

exp(−
∣z∣2

σ
) dA(z). (1.2)

Let the Hilbert space Fσ(C) be the closure of polynomials over C in L2
(C, νσ). The monomials (zn

)
∞
n=0 form an orthogonal basis for Fσ(C)

with (zm, zn
)Fσ(C) = σ

n n! δn,m. The Fσ(C) consists of entire functions φ(z) = ∑∞n=0 fn zn that satisfy∑∞n=0 ∣ fn∣
2 σn n! <∞. Let (cn)

∞
n=0 be the

sequence of monic Charlier polynomials that form an orthogonal basis for L2
(N0,πσ) (here and below we denote N0 = {0, 1, 2, . . . }). The

generalized Segal–Bargmann transform is a unitary operator S : L2
(N0,πσ)→ Fσ(C) satisfying (Scn)(z) = zn. The corresponding coherent

states are

E(ξ, z) =
∞

∑
n=0

zn

n! σn cn(ξ) = e−z
(1 +

z
σ
)
ξ
, ξ ∈ N0, z ∈ C.

[In this paper, we always denote a (generalized) Segal–Bargmann transform by S and the corresponding coherent states by E(⋅, ⋅). This should
not lead to confusion, since it will always be clear from the context which particular choice of the distribution on R we are dealing with.] It
holds that σ∂−E(⋅, z) = z E(⋅, z), where ∂− is the lowering operator for the Charlier polynomials (cn)

∞
n=0. Note that σ∂− is the adjoint of the

raising operator ∂+ for the polynomials (cn)
∞
n=0.

A key difference with the Gaussian case is that, under the transformation S, the operator of multiplication by the variable ξ goes over to
the operator ρ = U V in Fσ(C), where

U = Z + σ, V = D + 1. (1.3)

Note that the operators U and V still satisfy the commutation relation [V, U] = 1, hence U and V generate a Weyl algebra.
Both Hermite polynomials (hn)

∞
n=0 and Charlier polynomials (cn)

∞
n=0 belong to the class of orthogonal Sheffer sequences. Recall that a

monic polynomial sequence (sn)
∞
n=0 over R is called a Sheffer sequence if its (exponential) generating function is of the form

∞

∑
n=0

tn

n!
sn(x) = exp [A(t) + xB(t)], (1.4)

where A(t) and B(t) are formal power series over R satisfying A(0) = B(0) = 0 and B′(0) = 1.
Meixner30 proved that there exist exactly five classes of orthogonal Sheffer sequences. In fact, a monic polynomial sequence (sn)

∞
n=0 is an

orthogonal Sheffer sequence if and only if it satisfies the recurrence relation

xsn(x) = sn+1(x) + (λn + l)sn(x) + (σn + ηn(n − 1))sn−1(x), (1.5)

where λ ∈ R, l ∈ R, σ > 0 and η ≥ 0. The transformation of the constants (λ, l)↦ (−λ,−l) corresponds to the push-forward of the orthogonality
measure under the map R ∋ x ↦ −x ∈ R. Hence, we may assume that λ ≥ 0. The constant l corresponds to the shift of the orthogonality
measure by l, so it can be chosen appropriately, depending on the other three constants. It is also convenient to introduce parameters α,β ∈ C
that satisfy α + β = λ, αβ = η. In the case of both Hermite and Charlier polynomials, we have η = 0.

In this paper, we will deal with the case η > 0, which corresponds to the other three classes of orthogonal Sheffer sequences. More
exactly, for α = β > 0 and l = σ/α, we obtain the sequence of Laguerre polynomials which are orthogonal with respect to the following gamma
distribution on R+ = (0,∞):

μα,α,σ(dx) =
1

Γ( ση)
α−

σ
η x−1+ σ

η e−
x
α dx. (1.6)
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For α > β > 0 and l = σ/α, we obtain the sequence of Meixner polynomials of the first kind which are orthogonal with respect to the following
negative binomial (Pascal) distribution on (α − β)N0:

μα,β,σ(dx) = (1 −
β
α
)

σ
η ∞

∑
n=0
(
β
α
)

n 1
n!
(
σ
η
)

(n)

δ(α−β)n (dx). (1.7)

Finally, for R(α) ≥ 0, I(α) > 0, β = α and l = 0, we obtain the sequence of Meixner polynomials of the second kind (or Meixner–Pollaczak
polynomials) which are orthogonal with respect to the following Meixner distribution on R:

μα,β,σ(dx) = Cα,β,σ exp(
( π2 −Arg (α))x

I(α)
) ∣Γ(

ix
2I(α)

+
iσβ

2ηI(α)
)∣

2

dx, (1.8)

where Arg(α) ∈ (0,π/2] and the constant Cα,β,σ is given by

Cα,β,σ =
(2 cos ( π2 −Arg (α)))

σ
η

4I(α)π Γ( ση)
exp(

( π2 −Arg (α))σR(α)
I(α)η

). (1.9)

The aim of the paper is to study a generalized Segal–Bargmann transform which is a unitary operator S : L2
(μα,β,σ)→ Fη,σ(C) satisfying

(Ssn)(z) = zn, where Fη,σ(C) is a Fock space of entire functions to be defined below. This Segal–Bargmann transform has been previously
discussed by Feinsilver15 and Asai6,7 from the viewpoints of orthogonal polynomials, quantum probability, and representation theory. See
also Refs. 4, 5, 23, and 24.

For h ∈ C, let ((⋅ ∣ h)n)
∞
n=0 denote the sequence of generalized factorials with increment h,21 i.e., for z ∈ C, (z ∣ h)0 = 1 and

(z ∣ h)n = z(z − h)(z − 2h) ⋅ ⋅ ⋅ (z − (n − 1)h), n ∈ N. (1.10)

In particular, (z ∣ 1)n = (z)n is a falling factorial and (z ∣ −1)n = (z)(n) is a rising factorial. Note that the so-called h-derivative, (Dh f )(z) =
h−1
( f (z + h) − f (z)), is the lowering operator for this polynomial sequence: (Dh(⋅ ∣ h)n)(z) = n(z ∣ h)n−1.

For σ > 0 and η ≥ 0, we define Fη,σ(C) as the Hilbert space of entire functions φ(z) = ∑∞n=0 fn zn that satisfy

∞

∑
n=0
∣ fn∣

2 n! (σ ∣ −η)n <∞, (1.11)

and (zm, zn
)Fη,σ(C) = δm,n(σ ∣ −η)n n!. Note that, for η = 0, we have (σ ∣ 0)n = σn and so F0,σ(C) = Fσ(C).

For general σ > 0 and η > 0, we prove that Fη,σ(C) is the closure of the polynomials over C in the L2-space L2
(C, λη,σ). Here λη,σ is the

random Gaussian measure νr [see formula (1.2)] where the random variable r (the variance of νr) is distributed according to the gamma
distribution μη,η,ησ . The Fη,σ(C) is a reproducing kernel Hilbert space with reproducing kernel K(z,w) = ∑∞n=0

(z̄w)n

n! (σ∣−η)n
.

We note that Asai6 derived a representation of the density of the measure λη,σ which involves the modified Bessel function. Furthermore,
it was shown in Ref. 6 that λη,σ is the unique probability measure on C whose L2-space contains the Hilbert space Fη,σ(C) as its subspace. In
the case σ = η = 1, the space F1,1(C) was also studied by Alpay et al.,4 Sec. 9 and Alpay and Porat,5 see also Refs. 23 and 24.

The generalized Segal–Bargmann transform S : L2
(μα,β,σ)→ Fη,σ(C) admits a representation

(S f )(z) = ∫
R

f (x)E(x, z) μα,β,σ(dx),

where

E(x, z) =
∞

∑
n=0

zn

n! (σ ∣ −η)n
sn(x), (1.12)

and E(⋅, z) ∈ L2
(μα,β,σ) for each z ∈ C. Hence, (E(⋅, z))z∈C are nonlinear coherent states corresponding to the sequence of numbers ρn = n!(σ ∣

−η)n (n ∈ N0). See e.g., Refs. 3, 18, and 37 for studies of nonlinear coherent states. For applications of (generalized) coherent states in physics,
see e.g., Refs. 17 and 34.

In the special case where η = 1 and σ = 2j with j ∈ {1, 1
2 , 2, 2

3 , . . .}, we get ρn = n!(2j)(n). Nonlinear coherent states with such a choice of ρn
are called the Barut–Girardello states,10 see also Ref. 3, Sec. 1.1.3. Such states appeared in Ref. 10 in a study of coherent states associated with
the Lie algebra of the group SU(1, 1). For the general choice of the parameters λ, η and σ, Feinsilver,15 Secs. 1 and 3.8 obtained a representation
of the function E(x, z) through a hypergeometric function.

We note that, for each z ∈ C, E(⋅, z) is an eigenfunction (belonging to the eigenvalue z) of the annihilation operator σ∂− + η∂+(∂−)2,
which is the adjoint of the operator ∂+. Here ∂+ and ∂− are the raising and lowering operators for the Sheffer sequence (sn)

∞
n=0:

∂+sn = sn+1, ∂−sn = nsn−1 n ∈ N0. (1.13)
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For each ζ ∈ C, we define a complex-valued Poisson measure on N0 with parameter ζ by

πζ(dξ) = e−ζ
∞

∑
n=0

1
n!

ζn δn(dξ). (1.14)

We prove that the nonlinear coherent states can be written in the form E(x, z) = ∫N0
E(x,βξ) π z

β
(dξ), where

E(x,βξ) =
∞

∑
n=0

βn
(ξ)n

n! (σ ∣ −η)n
sn(x),

and we derive explicit formulas for E(x,βξ).
Furthermore, in the cases of the gamma distribution and the negative binomial distribution, we prove that, for each f ∈ L2

(μα,β,σ),

(S f )(z) = ∫
N0
∫ f (x) μα,β,ηξ+σ(dx) π z

β
(dξ), z ∈ C.

In particular, for z > 0, (S f )(z) is the expectation of f with respect to the random measure μα,β,ηξ+σ , where the random variable ξ has Poisson
distribution π z

β
. Similarly, in the case of the Meixner distribution, we show that

(S f )(z) = ∫
N0
∫ f (x + βξ) μα,β,ηξ+σ(dx) π z

β
(dξ), z ∈ C.

However, this formula holds only for functions f from E1
min(C), the space of entire functions of order at most 1 and minimal type.19 [The

set E1
min(C) is dense in L2

(μα,β.σ).] Note that, for r > 0, (S f )(βr) is the expectation of the function f (x + βξ) with respect to the probability
measure μα,β,ηξ+σ(dx)πr(dξ).

Similarly to the Gaussian and Poisson cases, under the generalized Segal–Bargmann transform S, the operator of multiplication by the
variable x in L2

(μα,β,σ) goes over to an operator in Fη,σ(C) that admits a representation through the operators Z and D.
Let us now briefly describe our strategy to prove these results. Let P(C) denote the vector space of polynomials over C. Consider the

polynomials sn as elements of P(C) (with real coefficients), and consider ∂+ and ∂− as linear operators in P(C) defined by (1.13). Define
linear operators U and V in P(C) by

U = ∂+ + β∂+∂− +
σ
α

, V = α∂− + 1. (1.15)

Let also Z denote the operator of multiplication by variable z in P(C). In view of (1.5), we get, in the case α ≥ β > 0 (hence l = σ
α ): Z = UV .

Similarly, in the case R(α) ≥ 0, I(α) > 0, β = α (hence l = 0), we have Z + σ
α = UV . Since [∂−,∂+] = 1, the operators U and V satisfy the

commutation relation
[V , U] = βV + (α − β). (1.16)

Hence, they generate a generalized Weyl algebra, see e.g., Ref. 29, Chap. 8 and the references therein.
Consider the linear bijective operator S in P(C) that satisfies (Ssn)(z) = (z ∣ β)n (n ∈ N0), see (1.10). Define operators U = SUS−1

and V = SV S−1. An easy calculation shows that

U = Z +
σ
α

, V = αDβ + 1, (1.17)

compare with (1.3). Obviously, U and V also satisfy the commutation relation [V, U] = βV + (α − β). Hence, they also generate a generalized
Weyl algebra. Compare it with Feinsilver’s finite difference algebra.14

Let us remark that orthogonal Sheffer sequences with η > 0 already appeared in studies related to the square of white noise algebra, see
e.g., Ref. 1 and the references therein. It was shown in Ref. 2 that the square of white noise algebra contains a subalgebra generated by elements
fulfilling the relations of Feinsilver’s finite difference algebra, see also Refs. 11 and 12. For further studies of Lie algebras related to orthogonal
Sheffer sequences, see Refs. 6, 7, Appendix A, and 15.

Similarly to Katriel’s theorem about the normal ordering in the Weyl algebra,25 we discuss the normal (Wick) ordering for the operator
(UV)n in terms of Uk and Vk, compare with Ref. 29, Sec. 8.2 and the references therein. This allows us to derive explicit formulas for sn(z)
and a representation of monomials zn through the polynomials sk(z). In these formulas, we use Stirling numbers and Lah numbers. As a
corollary, we find useful formulas for the moments of the orthogonality measure μα,β,σ . These results are presented in the Appendix, and the
reader may find them of independent interest.

We explicitly construct an open unbounded domain Dα,β,σ in C that contains 0. We define a reproducing kernel Hilbert space Fα,β,σ
of analytic functions on Dα,β,σ that have representation φ(z) = ∑∞n=0 fn(z ∣ β)n with coefficients fn ∈ C satisfying (1.11). We extend S to a
unitary operator S : L2

(μα,β,σ)→ Fα,β,σ that satisfies (Ssn)(z) = (z ∣ β)n. Thus, under the unitary operator S, the operator of multiplication
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by the variable x in L2
(μα,β,σ) goes over to the operator U V in Fα,β,σ for α ≥ β > 0 and to the operator U V − σ

α for R(α) ≥ 0, I(α) > 0, β = α.
We study the unitary operator S by using the results obtained through the normal ordering in the generalized Weyl algebras.

Next, we construct a unitary operator T : Fα,β,σ → Fσ,η(C) that satisfies

(T(⋅ ∣ β)n)(z) = zn, n ∈ N0.

We prove that this operator has a representation

(T f )(z) = ∫
N0

f (βξ) π z
β
(dξ), f ∈ Fα,β,σ. z ∈ C. (1.18)

Finally, we use that S = TS.
As a consequence of our considerations, we also derive explicit formulas for the action of the operators U and V , defined by (1.15).

Compare with Ref. 28, Sec. 4.
The paper is organized as follows. In Sec. II, we define and discuss the Fock space Fη,σ(C) and the topological space of entire functions

E1
min(C). In Sec. III, we present our main results. In Sec. IV, we present the proofs of the main results. Finally, in the Appendix, we discuss

the normal ordering in the generalized Weyl algebra generated by operators U, V satisfying the commutation relation [V , U] = aV + b with
a, b ∈ C. We apply the obtained result to an orthogonal Sheffer sequences (sn)

∞
n=0 and find useful formulas for the moments of its orthogonality

measure.
We expect that the key ideas of this paper can be extended to an infinite-dimensional setting, compare with Ref. 28. This will be a topic

of our future research.

II. THE SPACES Fη,σ(C) AND E1
min(C)

For η > 0 and σ ≥ 0, we denote by Fη,σ(C) the vector space of all entire functions φ : C→ C, φ(z) = ∑∞n=0 fnzn with coefficients
fn ∈ C (n ∈ N0) satisfying (1.11). Consider Fη,σ(C) as a Hilbert space equipped with the inner product (φ,ψ)Fη,σ(C) = ∑

∞
n=0 fn gn n! (σ ∣ −η)n

for φ(z) = ∑∞n=0 fnzn, ψ(z) = ∑∞n=0 gnzn
∈ Fη,σ(C). This is a reproducing kernel Hilbert space with reproducing kernel K(z,w) =

∑
∞
n=0

(z̄w)n

n! (σ∣−η)n
, i.e., for each φ ∈ Fη,σ(C), we have (φ,K(z, ⋅))Fη,σ(C) = φ(z).

Consider the following gamma distribution on R+:

μη,η, ησ(dr) =
1

Γ( ση)
(

1
η
)

σ
η

r−1+ σ
η e−

r
η dr.

Let λη,σ be the random Gaussian measure νr [see formula (1.2)] where the random variable r is distributed according to μη,η,ησ , i.e.,

λη,σ(dz) = ∫
R+
νr(dz) μη,η, ησ(dr) = Λη,σ(z) A(dz), (2.1)

where

Λη,σ(z) =
1

π Γ( ση)
(

1
η
)

σ
η

∫
R+

exp(−
∣z∣2

r
−

r
η
)r−2+ σ

η dr. (2.2)

In the following proposition, we will use the modified Bessel function

Kθ(x) =
π

2 sin (θπ)
(I−θ(x) − Iθ(x)),

where

Iθ(x) = (
x
2
)
θ ∞
∑
n=0

(x/2)2n

n! Γ(θ + n + 1)
.

In these formulas, the parameter θ is assumed to be not an integer. When θ is an integer, the limit is used to define Kθ(x).

Proposition 2.1. Let η > 0 and σ > 0. Then Fη,σ(C) is the closed subspace of L2
(C, λη,σ) constructed as the closure of P(C). Furthermore,

Λη,σ(z) =
2η−

1
2 (1+ σ

η )

πΓ( ση)
∣z∣

σ
η−1 K1− σ

η
(2η−

1
2 ∣z∣). (2.3)
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Proof. Recall that, for m, n ∈ N0, we have ∫C zm zn νr(dz) = δn,m rn n!. By formula (A13) in the Appendix, we get ∫R+ rn μα,α,σ(dr) =
( σα ∣ −α)n

. Hence, by (2.1),

∫
C

zm zn λη,σ(dz) = ∫
R+
∫

C
zm zn νr(dz) μη,η, ησ(dr)

= δm,n n!∫
R+

rn μη,η, ησ(dr) = δm,n n!(σ ∣ −η)n.

Formula (2.3) for the density Λη,σ(z) of the measure λη,σ was proved by Asai,6 Theorem 3.1. ◻

Remark 2.2. In fact, λη,σ is the unique probability measure on C which satisfies

∫
C

zm zn λη,σ(dz) = δm,n n!(σ ∣ −η)n,

see Ref. 6, Theorem 3.1.

Following Ref. 5, let us recall some basic facts about the Mellin transform and the Mellin convolution. Let f : R+ → R be such that, for
some interval (a, b) ⊂ R, the function f (r)rc−1 is integrable on R+ for all c ∈ (a, b). Then the Mellin transform of f is defined by M( f )(c) =
∫R+

rc−1 f (r) dr for c ∈ (a, b). Obviously, for η > 0 and f (r) = e−r/η, we have M( f )(c) = ηc Γ(c) for c > 0. The Mellin convolution of functions
f and g is the function f ∗ g that satisfies M( f ∗ g)(c) = M( f )(c) M(g)(c). Explicitly, the function f ∗ g is given by

( f ∗ g)(r) = ∫
R+

f (
r
t
)g(t)

1
t

dt = ∫
R+

f (t)g(
r
t
)

1
t

dt, r > 0. (2.4)

Lemma 2.3. Assume that η = σ. Then the functionΛσ,σ in Proposition 2.1 has the formΛσ,σ(z) = (πσ)−1ψ(∣z∣2), where ψ(r) = ( f1 ∗ f2)(r)
with f1(r) = e−r and f2(r) = e−r/σ .

Proof. Immediate by formulas (2.2) and (2.4). ◻

Remark 2.4. In the special case η = σ = 1, the statement of Lemma 2.3 was proved in Refs. 4 and 5. By Ref. 5, p. 5, ψ(r) =
∫R exp (−

√
r 2 cosh (x)) dx is a modified Bessel function of the second kind.

Let φ : C→ C be an entire function. One says that φ is of order at most 1 and minimal type (when the order is equal to 1) if φ satisfies

sup
z ∈C
∣φ(z)∣ exp (−t ∣z∣) <∞ ∀t > 0.

One denotes by E1
min(C) the vector space of all such functions.

For each t > 0, ∥φ∥t = supz∈C∣φ(z)∣ exp (−t ∣z∣) is a norm on E1
min(C), and denote by Bt the completion of E1

min(C) in this norm. For any
0 < t1 < t2, the Banach space Bt1 is continuously embedded into Bt2 . Note that, as a set, E1

min(C) = ⋂t>0 Bt . One defines the projective topology
on E1

min(C) induced by the Bt spaces, i.e., one chooses the coarsest locally convex topology on E1
min(C) for which the embedding of E1

min(C)
into Bt is continuous for each t > 0. Equipped with this topology, E1

min(C) is a Fréchet space. The following theorem is proved by Grabiner,19

see also Ref. 16.

Theorem 2.5 (Ref. 19). Let (sn)
∞
n=0 be a Sheffer sequence with generating function (1.4). Assume that the formal power series A(t) and

B(t) in (1.4) determine analytic functions in a neighborhood of zero. Then the following statements hold.

(i) An entire function φ : C→ C belongs to E1
min(C) if and only if it can be represented in the form

φ(z) =
∞

∑
n=0

fn sn(z), (2.5)

where ∑∞n=0 ∣ fn∣
2
(n!)2 2nk

<∞ for all k ∈ N. The representation of the function φ as in (2.5) is unique, and the series on the right-hand
side of formula (2.5) converges in E1

min(C).
(ii) For each k ∈ N, denote by Hk the completion of E1

min(C) in the Hilbertian norm ∣∣∣φ∣∣∣k = (∑∞n=0 ∣ fn∣
2
(n!)2 2nk

)
1/2

, where fn (n ∈ N0)

are the coefficient from (2.5). Then, E1
min(C) is the projective limit of the Hk spaces.
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Corollary 2.6. (i) For each η ≥ 0 and σ > 0, the Fréchet space E1
min(C) is continuously embedded into Fη,σ(C).

(ii) Let (sn)
∞
n=0 be an orthogonal Sheffer sequence and let μα,β,σ be its orthogonality measure. Then the Fréchet space E1

min(C) is continuously
embedded into L2

(μα,β,σ). Furthermore, E1
min(C) is a dense subset of L2

(μα,β,σ).

Proof. (i) The sequence of monomials (zn
)
∞
n=0 is a Sheffer sequence for which A(t) = 0 and B(t) = t, hence it satisfies the conditions of

Theorem 2.5. Therefore, the statement follows from the definition of Fη,σ(C) and Theorem 2.5.

(ii) It follows from Ref. 30 that each orthogonal Sheffer sequence satisfies the conditions of Theorem 2.5. Next, it follows from the recur-
rence formula (1.5) that ∥sn∥

2
L2
(μα,β,σ)

= n! (σ ∣ −η)n. Hence, φ ∈ L2
(μα,β,σ) if and only if φ(x) = ∑∞n=0 fnsn(x) with fn satisfying (1.11),

and the series∑∞n=0 fnsn(x) converges in L2
(μα,β,σ). Since (σ ∣ −η)n ≤ n!(min{η, σ})n, the statement follows from Theorem 2.5.

◻

III. MAIN RESULTS
Let σ > 0. We assume that either α ≥ β > 0 and l = σ/α or R(α) ≥ 0, I(α) > 0, β = α, and l = 0. Let (sn)

∞
n=0 be the Sheffer sequence

satisfying the recurrence formula (1.5), and let μα,β,σ be its orthogonality measure. We denote by Xα,β the support of μα,β,σ , i.e., Xα,β = R+ if
α = β > 0, Xα,β = (α − β)N0 if α > β > 0, and Xα,β = R if R(α) ≥ 0, I(α) > 0, β = α.

We define a generalized Segal–Bargmann transform S : L2
(Xα,β,μα,β,σ)→ Fη,σ(C) as a unitary operator satisfying (Ssn)(z) = zn for

n ∈ N0.

Theorem 3.1. The generalized Segal–Bargmann transform S has a representation through the nonlinear coherent states

E(x, z) =
∞

∑
n=0

zn

n! (σ ∣ −η)n
sn(x), x ∈ Xα,β, z ∈ C, (3.1)

i.e., E(⋅, z) ∈ L2
(Xα,β,μα,β,σ) for each z ∈ C and

(S f )(z) = ∫
Xα,β

f (x) E(x, z) μα,β,σ(dx), z ∈ C. (3.2)

Furthermore, if α = β > 0,

E(x, z) = ∫
N0

[(σ/η)(ξ)]
−1
(

x
α
)
ξ
π z

α
(dξ), x ∈ R+, z ∈ C, (3.3)

if α > β > 0,

E((α − β)n, z) = ∫
N0

(1 −
β
α
)

ξ
(ξη + σ ∣ −η)n

(σ ∣ −η)n
π z

β
(dξ), n ∈ N0, z ∈ C, (3.4)

and if R(α) ≥ 0, I(α) > 0, β = α,

E(x, z) = ∫
N0

(2 cos(
π
2
−Arg (α)))

ξ
((σ/η)(ξ))

−1
exp(i(

π
2
−Arg (α))ξ)(−

ix
2I(α)

−
iσα

2ηI(α)
)

(ξ)

π z
β
(dξ), x ∈ R, z ∈ C, (3.5)

where Arg(α) ∈ [0,π/2).

Let ∂+ and ∂− denote the raising and lowering operators for the Sheffer sequence (sn)
∞
n=0, see (1.13). Denote A− = σ∂− + η∂+(∂−)2.

Corollary 3.2. For any p, q ∈ P(C), (∂+p, q)L2
(μα,β,σ)

= (p, A−q)L2
(μα,β,σ)

and the operator A− with domain P(C) is closable in L2
(μα,β,σ).

Keep the notation A− for the closure of A−. Then, for each z ∈ C, E(⋅, z) is an eigenvector of A− belonging to the eigenvalue z.

For α ≥ β > 0 and z ∈ C, we define a complex-valued measure ρα,β,σ,z on Xα,β by

ρα,β,σ,z(dx) = ∫
N0

μα,β,ηξ+σ(dx) π z
β
(dξ). (3.6)
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In particular, if z > 0, ρα,β,σ,z is the random measure μα,β,ηξ+σ , where the random variable ξ has Poisson distribution π z
β
.

Theorem 3.3. Let α ≥ β > 0. For each f ∈ L2
(Xα,β, μα,β,σ),

(S f )(z) = ∫
Xα,β

f (x) ρα,β,σ,z(dx), z ∈ C. (3.7)

In the case where α and β have non-zero imaginary part, a counterpart of Theorem 3.3 has the following form.

Theorem 3.4. LetR(α) ≥ 0,I(α) > 0, β = α. The operator S, considered as a linear operator in P(C), admits an extension to a continuous
linear operator S in E1

min(C), and for each f ∈ E1
min(C) and z ∈ C,

(S f )(z) = ∫
N0
∫

R
f (x + βξ) μα,β,ηξ+σ(dx) π z

β
(dξ).

In particular, for each r > 0,

(S f )(βr) = ∫
N0
∫

R
f (x + βξ) μα,β,ηξ+σ(dx) πr(dξ).

Remark 3.5. Using the approach to the generalized Segal–Bargmann transform developed in this paper, one can easily show that, in the
case of the monic Charlier polynomials (cn)

∞
n=0 that are orthogonal with respect to the Poisson distribution πσ (σ > 0, α = 1, β = 0, l = σ), the

corresponding Segal–Bargmann transform S : L2
(N0,πσ)→ Fσ(C), satisfying Scn = zn

(n ∈ N0), admits the following representation:

(S f )(z) = ∫
N0

f (x) πσ+z(dx), f ∈ L2
(N0,πσ), z ∈ C,

compare with formula (1.1), which holds in the Gaussian case. Note that, for z ∈ (−σ,+∞), πσ+z is the (usual) Poisson distribution with
parameter σ + z.

We define linear operators U = Z + βZD + σ
α and V = αD + 1, acting in P(C) and satisfying [V,U] = βV + (α − β). We also define the

operator

ρ = UV = Z + λZD +
σ
α
+ σD + ηZD2.

Proposition 3.6. The operator ρ is essentially self-adjoint in Fη,σ(C) and we keep the notation ρ for its closure. If α ≥ β > 0, then SρS−1

is the operator of multiplication by the variable x in L2
(Xα,β, μα,β,σ). If R(α) ≥ 0, I(α) > 0 and β = α, then S(ρ − σ

α)S
−1 is the operator of

multiplication by the variable x in L2
(R,μα,β,σ).

The proof of the above statements will be based on Lemmas 3.7–3.11 below.
Similarly to (1.14), we will now define a complex-valued measure μα,β,ζ for a complex parameter ζ. First, we define a domainDα,β in C as

follows. If α > β > 0, we defineDα,β = C, if either α = β > 0 orR(α) = 0, I(α) > 0, β = α, we defineDα,β = {z ∈ C ∣ R(z) > 0}, and ifR(α) > 0,
I(α) > 0, β = α, we define

Dα,β = {z ∈ C ∣ R(z) > 0, ∣I(z)∣ < R(z)I(α)/R(α)}. (3.8)

Now, if α ≥ β > 0 and ζ ∈ Dα,β, we define the complex-valued measure μα,β,ζ on Xα,β by replacing the positive parameter σ in formulas (1.6)

and (1.7) with ζ. Next, if R(α) ≥ 0, I(α) > 0, β = α, we use the formula Γ(z) = Γ(z) for z ∈ C, R(z) > 0, to write formula (1.8) in the form

μα,β,σ(dx) = Cα,β,σ exp ((π/2 −Arg (α))x/I(α))Γ(
ix

2I(α)
+

iσβ
2ηI(α)

)Γ(−
ix

2I(α)
−

iσα
2ηI(α)

)dx. (3.9)

Now, for ζ ∈ Dα,β, we define the complex-valued measure μα,β,ζ on R by replacing the positive parameter σ in formulas (1.9) and (3.9) with ζ.
Furthermore, we define an open domain Dα,β,σ in C as follows. If ∣α∣ = ∣β∣ [i.e., either α = β > 0 or R(α) ≥ 0, I(α) > 0, β = α],

Dα,β,σ = {z ∈ C ∣ R(αz) > −σ/2}, (3.10)
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and if α > β > 0, Dα,β,σ = C. We will use below the following obvious observation: for each z ∈ Dα,β,σ and n ∈ N, z + βn ∈ Dα,β,σ . In particular,
βN0 ⊂ Dα,β,σ .

Lemma 3.7. Let ( fn)
∞
n=0 be a sequence of complex numbers such that (1.11) holds. Then the series∑∞n=0 fn(z ∣ β)n converges uniformly on

compact sets in Dα,β,σ , hence it is a holomorphic function on Dα,β,σ . Denote by Fα,β,σ the vector space of all holomorphic functions on Dα,β,σ
that have representation

φ(z) =
∞

∑
n=0

fn (z ∣ β)n, (3.11)

with ( fn)
∞
n=0 satisfying (1.11). Then

fn =
1
n!
(Dn

βφ)(0) =
(−1)n

n! βn

n

∑
k=0
(−1)k

(
n
k
) φ(βk). (3.12)

In particular, a function φ ∈ Fα,β,σ has a unique representation (3.11), and φ is completely determined by its values on the set βN0.

Let us consider Fα,β,σ as a Hilbert space equipped with the inner product (φ,ψ)Fα,β,σ = ∑
∞
n=0 fn gn n! (σ ∣ −η)n for φ(z) =

∑
∞
n=0 fn(z ∣ β)n, ψ(z) = ∑∞n=0 gn(z ∣ β)n ∈ Fα,β,σ . Let S : L2

(Xα,β,μα,β,σ)→ Fα,β,σ be the unitary operator satisfying

(Ssn)(z) = (z ∣ β)n, n ∈ N0.

Define

E(x, z) =
∞

∑
n=0

(z ∣ β)n

n! (σ ∣ −η)n
sn(x), x ∈ Xα,β, z ∈ Dα,β,σ. (3.13)

Lemma 3.8. For each z ∈ Dα,β,σ , we have E(⋅, z) ∈ L2
(Xα,β,μα,β,σ) and

(S f )(z) = ∫
Xα,β

f (x)E(x, z) μα,β,σ(dx), f ∈ L2
(Xα,β,μα,β,σ). (3.14)

Furthermore, if α = β > 0,

E(x, z) =
Γ( σα2 )

Γ( αz+σ
α2 )
(

x
α
)

z
α

, x ∈ R+, z ∈ Dα,α,σ , (3.15)

if α > β > 0,

E((α − β)n, z) = (1 −
β
α
)

z
β (αz + σ ∣ −η)n

(σ ∣ −η)n
n ∈ N0, z ∈ C, (3.16)

and if R(α) ≥ 0, I(α) > 0, β = α,

E(x, z) = (2 cos(
π
2
−Arg (α)))

αz
η Γ( ση)

Γ( σ+αz
η )

exp(
i( π2 −Arg (α))αz

η
)
Γ(− ix

2I(α) −
iσα

2ηI(α) +
αz
η )

Γ(− ix
2I(α) −

iσα
2ηI(α))

, x ∈ R, z ∈ Dα,β,σ. (3.17)

The following lemma provides alternative formulas for the action of the operator S.

Lemma 3.9. (i) Let α ≥ β > 0. Then we have, for each f ∈ L2
(Xα,β, μα,β,σ) and z ∈ Dα,β,σ ,

(S f )(z) = ∫
Xα,β

f (x) μα,β,αz+σ(dx). (3.18)

(ii) Let R(α) ≥ 0, I(α) > 0 and β = α. The operator S, considered as a linear operator in P(C), admits an extension to a continuous linear
operator S in E1

min(C), and for each f ∈ E1
min(C),

(S f )(z) = ∫
R

f (x + z) μα,β,αz+σ(dx), z ∈ Ψα,β,σ , (3.19)

where
Ψα,β,σ = {z ∈ C ∣ αz + σ ∈ Dα,β}. (3.20)
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Recall the operators U and V, given by (1.17) and satisfying [V, U] = βV + (α − β). We define the operator R = U V acting in P(C).

Lemma 3.10. The operator R is essentially self-adjoint in Fα,β,σ and we keep the notation R for its closure. Then, if α ≥ β > 0, SRS−1

is the operator of multiplication by the variable x in L2
(Xα,β, μα,β,σ), and if R(α) ≥ 0, I(α) > 0, β = α, S(R − σ

α)S
−1 is the operator of

multiplication by the variable x in L2
(Xα,β, μα,β,σ).

Next, we define a unitary operator T : Fα,β,σ → Fη,σ(C) satisfying

(T(⋅ ∣ β)n)(z) = zn, n ∈ N0.

Lemma 3.11. For each f ∈ Fα,β,σ and z ∈ C, formula (1.18) holds.

Recall the operators U and V , defined by (1.15) and satisfying the commutation relation (1.16).

Proposition 3.12. The operators U and V acting in P(C) can be (uniquely) extended to continuous linear operators acting in E1
min(C). We

preserve the notations U and V for these extensions. Let also Z denote the continuous linear operator in E1
min(C) of multiplication by variable z,

If α ≥ β > 0, then Z = UV and U = Z(1 − αDβ−α) (where D0 denotes the differentiation D). If R(α) ≥ 0, I(α) > 0 and β = α, then Z + σ
α = UV

and U = (Z + σ
α)(1 − αDβ−α). In either case, the operator 1 − αDβ−α is a self-homeomorhism of E1

min(C) and V = (1 − αDβ−α)
−1.

The following proposition provides explicit formulas for the action of the operator V = (1 − αDβ−α)
−1 in E1

min(C).

Proposition 3.13. Let f ∈ E1
min(C). If α = β > 0, then

(V f )(z) = ∫
R+

f (z + x) μα,α,η(dx), z ∈ C, (3.21)

if α > β > 0, then
(V f )(z) = ∫

(α−β)N0

( f (z + x)α/β − f (z)(α − β)/β) μα,β,η(dx), z ∈ C, (3.22)

and if R(α) ≥ 0, I(α) > 0 and β = α, then

(V f )(z) = ∫
R
( f (z + x + β)α/β − f (z)(α − β)/β) μα,β,η(dx), z ∈ C. (3.23)

IV. PROOFS
A. Proof of Lemmas 3.7–3.10
1. The case of the gamma distribution and the negative binomial distribution

First, we will prove Lemmas 3.7–3.10 in the case α ≥ β > 0. We divide the proof into several steps.
Step 1. By Corollary A.5, Proposition A.6, and formula (A13) in the Appendix, we get, for z ∈ (−σ/α,+∞),

(Sxn
)(z) = (SS−1 Rn S1)(z) = (Rn1)(z) =

n

∑
k=1
(α − β)n−kS(n, k) (z + σ/α ∣ −β)k

= ∫
Xα,β

xn μα,β,σ+αz(dx). (4.1)

Hence, for each polynomial p ∈ P(C) and z ∈ (−σ/α,+∞),

(Sp)(z) = ∫
Xα,β

p dμα,β,σ+αz. (4.2)

Note that (Sp)(z) can be extended to an entire function of z ∈ C.

Lemma 4.1. Let p ∈ P(C). Then the function Dα,β,σ ∋ z ↦ ∫Xα,β
p dμα,β,σ+αz is well-defined and analytic.

Proof. Let α = β. For z ∈ Dα,β,σ , we have R(σ + αz) > σ/2. Hence, it is sufficient to prove that, for each k ∈ N0, the function

ζ ↦ ∫
∞

0
xk μα,α,ζ(dx) =

1

Γ( ζη)
α−

ζ
η
∫

∞

0
xk−1+ ζ

η e−
x
α dx
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is well-defined and analytic on the domain {ζ ∈ C ∣ R(ζ) > 0}. To this end, it is sufficient to check the analyticity of the function

ζ ↦ ∫
∞

0
xk−1+ ζ

η e−
x
α dx. (4.3)

We have

∫

∞

0
∣xk−1+ ζ

η e−
x
α ∣ dx = ∫

∞

0
xk−1+ R(ζ)η e−

x
α dx <∞,

hence the function in (4.3) is well defined. Furthermore,

∣
d
dζ

xk−1+ ζ
η e−

x
α ∣ =

1
η
∣ log (x)∣ xk−1+ R(ζ)η e−

x
α . (4.4)

Note that log(x) ≤ x for x ≥ 1 and, for each ε > 0 there exists C1 > 0 such that ∣log(x)∣ ≤ C1x−ε for x ∈ (0, 1). Hence, formula (4.4) easily
implies that the function in (4.3) is indeed analytic on {ζ ∈ C ∣ R(ζ) > 0}.

Next, let α > β. It is sufficient to prove that, for each k ∈ N0, the function

ζ ↦ ∫
(α−β)N0

xk μα,β,ζ(dx) = (1 −
β
α
)

ζ
η ∞

∑
n=0
(
β
α
)

n 1
n!
(
ζ
η
)

(n)

((α − β)n)k (4.5)

is entire. We have

∞

∑
n=0
(
β
α
)

n 1
n!

RRRRRRRRRRRR

(
ζ
η
)

(n)RRRRRRRRRRRR

((α − β)n)k
≤
∞

∑
n=0
(
β
α
)

n 1
n!
(
∣ζ∣
η
)

(n)

((α − β)n)k
<∞,

because each monomial xk is integrable with respect to the negative binomial distribution μα,β,∣ζ∣. Hence, the series in (4.5) converges uniformly
on compact sets in C, which implies that the function in (4.5) is entire. ◻

Now formula (4.2), Lemma 4.1, and the identity theorem for analytic functions imply

(Sp)(z) = ∫
Xα,β

p dμα,β,σ+αz , p ∈ P(C), z ∈ Dα,β,σ. (4.6)

Step 2. Let α = β, let f ∈ L2
(R+,μα,α,σ) and let − σ

2α < δ < Δ < +∞. Then, for each z ∈ C with δ ≤ R(z) ≤ Δ, we have

∫

∞

0
∣ f (x)∣ ∣x−1+ αz+σ

η ∣ e−
x
α dx = ∫

∞

0
∣ f (x)∣ x−1+ αR(z)+σ

η e−
x
α dx

≤ (∫

∞

0
∣ f (x)∣2 x−1+ σ

η e−
x
α dx)

1
2
(∫

∞

0
x−1+ σ+2αR(z)

η e−
x
α dx)

1
2

≤ C2∥ f ∥L2
(μα,α,σ)

(4.7)

for a constant C2 > 0 that depends on δ and Δ. Now write f (x) = ∑∞n=0 fnsn(x) and define, for N ∈ N, pN(x) = ∑N
n=0 fnsn(x). Formulas (4.6)

and (4.7) imply that (SpN)(z) = ∑N
n=0 fn(z ∣ α)n converges uniformly on compact sets in Dα,α,σ to an analytic function and

(S f )(z) =
∞

∑
n=0

fn(z ∣ α)n = ∫

∞

0
f dμα,α,αz+σ. (4.8)

Step 3. Let α > β and let f ∈ L2
((α − β)N0,μα,β,σ). We have

∞

∑
n=0
∣ f ((α − β)n)∣(

β
α
)

n 1
n!

RRRRRRRRRRRR

(
σ + αz
η
)

(n)RRRRRRRRRRRR

≤ (1 −
β
α
)

− σ
η
∥ f ∥L2

(μα,β,σ)

⎛
⎜
⎜
⎜
⎝

∞

∑
n=0
(
β
α
)

n [(
σ+α∣z∣
η )

(n)
]

2

n!( ση)
(n)

⎞
⎟
⎟
⎟
⎠

1
2

. (4.9)

Lemma 4.2. For any a1 > a2 > 0 and 0 < q < 1,

∞

∑
n=0

qn [(a1)
(n)
]

2

n! (a2)
(n) <∞.
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Proof. It follows from the construction of a negative binomial distribution that, for each q ∈ (0, 1) and a1 > 0, ∑∞n=0 qn 1
n! (a1)

(n)
<∞.

Therefore, for each ε > 0, we have (a1)
(n)
≤ C3(1 + ε)n n!, where the constant C3 > 0 depends only on a1 and ε. Next, for any a2 > 0, (a2)

(n)
≥

a2(n − 1)!. Therefore, for any a1 > a2 > 0 and ε > 0, (a1)
(n)
/(a2)

(n)
≤ C4(1 + ε)n, where C4 > 0 depends on a1, a2 and ε. Hence,

∞

∑
n=0

qn [(a1)
(n)
]

2

n! (a2)
(n) ≤ C3C4

∞

∑
n=0
(q(1 + ε)2

)
n
<∞,

if we choose ε > 0 such that (1 + ε)2
< 1/q. ◻

Using estimate (4.9) and Lemma 4.2, we now show similarly to Step 2 that, for f (x) = ∑∞n=0 fnsn(x) ∈ L2
((α − β)N0,μα,β,σ),

(S f )(z) =
∞

∑
n=0

fn(z ∣ β)n = ∫

∞

0
f dμα,β,αz+σ , (4.10)

the series in (4.10) converges uniformly on compact sets in C, and hence, (S f )(z) is an entire function.
Thus, Lemma 3.9 (i) is proven.
Step 4. To finish the Proof of Lemma 3.7, we only need to prove formula (3.12). In fact, the first equality in (3.12) is an immediate

consequence of the fact that Dβ is the lowering operator for the polynomial sequence ((z ∣ β)n)
∞

n=0. The second equality in (3.12) is a well-
known identity for the nth difference operator, see e.g., formula (6.2) in Ref. 35.

Step 5. Let z ∈ Dα,β,σ . It follows from Steps 3 and 4 that there exists a constant C5 > 0 such that, for all f ∈ L2
(Xα,β, μα,β,σ), we have

∣(S f )(z)∣ ≤ C5∥ f ∥L2
(μα,β,σ)

. Hence, by the Riesz representation theorem, there exists Kz ∈ L2
(Xα,β,μα,β,σ) such that

(S f )(z) = ∫
Xα,β

f (x)Kz(x) μα,β,σ(dx) for all f ∈ L2
(Xα,β,μα,β,σ). (4.11)

By (3.18) and (4.11), we conclude that Kz(x) = E(x, z), where E(x, z) is given by (3.13), and Kz(x) is the Radon–Nykodim derivative
dμα,β,αz+σ

dμα,β,σ
(x). This easily implies Lemma 3.8.

Step 6. In view of Proposition A.6, to prove Lemma 3.10, we only need to check that the operator R with domain P(C) is essentially
self-adjoint in Fα,β,σ . But this can be easily shown by using Nelson’s analytic vector criterium, see e.g., Ref. 36, Sec. X.6.

2. The case of the Meixner distribution
Now we consider the case R(α) ≥ 0, I(α) > 0, β = α. We again divide the proof into several steps.
Step 1. Let K > 1 be fixed. We state that there exists a constant C1 > 0 such that

∣Γ(ix + y)∣ ≤ C1 exp(−
π
2
∣x∣)(1 + ∣x∣)K , x ∈ R, y ∈ [1/K, K]. (4.12)

Indeed, by e.g., Ref. 27, p. 15, the following asymptotic formula holds, for all x, y ∈ R, −ix − y ∉ N0:

∣Γ(ix + y)∣ =
√

2π exp(−
π
2
∣x∣) ∣x∣y−

1
2 (1 + E(x, y)),

where the function E(x, y) satisfies, for each fixed R > 0,

lim
∣x∣→∞

sup
y ∈ [−R,R]

∣E(x, y)∣ = 0.

Hence, formula (4.12) easily follows if we take into account that the function

R × [1/K, K] ∋ (x, y)↦ ∣Γ(ix + y)∣ ∈ R

is continuous, hence bounded on [−L, L] × [1/K, K] for each L > 0.
Step 2. Recall the domain Dα,β defined in Sec. III. We state that, for each p ∈ P(C), the function Dα,β ∋ ζ ↦ ∫R p(x) μα,β,ζ(dx) ∈ C is

well-defined and analytic.
Indeed, since Arg(α) ∈ (0,π/2], we have cos ( π2 −Arg (α)) > 0. Therefore, the function

ζ ↦ Cα,β,ζ =
(2 cos ( π2 −Arg (α)))

ζ
η

4I(α)π Γ( ζη)
exp(

( π2 −Arg (α))ζR(α)
I(α)η

) ∈ C
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is analytic on the domain {ζ ∈ C ∣ R(ζ) > 0}. Hence, it is sufficient to prove that, for each n ∈ N0, the following function is well-defined and
analytic:

Dα,β ∋ ζ ↦ ∫
R

xn exp ((π/2 −Arg (α))x/I(α))gα,β,ζ(x) dx ∈ C, (4.13)

where

gα,β,ζ(x) = Γ(
ix

2I(α)
+

iζ
2αI(α)

)Γ(−
ix

2I(α)
−

iζ
2βI(α)

)

= Γ(d1(ζ) + i(l1(ζ) + x/(2I(α)))Γ(d2(ζ) + i(l2(ζ) − x/(2I(α))). (4.14)

Here

d1(ζ) =
R(ζ)I(α) − I(ζ)R(α)

2ηI(α)
, l1(ζ) =

R(ζ)R(α) + I(ζ)I(α)
2ηI(α)

,

d2(ζ) =
R(ζ)I(α) + I(ζ)R(α)

2ηI(α)
, l2(ζ) =

−R(ζ)R(α) + I(ζ)I(α)
2ηI(α)

. (4.15)

For each ζ ∈ Dα,β, we have d1(ζ) > 0 and d2(ζ) > 0. Therefore, for a fixed x ∈ R, the functionDα,β ∋ ζ ↦ gα,β,ζ(x) ∈ C is analytic.
Let ζ ∈ Dα,β be fixed. For R > 0, denote B(ζ, R) = {z ∈ C ∣ ∣z − ζ∣ ≤ R}. Choose R > 0 such that B(ζ, R) ⊂ Dα,β. To prove the differentiabil-

ity of the map in (4.13) at point ζ, it is sufficient to prove that

∫
R
∣x∣n exp ((π/2 −Arg (α))∣x∣/I(α)) sup

z∈B(ζ,R/2)
∣
∂

∂z
gα,β,z(x)∣ dx <∞. (4.16)

[We used the inequality π/2 −Arg(α) ≥ 0.] By Cauchy’s integral formula, (4.16) would follow from

∫
R
∣x∣n exp ((π/2 −Arg (α))∣x∣/I(α)) sup

z∈B(ζ,R)
∣gα,β,z(x)∣ dx <∞. (4.17)

Choose K > 0 such that, for all z ∈ B(ζ, R), both d1(z) and d2(z) belong to [ 1
K , K]. Denote L1 = maxz∈B(ζ,R)∣l1(z)∣ and L2 =

maxz∈B(ζ,R)∣l2(z)∣. Then, by (4.12), there exists a constant C2 > 0 such that

sup
z∈B(ζ,R)

∣gα,β,z(x)∣ ≤ C2 exp(−
π ∣x∣

2I(α)
)(1 + ∣x∣)2K. (4.18)

Hence, the integral in (4.16) is bounded by the following integral

C2∫
R
∣x∣n exp (−Arg (α)∣x∣/I(α))(1 + ∣x∣)2K

<∞,

where we used that Arg(α) > 0.
Step 3. Let (pn)

∞
n=0 be the monic polynomial sequence over C satisfying the recurrence formula (A6). Thus, for x ∈ R, we have sn(x) =

pn(x + σ/α). Let I be the linear operator in P(C) as defined in Proposition A.6. Define S̃ = I−1. Thus, ( S̃pn)(z) = (z ∣ β)n. Similarly to
(4.1), we conclude from Corollary A.5 and Proposition A.6 that

( S̃ζn
)(z) =

n

∑
k=1
(α − β)n−kS(n, k) (z + σ/α ∣ −β)k, n ∈ N. (4.19)

On the other hand, for each r ∈ (−σ/η,+∞) and z = βr, we have σ + αz = σ + ηr ∈ (0,∞). Hence, by (A14),

∫
R
(x + z + σ/α)n μα,β,σ+αz(dx) =

n

∑
k=1
(α − β)n−kS(n, k)(z + σ/α ∣ −β)k, n ∈ N. (4.20)

By (4.19) and (4.20), we have, for each p ∈ P(C),

( S̃p)(z) = ∫
R

p(x + z + σ/α) μα,β,σ+αz(dx), z = βr, r ∈ (−σ/η,+∞). (4.21)

Setting p = pn into (4.21) gives
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∫
R

sn(x + z) μα,β,σ+αz(dx) = ∫
R

pn(x + z + σ/α) μα,β,σ+αz(dx)

= ( S̃pn)(z) = (z ∣ β)n = (Ssn)(z), z = βr, r ∈ (−σ/η,+∞), n ∈ N0.

Therefore, for each p ∈ P(C),
(Sp)(z) = ∫

R
p(x + z) μα,β,σ+αz(dx), z = βr, r ∈ (−σ/η,+∞). (4.22)

Recall the open domain Ψα,β,σ defined by (3.20). Obviously,

{z = βr ∣ r ∈ (−σ/η,+∞)} ⊂ Ψα,β,σ.

It follows from Step 2 that, for each p ∈ P(C), the function

Ψα,β,σ ∋ z ↦ ∫
R

p(x + z) μα,β,σ+αz(dx) ∈ C

is analytic. On the other hand, (Sp)(z) is an entire function. Hence, by (4.22) and the identity theorem for analytic functions,

(Sp)(z) = ∫
R

p(x + z) μα,β,σ+αz(dx), z ∈ Ψα,β,σ. (4.23)

Step 4. A direct calculation shows that, if R(α) = 0 then R ⊂ Ψα,β,σ , and if R(α) > 0 then (−σ/(2R(α)),∞) ⊂ Ψα,β,σ . Below we will use
the notation −σ/(2R(α)) even if R(α) = 0, meaning that −σ/(2R(α)) = −∞. Hence, by (4.23),

(Sp)(z) = ∫
R

p(x + z) μα,β,σ+αz(dx), z ∈ (−σ/(2R(α)),∞). (4.24)

The change of variable x′ = x + z in the integral in (4.24) implies

(Sp)(z) = ∫
R

p(x) G(x, z) dx, z ∈ (−σ/(2R(α)),∞), (4.25)

where for x ∈ R and z ∈ (−σ/(2R(α)),∞),

G(x, z) =
(2 cos ( π2 −Arg (α)))

αz+σ
η

4I(α)πΓ( αz+σ
η )

exp(
( π2 −Arg (α))(αz + σ)R(α)

I(α)η
)

× exp(
( π2 −Arg (α))(x − z)

I(α)
)Γ(

ix
2I(α)

+
iσβ

2ηI(α)
)Γ(

−ix
2I(α)

−
iσα

2ηI(α)
+

zα
η
). (4.26)

[Note that the real part of the argument of each of the gamma functions in (4.26) is positive.]
Recall the domain Dα,β,σ defined by (3.10). It is straightforward to see that, for each fixed x ∈ R, the function G(x, ⋅) admits a unique

extension to an analytic function on Dα,β,σ , and this extension is still given by formula (4.26). Similarly to Step 3, we show that, for each
p ∈ P(C), the function Dα,β,σ ∋ z ↦ ∫R p(x) G(x, z) dx ∈ C is analytic. Therefore, formula (4.25) implies

(Sp)(z) = ∫
R

p(x) G(x, z) dx, z ∈ Dα,β,σ. (4.27)

Step 5. Let z0 ∈ Dα,β,σ . Choose R > 0 such that the closed ball B(z0, R) is a subset of Dα,β,σ We state that there exists a constant C3 > 0 such
that, for all f ∈ L2

(R,μα,β,σ),

sup
z∈B(z0 ,R)

∫
R
∣ f (x)∣ ∣G(x, z)∣ dx ≤ C3∥ f ∥L2

(μα,β,σ)
. (4.28)

Indeed, we have, by the Cauchy inequality, for each z ∈ B(z0, R),

∫
R
∣ f (x)∣ ∣G(x, z)∣ dx ≤ ∥ f ∥L2

(μα,β,σ)
(∫

R

∣G(x, z)∣2

Gα,β,σ(x)
dx)

1
2

. (4.29)

Here Gα,β,σ(x) is the density of the measure μα,β,σ with respect to the Lebesgue measure:

Gα,β,σ(x) = Cα,β,σ exp ((π/2 −Arg (α))x/I(α))gα,β,σ(x).
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Using (1.9), (4.14), (4.26), and the equality ∣Γ(ζ)∣ = ∣Γ(ζ̄)∣, we find

∣G(x, z)∣2

Gα,β,σ(x)
=

RRRRRRRRRRRRR

(2 cos ( π2 −Arg (α)))
2αz+σ
η

4I(α)π
⋅

Γ( ση)

Γ2
( αz+σ

η )
exp [

( π2 −Arg (α)) R(α) (2αz + σ)
I(α)η

+
( π2 −Arg (α))(x − 2z)

I(α)
]Γ2
(−

ix
2I(α)

−
iσα

2η I(α)
+

zα
η
)

RRRRRRRRRRRRRR

. (4.30)

Thus, by (4.29) and (4.30), to prove (4.28), it is sufficient to show that

sup
z∈B(z0 ,R)

∫
R

exp [
( π2 −Arg (α)) ∣x∣

I(α)
] ⋅ ∣Γ(−

ix
2I(α)

−
iσα

2ηI(α)
+

zα
η
)∣

2

dx <∞. (4.31)

We note that, for each z ∈ B(z0, R) ⊂ Dα,β,σ ,

R(−
iσα

2ηI(α)
+

zα
η
) =

σ
2η
+
R(αz)
η
> 0.

Hence, there exists K > 1 such that

R(−
iσα

2ηI(α)
+

zα
η
) ∈ [1/K, K] ∀z ∈ B(z0, R).

Since R(αz) is bounded on B(z0, R), estimate (4.12) easily implies (4.31). (Compare with Step 2.)
Step 6. Similarly to Step 2 in Subsection IV A 1, we conclude from (4.28) that, for each f (x) = ∑∞n=0 fnsn(x) ∈ L2

(R,μα,β,σ), the series
∑
∞
n=0 fn(z ∣ β)n converges uniformly on compact sets in Dα,β,σ to an analytic function and

(S f )(z) =
∞

∑
n=0

fn(z ∣ β)=∫
R

f (x)G(x, z) dx. (4.32)

Similarly to Step 4 in Subsection IV A 1, this proves Lemma 3.7. Next, using (1.9), (3.9), (4.26), and (4.32), we find that formulas (3.14) and
(3.17) hold for each f ∈ L2

(R,μα,β,σ). Similarly to Step 5 in Subsection IV A 1, we see that E(⋅, z) ∈ L2
(R,μα,β,σ) for each z ∈ Dα,β,σ and formula

(3.13) holds. This proves Lemma 3.8.
Step 7. Note that ((z ∣ β)n)

∞
n=0 is Sheffer sequence with generating function (1.4) in which A(t) = 0 and B(t) = 1

β log (1 + βt). Therefore,
by Theorem 2.5, the linear operator S, acting in P(C) and satisfying Ssn = (⋅ ∣ β)n (n ∈ N0), extends to a continuous linear operator in
E1

min(C).
Let f (z) = ∑∞n=0 fnsn(z) ∈ E1

min(C) and define pN(z) = ∑N
n=0 fnsn(z) ∈ P(C) (N ∈ N). Then pN → f and SpN → S f in E1

min(C). In
particular, for each fixed z ∈ C, we have pN(z)→ f (z) and (SpN)(z)→ (S f )(z) as N →∞.

In view of (4.23), to prove Lemma 3.9 (ii), it is sufficient to show that, for each ζ ∈ Dα,β and z ∈ C, we have

lim
N→∞∫R

pN(x + z) μα,β,ζ(dx) = ∫
R

f (x + z) μα,β,ζ(dx),

which is equivalent to

lim
N→∞∫R

pN(x + z) exp ((π/2 −Arg (α))x/I(α))gα,β,ζ(x) dx = ∫
R

f (x + z) exp ((π/2 −Arg (α))x/I(α))gα,β,ζ(x) dx. (4.33)

It follows from (4.18) that, for each ζ ∈ Dα,β, there exist constants C4 > 0 and K > 0 such that

∣gα,β,ζ(x)∣ ≤ C4 exp(−
π ∣x∣

2I(α)
)(1 + ∣x∣)2K. (4.34)

Since the sequence (pN)
∞
N=1 converges in E1

min(C), for each t > 0, there exists a constant Ct > 0 (depending on the fixed z ∈ C) such that

sup
x ∈R
∣pN(x + z)∣ ≤ Ct exp (t∣x∣). (4.35)

Choosing t ∈ (0, Arg (α)/I(α)), we conclude (4.33) from (4.34), (4.35), and the dominated convergence theorem.
Thus, Lemma 3.9 (ii) is proven. Finally, the Proof of Lemma 3.10 is similar to Step 6 in Subsection IV A 1.
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B. The remaining proofs

Proof of Lemma 3.11. We state that, for each z ∈ C,

∫
N0

(ξ)n πz(dξ) = zn, n ∈ N. (4.36)

For z > 0, equality (4.36) is well-known. [To show it, one can use the equality ∫N0
ξn πσ(dξ) = ∑n

k=1 S(n, k)σk and formula (A1).] As easily
seen, the function C ∋ z ↦ ∫N0

(ξ)n πz(dξ) is entire. Hence, formula (4.36) holds for all z ∈ C by the identity theorem for analytic functions.
Formula (4.36) implies ∫N0

(βξ ∣ β)n π z
β
(dξ) = zn. Therefore, formula (1.18) holds for f ∈ P(C).

Let f (z) = ∑∞n=0 fn(z ∣ β)n ∈ Fα,β,σ . Using (4.36), we have, for z ∈ C,

∞

∑
k=0
∣ f (βk)∣

1
k!
∣

z
β
∣

k

≤
∞

∑
k=0

∞

∑
n=0
∣ fn∣ ∣(βk ∣ β)n∣

1
k!
∣

z
β
∣

k

=
∞

∑
n=0
∣ fn∣ ∣β∣n

∞

∑
k=0
(k)n

1
k!
∣

z
β
∣

k

= exp (∣z∣/β)
∞

∑
n=0
∣ fn∣ ∣β∣n∫

N0

(ξ)n π
∣ z
β ∣
(dξ)

= exp (∣z∣/∣β∣)
∞

∑
n=0
∣ fn∣ ∣z∣n ≤ exp (∣z∣/∣β∣)(

∞

∑
n=0

∣z∣2n

n! (σ ∣ −η)n
)

1/2

∥ f ∥Fα,β,σ .

Hence, the integral on the right-hand side of formula (1.18) is well-defined and formula (1.18) holds. ◻

Proof of Theorem 3.1. By Lemmas 3.8 and 3.11, we have, for each f ∈ L2
(Xα,β, μα,β,σ) and z ∈ C,

(S f )(z) = ∫
N0
∫

Xα,β

f (x)E(x,βξ) μα,β,σ(dx) π z
β
(dξ). (4.37)

By (3.13), we have, for x ∈ Xα,β and ξ ∈ N0,

∣E(x,βξ)∣ ≤
∞

∑
n=0

∣(βξ ∣ β)n∣

n! (σ ∣ −η)n
∣sn(x)∣ =

∞

∑
n=0

∣β∣n

n! (σ ∣ −η)n
(ξ)n∣sn(x)∣.

Therefore, using (4.36), we obtain, for f ∈ L2
(Xα,β, μα,β,σ) and z ∈ C,

∫
N0
∫

Xα,β

∣ f (x)∣ ∣E(x,βξ)∣ μα,β,σ(dx) π∣ z
β ∣
(dξ) ≤

∞

∑
n=0

∣β∣n

n! (σ ∣ −η)n
∫

Xα,β

∣ f (x)sn(x)∣(∫
N0

(ξ)n π∣ z
β ∣
(dξ))μα,β,σ(dx)

=
∞

∑
n=0

∣z∣n

n! (σ ∣ −η)n
∫

Xα,β

∣ f (x)sn(x)∣ μα,β,σ(dx)

≤ ∥ f ∥L2
(μα,β,σ)

∞

∑
n=0

∣z∣n
√

n! (σ ∣ −η)n
<∞. (4.38)

Formulas (4.37) and (4.38) imply formula (3.2) in which

E(x, z) = ∫
N0

E(x,βξ) π z
β
(dξ). (4.39)

Formulas (3.2), (4.39), and Lemma 3.8 imply formulas (3.3)–(3.5). For each z ∈ C, the map L2
(Xα,β,μα,β,σ) ∋ z ↦ (S f )(z) ∈ C is continuous,

see e.g., Refs. (4.37) and (4.38). Hence, E(⋅, z) ∈ L2
(Xα,β,μα,β,σ) for each z ∈ C. Formula (3.1) is then also obvious. ◻

Proof of Corollary 3.2. The equality (∂+p, q)L2
(μα,β,σ)

= (p, A−q)L2
(μα,β,σ)

for p, q ∈ P(C) follows from (1.5). Since the adjoint of the oper-

ator A− is densely defined, the operator A− is closable. For N ∈ N, define EN(x, z) = ∑N
n=0

zn

n! (σ∣−η)n
sn(x). Then, for each z ∈ C, EN(⋅, z)→

E(⋅, z) in L2
(Xα,β, μα,β,σ) as N →∞, and A−EN(⋅, z) = zEN−1(⋅, z)→ zE(⋅, z) in L2

(Xα,β, μα,β,σ) as N →∞. Hence, E(⋅, z) belongs to the
domain of A− and A−E(⋅, z) = zE(⋅, z). ◻

Proof of Theorem 3.3. By Lemma 3.9 (i) and Lemma 3.11, we have, for f ∈ L2
(Xα,β, μα,β,σ) and z ∈ C:

(S f )(z) = ∫
N0
∫

Xα,β

f (x) μα,β,ηξ+σ(dx) π z
β
(dξ). (4.40)
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To conclude from (4.40) that formulas (3.6) and (3.7) hold, it is sufficient to show that

∫
N0
∫

Xα,β

∣ f (x)∣ μα,β,ηξ+σ(dx) π ∣z∣
β
(dξ) <∞. (4.41)

But this is immediate since f ∈ L2
(Xα,β, μα,β,σ) and the left-hand side of (4.41) is equal to (S∣ f ∣)(∣z∣). ◻

Proof of Theorem 3.4. By Theorem 2.5, the operator S acts continuously in E1
min(C). Now the theorem follows from Lemma 3.9 (ii) and

Lemma 3.11 [note that E1
min(C) can be naturally embedded into Fα,β,σ .] Indeed, the only fact that needs to be checked is that, for each ξ ∈ N0,

we have βξ ∈ Ψα,β,σ . But this is immediate since αβξ + σ = ηξ + σ > 0 and so αβξ + σ ∈ Dα,β. ◻

Proof of Proposition 3.6. The proposition follows immediately from Lemma 3.10. ◻

Proof of Propositions 3.12 and 3.13. We divide the proof into several steps.
Step 1. The operator 1 − αDβ−α maps a monic polynomial sequence to a monic polynomial sequence. Hence, it is bijective as a map in

P(C).
The equality

V = α∂− + 1 = (1 − αDβ−α)
−1 on P(C) (4.42)

easily follows from umbral calculus. Indeed, ∂− = B(D), where D is the differentiation operator and the function B is as in formula (1.4), see
e.g., Ref. 26, Sec. 4.4. By Ref. 30, if α ≠ β, we have

B(t) =
e(β−α)t − 1
β − αe(β−α)t

=

e(β−α)t
−1

β−α

1 − α e(β−α)t
−1

β−α

. (4.43)

By Boole’s formula (e.g., Ref. 26, Sec. 4.3.1), for h ∈ C, the h-derivative has the representation Dh =
ehD
−1

h . Hence, by (4.43), ∂− =

Dβ−α(1 − αDβ−α)
−1, which implies (4.42). In the case α = β, we have B(t) = t

1−αt , which similarly implies (4.42).
Recall that, in the case α ≥ β > 0, we have Z = UV on P(C), and in the case R(α) ≥ 0, I(α) > 0, β = α, we have Z + σ

α = UV on P(C).
Since V−1

= 1 − αDβ−α, this immediately implies that U = Z(1 − αDβ−α) in the former case, and U = (Z + σ
α)(1 − αDβ−α) in the latter case.

Step 2. Similarly to Step 1, we easily find that ∂− = Dα−β(1 − βDα−β)
−1
= ∑

∞
k=0 β

kDk+1
α−β. Since Dα−β is the lowering operator for the

polynomial sequence ((z ∣ α − β)n)
∞
n=0, we get

(∂−(⋅ ∣ α − β)n)(z) =
n−1

∑
k=0

n!
k!

βn−k−1
(z ∣ α − β)k, n ∈ N. (4.44)

Step 3. We state that, when α ≥ β > 0,

∫
Xα,β

(x ∣ α − β)n μα,β,σ(dx) = βn
(σ/η)(n), (4.45)

and when R(α) ≥ 0, I(α) > 0, β = α,

∫
R
(x + σ/α ∣ α − β)n μα,β,σ(dx) = βn

(σ/η)(n). (4.46)

Note that, when α = β > 0, formula (4.45) is just (A13). We will prove formula (4.45) when α > β > 0, the proof of (4.46) being similar.
By (A1) and (A13), we obtain

∫
(α−β)N0

(x ∣ α − β)n μα,β,σ(dx) = (α − β)n
∫
(α−β)N0

(x/(α − β))n μα,β,σ(dx)

=
n

∑
k=1

s(n, k)(α − β)n−k
∫
(α−β)N0

xk μα,β,σ(dx)

=
n

∑
k=1

s(n, k)(α − β)n−k
k

∑
i=1
(α − β)k−iS(k, i)(σ/α ∣ −β)i

=
n

∑
i=1
(α − β)n−i

(σ/α ∣ −β)i

n

∑
k=i

s(n, k)S(k, i)

= (σ/α ∣ −β)n = βn
(σ/η)(n).
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Step 4. Let p ∈ P(C). We state that, if α ≥ β > 0,

(∂−p)(z) = ∫
Xα,β

(p(z + x) − p(z))β−1 μα,β,η(dx), (4.47)

and if R(α) ≥ 0, I(α) > 0, β = α,

(∂−p)(z) = ∫
Xα,β

(p(z + x + β) − p(z))β−1 μα,β,η(dx), (4.48)

To prove formula (4.47), it is sufficient to show that it holds for p(z) = (z ∣ α − β)n (n ∈ N). Then, by (4.44) and (4.45),

∫
Xα,β

((z + x ∣ α − β)n − (z ∣ α − β)n)β−1 μα,β,η(dx) =
n−1

∑
k=0
(

n
k
)(z ∣ α − β)k β

−1
∫

Xα,β

(x ∣ α − β)n−k μα,β,η(dx)

=
n−1

∑
k=0
(

n
k
)(z ∣ α − β)k β

n−k−1
(n − k)! = (∂−p)(z).

The proof of (4.48) is similar. We only need to note that η/α = β.
Since V = α∂− + 1, formulas (4.47) and (4.48) imply that formulas (3.21)–(3.23) hold for f (z) = p(z) ∈ P(C).
Step 5. Using Theorem 2.5, one can easily show that the operators ∂+, ∂−, Z and Dβ−α admit a (unique) extension to continuous lin-

ear operators in E1
min(C). Hence, U and V also admit a continuous extension, Z = UV , respectively Z + σ/α = UV , and U = Z(1 − αDβ−α),

respectively U = (Z + σ/α)(1 − αDβ−α).
Finally, using the definition of the space E1

min(C), we easily see that the integrals on the right-hand side of formulas (3.21)–(3.23) are
well defined for each f ∈ E1

min(C), and furthermore, the right-hand side of each of the formulas (3.21)–(3.23) determines a continuous linear
operator in E1

min(C). Hence, formulas (3.21)–(3.23) hold for f ∈ E1
min(C). Since (1 − αDβ−α)V = V(1 − αDβ−α) = 1 in E1

min(C), the operator
1 − αDβ−α is invertible in E1

min(C) and V = (1 − αDβ−α)
−1. ◻
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APPENDIX: NORMAL ORDERING IN A CLASS OF GENERALIZED WEYL ALGEBRAS AND ITS CONNECTION
TO ORTHOGONAL SHEFFER SEQUENCES

We consider a special class of generalized Weyl algebras. For a, b ∈ C, we are interested in the complex free algebra in two generators U
and V satisfying the commutation relation [V, U] = aV + b.

Recall that the Stirling numbers of the first kind, s(n, k), and of the second kind, S(n, k), are defined as the coefficients of the expansions
(z)n = ∑

n
k=1 s(n, k) zk and zn

= ∑
n
k=1 S(n, k)(z)k, respectively. This definition immediately implies the orthogonality property of the Stirling

numbers:
n

∑
k=i

S(n, k)s(k, i) =
n

∑
k=i

s(n, k)S(k, i) = δn,i, 1 ≤ i ≤ n. (A1)
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Proposition A.3. Assume that the generators U , V satisfy [V, U] = aV + b. Then, for each n ∈ N, we have

(U V)n
=

n

∑
k=1

bn−k S(n, k)U(U + a)(U + 2a) ⋅ ⋅ ⋅ (U + (k − 1)a)Vk

=
n

∑
k=1

bn−kS(n, k) (U ∣ −a)k Vk. (A2)

Remark A.4. Note that, in the existent literature, one would usually consider the normal ordering of (VU )n in which all operators V are
to the left of the operators U (see e.g., Ref. 29, Sec. 8.5 the references therein), while we are interested in the opposite situation. The reader is
advised to compare Proposition A.3 with Ref. 38.

Proof of Proposition A.3. First, we state that
Vn U = (U + na)Vn

+ nbVn−1. (A3)

This formula follows immediately from Ref. 22. Nevertheless, an interested reader can prove formula (A3) directly by induction.
Now we prove (A2) by induction. For n = 1, (A2) becomes the tautology U V = U V. Assume that (A2) holds for n and let us prove it for

n + 1. We have, by (A3),

(U V)n+1
=

n

∑
k=1

bn−kS(n, k)U(U + a)(U + 2a) ⋅ ⋅ ⋅ (U + (k − 1)a)Vk U V

=
n

∑
k=1

bn−kS(n, k) U(U + a)(U + 2a) ⋅ ⋅ ⋅ (U + (k − 1)a)[(U + ka)Vk
+ kbVk−1

]V

=
n

∑
k=1

bn−kS(n, k)U(U + a)(U + 2a) ⋅ ⋅ ⋅ (U + ka)Vk+1

+
n

∑
k=1

kbn−k+1S(n, k)U(U + a)(U + 2a) ⋅ ⋅ ⋅ (U + (k − 1)a)Vk. (A4)

Setting S(n, 0) = S(n, n + 1) = 0, we continue (A4) as follows:

=
n+1

∑
k=1

S(n, k − 1)bn−k+1 U(U + a)(U + 2a) ⋅ ⋅ ⋅ (U + (k − 1)a)Vk

+
n+1

∑
k=1

S(n, k)kbn−k+1 U(U + a)(U + 2a) ⋅ ⋅ ⋅ (U + (k − 1)a)Vk

=
n+1

∑
k=1
(S(n, k − 1) + kS(n, k))bn+1−k U(U + a)(U + 2a) ⋅ ⋅ ⋅ (U + (k − 1)a)Vk

=
n+1

∑
k=1

bn+1−kS(n + 1, k)U(U + a)(U + 2a) ⋅ ⋅ ⋅ (U + (k − 1)a)Vk,

where we used the well known recurrence formula S(n + 1, k) = S(n, k − 1) + kS(n, k). ◻

Let now σ > 0, α,β ∈ C/{0}. Define linear operators U and V in P(C) by (1.17). It is straightforward to see that the operators U , V
generate a generalized Weyl algebra as discussed above with a = β and b = α − β. Let R = U V.

Since V1 = 1 and U = Z + σ
α , Proposition A.3 immediately implies

Corollary A.5. We have

(Rn1)(z) =
n

∑
k=1
(α − β)n−kS(n, k) (z + σ/α ∣ −β)k. (A5)

The following proposition explains a connection between the generalized Weyl algebra generated by U and V and an orthogonal Sheffer
sequence.

Proposition A.6. Let σ > 0 and α,β ∈ C/{0}. Let (pn(z))∞n=0 be the monic polynomial sequence satisfying by the recurrence formula

zpn(z) = pn+1(z) + (λn + σ/α)pn(z) + (σn + ηn(n − 1))pn−1(z), n ∈ N0, (A6)
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where λ = α + β and η = αβ. In particular, for α ≥ β > 0, we have sn(z) = pn(z), and for R(α) ≥ 0, I(α) > 0 and β = α, we have sn(z) = pn(z +
σ
α). Define a linear bijective operator I in P(C) by setting I(⋅ ∣ β)n = pn for n ∈ N0. Then Z = IRI−1.

Proof. We have R = αZDβ + Z + σDβ +
σ
α . Recall that Dβ is the lowering operator for the monic polynomial sequence ((z ∣ β)n)

∞
n=0.

Furthermore, it is easy to see that z(z ∣ β)n = (z ∣ β)n+1 + nβ(z ∣ β)n. In view of the recurrence formula (A6), the statement easily follows. ◻

As a special case of generalized Stirling numbers of Hsu and Shiue,21 we define, for 0 ≤ k ≤ n and h, r ∈ C, numbers S(n, k; h, r) as the
coefficients of the expansion (z + r ∣ h)n = ∑

n
k=0 S(n, k; h; r)(z ∣ −h)k.

Recall that the (unsigned) Lah numbers, L(n, k), are defined as the coefficients of the expansion (z)n = ∑
n
k=1 (−1)n−kL(n, k)(z)(k).

Explicitly, L(n, k) = ( n−1
k−1 )

n!
k! . Note that L(n, k) = (−1)n−kS(n, k; 1, 0) = S(n, k;−1, 0).

Lemma A.7. We have S(n, 0; h, r) = (r ∣ h)n and for k = 1, . . . , n,

S(n, k; h, r) =
n−k

∑
j=0
(

n
j
)(−h)n−j−kL(n − j, k)(r ∣ h)j. (A7)

Proof. Since the h-derivative Dh is the lowering operator for the monic polynomial sequence ((z ∣ h)n)
∞
n=0 and (0 ∣ h)n = 0 for all n ∈ N,

((z ∣ h)n)
∞
n=0 is a polynomial sequence of binomial type, see e.g., Ref. 26, 4.3.3 Theorem. Hence,

(z + r ∣ h)n =
n

∑
i=0
(

n
i
)(z ∣ h)i (r ∣ h)n−i = (r ∣ h)n +

n

∑
i=1
(

n
i
)hi
(

z
h
)

i
(r ∣ h)n−i

= (r ∣ h)n +
n

∑
i=1
(

n
i
)hi
(r ∣ h)n−i

i

∑
k=1
(−1)i−kL(i, k)(

z
h
)
(k)

= (r ∣ h)n +
n

∑
i=1
(

n
i
)hi
(r ∣ h)n−i

i

∑
k=1
(−1)i−kL(i, k) h−k

(z ∣ −h)k

= (r ∣ h)n +
n

∑
k=1
(

n

∑
i=k
(

n
i
)(−h)i−k

(r ∣ h)n−i L(i, k))(z ∣ −h)k

= (r ∣ h)n +
n

∑
k=1

⎛

⎝

n−k

∑
j=0
(

n
n − j

)(−h)n−j−k
(r ∣ h)j L(n − j, k)

⎞

⎠
(z ∣ −h)k. ◻

The following result can be of independent interest.

Theorem A.8. Let (pn(z))∞n=0 be a monic polynomial sequence as in Proposition A.6. We have

zn
=

n

∑
k=1
(α − β)n−k S(n, k) (σ/α ∣ −β)k +

n

∑
i=1
(

n

∑
k=i
(α − β)n−kS(n, k)S(k, i;−β, σ/α))pi(z) (A8)

and

pn(z) = (−σ/α ∣ β)n +
n

∑
i=1
(

n

∑
k=i

S(n, k;β,−σ/α)(α − β)k−is(k, i))zi. (A9)

Proof. By Corollary A.5, we have

(Rn1)(z) =
n

∑
k=1
(α − β)n−kS(n, k)

k

∑
i=0

S(k, i;−β, σ/α)(z ∣ β)i

=
n

∑
k=1
(α − β)n−kS(n, k)(σ/α ∣ −β)k +

n

∑
i=1

n

∑
k=i
(α − β)n−kS(n, k) S(k, i;−β, σ/α)(z ∣ β)i. (A10)

Applying the operator I to (A10) and using Proposition A.6, we obtain (A8).
Recall Corollary A.5. Note that there exists a unique monic polynomial sequence (qn(z))∞n=0 that satisfies (Rn1)(z) =

∑
n
k=1 (α − β)

n−kS(n, k)qk(z) for n ∈ N0 and qn(z) = (z + σ/α ∣ −β)n.
Define the monic polynomial sequence (q̃n(z))∞n=0 by

q̃n(z) =
n

∑
k=1
(α − β)n−ks(n, k) (Rn1)(z).
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We state that qn(z) = q̃n(z), i.e.,

(z + σ/α ∣ −β)n =
n

∑
k=1
(α − β)n−ks(n, k) (Rn1)(z). (A11)

Indeed, using formula (A1), we have

n

∑
k=1
(α − β)n−kS(n, k)q̃k(z) =

n

∑
k=1
(α − β)n−kS(n, k)

k

∑
i=1
(α − β)k−is(k, i)(Ri1)(z)

=
n

∑
i=1
(

n

∑
k=1

S(n, k)s(k, i))(α − β)n−i
(Ri1)(z) = (Rn1)(z),

which proves (A11).
By Lemma A.7, (A11) and the definition of the generalized Stirling numbers S(n, k; β,−σ/α), we have

(z ∣ β)n =
n

∑
k=0

S(n, k;β,−σ/α)(z + σ/α ∣ −β)k

= S(n, 0;β,−σ/α) +
n

∑
k=1

S(n, k;β,−σ/α)(
k

∑
i=1
(α − β)k−is(k, i)(Ri1)(z))

= (−σ/α ∣ β)n +
n

∑
i=1
(

n

∑
k=i

S(n, k;β,−σ/α)(α − β)k−is(k, i))(Ri1)(z). (A12)

Applying I to (A12) and using Proposition A.6, we obtain (A9). ◻

The corollary below follows immediately from formula (A8).

Corollary A.9. Let (pn(z))∞n=0 be a monic polynomial sequence as in Proposition A.6. Let Φ : P(C)→ C be a linear functional defined by
Φ(1) = 1 and Φ(pn) = 0 for all n ∈ N. Then Φ(zn

) = ∑
n
k=1 (α − β)

n−k S(n, k) (σ/α ∣ −β)k. In particular, for α ≥ β > 0,

∫
R

xn μα,β,σ(dx) =
n

∑
k=1
(α − β)n−kS(n, k)(σ/α ∣ −β)k (A13)

and for R(α) ≥ 0, I(α) > 0, β = α,

∫
R
(x + σ/α)n μα,β,σ(dx) =

n

∑
k=1
(α − β)n−kS(n, k)(σ/α ∣ −β)k. (A14)
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