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THE WEAKNESS OF FINDING DESCENDING SEQUENCES
IN ILL-FOUNDED LINEAR ORDERS

JUN LE GOH , ARNO PAULY , AND MANLIO VALENTI

Abstract. We explore the Weihrauch degree of the problems “find a bad sequence in a non-well quasi
order” (BS) and “find a descending sequence in an ill-founded linear order” (DS). We prove that DS

is strictly Weihrauch reducible to BS, correcting our mistaken claim in [18]. This is done by separating
their respective first-order parts. On the other hand, we show that BS and DS have the same finitary and
deterministic parts, confirming that BS and DS have very similar uniform computational strength. We
prove that König’s lemma KL and the problem wList2N ,≤� of enumerating a given non-empty countable
closed subset of 2N are not Weihrauch reducible to DS or BS, resolving two main open questions raised
in [18]. We also answer the question, raised in [12], on the existence of a “parallel quotient” operator, and
study the behavior of BS and DS under the quotient with some known problems.

§1. Introduction. Linear and quasi-orders are ubiquitous structures that play
an important role in all areas of mathematics. Computability theory has been
successfully applied to highlight the difference between classical and effective
properties of orders. A well-known example is that the simple fact that every
infinite linear order contains an infinite ascending sequence or an infinite descending
sequence is not computably true. A more extreme example is the existence of
computable ill-founded linear orders with no hyperarithmetic descending sequence
(see, e.g., [26, Lemma III.2.1]). These orders have been extensively used and studied
in reverse mathematics (under the name of pseudo-well-orders) [27]. We refer the
reader to [11] for a more comprehensive presentation of computability-theoretical
results on linear and partial orders.

The natural generalization of well-orders in the context of quasi-orders is the
notion of well quasi-orders: formally, a quasi-order (Q,�) is called well quasi-order
(abbreviated wqo) if, for every infinite sequence (qn)n∈N of elements of Q, there are
i, j with i < j such that qi �Q qj . This can be restated by saying that a quasi-order
is a wqo if it contains no infinite bad sequences, where a (possibly finite) sequence
(qn)n is called bad if qi ��Q qj for every i < j. Equivalently, wqos can be defined as
quasi-orders that contain no infinite descending sequence and no infinite antichain.
There is an extensive literature on the theory of wqos. For an overview, we refer the
reader to [22].
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2 JUN LE GOH, ARNO PAULY, AND MANLIO VALENTI

In this article, we continue our investigation (started in [18]) of the uniform
computational strength of the problems:

• given a countable ill-founded linear order, find an infinite Descending Sequence
in it (DS), and

• given a countable non-well quasi-order, find a Bad Sequence in it (BS).
A suitable framework for this is given by Weihrauch reducibility (see [3] for a
self-contained introduction). Several results on the Weihrauch degree of DS were
proved in our previous work, where we showed, e.g., that, despite the fact that DS
is not a hyperarithmetic problem, it is rather weak from the uniform point of view,
as it only computes the limit computable functions. In the language of Weihrauch
reducibility, this can be stated as Det(DS) ≡W lim. We also explored how the uniform
computational strength changes when working with Γ-presented orders, where Γ
is a Borel pointclass, or Δ1

1, Σ1
1, or Π1

1. Other results on the Weihrauch degree of
principles related to well-orders and wqo are obtained in [7]. The computational
strength of descending sequences was also independently explored in [6, Section 4].

This article is organized as follows: in Section 2, we introduce the notation
and provide a brief overview of the necessary background notions on Weihrauch
reducibility.

In Section 3, we refute the claim, falsely stated in [18, Proposition 4.5], that
DS ≡W BS. In fact, we obtain the separation DS <W BS (Theorem 3.1) by proving
a separation between the respective first-order parts.

The following is a list of the results in [18] that are affected:
• [18, Proposition 4.5];
• [18, Corollary 5.4] and [18, Corollary 5.16]: these are one-line relativizations

of [18, Proposition 4.5];
• [18, Corollary 5.13]: the equivalences Π0

k-DS ≡W Δ0
k+1-DS ≡W Σ0

k+1-DS are
unaffected, but the reductions involving Π0

k-BS and Δ0
k+1-BS were obtained

using [18, Corollary 5.4] and transitivity.
We are not aware whether all the above-mentioned claims admit a counterexample.
All the other results in [18] do not use [18, Proposition 4.5]; they either deal only

with DS or are standalone results about BS which are not affected by the above
error. In particular, [18, Theorem 5.3], [18, Theorem 5.14], [18, Proposition 5.15],
[18, Theorem 5.23] and [18, Corollary 5.24] are correct to the best of our knowledge.
This list of errata is also available in the arxiv version of [18].

The rest of the article is devoted to better understanding the Weihrauch degrees
of DS and BS. More precisely, in Section 4, we answer (negatively) two main open
questions raised in [18, Questions 6.1 and 6.2], namely whether KL and wList2N,≤�
are Weihrauch reducible to DS (Corollaries 4.5 and 4.6). Both results follow from a
more general characterization (Theorem 4.3), stating that

lim ≡W max
≤W

{f : ÂCCN × f ≤W DS} ≡W max
≤W

{f : ÂCCN × f ≤W BS}.

In other words, even though ÂCCN is fairly weak (in particular it is below lim, KL,
and DS), neither DS nor BS can compute ÂCCN × f if f �W lim.

In Section 5, we show that, despite DS and BS not being Weihrauch equivalent,
their finitary and deterministic parts are in fact the same (Theorem 5.3 and

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10160
Downloaded from https://www.cambridge.org/core. Swansea University, on 18 Dec 2025 at 15:35:01, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10160
https://www.cambridge.org/core


THE WEAKNESS OF DS 3

Corollary 5.5). In other words, it is necessary to consider a non-finitary,
non-deterministic problem (such as 1BS) in order to separate BS and DS.

Section 6 contains a short detour where we answer another question that was
left open in our previous paper [18, Question 3.5], namely whether the first-
order part and the deterministic part commute. We answer this question by
constructing an explicit counterexample for which the two operations do not
commute (Theorem 6.6).

In Sections 7 and 8, we analyze the following question: Is the restriction of
BS to trees stronger than DS? This question is very natural when considering
that, when proving that BS �≤W DS, we construct a “tree-like structure” (a partial
order admitting a tree decomposition, see Definition 3.3). In Section 7 we obtain
some technical results on the degrees of the problems Π0

2– ACCk and Π0
2– ACCN.

In Section 8, we show that the restriction BS|Tree of BS to trees with infinite
width is much weaker than BS by proving that Fin(BS|Tree) ≡W Det(BS|Tree) ≡W id
(Corollary 8.3) and that 1BS|Tree is equivalent to the problem that maps a tree
with infinite width to some v ∈ T that belongs to some infinite antichain in T
(Proposition 8.5).

Finally, in Section 9 we observe that one of our main technical tools (Theorem 4.3)
provides an example of a “parallel quotient” [12, Remark 1], namely a specific case
where

max
≤W

{h : h × g ≤W f}

is defined. Whether this max exists for all choices of f and g was asked in
[12, Remark 3.11]. We answer their question by showing that this operator is always
defined when g �= ∅ (Definition 9.1 and Proposition 9.9). We conclude the article by
analyzing the behavior ofBS andDS under the quotient with some known problems.

§2. Background. We now briefly introduce the relevant notions in Weihrauch
complexity. For a more thorough presentation, we refer the reader to [3]. We end
this section with the observation that BS is equivalent to its restriction to partial
orders (Proposition 2.2).

A represented space X = (X, �X) consists of a set X and a (possibly partial)
surjection �X :⊆ NN → X . Many spaces of interest can be represented in standard
ways, such as NN, N, and N<N, initial segments of N, the set of binary relations on N,
and the set of Γ-definable subsets of N where Γ is a pointclass in the arithmetic or
projective hierarchy, countable Cartesian products, and countable disjoint unions
of represented spaces. For the formal definitions of the representation maps of these
spaces, we refer the reader to [3], or to our previous paper [18].

A problem f is a (possibly partial) multivalued function between represented
spaces X and Y, denoted f :⊆ X ⇒ Y. For each x ∈ X , f(x) denotes the set
of possible outputs (i.e., f-solutions) corresponding to the input x. The domain
dom(f) is the set of all x ∈ X such that f(x) is non-empty. Such an x is called an
f-instance. If f(x) is a singleton for all x ∈ dom(f), we say f is single-valued and
writef :⊆ X → Y. In this case, if y is the f -solution to x, we writef(x) = y instead
of (the formally correct) f(x) = {y}. A function F :⊆ NN → NN is a realizer for a
problem f if whenever p is a name for some x ∈ dom(f), then F (p) is a name for
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4 JUN LE GOH, ARNO PAULY, AND MANLIO VALENTI

an f -solution to x. We say a problem is computable (resp., continuous) if it has a
computable (resp., continuous) realizer.

A problem f is Weihrauch reducible to a problem g, written f ≤W g, if there are
computable maps Φ,Ψ :⊆ NN → NN such that if p is a name for some x ∈ dom(f),
then

(1) Φ(p) is a name for some y ∈ dom(g), and
(2) if q is a name for some g-solution of y, then Ψ(p, q) is a name for some

f -solution of x.

If Φ and Ψ satisfy the above, we say that f ≤W g via Φ, Ψ. We sometimes refer
to Φ and Ψ as the forward and backward functionals, respectively. We say that f
is strongly Weihrauch reducible to g, written f ≤sW g, if the above holds but with
Ψ(p, q) replaced by Ψ(q) in (2). For us, strong Weihrauch reducibility is only of
occasional technical interest.

Weihrauch reducibility forms a preorder on problems. We say f and g are
Weihrauch equivalent, writtenf ≡W g, iff ≤W g and g ≤W f. The≡W-equivalence
classes (Weihrauch degrees) are partially ordered by ≤W. Among the numerous
algebraic operations in the Weihrauch degrees, we consider:

• for problems fi :⊆ Xi ⇒ Yi , the parallel product

f0 × f1 :⊆ X0 × X1 ⇒ Y0 × Y1 defined by (x0, x1) 
→ f0(x0)× f1(x1),

i.e., given an f0-instance and an f1-instance, solve both;
• for a problem f :⊆ X ⇒ Y, the (infinite) parallelization

f̂ :⊆ XN ⇒ YN defined by (xi )i 
→
∏
i

f(xi ),

i.e., given a countable sequence of f -instances, solve all of them.

These operations are defined on problems, but they all lift to the Weihrauch
degrees. Parallelization even forms a closure operator, i.e.,f ≤W f̂,f ≤W g implies
f̂ ≤W ĝ, and ̂̂f ≡W f̂. We also briefly mention two further operations on Weihrauch
degrees, respectively, called compositional product and implication, characterized
by f ∗ g = max≤W{F ◦G : F ≤W f ∧G ≤W g} and f → g = min≤W{h : g ≤W

f ∗ h}. Both are total operations. The compositional product can be equivalently
described as follows: let (Φw)w∈NN be an effective enumeration of all partial
continuous functionals NN → NN with G� domain. For every f :⊆ X ⇒ Y, g :⊆
U ⇒ V, the domain of f ∗ g is the set

{(w, u) ∈ NN × dom(g) : (∀v ∈ g(u))(∀pv ∈ �–1
V (v))(�XΦw(pv) ∈ dom(f))}.

Given as input a pair (w, u), f ∗ g produces a pair (y, v) with v ∈ g(u) and
y ∈ f�XΦw(pv) for some pv ∈ �–1

V (v). If f, g are problems on the Baire space,
f ∗ g is simply the problem that maps (w, u) to a pair (y, v) with v ∈ g(u) and
y ∈ f(v). For details, we refer to [4, 29].
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THE WEAKNESS OF DS 5

The Weihrauch degrees also support a number of interior operators, which have
been used to separate degrees of interest (see, e.g., [28, Section 3.1]). For any problem
f and any represented space X, the problem

DetX(f) := max≤W{g ≤W f : g has codomain X and is single-valued}

exists [18, Theorem 3.2]. We call Det
NN(f) the deterministic part of f and denote it by

Det(f) for short. We say that a problem is deterministic if f ≡W Det(f), i.e., if f is
Weihrauch equivalent to a single-valued function on Baire space. This terminology
is motivated by the observation that the treatment of multi-valued functions in
computable analysis inherently corresponds to a non-deterministic computation
point of view.

Observe that [18, Proposition 3.6] can be generalized slightly.

Proposition 2.1. Det(f) ≤W D̂et2(f). (2 is the two-point space with the discrete
topology.)

Proof. Suppose g is single-valued, has codomain NN, and g ≤W f. Define a
single-valued problem h with codomain 2 as follows: Givenn,m ∈ N and a g-instance
x, produce 1 if g(x)(n) ≥ m, otherwise produce 0. It is easy to see that g ≤W ĥ and

h ≤W f. The latter implies h ≤W Det2(f) and so g ≤W ĥ ≤W D̂et2(f). �

For any problem f and X = N or k, it is also known that

max≤W{g ≤W f : g has codomain X}

exists. For X = N we call it the first-order part of f [13, Theorem 2.2], denoted by
1f, while for X = k we call it the k-finitary part of f [10, Proposition 2.9], denoted
by Fink(f). We say that a problem is first-order if f ≡W

1f. It is immediate from
the definitions that DetN(f) ≤W

1f and Detk(f) ≤W Fink(f) ≤W
1f.

Before providing examples of problems of interest, we shall specify our notation
for sequences and trees. A string or sequence is a function� from an initial segment of
N to N, with length denoted by |�|. The set of finite (resp., infinite) strings of natural
numbers is denoted by N<N (resp., NN). Likewise, we use n<N and nN, respectively,
for the sets of finite or infinite strings with range in {0, ... , n – 1}. In particular, the
sets of finite and infinite binary strings are denoted 2<N and 2N, respectively.

The constant sequence with value n and length i is denoted by ni . For i = 0,
this is the empty string ε. We use n� for the constant infinite string with value n.
The concatenation of strings � and � is usually denoted by ���. For the sake
of readability, we omit the concatenation symbol whenever we are concatenating
constant strings (e.g., we use 0i1j in place of 0i�1j). The prefix relation on strings
is denoted by �.

For each p ∈ NN and i ∈ N, p[i ] denotes the string obtained by restricting p to i.
A subtree of N<N (resp., 2<N) is a subset T ⊆ N<N (resp., 2<N) which is closed
downwards under prefix. We picture trees growing upwards, i.e., the root ε lies at
the bottom.

We now list some well-studied computational problems that will be useful.

• LPO: Given p ∈ 2N, produce 1 if there is k ∈ N such that p(k) = 1, otherwise
produce 0.
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6 JUN LE GOH, ARNO PAULY, AND MANLIO VALENTI

• Ck : Given p ∈ (k + 1)N such that (∃n < k)(n + 1 /∈ ran(p)), find n < k such
that n + 1 /∈ ran(p).

• CN: Given p ∈ NN such that (∃n)(n + 1 /∈ ran(p)), find n such that n + 1 /∈
ran(p).

• lim: Given a convergent sequence (pn)n∈N in NN, find its limit.
• KL: Given an infinite finitely branching subtree of N<N, find an infinite path

through it.
The problemsCk andCN are examples of choice problems, as they can be rephrased

as “given a non-empty co-c.e. closed subset of k (resp., N), find a point in it”. Choice
problems are pivotal in the study of Weihrauch reducibility, as they provide a useful
benchmark to describe the Weihrauch degrees of other problems. For this reason,
many variations of choice problems have been introduced in the literature. For
example, we denote with UCN the restriction of CN to co-c.e. closed singletons (or,
equivalently, to sequences p such that there is exactly one n such thatn + 1 /∈ ran(p)).
It is known thatCN ≡W UCN [2, Theorem 3.8], henceCN is a deterministic, first-order
problem. Another variant that plays an important role in this article is all or co-unique
choice: if X is k or N, ACCX is the problem “Given an enumeration of a set A ⊆ X of
size at most 1, find a number not in A”. It is known that ÂCCN <W lim <W KL (see,
e.g., [3]).

Another important family of problems comes from Ramsey’s theorem for n-tuples
and k-colors. In this article, we only deal with colorings of the natural numbers.
We define RT1

k , a.k.a. the pigeonhole principle, as the total multi-valued function
that maps a coloring c : N→ k to the set of all infinite c-homogeneous sets, i.e.,
the set of all infinite H ⊆ N such that c is constant on H. Many well-known facts
about the Weihrauch degrees of Ramsey principles can be found in [5]. We only
mention that (in terms of Weihrauch reducibility) we can equivalently think of RT1

k

as the problem that, given c, produces the color of a c-homogeneous solution. It is
known that j < k implies RT1

j <W RT1
k and that R̂T1

2 ≡W KL. In particular, KL is
parallelizable (as the parallelization is a closure operator).

To study the problemsDS andBS from the point of view of Weihrauch reducibility,
we need to introduce the represented spaces of linear orders and quasi-orders.
We only work with countable linear orders/quasi-orders with domain contained
in N. We represent a linear order (L,≤L) with the characteristic function of the
set {〈n,m〉 : n ≤L m}. Likewise, we represent a quasi-order (Q,�Q) with the
characteristic function of the set {〈n,m〉 : n �Q m}.

We conclude this section by observing a fact about BS which was implicit in [18].

Proposition 2.2. BS is Weihrauch equivalent to its restriction to partial orders.

Proof. Given a non-well quasi-order (Q,�Q) where Q ⊆ N, compute the set
S := {a ∈ Q : (∀b <N a)(a ��Q b or b ��Q a)}. The restriction (S,�Q) is a non-
well partial order because it is isomorphic to the partial order of �Q-equivalence
classes. �

Henceforth we will use Proposition 2.2 without mention.

§3. Separating BS and DS. We shall separate BS and DS by separating their
first-order parts.
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THE WEAKNESS OF DS 7

Theorem 3.1.
1BS �W

1DS and so DS <W BS.

Recall from [18, Theorem 4.10] that 1DS ≡W Π1
1– Bound, which is the problem of

producing an upper bound for a finite subset of N (given via a Π1
1-code). Observe

that Π1
1– Bound is upwards closed, i.e., if n ∈ g(x) then m ∈ g(x) for all m > n.

Lemma 3.2. Let f be a problem with codomain N. The following are equivalent:

(1) there exists an upwards closed problem g with codomain N such that f ≤W g;
(2) there is a computable procedure which takes as input any x ∈ dom(f) and

produces a sequence px ∈ NN of guesses for f-solutions to x which is correct
cofinitely often.

Proof. For (1) ⇒ (2), let g be upwards closed with codomain N and assume
f ≤W g via Φ and Ψ. Given x ∈ dom(f), run the computations (Ψ(x,m))m∈N in
parallel. Once some Ψ(x,m) halts, we output its result and cancel Ψ(x, n) for all
n < m. This produces a sequence of numbers. The fact that g is upwards closed
guarantees that cofinitely many elements of this sequence are elements of f(x).

For the converse direction, for every x ∈ dom(f), let px ∈ NN be as in the
hypothesis. DefineMx := max{m : px(m) /∈ f(x)} and letg(x) := {n : n > Mx}.
Clearly g is upwards closed. The fact thatf ≤W g follows from the fact that x 
→ px
is computable. �

Given a non-well quasi-order (Q,�Q), we say that a finite sequence � is extendible
to an infinite �Q-bad sequence (or, more compactly, � is �Q-extendible) if there is
a �Q-bad sequence (qn)n∈N such that (∀i < |�|)(�(i) = qi). We omit the subscript
whenever there is no ambiguity.

Observe that 1BS can compute the problem “given a non-well partial order
(P,≤P), produce an element of P that is extendible to an infinite bad sequence”.
In light of Lemma 3.2, to prove Theorem 3.1 it suffices to show that one cannot
computably “guess” solutions for BS. In other words, given a computable procedure
which tries to guess extendible elements in a non-wqo, we want to construct a non-
wqo P on which the procedure outputs a non-extendible element infinitely often.
This would imply that 1BS �≤W Π1

1– Bound. The non-wqos P we construct will be
“tree-like” in the following sense.

Definition 3.3. A tree decomposition of a partial order (P,≤P) consists of a tree
T ⊆ 2<N and a function � : T → P such that:

(1) Ifw1, w2 ∈ T andw1 is a proper prefix ofw2 (writtenw1 � w2), then �(w1) <P
�(w2).

(2) P is partitioned into finite P-intervals, where each interval has the form

(w�b] = {v ∈ P : �(w) <P v ≤P �(w�b)}

for some vertex w�b ∈ T (with final entry b), or (ε] = {�(ε)} (where ε
denotes the root of 2<N). For v ∈ P let �v� ∈ T be uniquely defined by
v ∈ (�v�].

(3) If w1, w2 ∈ T are incompatible, so are �(w1) and �(w2) (i.e., they have no
common upper bound in P).

The following lemma is straightforward.
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8 JUN LE GOH, ARNO PAULY, AND MANLIO VALENTI

Lemma 3.4. If � : T → P is a tree decomposition, then P has no infinite descending
sequences. Moreover, T is wqo (i.e., it has finite width) if and only if P is wqo. In other
words, T has an infinite antichain iff so does P.

Proof. The fact that every partial order that admits a tree decomposition does
not have an infinite descending sequence follows from the fact that if (vn)n∈N is
an infinite descending sequence in P, then since every interval (�vn�] is finite, up
to removing duplicates, the sequence (�vn�)n∈N would be an infinite descending
sequence in T.

If (wn)n∈N is an infinite antichain in T then, by definition of tree decomposition,
(�(wn))n∈N is an infinite antichain in P. Conversely, if (vn)n∈N is an infinite antichain
in P, then for every n, for all but finitely many m, �vn� is�-incomparable with �vm�.
In particular, we can obtain an infinite antichain in T by choosing a subsequence
(vni )i∈N such that, for every i �= j, �vni � and �vnj � are �-incomparable. �

Lemma 3.5. There is no computable procedure that, given as input a non-well partial
order which admits a tree decomposition, outputs an infinite sequence of elements of
that partial order such that cofinitely many elements in the output are extendible to a
bad sequence.

We point out a subtle yet important aspect regarding Lemma 3.5: The procedure
only has access to the partial order, not to a tree decomposition of it.

Proof. Fix a computable “guessing” procedure g that receives as input a
partial order (admitting a tree decomposition) and outputs an infinite sequence
of elements in that partial order. We shall build a partial order P together with a tree
decomposition � : T → P in stages such that, infinitely often, g outputs an element
of P that does not extend to an infinite bad sequence.

Start with T0 = {ε} and P0 having a single element vε , with �0(ε) = vε . In stage s,
we have built a finite tree decomposition �s : Ts → Ps and wish to extend it to some
�s+1 : Ts+1 → Ps+1. The tree Ts+1 will always be obtained by giving each leaf in Ts a
single child, and then adding two children to exactly one of the new leaves. To decide
which leaf gets two children, say a finite extension Q ofPs is suitable for �s : Ts → Ps
if for every v ∈ Q \ Ps , there is exactly one leaf w ∈ Ts such that �s(w) <Q v. Pick
the left-most leaf � of Ts with the following property:

There is some suitable extension Q of Ps such that, when given Q,
the guessing procedure g would guess an element of Q which is
comparable with �s(�).

To see that such � must exist, consider extending Ps by adding an “infinite comb”
(i.e., a copy of {0n1i : n ∈ N, i ∈ {0, 1}}) above the �s -image of a single leaf in Ts .
The resulting partial orderQ is non-wqo, admits a tree decomposition (obtained by
extendingTs and �s in the obvious way), and its finite approximations (extendingPs)
are suitable for �s . Hence, by hypothesis, g eventually guesses some element, which
must be comparable with �s(�) for some leaf � ∈ Ts (because all elements ofQ are).

Having identified �, we fix any corresponding suitable extension Q of Ps . In order
to extend �s , we further extend Q to Q′ by adding a new maximal element vw to Q
for each leaf w ∈ Ts as follows: vw lies above all v ∈ Q \ Ps such that �s(w) <P v,
and is incomparable with all other elements (including the other new maximal
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THE WEAKNESS OF DS 9

�(�)

�(��0)
g(s + 1)

Figure 1. Schematic representation of the construction used in the proof of
Lemma 3.5. The dashed box contains the partial construction up to stage s. The
gray boxes contain intervals in the partial order P. For simplicity, each interval up
to stage s only contains one point (i.e., the partial order Ps is isomorphic to a tree),
but this need not be the case in general. The black nodes are those in the range of
the (partial) tree decomposition �s . The square gray node is the node guessed by g
at stage s + 1 (which identifies �(�) and �(��0)).

elements vw′). To extend Ts , we add a new leaf ��0 to Ts for each leaf �, obtaining a
tree T ′. We extend �s to yield a tree decomposition �′ : T ′ → Q′ in the obvious way.

Finally, we add two children to��0 inT ′, i.e., defineTs+1 := T ′ ∪ {��00, ��01}.
We also add two children v1, v2 to �′(��0) in Q′ to obtain Ps+1, and extend �′ to
�s+1 by setting �s+1(��0i) := vi . This concludes stage s.

It is clear from the construction that � : T → P is a tree decomposition. Let us
discuss the shape of the tree T. In stage s, we introduced a bifurcation above a leaf
�s of Ts . These are the only bifurcations in T. Observe that, whenever s ′ < s , �s
is either above or to the right of �s′ , because every suitable extension of Ps is also
a suitable extension of Ps′ and, at stage s ′, the chosen leaf was the left-most. This
implies that the sequence (�s)s converges to a path p ∈ [T ], i.e., for every n there is
a stage s such that for every s ′ > s , p[n] � �s′ . This also implies that p is the unique
non-isolated path (if � �� p then there are only finitely many bifurcations above �).
Observe also that a vertex w in T is extendible to an infinite antichain in T if and
only if it does not belong to p.

We may now apply Lemma 3.4 to analyze P. First, since T is not wqo, neither is P.
Second, we claim that if v <P �(�) for some vertex � on p, then v is not extendible to
an infinite bad sequence. To prove this, suppose v is extendible. Then so is �(�). The
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10 JUN LE GOH, ARNO PAULY, AND MANLIO VALENTI

proof of Lemma 3.4 implies that ��(�)� = � is extendible to an infinite antichain
in T. So � cannot lie on p, proving our claim.

To complete the proof, observe that our construction of � ensures that for each
s, g(P) eventually outputs a guess which is below �(�s�0). Whenever �s�0 lies
along p (which holds for infinitely many s), this guess is wrong by the above claim
(Figure 1). �

We may now complete the proof of Theorem 3.1.

Proof of Theorem 3.1. Suppose towards a contradiction that 1BS ≤W

Π1
1– Bound. Since the problem of finding an element in a non-wqo which extends

to an infinite bad sequence is first-order, it is Weihrauch reducible to Π1
1– Bound

as well. Now, Π1
1– Bound is upwards closed, so there is a computable guessing

procedure for this problem (Lemma 3.2). However such a procedure cannot exist,
even for partial orders which admit a tree decomposition (Lemma 3.5). �

§4. Separating KL and BS. In this section, we answer two of the main questions
that were left open in [18, Questions 6.1 and 6.2], namely whether the problems
KL and wList2N,≤� are Weihrauch reducible to DS. We already introduced KL in
Section 2, while wList2N,≤� is the problem of enumerating all elements (possibly
with repetition) of a given non-empty countable closed subset of 2N. This problem
was introduced in [17, Section 6] and was also studied in [9].

In fact, we prove something stronger, namely that neither KL nor wList2N,≤�
are Weihrauch reducible to BS. The core of the proofs rests on the following two
technical results.

Definition 4.1. Given a fixed partial order (P,≤P), we define the following
quasi-order on the (finite or infinite) ≤P-bad sequences:

α �P 	 :⇐⇒ α = 	 or (∃i < |α|)(∀j < |	 |)(α(i) ≤P 	(j)).

We just write � when the partial order is clear from the context.

Lemma 4.2. Let (P,≤P) be a non-well partial order and let α, 	 be finite ≤P-bad
sequences. If α � 	 and α is extendible to an infinite≤P-bad sequence, then so is 	 . If
α is not extendible then there is an infinite≤P-bad sequence B ∈ NN such that α � B .
(Hence α � 	 for every initial segment 	 of B.)

Proof. To prove the first part of the theorem, fix α � 	 and let A ∈ NN be an
infinite ≤P-bad sequence extending α. Let also i < |α| be a witness for α � 	 . For
every j > i and every k < |	 |, 	(k) �≤P A(j) (otherwise A(i) = α(i) ≤P 	(k) ≤P
A(j) would contradict the fact that A is a ≤P-bad sequence), which implies that 	
is extendible.

Assume now that α is non-extendible and let F ∈ NN be a ≤P-bad sequence. We
show that there is i < |α| and infinitely many k such that α(i) <P F (k). This is
enough to conclude the proof, as we could take B as any subsequence of F with
α(i) <P B(k) for every k (i.e., α � B).

Assume that, for every i < |α| there is ki such that for every k ≥ ki ,α(i) �≤P F (k)
(since P is a partial order, there can be at most one k such that α(i) = F (k)). Since
α is finite, we can take k := maxi<|α| ki and consider the sequence which extends α
by the tail F (k + 1), F (k + 2), ... of F. We have now reached a contradiction as this
is an infinite ≤P-bad sequence extending α. �
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THE WEAKNESS OF DS 11

Theorem 4.3. Let f be a problem. The following are equivalent:
(1) f ≤W lim;
(2) ÂCCN × f ≤W lim;
(3) ÂCCN × f ≤W DS;
(4) ÂCCN × f ≤W BS.

This theorem provides another example of a “parallel quotient” (cf. [12, Remark
3.11]). See Section 9 for details.

Proof. The implication from (1) to (2) holds because ÂCCN × lim ≡W lim. The
implications from (2) to (3) and from (3) to (4) hold because lim ≤W DS ≤W BS
[18, Theorem 4.16]. For the implication from (4) to (1), we consider a name x for an
input to f together with witnesses Φ,Ψ for the reduction to BS. We show that, from
them, we can uniformly compute an input q to ÂCCN together with an enumeration
of the set W of all finite sequences � in the (non-well) partial order P built by Φ
on (q, x) such that � does not extend to an infinite bad sequence. We can then use
lim to obtain the characteristic function of W. Having access to this lets us find an
infinite bad sequence in P greedily by avoiding sequences in W. From such a bad
sequence (and (q, x)), Ψ then computes a solution to f for x.

It remains to construct q = (q�)�∈N and W to achieve the above. At the beginning,
W is empty, and we extend each q� in a way that removes no solution from its
ACCN-instance. As we do so, for each � /∈W (in parallel), we monitor whether the
following condition has occurred:

� is a bad sequence in P (as computed by the finite prefix of (q, x)
built/observed thus far), and there is some (finite) bad sequence �
in P such that:

• � �P �;
• the functional Ψ, upon reading the current prefix of (q, x) and �,

produces some output m for the ACCN-instance indexed by �.

Once the above occurs for � (if ever), we remove m as a valid solution to q� by
enumerating it. This ensures that �, and hence � by Lemma 4.2, cannot extend to an
infinite bad sequence in P. We shall then enumerate � into W. This completes our
action for �, after which we return to monitoring the above condition for sequences
not in W.

It is clear that each q� is an ACCN-instance (with solution set N if the condition is
never triggered, otherwise with solution set N \ {m}). Hence P := Φ(q, x) is a non-
well partial order. As argued above, no � ∈W extends to an infinite bad sequence
in P. Conversely, suppose � is a bad sequence in P which does not extend to an
infinite bad sequence. Since P is non-wqo, by Lemma 4.2 there is an infinite bad
sequence r such that� �P r. Then Ψ has to produce allACCN answers upon receiving
(q, x) and r, including an answer to q� . By continuity, this answer is determined by
finite prefixes only. In particular, after having constructed a sufficiently long prefix
of q, some finite prefix � of r will trigger the condition for � (unless something else
triggered it previously), which ensures that � gets placed into W. This shows that W
contains exactly the non-extendible finite bad sequences in P, thereby concluding
the proof. �

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10160
Downloaded from https://www.cambridge.org/core. Swansea University, on 18 Dec 2025 at 15:35:01, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10160
https://www.cambridge.org/core


12 JUN LE GOH, ARNO PAULY, AND MANLIO VALENTI

In other words, this theorem can be restated saying that lim is the strongest
problem such that its parallel product with ÂCCN is reducible to either lim, DS, or
BS. In symbols,

lim ≡W max≤W{h : ÂCCN × h ≤W lim}
≡W max≤W{h : ÂCCN × h ≤W DS}
≡W max≤W{h : ÂCCN × h ≤W BS}.

This characterizes the “parallel quotient” of DS and BS over ÂCCN. The parallel
quotient will be discussed more extensively in Section 9.

Corollary 4.4. If f is a parallelizable problem (i.e., f ≡W f̂) with ACCN ≤W

f ≤W BS, then f ≤W lim.

Proof. Since ACCN ≤W f ≤W BS and f is parallelizable, we have ÂCCN × f ≤W

f ≤W BS. By the previous theorem, f ≤W lim. �

The negative answer to [18, Question 6.1] is an immediate consequence of the
following result.

Corollary 4.5. KL �W BS.

Proof. Recall that KL is parallelizable, ACCN ≤W KL, yet KL �W lim, hence the
claim follows from Corollary 4.4. �

Similarly, the negative answer to [18, Question 6.2] can be obtained as follows.

Corollary 4.6. wList2N,≤� �W BS.

Proof. As proved in [17, Propositions 6.12 and 6.13], wList2N,≤� is parallelizable
and ACCN ≤W lim ≤W wList2N,≤� . On the other hand, wList2N,≤� �W lim [17,
Corollary 6.16], hence the claim follows from Corollary 4.4. �

Continuous Weihrauch reducibility (≤∗
W) is a variant of Weihrauch reducibility

defined via continuous functions in place of computable functions. Using a recent
result of Pauly and Soldà [25], we can characterize the parallelizations of first-order
problems which are reducible to DS up to continuous Weihrauch reducibility.

Corollary 4.7. If f̂ ≤∗
W DS, then 1f ≤∗

W CN. Therefore, for any first-order f,

f̂ ≤∗
W DS if and only if f ≤∗

W CN.

Proof. If 1f is continuous, the conclusion of the first statement is satisfied.
Otherwise, ACCN ≤∗

W f by [25, Theorem 1]. The relativization of Theorem 4.3 then
implies f̂ ≤∗

W lim. We conclude 1f ≤∗
W

1lim ≡W CN. The second statement then
follows from ĈN ≡W lim ≤W DS. �

§5. The finitary part and deterministic part of BS. In this section, we show
that BS and DS cannot be separated by looking at their respective finitary or
deterministic parts. Recall from [18, Theorems 4.16 and 4.31] that Det(DS) ≡W lim
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THE WEAKNESS OF DS 13

and Fink(DS) ≡W RT1
k . Since both the deterministic and the finitary parts are

monotone, this implies that lim ≤W Det(BS) and RT1
k ≤W Fink(BS), so we only

need to show that the converse reductions hold.
Let (Q,�Q) be a countable quasi-order. We call a subset A ⊆ Q dense if for every

w ∈ Q there is some u �Q w with u ∈ A. We call it upwards-closed if w ∈ A and
w �Q u implies u ∈ A. By Σ1

1– DUCC we denote the following problem: Given a
(non-empty) quasi-order (Q,�Q) and a Σ1

1-code for a dense upwards-closed subset
A ⊆ Q, find some element of A. We can think of a Σ1

1-code for A as a sequence
(Tn)n∈Q of subtrees of N<N such that Tn is ill-founded if and only if n ∈ A.

Proposition 5.1.
1BS ≤W Σ1

1– DUCC.

Proof. Let f be a problem with codomain N and assume f ≤W BS via Φ,Ψ. Fix
x ∈ dom(f). Let (P,≤P) denote the non-well partial order defined by Φ(x). We
say that a finite ≤P-bad sequence 	 is sufficiently long if Ψ(x, 	) returns a natural
number in at most |	 | steps.

Consider the non-empty Σ1,x
1 set of sufficiently long finite extendible bad

sequences. To show that f ≤W Σ1
1– DUCC, it is enough to notice that Lemma 4.2

implies that the aforementioned set is dense and upwards-closed with respect to the
quasi-order �P (Definition 4.1). �

Lemma 5.2. Σ1
1– DUCC ≡W Σ1

1– DUCC(2<N, ·), where the latter denotes the
restriction of the former to 2<N with the prefix ordering �.

Proof. Clearly, we only need to show that Σ1
1– DUCC ≤W Σ1

1– DUCC(2<N, ·).
Suppose we are given as input a countable quasi-order (Q,�Q) and a Σ1

1-code
for a set A ⊆ Q which is dense and upwards-closed. We shall define a labelling

 : 2<N → Q which is computable uniformly in (Q,�Q), such that 
–1(A) is dense
and upwards-closed. This suffices to prove the claimed reduction, as the preimage
of A via 
 is uniformly Σ1

1 relative to the input and, given � ∈ 
–1(A), we may
use the input (Q,�Q) to compute 
(�) ∈ A.

The labelling 
 : 2<N → Q is defined via an auxiliary function 
 : Q × 2<N → Q
(useful to describe 
 in a recursive manner). First, for every i ∈ N, 
(x, 0i) :=

(x, 0i1) := x. To evaluate 
 on other strings, we fix a standard Q-computable
enumeration (xn)n of Q and define, recursively:


(x, 0i1b��) :=

{

(xi , �) if b = 1 and x �Q xi

(x, �) if b = 0 or x ��Q xi .

We then define 
(�) := 
(x0, �). It is clear that 
 is total and it is uniformly
computable in (Q,�Q). Rephrasing the definition, we can observe that, for
every x and �, 
(x, 0i10��) = 
(x, �). Besides, 
(x, 0i11��) = 
(
(x, 0i11), �).
In particular,


(x, 0i11��) =

{

(xi , �) if x �Q xi

(x, �) otherwise.

Intuitively, 
 guides the construction of an ascending�Q-sequence from x0. Indeed,
we will show that 
 is weakly monotone, and therefore each � induces a finite
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14 JUN LE GOH, ARNO PAULY, AND MANLIO VALENTI

ascending �Q-sequence from x0 to 
(�). At the same time, the labelling is designed
to be highly redundant, which we use to prove that 
–1(A) is dense.

To show that 
–1(A) is upwards-closed, we claim that for every�, � ∈ 2<N, 
(�) �Q

(���). The claim is proved by first using structural induction on � to show that for
all x ∈ Q, we have x �Q 
(x, �). Using this fact, one can perform another structural
induction on � to show that for all x and �, we have 
(x, �) �Q 
(x, ���). Taking
x = x0 yields 
(�) �Q 
(���). Since A is upwards-closed in Q, it follows that 
–1(A)
is upwards-closed in the prefix ordering.

To prove that 
–1(A) is dense, fix � ∈ 2<N and assume 
(�) /∈ A. Since A is
dense, there is some n such that 
(�) �Q xn ∈ A. Observe that 
(
(�), 0n11) =

(xn, ε) = xn, so it suffices to find some �′ � � such that 
(�′) = 
(
(�), 0n11). The
construction of �′ depends on the form of � (all the following claims can be proven
by structural induction on �):

• if � ends with 0, then 
(x, ��10��) = 
(
(x, �), �), so 
(��10n+111) =

(
(�), 0n11);

• if � ends with an odd number of 1s, then 
(x, ��0��) = 
(
(x, �), �), so

(��0n+111) = 
(
(�), 0n11);

• otherwise, � is either ε or ends with a positive even number of 1s. Then

(x, ���) = 
(
(x, �), �), so 
(��0n11) = 
(
(�), 0n11).

In all cases, we have found an extension of � which maps to xn, as desired. �

Theorem 5.3. Fink(BS) ≡W Fink
(

Σ1
1– DUCC

)
≡W Fink(DS) ≡W RT1

k for
every k.

Proof. We have RT1
k ≡W Fink(DS) ≤W Fink(BS) ≤W Fink

(
Σ1

1– DUCC
)

by [18, Theorem 4.31] and Proposition 5.1. It remains to show that

Fink
(

Σ1
1– DUCC

)
≤W RT1

k . By Lemma 5.2, it is enough to show that

Fink
(

Σ1
1– DUCC(2<N, ·)

)
≤W RT1

k .

Let f be a problem with codomain k and assume f ≤W Σ1
1– DUCC(2<N, ·) via

Φ,Ψ. Observe that every x ∈ dom(f) induces a coloring c : 2<N → k as follows:
run Ψ(x, �) in parallel on every � ∈ 2<N. Whenever we see that Ψ(x, �) returns a
number less than k, we define c(�) := Ψ(x, �) for every � � � such that c(�) is not
defined yet. By density of the set coded by Φ(x), c is total.

By the Chubb–Hirst–McNicholl tree theorem [8], there is some � ∈ 2<N and some
color i < k such that i appears densely above �. We claim that such i would be an
f -solution to x. To prove this, fix (by density) some �′ � � which lies in the set coded
by Φ(x). Then fix some � � �′ with color i. Finally, fix some � � � such that c(�)
was defined to be Ψ(x, �). Now � lies in the set coded by Φ(x) (by upwards-closure),
so Ψ(x, �) is an f -solution to x. Since Ψ(x, �) = c(�) = i , we conclude that i is an
f -solution to x.

This implies that f reduces to the problem “given a k-coloring of 2<N, find i such
that, for some �, i appears densely above �”. We claim that the latter can be solved
using RT1

k . This follows from the fact that, as shown in [24, Corollary 42], RT1
k

can solve the problem (c(�)1
<∞)k defined as “given a k-coloring α : Q→ k, produce

i < k such that, for some interval I with rational endpoints, α–1(i) is dense in I”.
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THE WEAKNESS OF DS 15

We introduce the order≺ on 2<N defined by setting ��0�� ≺ � ≺ ��1�� for all
�, �, � ∈ 2<N. This is a computable dense linear order with no endpoints, therefore
there is a computable order isomorphism ϕ between (2<N,≺) and (Q, <).

Every open interval in (Q, <) contains the ϕ-image of an upper cone in (2<N,≺)
and vice versa. Specifically, the interval (ϕ(�), ϕ(�)) contains the image of the cone
above ��1 if ��1 is not a prefix of �, and the image of the cone above ��0 if ��1
is a prefix of �. Thus, by translating the coloring along ϕ to Q, we find that a color
which appears densely in an interval in Q also appears densely in a cone in 2<N. This
means we can use (c(�)1

<∞)k to find a color appearing densely in a cone. �
It is immediate from the previous theorem that the finitary parts of BS and DS in

the sense of Cipriani and Pauly [10, Definition 2.10] agree as well. Finally, we shall
prove that the deterministic parts of BS and DS agree.

Lemma 5.4. If Fin2(f) ≤W RT1
2, then Det(f) ≤W lim.

Proof. By algebraic properties of Det(·), Fink(·), and the parallelization, we
have

Det(f) ≤W D̂et2(f) ≤W F̂in2(f) ≤W R̂T1
2.

Since Det(f) is deterministic, it remains to show that Det
(
R̂T1

2

)
≤W lim. This is

known, but for completeness we give a proof using results from the survey of Brattka,
Gherardi, and Pauly [3]:

R̂T1
2 ≡sW Ĉ′

2 [3, Theorem11.8.11, Proposition11.6.10]

≡sW
(
Ĉ2

)′
[3, Proposition11.6.12]

≡sW C′
2N [3, Theorem11.7.23]

≡W C2N ∗ lim [3, Proposition11.7.6, Proposition11.6.14].

By choice elimination (see [3, Theorem 11.7.25] or [18, Theorem 3.9]),

Det(C2N ∗ lim) ≤W lim. Therefore Det
(
R̂T1

2

)
≤W lim. �

Since Det(BS) ≥W Det(DS) ≡W lim [18, Theorem 4.16], we conclude that:

Corollary 5.5. Det(BS) ≡W Det(DS) ≡W lim.

Corollary 5.6. DetN(BS) ≡W CN.

Proof. Since N computably embeds in NN, for every problem f we have
DetN(f) ≤W Det(f). In particular, by Corollary 5.5, DetN(BS) ≤W Det(BS) ≡W

lim. Since 1lim ≡W CN ([2, Proposition 13.10], see also [28, Theorem 7.2]), this
implies DetN(BS) ≤W CN. The converse reduction follows from the fact that
CN ≡W DetN(DS) [18, Proposition 4.14]. �

We remark that for establishing Fink
(

Σ1
1– DUCC

)
≤W RT1

k in Theorem 5.3 it

was immaterial that the set of correct solutions was provided as a Σ1
1-set. If we

consider any other represented point class Γ which is effectively closed under taking
preimages under computable functions, and define Γ– DUCC in the obvious way, we
can obtain the following.
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16 JUN LE GOH, ARNO PAULY, AND MANLIO VALENTI

Corollary 5.7. Fink(Γ– DUCC) ≤W RT1
k .

This observation could be useful, e.g., for exploring the Weihrauch degree of
finding bad arrays in non-better-quasi-orders (cf. [14]).

Proposition 5.8. CN ≡W Det(Π1
1– Bound) ≡W Det(1BS) ≡W Det(Σ1

1– DUCC).

Proof. The reductions CN ≤W Det(Π1
1– Bound) ≤W Det(1BS) ≤W Det(Σ1

1
– DUCC) are straightforward: the first one follows from CN ≡W UCN and
CN ≤W Π1

1– Bound, the second one follows from Π1
1– Bound ≤W

1BS, and the last
one follows from Proposition 5.1. It remains to show that Det(Σ1

1– DUCC) ≤W CN.
In light of Lemma 5.2, it suffices to show that if f :⊆ NN → NN is such that
f ≤W Σ1

1– DUCC(2<N, ·) via Φ,Ψ then f ≤W CN. Given x ∈ dom(f), we can
compute the set

X := {� ∈ 2<N : (∀�0, �1 � �)(∀n ∈ N)

((Ψ(x, �0)(n) ↓ ∧Ψ(x, �1)(n) ↓) → Ψ(x, �0)(n) = Ψ(x, �1)(n))}.

Observe that this is a Π0,x
1 subset of 2<N and it is non-empty: indeed, lettingA ⊆ 2<N

be the set described by Φ(x), the fact that f is deterministic implies that A ⊆ X . We
can therefore use CN to compute some � ∈ X . Observe that, by the density of A,
there is � � � such that � ∈ A. In particular, Ψ(x, �) = Ψ(x, �) ∈ f(x). �

Corollary 5.5 and Proposition 5.5 imply that 1 Det(BS) ≡W
1lim ≡W CN ≡W

Det
(

1BS
)
. In general, 1 Det(f) ≤W Det

(
1f

)
[18, Proposition 3.4]. Goh, Pauly, and

Valenti [18, Question 3.5] asked if there is some problem f such that 1 Det(f) <W

Det
(

1f
)
. The next section is devoted to an affirmative answer (Theorem 6.6).

§6. Gödelization. In this section, we show that the first-order part operator and
the deterministic part operator do not commute, answering our earlier question [18,
Question 3.5]. For this, we introduce a dual to the first-order part, the Gödelization
operator, defined below. Our starting point is Dzhafarov, Solomon, and Yokoyama
[13, Theorem 1.6] which asserts that a problem is computably true (i.e., for every
instance p there exists a solution q with q ≤T p) if and only if it is Weihrauch
reducible to some first-order problem. The construction in their proof shows even
more:

Theorem 6.1. If g is a problem which is computably true, then

min
≤W

{f ≥W g : f is first-order}

exists and is represented by

gG(p) = {e ∈ N : Φe(p) ∈ g(p)}.

Proof. Notice dom(gG) = dom(g) since g is computably true. It is clear that
g ≤W g

G. Next, suppose h has codomain N and g ≤W h via Γ and Δ. To reduce
gG to h, observe that if p ∈ dom(gG), then Γ(p) ∈ dom(h), and if n ∈ h(Γ(p)),
then Δ(p, n) ∈ g(p). Using an index for Δ, we can define a functional Ψ such
that ΦΨ(p,n)(p) = Δ(p, n) for every p ∈ NN and n ∈ N. Then if n ∈ h(Γ(p)),
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THE WEAKNESS OF DS 17

we have Ψ(p, n) ∈ gG(p) as desired. (Indeed Ψ does not even need access to p,
so gG ≤sW h.) �

Therefore, every problem g which is computably true but not first-order lies in
an interval with no first-order problems, bounded below by its first-order part 1g
and above by gG. We choose to call gG the Gödelization of g, inspired by the Gödel
numbering problem G studied by Brattka [1].

Proposition 6.2. If g is computably true, single-valued, and gG is not deterministic
(i.e., Weihrauch equivalent to a single-valued function with codomain NN), then
1 Det

(
gG

)
<W Det

(
gG

)
.

Proof. Since g is single-valued and g ≤W g
G, we have g ≤W Det

(
gG

)
<W g

G.
So Det

(
gG

)
cannot be first-order, by Theorem 6.1. We conclude that 1 Det

(
gG

)
<W

Det
(
gG

)
. �

In Proposition 6.5, we shall construct such g using the following two ingredients.

Proposition 6.3. If f is deterministic, then it is Weihrauch equivalent to one of its
realizers.

Proof. Suppose h :⊆ NN → NN satisfies f ≡W h. Fix Φ and Ψ witnessing that
f ≤W h. We define r :⊆ NN → NN by r(x) = Ψ(x, h(Φ(x))). By construction, r is a
realizer of f, thus it in particular holds that f ≤W r. Also by construction, r ≤W h.
Since h ≡W f, it follows that r ≡W f. �

The second ingredient is the following Rice-like result, which forms the recursion-
theoretic core of our construction. For each e ∈ N, let φe denote the e-th partial
computable function on N. Let Tot denote the set of e ∈ N such that φe is total.

Lemma 6.4. There is no computable F :⊆ N→ N such that whenever e, e′ ∈ Tot,
then F (e) = F (e′) if and only if φe = φe′ . In fact, fix e0 ∈ Tot and define A := {e ∈
N : φe = φe0}. Then no c.e. set containing A is disjoint from Tot \ A.

Proof. Suppose towards a contradiction that U ⊇ A is c.e. and disjoint from
Tot \ A. Then we can compute halting as follows. Given e, compute an index f(e)
such that φf(e) copies φe0 until φe(e) halts (if ever), after which φf(e) flips each
output of φe0 . Notice if φe(e) halts, then f(e) ∈ Tot \ A, else f(e) ∈ A ⊆ U . So
we can compute whether φe(e) halts by waiting for it to halt, or for f(e) to appear
in U. �

Proposition 6.5. There is a problem g : N→ NN which is computably true and
single-valued, such that gG is not deterministic. (In particular, g cannot be first-order,
else gG ≡W g is deterministic.)

Proof. We shall construct a sequence of computable reals (gn)n∈N such that
for every pair of Turing functionals Γ and Δ (which form a potential Weihrauch
reduction from some realizer of gG to gG itself), one of the following holds:

(1) some Γ(n) is not a name for a natural number (i.e., an instance of g as defined
below);

(2) there are n, e, e′ ∈ N such that Φe(Γ(n)) = gΓ(n) = Φe′(Γ(n)) but Δ(n, e) �=
Δ(n, e′);

(3) there are n, e ∈ N such that Φe(Γ(n)) = gΓ(n) but ΦΔ(n,e)(n) �= gn.
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18 JUN LE GOH, ARNO PAULY, AND MANLIO VALENTI

If we then define g : N→ NN by g(n) := gn, we see that g is single-valued,
computably true, and gG is not Weihrauch equivalent to any of its realizers (hence
not deterministic, by Proposition 6.3).

We shall construct (gn)n∈N in stages. At each stage, we handle a single pair Γ
and Δ by defining at most two new computable reals gn. We assume that for every
n ∈ N, Γ(n) names a natural number (otherwise no action is needed). Consider the
following cases.

Case 1. For some n ∈ N such that Γ(n) �= n, gn has not been defined. By defining
gΓ(n) if necessary, we may fix some e such that Φe(Γ(n)) = gΓ(n). Since Γ(n) �= n, we
may then define gn to be a computable real which differs from ΦΔ(n,e)(n) (regardless
of whether the latter is total), ensuring (3).

Case 2. Fix some n ∈ N such that gn is not defined. Since Case 1 fails, Γ(n) = n.
Case 2a. There are e, e′ ∈ N such that Φe(Γ(n)) = Φe′(Γ(n)) and Δ(n, e) �=

Δ(n, e′) (this includes the case where either or both sides diverge). We define
gΓ(n) = Φe(Γ(n)), ensuring (2).

Case 2b. If there is some e ∈ N such that Φe(Γ(n)) is total and not equal to
ΦΔ(n,e)(n), we define gn = Φe(Γ(n)). This ensures (3).

To complete the current stage of the construction, we shall show that the above
cases encompass all possibilities. Suppose otherwise. Since Case 2b fails, for all
e ∈ N, whenever Φe(Γ(n)) is total, so is ΦΔ(n,e)(n) and they must be equal. Since Case
2a fails, whenever Φe(Γ(n)) = Φe′(Γ(n)), we have Δ(n, e) = Δ(n, e′). We deduce
that whenever Φe(Γ(n)) and Φe′(Γ(n)) are total, Δ(n, e) = Δ(n, e′) if and only if
Φe(Γ(n)) = Φe′(Γ(n)). This contradicts Lemma 6.4: DefineF :⊆ N→ NbyF (d ) =
Δ(n, e), where Φe upon input Γ(n) merely simulates φd .

This completes the current stage of the construction. Observe we have ensured
that one of (1)–(3) hold for Γ and Δ. �

We may now answer [18, Question 3.5] in the affirmative.

Theorem 6.6. There is a problem f such that 1 Det(f) <W Det
(

1f
)
.

Proof. By Proposition 6.5, fix a problem g which is computably true and single-
valued, such thatgG is not deterministic. By Proposition 6.2, 1 Det

(
gG

)
<W Det

(
gG

)
.

Letf = gG. Then 1 Det(f) ≡W
1 Det

(
gG

)
<W Det

(
gG

)
≡W Det

(
1f

)
, where the last

equivalence holds because f is first-order and Det(·) is degree-theoretic. �

§7. Π0
2– ACCk and Π0

2– ACCN. A crucial role in the separation between BS and
DS in Section 3 is played by partial orders that admit a tree decomposition. It is
therefore natural to ask what is the strength of the restriction BS|Tree of BS to trees.
In order to present our results about the first-order and finitary parts of BS|Tree we
first prove some results about Π0

2 all or co-unique choice, Π0
2– ACCN. This problem

has also been studied in [25] in the context of continuous Weihrauch reducibility.

Definition 7.1. The problem Π0
2– ACCk receives as input a Π0

2-subset A ⊆ k
with |A| ≥ k – 1 and returns some i ∈ A. The problem Π0

2– ACCN receives as input
a Π0

2-subset A ⊆ N with |N \ A| ≤ 1 and returns some i ∈ A.

The relevance of these problems to BS|Tree will be explained in Section 8.
Rather than having to reason directly with Π0

2-subsets, we can use the following
more concrete characterization of the problem.
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THE WEAKNESS OF DS 19

Proposition 7.2. Let X ∈ {k,N} for k ≥ 2. Then Π0
2– ACCX is equivalent to the

problem “Given some p ∈ XN, output some n ∈ X such that n �= limi→∞ pi (which we
understand to be true if the limit does not exist)”.

Proof. Given some p ∈ XN, we observe that {n ∈ X : n �= limi→∞ pi} is a
Π0,p

2 -set omitting at most one element. That shows that Π0
2– ACCX can solve the

problem of finding a non-limit point.
Conversely, let A be a Π0

2-subset of X with |X \ A| ≤ 1. We can A-compute q : X×
N→ 2 such that, for each n ∈ X, q(n, ·) contains infinitely many 1s iff n ∈ A. We
define a sequence p ∈ XN as follows: for each n ∈ X and k ∈ N, let Mn,k := |{j ≤
k : q(n, j) = 0}|.

For the sake of readability, we distinguish the cases where X is finite or not. If
X = k, we define

pi := min{n < k : (∀m < k)(Mn,i ≥Mm,i)}.

If X = N, at each stage i, for each n ≤ i we only see j(n)-many elements of the
sequence (q(n, j))j∈N, where j(n) is least such that 〈n, j(n)〉 > i . In this case, we
define

pi := min{n ≤ i : (∀m ≤ i)(Mn,j(n) ≥Mm,j(m))}.

Observe that, in both cases, if A = X \ {m} for some m, then limi→∞ pi = m,
hence any n �= limi→∞ pi is a valid solution for Π0

2– ACCX(A). �

Observe that Π0
2– ACCk can be equivalently thought of as the restriction of RT1

k

to colourings where at most one color does not appear infinitely often. In particular,
Π0

2– ACC2 ≡W RT1
2.

While in some sense Π0
2– ACCN is a very weak principle – after all, there is just

one single incorrect answer amongst all of the natural numbers – it is at the same
time not particularly easy to solve, as evidenced by the following result.

Proposition 7.3. Π0
2– ACCN �W lim.

Proof. As Π0
2– ACCN is a first-order problem, Π0

2– ACCN ≤W lim would already
imply Π0

2– ACCN ≤W CN. The characterization in Proposition 7.2 shows that
Π0

2– ACCN is a closed fractal. By the absorption theorem for closed fractals
[20, Theorem 2.4], this means that Π0

2– ACCN ≤W CN in turn would imply that
Π0

2– ACCN is computable, which is readily seen to be false. �

The diamond operator [23, Definition 9] roughly captures the possibility of using
a multi-valued function as oracle an arbitrary but finite number of times during a
computation (with the additional requirement of having to declare, at some finite
stage, that no more oracle calls will be made). It can be equivalently defined in terms
of the following reduction game.

Definition 7.4 [16, Definitions 4.1 and 4.3], see also [28, Definition 6.1]. Let
f, g :⊆ NN ⇒ NN be two partial multi-valued functions. We define the reduction
game G(f → g) as the following two-player game: on the first move, Player 1 plays
x0 ∈ dom(g), and Player 2 either plays an x0-computable y0 ∈ g(x0) and declares
victory, or responds with an x0-computable instance z1 of f.
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20 JUN LE GOH, ARNO PAULY, AND MANLIO VALENTI

For n > 1, on the n-th move (if the game has not yet ended), Player 1 plays a
solution xn–1 to the input zn–1 ∈ dom(f). Then Player 2 either plays a 〈x0, ... , xn–1〉-
computable solution to x0 and declares victory, or plays a 〈x0, ... , xn–1〉-computable
instance zn of f.

If at any point one of the players does not have a legal move, then the game ends
with a victory for the other player. Player 2 wins if it ever declares victory (or if
Player 1 has no legal move at some point in the game). Otherwise, Player 1 wins.

We define f� :⊆ N× NN ⇒ (NN)<N as the following problem:

• dom(f�) is the set of pairs (e, d ) s.t. Player 2 wins the game G(f → id) when
Player 1 plays d as his first move, and Φe is a winning strategy for Player 2;

• a solution is the list of moves of Player 1 for a run of the game.

Observe that g ≤W f
� iff Player 2 has a computable winning strategy for the

game G(f → g), i.e., if there is a Turing functional Φ such that Player 2 always
plays Φ(x0, 〈x1, ... , xn–1〉), and wins independently of the strategy of Player 1.

We described the game assuming that f, g have domain and codomain NN. The
definition can be extended to arbitrary multi-valued functions, and the moves of the
players are names for the instances/solutions.

Proposition 7.5. Fink
(

Π0
2– ACC�

k+2

)
≡W id for every k.

Proof. Let g :⊆ NN ⇒ k be such that g ≤W Π0
2– ACC�

k+2 and let Φ be the
computable functional witnessing the winning strategy for Player 2 for the game
G = G(Π0

2– ACCk+2 → g). For each input x ∈ dom(g), we can build the c.e. tree T
of all possible runs of the game G where Player 1 starts by playing x. More precisely,
for � ∈ (k + 2)<N and i < k + 2, we enumerate ��i ∈ T if � ∈ T and Player 2 does
not declare victory on the (|�|+ 1)-th move. Moreover, if Player 2 declares victory
on the (|�|+ 1)-th move, we enumerate ��〈k + 2,Φ(x, �)〉 in T and commit to
never extend this branch further. Intuitively, if Player 2 declares victory then we
reached a leaf of the tree, and the leaf has a special label that contains the last Player
2’s move, i.e., the solution to g(x) obtained using Φ when the oracle answers are
�(0), ... , �(|�| – 1).

Observe that, each non-leaf � ∈ T has exactly k + 2-many children, and at least
k + 1 of them correspond to valid Player 1 moves (i.e., possible Π0

2– ACCk+2-
answers). Observe also that the tree T need not be well-founded and not all the
leaves are necessarily labelled as such. Indeed, the hypothesis that Player 2 has a
winning strategy only guarantees that the subtree S ⊆ T corresponding to valid
runs of the game is well-founded (and it is computable to tell if a string in S is a
label).

By unbounded search, we can compute a well-founded tree S ⊆ T such that,
ε ∈ S, each non-leaf � ∈ S has exactly (k + 1)-many children, and each leaf of
S is of the form ��〈k + 2,Φ(x, �)〉 for some � ∈ (k + 2)<N and Φ(x, �) < k. To
compute a solution for g(x) we proceed recursively on the (finite) rank of S: each
leaf ��〈k + 2,Φ(x, �)〉 of S is simply labelled with Φ(x, �). To compute the label of
a non-leaf �, observe that, by the pigeonhole principle, we can choose i < k such
that at least two of the k + 1 children of � are labelled with i. We can then label �
with i and move to the next stage.
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THE WEAKNESS OF DS 21

We claim that the label of ε is a valid solution for g(x). Indeed, assume � ∈ S
corresponds to a valid run of the game, namely for each i < |�|, �(i) is a valid (n + 2)-
th move for Player 1 when Player 2 plays according to Φ and the first (n + 1) moves
of Player 1 are x, �(0), ... , �(i – 1). By induction, any such � receives a label i < k
such that i ∈ g(x). The statement follows from the fact that ε always represents a
valid run of the game. �

Note that the previous proof only uses that Π0
2– ACCk+2 is a problem with

codomain k + 2 having at most one incorrect answer for every input. Therefore, for
every pointclass Γ ∈ {Σ0

k,Π
0
k,Δ

0
k,Σ

1
1,Π

1
1,Δ

1
1}, we immediately obtain the following.

Corollary 7.6. Fink
(

̂Γ– ACCk+2

)
≡W id for every k ≥ 1.

Proof. This can be proved observing that, for every f, Fink(f) ≤W
1f, and

therefore Fink(f) ≡W Fink
(

1f
)
, as Fink(f) is the strongest problem with codomain

k that is reducible to f. This implies that

Fink
(

̂Γ– ACCk+2

)
≡W Fink

(
1
(

̂Γ– ACCk+2

))
≤W Fink

(
Γ– ACC�

k+2) ≤W id,

where the second inequality follows from the fact, for every first-order f, 1f̂ ≤W f
�

(see [28, Theorem 5.7 and Proposition 6.3]). The last inequality is the statement of
Proposition 7.5. �

Corollary 7.7. Det
(

̂Γ– ACCk+2

)
≡W id for every k ≥ 2.

Proof. Proposition 2.1 and the definitions of deterministic/k-finitary part imply
that, for every f and every k ≥ 2,

Det(f) ≤W D̂etk(f) ≤W
̂Fink(f).

Letting f = ̂Γ– ACCk+2, the claim follows from Corollary 7.6. �
We observe that Proposition 7.5 cannot be improved to show that

Fink
(

Π0
2– ACC�

k+1

)
is computable.

Proposition 7.8. ACCk ≤W Fink
(

Π0
2– ACCk+1

)
for every k ≥ 2.

Proof. We use the equivalent formulation of Π0
2– ACCk+1 introduced in

Proposition 7.2. For every A ∈ dom(ACCk), we uniformly compute a sequence
p ∈ NN as follows:

p(s) :=

{
i if i is enumerated outside of A by stage s
k otherwise.

Let n < k + 1 be such that n �= lims→∞ p(s). If n = k thenA �= k, therefore we can
computably find (by unbounded search) the uniquem ∈ k \ A. Conversely, if n �= k
then it follows by the definition of p that n ∈ A. �

The following proposition shows that for k > 2, the degree Fink
(

Π0
2– ACCk+1

)
escapes a “nice” characterization. The exceptional case of Fin2

(
Π0

2– ACC3

)
is

covered in Corollary 7.10 below.
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Proposition 7.9. Let N⊥ := N ∪ {⊥} be the represented space where ⊥ is
represented by 0� and every n ∈ N is represented by any p �= 0� such that n + 1
is the first non-zero element of p.

For every k ≥ 2, Fink
(

Π0
2– ACCk+1

)
is equivalent to the problem F defined as

follows: given A ∈ dom(Π0
2– ACCk) and n ∈ N⊥ with the assumption that:

• n = ⊥ iff |A| = k;
• if n ∈ N then n ∈ A,

find m ∈ Π0
2– ACCk(A).

Proof. We shall use the characterization of Π0
2– ACCk introduced in

Proposition 7.2, i.e., we can assume that a name for A ∈ dom(Π0
2– ACCk) is a

sequence p ∈ kN such that if limn p(n) exists then it is the unique i < k not in A.
Let us first show that F ≤W Π0

2– ACCk+1. Let 〈p, q〉 be a name for (A, n) ∈
dom(F ). We define a sequence r ∈ (k + 1)N as follows: as long as q(i) = 0, let
r(i) := k. If q(i) �= 0 for some i, then, for every j ≥ i , r(j) := p(j).

Clearly, r is a (name for a) valid input for Π0
2– ACCk+1. Observe that if q is not

constantly 0 then |A| < k, hence the sequence p has a limit l < k. In particular,
r always has a limit. We claim that, given m �= limi→∞ r(i), we can uniformly
compute a valid solution for F (A, n). Indeed, if m < k, then m ∈ A. This follows
from the fact that if q is constantly 0 then |A| = k. Conversely, if q is not constantly
0 then m �= limi p(i), and therefore m ∈ A. On the other hand, if m = k then q is
not constantly 0, so, by hypothesis, if q(i) is the first non-zero element of q then
q(i) – 1 ∈ A. This shows that F ≤W Π0

2– ACCk+1.
Assume now that f :⊆ NN ⇒ k is such that f ≤W Π0

2– ACCk+1 via Φ,Ψ. For
the sake of readability, we can assume that Ψ has codomain N. To reduce
f to F, suppose we are given some x ∈ dom(f). In parallel, we can simulate
the computations Ψ(x, i) for every i < k + 1. We can uniformly compute two
sequences p, q ∈ kN as follows: we wait until we either find i < j < k + 1 such that
Ψ(x, i) = Ψ(x, j) = n or we see that |{Ψ(x, i) : i < k + 1}| = k (by the pigeonhole
principle, at least one of two cases must happen). If we first find i < j < k + 1 such
that Ψ(x, i) = Ψ(x, j) = n, we define p, q so that 0s(n + 1) � q for some s and p
is any convergent sequence with limp �= n. On the other hand, if we first see that
|{Ψ(x, i) : i < k + 1}| = k, we proceed as follows: we keep searching for i < j as
above. If they are never found, we let q := 0� and p be any non-convergent sequence.
Conversely, if they are found, we define q so that 0s(n + 1) � q for some s. Moreover,
we let p be a convergent sequence with limp �= n such that if limt Ψ(x,Φ(x)(t))
exists and is different from n then limp = limt Ψ(x,Φ(x)(t)). This can be done by
computing Ψ(x,Φ(x)(t)) and replacing each occurrence of n with some m �= n.

Observe that 〈p, q〉 is a valid name for an input (A, n⊥) of F. Indeed, q is constantly
0 iff p is not convergent, i.e., iff p is a name for the input A of Π0

2– ACCk with
|A| = k. Moreover, if q is not constantly 0 then it is a name for some n ∈ N
with n �= limp. Given m ∈ F (A, n⊥), we can uniformly compute a solution for
f(x) as follows: we wait until we see that q is the name for some n �= ⊥ or
that |{Ψ(x, i) : i < k + 1}| = k. If the former is observed first, then n ∈ f(x),
as there are i < j with Ψ(x, i) = Ψ(x, j) = n, and either i or j is a valid solution
for Π0

2– ACCk+1(Φ(x)). Conversely, if we first see that |{Ψ(x, i) : i < k + 1}| = k,
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then any m ∈ F (A, n⊥) is a valid solution for f(x). Indeed, if |f(x)| < k then
the (unique) wrong solution is lim Ψ(x,Φ(x)) (as Π0

2– ACCk+1(Φ(x)) has at most
one wrong solution). By construction, m �= limp = lim Ψ(x,Φ(x)), and therefore
m ∈ f(x). Observe that, in this case, q is not the constantly 0 sequence (if q is
constantly 0 then every i < k + 1 is valid solution for f(x)). �

Corollary 7.10. Fin2

(
Π0

2– ACC3

)
≡W C2.

Proof. As ACC2 ≡W C2, one direction follows from Proposition 7.8. That

Fin2

(
Π0

2– ACC3

)
≤W C2 follows from Proposition 7.9 by observing C2 can solve

the task “Given n ∈ N⊥, compute some b ∈ {0, 1} such that if n ∈ {0, 1}, then
b = n”. �

§8. Finding antichains in trees. We turn our attention to trees as a special case of
partial orders, where we identify a tree with its prefix relation. We observe that a tree
is a wqo iff it has finite width; in particular, being wqo is merely a Σ0

2-property for
trees rather than Π1

1 as for general quasi-orders. While trees can only avoid being wqo
by having an infinite antichain, being a bad sequence is a weaker notion than being
an antichain. However, a given infinite bad sequence in a tree can be computably
thinned out to yield an infinite antichain. We let BS|Tree denote the restriction of BS
to subtrees of N<N, and think of it as the problem that receives as input a tree of
infinite width and returns an infinite antichain in it. How BS|Tree and its first-order
part relate to other principles, in particular those discussed in the previous section,
is depicted in Figure 2.

Even though the instances of BS|Tree are arbitrary subtrees of N<N of infinite
width, we show below that its strength comes already from the pruned subtrees of
2<N (a tree is pruned if it has no leaves). Compare this with the problem C

NN of
finding an infinite path through a given ill-founded subtree of N<N: Its restriction to
ill-founded pruned trees is of course computable, and its restriction C2N to subtrees
of 2<N is known to be much weaker (see [3, Figure 11.2]). This is unsurprising given
the difference in the complexity between “T is wqo” and “T is well-founded”.

Proposition 8.1. BS|Tree is Weihrauch equivalent to its restriction to pruned
subtrees of 2<N.

Proof. Given a tree T ⊆ N<N of infinite width, we shall uniformly compute
a pruned tree S ⊆ 2<N, also of infinite width, together with a surjective labelling
function � : S → T , such that if �(v) � �(w) then v � w. The image of any infinite
S-antichain under � would then be an infinite T-antichain.

Our construction proceeds in phases, where at the end of phase n, we commit
to S ∩ 2<n and the corresponding restriction of �. Throughout the construction we
will respect the constraint that �(v) � �(w) implies v � w. At the end of phase n,
all leaves in S will have height at least n, so S will be ultimately be a pruned tree.

During phase 0, we simply add the root to S and label it with the root of T. Fix
an ordering of the vertices of T (with order-type �) which agrees with �. In phase
n, start by considering the first vertex u ∈ T that is not yet enumerated in ran(�).
Our constraint on � implies that the set {v′ ∈ S : �(v′) � u} forms a path in S, say
with final vertex v′. (Observe that �(v′) is the parent of u.) Let v be the first vertex of

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10160
Downloaded from https://www.cambridge.org/core. Swansea University, on 18 Dec 2025 at 15:35:01, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10160
https://www.cambridge.org/core


24 JUN LE GOH, ARNO PAULY, AND MANLIO VALENTI

ACCN

ACCk+1

ACCk

ACC2 ≡W C2

Π0
2– ACCN

1BS|Tree

Π0
2– ACCk+1

Π0
2– ACCk

Π0
2– ACC2 ≡W RT1

2

ÂCCN

ÂCCk+1

ÂCCk

ÂCC2 ≡W C2N

̂Π0
2– ACCN

̂Π0
2– ACCk+1

̂Π0
2– ACCk

̂Π0
2– ACC2 ≡W KL

BS|Tree

Figure 2. The figure shows all reductions between the depicted principles up to
transitivity, with the potential exception that we have not ruled out beingBS|Tree ≤W

̂Π0
2– ACCN. The diagram can be thought of as a cube whose vertical edges have

decreasing chains parameterized by k ≥ 2 on them, and the bottom corners are
labelled by degrees which are below the ones on the edges for all k.

height at least n – 1 such that v′ � v and either v�0 /∈ S or v�1 /∈ S. Such v exists
because all leaves in S have height at least n – 1. We then add a child to v (i.e., put
v�0 in S if v�0 /∈ S, else put v�1 in S) and label the child with u.

If we now have both v�0 and v�1 in S, we conclude phase n by adding a child to
each vertex in S which was in S at the beginning of phase n and is currently a leaf
in S. Each such child is labelled the same way as its parent in S. This ensures every
leaf in S has height at least n. Notice that this action maintains our constraint on �.

On the other hand, if only one of v�0 and v�1 lie in S, we consider the next u ∈ T
that is not in ran(�) and repeat the above steps. To see why this process terminates,
observe that if it did not, then there must be some u ∈ T first considered in phase
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THE WEAKNESS OF DS 25

n which has multiple children. Suppose we acted for u by adding v�0 to S and
defining �(v�0) = u. Let u′ denote the first child of u to be considered in phase n.
Then v�0 would be the first vertex of height at least n – 1 which extends every v′

with �(v′) � u′, because the highest vertex v′ with �(v′) � u′ is precisely v�0, which
has height at least n. Therefore we would add v�00 to S and define �(v�00) = u′.
Similarly, if u′′ denotes the second child of u to be considered in phase n, then we
would add v�01 to S and define �(v�01) = u′′. We would then conclude phase n,
contrary to assumption.

This completes the description of our construction. We have ensured that S
contains infinitely many vertices v with v�0, v�1 ∈ S, so S has infinite width.
The other requirements are directly enforced by the construction. �

Next, we shall characterize the finitary parts and deterministic part of BS|Tree. If
(T,�) is a tree and v is a vertex in T, define [v]T = {w ∈ T : v � w}. We omit the
subscript T if the tree in question is clear from context.

Proposition 8.2. BS|Tree ≤W
̂Π0

2– ACCk for every k ≥ 2.

Proof. Given a tree T ⊆ N<N with infinite width, we consider all antichains
(v0, v1, ... , vk–1) of size k in it. For each such antichain, at most one vertex vi must
be avoided when building an infinite antichain, which happens if T \ [vi ] has finite
width. We can use Π0

2– ACCk to select a suitable choice amongst the vi . We can then
greedily build an infinite antichain from the selected vertices. �

Corollary 8.3. Fink(BS|Tree) ≡W id for every k ≥ 1. Therefore, Det(BS|Tree) ≡W

id.

Proof. For the first part of the statement, fix k ≥ 1. By Proposition 8.2 and
Corollary 7.6,

Fink(BS|Tree) ≤W Fink

(
̂Π0

2– ACCk+2

)
≡W id.

Similarly, the second part of the statement then follows from Det
(

̂Π0
2– ACCk+2

)
≡W

id (Corollary 7.7). �
We now turn our attention to the first-order part of BS|Tree. The following first-

order problem clearly reduces to BS|Tree.

Definition 8.4. Let ExtVer denote the problem taking a tree T of infinite width,
and returning a vertex v ∈ T such that T \ [v] still has infinite width, i.e., a vertex
that is extendible to an infinite antichain.

The construction employed to prove Proposition 8.1 also shows that for ExtVer it
is immaterial whether we consider countably-branching or binary trees, and whether
we assume the trees to be pruned or not.

Proposition 8.5. ExtVer ≡W
1BS|Tree.

Proof. We only need to show that 1BS|Tree ≤W ExtVer. An instance of 1BS|Tree is
a tree T of infinite width together with a notion of “sufficiently large finite antichain”
(more formally, the latter is a computable functional which, when given T and an
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26 JUN LE GOH, ARNO PAULY, AND MANLIO VALENTI

infinite T-antichain, must halt on some initial segment thereof). A solution is a
sufficiently large finite antichain which is extendible to an infinite one. We shall
compute a tree T ′ ⊆ N<N of infinite width such that each vertex v ∈ T ′ (other than
the root) is labelled with a sufficiently large finite antichain Av in T, and if v extends
to an infinite T ′-antichain, then Av extends to an infinite T-antichain. For clarity,
we shall use Greek letters (�, �) to denote the vertices of T, and Roman letters (v, w)
to denote the vertices of T ′.

The tree T ′ is defined recursively as follows. Start by putting the root in T ′. The
children of the root will each be labelled with a sufficiently large finite antichain Ai
in T. Specifically, the i-th child of the root is defined recursively as follows: First
search forA0 andA1 in T, disjoint and each sufficiently large, such thatA0 ∪ A1 forms
an antichain. Since T has infinite width, this search is successful and we label the first
child withA0 and the second child withA1. Then search forA2 sufficiently large and
disjoint from A0 ∪ A1 such that A0 ∪ A1 ∪ A2 forms an antichain. If found, we label
the third child with A2. Proceed to search for A3, and so on. Note that (Ai)i may
not be infinite. The reason why we start by searching for two antichains A0 and A1,
and then continue by searching one extra antichain at a time (first A2, then A3, and
so on) is to guarantee that if a node has a child, then it has at least two incomparable
children. More generally, if v ∈ T ′ is not the root, then we define the children of v
by searching as above among the sufficiently large antichains B such that B �T Av
(i.e., there is some � ∈ Av such that � � � for all � ∈ B). Note that for certain v, this
search may turn up empty. This completes the construction of T ′, excepting a final
modification to ensure thatT ′ is computable (uniformly in T): Each child of a vertex
in T ′ shall encode the stage at which its corresponding T-antichain was found.

We claim that T ′ has infinite width. If any vertex has infinitely many children, we
are done. Otherwise, we shall prove by induction that at each level of T ′ (beyond
the root), there is some vertex v and some � ∈ Av such that [�]T has infinite width.
This would imply that v has at least two children, allowing us to conclude that
T ′ has infinite width. The inductive step proceeds as follows: Suppose v ∈ T ′ and
� ∈ Av are such that [�]T has infinite width. Say the children of v are labelled by
the antichains A0, A1, ... , Ak . Then A0 ∪ ··· ∪ Ak is not extendible to an infinite
antichain in

⋃
�∈Av [�]T (else v would have additional children), but the latter

contains [�]T and thus has infinite width. So there is some i and some � ∈ Ai such
that [�]T has infinite width. The base case proceeds similarly; simply consider the
children of the root in T ′ and use the assumption that T has infinite width.

Next, we claim that if v0, v1 ∈ T ′ are incomparable, then any �0 ∈ Av0 and
any �1 ∈ Av1 are T-incomparable. This would imply Av0 and Av1 are disjoint and
Av0 ∪ Av1 is a T-antichain. To prove the claim, let w ∈ T ′ denote the longest
common ancestor of v0 and v1. Let w0 � v0 and w1 � v1 be children of w. By
construction, Aw0 and Aw1 are disjoint and Aw0 ∪ Aw1 is a T-antichain. Also by
construction, for i = 0, 1, there is some �i ∈ Awi such that �i � �i . Since �0 and �1
are T-incomparable, so are �0 and �1.

The above claim implies that if v ∈ T ′ is extendible to an infinite T ′-antichain
(vi)i , thenAv is extendible to an infinite T-antichain, namely

⋃
i Avi . Since everyAv

is sufficiently large, this yields a Weihrauch reduction from 1BS|Tree to ExtVer. �
Similar to Proposition 8.2, we shall obtain an upper bound for 1BS|Tree. Let⊔k≥2 Π0

2– ACCk denote the following problem: Given a sequence (pk)k∈N where
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THE WEAKNESS OF DS 27

each pk is an Π0
2– ACCk-instance, find (k, i) ∈ N2 such that i ∈ Π0

2– ACCk(pk).
Observe that ⊔k≥2 Π0

2– ACCk ≤W ACC� for every �. The operation (fn)n∈N 
→⊔n∈N
fn is a generalization of the binary meet to countably many problems.

However, it is known that the Weihrauch degrees are not a ℵ0-complete meet
semilattice ([15], see also [21]).

Proposition 8.6. ExtVer <W ⊔k≥2 Π0
2– ACCk .

Proof. First, we prove the reduction. Given a tree T of infinite width, search
for antichains of each finite size. Within each antichain, at most one vertex is not
extendible to an infinite antichain in T. Since extendibility is a Π0

2 property (relative
to T), for each k we can build an input for Π0

2– ACCk to identify one vertex in the
antichain of size k which is extendible. Then a solution for any of the Π0

2– ACCk-
instances yields an ExtVer-solution to T.

To show that the reduction is strict, assume towards a contradiction that⊔k≥2 Π0
2– ACCk ≤W ExtVer. Apply the reduction to the “neutral” input to⊔k≥2 Π0
2– ACCk , i.e., where every j < k is a solution. If the resulting tree T contains

incomparable vertices v0 and v1 which yield the same output j < k under the
reduction, we may fix a finite prefix which determines this fact, then render j
wrong in the Π0

2– ACCk-instance by enumerating it. This leads to a contradiction
because either v0 or v1 must be a valid ExtVer-solution. On the other hand, if
incomparable vertices in T always yield different outputs under the reduction, by
the pigeonhole principle, there must be incomparable vertices v0 and v1 which yield
outputs for different k. Say vi determines the output ji < ki . Once again this fact
is determined by a finite prefix of the neutral input. We then render ji wrong in the
Π0

2– ACCki -instance for i = 0, 1 after said finite prefix. Since either v0 or v1 must be
an ExtVer-solution, we reach a contradiction. �

It turns out that ExtVer is sandwiched between Π0
2– ACCN and ⊔k≥2 Π0

2– ACCk .

Proposition 8.7. Π0
2– ACCN ≤W ExtVer.

Proof. Given some p ∈ NN, we shall build some T ⊆ 2<N of infinite width such
that from any vertex in T which is extendible to an infinite antichain, we can compute
some n such that p does not end in n� (i.e., if limi pi exists, it is not n). We can assume
without loss of generality that pi ≤ i . The tree is constructed level by level. After
each level is constructed, each newly added vertex is labelled by the least natural
number which has yet to be used as a label, in order from left to right. When building
level s, first consider the leftmost leaf which extends the vertex with label ps . Such
a vertex must exist because T already has more than s ≥ ps vertices. Add both
children of said leaf to T. Then, for every other leaf in T (excluding the children just
added), add its left child to T.

As we have a bifurcation on every level and no dead-ends, T has infinite width.
Moreover, if p ends in n� , then the subtree of T not extending the vertex with label
n has finite width, i.e., the vertex with label n is not extendible. �

The following proposition is stated for Π0
2– ACCN but can be easily generalized to

any pointclass Γ.

Proposition 8.8. ExtVer �W Π0
2– ACCN.
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Proof. Since Π0
2– ACCN �W lim (Proposition 7.3), it suffices (by Proposition 8.7)

to prove that if ExtVer ≤W Π0
2– ACCN, then ExtVer ≤W lim. We will in fact reduce

ExtVer to LPO.
Observe that the forward functional of a putative reduction ExtVer ≤W Π0

2– ACCN

constitutes a computable procedure for producing a sequence of vertices (vi)i∈N in
a given tree of infinite width such that there is at most one vertex vi which is not
extendible (to an infinite antichain). To reduce ExtVer to LPO, ask LPO if there are
j, k with vj � vk . If so, then vk must be extendible because (1) at most one vi is not
extendible and (2) if vj is extendible, so is vk . On the other hand, if (vi)i∈N is already
an infinite antichain, then v0 is extendible. �

To summarize:

Corollary 8.9. Π0
2– ACCN <W ExtVer ≡W

1BS|Tree <W ⊔

k≥2
Π0

2– ACCk .

Corollary 8.10. ACCN × ACCN �≤W BS|Tree. In particular, 1BS|Tree <W
1BS|Tree × 1BS|Tree and BS|Tree <W BS|Tree × BS|Tree.

Proof. By Proposition 8.6, ACCN × ACCN ≤W BS|Tree implies ACCN ×
ACCN ≤W Π0

2– ACC2 ≡W RT1
2, which is easily seen to be false. The rest of the

statement follows easily from the fact that BS|Tree × BS|Tree ≤W BS|Tree implies
1BS|Tree × 1BS|Tree ≤W

1BS|Tree (see, e.g., [28, Proposition 4.1]), which, in turn,
implies ACCN × ACCN ≤W BS|Tree. �

We end this section by drawing attention to the following open question.

Open Question 8.11. Does BS|Tree ≤W DS?

All lower bounds for BS|Tree known to us are also below DS; this in particular
applies to the finitary, deterministic, and first-order parts of BS|Tree. On the other

hand, the best upper bound forBS|Tree we have is ̂Π0
2– ACCk (Proposition 8.2), which

in turn does not reduce to DS (or even BS) by Corollary 4.4. One natural attempt
to reduce BS|Tree to DS is blocked by the following observation.

Proposition 8.12. There is no computable procedure that receives as input any tree
T ⊆ 2<N and returns a linear extension (T,≺) of the prefix relation on T such that
whenever T has infinite width, then ≺ is ill-founded.

Proof. For the sake of a contradiction, assume there exists such a procedure.
We shall define a pruned binary tree T of infinite width on which the procedure
produces a well-ordering. At each stage, we define one new level of T as follows.
Start by putting the root, 0, and 1 into T. Wait for the procedure to decide whether
0 ≺ 1 or 1 ≺ 0. While waiting, we extend 0 and 1 by 0s. Eventually, say at stage s0,
the procedure decidesw0 ∈ {0, 1} is the≺-max of 0 and 1. We then add a split above
w0, i.e., put w0

�0s0 0 and w0
�0s01 into T. In general, if we added a split into T at

stage sn, let An denote the T-antichain of vertices which are currently T-maximal.
We wait for the procedure to decide max≺An. While waiting, we extend each
T-maximal element by 0s. Once wn has been decided as max≺An, we add a split
abovewn�0k where k is largest such thatwn�0k ∈ T . We end the stage by extending
all other T-maximal elements by 0.
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THE WEAKNESS OF DS 29

The construction adds infinitely many splits, so T has infinite width. To show that
(T,≺) is a well-ordering, first observe that (wn)n forms an increasing cofinal sequence
in (T,≺). It therefore suffices to show that eachwn lies in the≺-well-founded part W.
Suppose towards a contradiction that there is some infinite ≺-descending sequence
S which begins with wn. There must be some a ∈ An, different from wn, such that
infinitely many elements of S are T-above a. This is because if x ≺ b for every
b ∈ An, then x is a prefix of some of them. Then the subtree of T above a must
contain splits; furthermore, some s ∈ S lies T-above such a split (otherwise the
subsequence of S which is T-above a forms a T-chain, which must have ≺-order
type �). However, by construction of T, such a split occurs above some wm where
m > n, so we have s " wm " wn. This contradicts the fact that S begins withwn. �

§9. The quotient relative to the parallel product. Theorem 4.3 implies that

max≤W{h : h × ÂCCN ≤W BS}

exists and is equal to (the Weihrauch degree of) lim. The existence of such a
maximum (with different problems in place of ÂCCN and BS) was discussed in
[12, Theorem 3.7], which prompted them to ask about the extent to which the
“parallel quotient” operator

f/g ≡W max≤W{h : h × g ≤W f}

is defined. While [12, Remark 3.11] says “We have no reason to think this operator
is total [...]”, we address their question by showing that the operator in question is
in fact total.

Definition 9.1. Given f, g :⊆ NN ⇒ NN with g different from 0, we define their
parallel quotient f/g :⊆ N× N× NN ⇒ NN as follows:

dom(f/g) := {(e, i, p) : (∀q ∈ dom(g))[Φe(p, q) ∈ dom(f) and

(∀r ∈ f(Φe(p, q)))(Φi (p, q, r) ∈ g(q))]}

f/g(e, i, p) := {〈q, r〉 : q ∈ dom(g) ∧ r ∈ f(Φe(p, q))}.

Proposition 9.2. f/g ≡W max≤W{h : h × g ≤W f}.

Proof. Given a g-instance q and anf/g-instance (e, i, p), consider the f -instance
Φe(p, q). Given an r ∈ f(Φe(p, q)), we may compute (using q and e, i, p) Φi(p, q, r),
which is a g-solution of q, and 〈q, r〉, which is anf/g-solution of (e, i, p). This proves
f/g × g ≤W f.

Suppose h is a problem such that h × g ≤W f via Φe , Ψ. We want to show that
h ≤W f/g. Let p be an h-instance. Observe that, in order to compute a solution for
h(p), we only need a g-input q and any solution r ∈ f(Φe(p, q)).

Let i be an index for the functional which takes in input (p, q, r) and produces
the projection of Ψ(p, q, r) to the second coordinate. Given the h-instance p, we
uniformly compute the f/g-instance (e, i, p). For every 〈q, r〉 ∈ f/g(e, i, p), the
projection of Ψ(p, q, r) to the first coordinate is an h-solution to p. �
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It follows that f/g is well-defined on all (non-zero) Weihrauch degrees, so we
may extend Definition 9.1 to all (non-zero) problems. The following proposition is
a straightforward consequence of the definitions.

Proposition 9.3.

(1) If g is pointed, then f/g ≤W f.
(2) If f0 ≤W f1 and g0 ≤W g1, then f0/g1 ≤W f1/g0.

The parallel quotient is useful to describe to what extent a problem f is stable
under parallel product. If f is pointed and closed under product, thenf/f ≡W f. At
the same time, if f is not closed under product, the quotientf/f gives a quantitative
estimate of “the lack of closure of f under parallel product”.

The parallel quotient is an example of a residual operator. In general, for a fixed
operator ·, it is interesting to investigate the existence of the following degrees:
max{h : f · h ≤W g}, max{h : h · f ≤W g}, min{h : g ≤W f · h}, and min{h :
g ≤W h · f}. A residual operator for · is one that witnesses the existence of one (or
more) of these maxima/minima. The existence of residual operators for the join
# and the meet $ in the Weihrauch degrees has been studied in [15]. Besides, the
existence of min{h : g ≤W f ∗ h} has been proven in [4] (resulting in the implication
operator →). The parallel quotient is a residual operator for ×. A more thorough
study of the existence of residual operators for other choices of · is currently under
investigation. Further properties of the parallel quotient will be discussed in an
upcoming paper.

As already observed, Theorem 4.3 can be rewritten as

DS/ÂCCN ≡W BS/ÂCCN ≡W lim.

We now discuss the parallel quotient of DS and BS over other well-known
problems.

Proposition 9.4. DS≡W CN×DS≡W DS ∗ CN andBS ≡W CN × BS ≡W BS∗CN.

Proof. The reductions DS ≤W CN × DS ≤W DS ∗ CN are trivial. To show that
DS ∗ CN ≤W DS, let (w,p) ∈ dom(DS ∗ CN). Without loss of generality, we may
view the (possibly finite) string produced by Φw(n) as a linear order Ln. Clearly Ln
need not be ill-founded if n /∈ CN(p).

We shall uniformly compute a linear order L as follows: the elements of L will be
of the form (n, x, s), where

(n, x, s) ≤L (m, y, s ′) :⇐⇒ n < m or (n = m and x ≤Ln y).

The third component plays no role in the order and is only used to guarantee that
the resulting linear order is computable (and not just c.e.). The construction below
will guarantee that no two triples share the same third component.

Starting from n = 0, as long as n is not enumerated outside of CN(p), we build an
isomorphic copy of Ln at the top of L. More precisely we add (n, x, s) to L, where s
is the current step of the construction and x is the N-least element of Ln which has
not been added.

If we ever see n /∈ CN(p), we continue the above with n + 1 instead of n.
This completes the construction of L. Observe that if n = minCN(p) then, modulo

a finite initial segment, L is isomorphic to Ln. In particular, L is ill-founded and,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10160
Downloaded from https://www.cambridge.org/core. Swansea University, on 18 Dec 2025 at 15:35:01, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10160
https://www.cambridge.org/core


THE WEAKNESS OF DS 31

given any infinite descending sequence through L, we can uniformly compute n and
a descending sequence through Ln.

The very same argument works for BS in place of DS: just replace “linear order”,
“ill-founded”, and “descending sequence” with “quasi-order”, “a non-well quasi
order”, and “bad sequence”, respectively. �

Lemma 9.5. Let g be computably true (i.e., every g-instance has a g-computable
solution). Suppose g ≤W f| X , where f| X is such that, for every x ∈ X and every
y ∈ f(x), y �≤T x. Then f/g �≤W g.

Proof. Let (e, i, p) ∈ dom(f/g) be such that p is computable and the maps
q 
→ Φe(p, q) and (q, r) 
→ Φi(p, q, r) witness the reduction g ≤W f| X . Observe
that, by definition of f/g and (e, i, p), every solution of f/g(e, i, p) computes a
solution for f(Φe(p, q)) for some input q ∈ dom(g). In particular, since Φe(p, q) ∈
X , f/g(e, i, p) does not have any computable solution.

If f/g ≤W g as witnessed by Φ,Ψ, then for every t ∈ gΦ(e, i, p), Ψ((e, i, p), t) ∈
f/g(e, i, p). This is a contradiction as g is computably true and therefore gΦ(e, i, p)
always contains a computable point. �

Proposition 9.6. For f ∈ {DS,BS}, Π1
1– Bound <W f/Π

1
1– Bound ≤W

f/RT1
2 <W f.

Proof. The reduction Π1
1– Bound ≤W DS/Π1

1– Bound follows from the fact
that Π1

1– Bound is closed under product (see, e.g., [28, Theorem 7.16])
and Π1

1– Bound ≤W DS. To show that this reduction is strict, we shall
use Lemma 9.5. Let X be the set of ill-founded linear orders L with no
L-computable descending sequence. One can modify the reduction [18, Proposition
4.8] from Π1

1– Bound to DS to show Π1
1– Bound ≤W DS|X : Given a Π1

1– Bound-
instance (thought of as a sequence of trees (Tn)n), define a (Tn)n-computable
ill-founded tree S with no (Tn)n-computable path (this can be done in a
manner which is uniformly computable from (Tn)n). Then define a linear order
L =

⋃
n{n} ×KB(Tn × S). Note that if Tn is well-founded, then so is Tn × S,

while if Tn is ill-founded, then Tn × S is ill-founded with no (Tn)n-computable
path. So L is ill-founded with no L-computable descending sequence. The backward
functional works as in [18, Proposition 4.8]. It follows from Lemma 9.5 that
DS/Π1

1– Bound �W Π1
1– Bound.

The reduction DS/Π1
1– Bound ≤W DS/RT1

2 follows by the antimonotonicity of
the quotient operator. The reductionDS/RT1

2 ≤W DS is immediate asRT1
2 is pointed.

The fact that it is strict follows from the fact that if DS ≤W DS/RT1
2 then, by defini-

tion,RT1
2 × DS ≤W DS. This is impossible as, by Theorem 4.3,RT1

2 × ÂCCN �≤W DS.
Replacing DS with BS in the above argument shows that the statement holds for

BS as well. �
Notice that, in the proof of the previous result, we used the fact that both

DS/Π1
1– Bound and BS/Π1

1– Bound (and hence DS/RT1
2 and BS/RT1

2) have
computable instances with no computable solutions. In particular, this implies that
none of them is a first-order problem. The following result provides a lower bound
for DS/RT1

2 and BS/RT1
2.

Let us denote with DSFE (resp., BSFE) the problem “given an ill-founded linear
order (resp., non-well quasi-order) X, compute a sequence that, cofinitely, is an
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X -descending sequence (resp., X -bad sequence)”. We mention that DSFE and BSFE

can be characterized as CN → DS and CN → BS, respectively.

Proposition 9.7. RT1
2 × DSFE ≤W DS and RT1

2 × BSFE ≤W BS.

Proof. We only prove thatRT1
2 × DSFE ≤W DS; the proof forBS can be obtained

analogously by adapting the following argument. Let (c, L) be an instance of
RT1

2 × DSFE, where c : N→ 2 is a 2-coloring and L = (xn)n∈N is an ill-founded
linear order. We build a linear order M in stages. Intuitively, we want to build a copy
of L until we see that the current color changes. When this happens, we start building
a fresh copy of L at the top of the current linear order. However, to guarantee that
the resulting order will be ill-founded, we also build another copy of L at the bottom,
which gets expanded every time two color changes are observed.

Formally, we construct the order M as follows: elements are of the form (n, x, b, s)
and are ordered as

(n, x, b, s) ≤M (m, y, b′, s ′) :⇐⇒ n < m or (n = m and x ≤L y).

The third and fourth components play no role in the order M. The construction
below will guarantee that this is a linear order (rather than a quasi-order).

At stage 0, we add (1, x0, c(0), 0) to M. We also define p0 :=– 1, q0 := 0, and
h0 := 1. Intuitively, ps stores the last position in the bottom copy of L and qs stores
the last position in the top copy of L.

At stage s + 1, we distinguish the following cases:

• If c(s + 1) = c(s) = b, we add (hs , xqs+1, b, s + 1) to M. We define qs+1 :=
qs + 1, ps+1 := ps , hs+1 := hs and go to the next stage.

• If c(s + 1) = 1 and c(s) = 0, we add (hs + 1, x0, 1, s + 1) to M. We define
qs+1 := 0, ps+1 := ps , hs+1 := hs + 1 and go to the next stage.

• If c(s + 1) = 0 and c(s) = 1, we add (hs + 1, x0, 0, s + 1) to M. We also add
(0, xps+1, 2, s + 1) to M. We define qs+1 := 0, ps+1 := ps + 1, hs+1 := hs + 1
and go to the next stage.

This concludes the construction.
Observe that if the coloring c is eventually constant and limn c(n) = b, then

M ∼= N + L for some N ∈ N (in particular it is ill-founded) and every descending
sequence through M is of the form ((n, yi , b, si))i∈N for some n, where (yi)i∈N is
an L-descending sequence. In particular, we can compute a solution for (RT1

2 ×
DSFE)(c, L) via projections.

On the other hand, if c is not eventually constant, then M ∼= L+ �. Every
descending sequence through M must eventually list elements of the initial segment
of M isomorphic to L. In particular, if ((ni , yi , bi , si))i∈N is an M-descending
sequence then b0 ∈ RT1

2(c) (trivially) and (yi)i∈N ∈ DSFE(L). �

Let Sort2 : 2N → 2N be defined by Sort2(p) = 0i1� if there are exactly i-many n
such that p(n) = 0, otherwise Sort2(p) = 0� . While Sort2 and RT1

2 are quite weak
on their own, their parallel product does not reduce to BS.

Proposition 9.8. Sort2 ×RT1
2 �≤W BS.
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Proof. Observe first of all that BS is a cylinder, i.e., id× BS ≤sW BS (this can
be easily proved by adapting the proof of [18, Proposition 4.6]). This means that it
suffices to prove Sort2 ×RT1

2 �≤sW BS (see [3, Proposition 11.3.5]).
Assume towards a contradiction that the functionals Φ,Ψ0,Ψ1 witness the strong

reduction Sort2 ×RT1
2 ≤sW BS (where Ψ0 and Ψ1 produce, respectively, the Sort2 and

the RT1
2 answers). We build an instance (p, c) of Sort2 ×RT1

2 in stages as follows. At
each stage s, we have a finite string �s , a finite coloring �s , and a setDs of finite bad
sequences in the quasi-order �s produced by Φ(�s , �s) in s steps. Intuitively, the set
Ds corresponds to the set of finite bad sequences that have already been forced to
be non-extendible. Recall the quasi-order � (Definition 4.1) on bad sequences.

We start with �0 := �0 := ε andD0 := ∅. At stage s + 1 = 2n + 1, we consider the
setMs+1 of all the �-maximal bad sequences 	 in �s+1 that are not in Ds and such
that:

• Ψ1(	)(0) ↓= k < 2;
• Ψ0(	) did not commit to a finite number of zeroes for the Sort2 solution (i.e.,

the string produced by Ψ0(	) in s + 1 steps is not of the form 0i�1� for any i
or �).

For each such 	 , we search for a sufficiently large m ∈ N such that there exists a
finite bad sequence α in Φ(�s�1m, �s�(1 – k)m) such that 	 � α and there is i such
that 0i1 � Ψ0(α) within s + 1 +m steps. In other words, we extend our finite input
of Sort2 and finite coloring �s so as to force the forward functional to produce some
finite bad sequence α � 	 such that Ψ0(α) commits to a finite number of zeroes for
the Sort2 solution. Observe that this needs to happen because 	 cannot be extendible
in Φ(�s�1�, �s�(1 – k)�) (it is producing the wrong RT1

2 answer) and hence, by
Lemma 4.2, there is a finite bad sequence α in Φ(�s�1�, �s�(1 – k)�) as desired.
We diagonalize against α by extending �s�1m with (i + 1)-many zeroes. We then
add α and every bad sequence �-below α to Ds . This concludes the action needed
for 	 . Once all the bad sequences inMs+1 have received attention, we go to the next
stage.

At stage s + 1 = 2n + 2, we consider the set Ms+1 of all the �-maximal bad
sequences 	 in �s+1 that are not in Ds and such that, for some i, 0i1 � Ψ0(	). Let

j := max{i : (∃	 ∈Ms+1)(0i1 � Ψ0(	))}+ 1.

We can uniformly compute such j becauseMs+1 is finite. We define �s+1 := �s�0j1
and �s+1 := �s�0. We also add the �-downward closure ofMs+1 into Ds and go to
the next stage.

This concludes the construction. It is apparent that the strings �s and �s are
extended infinitely often, and therefore the pair (p, c) with p :=

⋃
s �s and c :=⋃

s �s is a valid instance for Sort2 ×RT1
2. Let � be the non-well quasi-order defined

by Φ(p, c) and let B ∈ BS(Φ(p, c)). By continuity, let n be such that Ψ1(B[n]) ↓
and let s + 1 be the first stage by which every element of B[n] enters �. We show
that there is a finite bad sequence α � B[n] which produces a wrong answer for
Sort2 ×RT1

2(p, c). This suffices to reach a contradiction, as, by Lemma 4.2, B[n]
being extendible implies that α is extendible.

Assume first that Ψ0(B[n])s+1 commits to finitely many zeroes. Let t ≥ s + 1
be even. Let α � B[n] be �-maximal in �t such that, for some i, 0i1 � Ψ0(α)t .
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By construction, at stage t we are adding more than i-many zeroes in p, therefore
Ψ0(α) is not the prefix of Sort2(p).

If Ψ0(B[n])s+1 does not commit to finitely many zeroes, let r ≥ s + 1 be odd. Let
	 � B[n] be �-maximal in �r such that 	 ∈Mr . At stage r, we forced the forward
functional Φ to produce some α � 	 such that, for some i, 0i1 � Ψ0(α), and then
extended �r by adding more than i-many zeroes. In other words, Ψ0(α) is not a
prefix of Sort2(p), and this concludes the proof. �

Observe that Sort2 is one of the weakest “natural” problems that require infinitely
many mind-changes to be solved. The previous result shows that, roughly speaking,
while the quotient ofDS (resp.,BS) overRT1

2 is capable of solving every problem that
can be solved with finitely-many mind changes (essentially because RT1

2 × RT1
N
≡W

RT1
N
≤W DS, see [18, Proposition 4.24]), allowing infinitely-many mind changes

constitutes a critical obstacle. This leads to the following open problem.

Open Question 9.9. Characterize DS/RT1
2 and BS/RT1

2.

In an attempt to better understand the stability of DS and BS under parallel
products, we also highlight the following open question.

Open Question 9.10. What are the degrees of DS/DS and BS/BS?

Observe that, as a consequence of Proposition 9.4 and Proposition 9.8, CN ≤W

DS/DS <W lim. It is therefore natural to ask whetherDS/DS ≤W CN. A possible way
to separate DS/DS and CN would be showing that DS is equivalent to its restriction
to inputs L with no L-computable solution. This can be rephrased as asking whether
NON× DS ≤W DS, where NON(p) := {q ∈ NN : q �≤T p}. The same observations
can be made by substituting DS with BS.
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