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Abstract

Background/Objectives: Dietary patterns play a crucial role in health, yet most research
examines foods individually, overlooking how they interact. This approach provides an in-
complete picture of how diet influences health outcomes. Network analysis (e.g., Gaussian
graphical models, mutual information networks, mixed graphical models) offers a more
comprehensive way to study food co-consumption by capturing complex relationships
between dietary components. However, while researchers have applied various network
algorithms to explore food co-consumption, inconsistencies in methodology, incorrect
application of algorithms, and varying results have made interpretation challenging. The
objectives of this scoping review were to systematically map and synthesise studies that
have applied network analysis to dietary data, and to establish guiding principles for
future research in this area. Methods: Using PRISMA-ScR criteria, our scoping review
identified 171 articles published from inception up to 7 March 2025, of which 18 studies
met the inclusion criteria. Results: Gaussian graphical models were the most frequent
approach, used in 61% of studies, and were often paired with regularisation techniques
(e.g., graphical LASSO) to improve clarity (93%). The analysis revealed significant method-
ological challenges across the literature: 72% of studies employed centrality metrics without
acknowledging their limitations, there was an overreliance on cross-sectional data limiting
the ability to determine cause and effect, and difficulties in handling non-normal data.
While most studies using GGM addressed the issue of non-normal data, either by using the
nonparametric extension, Semiparametric Gaussian copula graphical model (SGCGM), or
log-transforming the data, 36% did nothing to manage their non-normal data. Conclusions:
To improve the reliability of network analysis in dietary research, this review proposes five
guiding principles: model justification, design–question alignment, transparent estimation,
cautious metric interpretation, and robust handling of non-normal data. To facilitate their
adoption, a CONSORT-style checklist is introduced—the Minimal Reporting Standard for
Dietary Networks (MRS-DN)—to help guide future studies. This review was preregistered
on Open Science Framework.

Keywords: dietary patterns; models; statistical

1. Introduction
Dietary patterns have been associated with a variety of health outcomes. For example,

the Mediterranean diet, characterised by a high consumption of fruits, vegetables, whole
grains, and healthy fats, has been linked to the prevention of cardiovascular disease [1,2],

Nutrients 2025, 17, 3261 https://doi.org/10.3390/nu17203261

https://doi.org/10.3390/nu17203261
https://doi.org/10.3390/nu17203261
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0001-8591-2508
https://orcid.org/0000-0002-6954-3519
https://doi.org/10.3390/nu17203261
https://www.mdpi.com/article/10.3390/nu17203261?type=check_update&version=1


Nutrients 2025, 17, 3261 2 of 25

better cognitive performance [3], and a longer life expectancy [4]. In comparison, the
Western diet, consisting of a high intake of red and processed meat, refined grains, sugars,
fats, and fast food with a low intake of fruit and vegetables, has been associated with higher
rates of obesity [5,6] and an increase in cancer risk [7].

Currently, most of the research looking into nutrition and its effect on health has
focused on analysing foods and nutrients separately from each other [8,9] or has produced
“a priori” diet quality scores or “data-driven” composite scores [10]. These traditional
dietary assessment methods do not expose food synergies, which may lead to an incomplete
understanding of dietary patterns and their health implications [11,12]. Therefore, it is
crucial to research not only what foods are consumed but also how foods are consumed
in combination. For example, a recent study found that garlic may counteract some of
the detrimental effects associated with red meat consumption, including a reduced risk
of cardiovascular disease from a high intake of red meat [13]. This finding emphasises
the need to examine the interactions between different foods to fully understand their
health impacts.

The network approach offers a promising and more holistic way to analyse the co-
consumption of foods. It enables the exploration of dietary patterns by using advanced
statistical techniques to map and analyse the connections between various dietary compo-
nents [12]. By capturing the co-consumption patterns and their associated outcomes, the
network approach can reveal insights into the relationship between nutrition and health
that traditional methods may have previously overlooked.

1.1. Dietary Patterns and Health

Using dietary analysis in nutritional research is essential for the development of dietary
interventions aimed at improving both physical and psychological wellbeing. Accurate
dietary analysis allows researchers to identify dietary patterns and nutrients that influence
health outcomes, enabling the formulation of targeted interventions. For instance, the
Dietary Approach to Stop Hypertension (DASH) diet was developed after observational
research found that a carbohydrate rich diet with fruits, vegetables, and low-fat dairy
products was associated with lowered blood pressure [14,15]. Notably, randomised con-
trolled trials of individual nutrients such as magnesium, potassium, calcium, and fibre
had produced inconsistent results [14]. One explanation was that nutrients from dietary
supplements may not benefit health as effectively as those obtained from whole foods
due to the synergistic interactions between nutrients and other components present in
the diet. Unfortunately, due to the limitations of conventional dietary pattern analysis,
most nutritional interactions remain undiscovered. However, recent computational ad-
vances may help unveil nonadditive and nonlinear interactions [16], thereby improving
dietary recommendations and the development of multicomponent functional foods and
supplements that benefit health [8].

1.2. Traditional Dietary Pattern Analysis

The traditional methods used for dietary pattern analysis include principal component
analysis (PCA), cluster analysis, and a priori composite scores. As detailed in Table 1, these
techniques are used to summarise complex dietary data into more easily interpretable
patterns/groups. For instance, PCA might identify a “healthy eating” component by
grouping correlated foods like fruits and vegetables [17,18], while cluster analysis may
group individuals with similar overall diets [19]. These methods have been instrumental in
linking broad dietary patterns, such as the Western diet, to adverse health outcomes, such
as obesity [5,20] and cancer [21].
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Table 1. Traditional methods for dietary analysis.

Method Algorithm Linear/Nonlinear Assumptions Strengths/Limitations

Principal Component
Analysis (PCA)

Eigenvalue
decomposition Linear

Assumes normally
distributed data, linear
relationships between
variables, uncorrelated

components.

Identifies what dietary
patterns exist in a

population.
Can determine which
foods are consumed

together in a diet but does
not reveal interactions
between those foods.

Factor Analysis Factor extraction Linear

Assumes normally
distributed data, linear

relationships, data can be
grouped into latent factors.

Can identify the
underlying dietary factors
that explain variations in

food intake. However,
does not provide

information about how
particular foods interact.

Cluster Analysis k-means, hierarchical
clustering Nonlinear

Assumes defined clusters
with similar characteristics

and independent
observations.

Groups individuals based
on their dietary patterns.
Useful for segmenting
consumers based on
dietary patterns. Can

handle nonlinear
associations between
variables. Assumes

pairwise similarity or
proximity but does not

explicitly capture direct or
indirect interdependencies
among multiple variables.

Dietary Index/Scores Predefined scoring Linear

Assumes each score
represents healthfulness,

often based on a reference
diet. Each component is

typically weighted
(sometimes equally),

ignoring potential
interactions between

components.
Requires prior knowledge.

Can identify how closely
an individual’s diet aligns
with a healthy/reference

dietary pattern.

Despite their utility and valuable insights, these traditional methods share a significant
limitation—they are often unable to fully capture the complex interactions and synergies
between different dietary components [22]. By reducing dietary intake to composite scores
or broad patterns, the multidimensional nature of diet is often disregarded, and crucial
food synergies may be hidden [23]. While these patterns may capture some synergies,
this is only possible when interactions are explicitly recognised and incorporated during
score development, which is rare [24]. Moreover, in research focusing on individual
nutrients or foods, interactions are often implicitly assumed to be nonexistent in the model
design [24]. Finally, these methods often assume that dietary patterns are relatively static,
ignoring potential changes in diet over time due to ageing, economic changes, or health
conditions [25]. These incorrect assumptions about interactions, or assumptions of staticity
in model design, can result in obscured or false associations and biased effect estimates.

In contrast, for the methods usually used to quantify dietary patterns, more prescrip-
tive approaches such as linear optimisation have been instrumental in designing diets that
meet specific targets for health, sustainability, or cultural appropriateness. Whilst beyond
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the scope of this review, these methods are fundamentally “knowledge-based”, meaning
they can only optimise for the variables they already know about—the handful of macro-
and micronutrients that have been well characterised. This represents the “known knowns”
of nutrition, which constitute less than 1% of the thousands of distinct bioactive compounds
and phytochemicals present in our food chain. This inherent limitation means that such
models are blind to the vast “nutritional dark matter” and the complex food synergies that
are crucial for health.

1.3. Network Approaches

To overcome the limitations of traditional dietary analysis, network approaches have
emerged as a promising alternative, representing a superior, bottom-up alternative to
knowledge-based prescriptive models like linear optimisation. Unlike the traditional meth-
ods which focus on individual nutrients and patterns in isolation [26], network analysis
does not require comprehensive prior knowledge of every bioactive compound. Instead, it
is a data-driven approach that learns directly from real-world eating behaviours. While
also data-driven, this provides a key advantage over methods like PCA or cluster analysis;
instead of reducing diet to composite scores or groups, network analysis explicitly maps
the web of interactions and conditional dependencies between individual foods [12].

Methods such as Gaussian graphical models (GGMs) and mutual information (MI)
networks enable researchers to visualise and analyse these intricate relationships within
a diet [27]. By mapping the connections between foods and nutrients, these methods
reveal how they collectively influence health outcomes and allow for the discovery of
beneficial food combinations and protective synergies that emerge rather than a pre-defined
biochemical model. Furthermore, dynamic or time-varying networks can model how
dietary patterns change over time within individuals or populations, turning the complexity
of our diet from a limitation into a source of discovery [28].

A variety of network algorithms have been developed, although not all have hitherto
been applied to diet (Table 2). GGMs are probabilistic models that use partial correlations to
identify conditional independence between variables. These models are particularly useful
for exploring linear relationships in dietary data, offering insights into how one nutrient
interacts with others while accounting for the broader dietary context. For example, GGMs
can reveal whether the intake of saturated fats and sodium is conditionally independent
given calorie consumption. This could help identify whether their relationship is direct
or merely a byproduct of consuming high-calorie foods. This makes them valuable for
understanding direct and indirect nutrient associations within diets. A limitation is that
GGMs assume linear relationships, making them unsuitable for capturing the nonlinear
interactions that are often present in dietary data. For example, the effect of salt on
hypertension may be moderated by the potassium and sugar content of the diet [29].
Additionally, GGMs are sensitive to non-normal distributions, which can distort the results
in datasets with significant deviation [30].

Related to GGMs, mixed graphical models (MGMs) accommodate datasets containing
both continuous variables (e.g., nutrient intake) and categorical variables (e.g., demographic
characteristics) [31]. This versatility is particularly useful for dietary studies that integrate
diverse types of information. For example, MGMs can explore how continuous measures of
dietary intake correlate with categorical socioeconomic factors such as education or income.
By modelling these mixed data types jointly, MGMs expand the applicability of graphical
models to more complex nutritional datasets, potentially yielding deeper insights into
diet-health relationships. However, MGMs share several limitations with GGMs, including
sensitivity to non-normal distributions for continuous variables [30].
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Table 2. Network methods for dietary analysis.

Method Algorithm Linear/Nonlinear Assumptions Strengths/Limitations

Gaussian Graphical
Models (GGMs)

Inverse covariance
matrix estimation Linear

Assumes normally
distributed data, linear

relationships,
requires sparsity.

Measures the conditional
dependencies between different

foods. Reveals how certain foods are
commonly consumed together, or

how foods may displace each other
in the diet. Can increase

understanding how variables (e.g.,
foods, nutrients) directly interact,

independent of others in the context
of the whole diet. Relies on partial

correlation matrix and is sensitive to
non-normally distributed data.

Mixed Graphical
Models (MGMs)

Combination of GGM
and discrete

modelling techniques
Both

Assumes mixed data
types can be represented

in a joint network,
requires sparsity.

Can identify direct relationships
while accommodating diverse

variable types. Standard MGMs
assume linear relationships but with
extensions such as kernel methods

nonlinear models can be developed.

Mutual Information
Network

Information-theoretic
methods Nonlinear

No strict distributional
assumptions, assumes

mutual information
represents dependence.

Uses entropy-based measures to
quantify shared information. Reveals

how certain foods are commonly
consumed together, even in

nonlinear relationships (e.g., nutrient
thresholds or diminishing returns).

Similar to GGM but without
normality assumption. Does not

differentiate direct and
indirect associations.

Bayesian Networks
(BNs) Directed acyclic graphs Both

Assumes probabilistic
relationships between

variables.

Provides insights into causality and
allows the exploration of causal

pathways. Can incorporate prior
knowledge for enhanced

interpretability.
Computationally intensive when
discovering unknown networks.

Dynamic Networks Time-varying graph
algorithms Both

Requires longitudinal
data with high temporal

resolution.

Models time-varying dietary
patterns and tracks changes in diet

over time. Useful for predicting
unintended consequences of

interventions.
Requires resource-intensive

longitudinal data collection for
accurate analysis.

Hypergraphs Hyperedge-based graph
algorithm Both

Assumes interactions
can involve more than

two nodes.

Captures higher-order interactions.
Useful for modelling the combined
health impact of foods/nutrients

which are unable to be explained by
pairwise interactions.

Computationally demanding and
resource intensive. Complexity may

affect interpretability.

Multilayered Graphs Layered network
construction Both

Assume information is
shared between all

layers.

Enables analysis of intra- and
inter-layer connections. Valuable for

cross-domain analysis.
Computationally demanding and

complex. Challenging to interpret for
large datasets.

MI networks measure the amount of information shared between pairs of dietary
components, capturing both linear and nonlinear associations [32]. This can uncover hidden
patterns and relationships that may not have been found using traditional correlation-based
methods [33]. For instance, by modelling nonlinear patterns, MI networks can explore
how sugar and fat intake interact to disproportionally influence obesity or cardiovascular
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risk, identifying subtle dependencies such as threshold effects that might be missed by
simpler models. However, a significant limitation is that MI algorithms usually give
rise to denser networks reducing interpretability and the ability to tease apart direct and
indirect dependencies.

Bayesian networks (BNs) are probabilistic graphical models that represent the rela-
tionships between variables through directed acyclic graphs, enabling the identification of
potential causal pathways [34]. BNs have not yet been applied to dietary pattern analysis;
however, unlike other traditional correlation-based methods, BNs provide insights into
causality [34] which may make them a powerful tool to explore how changes in dietary
components may influence one another. One possible application of BNs is to model the
fat–sugar seesaw phenomenon, where reducing fat tends to lead to an increase in sugar
in the diet [35]. One advantage of BNs is their ability to incorporate prior knowledge into
the model structure [36], potentially enhancing the interpretability and plausibility of the
derived dietary network. There are limitations to BNs, in particular the computational
difficulty of exploring a previously unknown network [37].

Dynamic networks incorporate time-varying dependencies [38], enabling researchers
to observe how dietary patterns and meal compositions evolve over time. This approach
allows the study of how diets respond to external factors, such as seasonal changes or price
increases, and how interventions might alter established dietary habits [39]. One possible
application of dynamic networks is to understand how patterns of co-consumption may
change following dietary interventions. For example, if a person tends to consume meat
with vegetables and an intervention reduces meat consumption, dynamic networks could
reveal whether this intervention also leads to an unintended reduction in vegetable intake.
By modelling these changes, the unintended consequences of public health policies can
be predicted, such as how promoting plant-based diets may inadvertently decrease the
intake of other beneficial food groups. A limitation of dynamic networks is the need for
detailed longitudinal monitoring of diet over time; this often involves resource intensive
data collection methods, such as repeated dietary recalls or food diaries over extended
periods of time.

Hypergraphs extend traditional graph theory by allowing edges, known as hyper-
edges, to connect more than two nodes [40], making it possible to represent group-level
interactions or clusters. Standard graph models only consider the pairwise interactions,
such as edges between nutrients or foods, while hypergraphs can account for higher-order
interactions. This ability to model interactions involving multiple nodes would be partic-
ularly useful in dietary pattern research as multiple nutrients often work together with
shared function to influence health outcomes. For example, a hyperedge in a hypergraph
could represent a meal containing protein, fats, and carbohydrates where the combined
impact on health emerges from the interplay between these nutrients and cannot be ex-
plained by pairwise interactions alone. One limitation of hypergraphs is that their high
computational demand can make them resource-intensive [41], especially for large datasets.
Another limitation is that the complexity of hypergraphs often makes them hard to inter-
pret [42], reducing their accessibility for researchers who are less familiar with advanced
network methods.

Multilayered graphs represent systems with multiple interconnected layers, each
capturing distinct but related interactions [43]. For example, one layer may represent
nutrient interactions, another may represent food-level relationships, and another may
represent food context. These graphs allow for a comprehensive exploration of both intra-
layer and inter-layer connections [43]. Analysing cross-domain relationships is valuable
in nutrition research as the impact of food context on nutrient intake can be examined.



Nutrients 2025, 17, 3261 7 of 25

However, multilayered graphs are computationally demanding, especially for large datasets
spanning multiple domains. They are also complex and can be challenging to interpret [43].

The choice of method depends on the research question, data type, and available
computational resources. By leveraging these diverse tools, researchers can gain deeper
insights into dietary patterns, overcoming some of the limitations of traditional dietary
pattern analysis (Table 2).

In summary, it is possible that network approaches offer a more nuanced and compre-
hensive analysis of dietary patterns compared to traditional methods. Therefore, we aimed
to (1) systematically map existing studies that have used network analysis in dietary re-
search, and (2) establish guiding principles that can advance the methodological standards
and promote more robust applications of these approaches in the field of nutrition research.

2. Methods
2.1. Study Design

This study was designed as a scoping review and was conducted in accordance with
the PRISMA-ScR guidelines. The protocol was preregistered on Open Science Framework
(https://doi.org/10.17605/OSF.IO/R5VE6).

2.2. Search Strategy and Selection Criteria

A comprehensive search was carried out using PubMed, Scopus, and PsycINFO to
identify studies that applied network analysis to dietary pattern data in human populations.
Searches covered the time period of inception to 7 March 2025. Studies were eligible if they
(i) applied network models to dietary intake data, (ii) included human participants, and
(iii) were written in the English language. Studies were excluded if network analysis was
used for metabolomics or systems biology.

The following search terms were used for PubMed, Scopus, and PsycINFO: “network
approach” or “network analysis” or “network method” or “graphical model” and “gaussian
graphical model” or “GGM” or “mutual information network” or “mixed graphical model”
and “dietary analysis” or “dietary data” or “nutrition analysis” or “food intake” or “diet”
or “nutrition. Google Scholar was used to obtain additional articles identified by journal
hand searching.

The core search terms (e.g., network analysis, graphical model) were chosen as high-
level keywords to cast a wide net to capture any relevant study, even those using novel
network algorithms. The few specific network models that were listed (GGM, MI, MGM)
were included as they were already known to have been applied to dietary data, ensuring
that the established methodologies within the field were not missed. To provide a thorough
overview of the field and its potential, the introduction of this review discusses a wide
range of network approaches, including those not yet applied to nutrition research (BNs,
dynamic networks, hypergraphs, multilayered graphs).

2.3. Screening and Article Selection

All identified articles were imported into EndNote and duplicates were removed.
Titles and abstracts were screened independently by two reviewers (R.M.J.T. and J.A.M.)
against the predefined eligibility criteria. Potentially eligible full-text articles were then
retrieved and assessed for inclusion. Full texts of the remaining articles were read to verify
their suitability (R.M.J.T. and J.A.M.). Reference lists from the articles deemed suitable were
checked for additional studies. Any discrepancies were resolved through discussion. The
full screening and selection process is shown in Figure 1.

https://doi.org/10.17605/OSF.IO/R5VE6


Nutrients 2025, 17, 3261 8 of 25

Figure 1. PRISMA flow diagram of literature screening and selection process.

2.4. Data Extraction

Data were extracted into a standardised Excel spreadsheet by one reviewer (R.M.J.T.)
and cross-checked by a second reviewer (J.A.M.) (available here https://osf.io/emd2q).
Extracted information included author and year of publication, study aims, participant
characteristics, dietary assessment methods, network model used, and appropriateness of
the network model.

To evaluate the selected articles, we conducted a thematic analysis of methodological
practices across the included studies, focusing on their alignment with best-practice rec-
ommendations for network analysis. Consistent with PRISMA-ScR and JBI guidance, we
did not appraise risk of bias because our aim was to map methodological characteristics,
not to evaluate intervention effects. Similarly, while general principles such as control of
confounding, corrections for multiple comparisons, and outlier handling are critical for any
dietary study, these data were not extracted as our focus was strictly on the methodological
considerations specific to network analysis.

3. Results
3.1. Search and Selection of Network Studies

The search conducted in March 2025 identified 171 studies. After removal of duplicates,
144 unique articles remained to be screened. The screening of titles and abstracts against the
predefined eligibility criteria (human dietary intake data, application of network analysis
methods, English language) excluded 125 articles.

The remaining 19 articles were then assessed in detail using their full text. Of these,
one was excluded as it did not have an English translation [44]. The remaining 18 articles
were read, and all met the inclusion criteria leading to inclusion in the final review. The
flow of studies from identification to final inclusion is represented in Figure 1.

https://osf.io/emd2q
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3.2. Study Characteristics of Included Network Studies

The characteristics of the 18 studies included in this review are presented in Table 3.
This table summarises each study’s population, dietary assessment method, network
method, aims, and key findings. As detailed in the table, all studies were published
between 2016 and 2024. Fourteen studies (78%) used food frequency questionnaires (FFQs),
one used a flower-FFQ [45], two relied on 24 h recalls [46,47], and one used a Mediterranean
diet adequacy questionnaire [48].

Nine studies analysed data from large, pre-existing cohorts: four from the Cancer
Screening cohort in South Korea, three from the European Prospective Investigation into
Cancer and Nutrition (EPIC) cohort, one from the Lifelines cohort, and one from the 3C
study. The remaining nine studies used smaller, non-cohort-based samples. Sample sizes
varied from 230 participants to 74,132 participants.

Regarding network approaches, eleven studies used GGMs, with one of these con-
firming their results with a semiparametric extension—semiparametric Gaussian copula
graphical model (SGCGM). Two studies used only SGCGM. Three studies used MI matrices.
Two studies used MGMs.

A wide range of health outcomes were analysed, highlighting the versatility of network
approaches in dietary research. Cancer was the most frequently studied outcome (n = 5,
including gastric and breast cancers). Other outcomes included incident prediabetes,
metabolic syndrome, adiposity, obesity, non-alcoholic fatty liver disease, diet quality during
pregnancy, anhedonia, dementia, and multiple sclerosis.

3.3. Objectives of Included Network Studies

The 18 included studies pursued a diverse range of objectives (Table 3), which can be
grouped into two broad themes: descriptive mapping of dietary patterns and investigating
associations with health outcomes.

Three studies were descriptive, aiming to characterise food co-consumption structures
within populations. These populations varied, with one study looking at sex-specific dietary
networks in German adults [49], one comparing meal-specific and habitual networks [46],
and one mapping meal-level networks during pregnancy [47].

The remaining 15 studies investigated the associations between dietary networks and
a variety of health outcomes. Cancer was the most frequently studied condition, with five
investigations examining dietary networks in relation to gastric [50,51], breast [52], and
overall cancer risk [53,54]. These included case–control studies identifying cancer-specific
food consumption patterns [50–52].

A second cluster of studies centred on cardiometabolic health, where dietary networks
were linked to measures such as general and abdominal adiposity [55], prediabetes [45],
and metabolic syndrome [56,57]. In addition, several studies explored multimorbidity
and broader chronic disease risk, applying network approaches to identifying the dietary
structures associated with the development of multiple long-term conditions. For example,
one study tested whether previously identified food-intake networks predicted major
chronic diseases and their biomarkers [58], while another study used demographic and
comorbidity data to reveal more complex interaction patterns [59].

Beyond these domains, network methods were extended to more specific outcomes.
One study examined dietary networks in relation to non-alcoholic fatty liver disease [60],
while the remaining three studies applied the approach in a neurological and mental health
context. These included mapping diet patterns up to a decade before dementia onset [33],
identifying food “hubs” in people with multiple sclerosis [48], and exploring the differences
in networks between adults with and without anhedonia [61].
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Table 3. Characteristics of the eligible studies.

Author (Year) Population Study Design Dietary
Assessment Network Model Aims Findings

Slurink et al.
(2023) [45]

74,132 participants,
Lifelines cohort study Prospective Cohort Flower-FFQ MGM

To investigate associations of total
dairy and dairy types with

incident prediabetes.
To assess how dairy intake is linked
with metabolic risk factors, lifestyle
behaviours, and foods, as potential
explanations for these associations.

Low fat milk intake associated with
higher prediabetes risk.

High-fat yogurt intake had
nonsignificant inverse association

with prediabetes risk.
Associations may be confounded by
behaviours relating to dairy intake.

Schwedhelm et al.
(2021) [47]

365 women,
12 weeks gestation Prospective Cohort

Three Automated
Self-Administered 24 h

dietary recalls
SGCGM

To investigate food networks across
meals in pregnant women.

To explore differences by overall diet
quality classification.

Food combinations differed by meal
and between dietary quality tertiles.
High diet quality group: vegetables,

whole-grain bread, cooked grains and
nuts at breakfast.

Low diet quality group: Sugar
sweetened beverages, sandwiches,

and fried potatoes at all main meals.

Felicetti et al.
(2022) [48]

424 participants with MS,
165 healthy controls Cross-Sectional MeDi adequacy

questionnaire MI

To investigate food networks across
meals in people with multiple sclerosis

(PwMS) and healthy controls (HC).
To explore differences by overall diet

quality classification.

PwMS Hubs: Fruit, vegetables, cereal,
and fish.

HC Hubs: Meat and alcohol.
PwMS showed overall healthier

dietary pattern than HC.

Samieri et al.
(2020) [33]

1522 participants
(209 with dementia),

3C study
Nested Case–Control FFQ MI

To use network science to model
complex diet relationships a decade
before onset of dementia in a large

French cohort.

Food networks substantially differed
between cases and controls.

Cases: Charcuterie was the main hub.
Controls: Several disconnected

subnetworks reflecting
healthier choices.

Jayedi et al.
(2021) [55] 850 participants Cross-Sectional FFQ GGM

To describe dietary networks
identified by GGM, representing

patterns of dietary intake in a sample
of Iranian adults.

To investigate the potential
associations of these dietary patterns

with general and abdominal adiposity.

Identified 3 dietary networks: healthy,
unhealthy, saturated fats.

Saturated fats network was associated
with a higher likelihood of

central obesity.
No association with general obesity.

Iqbal et al.
(2016) [49]

27,120 participants,
EPIC cohort Cross-Sectional FFQ

GGM (results
confirmed through

SGCGM)

To apply GGMs to derive sex-specific
dietary intake networks representing
consumption patterns in a German

adult population.

Men: 1 major network including red
meat, processed meat, and

cooked vegetables.
Women: similar network with

addition of fried potatoes.
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Table 3. Cont.

Author (Year) Population Study Design Dietary
Assessment Network Model Aims Findings

Schwedhelm et al.
(2018) [46]

814 participants,
EPIC cohort Cross-Sectional Three 24 h recalls SGCGM

To estimate and describe meal and
habitual dietary networks derived

through SGCGMs.
To compare relations found in meal
networks to the ones present in the

habitual network.

Meal-specific networks (breakfast,
lunch, dinner) had distinct food

communities.
Meal-specific dietary network only

partly reflected in habitual network.

Gunathilake et al.
(2022) [54]

7477 participants
(397 with cancer),

Cancer Screening Cohort
Prospective Cohort FFQ GGM (also used PCA

and RRR)

To investigate the association between
dietary communities identified by a

GGM and cancer risk.

A community composed of dairy
products and bread was associated

with a reduced cancer risk.
In a matched population, poultry,

seafood, bread, cakes and sweets, and
meat byproducts showed significantly

reduced risk of cancer.

Iqbal et al. (2019)
[58]

22,245 participants,
EPIC cohort Prospective Cohort FFQ GGM (also used

PCA)

To investigate the association between
previously identified GGMs food
intake networks and risk of major

chronic diseases as well as
intermediate biomarkers in the

EPIC-Potsdam cohort.

A Western-type pattern was associated
with increased risk of type 2 diabetes

in women.
A high-fat dairy pattern associated
with lower risk of type 2 diabetes in

both sexes.

Hoang et al.
(2021a) [53]

10,777 participants
(1049 with cancer),

Cancer Screening Cohort
Cross-Sectional FFQ GGM

To identify major dietary patterns of
Korean adults using a GGM.

To examine the associations between
dietary pattern (DP) scores and

prevalence of self-reported cancer.

Identified 4 networks: principal,
oil-sweet, meat, and fruit.

Consumption of the oil-sweet pattern
was lower in cancer patients, while
meat and fruit pattern consumption

was higher.

Jahanmiri et al.
(2022) [56] 850 participants Cross-Sectional FFQ GGM

To derive dietary networks and
assess their association with

metabolic syndrome.

Identified 3 networks: healthy,
unhealthy and saturated fats.

The saturated fats network was
associated with high odds of

metabolic syndrome.

Aguirre-
Quezada and

Aranda-Ramírez
(2024) [57]

230 students Cross-Sectional FFQ GGM

To apply GGMs to derived specific
networks for groups of healthy and

unhealthy obese individuals that
represent the nutritional,

psychological, and metabolic patterns
in an Ecuadorian population.

Higher carbohydrate intake was
associated with lower protein intake.
For metabolically unhealthy obese

individuals, intake of fibre, proteins,
carbs, and fats was positively related

to BMI.
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Table 3. Cont.

Author (Year) Population Study Design Dietary
Assessment Network Model Aims Findings

Hoang et al.
(2021b) [59]

7423 participants,
Cancer Screening Cohort Cross-Sectional FFQ MGM

To elucidate the complex
interrelatedness among dietary intake,

demographics, and risk
of comorbidities.

Normal and heavy eating significantly
associated with increased risks of

elevated BP, hypertension, and mild
kidney impairment.

Landaeta-Díaz
et al. (2023) [61] 1242 participants Cross-Sectional FFQ GGM

To explore food networks in the
Chilean adult sample and in people

with anhedonia symptoms.

Fruits, vegetables, and fast foods have
central role in the main sample.

In the anhedonia network, “pasta, rice
and potatoes” and “bread” were

more central.

Xia et al.
(2020) [60]

2043 matched controls for
2043 newly diagnosed

non-alcoholic fatty liver
disease (NAFLD)

Case–Control FFQ MI

To construct dietary networks from
network science.

To explore the associations between
complex dietary networks

and NAFLD.

Dietary structures differed
between groups.

The case group had two major
networks while the control group

had one.

Fereidani et al.
(2021) [52]

134 women with breast cancer,
266 hospital controls Case–Control FFQ GGM

To compare food intake networks
derived by GGMs for women with
and without breast cancer to better

understand how foods are consumed
in relation to each other according to

disease status.

Vegetables, fruits, sweets, and fried
potatoes were central in both

networks.
The network of cases showed more
conditional dependencies between

foods than controls.

Gunathilake et al.
(2020) [50]

415 gastric cancer cases,
830 controls,

Cancer Screening Cohort
Case–Control FFQ GGM

To apply GGMs to identify
dietary patterns.

To investigate the associations
between dietary patterns and gastric
cancer risk in a Korean population.

Vegetable/seafood and fruit networks
were associated with a decreased risk

of GC.
Highest tertile of vegetable/seafood

score had a reduced risk of GC.

Gunathilake et al.
(2021) [51]

268 patients with GC,
288 healthy controls Case–Control FFQ GGM

To observe the combined effects of
GGM-derived dietary patterns and the

gastric microbiome on the risk of
gastric cancer in a Korean population.

Vegetable/seafood pattern may
interact with dysbiosis to attenuate the

risk of GC in males.
Dairy pattern may interact with

dysbiosis to reduce GC risk in females.
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3.4. Adherence to Methodological Best Practices

The remainder of this results section provides a thematic analysis of the included
studies, evaluating their adherence to several key methodological best practices for network
analysis (Table 4).

3.4.1. Justifications for Using Network Models

The included studies justified their use of network analysis in several ways. The most
common rationale was to counter the known limitations of traditional methods, a justifica-
tion made by nine of the reviewed studies [46,47,52,53,55–57,59,60]. For instance, authors
noted that network analysis was chosen because PCA can explain only a small proportion
of the variability in food intake [47] and fails to demonstrate pairwise correlations between
food groups [55].

Another common theme was the use of network analysis to complement existing
research and gain additional insights into complex data [33,49,50]. One study framed
its use as complementary without explicitly mentioning the limitations of traditional
methods [48]. Two studies specifically focused on using network analysis to overcome the
limitations of diet scores, allowing for an assessment of diet as a pattern rather than a sum
of single food items [51,61].

Furthermore, three studies used network analysis directly alongside traditional dietary
pattern analysis methods [45,54,58]. This was often performed to compare the dietary pat-
terns identified by each approach, for example by using network analysis to derive dietary
networks and then using PCA and reduced rank regression (RRR) for comparison [54], or
by comparing new network-derived patterns to PCA patterns from the same cohort in an
earlier study [58].

3.4.2. Study Design and Causal Inference

Half of the reviewed studies utilised a cross-sectional design [46,48,49,53,55–57,59,61].
The nine remaining studies featured a mix of other observational designs – five were case-
control [50–52,60], including one nested case-control study [33], and four were prospective
cohort studies [45,47,54,58]. A crucial finding was that 17 out of 18 studies appropriately
refrained from making strong causal claims from their observational data. Within the nine
cross-sectional studies, authors were generally cautious; three studies explicitly stated
that the design was the reason for this caution [48,56,59], and another acknowledged it
as a limitation but did not specify why [55]. Only one study was identified as making
causal inferences [54]. Although this study utilised a prospective cohort design, which
is better suited for exploring temporal relationships than cross-sectional data, drawing
causal conclusions from any observational design remains a significant challenge. This
highlights the care that must be taken when interpreting associations, even from stronger
study designs.

3.4.3. Network Estimation and Regularisation

The reviewed studies employed several techniques to estimate their networks and
control for spurious connections, with approaches varying by the chosen network model.

Among the studies using GGM-based models (GGMs, SGCGMs, and MGMs), LASSO
regularisation was the most common approach, used in 14 of the 15 studies [45–47,49–59].
Only one GGM study did not employ a regularisation method [61]. However, the trans-
parency in reporting the specific LASSO tuning parameter (λ) was inconsistent; just 8
of these 14 studies provided this detail [45,49–54,59], while one study explored network
structures across a range of different tuning parameters (λ) [57].
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For the three studies that used MI networks, one only applied thresholding to reduce
network density [60], and one used only permutation testing to retain only statistically sig-
nificant connections [48]. One study used both thresholding and permutation testing [33].

Regarding the stability and novelty of the findings, two studies, noted they were the
first in their specific populations, and still made inferences from their findings [47,55].

3.4.4. Use and Interpretation of Centrality Metrics

The application of centrality metrics to identify important foods or nutrients was
inconsistent across the reviewed literature. Five of the eighteen studies avoided using
centrality metrics in their analysis [47–49,52,60]. In contrast, the majority of studies (13
out of 18) did employ centrality metrics, and none of these studies acknowledged or
discussed the potential limitations of this approach in the context of dietary network
analysis [33,45,46,50,51,53–59,61]. For instance, one study examined node centrality using
strength, betweenness, and closeness, ultimately opting to use the strength metric for its
final analysis [45].

3.4.5. Handling of Non-Normal Data

The studies employing GGMs used three distinct strategies to address the assumption
of normally distributed data. The most robust approach was to use a nonparametric
extension of the GGM; two studies used the SGCGM exclusively [46,47], and a third study
used SGCGM to confirm the results of their primary GGM analysis [49].

The most common strategy was data transformation, with seven studies applying a
log-transformation to their data to improve normality [49–54,58].

Finally, four of the GGM studies did not apply any correction for non-normal data. Of
these, three acknowledged the issue as a limitation but did not address it [55–57], while
one study did not acknowledge the limitation at all [61].

Table 4. Adherence of studies to the guiding principles of using network analysis for dietary
pattern analysis.

Author (Year) Justification for Using
Network Models

Study Design and
Causal Inference

Network Estimation
and Regularisation

Use of Centrality
Metrics

Handling of
Non-Normal Data

Slurink et al.
(2023) [45]

Used to aid interpretation
of regression models.
Holistic approach to

aid traditional
reductionist methods.

Did not attempt to
make inferences
about causality.

Used LASSO
regularisation.

λ value of 0.5 reported.

Uses centrality
metrics.

Did not discuss
limitation.

N/A (used MGM).

Schwedhelm
et al. (2021)

[47]

Addressed limitations
of PCA.

Better alternative for
revealing meal-specific

food combinations.

Did not attempt to
make inferences
about causality.

Used LASSO
regularisation.

Did not report λ.
Made inferences

despite being the first
study to test these

associations.

Did not use centrality
metrics.

Addressed via
SGCGM.
Excluded

episodically
consumed foods.

Felicetti et al.
(2022) [48]

Used to see complex
relations hidden in eating

behaviour.
Complementary to other

research.

Acknowledged
cross-sectional design

prevents causal
claims.

Used permutation
testing.

Did not use
centrality metrics. N/A (used MI).

Samieri et al.
(2020) [33]

Provided complementary
information to other

approaches.
Gained additional

insights into food-disease
associations.

Did not attempt to
make inferences
about causality.

Used permutation
testing.

Used thresholding
(edge weight >40).

Used centrality
metrics.

Did not discuss
limitations.

N/A (used MI).
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Table 4. Cont.

Author (Year) Justification for Using
Network Models

Study Design and
Causal Inference

Network Estimation
and Regularisation

Use of Centrality
Metrics

Handling of
Non-Normal Data

Jayedi et al.
(2021) [55]

Addressed limitations
of PCA.

Acknowledged
cross-sectional design

as a limitation but
did not specify why.

Used LASSO
regularisation.

Did not report λ.
Made inferences

despite being the first
study to test these

associations.

Used centrality
metrics.

Did not discuss
limitations.

Acknowledged the
normality

assumption.
Did not apply any

correction.

Iqbal et al.
(2016) [49]

Limitations of existing
methods of dietary

pattern analysis warrant
investigation of
complementary

approaches.

Did not attempt to
make inferences
about causality.

Used LASSO
regularisation.

λ value of 0.25 reported.
Performed network

stability analysis
(bootstrapping).

Did not use
centrality metrics.

Addressed via
log-transformation.
Confirmed GGM

results with SGCGM.

Schwedhelm
et al. (2018)

[46]

Addressed limitations of
traditional methods in

understanding how
patterns arise.

Did not attempt to
make inferences
about causality.

Used LASSO
regularisation with

cross-validation.
Did not report tuning

parameter (λ).

Used centrality
metrics to assist
interpretation.

Did not discuss
limitations.

Addressed by using
SGCGM instead of

GGM.

Gunathilake
et al. (2022)

[54]

Used GGM to derive
dietary communities.
Compared with PCA

and RRR.

Used a prospective
cohort design, made

causal inferences.

Used LASSO
regularisation.

Optimal λ values
reported, 0.32 and 0.34.

Used centrality
metrics.

Did not discuss
limitations.

Addressed via
log-transformation.

Iqbal et al.
(2019) [58]

Used GGM to investigate
diet-disease relationships.

Reconstructed PCA
patterns for comparison.

Did not attempt to
make inferences
about causality.

Used LASSO
regularisation.

Referred to previous
publication for

regularisation details.

Used centrality
metrics.

Did not discuss
limitations.

Addressed via
log-transformation.

Hoang et al.
(2021a) [53]

Addressed limitations of
PCA and RRR.

Used GGM to resolve
issues between methods.

Acknowledged
cross-sectional design

was not strong
enough for causal

claims.

Used LASSO
regularisation.

Optimal λ values
reported (0.48,

0.52, 0.46).

Used centrality
metrics.

Did not discuss
limitations.

Addressed via
log-transformation.

Jahanmiri et al.
(2022) [56]

Framed GGM as a
“commanding method”

compared to reductionist
traditional techniques.

Acknowledged
cross-sectional design

prevents
cause-and-effect

conclusions.

Used LASSO
regularisation.

Did not report λ.

Used centrality
metrics.

Did not discuss
limitations.

Acknowledged the
normality

assumption as a
limitation.

Did not apply any
correction.

Aguirre-
Quezada and

Aranda-
Ramírez (2024)

[57]

Addressed limitations in
previous studies analyses.

Praised GGM for
providing a

comprehensive overview.

Did not attempt to
make inferences
about causality.

Used LASSO
regularisation.

Explored a range of λ
rather than selecting

one.

Used centrality
metrics.

Did not discuss
limitations.

Acknowledged the
normality

assumption as a
limitation.

Did not apply any
correction.

Hoang et al.
(2021b) [59]

Addressed limitations of
conventional approaches.
Used network analysis to

explore complex
interactions.

Acknowledged
cross-sectional design
may not allow for a
full investigation of

causality.

Used LASSO
regularisation.

λ value of 0.5 reported.
Assessed network

accuracy via
bootstrapping.

Used centrality
metrics.

Did not discuss
limitations.

N/A (used MGM).

Landaeta-Díaz
et al. (2023)

[61]

Addressed limitations of
diet scores.

Used GGM to represent
the underlying structure

of food groups.

Did not attempt to
make inferences
about causality.

Did not use any
regularisation

techniques.

Used centrality
metrics.

Did not discuss
limitations.

Did not acknowledge
the normality
assumption.

Did not apply any
correction.

Xia et al. (2020)
[60]

Addressed limitations
of traditional

statistical methods.
Used network methods to

provide new insight.

Did not attempt to
make inferences
about causality.

Used thresholding
(edge weight ≥ 0.30)
for interpretability.

Did not use
centrality metrics. N/A (used MI).

Fereidani et al.
(2021) [52]

Addressed limitations of
existing methods.

Used GGM to show how
foods are consumed in
different combinations.

Did not attempt to
make inferences
about causality.

Used LASSO
regularisation.

λ value of 0.3 reported.

Used a nonstandard
definition of “central

food groups”.

Addressed via
log-transformation.
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Table 4. Cont.

Author (Year) Justification for Using
Network Models

Study Design and
Causal Inference

Network Estimation
and Regularisation

Use of Centrality
Metrics

Handling of
Non-Normal Data

Gunathilake
et al. (2020)

[50]

Used as a complementary
strategy for investigating
diet-disease relationships.

Did not attempt to
make inferences
about causality.

Used LASSO
regularisation.

Optimum λ value
reported (0.38).

Used centrality
metrics.

Did not discuss
limitations.

Addressed via
log-transformation.

Gunathilake
et al. (2021)

[51]

Assessed diet as a pattern
rather than a sum of

single food items.

Did not attempt to
make inferences
about causality.

Used LASSO
regularisation.

Optimum λ value
reported (0.37).

Used centrality
metrics.

Did not discuss
limitations.

Addressed via
log-transformation.

3.5. Synthesis of Methodological Adherence

The methodological practices of the 18 included studies, detailed in Table 4, reveal a
field with considerable promise but also significant inconsistencies. Most studies provided
a clear rationale for employing network analysis, with the most common justification being
to overcome the known limitations of traditional methods, such as PCA.

Despite strong justifications, several methodological challenges were prevalent across
the literature. In terms of study design, half of the articles used cross-sectional data. While
most of these studies appropriately refrained from making causal claims, the reliance on
cross-sectional designs limits the field’s ability to move beyond identifying associations.
Inconsistencies were also apparent in network estimation. Although LASSO regularisa-
tion was commonly used in the studies using GGMs to control for spurious connections,
transparency in reporting was inadequate as 43% of these studies failed to provide specific
details on the tuning parameter (λ) used, a practice that can limit reproducibility.

Furthermore, the application and interpretation of network metrics was an area of
concern. Many of the reviewed studies (13 out of 18) employed centrality metrics to identify
key dietary components, yet none acknowledged or discussed the potential limitations
of this approach in the context of unbounded dietary networks. Finally, the handling of
non-normal data varied considerably among studies using GGMs. While a few studies
used robust nonparametric extensions such as the SGCGM, the most common strategy was
data transformation, and three studies did not apply any correction for normality.

Collectively, these findings highlight the need for greater methodological standardisa-
tion, which the guiding principles proposed in this review aim to address.

4. Discussion
This scoping review provides the first comprehensive map of the emerging field of

dietary network analysis, revealing its rapid growth and versatile application across a
range of health outcomes. However, our thematic analysis of the 18 included studies
also identified a consistent pattern of methodological issues, most notably a reliance on
cross-sectional data, inconsistent reporting of estimation parameters, and the uncritical
use of centrality metrics. The prevalence of these challenges suggests a critical need for
methodological standardisation.

4.1. Guiding Principles for Future Research

To address these limitations, we developed five guiding principles by synthesising the
methodological gaps identified in our review with established best-practice recommenda-
tions from the wider network science literature. These principles, summarised in Figure 2,
have been distilled into a new CONSORT-style reporting standard—the Minimal Reporting
Standard for Dietary Networks (MRS-DN)—provided in the Supplementary Materials. The



Nutrients 2025, 17, 3261 17 of 25

remainder of this discussion will detail each of these principles, which are designed to
enhance the rigour and reliability of future research in this field.

 
Figure 2. Five guiding principles for research using network approaches to dietary pattern analysis.

4.1.1. Principle 1: Selecting Appropriate Models

Researchers should only use network analysis when it addresses specific limitations
of traditional multivariate methods or provides complementary insights that align with
the research question [62]. Using network analysis to counter the limitations of widely
used dietary pattern analysis methods and to complement the data obtained by these
methods is effective in building on the existing knowledge to uncover interactions that
have previously been concealed. It is critical, however, to ensure that network analysis is
the most appropriate method for the research question at hand.

4.1.2. Principle 2: Aligning Study Designs with Research Questions

Aligning the study design with the research question is a foundational principle of
epidemiological research. Accordingly, studies using cross-sectional data are appropriate
for identifying associations but should not be used to infer causality, as this can lead to
misleading conclusions about the relationship between diet and health. This distinction
is critical, as it is a basic tenet that cross-sectional data can only establish correlation, not
causation [62]. These inappropriate claims risk misinforming the scientific community
and may potentially lead to flawed public health recommendations based on evidence
which can only support an association. For instance, if a cross-sectional study finds that
individuals who consume more olive oil have a lower prevalence of heart disease, it is a
methodological error to conclude that olive oil causes a reduction in heart disease. The
observation could be confounded by other factors (e.g., individuals using olive oil may be
more likely to consume more vegetables, exercise regularly, or have high socioeconomic
status). A flawed causal claim could lead to public health advice that overemphasises a
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single ingredient, when the real benefit lies in a broader, healthier lifestyle pattern that
remains unobserved.

For causality-focused research questions, longitudinal data may be better suited.
Where longitudinal dietary data are available, time-varying network models—such as
dynamic or multi-level vector autoregression (mlVAR) frameworks—can reveal how food-
co-consumption patterns evolve and exert lagged effects on health, providing richer causal
insight; however, they should be applied only when there are enough repeated recalls or
diary days to capture true day-to-day variation, and with careful handling of compositional
constraints, seasonality, and measurement error to avoid artefactual dynamics.

4.1.3. Principle 3: Best Practices for Reliable Network Estimation

The robustness of estimated networks can be questionable, as networks may appear
similar in their global characteristics while their detailed characteristics vary substan-
tially [62,63]. Therefore, inferences should not be drawn before results have been rigorously
replicated [62]. To create more reliable and interpretable networks, specific best practices
should be followed.

When using GGM-based methods, robust methods such as LASSO regularisation
should be used to minimise spurious connections, as this technique limits the number
of spurious edges to obtain more interpretable networks [64]. Instead of just noting that
regularisation was used, it is helpful to specify (1) the exact method (e.g., graphical LASSO),
(2) the tuning parameter chosen (e.g., λ = 5), and (3) the criterion for selecting that parameter
(e.g., extended Bayesian information criterion, with the hyper-parameter γ). This extra
detail makes the analysis easier for others to interpret and replicate [64]. Similarly, when
using MI networks, techniques like thresholding (retaining edges above a certain value)
and permutation testing (recalculating mutual information on randomised data to keep
only significant connections) should be used to create a more robust network with fewer
spurious edges [65,66].

Before interpretation, the stability of the final network structure should be rigorously
assessed. A common and effective method is bootstrapping, where the network estimation
procedure is repeated on numerous subsamples of the data to see if the structure remains
consistent [67]. Interpreting a network without first confirming its stability can lead to
conclusions based on sample-specific noise rather than a robust underlying pattern.

Overall, the minimum that studies should be reporting is (1) the software and packages
used for the analysis, (2) the exact regularisation method, (3) the criterion for parameter
selection, (4) the final value(s) of the parameters (e.g., λ, γ), and (5) the results of a stability
analysis for the networks edges.

4.1.4. Principle 4: Valid Interpretation of Network Metrics

Researchers should carefully interpret centrality metrics (e.g., degree, closeness, be-
tweenness) for dietary networks. Most network centrality metrics were developed for
bounded networks, where the nodes are clearly defined and fixed [62]. Dietary pattern
analysis, however, involves what are known as unbounded networks: dynamic systems
that, unlike bounded networks, do not have a fixed number of nodes or connections. When
centrality metrics are applied to unbounded networks, their interpretability is compro-
mised, making them unstable and unreliable [62]. This can lead to inaccurate conclusions.
For example, one study concluded that “a low centrality predictability of low-fat milk
intake in the networks may indicate that significant associations in the regression analysis
could be due to intake levels coinciding with influential risk factors” [45]. However, given
the limitations of centrality metrics in unbounded networks, this conclusion may not be
valid. While the choice of the “strength” metric in that study was based on its relative
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stability, this does not negate the broader issue that these metrics can produce misleading
information [68]. For example, if “white rice” appears as the most central food in a dietary
network from an Asian population, it might be wrongly interpreted as the single most
important driver of the overall dietary pattern. However, its high centrality may simply
be an artifact of it being a staple food consumed frequently with many different, other-
wise unrelated, food groups (e.g., fish, vegetables, meat). A more robust analysis of the
network’s community may reveal distinct “fish and rice” and “vegetable and rice” patterns,
providing a more nuanced and accurate picture of the diet that is not apparent from the
simple node ranking. Therefore, researchers might consider either avoiding centrality
metrics entirely or adopting alternative approaches that account for the unbounded nature
of dietary networks.

If centrality metrics are calculated, then their stability must be assessed as a minimum
requirement (e.g., using a case-dropping bootstrap procedure). However, even stable
centrality metrics should be interpreted with extreme caution.

A more robust alternative to single-node centrality is to identify and analyse the
network’s community structure [69]. This approach focuses on broader co-consumption
patterns, which are often more stable and interpretable than the importance of a single
food item.

Furthermore, in dietary graphs that evolve over time, centrality can reflect exposure
and catalogue growth rather than true structural influence [62]. When centrality is re-
ported, treat it as descriptive, pair it with stability checks (e.g., case-dropping bootstrap),
and interpret cautiously [68]. Alternatives include growth-robust diagnostics: (i) commu-
nity/module stability across time-slices (e.g., adjusted Rand/NMI), (ii) permutation-based
information flow that compares simulated reach to degree/strength/time-matched nulls,
(iii) bipartite or hypergraph formulations for many-to-many relations (product–ingredient,
product–retailer), and (iv) motif persistence that tracks recurring higher-order patterns [69].
This avoids over-interpreting single-node centrality claims such as the “low centrality
predictability” example in prior work [45]. For changing product lists, analyse in fixed
windows, report null-relative effect sizes, and summarise each node by a compact tuple
(excess flow, module persistence, motif recurrence) with uncertainty.

4.1.5. Principle 5: Addressing Non-Normality in Dietary Data

Dietary data is rarely normally distributed, often being skewed and zero-inflated
(i.e., containing many “no consumption” reports), violating a core assumption of standard
GGMs [70]. When preprocessing the data, the distribution of the dietary data should be
examined and reported. Simple log-transformations are often insufficient for zero-inflated
data [71], and adding a small constant to avoid errors with zero values can distort the data,
leading to spurious connections and complicating the interpretation of the results [72]. To
illustrate, consider two healthy but infrequently consumed foods, such as “sardines” and
“flaxseeds”, that are rarely eaten together. In a dataset with many zero values for these
items, the common practice of adding a small constant before applying a log-transformation
can artificially shrink the data’s variance and create a spurious positive correlation between
them. A subsequent network analysis might then incorrectly identify a “health-conscious”
dietary pattern of “sardines and flaxseeds” when no such co-consumption pattern exists in
the population. Using a model appropriate for non-normal data like an SGCGM would
correctly reveal the absence of a direct connection. The method for handling zero values
must be explicitly described and justified.

When data is not normally distributed, standard GGMs should be avoided. Re-
searchers should instead opt for a more robust alternative. The SGCGM is a nonparametric
extension of the GGM which is designed for skewed data, making it a superior choice in
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such cases. Alternatively, researchers could use methods which do not assume normality,
such as an MI network or an MGM.

The minimum that studies should be reporting is (1) the distributional properties
of their dietary data, (2) the specific method used to handle zero values, and (3) a clear
justification for the chosen network model considering the data’s distribution (e.g., why a
standard GGM was used for non-normal data).

When deciding between SGCGM and MI/mixed-model residual networks, authors
should consider the following. (1) Zero inflation: If zeros are mainly structural (true absence)
and exceed roughly 40%, treat the data in two parts: model presence/absence first (logistic
or hurdle/ZINB) and build a residual network on the positive counts; this favours an
MI/mixed-model route because the zero process is explicitly modelled. When zeros are
mostly sampling artefacts and the prevalence of each node exceeds about 5%, apply a small,
prevalence-aware additive smoothing (ε) and run a brief ε-sensitivity check; under that
scenario a rank-based SGCGM is suitable because it handles the remaining non-normality
without further transformation. (2) Interpreting edge weights after transformation: With
an SGCGM, the partial edges refer to conditional rank associations on a latent Gaussian
scale—direction and strength show whether two foods tend to rise or fall together once all
others are held constant, independent of original units. In an MI/mixed-model residual
network the edges capture conditional associations in the portion of each variable that the
mixed model has not explained; their meaning therefore sits on whatever scale the outcome
was modelled (e.g., log counts, centred proportions). State this scale explicitly and, where
helpful, translate one edge back to the original units in a worked example so readers see
how the transformation affects interpretation.

4.2. Future Directions

Future dietary network research should engage more deeply with the temporal dy-
namics inherent to nutritional epidemiology. The current literature is dominated by cross-
sectional data, which only provides a static snapshot of diet. However, dietary patterns are
not static; they evolve over an individual’s lifespan due to a variety of factors, including
population ageing, changes in health status, or shifts in socioeconomic status [25].

To capture these crucial long-term dynamics, future studies can use advanced network
models which are well-suited for longitudinal data. Dynamic networks can explicitly
model how food co-consumption patterns change over time, allowing researchers to track
dietary shifts within populations in response to interventions or health changes [28,38].
Similarly, multilayered graphs offer a powerful way to integrate dietary data with other
evolving domains, such as health biomarkers or physical activity, providing a more holistic
view of the diet-health relationship across the lifespan [43].

A significant opportunity for future research lies in applying BNs to dietary data as
this has not yet been performed. These networks are able to represent relationships through
directed graphs, allowing researchers to explore potential causal pathways [34], a major
step forward for a field dominated by cross-sectional data. As previously mentioned, BNs
could be used to model directional phenomena, such as the fat-sugar seesaw, where a
reduction in fat may lead to a subsequent increase in sugar intake [35].

Ultimately, if dietary network research is to inform robust public health recommenda-
tions and policy, future studies must move beyond cross-sectional snapshots and invest in
longitudinal and interventional designs that can truly unravel causal relationships within
evolving dietary patterns.

Another promising direction is the use of hypergraphs to move beyond the simple
pairwise connections between foods, which also has not yet been performed. Standard
network graphs can only represent an edge between two nodes at a time, while hypergraphs
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can use hyperedges to connect a group of three or more nodes simultaneously to represent
a meal or synergistic combination of nutrients [40]. This allows for the modelling of higher-
order interactions, where the health impact of a combination of foods cannot be explained
by its individual components alone, potentially providing a much deeper understanding of
the complex food synergies crucial for health.

4.3. Strengths and Limitations of the Current Work

A key strength of this review is its systematic and rigorous methodology. We con-
ducted a comprehensive search across multiple relevant databases and followed the
PRISMA-ScR guidelines for scoping reviews. The inclusion of two independent reviewers
for the study selection process minimises the risk of bias and enhances the reliability of our
findings. Furthermore, this review moves beyond a simple summary of the literature. By
critically evaluating the included studies against an established framework of best practices
and generating a novel set of guiding principles, this work provides a tangible roadmap
for future researchers in this emerging field.

Despite these strengths, several limitations should be acknowledged. First, as a scop-
ing review, our aim was to map the field rather than conduct a formal quality assessment or
risk-of-bias analysis for each individual study; therefore, the quality of the primary studies
was not formally appraised. Second, our review may be subject to publication bias, as stud-
ies with null or nonsignificant findings may be underrepresented in the published literature.
Additionally, our search was limited to English-language publications; however, only one
relevant study was excluded because no English translation was available. Finally, dietary
network analysis is a rapidly evolving field. While our search was comprehensive up to its
cut-off date, new studies will have been published in the interim. A further limitation, in-
herent to the primary studies included in this review, is the potential for measurement error
from dietary assessment methods. The analysis revealed a heavy reliance on FFQs, which
were used in 78% of the reviewed studies. While FFQs are effective for capturing long-term
dietary patterns, they are susceptible to systematic errors, including recall bias [11] and
social desirability bias [73]. The few studies that used 24 h recalls may have more accurate
data for a given day but might not capture a participant’s habitual diet [74]. The choice
of assessment tool inevitably influences the data structure, and these potential sources of
measurement error should be considered when interpreting the resulting dietary networks.

One strength of the proposed guiding principles is that they provide an accessible
framework for a field that is currently marked by significant methodological heterogeneity.
By translating complex analytical issues into an actionable reporting standard—the Minimal
Reporting Standard for Dietary Networks (MRS-DN)—this work can help to standardise
practices and improve the quality of future research. However, this proposal has limitations.
Dietary network analysis is a rapidly evolving field, and the MRS-DN is intended as a living
document that will be updated iteratively as new computational methods and statistical
techniques emerge. Furthermore, these principles are intended as focused guidance for
network analysis and should be adapted to the unique characteristics of each dataset and
used alongside broader reporting guidelines as appropriate.

4.4. Conclusions

Given that current approaches to dietary pattern analysis fail to adequately capture
nutritional complexity, the objective of this scoping review was to systematically map
and synthesise studies applying network analysis to dietary data and to establish guiding
principles that advance methodological rigour in future research.

The primary contribution of this scoping review is the establishment of the evidence-
based, methodological framework for the use of network analysis in dietary research.
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While previous studies have applied network models to nutritional data, this review is
the first to systematically map the landscape of this emerging field, critically synthesise
its recurrent methodological challenges, and translate these findings into five guiding
principles, presented as a CONSORT-style checklist—the Minimal Reporting Standard for
Dietary Networks (MRS-DN) (Supplementary Materials). By moving beyond a simple
summary of the literature to provide a tangible roadmap for future researchers, this work
addresses a critical gap and provides the foundational guidance needed to improve the
rigour, reproducibility, and reliability of studies in this promising area. Ultimately, the
adoption of these principles will help researchers to harness the full potential of network
analysis to advance understanding of the complex relationship between diet and health.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu17203261/s1, File S1: The Minimal Reporting Standard for
Dietary Networks (MRS-DN).
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