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Abstract
Detection of subsurface road targets is a crucial task in road engineering. This
study focuses on detecting three types of subsurface targets: looseness, pipeline,
and voids. Ground-penetrating radar (GPR) was employed to acquire real-world
data. gprMax was utilized to generate additional data to address the scarcity of
the original dataset. Recognizing the substantial disparity between directly simu-
lated gprMax data and actual GPR images, this paper introduces a novel method
for synthesizing gprMax-generated datawith realmeasurements, thereby achiev-
ing effective GPR image augmentation. Furthermore, a generative adversarial
network (GAN) was employed to rapidly produce large volumes of GPR images.
Deep learning models were implemented to detect subsurface road targets using
datasets of varying scales. Experimental results indicate that data augmentation
utilizing gprMax and GAN can substantially improve the detection accuracy
for subsurface road targets, achieving a rate of 0.767. This represents a 21.2%
enhancement, compared to the results obtained from training on the original
dataset. The findings of this research hold practical significance for supporting
road maintenance operations.

1 INTRODUCTION

1.1 Underground detection technology

The road contains various subsurface targets, including
looseness, pipeline, and voids. Looseness typically results
from inadequate compaction or long-term water erosion,
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which reduces soil density and bearing capacity, poten-
tially leading to road surface subsidence and structural
damage. Pipelines feature complex installation layouts
and extensive distribution networks. Moreover, incom-
plete pipeline documentation and complex underground
conditions frequently lead to construction-related acci-
dents. Particularly during excavation projects, operational
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errors often cause pipeline ruptures, resulting in service
interruptions, economic losses, and even public safety inci-
dents. Voids generally form due to soil erosion or leakage
from underground pipes, creating empty spaces beneath
the pavement that may suddenly collapse under vehicle
loads, seriously threatening traffic safety. Therefore, accu-
rate detection of these subsurface targets is essential for
ensuring road safety and maintaining structural integrity.
Underground detection techniques include the shal-

low transient electromagnetic method (Lai et al., 2016)
and the high-density electrical method (Z. Huang et al.,
2014). In comparison, ground-penetrating radar (GPR) has
gained widespread application in the field of underground
detection due to its continuous scanning process, high res-
olution, and non-destructive nature. During the detection
process, several key factors require careful consideration.
The choice of frequency is related to the radar’s detection
depth range, and antenna design influences signal strength
and resolution, among other factors. The electromagnetic
characteristics of underground media exhibit variations
that affect the detection outcomes. Therefore, it is nec-
essary to model the electromagnetic parameters under
different geological conditions. Extensive research has
been conducted on estimating road thickness using radar
technology, and the latest studies have accurately inferred
the estimation of overlay thickness and reinforcement bar
diameter through the integration of radar and electro-
magnetic induction data (X. Li et al., 2022). In practical
detection, the complexity of the environment often leads
to low-quality radar data, posing significant challenges for
data interpretation. Subjective judgments by technical per-
sonnel frequently result in differing interpretations and
introduce uncertainties to the conclusions. To enhance the
interpretation accuracy of radar, the electromagnetic wave
signals of GPR are simulated using the finite-difference
time-domain (FDTD) method (Warren et al., 2015). In
analogous research, Belli et al. incorporated the dielectric
constant of materials into the objective function for the
detection of subsurface targets beneath reinforced concrete
bridge decks, conducting FDTD simulations (Belli et al.,
2008). Their study calculated the difference in simulated
amplitude at the boundary versus the actual amplitude
on the ground. Despite model-based evaluations, there are
still differences between the physical models constructed
for simulation and the actual real-world models. Similarly,
Cheung and Lai assessed GPR sensitivity to water (Cheung
& Lai, 2018). They implemented a field-scale leaking water
test to simulate undergroundwater pipe leakage scenarios.
By analyzing radar data collected before and after water
injection, the researchers identified the leakage points in
the water pipes and performed radar wave velocity analy-
sis to validate the ability of radar grayscale images to detect
pipe leakage locations.

1.2 Deep learning techniques for
detection

The processing of 2D images has evolved from early-stage
techniques, such as threshold segmentation (Al-Amri &
Kalyankar, 2010), Sobel (Kanopoulos et al., 1988), and
Canny (Er-Sen et al., 2009) edge detection, to machine
learning techniques that can extract deep-level features.
Rule-based algorithms and electromagnetic wave theories
perform well under ideal conditions, but only when exter-
nal interference is negligible (S. Guo et al., 2022). Machine
learning algorithms with multidimensional extraction
capabilities significantly enhance detection accuracy and
applicability. However, due to the complex transmis-
sion background of GPR waves and incomplete feature
information extracted, they are challenging to apply com-
prehensively in detection tasks (Xie et al., 2013). With
advancements in hardware and algorithms, intelligent
recognition techniques for radar waveform data have
advanced significantly. Deep learning, especially after the
introduction of theAlexNet (Krizhevsky et al., 2012) neural
network model developed for large-scale image recog-
nition, has garnered unprecedented attention, such as
earthquake prediction (Rafiei & Adeli, 2017), real estate
price estimation (Rafiei & Adeli, 2016), concrete perfor-
mance prediction (Rafiei et al., 2017), construction cost
estimation (Rafiei & Adeli, 2018), detection of pavement
cracks (Yao et al., 2024), pavement texture recognition
(Pan et al., 2023), and the recognition of railway slab track
defects (Cai et al., 2024). The field of object detection
has shifted from manual feature design methods to deep
learning-based feature extraction techniques. The contin-
uous upgrade of parallel computing resources and the
emergence of large-scale publicly available datasets and
evaluation metrics have also led to the development of
numerous powerful convolutional network models. The
emergence of algorithms such as single shot multibox
detector (W. Liu et al., 2016), YOLO (you only look once;
Bochkovskiy et al., 2020; Redmon et al., 2016; C. Li et al.,
2022; C. Y. Wang et al., 2023), fully convolutional one-
stage object detection (Tian et al., 2020), and others have
propelled the rapid development and widespread applica-
tion of object detection technology in both academic and
industrial domains.
In terms of data preprocessing, a series of data aug-

mentation techniques, such as flipping, mean normal-
ization, scaling, Cutout (DeVries & Taylor, 2017), and
Mixup (Zhang et al., 2017), have been introduced to
enhance dataset diversity and improve model gener-
alization. For feature fusion and prediction, architec-
tures developed after AlexNet, including Visual Geom-
etry Group (Simonyan & Zisserman, 2014), GoogLeNet
(Szegedy et al., 2015), residual network (He et al., 2016),

 14678667, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ice.70121 by Sw
ansea U

niversity Inform
ation, W

iley O
nline L

ibrary on [11/11/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



YAO et al. 3

and DenseNet (densely network) (G. Huang et al., 2017)
have advanced computer vision by combining convolu-
tional and non-linear activation layers for complex feature
learning. Beyond supervised approaches, unsupervised
and semi-supervised methods have also been applied in
non-destructive testing. Examples include a Bayesian-
optimized unsupervised framework for structural dam-
age localization without predefined feature assumptions
(Eltouny & Liang, 2021) and a semi-supervised approach
integrating convolutional neural network (CNN) with an
uncertainty filter for defect classification using limited
labeled data (J. Guo et al., 2021).
The volume of data is crucial for deep learning. How-

ever, practical engineering applications often face the
issue of limited data availability, making data augmen-
tation highly important. Generative adversarial networks
(GANs) are a widely used data augmentation method that
leverages adversarial learning between a generator and a
discriminator to achieve content generation (Goodfellow
et al., 2014). Existing studies have applied GAN in areas
such as pavement crack generation (Yao et al., 2024), pave-
ment distress generation (Z. Liu et al., 2023), pavement
texture generation (Chen et al., 2022), and railwaymonitor-
ing signal generation (Y. Wang et al., 2024), demonstrating
that GAN-based augmentation can improve detection
accuracy.
In recent years, end-to-end object detection techniques

have continued to advance, and the integration of deep
learning with road radar detection is currently an indus-
try trend. Aydin and Yüksel constructed a model using
CNN and employed simulated program-generated radar
image data for a classification task (Aydin & Yüksel,
2017). However, the model had a simple architecture, and
the dataset consisted of only a small number of images,
making it challenging to ensure the model’s generaliza-
tion performance. Due to the limited availability of radar
data, Warren et al. acknowledged the strategy proposed
by using gprMax (an electromagnetic simulation tool)
to address the lack of training data by generating real-
istic data based on the FDTD principle (Warren et al.,
2021). Lu et al. utilized gprMax for numerical simula-
tions of different road defects using GPR (Lu et al., 2022),
providing a foundational dataset for radar-based detec-
tion of road targets. In an application to improve GPR
tunnel lining detection, a self-supervised Mask R-CNN
model was fine-tuned with limited labeled data, thereby
increasing its accuracy (J. Huang et al., 2024). Chun
et al. utilized YOLO and GPR for pipeline detection and
employedGAN for data augmentation. Consequently, they
achieved an improvement in detection accuracy (Chun
et al., 2023).

1.3 Research objectives and novelty

This study aims to detect subsurface road targets, includ-
ing looseness, pipeline, and voids, using GPR and deep
learning models. The research begins with collecting road
information via GPR to establish an original dataset. Sub-
sequently, gprMax simulation is employed to generate new
samples containing subsurface road targets, thereby aug-
menting the original dataset. Building on this, a GAN is
employed to further expand the dataset. Finally, a deep
learningmodel is applied to detect subsurface road targets,
and the detection performance is compared across datasets
of different scales. The technical workflow of this study is
shown in Figure 1.
The main contributions of this paper are as follows: (1)

It investigates the use of GPR data and deep learning mod-
els for detecting subsurface road targets and analyzes the
impact of dataset scale on detection performance. (2) A
method combining gprMax simulation and image synthe-
sis is proposed to enhance GPR datasets. (3) A GAN-based
framework employed for generating realistic GPR images
is developed.

2 GPR DATA COLLECTION AND
DATASET ESTABLISHMENT

The road structure was surveyed using GPR. The GPR
system was mounted on a trailer towed by a vehicle. An
operator drove the vehicle at a constant speed along a
predetermined survey line on the road under inspection.
The transmitter antenna emitted high-frequency electro-
magnetic pulses into the road, while the receiver antenna
captured reflected signals from interfaces between differ-
ent material layers (such as the surface layer, base layer,
and subgrade) as well as from specific subsurface targets
(e.g., looseness, pipeline, and voids) as shown in Figure 2.
Each reflection record, known as anA-scan, represents the
signal amplitude over time at a single spatial point. A con-
tinuous series of A-scans collected along the line forms a
2D radargram, or B-scan, which provides a raw visual pro-
file of the subsurface. In this profile, the horizontal axis
corresponds to the distance along the survey line, and the
vertical axis represents the two-way travel time of the radar
waves.
The raw B-scan data required preprocessing to enhance

signal quality and facilitate accurate interpretation. The
preprocessing sequence included the following steps: First,
we applied background removal to eliminate constant hor-
izontal banding caused by system noise and direct antenna
coupling. Next, we performed a time-zero correction to
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4 YAO et al.

F IGURE 1 Technical workflow of this study. GAN, generative adversarial network; GPR, ground-penetrating radar.

F IGURE 2 Ground-penetrating radar (GPR) transmitting and
receiving electromagnetic pulse signals.

align the start time of all traces. This was followed by
bandpass filtering, which removed both low-frequency
noise (such as equipment drift) and high-frequency noise
(such as electromagnetic interference), while preserving
frequency components relevant to the antenna’s operating
range.
A GPR B-scan is typically an image that is very short

in height but extremely wide, making it unsuitable for
direct application in target detection algorithms. There-
fore, we divided the B-scan image into multiple fixed-size
square sub-images. Target detection was then performed
by classifying these cropped image patches. To conserve
computational resources, each cropped sub-image was
resized to 160 ×160 pixels and converted to grayscale as

F IGURE 3 Processed GPR B-scan images.

shown in Figure 3. Variations in pixel intensity directly
correspond to the strength of radar reflections, providing
a consistent representation of the road’s internal structure
for subsequent automated detection tasks.
Actual radar detection is highly complex due to the intri-

cate nature of underground structures and the varying
properties of subsurfacemedia. These factors cause contin-
uous attenuation, reflection, and refraction of electromag-
netic waves, which subsequently reduce the resolution and
clarity of detected targets. When electromagnetic waves
propagate through structural layers with different dielec-
tric constants, reflective interfaces form between these
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TABLE 1 Original dataset.

Looseness Pipeline Void Total
Original training set 140 140 140 420
Test set 60 60 60 180
Total 200 200 200 600

layers according to the principles of wave reflection. In a
typical intact structure, these interfaces produce continu-
ous reflection events in radar data. However, the presence
of targets (such as looseness, pipeline, and voids) dis-
rupts this continuity. In the resulting grayscale image,
signal amplitude is represented by pixel intensity, with
brighter areas indicating positive wave peaks and darker
areas representing negative wave troughs, thereby making
higher-amplitude reflections more visually prominent.
This study collected a total of 600 GPR images, with 200

images for each category: looseness, pipeline, and voids.
For each target category, the dataset was divided into train-
ing and test sets in a 7:3 ratio, as shown in Table 1. The
original training set contained 140 images per category,
while the test set contained 60 images per category. Dur-
ing the subsequent data augmentation process, only the
training set was augmented, ensuring that the test set was
not involved, which effectively mitigated the risk of data
leakage.

3 GPRMAX SIMULATION AND DATA
AUGMENTATION

3.1 gprMax simulation modeling

All electromagnetic phenomena can be described at the
macroscopic level using Maxwell’s equations. gprMax
applies the FDTD algorithm to discretize these equations
across temporal and spatial domains, iteratively refining
the electromagnetic field distribution for the numerical
simulation of wave propagation. Utilizing the principles
of FDTD, gprMax can simulate how GPR signals propa-
gate through various media, including phenomena such
as reflection and refraction. Due to its flexibility and rela-
tively low computational requirements, the FDTDmethod
is highly suitable for simulating complex scenarios. Addi-
tionally, gprMax can leverage the powerful computational
capabilities of graphics processing units (GPUs) to signifi-
cantly accelerate the simulation process.
Based on typical road structures, a model incorporating

both the pavement and subgrade was developed. The pave-
ment consists of an upper surface layer with a thickness of
0.15m and a lower base layer with a thickness of 0.4m. The
underlying subgrade has a thickness of 1.7 m. The loose-
ness, pipeline, and voids investigated in this study are all

situated within the subgrade. According to common road
material properties, the relative permittivity of the surface
layer was set to 4 with a conductivity of 0.001 S/m, while
the base layer had a relative permittivity of 9 and a conduc-
tivity of 0.002 S/m. The subgrade was assigned a relative
permittivity of 12 and a conductivity of 0.005 S/m. The
transmitter and receiver antennas were positioned 0.25 m
above the surface layer of the pavement, with a horizon-
tal separation of 0.5 m between them. To ensure modeling
accuracy, the spatial resolution in all directions was set to
0.005 m.
When conducting forward simulations with gprMax,

the type of incident waveform affects the signal penetra-
tion capability and the numerical dispersion effects, which
directly influence the accuracy and efficiency of the sim-
ulation. Typically, GPR employs pulsed electromagnetic
waves as the excitation source. The Ricker wavelet, with
its peaked oscillatory shape, is commonly used in georadar
for detecting shallow targets. It exhibits a prominent peak
at the center frequency, making it suitable for detecting
targets with distinct reflections. In the following simula-
tions, the Ricker wavelet was employed as the simulated
waveform.
The frequency of the excitation source plays a criti-

cal role in the detection performance of GPR. A high-
frequency source emits shorter wavelengths, offering the
advantage of detecting smaller targets and distinguish-
ing closely spaced reflectors. The resulting reflected wave
pulses are narrower, with a shorter time window and
clearer detail. However, the drawback is rapid signal
attenuation and limited penetration depth. In contrast,
a low-frequency source exhibits slower attenuation and
greater penetration depth, but its longer wavelengths tend
to smooth out fine details, making it ineffective for iden-
tifying small objects or resolving overlapping echoes from
adjacent reflectors. For the road structure inspection task
addressed in this study, a frequency of 600 MHz strikes an
ideal balance between penetration depth and resolution.
Waves in this band, with their moderate wavelength, effec-
tively penetrate the pavement layers to depths of several
meters, sufficient to assess the thickness of both the pave-
ment and the subgrade. At the same time, the attenuation
rate remainsmanageable, ensuring the acquisition of valid
signals fromdeeper layers.More importantly, the 600MHz
frequency provides excellent resolution. It generates rel-
atively narrow wavelets capable of clearly identifying
centimeter-scale objects within the road structure, such
as looseness, pipeline, and voids, while producing radar
profiles with distinct layers and well-defined reflective
interfaces.
The spatial step size parameter governs the spatial res-

olution of the numerical model. In gprMax, a B-scan is
composed of multiple A-scans. Each A-scan corresponds
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6 YAO et al.

to a single step movement of the transmitter and receiver
antenna. A higher number of A-scans combined with a
smaller step size enhances the resolution of the B-scan,
though this comes at the cost of significantly increased
computational load. To balance resolution requirements
with computational efficiency, this study employed 10 A-
scans with a step size of 0.25 m for both transmitter and
receiver antennas.
The time window parameter defines the total duration

of the simulation, which directly determines the maxi-
mumdepth detectable by themodel. It must be sufficiently
long to capture the complete round-trip travel time of the
electromagnetic wave from transmission, reflection at a
target, and reception. To ensure waveform integrity while
conserving computational resources, a time window of
50 ns was selected based on the thickness and relative
permittivity of each road layer.

3.2 Subsurface target configuration

Road looseness often results from water infiltration or
repeated traffic loads, leading to reduced bearing capac-
ity and pavement cracking. Particularly critical is looseness
occurring between the base course and the subgrade,
which is both common and structurally damaging. To sim-
ulate this phenomenon numerically, the intrusion of base
course material into the subgrade was modeled. In the
gprMax simulations, the looseness was represented as a
rectangular region within the subgrade, adjacent to the
base course. Two geometrieswere considered: onemeasur-
ing 0.1 m in width and 0.1 m in depth, and the other 0.1 m
in width and 0.05 m in depth. Each looseness configura-
tion was translated laterally across the road cross-section
in increments of 0.005 m, resulting in 400 distinct simu-
lated positions per geometry. This methodology generated
a total of 800 simulation samples for analysis. An example
of the gprMax simulation results for looseness is shown in
Figure 4Ia.
Urban underground pipelines are constructed from

various materials, selected according to their functional
requirements, environmental conditions, and budget con-
straints. Among these, cast iron pipelines are widely used
due to their high strength and corrosion resistance. In the
simulations, cast iron pipelines with a radius of 0.3 mwere
modeled as perfect electric conductors. The pipelines were
placed at depths ranging from 0.35 to 1.3m below the top of
the subgrade,with an interval of 0.05mbetween successive
depths, resulting in 20 distinct depth positions. Along the
transverse direction of the road, the pipeline was shifted
in steps of 0.05 m, covering 40 transverse positions. In
total, 800 gprMax simulations were conducted, each cor-
responding to a unique pipeline location. An example of

the gprMax simulation results for a pipeline is shown in
Figure 4Ib.
Voids in road structures typically form due to factors

such as water erosion, material fatigue, or inadequate
compaction during construction. These voids pose serious
threats to road integrity, including reduced load-bearing
capacity, accelerated pavement deterioration, and poten-
tial sudden collapse. Therefore, the detection of subsurface
voids is essential for ensuring road safety and longevity.
When a void forms, the original road material is replaced
by air or water, resulting in a distinct dielectric contrast
that can be identified in GPR signals. In this study, air-
filled voids were modeled in simulations, with a relative
permittivity of 1 and an electrical conductivity of 0. The
void dimensions were set as 0.1 m in bothwidth and depth.
In terms of positioning, the depth of the void was varied
from 0.25 to 1.2 m below the top of the subgrade, with
an interval of 0.05 m, yielding 20 distinct depth levels.
Laterally, the void is shifted in 0.05 m steps across the
road section, covering 40 transverse positions. In total, 800
unique void configurations were simulated in gprMax to
comprehensively analyze their GPR responses. An exam-
ple of the gprMax simulation results for a void is shown in
Figure 4Ic.

3.3 gprMax data synthesis

Images generated by gprMax cannot be directly used for
road detection due to significant discrepancies between
simulated and real GPR data, themost critical of which lies
in the background characteristics. The simulated images
from gprMax exhibit relatively uniform backgrounds,
which differ substantially from the complex background
information present in actualGPR scans of road structures.
It should be emphasized that regardless of whether road
materials are modeled as homogeneous or heterogeneous
in gprMax, the resulting background fails to resemble that
of real scans. This is because the actual distribution of com-
ponents within the inspected road structure is unknown
and cannot be predefined in the simulation.
To address this issue, this study proposes a method

for processing and synthesizing gprMax-generated images.
First, image cropping was applied. Since the detection tar-
gets are all located within the subgrade (i.e., the lower
part of the image), the upper quarter of the image, which
contains no target information, was removed, retaining
only the lower three-quarters. Next, the cropped image
was resized to 160 × 160 pixels to match the dimensions
of real GPR images. The image was then converted into
a single-channel grayscale format as shown in Figure 4II.
To enhance the subtle target features in the grayscale
image, contrast enhancement was applied using gamma
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YAO et al. 7

F IGURE 4 Data augmentation using gprMax simulation and
synthesis.

correction with a gamma value of 0.05, which improves
visibility in darker regions, as illustrated in Figure 4III.
Finally, image synthesis was performed. For each gprMax-
generated image containing target features, a correspond-
ing image was randomly selected from the training set of
real GPR images of the same category. The two images
were merged by taking the minimum pixel value at each
corresponding position. This synthesis method produces
images that retain the target features from the gprMax
simulation while incorporating realistic background infor-
mation similar to that in the original dataset, thereby
achieving high-quality data augmentation as shown in
Figure 4IV.
Using the proposed gprMax-based image generation and

synthesis method, 800 augmented images were created
for each of the three target types, specifically looseness,
pipeline, and voids, to be used in subsequent detection
tasks.

4 GANMODELING AND DATA
AUGMENTATION

4.1 GANmodeling

While gprMax enables data augmentation for GPR, this
method involves high computational costs and time con-
sumption, as each sample requires individual modeling

F IGURE 5 Structure of the multi-scale deep convolutional
generative adversarial network (MSGAN) generator and
discriminator.

and simulation. To rapidly generate large volumes of GPR
samples, GAN offers an efficient alternative. The key
advantage lies in the ability of a trained GAN to produce a
substantial number of images quickly, significantly reduc-
ing processing time. This capability is of great importance
for enhancing the efficiency of road detection workflows.
GAN is a class of deep learning frameworks specifically

developed for unsupervised learning. The architecture
consists of two neural networks: a generator and a discrim-
inator, which are pitted against each other in a competitive
minimax game. The generator aims to produce synthetic
data from random noise that closely mimics real data,
while the discriminator functions as a binary classifier. Its
task is to distinguish between authentic samples from the
true dataset and fabricated ones produced by the gener-
ator. Throughout the training process, these two models
engage in a dynamic feedback loop. The generator con-
tinuously refines its outputs to deceive the discriminator,
while the discriminator simultaneously enhances its abil-
ity to differentiate between real and generated samples.
This adversarial interaction drives iterative improvements
in both networks. Upon convergence, the trained genera-
tor becomes capable of producing highly realistic images,
thereby achieving the goal of data augmentation.
To achieve high-quality augmentation of GPR images,

a GAN model was employed. The deep convolutional
generative adversarial network (DCGAN; Radford et al.,
2015) serves as a widely adopted GAN architecture, rec-
ognized for its advantages such as training stability and
high-quality image generation. Given the demonstrated
importance of multi-scale convolution in enhancing fea-
ture extraction capabilities within the field of image
processing (Z. Liu et al., 2025; Yan et al., 2025), this study
applies a variant of DCGAN, specifically amulti-scale deep
convolutional generative adversarial network (MSGAN; Z.
Liu et al., 2023), designated for GPR data augmentation. Its
structure is illustrated in Figure 5.
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F IGURE 6 Data augmentation using MSGAN.

In the generator of MSGAN, a single noise is used as
input. This noise is processed by a linear layer and trans-
formed into a 1D tensor, which is then reshaped and passed
through a 1 × 1 transposed convolution layer to produce a
10 × 10 feature map. This feature map is separately pro-
cessed by transposed convolution layers with 4 × 4 and
6 × 6 kernels and a stride of 2 × 2. The resulting outputs
are concatenated along the feature dimension to form a
20 × 20 feature map. Similarly, the feature map undergoes
two additional multi-scale transposed convolution stages,
resulting in an 80× 80 featuremap. Finally, thismap is pro-
cessed by a 6 × 6 transposed convolution layer to generate
a 160 ×160 grayscale image of the road structure.
The discriminator of MSGAN takes a road grayscale

image as input. This image is separately processed by con-
volution layers with 4 × 4 and 6 × 6 kernels and a stride of
2 × 2. The outputs are then concatenated along the feature
dimension to form an 80 × 80 feature map. Subsequently,
the feature map passes through three multi-scale convolu-
tion layers, reducing its size to 10 × 10. This feature map
is flattened into a 1D vector and fed into a linear layer to
produce the final classification result.

4.2 Data generation

During the training of MSGAN, the Adam optimizer and
the binary cross entropy loss functionwere employed, with
the batch size set to 32 and the learning rate set to 0.00001.
The training dataset consisted of the original data training
set combinedwith the dataset augmented by gprMax.After
1000 training epochs, the generator of MSGANwas able to
produce realistic target images as shown in Figure 6. Using
MSGAN, 1000 images were generated for each category of
looseness, pipeline, and voids to augment the training set.
MSGAN demonstrates significant advantages in image

generation speed. It requires only 3 s to generate 1000
images, which is far more efficient than using gprMax.

TABLE 2 Experimental datasets.

Looseness Pipeline Void Total
Original training set 140 140 140 420
Training Set—I 940 940 940 2820
Training Set—II 1940 1940 1940 5820
Test set 60 60 60 180

Therefore, for tasks requiring large-scale GPR image gen-
eration, themost efficient approach is to first use gprMax to
produce a sufficient number of images for MSGAN train-
ing and subsequently leverage MSGAN for rapid image
generation.

5 SUBSURFACE TARGETS DETECTION

5.1 Experimental datasets

The original training set in this study consisted of 140
GPR images per category for looseness, pipeline, and voids.
Through gprMax simulation and synthesis, each category
was augmented by 800 images, resulting in Training Set
I containing 940 images per category. Subsequently, via
MSGAN generation, each category was further expanded
by 1000 images, yielding a final Training Set-II with 1940
images per category. For both training sets, the testing set
remained the original 60 GPR images per category. The
detailed composition of the datasets is presented in Table 2.

5.2 Experimental experiment

The experimental setup was powered by an 11th Gen Intel
Core i7-11850H CPU @ 2.50 GHz with 32GB of RAM, and
an NVIDIA GeForce RTX 3080 Laptop GPU with 16 GB
of dedicated video memory. The programming language
used was Python 3.7.3, and the deep learning framework
employed was PyTorch 1.12.1 with CUDA 11.3 support.

5.3 DenseNet model

This study focuses on detecting subsurface road targets
through image classification. Due to its superior perfor-
mance, a DenseNet model was employed for this task (G.
Huang et al., 2017). DenseNet is a CNN renowned for its
dense connectivity. Its core innovation is the dense block,
designed to mitigate the vanishing gradient problem in
deep networks and encourage feature reuse. Within each
dense block, every layer receives the feature maps of all
preceding layers as input, concatenating them along the
channel dimension before passing them on.

 14678667, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ice.70121 by Sw
ansea U

niversity Inform
ation, W

iley O
nline L

ibrary on [11/11/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



YAO et al. 9

The standard DenseNet architecture begins with ini-
tial convolution and pooling layers, which are followed
by a sequence of four dense blocks. Transition layers are
inserted between these dense blocks to downsample the
feature maps and control model complexity. Each transi-
tion layer consists of a batch normalization layer, a 1 × 1
convolution, and a 2 × 2 average pooling operation. This
work employs the DenseNet-121 variant, which has four
dense blocks containing 6, 12, 24, and 16 layers, respec-
tively. Each layerwithin a block uses a bottleneck structure
for computational efficiency. This structure comprises a
sequence of operations: batch normalization, a rectified
linear unit activation function, a 1 × 1 convolution, and
finally a 3 × 3 convolution. Consequently, the DenseNet-
121 architecture achieves high performance while being
more parameter-efficient and computationally effective
compared to other networks.

5.4 Evaluation metrics

The performance of the subsurface target detection model
was evaluated on the test set using four key metrics: accu-
racy, precision, recall, and F1-score. Accuracy measures
the proportion of correctly classified samples among the
total samples, as defined in Equation (1). Precision indi-
cates the ratio of TP predictions to all samples predicted as
positive by the model as given in Equation (2). Recall rep-
resents the proportion of actual positive samples that are
correctly identified by the model, as expressed in Equa-
tion (3). The F1-score is the harmonic mean of precision
and recall, calculated according to Equation (4).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3)

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(4)

In these formulations, a true positive (TP) denotes a case
where themodel correctly predicts the positive class; a true
negative (TN) refers to a correct prediction of the negative
class; a false positive (FP) indicates that themodel wrongly
predicts the negative class as positive; and a false negative
(FN) corresponds to a case where themodel fails to predict
an actual positive sample.
Furthermore, precision, recall, and F1-score are used

to evaluate the detection performance for each individ-
ual class, while accuracy is employed to assess the overall
detection performance across all classes.

5.5 Experimental results

TheDenseNetmodel was trained on different training sets,
respectively, using the Adam optimizer and cross-entropy
loss with a learning rate set to 0.001. The batch size was
set to 32 to accelerate training. Training was stopped once
the loss function converged. The evaluation metrics of the
results corresponding to training sets of different scales on
the test set are shown in Table 3.
In Experiment-I, the training set was the original train-

ing set, containing 140 images per class. The average
accuracy for the three types of targets in the test set was
0.633. Among them, the precision for looseness was rel-
atively high at 0.893, but its recall was low at only 0.417.
Consequently, the F1-score for looseness was also low at
0.568. The situation for pipeline was similar to that of
looseness, with a high precision of 0.800 but a low recall
of 0.533, resulting in a low F1-score of 0.640. In contrast,
for void, precision was low at 0.509, while recall was high
at 0.950, leading to a low F1-score of 0.663. Overall, the
classification performance of Experiment-I for all three
target types was poor, struggling to achieve both high pre-
cision and high recall simultaneously. As a result, the
F1-scores for each categorywere low, and the average accu-
racy was also unsatisfactory. This indicates that relying
solely on a small amount of real GPR data collected on-site
is insufficient for achieving accurate automatic detection
of subsurface road targets.
In Experiment-II, the training set was Training Set-I,

containing 940 images per class. The average accuracy
for the three targets in the test set was 0.711, represent-
ing a 12.3% improvement, compared to Experiment-I. In
Experiment-II, the precision for looseness reached 1.000,
meaning that all results classified as looseness were cor-
rect. However, the recall for looseness was extremely low
at 0.383, indicating that most instances of looseness were
not classified as such. Consequently, the F1-score for loose-
ness was only 0.554. For the pipeline, precision and recall
were relatively balanced at 0.742 and 0.767, respectively,
yielding an F1-score of 0.754. For void, precision was
low while recall was high, at 0.621 and 0.983, respec-
tively. This suggests that although the model correctly
classified most instances of void as void, it also misclas-
sified many non-void images as void. The corresponding
F1-score was 0.761. Overall, the results of Experiment-
II were superior to those of Experiment-I, demonstrat-
ing that the gprMax data augmentation and synthesis
method proposed in this study positively contributes
to improving the accuracy of subsurface road target
detection.
In Experiment-III, the training set was training set-II,

containing 1940 images per class. The average accu-
racy for the three targets in the test set was 0.767. The

 14678667, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ice.70121 by Sw
ansea U

niversity Inform
ation, W

iley O
nline L

ibrary on [11/11/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



10 YAO et al.

TABLE 3 Experimental results.

Experiments Training sets Categories Precision Recall F1-score Accuracy
Experiment-I Original training set Looseness 0.893 0.417 0.568 0.633

Pipeline 0.800 0.533 0.640
Void 0.509 0.950 0.663

Experiment-II Training Set-I Looseness 1.000 0.383 0.554 0.711
Pipeline 0.742 0.767 0.754
Void 0.621 0.983 0.761

Experiment-III Training Set-II Looseness 0.911 0.683 0.781 0.767
Pipeline 0.729 0.717 0.723
Void 0.711 0.900 0.794

performance of Experiment-III increased by 21.2%,
compared to Experiment-I and by 7.9%, compared to
Experiment-II. Specifically, for looseness, precision
was 0.911, recall was 0.683, and the F1-score was 0.781.
Although precision and recall were not perfectly bal-
anced, extreme disparities were avoided. For the pipeline,
precision was 0.729, recall was 0.717, and the F1-score
was 0.723, indicating balanced classification performance
for this category. For voids, precision was 0.711, recall
was 0.900, and the F1-score was 0.794. For this category,
recall was higher than precision, but precision was not
excessively low. Based on the overall results and the results
for each category, the MSGAN data augmentation method
proposed in this study further enhances the detection
performance for subsurface road targets.
To provide a detailed analysis of the classification out-

comes for each category across the experiments, the cor-
responding confusion matrices are presented in Figure 7.
According to Figure 7a, in Experiment-I, 50.0% of the
looseness instances and 41.7% of the pipeline instances
were misclassified as void. This indicates that the model
exhibited a tendency to classify all images as void. The
reason for this behavior is likely the limited number of
training samples, which made it difficult for the model
to accurately learn the distinguishing features of each tar-
get category. In Figure 7b, corresponding to Experiment-II,
25.0% of the looseness instances were misclassified as
pipeline, while 36.7% were misclassified as void. Addition-
ally, 23.3% of the pipeline instances were misclassified as
void. Compared to Experiment-I, Experiment-II reduced
the tendency to classify samples as void, and the model
demonstrated an improved ability to learn the features
of the pipeline category. As shown in Figure 7c, which
presents the results of Experiment-III, the misclassifica-
tion of looseness and pipeline was significantly reduced.
Due to the sufficient amount of training data, the model’s
ability to learn the features of all three categories was
enhanced, minimizing confusion to the greatest extent
possible.

6 CONCLUSION

This study focuses on the detection of subsurface road
targets, utilizing GPR to acquire internal road structure
information and employing deep learning models to iden-
tify looseness, pipeline, and voids. To address the issue
of insufficient original data, simulations were conducted
using gprMax to establish excitation sources and road
models, incorporating subsurface targets to obtain GPR
images of looseness, pipeline, and void in a simulated
environment. Building on this, a method for synthesizing
gprMax-generated images with real GPR images was pro-
posed, effectively augmenting the GPR image dataset. To
further enhance the dataset on a larger scale, an MSGAN
model was employed to enable rapid generation of images
representing looseness, pipeline, and voids. DenseNet was
used for detection on the original training set and the two
augmented training sets to validate the effectiveness of the
proposed methods. Experimental results demonstrate that
the proposed methods improve the accuracy of subsurface
road target detection. The main conclusions of this study
are summarized as follows:

1. This study verifies that GPR and DenseNet can be
used to detect looseness, pipeline, and voids in road
subgrade. GPR leverages the principle that different
media reflectwaveformsdifferently, resulting in distinct
characteristic B-scan images for various subsurface
targets. DenseNet analyzes these targets by learning
their unique features, but the classification results are
significantly influenced by the volume of data.

2. A GPR data augmentation method based on gprMax
is proposed. First, a road model comprising surface
layer, base layer, and subgrade is established. Next, an
excitation source incorporating frequency, position, and
time parameters is defined. Abnormal targets are then
embedded within the road model. B-scan images are
generated through gprMax simulation. These images
are subsequently cropped, compressed, grayscaled, and
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YAO et al. 11

F IGURE 7 Confusion matrices for each experiment.

enhanced in dark regions before being synthesizedwith
original images to achieve GPR data augmentation.
Experimental results show that using the gprMax-
augmented training set increases the detection accuracy

to 0.711, representing a 12.3% improvement over the
original training set.

3. AnMSGAN-basedmodel is employed forGPRdata aug-
mentation. ThisGAN incorporatesmulti-scale convolu-
tions in both its generator and discriminator, enabling
the generation of GPR images from random noise.
The MSGAN was trained on the dataset augmented by
gprMax simulations. The trained MSGAN can rapidly
and effectively generate GPR images. Experimental
results indicate that using the training set augmented
by both gprMax andMSGAN achieves a detection accu-
racy of 0.767, reflecting a 21.2% improvement over the
original training set.

The methods proposed in this study effectively enhance
the accuracy of subsurface road target detection, hold-
ing practical significance for structural health monitoring,
construction management, and maintenance in road engi-
neering.
However, the proposed methods have certain limita-

tions. One is that they are primarily applicable to con-
ventional roads, and their generalizability to roads with
special materials or unique structures has not been veri-
fied. Another is that the study focuses on only three types
of subsurface road targets, neglecting other potential facil-
ities or defects within road structures. Additionally, only
one type of GAN model was employed, without compar-
ing the enhancement effects of different GAN models on
GPR images. Future research will aim to address these
limitations.
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