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A novel finite-element-based solution and property
construction method for thermal problems from sparse
data

Abstract

Sparse experimental measurements from diagnostic sensors are often the only
source of data available during an experiment. To enable monitoring and
control of such experiments (digital twinning) rapidly estimating the full
field solution and material properties using sparse data may be useful, es-
pecially under extreme thermal environments. This paper addresses such a
construction procedure using an efficient finite-element-based approach com-
bined with a modified ODIL (Optimizing a Dlscrete Loss) concept. A finite
element specific regularisation term is added to the loss function to resolve
the ill-posedness. The loss function gradients are calculated analytically. The
nonlinear material properties are constructed as a piecewise linear function
during the temperature change. A sample from fusion energy experimental
facility is used as the test case to demonstrate the proposed methodology.
The results indicate that near real-time solution construction is possible,
which makes this approach suitable for digital twinning.

Keywords: Solution construction, material properties, sparse data, finite
element method, ODIL concept, nuclear fusion, digital twinning

1. Introduction

Digital twins and digital twinning are useful in monitoring, controlling,
finding faults, and maintaining engineering systems. This recent trend re-
quires a dynamic virtual representation of a physical system to extract useful
real-time information to understand and support the physical asset. Such a
dynamic virtual representation of the physical system is its digital twin. The
real-time data from the physical asset continuously updates the digital twin
to fully and accurately simulate its current behaviour [1]. When the informa-
tion continuously flows between physical asset and its digital twin (monitor-
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ing) and vice versa (control), the process is referred to as digital twinning. It
aims to enhance the sparse experimental measurements to provide informa-
tion for system monitoring and optimising experimental conditions. Ideally,
such feedback needs to take place in real-time. This poses a significant chal-
lenge in engineering problems that are driven by changing physics. The first
step is therefore to rapidly construct full solution and properties (if applica-
ble) from sparse data. This is the topic of the present work.

Construction of full solution and nonlinear properties from sparse solution
requires some form of inverse modelling. Historically, inverse problems have
primarily focused on estimating parameters in differential equations, with
some traditional approaches including functional analytic regularization and
statistical regularization [2, 3]. One of the most well-known statistical meth-
ods is Bayesian inversion [3]. Alternatively, inverse problems can be solved
using search-and-optimization techniques, such as the Particle Swarm Opti-
mization (PSO) algorithm [4]. Comprehensive overviews of various inverse
problem-solving methods can be found in the works of Tamaddon-Jahromi
et al. [5] and Arridge et al. [3].

However, these traditional techniques often become computationally im-
practical and generally lack flexibility. Therefore, in recent years, Machine
Learning (ML) has been increasingly applied across various engineering dis-
ciplines, from manufacturing [6] to aerospace [7]. It offers a combination of
unique advantages, such as accuracy, flexibility, efficiency, and scalability [8].
These qualities are highly valued in many engineering applications. Never-
theless, when used for inverse analysis and digital twinning, ML models also
present certain limitations.

Data-driven ML models typically require large amounts of training data
to achieve sufficient accuracy. While certain ML approaches, such as Gaus-
sian Process Regression (GPR) [9], require considerably less data compared
to other models like Neural Networks (NNs) [10, 11], Long Short-Term Mem-
ory (LSTM), and Transformers [12], a substantial dataset is still necessary.
This presents a major challenge in complex engineering applications, where
acquiring large volumes of data is difficult. There are two main ways to
address this issue: (1) Utilizing experimental data for training or (2) Gen-
erating training data through numerous forward simulations, such as Finite
Element Method (FEM) simulations [5, 12, 13, 14, 15, 16]. The former option
is rarely feasible in engineering since experimental data is often sparse and
insufficient for effectively training a data-driven ML model. The latter ap-
proach appears more viable but relies on having a fully accurate, verified, and
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reliable FEM model, which is a complex task of its own, particularly when
dealing with extreme environments. Moreover, training the ML model on a
limited set of forward simulations can introduce bias, leading to predictions
that might not necessarily match the physical experiment. Reinforcement
Learning could be used to create a DT of a thermal system and control
the temperature through heat transfer coefficient adjustment [17]. It is more
flexible as compared with the aforementioned data-driven supervised learning
approach but requires more computational resources due to the interactive
learning.

In contrast, physics-based ML models, the most popular one being Physics-
Informed Neural Networks (PINNs), do not depend on training data. Instead,
they are trained directly using the governing partial differential equations
(PDEs) [18, 19]. However, Optimizing a DIscrete Loss (ODIL) approach
proved to be significantly more efficient than PINNs [20, 21]. ODIL integrates
discretization techniques, such as finite volume (FV), with ML-inspired opti-
mization strategies. Automatic differentiation is used to calculate the Jaco-
bian matrices; and unknown material properties are represented using NNs.

Thus, this paper uses a modification of ODIL tailored to the finite element
method (FEM). The finite element specific regularisation term is introduced
to the loss function, which is used in conjunction with Neumann bound-
ary conditions (BCs). Loss function gradients are derived analytically and
the material properties are constructed as a piecewise linear function. The
AMAZE (Additive Manufacturing Aiming towards Zero waste and Efficient
production of high-tech metal products) sample from fusion experimental fa-
cility is used as the test case. This sample was previously tested in fusion
energy experimental facility [22, 23].

The remainder of the paper is organised into following sections. Section 2
details the methodology. Section 3 presents and interprets the results for
several thermal field and thermal conductivity construction cases. Finally,
Section 4 summarises the significance of the results.

2. Methodology

After discretising a general transient heat conduction equation without a
heat source in space using the standard Galerkin weighted residual method,

http://mc.manuscriptcentral.com/hff
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the following system of equations is obtained:

R R 0

where AT = {T}"*' — {T'}", [M] and [K] are global mass and stiffness
matrices, respectively. And {T'} and { f} are temperature and global loading,
respectively. Superscript n represents the n' time step, At is a time step size.
Global loading {f} may be decomposed into {f}, and {f}, ,, where {f},
is a part of the loading term vector corresponding to the applied heat flux ¢
on I'y and {f}, _, is the rest of the loading vector including the convection
with the heat transfer coefficient h on I'y,. First-order implicit Euler time
discretization scheme is adopted.

Assuming that the heat flux boundary conditions are unknown in Eq. 1,
the above system of equations may be decomposed into two sets:

o, {50 Ly e - {{%}} =0

9—q 9=

Subscript ¢ indicates all terms in Eq. 1 corresponding to the nodes belonging
to I'y, whereas subscript g — ¢ indicates all equations corresponding to the
nodes belonging to 2\ I',. €2 is the whole domain.

The second part of Eq. 2 consists of convective or any other known bound-
ary condition and is capable for determining temperature values everywhere
including boundaries on which heat fluxes are unknown. Applied heat flux
can be determined from the constructed temperature distribution {T'}_ . at
each time step using the following equation:

con

qcon = frq 1d1—1 (3>

Jr, nk(T)V T, dT

where m is a vector normal to I'y and ¢, is the heat flux on I'y constructed
from {T} ..

If measured temperature is available on selected points and some bound-
ary conditions are unknown, the problem becomes a minimization problem
consisting of known temperatures at certain points and the second part of
Eq. 2. We often refer to this process as inverse calculation of boundary condi-
tions. For such inverse analysis it is assumed that the ambient temperature,
as well as temperature values {T'},, at points belonging to a measurement set

4

http://mc.manuscriptcentral.com/hff



oNOYTULT D WN =

International Journal of Numerical Methods for Heat and Fluid Flow

M are known. The applied heat flux ¢ is assumed to be unknown. Rewriting
Eq. 2 as:

{{%}} - [u[\%]] {AA_f} " [[g]] Ty - {{ fﬁ)} (4)

Before computing the boundary load on I'y, it is necessary to find the
vector of unknown nodal temperatures and material properties; all unknown
parameters are represented by vector {v}. To compute {v}, the magnitude of
a loss vector {L} depending on {v} is minimized. The loss vector is defined
as:

{L}p
{L} =1 {Liy ()
{L} rp

The residual component is calculated as (Eq. 4):
{L}R > {R}g—q <6>

The measurement component is calculated as

{L}y = sty © (T} = {T}yp)

1, ifieM
{8} = {07 e Y

where ® is Hadamard (or element-wise) product.
The regularisation (smoothing) component is calculated at each iteration
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using the first part of Eq. 4 as:

( )
o 2ier \Leg, e{f}qi
i {sh® <{f}q_|f?q\F—c;e\

= 2 corners{f} i
13 {L}REG = {5}2 @ {f}q . Efedge\r q )

Fedge\reorners

Zi corners {‘f}ql
15 | sk o (1}, - Bl

|FCUT‘nET‘S
17 1, ifi€Ty\ Tegpe
{5}11‘ = e ! 7
0, ifié T\ Fegge

20 17 ifi e Fedge \ Fcorne?”s
21 {s}y = iy
0, lf (3 §é Fedge \ Fcorners

23
24 17 ifi € Fcorners
{s}s = (8)

07 1f Z ¢ FCOT"I’LETS

Icqge is the 3D edge of the surface where ¢ is applied, and sharp features
on I'cqge discretised using single element are represented by I'corpers. Time
30 dependent term in Eqgs. 1, 2, and 4 can be ignored for the steady state
31 solution.

32 The magnitude of {L}, |[{L}||, can be minimized using gradient-based
optimisation approach, which is the Gauss-Newton method in this paper
24, 25]. |[{L}|” is a sum of squared function values, i.e. |{L}|* = 312,
36 and it is necessary to calculate their Jacobian matrices [J];; = 9l;/0 {v},
37 for every iteration of the minimizer. For the loss vector derived from the
38 FE equations, [J] can be calculated analytically. |{L}| is minimized by
evaluating [J] and {L}” at every iteration s and solving the following system
of equations to find A {T'}:

43 " [JIA{T} = - () (LY
P {Ty™ = {T} + A{T} (9)

2.1. Solution construction

48 When performing the solution construction from sparse temperature mea-
49 surements assuming that the material properties are known, the vector of
unknown variables becomes the following:

52 (v} ={T} = [T\, Ts,..., Tn]" (10)

55 6
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2.2. Linear material properties

This subsection describes the linear material properties construction pro-
cess from sparse temperature measurements within the domain. Assuming
the domain consisting of one linear material with thermal conductivity k, the
vector of unknown variables becomes the following:

(v} =T\, Ty, ..., Tn k)" (11)

Extra column is added to [J] corresponding to 9l;/0k.
When the domain consists of two materials with thermal conductivities
k1 and ks, the vector of unknowns is the following:

{’U} = [T17T27"'7Tn7k17k2]T (12)
Two extra column corresponding to 0l;/0k; and 0l;/0ky are added to [J].

2.3. Nonlinear material properties

This subsection describes the nonlinear material properties construction
process from sparse temperature measurements within the domain.

2.83.1. Linear temperature dependency
It is assumed that a domain consists of one material, and a following
linear relationship between k and T' is observed:

k(T) = aT + b (13)

Furthermore, it is assumed that it is known that k is equal to Kkrnown at
Tinown- Consequently, Eq. 13 can be re-written as:

k<T) =al + (kknown - aTknown) (14>
Hence, the vector of unknown variables becomes the following:
{’U} = [T17T2>"'7Tnaa]T (15)

Extra column is added to [J] corresponding to dl;/Ja, which are computed
using Eq. 16 following from Eq. 14:

ok
— =T -1 1
aCL known ( 6)

http://mc.manuscriptcentral.com/hff

Page 46 of 69



Page 47 of 69

oNOYTULT D WN =

International Journal of Numerical Methods for Heat and Fluid Flow

2.3.2. Piecewise linear temperature dependency
When it is assumed that k(7") is known for temperatures 7' below or equal
to T}, Eq. 17 can be used to represent k(7T for temperatures T" above T,.:

kE(T) = aT + (k, — aT}) (17)

Since k(T') below or equal to T, is assumed to be already known, then the
conductivity k,. at T, is known. Therefore, new parameter a could be con-
structed to determine k(T") for T' > T, using Eq. 17. Figure 1 illustrates the
process.

Figure 1: Construction of linear k(7") with known k(7") for 7' < T,.. Source:
By authors.

The aforementioned approach to construct linear k(7T") knowing one point
(Tknowns kknown) and the approach to construct linear k(T') with known &(7T)
for T' < T, can be combined; and a piecewise linear relationship between
k and T can be derived from one known point (Tknown; Kknown). Figure 2
summarises the procedure, which can be performed as test piece heats up.
k(T) is constructed as a piecewise linear function, thus 7,1, T2, T3 etc
represent the defined transition temperatures for each linear segment of k(7).

Linear segment 1 is between 7}, and T}, linear segment 2 is between 71,5 and
T.s.

3. Results and discussion

3.1. AMAZE sample

This paper uses a water-cooled AMAZE sample, previously tested in the
fusion energy experimental facility [22, 23], as an example of nonlinear heat
conduction. Table 1 and Figure 3 describe the applied BCs. A uniform

8
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linear hexahedral mesh with the second-order Gaussian quadratures created
in Ansys [26] is comprised of 5,185 elements. FE model is created using
Netgen/NGSolve solver [27]. Water-pipe convection heat transfer coefficient
h. is calculated using a 1D coolant model [28], with water pressure p. and

(a) Known point (Tknown, Kknown)-

(b) Start and end temperatures for the first linear piece, T, and T2, respectively,
are defined. The first linear piece k(T is constructed using (Tknown s Kknown)-

(c) Start and end temperatures for the second linear piece, T2 and T3,
respectively, are defined. The second linear piece ko (T') is constructed using

kr (T).

Figure 2: Construction of piecewise linear relationship between k and 7" from
one known point (Tknown, Kknown)- Source: By authors.
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temperature T, remaining constant at 30°C and 1 atm, respectively. This
1D coolant model is defined using water’s boiling curve, which represents the
influence pipe wall temperature has on the heat flux between the water and
pipe. This correlation is split between forced convection regime and nucleate
boiling regime with details provided by Marshall et al. [28], Seibold et al.
[29], and Araki et al. [30].

Water-pipe convection heat transfer coefficient h. depends on the temper-
ature distribution on the surface of a pipe. Coolant velocity v. and uniform
heat flux ¢, applied to the tile’s top surface, are varied to achieve temper-
ature distributions within various boundaries. Figure 4 shows temperature
measurement locations used in this work.

Table 1: Applied BCs for AMAZE sample with Figure 3 showing the labels.
Source: By authors.

Surface BC

ABCD Uniform heat flux ¢

Pipe surface Sample-coolant (water)
convection h,

Set Location

I, Surface ABCD

[edqge Edge ABCD

Fcorne'r's NOdeS A, B, C, D

Tile ABCDHEFG

Block IJKLPMNO

Volume Material for Sub-
section 3.2

Tile ABCDHEFG Tungsten (Figure 5)

Block IJKLPMNO Copper (Figure 5)

Pipe Copper (Figure 5)

3.2. 38D transient solution construction

This section describes the results obtained by constructing the full field
temperature distribution within the sample from transient temperature mea-
surements from 4, 8, 11, and 17 locations shown in Figure 4. It is assumed
that the sample consists of two nonlinear materials: copper with thermal

10
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Figure 3: AMAZE sample geometry with labels (Table 1). Source: By au-
thors.

conductivity k. and volumetric heat capacity (pc,). on the block and tung-
sten with k; and (pc,): on the tile (Figure 3). Figure 5 shows temperature
dependency of the material properties. Applied heat flux ¢(¢) is defined by
Eq. 18; coolant velocity v, is set to 10 m/s.

a(t) = (%o)’f (MW /) (1)

The time step size used for solution construction At.,, is equal to 2.8s, while
the time step size used for reference solution At,.r is equal to 0.4s. The
optimisation is preformed for 3 iterations in order to ensure that the solution
construction is close to real time. The initial temperature field is defined as
a uniform distribution of 30°C, corresponding to the steady-state condition
aligned with the coolant temperature.

In addition, noise is introduced into the temperature measurements to
evaluate the robustness of the solution setup. The noise is generated as
random values from a zero-mean Gaussian distribution, with the standard
deviation representing the measurement precision (noise level). This noise
level is presented as a percentage of the true temperature, and it determines
the standard deviation of the distribution. Table 2 summarises the specific
noise levels considered in this work.

Figure 6 shows the precision characteristic o(T") of Type K thermocouple
measurements dependent on the temperature. The uncertainty is shown in
°C and also as a percentage of the measured temperature [31].

11
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Table 2: Noise settings presented as a true temperature value percentage.
9 Source: By authors.

11 Noise setting No. Noise level (measurement precision)

12 o [%]

0.0
0.2
1.0
o(T)

—_
w
[ENEGCR N

35 (a) 4 measurement locations.  (b) 8 measurement locations.

50 (c) 11 measurement locations.  (d) 17 measurement locations.

52 Figure 4: Measurement locations shown as blue spheres. Source: By authors.
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Figure 5: Copper and tungsten nonlinear material properties. Source: By
authors.

Figure 6: The precision of a standard type K thermocouple o(7") dependent
on the true temperature. [31]. Source: By authors.

Table 3 reports the solution construction errors and time step runtimes.
The listed average and maximum errors are evaluated over both space and
time. It is important to consider the solution construction time when se-
lecting the appropriate time step size for the reconstruction process. The
construction time should be less than or equal to the chosen solution con-
struction time step to ensure that the control procedure operates in near real
time with a consistent delay. Accordingly, Table 3 confirms that, for the

13
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1

2

3

4

5

6

7

8 selected time step size, the solution construction process indeed functions in
9 near-real time.

10

11 Table 3: Time step runtimes and solution construction errors for the

:g FE-based solution construction. Source: By authors.

14 A

15 ‘ ‘ Sol. rec. time ‘ Sol. rec. errors

16 No. of mea- | Noise | Avg. time Max. time | Avg. rel- Max. rel-

17 surement lo- | level | step run- step run- | ative error ative error

12 cations o [%] | time [s] ®  time [s] * | [%] (%]

20 4 0.0 2.306 3.038 0.282 2.196

21 4 0.2 2.347 2.495 0.353 4.55

22 4 1.0 |2278 2.433 0.734 19.222

2 4 o(T) | 2.265 2.376 0.421 8.267

25 8 0.0 2.297 2.515 0.263 2.423

26 8 0.2 2.244 2.379 0.303 6.173

;; 8 1.0 | 2299 2.411 0.553 21.164

29 8 o(T) 2.276 2.463 0.342 10.433

30 11 0.0 2.279 2.419 0.177 4.858

31 11 0.2 2.253 2.441 0.229 5.629

gg 11 1.0 | 2261 2.387 0.514 18.008

it 11 o(T) | 2.303 2.615 0.277 7.655

35 17 0.0 2.311 2.452 0.174 5.584

36 17 0.2 2.259 2.429 0.23 7.321

g; 17 1.0 2.286 2.404 0.522 23.951

o 17 o(T) | 2.277 2.432 0.283 9.316

2(1) 2 Times are given for AMD Ryzen 7 5800X 8-Core CPU.

42

43 As expected, with a fixed number of measurement locations, higher noise
44 levels result in larger relative construction errors. This trend is illustrated in
45 Figures 7 and 8, which show how the maximum and average relative errors
j? evolve over time. The errors rise sharply at the beginning of the simulation,
48 peaking around 8.4s. This behaviour can be linked to the transition of the
49 temperature field from its uniform initial state of 30°C to a distribution in-
50 fluenced by the applied heat flux. Because the heat flux increases rapidly,
51 this early stage involves strong spatial and temporal variations in tempera-
gg ture. The relatively large time step used in constructing the solution reduces
54
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(a) 4 measurement locations

(b) 11 measurement locations

Figure 7: The time evolution of maximum relative errors for 4 and 11 mea-
surement locations (Figure 4). Source: By authors.

its ability to capture these rapid changes, leading to the initial error spike.
After 20s, however, the errors diminish.

The presence of noise causes increasingly sharp fluctuations in both the
maximum and average relative errors, indicating that additional measure-
ment points are needed to lessen its impact. In fact, increasing the number
of measurement locations generally leads to a reduction in the average rela-
tive construction error (Table 3 and Figure 8), particularly during the initial
temperature transition period before 20s, where the errors are most pro-

15
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22 (a) 4 measurement locations

37 (b) 11 measurement locations

39 Figure 8: The time evolution of average relative errors for 4 and 11 measure-
40 ment locations (Figure 4). Source: By authors.

43 nounced. Nevertheless, the maximum relative error does not consistently
decrease with more measurement points. Over time, the maximum errors
tend to oscillate around a similar level or, in some cases, even rise for certain
47 measurement configurations under the same noise conditions (Figure 7).

48 Examining the spatial distributions of errors helps to clarify this be-
49 haviour. Distributions of relative error at two time instances, 8.4s and 50.4s,
are presented in Figures 9 and 10. The former corresponds to the peak of
maximum relative errors (Figure 7), while the latter illustrates a case with
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(a) 4 measurement locations (b) 8 measurement locations

(¢) 11 measurement locations (d) 17 measurement locations

Figure 9: Distributions of relative error at t = 8.4s; the measurement loca-
tions are provided in Figure 4. Source: By authors.

minimal errors. A consistent trend can be observed across both figures. With
only 4 or 8 measurement locations, the error distribution remains fairly uni-
form and dominated by low values, with most of the domain exhibiting small
errors. By contrast, increasing the number of measurement locations to 11
and 17 alters the distribution markedly: areas of higher relative error emerge
near the upper surface of the tile, especially at the corners, while errors
within the block, the pipe, and most of the tile are reduced. Thus, although
adding more measurement points generally lowers the average error, the im-

17
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22 (a) 4 measurement locations (b) 8 measurement locations

38 (c) 11 measurement locations (d) 17 measurement locations

40 Figure 10: Distributions of relative error at t = 50.4s; the measurement
41 locations are provided in Figure 4. Source: By authors.

44 provement is not spatially uniform, and localised regions of higher error may
45 persist.

The temperature field reconstructed from the measurements can be used
to derive the corresponding heat flux (Eq. 3). It then can be compared against
49 the reference applied heat flux. Figure 11 illustrates how the constructed heat
50 flux and its relative error evolve over time. The elevated average relative
51 errors during the initial transition phase lead to a pronounced spike in the
heat flux error at the start of the simulation, which then rapidly diminishes

55 18
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(a) 4 measurement locations

(b) 11 measurement locations

Figure 11: The time evolution of constructed heat flux for 4 and 11 measure-
ment locations (Figure 4). Source: By authors.

as the time approaches 20s. Figure 12 presents the average and maximum
relative heat flux errors after 20s, highlighting the advantage of increasing
the number of measurement locations (and thereby reducing the average

19
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reconstruction error), particularly under higher noise conditions. In general,
both the average and maximum relative heat flux errors decrease with more
measurement points. This trend is also evident in Figure 11, where the
oscillation amplitude of the heat flux error is significantly reduced for larger
numbers of measurement locations.

(b) Maximum relative heat flux
(a) Average relative heat flux error error

Figure 12: Relative heat flux errors recorded after 20s. Source: By authors.

3.8. Thermal conductivity construction from 3D steady-state data

This sub-section describes the results obtained by constructing linear and
nonlinear thermal conductivity from the steady state measurements within
AMAZE sample.

3.3.1. Linear thermal conductivity

Linear thermal conductivity is constructed using an approach described
in Sub-section 2.2. Two cases are considered. First case assumes the sample
consists of one material with thermal conductivity k;. Figure 4a shows 4
locations used to collect the temperature measurements for this case (Fig-
ure 4). Second case assumes the sample consists of two materials with ther-
mal conductivity k; on the block and ks on the tile (Figure 3). Figure 13
shows 5 locations used to collect the temperature measurements for this case.
Coolant velocity v, is set to 1 m/s, while the applied heat flux ¢ is set to
210000 W/m?.

Figure 14 shows the parameter convergence. The process is stopped when
Ak between two subsequent iterations is less than 0.01%. Table 4 lists the

20
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Figure 13: 5 measurement locations used to construct thermal conductivities
for the sample consisting of two materials. Source: By authors.

results, from which it can be seen that the linear thermal conductivity and
the corresponding solutions are successfully constructed.

Figure 14: Convergence of a for four linear sections (Figure 15 and Table 5).
Source: By authors.

3.3.2. Nonlinear thermal conductivity

A more in-depth analysis is conducted for the nonlinear thermal conduc-
tivity reconstruction. This analysis examines how the number of measure-
ment locations (Figure 4) and the noise level (Table 2) affect the performance
of the construction process. This set of measurement locations is used for
the analysis of the solution construction process in Sub-section 3.2. Piecewise
linear thermal conductivity shown in Figure 15 is constructed using an ap-

21
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Table 4: Linear thermal conductivity construction results. Source: By
authors.

Case ky error kg error Avg. {T} Max. {T}

(%] (%] error (%]  error [%]
1 ma- 2.13E-03 - 9.7E-05 4.2E-04
terial
2 ma- 239E-06 3.33E-05 2.3E-06 4.0E-05
terials

proach described in Sub-section 2.3. Table 5 defines the four linear sections
of the temperature dependency to be constructed; it also shows the tem-
perature limits and BCs used to construct each of the four linear sections.
Parameters a and b refer to the definition of each linear section as shown in
Eq. 13 and Figure 1.

Figure 15: Piecewise linear thermal conductivity consisting of four sections
and with Typewn and kgnewn equal to 20.0°C and 25.8 W/(m°C), respectively.
Source: By authors.

Table 6 presents the results. It demonstrates that the nonlinear thermal
conductivity and the corresponding solutions are successfully constructed for
a specific measurement location numbers. The table reports the relative
errors between the reconstructed and reference conductivities k, presenting
both the average and maximum values across the four linear segments. In
addition, it provides the relative errors between the constructed and reference
temperature fields. This table also summarises the corresponding average
and maximum values for the four linear sections (Figure 15).

22
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Table 5: Four linear segments of the temperature dependence, along with
their corresponding temperature limits and BCs used for constructing each
segment (Figure 15). Source: By authors.

Section a [W/m°C?|b [W/m°C] Limit 1 Limit 2 ve [m/s] q [W/m?)
1 0.09 24.0 T, =0°C T, = 50°C 1.0 33000

2 0.05 26.0 T2 = 50°C T.5 =100°C 2.0 130000

3 0.04 27.0 T, =100°C T,4 =150°C 2.0 240000

4 0.03 28.5 T.4 =150°C T,5 =230°C 2.0 422000

Table 6: The results for nonlinear thermal conductivity construction

(Figure 15). Source: By authors.

‘ ‘ k relative errors ‘ {T'} relative errors

No. of
measure- | Noise Avg. ker- Max. ker- | Avg. {T} Max. {T}
ment level o [%] | ror [%] ror (%] error [%]  error [%]
locations
4 0.0 0.006 0.016 0.0001 0.0002
4 0.2 55.514 129.697 12.109 28.021
4 1.0 16.537 27.119 15.837 181.358
4 o(T) 55.514 129.697 15.511 28.672
8 0.0 4.829e-05  9.568e-05 1.29e-06 9.92e-06
8 0.2 5.252 7.964 0.51 1.122
8 1.0 16.537 27.119 4.027 16.329
8 o(T) 6.241 9.474 0.953 2.986
11 0.0 3.751e-05  1.458e-04 | 3.5e-07 9.73e-06
11 0.2 3.976 12.241 0.107 1.04
11 1.0 14.822 24.45 1.796 4.375
11 o(T) 8.807 22.251 2.237 34.25
17 0.0 6.8e-06 2.177e-05 3.4e-07 6.14e-06
17 0.2 3.646 6.545 0.195 2.614
17 1.0 6.348 9.474 1.067 8.411
17 a(T) 6.063 9.444 0.839 3.289
23

http://mc.manuscriptcentral.com/hff



Page 63 of 69

oNOYTULT D WN =

International Journal of Numerical Methods for Heat and Fluid Flow

As anticipated, for a fixed number of measurement locations, the relative
construction errors tend to rise with increasing noise levels. This behaviour is
further illustrated in Figure 16, which shows the time evolution of the relative
thermal conductivity errors. A similar trend is observed in the stand-alone
solution construction discussed earlier in Sub-section 3.2.

(a) 4 measurement locations (b) 8 measurement locations

(c) 11 measurement (d) 17 measurement
locations locations

Figure 16: The progress of relative thermal conductivity error with time for
various measurement locations (Figure 4). Source: By authors.

All noise-free cases yield great accuracy, displaying errors on the order of
1073 or lower. However, the performance declines sharply for some measure-
ment configurations when noise is introduced. In particular, cases with only
4 measurement locations struggle to handle even 0.2% noise, often resulting
in errors exceeding 100%, which renders the constructed thermal conduc-
tivity and temperature fields unreliable. In contrast, increasing the number
of measurement locations leads to a marked improvement in reconstruction
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performance. The best results are obtained with 17 measurement points,
where errors remain below 10% across all examined noise levels. These find-
ings are further corroborated by the spatial distributions of the relative {T'}
errors shown in Figure 17. They exhibit similar patterns to those discussed
in Section 3.2 (Figures 9 and 10). Specifically, increasing the number of mea-
surement locations leads to a reduction in the average relative {T'} errors,
while the maximum errors become concentrated near the corners of the upper
surface of the tile.

(a) 4 measurement locations (b) 17 measurement locations

Figure 17: The spatial distribution of relative {T'} error for 4 and 17 measure-
ment locations (Figure 4) for the thermocouple-specific noise level. Source:
By authors.

4. Conclusions

In conclusion, this paper introduces a FE-based inverse analysis frame-
work, which is combined with a modification of ODIL. Its potential is high-
lighted by analysing its application to the 3D heat conduction in an AMAZE
sample, which was previously used in the fusion energy experiential facility.

The presented results demonstrate the effectiveness of the proposed ap-
proach for reconstructing the transient temperature field and thermal con-
ductivity distributions within the sample using limited and potentially noisy
temperature measurements. The transient solution construction successfully
reproduces the full temperature field with reasonable accuracy, even when
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the number of measurement locations is restricted. The analysis reveals that
measurement noise has a significant influence on reconstruction quality, as
noise levels increase, both the average and maximum relative errors rise. The
relatively large construction time step further amplifies these initial discrep-
ancies, though the errors diminish as the system approaches steady-state
conditions.

Increasing the number of measurement locations consistently improves
reconstruction accuracy. While the average relative errors decrease with ad-
ditional measurements, the spatial error distributions indicate that these im-
provements are not uniform across the domain. Regions near the top surface
of the tile, especially the corners, tend to exhibit localised areas of higher
error, even when the overall average accuracy improves. These findings sug-
gest that while adding more sensors enhances global accuracy, strategic sensor
placement remains critical for minimising localised reconstruction errors.

The reconstructed temperature fields also enable accurate estimation of
the applied heat flux, with the evolution of the reconstructed heat flux closely
matching the reference data after the initial transient phase. Both the aver-
age and maximum relative heat flux errors decrease as the number of mea-
surement locations increases, further confirming the benefits of denser mea-
surement configurations, particularly under noisy conditions.

For the thermal conductivity reconstruction, both linear and nonlinear
cases demonstrate the robustness of the proposed framework. The method
achieves highly accurate results under noise-free conditions, with errors on
the order of 1072 or lower. However, the presence of measurement noise can
severely degrade performance when too few measurement points are avail-
able. Configurations with only four sensors fail to maintain reliability even at
low noise levels, producing errors exceeding 100%. In contrast, using a larger
number of measurement locations significantly improves reconstruction sta-
bility and accuracy. The best performance is observed with 17 measurement
points, where errors remain below 10% across all tested noise levels.

Overall, the results confirm that the developed solution and material re-
construction framework is capable of accurately estimating transient thermal
behaviour and temperature-dependent thermal properties. Its performance
depends strongly on both the number and spatial distribution of measure-
ment points, as well as the noise level in the input data. With an adequate
number of measurements and moderate noise levels, the method demon-
strates reliable reconstruction capability.

Finally, this approach utilises the traditional industry-standard simula-

26

http://mc.manuscriptcentral.com/hff



oNOYTULT D WN =

International Journal of Numerical Methods for Heat and Fluid Flow

tion method for solid materials, which significantly simplifies the process of
its integration into the existing simulation workflows in the industry. Piece-
wise linear material property representation are consistent with how material
properties are typically represented in various simulation software. Thus, the
results suggest significant potential for the DT applications.
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