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Abstract 17 

Understanding and predicting glacier instabilities represents one of the greatest challenges in 18 

forecasting future sea level rise. Here, we present a study of Hektoria Glacier on the Eastern 19 

Antarctic Peninsula, which underwent an unprecedented rate of glacier retreat of ~25 km from 20 

January 2022 to March 2023, with an exceptional retreat period in November-December of 2022. 21 

Glacier retreat commenced immediately following the loss of decade-old fast ice in the Larsen B 22 

embayment. The retreat coincided with an almost 6-fold increase in flow speed and 40-fold 23 

increase in glacier thinning, compared to the period prior to the loss of the fast ice in 2022. The 24 

November-December accelerated retreat began with a transition from tabular iceberg calving to 25 

buoyancy-driven calving of a lightly grounded ice plain area. In this two-month period, the 26 

glacier retreated a total of 8.2 ± 0.2 km, a retreat rate nearly an order of magnitude faster than 27 

any published value. The Hektoria case implies that glaciers with ice plain bed geometry can be 28 

easily destabilized. The resulting extreme effect on ice discharge underscores the importance of 29 

identifying outlet glacier regions with similar characteristics. 30 

 31 
MAIN TEXT 32 
 33 

mailto:naomi.ochwat@colorado.edu


2 
 

Introduction  34 

Glaciers that feed ice shelves or landfast ice areas (hereafter, ‘fast ice’) are subject to dynamical 35 

changes upon the removal of these stabilizing features1,2. As the climate continues to warm, ice 36 

shelves and multi-year fast ice are increasingly susceptible to collapse3, thus exposing the 37 

glaciers to new stress regimes and external forcings. These dynamical changes have been 38 

documented in detail on the Antarctic Peninsula (AP) following the loss of the Prince Gustav Ice 39 

Shelf4, Larsen A5,6 and Larsen B ice shelves7,8, the Wilkins Ice Shelf9, and others. These areas 40 

provide a natural observatory to examine potential feedbacks and instabilities that may occur in 41 

other, larger glacier systems that include at-risk floating ice. 42 

 43 

In particular, the Larsen B Ice Shelf and tributary glaciers were relatively stable until the mid-44 

1990s. In early 2002 the ice shelf disintegrated over several weeks, initiating a substantial mass 45 

flux change in the glaciers that fed it10,11. The glaciers rapidly retreated into their fjords, thinned, 46 

and accelerated up to 8 times their pre-shelf-retreat speeds10. In 2011, the embayment filled with 47 

fast ice, partially stabilizing the glaciers, allowing them to advance into the embayment, thicken, 48 

and slow, forming extensive ice tongues1, 12. In 2022, the decade-old fast ice broke out, causing 49 

the glaciers to lose their 300+ meter thick floating ice tongues and rapidly retreat1,13. Ochwat et 50 

al.1 document the triggers that caused the fast ice to break out and the subsequent glacier 51 

acceleration and thinning through spring 2023. They found that Crane, Hektoria, Green, and 52 

Jorum Glaciers accelerated up to 2-fold during the first 13 months following the January 2022 53 

break-out. Fluegel and Walker14 document the 20-year record of the Hektoria-Green (hereafter, 54 

HG) glacier system, and suggest the recent retreat was exacerbated by atmospheric and oceanic 55 
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conditions. However, these studies do not propose a clear cause for Hektoria Glacier’s 56 

extraordinary retreat in 2022-2023.  57 

 58 

There are several processes that can lead to marine-terminating glacier destabilization. The 59 

Marine Ice Cliff Instability (MICI) theory describes a process whereby high (>100 m) 60 

unsupported marine-terminating ice cliffs result in very high ice-front stresses that drive rapid 61 

ice-front calving; however, it has yet to be observed in nature15-17. The Marine Ice Sheet 62 

Instability (MISI) posits that outlet glaciers retreating into retrograde slopes will experience an 63 

accelerating grounding line retreat, creating thick floating or near-floating ice at their ice fronts. 64 

The increased ice thickness drives rapid ice flow, resulting in thinning, further retreat, and 65 

ultimately ice sheet collapse18-20. A potential variation of MISI occurs when there is an ice plain, 66 

which is a flat region of bedrock upstream of the grounding line, where the glacier ice has a very 67 

low slope (< 5°), is near hydrostatic equilibrium21,22, and is lightly grounded or ephemerally 68 

grounded with the tidal cycle21. The presence of an ice plain can promote a rapid grounding line 69 

retreat and buoyancy-driven, rotational calving that results from the lifting force of the sub-sea-70 

level ice in the calving block when the calved segment is narrow relative to its height. This 71 

process has been discussed previously, in models15,23,24 and in observations17,23,25,26. Observations 72 

of paleo-deglaciation have suggested grounding line retreat rates of hundreds of meters per day27. 73 

Here we infer that this process led to extremely high rates of glacier retreat and calving as the 74 

entire ice plain went afloat almost instantaneously27. 75 

 76 

In this study, we detail the rapid terminus retreat of Hektoria Glacier, one of the glaciers in the 77 

HG system, over an extensive ice plain in the downstream glacier region. While this ice plain 78 
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could be inferred from previous studies of Hektoria Glacier1,28, we review and add to the 79 

evidence for it and propose a retreat mechanism based on buoyancy-driven calving across its 80 

extent. We document the retreat phases during the 2022-2023 accelerated retreat period, 81 

including an evaluation of changes in calving style and characteristics of the glacier terminus and 82 

icebergs. We include key information from glacio-seismic data that support our ice plain and 83 

buoyancy-driven calving model for the 2022-2023 retreat, and discuss the potential significance 84 

of this process for the Antarctic ice sheet.  85 

 86 

 87 

Fig. 1: The 2022-2023 accelerated retreat of Hektoria and Green glaciers. A) Hektoria and 88 

Green glaciers prior to the loss of decade-old fast ice in the Larsen B embayment. Grounding 89 

lines for this pre-fast-ice-loss period from previous studies are shown as dark orange33, light 90 

orange34, and light blue29 dashed lines, and our preferred initial grounding line as a black1 dashed 91 
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line. The area of the ice tongue lies between the dark purple December 2021 ice front line and 92 

this black dashed line, and the inferred ice plain lies between the black dashed line and the green 93 

March 2023 glacier terminus from this study. B) March 2022 image just after the fast ice break-94 

up at the onset of ice tongue retreat through tabular calving. C) Landsat image showing HG at 95 

the beginning of the period of accelerated calving, with the light purple line indicating the ice 96 

front at this time; D) Image of the mélange area of the collapsed ice plain and the more stable 97 

terminus location of Hektoria in March 2023 (green line). E) Toppled icebergs (red arrows) in 98 

October 2022 image as calving continues across the lower grounding lines after ice tongue loss; 99 

F) April 2022 image showing forwardly-rotated iceberg at the transition from floating ice tongue 100 

to grounded ice plain.  101 

  102 

Phases of the 2022-2023 retreat 103 

After the loss of the Larsen B embayment fast ice, the HG system can be characterized by four 104 

distinct phases of terminus behavior, two phases of retreat (phase 1 and 3) and two phases of 105 

stability (phase 2 and 4), identified by iceberg morphology and calving style (Fig. 1; Fig. 2; 106 

Supplemental Video 1). Phase 1 of the retreat occurred immediately after the fast ice break-up in 107 

February-March 2022, when the 300+ m thick floating ice tongue disaggregated in a series of 108 

small tabular calvings1 (Fig. 2B). During this period HG lost 16 km of floating ice (~216 km2) at 109 

a rate of up to 0.8 km/day. Tabular bergs are identified by their aspect ratio and a dark rough 110 

upper surface that resembles the glacier surface25,29,30. 111 



6 
 

 112 

 113 

Fig. 2. A: Hektoria Glacier retreat rate and ice area loss from February 2022 to August 114 

2023. Cyan ticks mark the occurrence of glacier earthquakes detected on 6 November 2022, 12, 115 

19, and 25 December 2022; seismograms are shown in Fig. 5 and Extended Data Fig. 5. Magenta 116 

ticks indicate the acquisition date of the image panels in B-F, illustrating the changes in glacier 117 

front and iceberg morphologies during the key periods of retreat. Satellite images in B-F are 118 

from Maxar Worldview (C and D), PlanetScope (E; Image © 2022 Planet Labs PBC), and 119 

Landsat 9 (B and F). Panels D & E show the same areal extent. 120 

 121 
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 122 

Fig. 3: Time series of elevation and velocity of Hektoria and Green Glaciers. A) Elevation 123 

profile along Hektoria Glacier (red track; Reference Ground Track (RGT) 1329) from April 2017 124 

to September 2023. B) Elevation profile across Green Glacier (pink track; RGT 239) from 125 

November 2017 to July 2023. C) Velocity along Hektoria Glacier’s central flow line (blue track). 126 

The profiles are opaque for glacier ice and become transparent at the transition to iceberg 127 

mélange. D) 21 December 2021 Landsat 8 image with the ICESat-2 tracks and along flow track, 128 

yellow dots are elevation thinning measurement locations.  129 

 130 

A period of terminus stability (phase 2) ensued during the 2022 austral winter (June-Aug), when  131 

sea ice and mélange remained in the immediate vicinity of the glaciers’ fronts (Fig. 2), likely 132 

providing backstress and ocean swell dampening that temporarily suppressed further calving31. 133 

During phase 2, Hektoria Glacier accelerated by over 70% and began to thin dynamically (Fig. 134 

3A and C); the same occurred on Green Glacier (Fig. 3B, Extended Data Fig. 4). Prior to the fast 135 
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ice break-out (2017 – 2021), the HG system thinned at an average rate of 2-3 m/yr (Fig. 3A and 136 

B). Following the fast ice break-out (March - December 2022), the thinning rate increased to 19 137 

± 2 m/yr for Hektoria and 4 ± 2 m/yr for Green Glacier.  138 

 139 

By October 2022, tabular-style calving ceased and Hektoria Glacier’s ice front developed a 140 

staircase-like structure, listric faulting and slumping, with the unfractured glacier front height 141 

~50 m above sea level (Fig. 2C, Extended Data Fig. 3). We infer that listric slumping leads to 142 

buoyancy-driven calving through increased upward force on the lower (submerged) slump block, 143 

lifting and fracturing the upper ice and calving a toppled iceberg in a “bottom-out” style26 (Fig. 144 

2C, Extended Data Fig. 3). 145 

 146 

As Hektoria entered phase 3, buoyancy-driven calving dominated, producing toppled icebergs 147 

that have a relatively smooth upper surface with a scalloped texture consistent with an exposed 148 

fracture face, and blue appearance in multi-spectral satellite images due to exposed interior ice. 149 

In many cases, the original glacier upper surface can be identified by its relatively flat profile in 150 

the toppled icebergs. An analysis of toppled iceberg dimensions suggests that the minimum ice 151 

thickness of this downstream edge of the ice plain is at least 407 ± 11 m and thickens to 492 ± 30 152 

m as it retreats (Extended Data Figs. 1 and 4).  153 

 154 

During the period of accelerated retreat (phase 3; November-December 2022), calving occurred 155 

at unprecedented rates for grounded ice, reaching 0.8 km/day, resulting in the loss of an 156 

additional 8.2 ± 0.2 km of glacier front and 40 km2 of total glacier area. This calving coincided 157 

with glacier earthquakes that were captured by the multi-national seismic sensor networks in the 158 

region (blue ticks in Fig. 2). A notably rapid period of grounded ice retreat occurred 25-28 159 
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December when 2 ± 0.01 km retreated, covering 11.2 ± 0.01 km2 (Fig. 2D and E). From January 160 

to March 2023 Hektoria retreated a further 1.5 ± 0.03 km, losing 13 ± 0.04 km2. Phase 3 and 4 161 

together (November 2022-March 2023) resulted in a total loss of 84 ± 0.5 km2 of grounded ice 162 

with a minimum volume loss of 36 ±1 km3. From December 2022 to March 2023 the thinning 163 

rate for the remaining portion of Hektoria Glacier increased to 64 ± 2 m/yr (Fig. 3A). By 164 

September 2023, thinning rates at Hektoria and Green reached 80 ± 2 m/yr and 54 ± 2 m/yr, 165 

respectively (yellow dots in Fig. 3). 166 

 167 

Phase 4 is characterized by a period of relative terminus stability that began in March 2023 and 168 

persists as of December 2024. Hektoria has had a near-fixed terminus location, yet its dynamics 169 

continue to change substantially as it calves, accelerates, and thins (Fig. 3). The terminus is no 170 

longer fronted by a cliff, and it continues to slump into a mélange that fills the HG embayment 171 

(Supplemental Video 2). 172 

 173 

Assessment of ice plain conditions in Hektoria Glacier 174 

Several recent studies have presented grounding lines of Hektoria Glacier that show substantial 175 

disagreement (Fig. 1). These discrepancies likely result from different methods used. Tuckett et 176 

al.29 identified grounded ice surface features and identified breaks-in-slope, one near the 177 

grounding line locations suggested by Rott et al.32 and Wallis et al.33, and one near our identified 178 

grounding line1. The two breaks-in-slope can identify an ice plain21,22. This suggests that Rott et 179 

al.32, via the break-in-slope method, identified Point C, the coupling point, typical of the 180 

upstream limit of an ice plain21,22. Point C is not the true grounding line in an ice plain system. 181 

The Wallis et al.33 grounding line was determined by identifying cyclical variations in the radar 182 
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range (after subtracting displacement due to ice velocity) in Sentinel-1 synthetic aperture radar. 183 

However, the range variations can be interpreted in two ways: as vertical motion due to tides, or 184 

as cyclical tidally-paced variations in flow speed. Wallis et al.33 interpret the range variations as 185 

vertical motion. We suggest that at lower tide levels the terminus of the glacier is more 186 

grounded, causing a rise in basal shear stress that induces a slowdown34,35.  187 

 188 

In the downstream Hektoria Glacier trunk, Ochwat et al.1 noted that surface undulations (10s of 189 

meters relief, few km spatial scale) appear to be fixed in place in the period 2011-2022 (Fig. 4A-190 

D), leading to their assessment that the region downstream of the Rott et al.32 and Wallis et al.33 191 

grounding lines was in fact lightly grounded. Downstream of Ochwat et al.1 grounding line 192 

position, long-wavelength undulations advect with the speed of the glacier. They interpreted 193 

these as the surface expression of bottom crevasses (flexion zone) beneath an ice tongue, 194 

indicating floating ice.  195 

 196 

 197 
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 198 

Fig. 4: Time series of elevations along four profiles in the Hektoria-Green glacier system 199 

and corresponding velocities. Panels A-D) four elevation profiles of satellite stereo-image 200 

derived DEMs spanning 2011 to late 2022, with several surface features and interpreted state of 201 

the glacier ice labeled, including “surface bump 1” and “surface bump 2”, which were not 202 

advected downstream. Black arrows highlight the moving position of surface features interpreted 203 

as bottom crevasses. Panel E) Landsat 8 image from 21 December 2021 showing elevation 204 

profile locations, recent published grounding line locations, the date of the data used to infer 205 

their location, including Ochwat 2021 (black dashed line1), Wallis 2019/20 (light orange dashed 206 

line33), Tuckett 2016 (blue dashed line28), and Rott 2016 (dark orange points32). Panel F shows 207 

ITS_LIVE velocity data55 from 2011-2022 at four points on Hektoria’s central flow line, marked 208 

by the colored “x”s.  209 
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 210 

In our study, all profiles show two distinct breaks in the slope; upstream of the “bump 1” feature 211 

(Fig. 4A-D), and just downstream of the “bump 2” feature, below which the inferred bottom 212 

crevasses appear. The two distinct breaks in the slope support our interpretation of an ice plain 213 

area of the glacier22,28,36 (Fig. 6).  214 

 215 

As retreat proceeded past the Tuckett-Ochwat grounding lines, the ice front exhibited a 216 

‘staircase’ listric fracture and calving style implying a substantial change in stresses and a non-217 

zero basal shear stress there, hence a transition from floating to grounded ice plain26. IceBridge 218 

radar data from 2017 show reflection strength changes that indicate a transition from grounded to 219 

floating ice around the Tuckett-Ochwat grounding line (Extended Data Fig. 2). IceBridge radar 220 

profiles from other years in the region were inconclusive.  221 

 222 

The seismic events identified in the multi-national seismic sensor networks confirm the grounded 223 

nature of the ice front during phase 3 (Fig. 2 and 5). We identified no events in the Hektoria 224 

region prior to November 2022, followed by a series of glacier earthquakes (GEQs) that occurred 225 

simultaneously with large glacier retreat events on the ice plain in satellite image time-series (Fig 226 

1, Fig. 5, Extended Data Fig. 5). Modeling the observed seismic waveforms indicated they were 227 

generated by a nearly horizontal source oriented roughly perpendicular to the Hektoria calving 228 

front with peak forces of ~0.5-2 x 1010 N, consistent with generation by calved icebergs with 229 

mass of ~1011 kg (ref.37,38, Fig. 5; Extended Data Figs. 7). Buoyancy-driven calving can produce 230 

glacier earthquakes when icebergs capsize at the terminus of the glacier, creating a force against 231 

the ice front and the glacier bed; this momentarily creates a cm-scale speed reversal in the glacier 232 
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and an upward force on the Earth26,39,40. These types of earthquakes are characterized by long 233 

periods (30-150 s, moment-magnitude Mw = 5 tectonic earthquake) and are detectable 234 

globally37. Six GEQs occurred at Hektoria Glacier during the rapid retreat, four of which 235 

correspond closely to observed retreat events at Hektoria’s ice front (Fig. 5; Extended Data Fig. 236 

5).  237 

 238 

 239 

Fig. 5. The glacial earthquake of 25 December 2022: location and waveforms. A) Our 240 

location estimate for this event. Higher coherence indicates more likely source location with star 241 

denoting best fitting location. White triangles are the locations of seismic stations used in the 242 

location estimation. B) Vertical seismic waveforms (black) and their envelopes (red) after a 20-243 

50 s bandpass filter is applied. Trace amplitudes are normalized and sorted by distance to source 244 

location. 245 

 246 
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 247 

Fig. 6: Time series schematic of an idealized glacier cross section and Hektoria Glacier’s 248 

configuration and rapid retreat. Black dashed line is the elevation of an ice surface with the 249 

ice in hydrostatic equilibrium; the red dashed line is a dimensionless amplitude of tidal flexure 250 

where Td = 0 on grounded ice and Td = 1 for ice in full hydrostatic equilibrium. Point C is the 251 

coupling line, the most notable break in the slope of an ice plain; Point F is the landward limit of 252 

tidal flexure (hinge line); Point G is the grounding line, the last point at which the glacier touches 253 

the bedrock surface and may migrate with tides; Point H is the landward limit of hydrostatic 254 

equilibrium of floating ice shelf or tongue. A) Idealized glacier and ice-shelf configuration; B) A 255 

conceptual sketch of Hektoria Glacier’s profile prior to the fast ice break-out, showing a bedrock 256 

high similar to that inferred in Fig. 3 (adapted from Friedl et al.22 and Batchelor et al.27); C) 257 
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Hektoria Glacier system as it loses its floating ice tongue, including surface depressions and 258 

basal crevasses creating full thickness rifts and tabular icebergs; D) Hektoria Glacier as it begins 259 

to calve at its grounding line (April 2022); E) Dynamic thinning of the lower glacier, with the ice 260 

plain nearing hydrostatic equilibrium and calving blocks buoyantly rotating, causing glacier 261 

earthquakes when capsizing against the terminus (November-December 2022); F) Hektoria 262 

Glacier retreats to a new more stable terminus position at the slope break or bedrock high (March 263 

2023) and continues to calve, speed up, and dynamically thin.  264 

 265 

Our results suggest that the differing grounding lines and evidence of clearly grounded ice 266 

behavior in the downstream glacier can be explained by the presence of an ice plain (Fig. 6), as 267 

first proposed by Tuckett et al.28. The two key differences between the geometries of Fig. 6 268 

panels A and B are: 1) the landward limit of tidal flexure extends far beyond the grounding line 269 

and high tidal variations can change the location of true landward limit of tidal flexure Point F 270 

and may induce partial ungrounding of the glacier during high tides21; and 2) the ice plain area of 271 

the glacier is near hydrostatic equilibrium and is therefore sensitive to external perturbations21 272 

(e.g., fast ice break-up events). We conclude that this downstream Hektoria Glacier ice plain 273 

geometry facilitated the record-setting tidewater retreat when it thinned to near-flotation after the 274 

fast ice break-out in 2022. 275 

 276 

Glacier response following the fast ice break-out  277 

When the fast ice broke out in January 2022, the terminus of the ice tongue lost a small amount 278 

of buttressing13,41 that mostly served to suppress calving31. This loss instigated an increase in 279 

rifting and the rapid disaggregation of the ice tongue into tabular icebergs. Unlike the Larsen B 280 

Ice Shelf collapse in 2002, optical imagery does not show substantial meltwater ponding that 281 
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would have prompted rapid hydrofracture of the ice tongue rifts. Although an atmospheric river 282 

may have aided in the loss of the ice tongue1,14, this occurred 7 months earlier and cannot explain 283 

the grounded ice retreat. When the rapid retreat initiated in early November 2022 there was no 284 

indication of melt ponding or warm weather events. However, warm conditions and incipient 285 

melt ponding on the adjacent Seal Nunataks Ice Shelf later in November 2022 may indicate some 286 

augmentation of calving events at Hektoria around that time. The most rapid retreat in December 287 

2022 did not coincide with either warm weather or melt ponding, suggesting hydrofracture was 288 

an unlikely factor in the accelerated retreat (phase 3). Basal melting is unlikely to have affected 289 

conditions, as the Larsen B embayment has a cold oceanic water column14. 290 

 291 

Hektoria Glacier’s accelerated retreat (phase 3), 8.2 ± 0.2 km in two months, is unprecedented in 292 

the modern glaciological record. Pfeffer42 defines “rapid” as retreat rates that are greater than 293 

200 m/yr, using Columbia Glacier, Alaska, as an example due to its 1000 m/yr retreat rate 294 

between 1980-2005 (refs.42,43). In Greenland, rapid retreats of several hundred meters per year 295 

are observed44, including recently the ‘Steenstrup’ glacier retreat45. In Antarctica, Röhss Glacier 296 

on the James Ross Island lost 9.1 km of grounded ice, 7.5 km  from January 2001-December 297 

2001 (ref. 4). The Röhss Glacier retreat occurred six years after the loss of the Prince Gustav Ice 298 

Shelf and continued until 2009, losing 70% of its area and retreating a total of 15 km (ref. 4). 299 

This is not unlike a previous retreat of Hektoria itself 9 years after the loss of the Larsen B ice 300 

shelf, in which the glacier retreated 500 m from 10 February to 26 February in 2011 at a rate of 301 

at least 35 m/day (ref. 14). Pope Glacier in West Antarctica experienced a grounding line retreat 302 

of 3.5 km in just four months46, with bedrock profiles also indicative of ice plain geometry.  303 

 304 
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Hektoria Glacier’s dynamical thinning is also globally unprecedented in the published record, at 305 

80 ± 2 m/yr, measured over 6 months. This is higher than the thinning rates reported in Fluegel 306 

and Walker14, likely due to a different measurement period. Earlier, HG was reported to have 307 

thinned ~38 m between March and September 2002 (ref. 11). During this same period, Crane 308 

Glacier, south of HG, thinned over 100 m in ~two years, with ~40 m of thinning due to 309 

subglacial lake drainage11,47. Other fast-paced thinning rates occurred at HPS12 glacier, 310 

Patagonia and ‘Steenstrup’ Glacier, Greenland, at ~44 m/yr (ref. 48) and ~50 m/yr (ref. 45), 311 

respectively. Hektoria’s exceptional thinning rate coincides with a ~6-fold increase in velocity, 312 

accelerating from 300 ± 40 m/yr to 1700 ± 40 m/yr by June 2023 (Fig. 3C).  313 

 314 

Broader implications  315 

Glacier instabilities, such as MICI and MISI, represent some of the greatest uncertainties in the 316 

future projection of sea level rise49. MICI is proposed to occur in various scenarios, dependent on 317 

cliff height (>100 m), the ice thickness gradient upstream, the water depth, and the amount of 318 

backstress from ice mélange at the glacier front23,24. At Hektoria, ice cliff heights rarely exceeded 319 

60 m (ref. 14; Fig. 3A, Extended Data Fig. 3) suggesting the theorized MICI was not a driver of 320 

the rapid retreat. Nor was the instability at Hektoria related to the classic MISI that requires a 321 

retreat into a retrograde bed slope.  322 

 323 

Instead, our results show the rapid Hektoria retreat was induced by buoyancy-driven calving 324 

upon retreat into an ice plain and is perhaps representative of other grounding line 325 

instabilities27,50, which can generate GEQ activity27. Using submarine glacial landforms, Graham 326 

et al.50 propose that an ice plain geometry at Thwaites Glacier led to grounding line retreat at 327 
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many meters per day within the last two centuries. Using similar methods, Batchelor et al.27 328 

inferred a rapid buoyancy-driven retreat of the Fennoscandian ice streams and ice shelves ~15-19 329 

kya during the last glacial maximum. They infer retreat rates of 55-610 m/day, similar to 330 

Hektoria retreat rates in 2022 (Fig. 2). Hektoria’s retreat may therefore represent a modern 331 

example of the rapid retreat process described by Batchelor et al.27, albeit with rapid calving as a 332 

result of the grounding line retreat.  333 

 334 

Ice plains have been detected in other areas of Antarctica, including Whillans Ice Stream51, 335 

Bungenstockrücken36, Institute Ice Stream21,27, Pine Island Glacier52, Ross Ice Shelf53, Amery Ice 336 

Shelf54, and Thwaites Glacier27. The loss of supporting ice shelves can in some cases instigate 337 

rapid thinning, bringing the ice plain to near hydrostatic equilibrium and initiating a rapid 338 

buoyancy-driven retreat, as observed in this study. Therefore, it is imperative to document the 339 

bedrock geometry beneath the glaciers around Antarctica to evaluate the potential for this type of 340 

instability to occur and incorporate rapid buoyancy-driven retreat in models predicting the fate of 341 

the Antarctic ice sheet.  342 

 343 

Methods 344 

Satellite image time-series for morphological evolution  345 

We used MODIS (Moderate-Resolution Spectroradiometer), PlanetScope, Landsat 8 and 9, 346 

Worldview (WV) -1, 2, and 3, Sentinel-2, and Synthetic Aperture Radar (SAR; Sentinel-1) to 347 

investigate changes in glacier extent, characteristics, and dynamics. All these sensors were used 348 

to assess glacier surface and calving morphology, to infer crevassing and rifting styles, and to 349 

time the stages of retreat. The MODIS sensor, on the Aqua and Terra satellites, has a near-350 
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continuous daily image data archive from 2002 to present with coarse resolution (250-1000m). 351 

The Landsat 8 and 9 Operational Land Imager product has a panchromatic band with 15 m 352 

resolution and an orbital repeat time every 8-16 days. To assess smaller periods of rapid retreat, 353 

we used Sentinel-2 imagery acquired every 12 days (with 10 m resolution) and PlanetScope data, 354 

acquired by numerous small multispectral imaging satellites (1-5 m resolution). Additionally, we 355 

use WV-1, 2, and 3 satellite images that provide very high resolution (< 0.5 m) stereo-optical and 356 

multi-spectral images. Retreats were calculated by measuring the distance of the terminus from 357 

two separate images. We measured the retreat along the arch of the terminus every 100 m 358 

(approximately 9 data points) and averaged the distances. We used the standard error of the mean 359 

for the uncertainty.  360 

 361 

Image-derived elevation and velocity changes 362 

Satellite optical imagery was used for investigating the morphology and freeboard of icebergs 363 

and the creation of digital elevation models (DEMs) of the glacier surfaces. To evaluate 364 

elevation changes of surface features on Hektoria Glacier through the 2011-2022 period we 365 

utilized DEMs derived from ASTER (AST_L1A) data and SPOT5 HRS (1A) stereo-imagery. 366 

The DEM processing follows Bernat et al56. All the DEMs are co-registered and vertically 367 

adjusted to the 25 November 2006 SPOT5 DEM. This SPOT5 reference DEM is referred to the 368 

EGM96 geoid and was vertically coregistered to ICESat laser altimetry measurements from 2003 369 

to 2009. The ASTER and other SPOT5 DEMs are vertically adjusted using low-elevation-change 370 

regions, such as bedrock outcrops. A single constant vertical offset is applied to each DEM. This 371 

results in a vertical uncertainty of about 5 m for ASTER DEMs and about 2 m for SPOT5 372 

DEMs57. 373 
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 374 

WV-1, 2, and 3 in-track stereo-image DEMs were obtained from the Polar Geospatial Center 375 

(PGC) to evaluate elevation changes post fast ice break-out. The DEMs have a spatial resolution 376 

of 2 m and absolute accuracy of ~±4 m in horizontal and vertical dimensions (from PGC 377 

documentation). We applied a geoid correction using EGM 2008 and then assessed the mean 378 

elevation difference (i.e., bias) for six bedrock regions in each of the WV DEMs relative to the 379 

Reference Elevation Map of Antarctica DEM (REMA)58 and applied the mean offset to the WV 380 

DEMs, as done in Ochwat et al.1. The commonly known BedMachine59 and Huss and Farinotti60 381 

bed maps differ dramatically for this area of the AP61 and are inconsistent with the ice 382 

thicknesses we derived from iceberg freeboard and geometry. 383 

 384 

Ice thickness and volume loss estimation  385 

We calculated a minimum ice thickness for Hektoria Glacier using iceberg dimensions. We 386 

analyzed three high resolution satellite images during the time period of rapid retreat and 387 

measured the largest 9-10 rotated icebergs near the terminus of the glacier (Extended Data Fig. 388 

1). We measured the length and width of the icebergs along the primary axes three times and 389 

averaged the three measurements. Here, ‘width’ refers to the longest dimension of the iceberg 390 

(assumed to be parallel to the surface when possible); ‘length’ refers to the maximum dimension 391 

perpendicular to the width axis. The largest length is the minimum ice thickness. To estimate the 392 

volume loss, we used the average minimum ice thickness from the three time periods of interest 393 

multiplied by the area loss. The area loss was determined by finding the mean of three measured 394 

area differences between two images. The reported uncertainties are the standard errors of the 395 

mean, propagated when necessary.  396 
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 397 

Ice flow speeds 398 

To determine ice flow speeds through time we used standard feature tracking methods between 399 

consecutive pairs of Sentinel-1A and B SAR satellite images. From 2015 to 2017, Sentinel-1A 400 

provided 12-day image pairs and from 2017 until late 2021 and the addition of Sentinel-1B 401 

provided 6-day image pairs. We used the standard Gamma software to track coherent speckle 402 

and surface features between the image pairs. Surface structure must remain relatively constant 403 

in the pair interval, which is generally the case for the minimum repeat pairs62. We applied 404 

feature tracking to all image pairs of the 6 (when available) and 12-day repeat-pass period 405 

images for 2021-2023 and mosaiced all velocity maps into monthly averaged composites to give 406 

improved spatial consistency. Uncertainty in measured velocities depend on various factors 407 

including the delay between images (12 days or better), the pixels size (~10m), the error in 408 

satellite orbital parameters (negligible), the quality of features tracked between images (variable) 409 

and the number of image pairs contributing to each monthly mean (>=1). In general, however, 410 

the dominant factor is the precision achievable by the cross-correlation algorithm which, 411 

conservatively, is around one tenth of a pixel. In the worst case (12-day repeat, one image pair in 412 

a month), this leads to an uncertainty better than one tenth of 10m over 12 days, or ~ 0.1m/day 413 

(~40 m/year). Once the velocity mosaics were generated, we extracted ice speed profiles along 414 

the central flowline of Hektoria and Green Glacier. We also use the Inter-mission Land Ice 415 

Velocity Experiment (ITS_LIVE) velocity data to track the flow speed from 2011-2022 of four 416 

points along the central flow line of Hektoria Glacier using the ITS_LIVE mapping tool, with the 417 

days between image pairs ranging from 30-120 (ref.55). 418 

 419 
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Laser Altimetry 420 

To study changes in surface ice elevation, we combined the WV image-derived DEMs with 421 

altimetry data from the Ice, Cloud, and Land Elevation Satellite 2 (ICESat-2), launched in 2018. 422 

We used the ICESat-2 ATL06 version 5 product, which provides a linear surface approximation 423 

of 40 m long overlapping segments along each ground track63 with a 91-day repeat cycle (clouds 424 

permitting). We correct for the geoid (EGM 2008) prior to estimating the initial thickness of the 425 

fast ice, glacier tongues, and elevation of the glaciers. We use the along-track ICESat-2 data to 426 

examine thickness changes from 2018 to 2023. We extracted the WV DEM elevation data from 427 

2017 to 2023 along the same track (RGT 1329 and 239) to fill in temporal gaps of the ICESat-2 428 

data. To calculate the uncertainty of the thinning rate, we use the standard error of the mean. We 429 

averaged elevation data along the profile between -64.8410 and -64.8390° for both ICEsat-2 and 430 

Worldview DEMs and calculated the standard error of the mean of each date of data acquisition, 431 

then we propagated that error throughout all the dates.  432 

 433 

Airborne radar profiles 434 

Despite several attempts to map the base of the ice in the glacier fjords and ice tongue areas of 435 

the Larsen B embayment, a careful examination of the available IceBridge CReSIS radar data 436 

provides only very limited and subjective indications of the ice base in the central Hektoria 437 

Glacier outflow. From 2009 to 2018 IceBridge collected radar data in the HG region, however, 438 

most of the radar data near the Hektoria Glacier grounding zone have no reliable information on 439 

the bed signal and, hence, cannot be used for the glacier thickness and bed signal analysis. 440 

Nevertheless, the radar profile from 2017 shows a small area of the region with distinct 441 

reflections near the grounding zone. Here we followed the method in Antropova et al.64 to assess 442 
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the Normalized Bed Reflection Power (NBRP) and the Normalized Internal Reflection Power 443 

(NIRP) for the 2017 track 005. NBRP and NIRP indicate the power of the radar signal reflected 444 

from the bed of the glacier and within the ice column, respectively. NIRP serves as a qualitative 445 

assessment of the signal power losses. Hence, in general, we consider the NBRP signal reliable if 446 

it is higher than NIRP. Relatively high values of NBRP coefficients suggest the existence of 447 

water underlying the ice (i.e., floating ice), while low NBRP values indicate rocks and/or 448 

sediments under the ice layer65,66. We used the NBRP and NIRP to identify a transition zone 449 

between grounded and floating ice, limited by the available data (Extended Data Fig. 2), and 450 

compared it against the grounding line by Ochwat et al.1. 451 

 452 

Glacial-Earthquake Event-Detection, Location, and Waveform Modeling 453 

Using the EarthScope Consortium seismic archive, including the POLENET Network, Antarctic 454 

Seismographic Argentinian-Italian Network, and the Global Seismograph Network, glacier 455 

earthquake (GEQ) detections were made using a grid search method that is broadly similar to 456 

previous studies40. We first downloaded and applied a bandpass filter (40-20s) the vertical 457 

component seismic data in the West Antarctic and Antarctic Peninsula region. We then 458 

computed envelopes using a 60 s short-term average to 1000 s long-term average (STA/LTA) 459 

ratio for each station. We selected time-windows with potential GEQs by finding 500 s time 460 

windows during which at least 3 stations have a peak STA/LTA ratio that exceeds 2.5. Next, we 461 

generated potential event sources on a 100 km grid that spanned the Antarctic continent. For 462 

each potential source, we shifted the envelopes to account for the expected travel time difference 463 

between the grid point and each station. The coherence of the shifted envelopes was then used as 464 

a measure of event location likelihood at the grid point. Since we were focused on finding 465 
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potential glacial events in the Antarctic Peninsula region, we removed events with optimum 466 

locations outside the study region, defined by a bounding box that spanned -3000 to -1500 km 467 

(Polar Stereographic X) and from 500 to 2000 km (Polar Stereographic Y). For 2022, this 468 

resulted in approximately 40 event detections. Most of these events are tectonic earthquakes 469 

originating from the Southern Ocean that were incorrectly located due to the relatively small 470 

aperture of our network. We culled these events via visual inspection as the dispersive nature 471 

makes them very easy to distinguish from GEQs. We used GEQs to associate the calving with 472 

the grounded state of Hektoria Glacier. 473 

 474 

To constrain event size and azimuth, we model the GEQs as a centroid single force (CSF)39,67. 475 

We download Green’s functions from EarthScope Consortium’s Syngine68. Due to the relatively 476 

low signal-to-noise ratios on the horizontal components of the seismograms, we were not able to 477 

estimate the dip of the source and prescribe it to be horizontal. We performed a simple grid 478 

search to obtain the optimal force and azimuth of the CSF that best reproduced the observed 479 

seismograms. As noted in previous work, there is a 180° ambiguity in the estimated azimuth that 480 

arises from the potential misalignment of the waveforms67. 481 

 482 
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Extended Data Fig. 1. 803 
 804 

 805 

Iceberg distribution size during three calving events used to estimate ice thickness. The black 806 

dashed line is the grounding zone from our earlier study1 and the purple line is the ice front on 14 807 

November 2022. The three panels share the same scale and depict different areal extents. Here, 808 

‘width’ refers to the longest dimension of the iceberg; ‘length’ refers to the maximum dimension 809 

perpendicular to the width axis. The largest length is the minimum ice thickness. A) Average of 810 

nine icebergs resulted in an minimum ice thickness of 407 ± 11 m. B) Average of ten icebergs 811 

resulted in a minimum ice thickness of 378 ± 18 m. C) Average of nine icebergs resulting in a 812 

minimum ice thickness of 492 ± 30 m.  813 
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Extended Data Fig. 2. 833 

 834 
IceBridge dataset acquired over Hektoria Glacier on 31 October 2017 A) IceBridge track 835 

overlying a true-color Landsat-8 optical image acquired on 3 December 2017. The red contour 836 

and line is Ochwat et al.1 grounding line. B) Ice surface and bottom heights; C) Normalized Bed 837 

Reflection Power (NBRP) and Normalized Internal Reflection Power (NIRP). The grounded part 838 
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of the glacier associated with relatively low NBRP values is highlighted by light orange color, the 839 

floating ice associated with relatively high NBRP values is highlighted by blue color, and the 840 

region where both NBRP and NIRP values start to increase is highlighted by gray color. This 841 

region is likely associated with the transition of the glacier from grounded to floating, however, 842 

the bed signal at the beginning of this zone is obscured by high internal reflection (NIRP > 843 

NBRP) associated with the crevasses clearly seen in the Landsat-8 images (Panel A).  844 

 845 
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Extended Data Fig. 3 847 

 848 
Terminus of Hektoria Glacier at the grounding line. A) series of Worldview 2 orthoimage on 3 849 

October 2022 at different zoomed levels. B) Elevation profile at glacier front from Worldview 850 

derived DEM on 3 October 2022. The terminus has a ~50 m high cliff front and displays 851 

slumping and rifting upstream of the terminus. The iceberg at the front is clearly rotated “bottom-852 

out” indicating it was calved via buoyancy-driven processes.  853 

  854 
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Extended Data Fig. 4 855 

 856 
Green Glacier velocity from January 2022 to December 2023. A) tracks where velocity was 857 

extracted. Depicts the along-flow profile (red line, panel B) and the Icebridge ATM track profile 858 

(blue line, panel C) in order to compare the speeds to those presented in Ochwat et al.1. Ochwat et 859 

al.1 show a speed increase in Green Glacier of 500 m/yr to 1150 m/yr by January 2023, and here 860 

we show the speed has continued to increase to 1700 m/yr by December 2023 (measured at 7500 861 

m distance along track), representing ~3.5-fold increase in speed since the loss of the fast ice. At 862 

11 km upstream of the Green Glacier terminus the glacier flow speed has yet to be affected by the 863 

loss of the fast ice and new calving regime. Green Glacier underwent similar phases of change as 864 

Hektoria, yet only retreated 4.5 km of grounded ice through austral winter 2023. Since then, 865 

Green Glacier has undergone several periods of minimal advancement and subsequent retreat of 866 

up to 2 km until April 2024 and is still actively calving and retreating. 867 
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Extended Data Fig. 5 880 

 881 
Example of waveform modeling for Dec 25, 2022 Event. A) Landsat image from December 8, 882 

2022 with the force vector inferred from the modeling of the waveforms. Note: force vector 883 

has been placed manually near the calving front of Hektoria Glacier for visual clarity. B) the 884 

bandpass-filtered (20-50s) observed (black) and synthetic (red) waveforms from a grid search 885 

for horizontal force magnitude and direction. Stations are sorted by distance to location. C) 886 

variance reduction as a function force azimuth and magnitude.  887 
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Extended Data Table 1 913 

Event Arrival Time @LPLY Peak Force  Azimuth  

Nov-6-2022 20:08:32 3.5 X 109 N  164 

Nov-6-2022 20:49:31 6.1 X 109 N  -170 

Dec-12-2022 06:02:58 2.1 X 1010 N  168 

Dec-12-2022 13:15:14 8.6 X 109 N  172 

Dec-19-2022 05:59:45 1.37 X 1010 N  170 

Dec-25-2022 17:19:25 1.9 X 1010 N  174 

Event times and estimate force magnitudes and directions for the 6 observed GEQs that we 914 

observed to originate from the Hektoria Glacier region. 915 

 916 

*We report event arrival time at station LPLY since it is the closest station to the source 917 

location(s) of the GEQs for which the seismic arrival is clearly observed for all events.   918 
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Supplemental Video 1:  922 
Timelapse of Sentinel-1 SAR imagery from November 2021 to February 2025.  923 
 924 

  925 
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Supplemental Video 2 926 
GoPro footage of Hektoria Glacier reconnaissance flight 26 February 2024 courtesy of Captain 927 
Franco Saravalli Fuerza Aérea Argentina.  928 
 929 

 930 
 931 
 932 


