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Abstract
Understanding and modelling how humans develop and maintain
trust in robots is crucial for ensuring appropriate trust calibra-
tion during Human-Robot Interaction (HRI). This paper presents
a mathematical model that simulates a three-layered framework
of trust, encompassing dispositional, situational and learned trust.
This framework aims to estimate human trust in robots during
real-time interactions. Our trust model was tested and validated in
an experimental setting where participants engaged in a collabora-
tive trust game with a robot over four interactive sessions. Results
from mixed-model analysis revealed that both the Trust Percep-
tion Score (TPS) and interaction session significantly predicted the
Trust Modeled Score (TMS), explaining a substantial portion of
the variance in TMS. Statistical analysis demonstrated significant
differences in trust across sessions, with mean trust scores showing
a clear increase from the first to the final session. Additionally, we
observed strong correlations between situational and learned trust
layers, demonstrating the model’s ability to capture dynamic trust
evolution. These findings underscore the potential of this model in
developing adaptive robotic behaviours that can respond to changes
in human trust levels, ultimately advancing the design of robotic
systems capable of real-time trust calibration.

CCS Concepts
• Human-centered computing→ User studies.
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1 Introduction
Human-robot collaboration (HRC) has become a critical element in
various industries, where robots and humans work together to carry
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out tasks ranging from manufacturing to service-oriented roles [4].
Trust plays a crucial role in determining the success of collabora-
tion in these settings [11]. When robots assist in tasks that require
human oversight, judgement, and decision-making, the effective-
ness of the collaboration depends on the level of trust humans have
in these robotic systems [12]. Over-reliance or under-reliance can
have a detrimental impact on both safety and performance, partic-
ularly in risky or uncertain environments [39]. Thus, accurately
modelling and calibrating trust in real-time is essential for ensuring
that human-robot teams function productively and safely [6].

The research on human-robot interaction (HRI) indicates that
trust is a multidimensional, evolving concept influenced by various
factors, such as the robot’s performance, task risk, and the user’s
tendency to trust technology [3, 7, 21, 31]. While existing trust
models focus on one-off or short-term interactions, there is a gap
in understanding how trust develops over repeated and long-term
HRC [33, 44]. Trust is continuously adjusted based on the user’s
experiences with the robot across multiple interactions, considering
changing task requirements and the robot’s behaviour over time
[2].

This paper proposes amodel for estimating human trust in robots
during repeated interactions. The model is based on Hoff and Bashir
[22] three-layered trust framework, which includes dispositional
trust (a user’s inherent tendency to trust), situational trust (trust
shaped by the context of interaction), and learned trust (trust devel-
oped through interaction). Our model expands on this framework
by emphasising the role of experience in trust formation. Expe-
rience is shaped by critical factors, including user control, robot
performance, risk, and uncertainty. These factors are particularly
significant in complex and dynamic environments, shaping the
evolution of trust over time.

The paper aims to focus on the following research questions
(RQs):

RQ1 How can we model and validate three layers of trust (disposi-
tional, situational, and learned (initial and dynamic)) during
repeated human-robot collaboration?

RQ2 How does dynamic-learned trust evolve with time during
repeated human-robot collaboration?

RQ3 How are the three dimensions of trust (dispositional, situa-
tional, and learned (initial and dynamic) trust) correlated to
each other during repeated human-robot collaboration?

The novel contributions (C) of this paper are:
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C1 We present a mathematical model of the three layers of trust
during human-robot collaboration that incorporates contin-
uous risk assessment and ambiguity aversion factors, extend-
ing beyond binary trust representations.

C2 We validate the model’s efficacy using a game-based task with
participants over four sessions and demonstrate that sub-
jective ratings of trust perceptions strongly predicted the
estimation of trust computed by our model.

C3 We provide empirical evidence showing strong linear relation-
ships between situational and learned trust layers as de-
scribed by Hoff and Bashir [22] in a collaborative HRI task.

C4 We demonstrate that dynamically learned trust varies signifi-
cantly over time through the modelled scores, with statistical
evidence showing progressive trust development across mul-
tiple interaction sessions.

The findings from this study have important implications for
designing adaptive robotic systems that can monitor and respond to
changes in human trust levels in real-time. By understanding how
trust evolves across multiple interactions, developers can create
robots that adjust their behaviour to maintain appropriate levels of
trust, ultimately improving the safety, efficiency, and user experi-
ence of human-robot collaboration.

2 Background & Related Work
2.1 Trust theoretical understanding
Trust has been examined across physiology, sociology, and HRI
[1, 18, 34]. In HRI, it is viewed as a “multidimensional psychologi-
cal attitude involving beliefs and expectations about the trustee’s
trustworthiness derived from experience and interactions with
the trustee in situations involving uncertainty and risk”, and it
evolves through repeated interaction. Following Hoff and Bashir
[22], we consider three layers: dispositional trust, an individual’s
baseline tendency to trust prior to interaction [7, 28]; situational
trust, shaped by contextual factors such as task demands, perceived
risk, and workload alongside a person’s knowledge and assurance
[14, 38, 43]; and dynamically learned trust, which updates with
experience both before the first encounter (initial trust) and across
subsequent interactions [21, 36]. Experiences with robot perfor-
mance and risk in current interactions influence trust carried into
future ones [40].

2.2 Risk Perception and Ambiguity Aversion in
Trust Formation

Risk perception and ambiguity aversion strongly influence trust
in HRI. Risk perception is the subjective evaluation of potential
negative outcomes when relying on a robot [37], shaped by task
criticality, possible consequences of failure, and individual toler-
ance [14]. Higher perceived risk generally leads to more cautious
calibration, requiring stronger evidence of reliability [35].Ambigu-
ity aversion reflects discomfort with uncertainty about a robot’s
reliability or intentions [16]. People tend to prefer known probabil-
ities over unknown ones [9, 15], which can suppress trust in novel
or unpredictable situations [13].

These constructs operate at different levels but interact in shap-
ing trust. In high-risk settings with clear probabilities, decisions

are driven mainly by risk assessment, whereas the combination of
risk and ambiguity can lower initial trust and slow its development
[32]. This interaction is central to real-world HRI, where both risk
and uncertainty are present [20].

Beyond HRI, psychology and economics research frame trust as
a decision under uncertainty. Individual differences in ambiguity
aversion and loss sensitivity, grounded in prospect theory, have
been shown to shape trust behaviour across domains [29, 48]. While
our model captures risk and ambiguity, it does not incorporate
individual variation in risk aversion, which remains a limitation
for future work.

2.3 Modelling Trust during Human-Robot
Collaboration

Human trust in robots can be measured subjectively through self-
reports [26, 46] or objectively via behaviour and physiology [2,
5, 24]. Subjective methods risk bias [20, 41], whereas objective
measures capture real-time indicators during interaction and are
increasingly used in adaptive systems.

Several mathematical models highlight different aspects of trust.
Freedy et al. [17] proposed a decision-analytic model distinguish-
ing under-, proper-, and over-trust, showing that reliability and
operator experience strongly shape trust but omitting explicit treat-
ment of risk. Hoogendoorn et al. [23] modelled biased experiences,
improving predictive accuracy and underscoring the persistence of
prior impressions in trust adjustment. Guo et al. [19] incorporated
robot performance, task complexity, and cognitive load, providing
insights into calibration under varying task demands but focus-
ing on short-term interactions. Soh et al. [42] applied a multi-task
Gaussian process for personalised trust across domains, yet did not
capture the layered structure or the impact of uncertainty.

Our framework extends this line of work by unifying disposi-
tional, situational, and dynamically learned trust within a single
mathematical formulation. Building on Hoff and Bashir’s [22] three-
layeredmodel, we explicitly integrate risk perception and ambiguity
aversion and formalise how user control, robot performance, and
collaboration risk jointly influence trust. This approach provides a
dynamic, generalisable account of trust evolution in HRC, bridging
theoretical perspectives and practical design needs.

3 Mathematical Trust Model
The trust model is designed to estimate trust in a robot’s trustworthi-
ness by evaluating three core layers: dispositional trust, situational
trust, and dynamically learned trust. These layers capture the differ-
ent stages at which trust is formed and modified during interactions
with robots. Dispositional trust (DT) reflects an individual’s inher-
ent tendency to trust, which remains stable over time. We measured
dispositional trust using a validated Likert-scale questionnaire [40].

Situational trust (ST), which refers to the context-specific trust
based on the robot’s performance during a particular task, is cal-
culated using a trust perception scale [40]. The rationale for this
approach is that both dispositional and situational trust, as pre-
interaction stages, contribute equally to shaping the user’s initial
expectations and trust levels before any direct interaction with the
robot. Dispositional trust offers a stable baseline, reflecting an indi-
vidual’s inherent tendency to trust, while situational trust modifies
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this baseline based on the specific context and conditions of the
interaction. By averaging these two components, the initial trust
calculation captures both the enduring personal characteristics and
the dynamic environmental factors, providing a more balanced
measure of the user’s initial trust.

In order to capture the trust prior to any interaction, we calcu-
late the initial learned trust 𝑇 (0) as the average of dispositional
and situational trust. Both pre-interaction stages equally influence
the user’s initial expectations and trust levels before any direct
interaction with the robot:

𝑇 (0) = 𝐷𝑇 + 𝑆𝑇
2

. (1)

After the initial trust is established, dynamically learned trust
is updated based on the participant’s ongoing experiences with
the robot. Trust evolves through repeated interactions, and each
interaction influences the subsequent trust level. This dynamic
process is represented by the following equation created by Jonker
et al. [27]:

𝑇 (𝑡 + Δ𝑡) = 𝑇 (𝑡) + 𝛾 (𝐸 (𝑡) −𝑇 (𝑡))Δ𝑡, (2)

where𝑇 (𝑡) is the current trust level, 𝐸 (𝑡) is the experience gained
at the 𝑡-th interaction, and𝛾 = 0.25 is the learning rate. The learning
rate value was determined through empirical testing with different
values (0.1, 0.25, 0.5, 0.75) in pilot studies, where 0.25 provided the
most accurate reflection of trust development patterns observed in
human-robot interaction literature [14, 20]. This equation reflects
how trust adjusts over time, increasing or decreasing depending
on whether the robot’s performance meets or falls short of the
participant’s expectations.

The model identifies three key scenarios that describe how trust
evolves:
Scenario 1: Trust increases when the experience 𝐸 (𝑡) exceeds the

current trust level 𝑇 (𝑡).
Scenario 2: Trust remains stable if the experience 𝐸 (𝑡) aligns with

the current trust level 𝑇 (𝑡).
Scenario 3: Trust decreases if the experience falls below the cur-

rent trust level 𝑇 (𝑡).
The participant’s experience 𝐸 (𝑡) at each interaction is a key com-

ponent of the model and is calculated by considering the alignment
between the robot’s performance, the participant’s decision-making
control, and the associated risks. The formula for experience is:

𝐸 (𝑡) = 1 −
(∑𝑁

𝑖=1 |𝑃𝑖𝐶𝑖 −𝐶𝑖𝑅𝑖 |
𝑁

)
−𝐴(𝑡), (3)

where 𝑃𝑖 represents the robot’s performance, 𝐶𝑖 is the partic-
ipant’s control, and 𝑅𝑖 is the level of risk involved in the certain
context. For implementation purposes in our experimental valida-
tion, these factors were represented by binary values of 0 and 1,
indicating high performance, low performance, control, no control,
high risk, or no risk. However, the model framework supports con-
tinuous values between 0 and 1 for more nuanced applications. 𝑁
is the total number of interactions, and the expression |𝑃𝑖𝐶𝑖 −𝐶𝑖𝑅𝑖 |
measures the degree of alignment between the robot’s performance
and the participant’s control, adjusted for the risk level. Dividing by

𝑁 normalises the sum, ensuring that the experience score remains
consistent across different numbers of interactions.

When subtracting this alignment measure from 1, a higher expe-
rience value 𝐸 (𝑡) reflects a positive alignment between robot per-
formance and user control in high-risk situations. Trust increases
when this alignment is strong, while misalignment results in lower
experience values and, consequently, lower trust.

Another important factor in the model is ambiguity aversion
𝐴(𝑡), which captures the participant’s discomfort with uncertainty
about the robot’s reliability. Uncertainty often arises when the
robot’s performance is inconsistent or unpredictable. Ambiguity
aversion is calculated as:

𝐴(𝑡) =
∑𝑁
𝑖=1 |𝐾𝑖 − 𝐹𝑖 |

𝑁
(4)

where 𝐾𝑖 is the expected number of robot failures, and 𝐹𝑖 is
the actual number of robot failures at each interaction. The differ-
ence between 𝐾𝑖 and 𝐹𝑖 reflects the unpredictability of the robot’s
behaviour. A higher ambiguity aversion score indicates a greater
sensitivity to the robot’s performance variability, reducing trust
when the robot’s actions do not align with user expectations (see
Table 1).

The overall trust model ensures that trust𝑇 (𝑡) at any given time
remains within the range [0,1], where 1 represents complete trust
and 0 represents complete distrust. As illustrated in Figure 1, the
model demonstrates that while positive experiences can increase
trust, the extent of trust improvement depends on the initial trust
level. Trust grows incrementally, but if trust is initially low, positive
experiences have a limited impact.

Table 1: Truth table showing the alignment between robot
performance, user control, and risk level

𝑃𝑖 𝐶𝑖 𝑅𝑖 |𝑃𝑖𝐶𝑖 −𝐶𝑖𝑅𝑖 |
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

This model provides a comprehensive framework for understand-
ing how trust evolves in HRI, particularly in tasks that involve risk
and uncertainty. By capturing both initial and dynamically learned
trust, it highlights how experiences and user perceptions shape
trust over time, offering valuable insights into designing robots that
can build and maintain trust with human users.

4 Experimental Design
Our system comprised of a computer-based interactive Matching
Pair game for participants to play, and a NAO robot to act as a
teammate, providing advice to the users during the game. The aim
was to study how users demonstrate trust in the robot based on
their observable behaviours during the game.
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Figure 1: Illustration of the impact of Current Trust Levels
𝑇 (𝑡) and Experiences 𝐸 (𝑡) on the New Trust Level 𝑇 (𝑡 + Δ𝑡)
for 𝛾 = 0.25, showing that a highly positive experience has a
limited impact when current trust is low.

We specifically employed a physical NAO robot rather than a
computer-based system, a design choice grounded in empirical evi-
dence regarding the impact of embodiment on trust formation in
human-agent interactions. Bainbridge et al. [8] found that partici-
pants were more likely to comply with requests from a physically
present robot than from a video representation of the same robot,
indicating that physical embodiment significantly influences hu-
man trust behaviour. Li [30] concluded in a comprehensive review
that "physically present robots elicit higher levels of arousal, more
favourable responses, and stronger overall engagement" than their
virtual counterparts. This enhanced engagement creates a more
authentic context for trust development and calibration, which is
essential for our study of trust dynamics in repeated interactions.

4.1 Experimental Task
To validate our trust model, we designed a collaborative task in-
volving a memory-based card matching game where participants
interacted with a NAO robot. The Matching Pair Game was devel-
oped to explore human-robot trust in a collaborative setting by
simulating a decision-making scenario where participants must
decide whether or not to trust a robot’s advice. In this game, par-
ticipants were tasked with finding pairs of matching cards with
the assistance of a robot. The game consists of four rounds of in-
creasing difficulty, which is achieved by progressively adding more
card pairs and limiting the number of allowed flips per round. The
four rounds feature 9, 11, 13, and 15 pairs of cards, respectively,

with corresponding flip limits of 24, 30, 34, and 40. As the number
of pairs increases, the cognitive demand on the participant also
grows, simulating a situation in which trust in the robot’s guidance
becomes increasingly important. During each turn of the game,
participants are required to seek assistance from the robot. The
robot provides suggestions based on a pre-scripted strategy that can
be accessed here, using the Wizard of Oz (WOZ) method, ensuring
consistency across all participants. However, the robot has a 20%
error rate, leading to a situation where participants must weigh
the robot’s advice against their own judgment. We set the robot’s
advice reliability at 80% to balance trust and uncertainty, as studies
suggest this level encourages user engagement without causing
over-reliance or distrust [2, 10, 47]. This fixed level of reliability
also ensured comparability with prior HRI trust studies that adopt
similar fixed-performance paradigms. Nonetheless, it represents
a simplification of real-world robotic performance, which often
fluctuates dynamically. Future work should therefore extend our
framework to evaluate trust under variable reliability conditions. If
the participant takes the robot’s advice, it is typically considered
a trust case. Conversely, if the player ignores the robot’s advice,
it is often considered a distrust case, as shown in various studies
[3, 25, 45]. The game’s dynamics are specifically designed to incor-
porate factors such as risk and ambiguity, which are integral to
the conceptual framework of trust. Risk in the game arises when a
participant has a low number of flips compared with unmatched
pairs. Additionally, the game involves an element of uncertainty
due to the ambiguity of the robot’s advice, challenging players to
navigate decisions under ambiguous conditions. The robot’s role
in the game is designed to mimic real-world collaborative human-
robot interactions, where trust is critical for effective teamwork. By
observing how often and under what conditions participants rely
on the robot’s assistance, we can explore the dynamics of human-
robot trust. The repeated nature of the game, with each round
becoming progressively more difficult, allows us to investigate how
trust evolves over time and whether participants become more or
less likely to rely on the robot as the challenge increases.

The experimental design was approved by the University Ethics
Committee (approval reference: 2202370516013), and all partici-
pants provided informed consent before participation.

4.2 Risk Calculation
A key innovation in our experimental design was the implemen-
tation of a continuous risk calculation that evolved throughout
the game. Risk was determined by two factors: the probability of
making incorrect matches based on the number of remaining pairs,
and the urgency introduced by the decreasing number of available
flips. The risk is calculated using the following formula:

Risk =
2𝑚(𝑚 − 1)
2𝑚2 −𝑚

× Total Flips − Flips Left
Total Flips

(5)

Where:
• 𝑚 is the number of unmatched pairs left.
• The numerator 2𝑚(𝑚 − 1) represents the number of possible
incorrect pairings.

• The denominator 2𝑚2 −𝑚 represents the total number of
possible pairings, both correct and incorrect.
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• Total Flips is the total number of flips available at the start
of the game.

• Flips Left is the number of flips remaining at the current
point in the game.

This equation combines both the static probability of selecting
an incorrect pair based on unmatched pairs and a dynamic adjust-
ment for the number of flips remaining. As the game progresses
and fewer flips remain, the risk increases, reflecting the growing
difficulty of making correct choices with limited opportunities. For
implementation in our trust model, we categorised the risk as high
when it is ≥ 0.5 and low otherwise. This binary approach main-
tained consistency with other variables in the trust model while
focusing on critical moments where trust dynamics could change.
While this simplification ensured alignment with the experimental
design, it is important to note that the underlying model supports
continuous risk values, which can be leveraged in future studies to
capture more fine-grained variations in perceived risk.

4.3 Experience and Ambiguity Calculation

The experience is calculated as 𝐸 (𝑡) = 1 −
∑𝑁

𝑖=1 |𝑃𝑖𝐶𝑖−𝐶𝑖𝑅𝑖 |
𝑁

−𝐴(𝑡),
where 𝐴(𝑡) represents the participant’s ambiguity aversion, com-

puted as 𝐴(𝑡) =
∑𝑁

𝑖=1 |𝐾𝑖−𝐹𝑖 |
𝑁

. Ambiguity aversion signifies the par-
ticipant’s reluctance to engage with uncertainty.

The performance 𝑃𝑖 equals 1 when the robot’s advice is accurate
or when the user controls the incorrect robot’s advice; otherwise,
𝑃𝑖 = 0. Control 𝐶𝑖 represents the participants’ decision to trust the
robot, being set to 1 if the user distrusts the robot’s advice and 0 if
they trust. While we used binary values in this implementation, the
model framework supports continuous values for more nuanced
applications in future work.

The term |𝑃𝑖𝐶𝑖 − 𝐶𝑖𝑅𝑖 | represents the player’s behaviour by
aligning the robot’s performance and the participants’ control, and
incorporating the associated risks during the game (see Table 1).
The truth table indicates a value of 1, showing misalignment, in
two scenarios: when performance is low, but control and risk are
high (𝑃𝑖 = 0,𝐶𝑖 = 1, 𝑅𝑖 = 1), and when performance is high, control
is high, but the risk is low (𝑃𝑖 = 1,𝐶𝑖 = 1, 𝑅𝑖 = 0). A value of 0,
indicating alignment or no control by the user regardless of the risk
level, applies in all other situations. This differentiation is crucial
for accurately calculating the experience 𝐸 (𝑡) within various risk
contexts.

Ambiguity, in this context, refers to situations where the conse-
quences of disregarding the robot’s advice were not immediately
evident or predictable. For example, if the robot suggests a certain
option to match the pair and the participant decides to choose
something else, if the participants were wrong, they may not be
certain whether the robot’s advice was correct or incorrect. Am-
biguity aversion was implemented as follows: 𝐴(𝑡) represents the
user’s avoidance of uncertainty regarding the robot’s performance.
A disparity between 𝐾𝑖 and 𝐹𝑖 in each case indicates a discrepancy
between the expected and actual robot performance, contributing
to the overall Ambiguity Aversion 𝐴(𝑡). This measure is crucial
for understanding the impact of the user’s uncertainty on their
immediate trust (experience) in the robot during the game.

Figure 2: Experiment Setup. An experimenter controls the
robot in one room (left) while the participant plays the game
with the assistant of the NAO robot in another room (right).

4.4 Participants
The study involved 25 participants, comprising 13 females and 12
males, aged between 18 and 40. The mean age of the participants
was 30.1 years, with a standard deviation of 4.93 years, indicating a
relatively broad distribution of ages.

4.5 Setup and Materials
We conducted our study in a controlled environment designed to
minimise external distractions and ensure consistent experimental
conditions. The setup involved two separate rooms: one for the
participant and NAO robot interaction and another for the experi-
menter. In the interaction room, participants sat at a screen where
they engaged with the Matching Pair Game, with the NAO robot
positioned beside them. The NAO robot provided assistance and ad-
vice throughout the game, using verbal communication to suggest
card selections.

The experimenter room contained monitoring equipment that al-
lowed the researcher to observe the interaction without influencing
the participant’s behaviour. This setup ensured that the partici-
pant’s interactions with the robot remained natural and unaffected
by the experimenter’s presence.

The following materials were used in the study:

• A NAO robot (SoftBank Robotics) programmed to provide
advice during the card matching game

• A 24-inch monitor displaying the card matching game inter-
face

• A computer running the game software and controlling the
robot’s behaviour

• Trust perception questionnaires administered before and
after each session

• Demographic questionnaires collecting information about
age, gender, and prior experience with robots

4.6 Procedure
The experiment consisted of four sessions conducted over two
consecutive days, with two sessions per day. Each session lasted
approximately 30 minutes, including gameplay and questionnaire
completion. The procedure for each session was as follows:
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(1) Participants completed a pre-session questionnaire measur-
ing their dispositional trust (first session only) and situational
trust.

(2) The experimenter explained the rules of the card matching
game and the role of the NAO robot as an adviser.

(3) Participants played the card matching game with the NAO
robot providing advice on card selections. The robot’s advice
was programmed to be accurate 70-80% of the time, creating
natural opportunities for trust calibration.

(4) During the game, the system recorded all interactions, in-
cluding the participant’s decisions to follow or ignore the
robot’s advice, the accuracy of the robot’s suggestions, and
the risk level at each decision point.

(5) After completing the game, participants filled out a post-
session questionnaire measuring their trust perception of
the robot.

(6) Steps 2-5 were repeated for each of the four sessions, with
increasing game difficulty across sessions.

The increasing difficulty across sessions was implemented by
reducing the number of available flips relative to the number of
cards, requiring participants to make more efficient choices and
potentially rely more on the robot’s advice. This design allowed us
to observe how trust evolved as task complexity and risk increased
over time.

4.7 Measures and Analysis
We collected both subjective and objective measures to assess trust
development:

• Dispositional Trust (DT): Measured using a validated ques-
tionnaire adapted from Schaefer (2013), administered before
the first interaction.

• Situational Trust (ST): Assessed before each session using
questions about task-specific trust factors.

• Trust Perception Score (TPS): Collected after each session
using a validated trust perception scale (Schaefer, 2013).

• Trust Modelled Score (TMS): Calculated using our mathe-
matical model based on the recorded interactions.

• Behavioural Measures: Including frequency of following
robot advice, reaction time for decisions, and performance
outcomes.

4.8 Analysis Methods
Data analysis was implemented using Python (version 3.9) with
packages including NumPy, Pandas, SciPy, and statsmodels for
statistical modelling. We employed a mixed-model approach with
participant as a random factor to account for the dependence of the
four responses from each participant. We conducted the following
analyses:

• Linear mixed-effects regression to examine the relationship
between TPS and TMS

• Repeated measures ANOVA to assess changes in trust across
sessions

• Correlation analysis to examine relationships between dif-
ferent trust layers

• Analysis of behavioural measures to validate trust model
predictions

All statistical tests used a significance level of 𝛼 = 0.05, and
effect sizes were reported using appropriate metrics.

5 Results
5.1 Model Validation
To validate our trust model, we examined the relationship between
the Trust Perception Score (TPS) obtained from post-session ques-
tionnaires and the Trust Modelled Score (TMS) calculated using our
mathematical framework. A linear mixed-effects regression analy-
sis was conducted with participant as a random factor to account
for the repeated measures design.

The regression model was statistically significant, 𝐹 (2, 97) =

9.000, 𝑝 < .001, with 𝑅2 = 0.157 (Adjusted 𝑅2 = 0.139) and with
a medium effect size (𝑓 2 = 0.186), indicating that TPS and Ses-
sion explain 15.7% of the variance in TMS. Both predictors were
significant:

• TPS: 𝑏 = 0.188, 𝑡 (97) = 2.525, 𝑝 = .013, suggesting a signifi-
cant positive relationship between participants’ perceived
trust and the modelled trust score.

• Session: 𝑏 = 0.023, 𝑡 (97) = 3.441, 𝑝 < .001, indicating a
significant increase in trust across the interactive sessions.

Additionally, a significant positive correlation was found be-
tween TMS and TPS (𝑟 = 0.231, 𝑝 = .010), highlighting the close
relationship between participants’ subjective trust and the trust
predicted by our model. Figure 3 illustrates this relationship across
all four sessions.

These findings support the dynamic nature of our trust model
and its ability to capture trust development across multiple interac-
tions.

Figure 3: A regression plot displaying the relationship be-
tween the computed trust modelled score and the predicted
trust modelled score based on the trust perception score and
session variables.
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5.2 Trust Evolution Over Time
To address our second research question regarding how dynamic-
learned trust evolves over time, we conducted repeated-measures
ANOVAs on both the Trust Perception Score (TPS) and the Trust
Modelled Score (TMS) across the four sessions. The analysis showed
significant variation in TMS across sessions, while no significant
differences were found for TPS:

• TPS: 𝐹 (1.770, 42.474) = 0.164, 𝑝 = .824
• TMS: 𝐹 (1.157, 27.757) = 7.079, 𝑝 = .010

Post-hoc pairwise comparisons for TMS (using Bonferroni cor-
rection) showed significant increases between session 1 and each
subsequent session: session 2 (𝑝 < .001), session 3 (𝑝 < .001), and
session 4 (𝑝 = .065, marginally significant). No significant differ-
ences were observed between sessions 2 and 3 or sessions 3 and
4.

Figure 4 illustrates the evolution of trust scores across the four
sessions, showing a clear upward trend for TMS. This pattern aligns
with previous research suggesting that trust tends to increase over
time as users gain more experience with a robotic system, provided
that the system demonstrates reasonable reliability [21].

TPS TMS

Session Mean SD Mean SD

1 0.6778 0.1031 0.6780 0.0765
2 0.6753 0.0887 0.7096 0.0570
3 0.6823 0.0933 0.7432 0.0402
4 0.6716 0.1274 0.7440 0.1176

Table 2: Means and Standard Deviations (SD) for TPS and
TMS across Sessions

5.3 Relationships Between Trust Layers
Our third research question focused on the relationships between
the three dimensions of trust: dispositional, situational, and learned
trust. A repeated-measures ANOVA showed significant differences
between these trust layers, 𝐹 (1, 24) = 1533.427, 𝑝 < .001.

Correlation analyses revealed several significant relationships
between these trust layers:

• Dispositional trust (DT) and Situational trust (ST) did
not show a significant correlation (𝑟 (23) = 0.056, 𝑝 = 0.789).

• Situational trust (ST) and Dynamically learned trust
(LT) were positively correlated (𝑟 (23) = 0.659, 𝑝 < .001).

Interestingly, the correlation between dispositional trust and
dynamic learned trust decreased over sessions, suggesting that as
participants gained more experience with the robot, their inherent
trust tendencies became less influential in determining their trust
levels. Conversely, the correlation between situational trust and
dynamic learned trust remained relatively stable across sessions,
highlighting the persistent importance of contextual factors in trust
calibration.

Table 2 presents the means and standard deviations for TPS and
TMS across the four sessions. These findings provide empirical
support for Hoff and Bashir’s [22] three-layered trust framework

Figure 4: Scatter plot depicting the changes in the trust per-
ception score (in Orange) and trust modelled score (in Blue)
over time.

and demonstrate how these layers interact during repeated human-
robot collaboration.

6 Discussion
This study developed and validated a mathematical model for esti-
mating human trust in robots across repeated interactions, yielding
key insights into trust dynamics in collaboration.

6.1 Theoretical Implications
The strong correlation between our TrustModelled Score (TMS) and
the subjective Trust Perception Score (TPS) validates the effective-
ness of our mathematical framework in capturing trust dynamics.
This finding is particularly significant as it demonstrates that a
model incorporating dispositional, situational, and learned trust
components can accurately reflect human trust perceptions in real-
time interactions. The high explanatory power of our mixed-effects
model suggests that our approach captures a substantial portion of
the variance in trust development.

Our results provide empirical support for Hoff and Bashir’s [22]
three-layered trust framework in the context of human-robot col-
laboration. The significant correlations between dispositional, situ-
ational, and learned trust align with theoretical predictions about
how these layers interact. Particularly noteworthy is the finding
that the influence of dispositional trust diminishes over repeated
interactions, while situational trust maintains a strong relationship
with learned trust throughout the experiment. This pattern sug-
gests that as users gain experience with a robotic system, their trust
assessments become increasingly based on contextual factors and
accumulated experiences rather than pre-existing trust tendencies.

The significant effect of session number on trust scores, inde-
pendent of immediate trust perceptions, highlights the dynamic
nature of trust development. This finding supports the conceptu-
alisation of trust as an evolving construct that changes over time
through accumulated experiences [21]. The progressive increase in
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trust across sessions aligns with previous research suggesting that
trust tends to grow as users become more familiar with a system,
provided the system demonstrates reasonable reliability [14].

Finally, the Trust Perception Score (TPS) did not significantly
vary across sessions, despite increases in the Trust Modelled Score
(TMS). This suggests that subjective self-report measures may lack
sensitivity in capturing subtle trust dynamics. Future research
should combine self-reports with behavioural or physiological indi-
cators to obtain a richer and more responsive measure of trust.

6.2 Risk Perception and Ambiguity Aversion
Our study makes a significant contribution by explicitly modelling
the roles of risk perception and ambiguity aversion in trust dy-
namics. The results demonstrate that both factors significantly
influence trust development, with high-risk decisions and high
ambiguity situations leading to greater trust decreases following
negative outcomes. These findings extend previous research on
trust in automation [35, 37] by quantifying how risk and ambiguity
specifically affect trust calibration in human-robot collaboration.

While our model calculates risk as a continuous variable that
evolves throughout the interaction, for implementation purposes,
we categorised risk as high when it is ≥ 0.5 and low otherwise.
This binary approach was adopted to maintain consistency with
other variables in the trust model while focusing on critical mo-
ments where trust dynamics could change significantly. Despite
this binary implementation, the underlying continuous risk calcu-
lation represents an advancement over previous models that often
treat risk as a static factor. Our approach captures the dynamic
nature of risk in real-world collaborative tasks, where the stakes
and consequences of decisions can change as the task progresses.

Similarly, our operationalisation of ambiguity aversion addresses
a gap in existing trust models by capturing the impact of uncertainty
about the robot’s reliability. The significant effect of ambiguity on
trust changes supports the theoretical proposition that humans
are sensitive to unpredictability in robotic behaviour and adjust
their trust accordingly [15, 16]. This finding has important impli-
cations for designing transparent robotic systems that minimise
unnecessary ambiguity while maintaining appropriate levels of
trust.

6.3 Practical Implications
The validated trust model presented in this paper has several practi-
cal implications for the design and implementation of collaborative
robotic systems. First, the model provides a framework for real-
time trust estimation that could be integrated into adaptive robot
behaviours. By monitoring trust levels during interaction, robots
could adjust their behaviour to maintain appropriate levels of trust,
potentially preventing both over-reliance and under-reliance.

Second, our findings regarding the impact of risk and ambiguity
suggest specific design strategies for trust calibration. In high-risk
scenarios, robots might need to provide more explicit information
about their capabilities and limitations to prevent trust miscali-
bration. Similarly, reducing ambiguity through transparent com-
munication about the robot’s confidence in its actions could help
maintain appropriate trust levels.

Third, the observed pattern of trust development across sessions
suggests that initial interactions are particularly important for es-
tablishing trust. Designers might focus on ensuring positive early
experiences with robotic systems, potentially implementing a grad-
ual increase in task complexity that allows trust to develop before
users encounter high-risk scenarios.

6.4 Ethical and Sustainability Implications
The development of models that can accurately predict human trust
in robots raises important ethical considerations.While suchmodels
can enhance collaboration efficiency and safety, they also create
the potential for manipulation if used to artificially inflate trust
beyond appropriate levels. Responsible implementation of trust
modelling should prioritise appropriate trust calibration rather than
maximising trust, ensuring that users maintain a level of trust that
accurately reflects the robot’s actual capabilities and limitations.

From a sustainability perspective, accurate trust modelling can
contribute to more efficient HRC, potentially reducing resource
waste and improving system longevity. When humans appropri-
ately trust robotic systems, they can delegate tasks more effectively,
reducing unnecessary supervision and intervention that consume
both human attention and system resources. Additionally, prevent-
ing trust breakdowns through better calibration can extend the
useful life of human-robot partnerships, contributing to more sus-
tainable technological implementation.

7 Conclusion
In this paper, we presented a mathematical model that emulates
the three-layered trust framework—dispositional, situational, and
learned—and estimates human trust in robots in real time during
repeated HRI. The results showed that the Trust Perception Score
(TPS) and interaction sessionwere significant predictors of the Trust
Modelled Score (TMS), underscoring the validity of our approach.
The observed increases in TMS highlight the dynamic nature of
learned trust and suggest implications for robotic systems that
adapt trust levels in real time.

Several limitations should be noted. The study used a low-stakes
game, limiting generalisability to high-risk contexts. Risk was com-
puted continuously but implemented in binary form, reducing gran-
ularity. We examined only one task domain, and robot performance
was fixed at 80%, whereas real-world reliability is variable. The
participant pool was modest and demographically constrained.
Finally, the initial trust calculation assumed equal weighting of
dispositional and situational trust, and the model did not capture
non-linear effects or individual differences in sensitivity to known
risks.

Future work should validate the model in high-stakes settings,
extend it to varied tasks and dynamic robot performance, incorpo-
rate participant-specific sensitivity to risk, and explore adjustable
or non-linear trust formulations. Such refinements can advance
our understanding of trust dynamics in HRI and support the de-
velopment of adaptive, ethically responsible robots that maintain
appropriate trust calibration in real-world collaboration.
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