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ABSTRACT

Meixner [J. London Math. Soc. s1-9(1), 6-13 (1934)] proved that there exist exactly five classes of orthogonal Sheffer sequences: Hermite
polynomials which are orthogonal with respect to Gaussian distribution, Charlier polynomials orthogonal with respect to Poisson dis-
tribution, Laguerre polynomials orthogonal with respect to gamma distribution, Meixner polynomials of the first kind, orthogonal with
respect to negative binomial distribution, and Meixner polynomials of the second kind, orthogonal with respect to Meixner distribu-
tion. The Segal-Bargmann transform provides a unitary isomorphism between the L*-space of the Gaussian distribution and the Fock or
Segal-Bargmann space of entire functions. This construction was also extended to the case of the Poisson distribution. The present paper
deals with the latter three classes of orthogonal Sheffer sequences. By using a set of nonlinear coherent states, we construct and study a gen-
eralized Segal-Bargmann transform which is a unitary isomorphism between the L*-space of the orthogonality measure and a certain Fock
space of entire functions. To derive our results, we use normal ordering in generalized Weyl algebras that are naturally associated with the
orthogonal Sheffer sequences.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0257878

I. INTRODUCTION

Fock spaces play a fundamental role in quantum mechanics as well as in infinite-dimensional analysis and probability, both classical
and noncommutative (quantum), see e.g., Refs. 13, 31, and 33. Roughly speaking, a symmetric Fock space is an infinite orthogonal sum of
symmetric n-particle Hilbert spaces. There exists an alternative description of a symmetric Fock space as a space of holomorphic functions.
Such a space is usually called the Segal-Bargmann space.

Let us briefly discuss the Segal-Bargmann construction in the one-dimensional case. Bargmann’ defined a Hilbert space F(C) as the
closure of polynomials over C in the L*-space L*(C,v). Here v is the Gaussian measure on C given by v(dz) = 77" exp(|2|*)dA(z), where
dA(z) is the Lebesgue measure on C. The monomials (z"),2, form an orthogonal basis for F(C) with (z",z")s(c) = #! 8mn. Here and
below, 8,n,» denotes the Kronecker delta. The F(C) consists of entire functions ¢(z) = 352, fu2z" that satisfy 22, | ful* n! < 00. The F(C) is a
reproducing kernel Hilbert space with reproducing kernel K(z,w) = £52, (n))™" (zw)".

Let y be the standard Gaussian distribution on R and let (h,),2, be the sequence of monic Hermite polynomials that form an orthogonal
basis for L*(R, ). The Segal-Bargmann transform is the unitary operator S : L*(R,u) — F(C) that satisfies (S h.)(z) = z". This operator
has a representation through the coherent states:

E(xz) =), % ha(x) = exp (—%(z2 —2xz)), xeR, zeC.
n=0 :
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More precisely, for f € L*(R,u) and z € C, one has (Sf)(2) = [; f(x)E(x,z) u(dx). For a fixed z € C, E(-,z) is an eigenfunction of the
lowering operator in L?(R, #) with eigenvalue z. More exactly, if we define the (unbounded) lowering operator &~ in L*(R,x) by 8 hy =
nhy_1, then "E(+,z) = z E(-, z). For z real, the operator S can also be written as

(Sf)(z):fmf(mz) w(dx), fel*(Rp), zeR. (L1)

Let also 8" denote the raising operator for the Hermite polynomials: O*hy = h,.1. Then, the operator of multiplication by the variable
x in L*(R, ) has the form 9" + 8. Hence, under the Segal-Bargmann transform S, this operator goes over to the operator Z + D, where Z
is the multiplication by the variable z in F(C), and D is the differentiation in F(C). In this setting, the operators Z and D are adjoint of each
other. Note that these operators satisfy the commutation relation [D,Z] = 1, hence they are generators of a Weyl algebra, see e.g., Ref. 29,
Chap. 5.

The Segal-Bargmann transform for the Gaussian measure admits an extension to both the multivariate case’ and an infinite-dimensional
case, see e.g., Refs. 20 and 32, Sec. 3.3.

Asai et al.® constructed a counterpart of the Segal-Bargmann transform in the case of the Poisson distribution with parameter o > 0:
7 (d€) = € X024 % 0" 8u(dE) (8, denoting the Dirac measure at n). Define the Gaussian measure v, on C by

oI

ve(dz) = é exp (—7) dA(z). (1.2)

Let the Hilbert space F,(C) be the closure of polynomials over C in L*(C, v,). The monomials (z" )52, form an orthogonal basis for F,(C)
with (2”,2")z, (c) = 0" 1! 8nm. The F;(C) consists of entire functions ¢(z) = 372, fx 2" that satisfy 352 | ful* 0" n! < oo. Let (ca) 2o be the
sequence of monic Charlier polynomials that form an orthogonal basis for L*(Np, 7,) (here and below we denote Ng = {0,1,2,... }). The
generalized Segal-Bargmann transform is a unitary operator S : L?(No, 75,) — F4(C) satisfying (Sc,)(z) = 2". The corresponding coherent
states are

oo n 13
E(E2)=3 o) :e*2(1+§) , EeNp, zeC.
n=0 "**

[In this paper, we always denote a (generalized) Segal-Bargmann transform by S and the corresponding coherent states by [E(-, -). This should
not lead to confusion, since it will always be clear from the context which particular choice of the distribution on R we are dealing with.] It
holds that 60" E(+,z) = z E(-,z), where 0~ is the lowering operator for the Charlier polynomials (¢, );2,. Note that 6@~ is the adjoint of the
raising operator 9" for the polynomials (¢, )2y
A key difference with the Gaussian case is that, under the transformation S, the operator of multiplication by the variable & goes over to
the operator p = UV in F,;(C), where
U=Z+0, V=D+1. (1.3)

Note that the operators U and V still satisfy the commutation relation [V, U] = 1, hence U and V generate a Weyl algebra.
Both Hermite polynomials (%, ),2, and Charlier polynomials (¢, )<, belong to the class of orthogonal Sheffer sequences. Recall that a
monic polynomial sequence (s,),=y over R is called a Sheffer sequence if its (exponential) generating function is of the form

oo n

D % sa(x) = exp [A(£) + xB(1)], (1.4)

n=0

where A(t) and B(t) are formal power series over R satisfying A(0) = B(0) = 0 and B'(0) = 1.
Meixner’’ proved that there exist exactly five classes of orthogonal Sheffer sequences. In fact, a monic polynomial sequence (s, ), is an
orthogonal Sheffer sequence if and only if it satisfies the recurrence relation

x5 (%) = spr1(x) + (An+ Dsu(x) + (on + yn(n —1))sp—1(x), (1.5)

where € R,I € R, 0 > 0and # > 0. The transformation of the constants (A, ) = (—A, —I) corresponds to the push-forward of the orthogonality
measure under the map R 3 x —» —x € R. Hence, we may assume that A > 0. The constant / corresponds to the shift of the orthogonality
measure by [, so it can be chosen appropriately, depending on the other three constants. It is also convenient to introduce parameters a, § € C
that satisfy a + $ = A, aff = 7. In the case of both Hermite and Charlier polynomials, we have 7 = 0.

In this paper, we will deal with the case # > 0, which corresponds to the other three classes of orthogonal Sheffer sequences. More
exactly, for « = > 0 and I = /a, we obtain the sequence of Laguerre polynomials which are orthogonal with respect to the following gamma
distribution on R4 = (0, 00):

1 _g _149 _x
Yauo(dx) = v IRES o eTe dx (1.6)
o(5)

116122 920z Aenuer z)

J. Math. Phys. 66, 123503 (2025); doi 10.1063/5.0257878 66, 123503-2
© Author(s) 2025


https://pubs.aip.org/aip/jmp

Journal of

i : ARTICLE i -
Mathematical Physics pubs.aip.org/aip/jmp

For a > 8> 0 and I = o/a, we obtain the sequence of Meixner polynomials of the first kind which are orthogonal with respect to the following
negative binomial (Pascal) distribution on (& — 3)No:

gelin) = (1-£)' 5 (ﬁ)”jl(;)(")&m” (). 17

Finally, for R(«) > 0, I(«) >0, f = @ and I = 0, we obtain the sequence of Meixner polynomials of the second kind (or Meixner-Pollaczak
polynomials) which are orthogonal with respect to the following Meixner distribution on R:

5 —Arg (oc))x ix iaf 2
3(a) ) r(25(0:) 23 () )‘ dz, (1.8)

Hapo(dx) = Copo exp ((

where Arg(«) € (0,7/2] and the constant C,,, is given by

(2.cos (5 -Arg (@))" ( (5 — Arg (@) o%(a) )

43(a)r(2) S(a)n (9

Ca,ﬁ,a =

The aim of the paper is to study a generalized Segal-Bargmann transform which is a unitary operator S : L*( tapo) = Frpo(C) satisfying
(Ssn)(2) = 2", where IFW +(C)isa Fock space of entire functions to be defined below. This Segal-Bargmann transform has been previously
discussed by Feinsilver'® and Asai®’ from the viewpoints of orthogonal polynomials, quantum probability, and representation theory. See
also Refs. 4, 5, 23, and 24.

Forh e C,let ((- | h)n)pey denote the sequence of generalized factorials with increment h,*! i.e., forz € C, (z | h)o = 1 and

(z|h)n=2(z-h)(z-2h)---(z—(n—-1)h), neN (1.10)

In particular, (z| 1), = (2)y is a falling factorial and (z | 1), = (z)" is a rising factorial. Note that the so-called h-derivative, (D, f)(z) =
W '(f(z+h) - f(2)), is the lowering operator for this polynomial sequence: (Dy,(- | h)x)(2) = n(z | h)n-1.
For o > 0 and # > 0, we define IF,,,(C) as the Hilbert space of entire functions ¢(z) = 352 fu 2" that satisfy

Z_;) [ful? 1t (0| =1)n < o0, (1.11)

and (2",2" ), (c) = Omn(0 | =17)n nl. Note that, for 5 = 0, we have (¢ | 0), = ¢" and s0 Fo4(C) = F¢(C).

For general o > 0 and 7 > 0, we prove that F,,(C) is the closure of the polynomials over C in the L*-space L*(C, A,,0). Here A, is the
random Gaussian measure v, [see formula (1.2)] where the random variable r (the variance of v;) is distributed according to the gamma

Ew)"
=0 nt (Z;\U M’

We note that Asai® derived a representation of the density of the measure 1, which involves the modified Bessel function. Furthermore,
it was shown in Ref. 6 that 1, is the unique probability measure on C whose L*-space contains the Hilbert space F,.0(C) as its subspace. In
the case 0 = 1 = 1, the space F,; (C) was also studied by Alpay et al.,* Sec. 9 and Alpay and Porat,” see also Refs. 23 and 24.

The generalized Segal-Bargmann transform S : L* (ig,,,) — Fy.o(C) admits a representation

(SNE) = [ FOE®2) apalds),

distribution y, . .. The IF, +(C) is a reproducing kernel Hilbert space with reproducing kernel K(z, w) = ¥~

where

E(x,z) = Z

'(0| - sn(x), (1.12)

and E(-,z) € L*(yap,o) for each z € C. Hence, (E(-,2)),.. are nonlinear coherent states corresponding to the sequence of numbers p, = n!( |
—-1)n (n € Np). See e.g., Refs. 3, 18, and 37 for studies of nonlinear coherent states. For applications of (generalized) coherent states in physics,
see e.g., Refs. 17 and 34.

In the special case where 7 = 1and 0 = 2jwithj € {1,3,2,3,...}, wegetp, = n!(2)"™. Nonlinear coherent states with such a choice of p,
are called the Barut-Girardello states,'” see also Ref. 3, Sec. 1.1.3. Such states appeared in Ref. 10 in a study of coherent states associated with
the Lie algebra of the group SU(1,1). For the general choice of the parameters A, 7 and o, Feinsilver,' Secs. 1 and 3.8 obtained a representation
of the function E(x, z) through a hypergeometric function.

We note that, for each z € C, E(-,2) is an eigenfunction (belonging to the eigenvalue z) of the annihilation operator 08~ + 79" (97)?,
which is the adjoint of the operator &*. Here &* and 0™ are the raising and lowering operators for the Sheffer sequence (s4)2:

O sy =5ps1, O su=nsp-1 neN,. (1.13)
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For each ( € C, we define a complex-valued Poisson measure on Ny with parameter { by
m(dE) = ey (" 8 (db). (1.14)
n=0 ""*

We prove that the nonlinear coherent states can be written in the form E(x, z) = fNo E(x, BE) s (d&), where

8= 2 311+

and we derive explicit formulas for £(x, f&).
Furthermore, in the cases of the gamma distribution and the negative binomial distribution, we prove that, for each f € L*(u, 8 )

()@ = [ [10) upssrald) 73 (d8), z<C

In particular, for z > 0, (Sf)(z) is the expectation of f with respect to the random measure g, Bira where the random variable & has Poisson
distribution n; . Similarly, in the case of the Meixner distribution, we show that

@) = [ [ £+ B puppgrald) s (d), z<C

However, this formula holds only for functions f from &p;, (C), the space of entire functions of order at most 1 and minimal type.'* [The
set Ehin(C) is dense in L* (u wpo)-] Note that, for r > 0, (Sf)(Br) is the expectation of the function f(x + f§) with respect to the probability

measure f, 5 ., (dx) 7 (d§).

Similarly to the Gaussian and Poisson cases, under the generalized Segal-Bargmann transform S, the operator of multiplication by the
variable x in L*( Hap, ,) goes over to an operator in I, ;(C) that admits a representation through the operators Z and D.

Let us now briefly describe our strategy to prove these results. Let P(C) denote the vector space of polynomials over C. Consider the
polynomials s, as elements of P(C) (with real coefficients), and consider " and 9~ as linear operators in P(C) defined by (1.13). Define
linear operators U and V in P(C) by

U=0"+p0*0 +2, V=ad +1. (1.15)
o

Let also Z denote the operator of multiplication by variable z in P(C). In view of (1.5), we get, in the case a > > 0 (hence I = £): Z= UV.
Similarly, in the case R(a) > 0, I(a) >0, f =& (hence [ = 0), we have Z+ = UV. Since [07,0"] = 1, the operators U and V satisfy the
commutation relation

[V,U] =BV + (a-p). (1.16)

Hence, they generate a generalized Weyl algebra, see e.g., Ref. 29, Chap. 8 and the references therein.
Consider the linear bijective operator S in P(C) that satisfies (Ssx)(z) = (z | B)n (n € Np), see (1.10). Define operators U = SUS™
and V= SVS™!. An easy calculation shows that

U=2+%, V=aDs+1, (1.17)
44

compare with (1.3). Obviously, I/ and Valso satisfy the commutation relation [ V, U] = BV + (a — ). Hence, they also generate a generalized
Weyl algebra. Compare it with Feinsilver’s finite difference algebra.'

Let us remark that orthogonal Sheffer sequences with # > 0 already appeared in studies related to the square of white noise algebra, see
e.g., Ref. 1 and the references therein. It was shown in Ref. 2 that the square of white noise algebra contains a subalgebra generated by elements
fulfilling the relations of Feinsilver’s finite difference algebra, see also Refs. 11 and 12. For further studies of Lie algebras related to orthogonal
Sheffer sequences, see Refs. 6, 7, Appendix A, and 15.

Similarly to Katriel’s theorem about the normal ordering in the Weyl algebra,”” we discuss the normal (Wick) ordering for the operator
(UV)" in terms of U* and V¥, compare with Ref. 29, Sec. 8.2 and the references therein. This allows us to derive explicit formulas for s,(z)
and a representation of monomials z” through the polynomials s;(z). In these formulas, we use Stirling numbers and Lah numbers. As a
corollary, we find useful formulas for the moments of the orthogonality measure 4, 5 .. These results are presented in the Appendix, and the
reader may find them of independent interest.

We explicitly construct an open unbounded domain D, in C that contains 0. We define a reproducing kernel Hilbert space F,g,
of analytic functions on D,gp, that have representation ¢(z) = 372, fu(z | B)» with coefficients f, € C satisfying (1.11). We extend Sto a
unitary operator S: L*(4apo) = Fapo that satisfies (Ssq)(z) = (2 | f)n. Thus, under the unitary operator S, the operator of multiplication
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by the variable x in L* (Ha,/;,g) goes over to the operator U Vin Fp, for « > > 0 and to the operator UV - ¢ for R(a) > 0, 3(«) >0, f = @.
We study the unitary operator S by using the results obtained through the normal ordering in the generalized Weyl algebras.
Next, we construct a unitary operator T : Fy 3, — Fo,;(C) that satisfies

(T(-[B)n)(2) =2", neNo

We prove that this operator has a representation

(THE)= [ FEY (), fe FoprzeC (118)

Finally, we use that S = T S.

As a consequence of our considerations, we also derive explicit formulas for the action of the operators U and V, defined by (1.15).
Compare with Ref. 28, Sec. 4.

The paper is organized as follows. In Sec. II, we define and discuss the Fock space [F,;(C) and the topological space of entire functions
EL:a(C). In Sec. 111, we present our main results. In Sec. IV, we present the proofs of the main results. Finally, in the Appendix, we discuss
the normal ordering in the generalized Weyl algebra generated by operators U, V satisfying the commutation relation [V, U] = aV + b with
a,b € C. We apply the obtained result to an orthogonal Sheffer sequences (s, ), and find useful formulas for the moments of its orthogonality
measure.

We expect that the key ideas of this paper can be extended to an infinite-dimensional setting, compare with Ref. 28. This will be a topic
of our future research.

Il. THE SPACES F,,,(C) AND £! . (C)

For >0 and ¢ >0, we denote by F,,(C) the vector space of all entire functions ¢ : C - C, ¢(z) = X, fuz" with coefficients
fn € C (n € Np) satisfying (1.11). Consider Fy,¢(C) as a Hilbert space equipped with the inner product (¢, ¥)g, ,(c) = Lo fu & 1! (0 [ —1)n
for ¢(z) = X2 fuz"s v(z) = X;20 gnz" € Fyo(C). This is a reproducing kernel Hilbert space with reproducing kernel K(z,w) =
Yo %, ie., for each ¢ € F; 5(C), we have (go,K(z,-))]FM(C) = ¢(2).

Consider the following gamma distribution on Ry

tr, v () = r%(%) T eE g
()

Let A;,» be the random Gaussian measure v, [see formula (1.2)] where the random variable r is distributed according to [ ie.,

Mo(de) = [ vi(de) . go(dr) = Ayol2) A(de), @

1 (1) | r)_2+g
Ayo(z2) = —F—| - / ex (———fr n dr. (2.2)
1) nr(;)(q) et

In the following proposition, we will use the modified Bessel function

(Io(x) = Ip(x))s

where

T

Ko(x) = 2 sin (0m)

where

Io(x) = (f)ei (x/2)”

2) G nll(@+n+1)
In these formulas, the parameter 0 is assumed to be not an integer. When 0 is an integer, the limit is used to define Kg(x).

Proposition 2.1. Let 1> 0 and > 0. Then F, +(C) is the closed subspace of L*(C, Ay,¢) constructed as the closure of P(C). Furthermore,

= (1+)

2
Apo(2) = /R

()

el Ko (20721l 23)
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Proof. Recall that, for m,n € Ny, we have fc 2" 2" v(dz) = 8um 1" nl. By formula (A13) in the Appendix, we get fR+ " Uauo(dr) =
(g | —tx)n. Hence, by (2.1),

m7/1 o d = f f " r d o d
[CZ z" Ayo(dz) . = 2" vr(dz) tna, no(dr)
= Omn n!f " tna, no(Ar) = 8mpn nl(o | =17),.
R,

Formula (2.3) for the density A, (z) of the measure Ay.o was proved by Asai,’ Theorem 3.1. ]

Remark 2.2. In fact, A;s is the unique probability measure on C which satisfies

me ?Aq,a(dz) = é\m,n n!(o | 7’1)n’
(o]

see Ref. 6, Theorem 3.1.

Following Ref. 5, let us recall some basic facts about the Mellin transform and the Mellin convolution. Let f : R. — R be such that, for
some interval (a,b) c R, the function f(r)r“™" is integrable on R for all ¢ € (a, b). Then the Mellin transform of f is defined by M(f)(c) =
fm " f(r) drforc € (a,b). Obviously, for y > 0and f(r) = e, we have M(f)(c) = 5 T(c) for ¢ > 0. The Mellin convolution of functions
f and g is the function f « g that satisfies M (f xg)(c) = M(f)(c) M(g)(c). Explicitly, the function f « g is given by

()= [ 75y jae= [ rg(F); an r>o ()

Lemma 2.3. Assume that = 0. Then the function Mg,y in Proposition 2.1 has the form Aes(2) = (10) " y(|z|*), where w(r) = (fi = f2)(r)
with fi(r) = e and fo(r) = e .

Proof. Immediate by formulas (2.2) and (2.4). O

Remark 2.4. In the special case # =0 =1, the statement of Lemma 2.3 was proved in Refs. 4 and 5. By Ref. 5, p. 5, y(r) =
Ji exp (—+/r 2 cosh (x)) dx is a modified Bessel function of the second kind.

Let ¢ : C — C be an entire function. One says that ¢ is of order at most 1 and minimal type (when the order is equal to 1) if ¢ satisfies

sup [p(z)|exp (~t|z]) < oo V>0
zeC

One denotes by Enn (C) the vector space of all such functions.

Foreacht > 0, | @[ = sup,..|@(z)| exp (~t |z]) isa norm on &}, (C), and denote by B; the completion of &}, (C) in this norm. For any
0 < ) < tp, the Banach space By, is continuously embedded into By,. Note that, as a set, Exin (C) = M50 Br. One defines the projective topology
on Enin(C) induced by the By spaces, i.e., one chooses the coarsest locally convex topology on £x;, (C) for which the embedding of &gy, (C)
into By is continuous for each t > 0. Equipped with this topology, i, (C) is a Fréchet space. The following theorem is proved by Grabiner,
see also Ref. 16.

Theorem 2.5 (Ref. 19). Let (s4);2y be a Sheffer sequence with generating function (1.4). Assume that the formal power series A(t) and
B(t) in (1.4) determine analytic functions in a neighborhood of zero. Then the following statements hold.

(i) An entire function ¢ : C — C belongs to EL;,(C) if and only if it can be represented in the form
9(2) =Y fasu(2), (2.5)
n=0

where Y220 | fa? (n!)? 2™ < oo for all k € N. The representation of the function ¢ as in (2.5) is unique, and the series on the right-hand
side of formula (2.5) converges in Enin(C).

ii) For each k € N, denote x the completion of & in in the Hilbertian norm k= (2020 Iful” (n)” 2" 1/2, where f, (n € Ny
(ii) hkeN,d by Hy. the compl ELin(C) in the Hilb ¢ > 2 (n)? 2"
are the coefficient from (2.5). Then, Exn(C) is the projective limit of the Hy, spaces.
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Corollary 2.6. (i) For eachnj > 0 and o > 0, the Fréchet space &, (C) is continuously embedded into Fy»(C).

(ii)  Let (sn)neo be an orthogonal Sheffer sequence and let Hapo be its orthogonality measure. Then the Fréchet space E i, (C) is continuously
embedded into L* (Mop,q)- Furthermore, ELn(C) is a dense subset of L* (Hopo)-

Proof. (i) The sequence of monomials (z"),2, is a Sheffer sequence for which A(¢) = 0 and B(¢) = t, hence it satisfies the conditions of
Theorem 2.5. Therefore, the statement follows from the definition of F,,,(C) and Theorem 2.5.

(ii) It follows from Ref. 30 that each orthogonal Sheffer sequence satisfies the conditions of Theorem 2.5. Next, it follows from the recur-
rence formula (1.5) that Haniz(y ) = n! (0| -n)n. Hence, ¢ € Lz(yaﬁﬂ) if and only if ¢(x) = Y52 fusn(x) with f, satisfying (1.11),

and the series Y72, fusn(x) converges in L? (Mop,0)- Since (0| =17)n < nl(min{z,0})", the statement follows from Theorem 2.5.

I1l. MAIN RESULTS

Let 0 > 0. We assume that either « > >0 and I = o/a or R(a) >0, I(a) >0, =0, and [ = 0. Let (s4);2 be the Sheffer sequence
satisfying the recurrence formula (1.5), and let 4 , be its orthogonality measure. We denote by Xog the support of p, 5, i.e., Xop = Ry if
a=B>0,X,5=(a—p)Noifa>p>0,and X, 3 = Rif R(a) >0, 3I(ar) >0, =1

We define a generalized Segal-Bargmann transform S : L*(Xug, thaso) — Fyo(C) as a unitary operator satisfying (Ss.)(z) = 2" for
ne No.

Theorem 3.1. The generalized Segal-Bargmann transform S has a representation through the nonlinear coherent states

E(x,z) = 2 ﬁ\n—q)n su(x), x€Xyp z€C, (3.1)
i, E(+,2) € L*(Xap hapo) for each z € C and
GNE = [, SO B pagoldd), 2 C (32)
Furthermore, if a = >0,
- 4
E(x,z) = /R; [(a/n)(f)] l(g) n=(d§), xeRy, zeC, (3.3)
ifa>p>0,
_ [ (1 B) Gurol-ma
E((a=B)nz) = fN (1 a) o (), meNo, 2T, (3.4)

and if R(a) >0, I(a) >0, =1,

E(x,z) = fNU (2 cos(g - Arg (¢;¢)))E((g/;1)(f))_1 exp (1(% - Arg (oc))f)(—#zca) - 2’11?();))(6) 7z (d¥), xeR, zeC, (3.5)

where Arg(a) € [0,7/2).
Let 8% and &~ denote the raising and lowering operators for the Sheffer sequence (51 )52, see (1.13). Denote A~ = 69~ + 49" (87 )%

Corollary 3.2. For any p,q € P(C), (8+P”1)L2(,4a,,3,,,) = (P’A_’J)LZ(M,,,) and the operator A~ with domain P(C) is closable in Lz(yaﬁﬂ).

Keep the notation A~ for the closure of A™. Then, for each z € C, E(:, z) is an eigenvector of A~ belonging to the eigenvalue z.

Fora>f>0andz € C, we define a complex-valued measure p, 5 , - on Xog by

Pupinc(d) = [ haggsoo (d) 3 (dE) (36)
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In particular, if z > 0, P p, is the random measure 5. , ,» Where the random variable & has Poisson distribution s

Theorem 3.3. Let o > f > 0. For each f € L* (X, Hapo)

ENE = [ 10 pugorli), 2¢C (7)

In the case where « and 8 have non-zero imaginary part, a counterpart of Theorem 3.3 has the following form.

Theorem 3.4. Let R(a) > 0, I(a) > 0, B = a. The operator S, considered as a linear operator in P(C), admits an extension to a continuous
linear operator S in Exyn (C), and for each f € £L:,(C) and z € C,

©F@) = [ [ £ BE) pascna () s ().

In particular, for each r > 0,

GG = [ [ FC BE) pupgrald) m ().

Remark 3.5. Using the approach to the generalized Segal-Bargmann transform developed in this paper, one can easily show that, in the
case of the monic Charlier polynomials (¢, )<, that are orthogonal with respect to the Poisson distribution 775 (6 > 0, a = 1, =0, ] = 0), the
corresponding Segal-Bargmann transform S : L*(Np, 7,) — F,(C), satisfying Sc, = z" (n € Ny), admits the following representation:

(Sf)(z) = -[No f(x) ”J+z(dx), f € LZ(N(),T[U), z€C,

compare with formula (1.1), which holds in the Gaussian case. Note that, for z € (=0, +00), 74+, is the (usual) Poisson distribution with
parameter o + z.

We define linear operators U= Z + BZD + ¢ and V = aD + 1, acting in P(C) and satisfying [V, U] = BV + (& - ). We also define the
operator

p=UV=Z+)LZD+g+aD+nZD2.
«

Proposition 3.6. The operator p is essentially self-adjoint in F,,(C) and we keep the notation p for its closure. If a > 8> 0, then SpS™"
is the operator of multiplication by the variable x in L* (X, Hapo)- If R(a) 20, 3(a) >0 and =1, then S(p - 2)S™! is the operator of
multiplication by the variable x in L* (R, tio ).

The proof of the above statements will be based on Lemmas 3.7-3.11 below.
Similarly to (1.14), we will now define a complex-valued measure Hapg for a complex parameter ¢. First, we define a domain D, in C as

follows. If & > 8 > 0, we define D, = C, if either & = § > 0 or R(a) = 0, I() > 0, B = &, we define D3 = {z € C | R(z) > 0}, and if R(a) > 0,
3(a) > 0, B = o, we define

Dop = {z€ C[R(2) >0, [3(2)| < R(2)3(a)/R(a) }- (3.8)

Now, if & > 8 > 0 and { € D, g, we define the complex-valued measure y opc 0N Xap by replacing the positive parameter ¢ in formulas (1.6)

and (1.7) with {. Next, if R(«) > 0, I(a) > 0, 8 = @, we use the formula I'(z) = I'(Z) for z € C, R(z) > 0, to write formula (1.8) in the form

tapo(dx) = Copo exp ((m/2 — Arg (a))x/S(oc))F(zrjzca) + 2111;7?“) )F(_Zi‘sizcoc) - Zqig?oc) )dx. (3.9)

Now, for { € Dy, we define the complex-valued measure y,, s on R by replacing the positive parameter ¢ in formulas (1.9) and (3.9) with L.
Furthermore, we define an open domain Dy, in C as follows. If || = |B| [i.e., either & = § > 0 or R(a) > 0, I(a) > 0, = @],

Dopo = {2z € C| R(az) > —0/2}, (3.10)
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and if & > > 0, Dyp, = C. We will use below the following obvious observation: for each z € Dy gy and n € N, z + Bn € Dy g,q. In particular,
ﬂNo C 'Da)ﬁ,g.

Lemma 3.7. Let (fu)neo be a sequence of complex numbers such that (1.11) holds. Then the series Y.~ fa(z | )n converges uniformly on
compact sets in Dy g, hence it is a holomorphic function on Dy,p,. Denote by Fp, the vector space of all holomorphic functions on Degq
that have representation

o(2) - if 2| B)n (3.11)
with (fu)nzo satisfying (1.11). Then
L _ D'k
o= Oh9)© = 5 DY) o0 G.12)

In particular, a function ¢ € Fopq has a unique representation (3.11), and ¢ is completely determined by its values on the set SNo.

Let us consider F,p, as a Hilbert space equipped with the inner product (@,v)r,,, = X020 fu 8 0! (0| =1)n for ¢(z) =
Yo2o fu(z | B)ns w(2) = X520 8n(2 | B)n € Fapo- Let S: L*(Xaps apo) = Fapo be the unitary operator satisfying

(Ssn)(Z) = (Z | ﬁ)n, n € No.

Define

E(x,z) = Z;} % su(x), x€Xap, 2€ Dogo (3.13)

Lemma 3.8. For each z € Dyp,,, we have E(+,z) € L*(Xup, flags) and

(8@ = [ SO tapold). [ < Kapotagio) (319
Furthermore, if o= > 0,
£(x,2) = TE(*)) (g) x€Ry, 2 € Dagos (3.15)
if a>B>0,
5((¢x—/3)n,z):(1—§)§ W neNo, zeC, (3.16)

and if R(a) >20,3(a) >0, =1,

ﬂrg 'E—A r_ixa_ioaa+%
E(x,z) = (2 cos (g - Arg (oc))) ! [(,;702 ex (1(2 8 (oc))ocz) ( al )ix 2t n)m ! ), x€R, z€ Dyp,. (3.17)
r(=5) 1 e o))
The following lemma provides alternative formulas for the action of the operator S.
Lemma 3.9. (i) Let a > 3 > 0. Then we have, for each f € L2 (Xaps .“a,/s,u) and z € Dypo
(SN@ = [ F() tpacrold). (3.18)
wp

(i) Let R(a) 20, I(a) > 0 and B = . The operator S, considered as a linear operator in P(C), admits an extension to a continuous linear
operator S in Exyn (C), and for each f € Epyn (C),

116122 920z Aenuer z)

(S1)(2) = fR F(x+2) tapareo(dx),  2€ Yapm (3.19)
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Recall the operators I and V), given by (1.17) and satisfying [V, U] = BV + (« — ). We define the operator R = UV acting in P(C).

Lemma 3.10. The operator ‘R is essentially self-adjoint in F g, and we keep the notation R for its closure. Then, if a > >0, SRS™
is the operator of multiplication by the variable x in L*(Xup, Hopo) and if R(a) >0, 3(a) >0, f=a, S(R- 2)S~" is the operator of

multiplication by the variable x in L* (X, ya,ﬁ‘a).
Next, we define a unitary operator T : Fu g4 — Fy,0(C) satisfying

(T [B)n)(2) = 2", neNo

Lemma 3.11. Foreach f € Fopq and z € C, formula (1.18) holds.

Recall the operators U and V, defined by (1.15) and satisfying the commutation relation (1.16).

Proposition 3.12. The operators U and V acting in P(C) can be (uniquely) extended to continuous linear operators acting in &, (C). We
preserve the notations U and V for these extensions. Let also Z denote the continuous linear operator in i, (C) of multiplication by variable z,
Ifa>B>0,thenZ=UV and U= Z(1 - aDp_,) (where Dy denotes the differentiation D). If R(a) 2 0, 3(a) >0 and f =@, then Z+ ¢ = UV

and U = (Z + )(1 - aDg_). In either case, the operator 1 — aDg_,, is a self-homeomorhism of Emin(C) and V = (1-aDp_) ™"
The following proposition provides explicit formulas for the action of the operator V = (1 — ocDﬂ_,,)_l in Epin (C).

Proposition 3.13. Let f € ELin(C). If a = B> 0, then
(VAE) = [ @45 taan(d), zeC,
R,

if a> >0, then
ON@= [ e 0ulp- @) BI) pups(d), 2<C,

and if R(a) >0, I(a) > 0and ff = @, then

(V)(2) = fR(f(Z+x+ﬂ)a/ﬁ—f(Z)(a—ﬁ)/ﬂ) Hapy(dx), zeC.

IV. PROOFS
A. Proof of Lemmas 3.7-3.10
1. The case of the gamma distribution and the negative binomial distribution

First, we will prove Lemmas 3.7-3.10 in the case « > f§ > 0. We divide the proof into several steps.
Step 1. By Corollary A.5, Proposition A.6, and formula (A13) in the Appendix, we get, for z € (—o/a, +00),

(8x")(2) = (887 R"S1)(2) = (R"1)(2) = é; (a=P)"*S(nk) (z+0fa| P
= fx . x" Yo poraz(dx).
Hence, for each polynomial p € P(C) and z € (—0/a, +00),
()@= [ pdinpor

Note that (Sp)(z) can be extended to an entire function of z € C.

Lemma 4.1. Let p € P(C). Then the function Dypgy > z fxaﬁp Aligp,o+az is well-defined and analytic.

Proof. Leta = B. For z € Dy 4, we have R(0o + az) > /2. Hence, it is sufficient to prove that, for each k € Ny, the function

el 1 _¢ o148 _x
(Hfo X o (dx) = e "/0 T e dx

(3

(3.21)

(3.22)

(3.23)

(4.1)

(4.2)
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is well-defined and analytic on the domain {{ € C | R({) > 0}. To this end, it is sufficient to check the analyticity of the function
(> / £ e (4.3)
0

We have
RE)

oo
k=1+=2% %
dx:f X 1 e « dx < oo,
0

f°° k14l s
X e «
0

hence the function in (4.3) is well defined. Furthermore,

1 1430 s
= — |log (x)| P (4.4)
n

k-1+& _x
ne «

e
d¢
Note that log(x) < x for x > 1 and, for each ¢ > 0 there exists C; > 0 such that |log(x)| < Cix™* for x € (0,1). Hence, formula (4.4) easily

implies that the function in (4.3) is indeed analytic on {{ € C | R({) > 0}.
Next, let a > f. It is sufficient to prove that, for each k € Ny, the function

(n)

Co [ et = (1- ﬁ)i (B) (8) oy w5)

()

because each monomial x* is integrable with respect to the negative binomial distribution Hqp)c- Hence, the series in (4.5) converges uniformly

is entire. We have

2 ()

(a-pym‘<d (ﬁ)nl(m)(n)((oc—ﬁ)n)k < oo,

n=0 \& n! n

on compact sets in C, which implies that the function in (4.5) is entire. |

Now formula (4.2), Lemma 4.1, and the identity theorem for analytic functions imply
(S0)(2) = [ pdtaporacr P PC), z€ Dog (46)
B
Step 2. Let a = B, let f € L*(Ry, fhawo) and let = < § < A < +00. Then, for each z € C with § < R(z) < A, we have

S

aR(z)+0

e e dx:/m\f(x)hf1+ T e e dx
0

oo e 3 o . g+2aR(2) :
< ([ O SEE dx)z(/ X e dx)2
0 0

<G| fl2 (Haao) -

for a constant C; > 0 that depends on 8 and A. Now write f(x) = Y22 fusx(x) and define, for N € N, px(x) = XN fusa(x). Formulas (4.6)
and (4.7) imply that (Spn)(z) = ¥, fu(z | &)» converges uniformly on compact sets in Dq,q to an analytic function and

(S)(z) = i:jofn(zw)n - [ dtuaera (4.8)

Step 3. Let a > B and let f € L*((o — B)No, phap,0). We have

2\3
o+alz] )(") ]

n (n) < n
ad B\'1 |[o+az B\ (B [( 1
> ra=pmi(5) () 1= (0-8) Whegn| S (5) S 49)
n=0 . n=0 n!(ﬂ)
1
Lemma 4.2. Foranya; >a,>0and0<q<1,
2
= @]
—_— 0.

=0 i nl (az)™
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Proof. Tt follows from the construction of a negative binomial distribution that, for each g € (0,1) and a; > 0, 372 9" & (a1)™ < o0.
Therefore, for each & > 0, we have (a;)™ < C3(1 +¢€)" n!, where the constant Cs > 0 depends only on a, and &. Next, for any a; > 0, (a2)™ >
az(n —1)!. Therefore, forany a; > a; >0and e > 0, (a1)™ /(a2)™ < Cy(1 + )", where Cy > 0 depends on a;, a, and &. Hence,

(n) oo )
,,:0 n('“(lz )(3) = C3C4Z (q(1 +8)2) < oo,

M8

if we choose & > 0 such that (1 +¢)* < 1/q. ]

Using estimate (4.9) and Lemma 4.2, we now show similarly to Step 2 that, for f(x) = ¥52g fusa(x) € L*(( = B)No, apo)»

(5@ =3 el B = [ f g 10)

the series in (4.10) converges uniformly on compact sets in C, and hence, (Sf)(z) is an entire function.

Thus, Lemma 3.9 (i) is proven.

Step 4. To finish the Proof of Lemma 3.7, we only need to prove formula (3.12). In fact, the first equality in (3.12) is an immediate
consequence of the fact that Dy is the lowering operator for the polynomial sequence ((z | 8)x) ;. The second equality in (3.12) is a well-
known identity for the nth difference operator, see e.g., formula (6.2) in Ref. 35.

Step 5. Let z € Dypq. It follows from Steps 3 and 4 that there exists a constant Cs > 0 such that, for all f ¢ L’ (Xaps Hap, ,»)> we have

I(Sf)(@)] < Cs fll2 ing)- HEnCe, by the Riesz representation theorem, there exists /. L?(Xaps Hap.o) such that

(Sf)(2) = fx ) FO)Ko(x) hapo(dx)  forall f € L (Xups hape). (4.11)

By (3.18) and (4.11), we conclude that K;(x) = £(x,z), where £(x,z) is given by (3.13), and K (x) is the Radon-Nykodim derivative
dﬂaﬁuzﬂr

Ghaps (x). This easily implies Lemma 3.8.

Step 6. In view of Proposition A.6, to prove Lemma 3.10, we only need to check that the operator R with domain P(C) is essentially
self-adjoint in F, . But this can be easily shown by using Nelson’s analytic vector criterium, see e.g., Ref. 36, Sec. X.6.

2. The case of the Meixner distribution

Now we consider the case R(a) > 0, I(a) > 0, f = @. We again divide the proof into several steps.
Step 1. Let K > 1 be fixed. We state that there exists a constant C; > 0 such that

IT(ix + y)| < Ci exp (—g |x\)(1 +xD%, xeR, ye[1/K,K]. (4.12)
Indeed, by e.g., Ref. 27, p. 15, the following asymptotic formula holds, for all x, y € R, —ix — y ¢ No:
[T(ix + y)| = V27 exp (—g\x|) \x|y_% (1+E(%y)),

where the function E(x, y) satisfies, for each fixed R > 0,

lim sup |E(xy)|=

x>0} ¢ [-RR]
Hence, formula (4.12) easily follows if we take into account that the function
Rx[1/K,K] > (x,y) — |T(ix+y)| e R

is continuous, hence bounded on [-L, L] x [1/K, K] for each L > 0.

Step 2. Recall the domain D, defined in Sec. 11l. We state that, for each p € P(C), the function Dgg 3 { — [, p(x) pap¢(dx) € C is
well-defined and analytic.

Indeed, since Arg(«) € (0,7/2], we have cos (Z — Arg («)) > 0. Therefore, the function

IS
"

(2 cos(%r - Arg ((X)))
43(a)m F(%)

('_) Ca,ﬂ,( =

o (5 -Arg (rx))C‘R(a)) .
p( N ¢
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is analytic on the domain {{ € C | R({) > 0}. Hence, it is sufficient to prove that, for each n € Ny, the following function is well-defined and

analytic:
Dap3( Ax" exp ((7/2 — Arg («))x/3(a))gaps(x) dx € C, (4.13)
where
ix i ix iC
s =15 * 3o ) | 2300~ 8@
=T(d (O) +i(h(¢) +x/(23(a)))T(da2(0) +i(L() = x/(23(a))). (4.14)
Here
_ R(O3(a) -3(OR(a) _ RO%R(a) +3(0)3(a)
YOI s MO s

For each { € D 4, we have d1({) > 0 and d2({) > 0. Therefore, for a fixed x € R, the function Dy 3 { = gy p¢(x) € C is analytic.
Let { € Dy be fixed. For R > 0, denote B({,R) = {z € C | |z - {| < R}. Choose R > 0 such that B({,R) c D,. To prove the differentiabil-
ity of the map in (4.13) at point {, it is sufficient to prove that

% Zapz(X)| dx < oo. (4.16)

[ " exp ((n/2 - Arg ())lx/3(a)) sup
R zeB({R/2)
[We used the inequality 77/2 — Arg(a) > 0.] By Cauchy’s integral formula, (4.16) would follow from
fR |x|" exp ((m/2 — Arg (a))|x]/3(«)) stg) )|ga,p,z(x)| dx < oo, (4.17)
zeB({,R

Choose K >0 such that, for all zeB({,R), both di(z) and di(z) belong to [+

7> K]. Denote L; = max,cpqpl|h(z)| and L =
MaX,e g,ry|l2(2)]. Then, by (4.12), there exists a constant C, > 0 such that

7 |x| 2K
sup |gup. (%) < Co exp(— — )(1 +]x)7". (4.18)
zeB((,R)|g ()| 23() b

Hence, the integral in (4.16) is bounded by the following integral
Cz/R x| exp (~Arg (a)lxl/3(a)) (1 + |x)** < oo,

where we used that Arg(«) > 0.

Step 3. Let (pn)n2o be the monic polynomial sequence over C satisfying the recurrence formula (A6). Thus, for x € R, we have s,(x) =
p,(x+c/a). Let Z be the linear operator in P(C) as defined in Proposition A.6. Define S=177". Thus, (Sp.)(z) = (z| B)». Similarly to
(4.1), we conclude from Corollary A.5 and Proposition A.6 that

116122 920z Aenuer z)

(3 (2) kz (B *S(m k) (z+ ofa| B)s e N (419)
On the other hand, for each r € (-0/5, +o0) and z = fr, we have 0 + az = 0 + yr € (0, 00 ). Hence, by (A14),
[ G 2400 tuponac() = 3 (@ B HS(nR) a4 ofa| o me N (4.20)
k=1
By (4.19) and (4.20), we have, for each p € P(C),
(3p)(@) = [P+ 2+ 0/a) fagarac(dn). 2=Pr, re (gl +00) @21
Setting p = p, into (4.21) gives
J. Math. Phys. 66, 123503 (2025); doi: 10.1063/5.0257878 66, 123503-13

© Author(s) 2025


https://pubs.aip.org/aip/jmp

Journal of

i : ARTICLE i -
Mathematical Physics pubs.aip.org/aip/jmp

fR su(X+2) Haporaz(dX) = /Rp,, (x+2z+0/a) faporaz(dx)
= (8pa)(2) = (2| B)n = (Ssu)(2), 2z =Pr, re(~a/n,+00), neNo.

Therefore, for each p € P(C),
(Sp)(z) = /Rp(x+z) faporaz(dx), z=pr, re(=o/n,+oo). (4.22)

Recall the open domain ¥, g, defined by (3.20). Obviously,

{z=prlre(-o/n+oo)} c Yop,

It follows from Step 2 that, for each p € P(C), the function
Yapo 32+ /Rp(x +2) faporaz(dx) € C
is analytic. On the other hand, (Sp)(z) is an entire function. Hence, by (4.22) and the identity theorem for analytic functions,
(SP)(@) = [ p(r+2) tugorac(d), € Yoo (4.23)

Step 4. A direct calculation shows that, if R(a) = 0 then R ¢ W, z,, and if R(a) > 0 then (—0/(2R(«)), 00) c W, 0. Below we will use
the notation —o/(2R(«)) even if R(«) = 0, meaning that —o/(2R () ) = —oco. Hence, by (4.23),

(S9)(2) = [ p(x+2) ugoac(d®). 2 € (~0/(29(@)), ) (429
The change of variable x” = x + z in the integral in (4.24) implies
(S9)(2) = [ p(x) Gx2) dx. 2 € (-0/(20(a)), ), (4.25)
where for x € R and z € (—0/(2%()), 00),

(2 cos(Z - Arg (oc)))L”M exp((g - Arg (a))(az + a)‘R(oc))

G(x,2) = 43(04)711"(%*") Sy
(% - Arg (a))(x -z) ix iof —ix iow za
x eXp( 3(a) )F(ZS(oc) 03 (a) )F(ZS(oc) TRON 7)' (4.26)

[Note that the real part of the argument of each of the gamma functions in (4.26) is positive.]

Recall the domain D, defined by (3.10). It is straightforward to see that, for each fixed x € R, the function G(x,-) admits a unique
extension to an analytic function on Dy 4, and this extension is still given by formula (4.26). Similarly to Step 3, we show that, for each
p € P(C), the function Dyp, 3z~ [, p(x) G(x,z) dx € C is analytic. Therefore, formula (4.25) implies

(Sp)(2) = fm p(x) G(x,2) dx, z€ Dypy. (4.27)

Step 5. Let zo € Dgp,q. Choose R > 0 such that the closed ball B(zo, R) is a subset of D, 3, We state that there exists a constant C3 > 0 such
that, for all f € L*(R, gop,),

w L1 @116602) e < Gl gy (428)

z€B(z,

Indeed, we have, by the Cauchy inequality, for each z € B(zo, R),

L1662 < 1l [ 1920 ) (429

Here G, p,0(x) is the density of the measure Hqp, With respect to the Lebesgue measure:

Gapo(%) = Capo exp (/2 = Arg ())x/3(&))gupo (%)-
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Using (1.9), (4.14), (4.26), and the equality |['({)| = |T({)], we find

(2cos(2-Arg (@) I(5)

43(a)m ﬁ(m
n

G2 _
Ga’ﬂ’g(x)

o [(’2’ - Arg (oc)) R(a) (2az + 0)
) @)

(4.30)

+(z—Argox))(x—zz)]rz( SRR

3(a) "3 23() g

Thus, by (4.29) and (4.30), to prove (4.28), it is sufficient to show that

T_A . . 2
sup exp [(2:g@6))|x|] . ‘F(— :x - lf‘x + Z“)‘ dx < oo. (4.31)
2eB(zR) IR 3(a) 23(e)  2n3(a) 7

We note that, for each z € B(z0, R) ¢ Dgpo»

1 §)
*R(* 1:704 + Z—“) =2y L(az) > 0.
213(a) n) 27 n

Hence, there exists K > 1 such that

ioo za
9{(72173(“) + 7) € [1/K,K] VzeB(zo,R).

Since R(az) is bounded on B(zo, R), estimate (4.12) easily implies (4.31). (Compare with Step 2.)

Step 6. Similarly to Step 2 in Subsection IV A 1, we conclude from (4.28) that, for each f(x) = %52y fusu(x) € L*(R, o4 ), the series
Yo fu(z | B)n converges uniformly on compact sets in Dy, to an analytic function and

(@) =3 filz| - [ F(G57) d @32

Similarly to Step 4 in Subsection IV A 1, this proves Lemma 3.7. Next, using (1.9), (3.9), (4.26), and (4.32), we find that formulas (3.14) and
(3.17) hold for each f € L*(R, o). Similarly to Step 5 in Subsection [V A 1, we see that £(-,z) € L*(R, pap,) for each z € Dy, and formula
(3.13) holds. This proves Lemma 3.8.

Step 7. Note that ((z | ) )neo is Sheffer sequence with generating function (1.4) in which A(¢) = 0 and B(¢) = % log (1 + f3t). Therefore,
b){ Theorem 2.5, the linear operator S, acting in P(C) and satisfying Ss, = (- | f)n (n € Np), extends to a continuous linear operator in
gmin((c)'

Let f(2) = X520 fusn(2) € Enin(C) and define pn(z) = TN, fusa(z) € P(C) (N € N). Then py — f and Spy — Sf in Erin(C). In
particular, for each fixed z € C, we have p, () — f(z) and (Spn)(2) = (Sf)(z) as N — co.

In view of (4.23), to prove Lemma 3.9 (ii), it is sufficient to show that, for each ( € Dap and z € C, we have

lim [ pu(e+2) papc(@d) = [ F(x+2) page(a),

N—oo

which is equivalent to

lim fLRpN(x +z)exp ((m/2 - Arg (oc))x/fs(oc))ga)ﬁ,((x) dx = /R f(x+2z)exp((n/2 - Arg (oc))x/fs(oc))gaﬁ,((x) dx. (4.33)

N—oo

It follows from (4.18) that, for each { € D, there exist constants C4 > 0 and K > 0 such that

)] < Coexp (-0 0 (434

Since the sequence (pn )3, converges in i, (C), for each ¢ > 0, there exists a constant C; > 0 (depending on the fixed z € C) such that

sup [pn (x + 2)| < Cr exp (t[x]). (4.35)
xeR

Choosing t € (0, Arg («)/I(«)), we conclude (4.33) from (4.34), (4.35), and the dominated convergence theorem.
Thus, Lemma 3.9 (ii) is proven. Finally, the Proof of Lemma 3.10 is similar to Step 6 in Subsection IV A 1.
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B. The remaining proofs
Proof of Lemma 3.11. We state that, for each z € C,
f () m(dE) =", neN. (4.36)
No

For z > 0, equality (4.36) is well-known. [To show it, one can use the equality [Nu & 7,(dE) = 1, S(n,k)d* and formula (A1).] As easily
seen, the function C 3 z — -[No (&)n m2(dE) is entire. Hence, formula (4.36) holds for all z € C by the identity theorem for analytic functions.
Formula (4.36) implies [No (BE| B)n s (d&) = z". Therefore, formula (1.18) holds for f € P(C).
Let f(z) = X020 fu(z | B)n € fu,ﬁ,g. Using (4.36), we have, for z € C,

> 1|z S & 1 Zk
k - " k| B)ul — |
IR gzzjowws B |5
(e ] k (o]
- SRS W 5] oGm0 (@00, a0
|Z|2n 1/2
*exp(\Z|/|ﬁ|)Z\fn||Z| <eXP(|Z|/|ﬁD(Z (o] ,1)) 11 g
Hence, the integral on the right-hand side of formula (1.18) is well-defined and formula (1.18) holds. ]

Proof of Theorem 3.1. By Lemmas 3.8 and 3.11, we have, for each f ¢ L2 (Xaps ‘ua,’zﬂ) andz € C,

GNE = [, fo FOIECSBE) tapo () 3 (d6) (4.37)
By (3.13), we have, for x € X, g and & € Ny,

B o e R e R

Therefore, using (4.36), we obtain, for f ¢ L* (Xaps ‘ua,’gﬂ) andz e C,

S o 1120 ) ) < 3 B [ 1N 600 1566 i)
3 [ 0] ()
S 1S m (039)
Formulas (4.37) and (4.38) imply formula (3.2) in which
E(x,z) = fN £ pE) s (), (4.39)

Formulas (3.2), (4.39), and Lemma 3.8 imply formulas (3.3)-(3.5). For each z € C, the map L*(Xop, apo) 3 2~ (Sf)(2) € C is continuous,
see e.g., Refs. (4.37) and (4.38). Hence, E(-,2) € L*(Xup, plao) for each z € C. Formula (3.1) is then also obvious. ]

Proof of Corollary 3.2. The equality (9" p,q),2( taga) =
ator A™ is densely defined, the operator A is closable. For N € N, define En(x,z) = ¥, m sn(x). Then, for each z € C, Ex(-,z) —
E(-2) in L*(Xugp, Uop,) a8 N = 00, and AEn(-2) = zEn-1(+2) = zE(-2) in L*(Xups Mop,) as N — oo. Hence, (-, z) belongs to the
domain of A™ and A"E(-, z) = zE(+,2). ]

= (P’A_‘Z)LZ(,@,,; y for p.g € P(C) follows from (1.5). Since the adjoint of the oper-

Proof of Theorem 3.3. By Lemma 3.9 (i) and Lemma 3.11, we have, for f € L* (X, ‘umﬁ)g) andz e C:

GNE = [, [, 0 apagrode) 73 d6) (440)
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To conclude from (4.40) that formulas (3.6) and (3.7) hold, it is sufficient to show that
L 1 o) e (d6) < oo (441)
No JXop B
But this is immediate since f € L* (X, Hop,,) and the left-hand side of (4.41) is equal to (S| f])(z])- ]

Proof of Theorem 3.4. By Theorem 2.5, the operator S acts continuously in ELin (T). Now the theorem follows from Lemma 3.9 (ii) and
Lemma 3.11 [note that £L;,(C) can be naturally embedded into JF «p.0-] Indeed, the only fact that needs to be checked is that, for each £ € Ny,
we have BE € W, g,,. But this is immediate since a¢ + 0 = € + 0 > 0 and so afff + 0 € Dy p. O

Proof of Proposition 3.6. The proposition follows immediately from Lemma 3.10. O

Proof of Propositions 3.12 and 3.13. We divide the proof into several steps.
Step 1. The operator 1 — aDg_, maps a monic polynomial sequence to a monic polynomial sequence. Hence, it is bijective as a map in
P(C).
The equality
V=ad +1=(1-aDs,)" onP(C) (4.42)

easily follows from umbral calculus. Indeed, 9~ = B(D), where D is the differentiation operator and the function B is as in formula (1.4), see
e.g., Ref. 26, Sec. 4.4. By Ref. 30, if a # 3, we have

(B-a)t
(B-a)t el -l
e -1 [
B(t) = = S (4.43)
( ) [), _ (xe(ﬁ—a)t 1— ae(ﬂﬁ_)a_l

By Boole’s formula (e.g., Ref. 26, Sec. 4.3.1), for h e C, the h-derivative has the representation Dy, = ehDT_l Hence, by (4.43), 0~ =
Dg_o(1 — aDg_o)~", which implies (4.42). In the case a = 3, we have B(t) = -, which similarly implies (4.42).
Recall that, in the case & > 8 > 0, we have Z = UV on P(C), and in the case R(«) > 0, 3(«) > 0, f = &, we have Z+ ¢ = UV on P(C).
Since V™' = 1 — aDp_q, this immediately implies that U = Z(1 — aDp_) in the former case, and U = (Z + 2)(1 - aDp_,) in the latter case.
Step 2. Similarly to Step 1, we easily find that 9 = Dy_g(1 - BDep) " = X1 ﬁkDﬁf;;. Since D, is the lowering operator for the
polynomial sequence ((z | & = f)x);2, we get

n—1
(07Cla=P)u)(z) = kz Z—: B (zla-Pho neN. (4.44)
-0 K
Step 3. We state that, when a > > 0,
Jo, Gl bago( ) = B (o), (445)
and when R(«) >0, 3(a) >0, =1,
/R (x+o/a|a—PB)n taps(dx) = ﬁ”(a/ﬂ)("). (4.46)

Note that, when « = > 0, formula (4.45) is just (A13). We will prove formula (4.45) when & > 8 > 0, the proof of (4.46) being similar.
By (A1) and (A13), we obtain

S el B tagold) = (@) [ (xf @~ B)), b ()

= > s(nk) (- )" f( o 2 oo (dx)

-
1=
¥

k ,
s(nk) (a —/3)""‘; (a—B)*'S(k,i) (oo | -B):

o~
Il
—

(= B)"(ofa| B)iS. s(m K)S(hs i)

i=1 k=i

(o/oc| -B)n = B"(a/n) ™.

M:
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Step 4. Let p € P(C). We state that, ifa > > 0,
@2 = [ (plz+)~p(2)B" b (), (147)
ap
and if R(a) > 0,3(a) >0, =1,
O = [ (x5~ pE)E baga(d) (448)

To prove formula (4.47), it is sufficient to show that it holds for p(z) = (z | @ — 8)n (n € N). Then, by (4.44) and (4.45),

S (Gl pu Gl D @) = 5 () Lo B [ (xla Bk (@)
ap

:x-
._-o

= (p)etepup o=@ e

The proof of (4.48) is similar. We only need to note that n/a = f8.

Since V = a@~ + 1, formulas (4.47) and (4.48) imply that formulas (3.21)-(3.23) hold for f(z) = p(z) € P(C).

Step 5. Using Theorem 2.5, one can easily show that the operators &, 7, Z and Ds_, admit a (unique) extension to continuous lin-
ear operators in &p,;,(C). Hence, U and V also admit a continuous extension, Z = UV, respectively Z + o/a = UV, and U = Z(1 - aDp_),
respectively U = (Z + 0/a)(1 - aDp_,).

Finally, using the definition of the space &;,;,(C), we easily see that the integrals on the right-hand side of formulas (3.21)-(3.23) are
well defined for each f € &L (C), and furthermore, the right-hand side of each of the formulas (3.21)-(3.23) determines a continuous linear
operator in &y, (C). Hence, formulas (3.21)~(3.23) hold for f € £},;,(C). Since (1 - aDp_o)V = V(1 — aDp_q) = 1 in Epyy (C), the operator
1 - aDp_ is invertible in £, (C) and V = (1 - aDp_s) . ]
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APPENDIX: NORMAL ORDERING IN A CLASS OF GENERALIZED WEYL ALGEBRAS AND ITS CONNECTION
TO ORTHOGONAL SHEFFER SEQUENCES

We consider a special class of generalized Weyl algebras. For a,b € C, we are interested in the complex free algebra in two generators U/
and V satisfying the commutation relation [V, U] = aV + b.

Recall that the Stirling numbers of the first kind, s(#, k), and of the second kind, S(#, k), are defined as the coefficients of the expansions
(2)n = $i_, s(n,k) 2" and 2" = }_, S(n, k) (2)s respectively. This definition immediately implies the orthogonality property of the Stirling
numbers:

zn: S(n,k)s(k,i) = Zn: s(n, k)S(k,i) = 6ui» 1<i<n (A1)
k=i

k=i
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Proposition A.3. Assume that the generators U, V satisfy [V, U] = aV + b. Then, for each n € N, we have

UV =3 6" S(m K)U(U +a) (U +2a) (U + (k— 1)a) VF
k=1
= 0 RS(n k) (U | -a)y V- (A2)
k=1

Remark A.4. Note that, in the existent literature, one would usually consider the normal ordering of (V)" in which all operators Vare
to the left of the operators U (see e.g., Ref. 29, Sec. 8.5 the references therein), while we are interested in the opposite situation. The reader is
advised to compare Proposition A.3 with Ref. 38.

Proof of Proposition A.3. First, we state that
V'U = (U +na) V" + nbV"". (A3)

This formula follows immediately from Ref. 22. Nevertheless, an interested reader can prove formula (A3) directly by induction.
Now we prove (A2) by induction. For n = 1, (A2) becomes the tautology U/ V = U V. Assume that (A2) holds for n and let us prove it for
n+ 1. We have, by (A3),

(Uuv)™'= Z b ES(n k) UU +a) (U +2a) - (U + (k- D)a) VUV
k=1
= S0 RS (m k) UU +a)(U +2a) - (U + (K- Da)[ (U + ka) V* + bV |V

1

o~
Il

V' S(m Y UU + a) (U +2a) - (U + ka) V<!

1l
M:

=
Il
—_

+ Z kb" S (n, k) U(U + a) (U +2a) - - (U + (k- 1)a) V-, (A4)
k=1

Setting S(n,0) = S(n,n + 1) = 0, we continue (A4) as follows:

= f S(mk- D" U(U +a)(U +2a) - (U + (k= 1)a) W
k=1
+ f S(n, K)kB" ™ U(U + a) (U +2a) - (U + (k- 1)a) V'
k=1

= % (S(n,k-1) +kS(n,k))b"+1_k UU+a)(U+2a)---(U+ (k-1)a) Pk
k=1

= f VS (n+ LKUU + a) (U +2a) - (U + (k- 1)a) VE,
k=1

where we used the well known recurrence formula S(n + 1,k) = S(n,k - 1) + kS(n, k). ]

Let now ¢ > 0, a, § € C\{0}. Define linear operators U/ and V in P(C) by (1.17). It is straightforward to see that the operators U, V
generate a generalized Weyl algebra as discussed above witha = fand b = a — . Let R = U .
Since V1 = 1 and U = Z + ¢, Proposition A.3 immediately implies

Corollary A.5. We have
(R")(2) = 3 (a=B)""S(nk) (2 + o/a| ) (A5)
k=1
The following proposition explains a connection between the generalized Weyl algebra generated by &/ and V and an orthogonal Sheffer
sequence.

Proposition A.6. Let 0 > 0 and a, § € C\{0}. Let (pn(2) )20 be the monic polynomial sequence satisfying by the recurrence formula

2pu(2) = pnr1(2) + (An + o/a)pn(2z) + (on+ yn(n—1))pu-1(z), neNo, (A6)
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where A = a + 3 and 1 = af. In particular, for a > 3 > 0, we have s,(2z) = p, (), and for R(«) > 0, I(a) > 0 and = &, we have s,(z) = pa(z +
?). Define a linear bijective operator T in P(C) by setting Z(- | B)n = pu for n € No. Then Z = TRI .

Proof. We have R = aZDg+ Z + 0Dp + £. Recall that Dy is the lowering operator for the monic polynomial sequence ((z | B)n)n2o-
Furthermore, it is easy to see that z(z | ) = (2| B)n+1 + nB(2 | B)n. In view of the recurrence formula (A6), the statement easily follows. O

As a special case of generalized Stirling numbers of Hsu and Shiue,”! we define, for 0 < k < n and h,r € C, numbers S(n,k; h,r) as the
coefficients of the expansion (z + 7 | h), = X3_o S(n, ks h; 1) (2 | —h)i.

Recall that the (unsigned) Lah numbers, L(n,k), are defined as the coefficients of the expansion (z), = ¥i_, (~=1)"*L(n,k)(z)®.
Explicitly, L(n,k) = (}7} ). Note that L(n,k) = (-1)"*S(n, k; 1,0) = S(n,k;~1,0).

Lemma A.7. We have S(n,0; h,r) = (r | h)pand fork=1,...,n,
n—k X
S(nksh,r)=>" (7)(—h)"7]7kL(n -, k)(r | h)j. (A7)
=0 \J

Proof. Since the h-derivative Dy, is the lowering operator for the monic polynomial sequence ((z | h)n)peo and (0| h), =0 foralln e N,
((z] h)n)p2y is a polynomial sequence of binomial type, see e.g., Ref. 26, 4.3.3 Theorem. Hence,

n

orlme=3 () e mas= e 32 ()6 (5) (1

i=0

_ ) " (n H(r ’Hi _1yik 3 z ®
1mae 2 (e imnT (0 en ()
UL W UL W E Ve COVRCED!

S 3 (35 (5)em o e e ) e b

=1

i=k
n n—k .
:<r|h)n+;( (,,"j)(—m"fk(r|h>,-L(n—j,k))(z|—h>k. o

j=0

The following result can be of independent interest.

Theorem A.8. Let (pn(2))nzo be a monic polynomial sequence as in Proposition A.6. We have

2= 3 (B SO (afa B+ 3 (kz (e B *S(m ) (ki —/ia/a))p;»(z) (A8)
and ., .
pu(2) = (~afa| B)u + Z (kZ S(n, ks B, ~afe) (= B)*'s(k, i))zi. (A9)

Proof. By Corollary A.5, we have

n k
(R')(2) = 3 (B R)Y SCh - ofe) (< | )
=3 (@B stk ofa | B 3 3 (=) SuK) Stk .o/ (2 | ). (A10)

Applying the operator Z to (A10) and using Proposition A.6, we obtain (A8).
Recall Corollary A.5. Note that there exists a unique monic polynomial sequence (gn(z))q2, that satisfies (R"1)(z) =

iy (= B)"ES(n, k)i (z) for n e Noand g, (2) = (2 + o/a | —B)n.
Define the monic polynomial sequence (g (2))n2o by

in(2) kz (= )" *s(n k) (R"1)(2).
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We state that g, (z) = ga(2), i.e.,
(z+0/a|-B)n= kZ (a=B)"*s(nk) (R"1)(2). (A11)

Indeed, using formula (A1), we have

M:

n k . i
kZ (a=B)"*S(nk)qu(z) = («x—ﬁ)""‘S(n,k); (a= ) 's(k,i)(R'1)(2)

k

Il
—

I
M3

(i S(n,k)s(k,i))(tx—ﬁ)”’i(Ril)(Z) _(R"1)(2),

k=1

Il
—

which proves (A11).
By Lemma A.7, (A11) and the definition of the generalized Stirling numbers S(n,k; 8, —g/a), we have

(2| ) = kz S(n, ks, ~0/a) (z + ofa | ~B)
n k R .
=8(n,0;3,-0/a) + kz_: S(n, k; 3, fo/oc)(; (- ﬁ)kﬂs(k, i)(’Rll)(z))

- Cofa| B+ 35 (3 St -of) (e ) () | (R o). (A2

i=1 \k=i
Applying 7 to (A12) and using Proposition A.6, we obtain (A9). m]

The corollary below follows immediately from formula (A8).

Corollary A.9. Let (pn(2))n2o be a monic polynomial sequence as in Proposition A.6. Let ® : P(C) — C be a linear functional defined by
®(1) = 1and ®(p,) = 0 for all n € N. Then ®(2") = X, (a = B)" ™ S(n,k) (0/a| —P)x. In particular, for a > > 0,

S basold) = 3 (@B SR ol B (a1

and for R(a) >0, I(a) >0, B =1,
[ e+ 0/0)" tapo(dr) - 3 (@B s(nb (ofa | B (Al4)
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