Handling irresolvable conflicts in the Semantic Web:
an RDF-based conflict-tolerant version of
the Deontic Traditional Scheme

Livio Robaldo! and Gianluca Pozzato?

1School of Law, Swansea University
Singleton Park, Swansea, SA2 8PP, UK
livio.robaldo@swansea.ac.uk

2Department of Computer Science, University of Turin
Via Pessinetto, 12, Torino, 10149, Italy
gianluca.pozzato@unito.it

Abstract

This paper introduces a computational ontology for deontic reasoning, fully imple-
mented in RDF* and SPARQL*, designed to support reasoning in the presence of
irresolvable conflicts. These are situations in which two or more norms prescribe
incompatible obligations, prohibitions, or permissions, without any clear priority
among them. Existing approaches in formal deontic logic are typically limited to
the propositional level, focused primarily on obligation as the central modality, and
are rarely implemented in a way that is compatible with Semantic Web standards.
The framework presented here addresses these limitations by providing a first-order,
RDF-based formalization of all standard deontic modalities: obligations, permis-
sions, optionality, and their negations. It supports the explicit representation and
reasoning about violations and conflicts, while also accounting for contextual con-
straints. The ontology integrates contributions from three research areas that have
so far largely developed in isolation: RDF-based LegalTech solutions, reification-
based models of Natural Language Semantics, and conflict-tolerant approaches in
formal deontic logic. By incorporating contradictions and conflicts into the object
language, the ontology supports advanced reasoning tasks within a framework that
adheres to W3C standards. This makes it suitable for integration into industrial
LegalTech applications where normative reasoning is requirecﬂ

IThe research presented in this paper has received funding from The Alan Turing Institute UK-Italy
Trustworthy Al Visiting Researcher Programme - https://www.turing.ac.uk/work-turing/uk-italy
-trustworthy-ai-visiting-researcher-programme-0

https://www.turing.ac.uk/work-turing/uk-italy-trustworthy-ai-visiting-researcher-programme-0
https://www.turing.ac.uk/work-turing/uk-italy-trustworthy-ai-visiting-researcher-programme-0

1 Introduction

Normative reasoning aims to formalize norms from legislation using formal logic, enabling
automated compliance checking and other legal reasoning tasks.

This paper focuses specifically on compliance checking over data encoded in the Re-
source Description Framework (RDF), the standard format for data interchange on the
Wedﬂ Given its growing adoption, RDF is likely to become the default knowledge rep-
resentation format for symbolic AT more broadly, underscoring the need for systems that
can perform compliance checking directly on RDF data (Robaldo et al., 2023)).

(Robaldo et al., 2023) also emphasized the absence of a shared conceptualization of
norms across existing systems, a limitation that hinders both the comparative evaluation
of legal reasoners and the development of interoperable tools. Such comparisons are cru-
cial to identify optimal solutions, yet they remain difficult without a common framework
for representing norms. This lack of standardization also poses challenges for integrating
components developed by heterogeneous sources into cohesive LegalTech solutions.

This paper aims to take a step toward filling that gap by proposing a novel frame-
work implemented using Semantic Web technologies, i.e., a computational ontology for
compliance checking designed for use within next-generation LegalTech applications.

Several approaches for compliance checking on RDF data have been proposed in the
literature. Early works, such as (Gordon, 2008|) and (Ceci, 2013)), formalize norms us-
ing Semantic Web Rule Language (SWRL)El and Legal Knowledge Interchange Format
(LKIF) rules (Hoekstra et al., 2007)). More recent work, like (De Vos et al., 2019) and
(Palmirani and Governatori, 2018), models norms using RuleMIEl and its legal extension,
LegalRuleMIﬂ Although LegalRuleML is aimed at standardizing legal norms, transfor-
mations are required to interpret these rules in executable reasoning languages.

Further developments, such as (Gandon, Governatori, and Villata, 2017)), (Francesconi
land Governatori, 2023)), and (Robaldo, 2021)), propose representing and reasoning with
norms through SPARQL, OWL, and SHACL Triple rules, respectively. However,
Robaldo, and Wyner, 2024)) recently pointed out that, on the one hand, OWL and SHACL
Triple rules are limited in expressivity, particularly for complex reasoning involving ag-
gregates and temporal data; on the other hand, representing defeasibility in SPARQL is
challenging due to its lack of operators for rule prioritization. To address these issues,
(Anim, Robaldo, and Wyner, 2024)) use SHACL-SPARQL rules, which combine SHACL
and SPARQL to offer greater expressive power.

All these approaches, along with those reviewed in (Robaldo et al., 2023)), share a
common foundation in deontic logic, which has served as the core formalism to model
normative reasoning since the 1950s (Gabbay et al., 2013)). In fact, the grounding in
deontic logic is a defining feature of all contemporary approaches to legal reasoning.

On the other hand, we argue that insights from the literature on Natural Language
Semantics must also be incorporated into LegalTech frameworks designed to process
existing legislation. Since legislation is written in natural language, as intended for use and

%https://www.w3.org/RDF

Shttps://www.w3.org/Submission/SWRL; https://github.com/protegeproject/swrltab-plugin

“http://wiki.ruleml.org

Shttps://docs.oasis-open.org/legalruleml/legalruleml-core-spec/vl.0/os/legalruleml-cor
e-spec-v1.0-os.html

https://www.w3.org/RDF
https://www.w3.org/Submission/SWRL
https://github.com/protegeproject/swrltab-plugin
http://wiki.ruleml.org
https://docs.oasis-open.org/legalruleml/legalruleml-core-spec/v1.0/os/legalruleml-core-spec-v1.0-os.html
https://docs.oasis-open.org/legalruleml/legalruleml-core-spec/v1.0/os/legalruleml-core-spec-v1.0-os.html

interpretation by humans, the underlying logic must be capable of capturing its inherent
nuances. Accordingly, we consider the integration of constructs from the literature in
Natural Language Semantics essential for systems that aim to reason with legal norms
as they are understood in real-world contexts.

A logical framework specifically designed to integrate deontic logic with Natural Lan-
guage Semantics is reified Input/Output (I/O) logic (Robaldo et al., 2020) (Robaldo|
7 primarily developed by the first author of this paper. Reified 1/0 logic
incorporates the Natural Language Semantics framework developed by Jerry R. Hobbs
over the course of his academic career, as detailed in (Gordon and Hobbs, 2017), into
standard I/O logic (Makinson and van der Torre, 2000)), a widely recognized framework
that has mostly been used in past literature for modeling deontic logic.

This paper proposes a new framework as an alternative to reified 1/0 logic. While it
retains the core insights of Hobbs’ approach to Natural Language Semantics, it rejects
the surrounding I/0 logic axiomatization (as imported from (Sun and van der Torre,|
12014) and (Parent and van der Torre, 2014)) for two main reasons.

First, reified I/O logic has been developed only at a theoretical level, and there is
currently no automated reasoner capable of processing its formulae, even though
land Robaldo, 2017) has shown that the logic is more tractable than standard deontic
logics based on possible-world semantics.

Moreover, implementing such a reasoner using Semantic Web standards seems very
challenging, which makes the first objective of this research, as outlined above, largely
impractical.

Secondly, the axiomatization in (Sun and van der Torre, 2014)) and (Parent and van der|
does not distinguish between logical contradictions and irresolvable conflicts,
namely situations in which multiple obligations or other deontic statements apply simul-
taneously but cannot be all fulfilled.

Irresolvable conflicts, which will be defined, categorized, and exemplified in the next
section, have been extensively studied in defeasible logic, argumentation theory, and
AT more broadly. Conflicts are also central to Natural Language Semantics, which is
inherently defeasible and often marked by conflicting interpretations. The meanings and
inferences drawn from linguistic expressions are context-sensitive and can be overridden
by additional information. This makes defeasibility a crucial feature of any formal system
aiming to model or reason about natural language, especially in legal contexts.

On the other hand, because the distinction between contradictory and conflicting
knowledge is not a core issue in traditional deontic logic, conflicts have received limited
direct attention in that field, the main exceptions being the alternative deontic logics
reviewed in , which we discuss further in Sectionlé-_ll below.

In light of the prominent role of Natural Language Semantics in legal contexts, han-
dling irresolvable conflicts is seen as a foundational requirement for any logical approach
to reasoning in this domain and is therefore taken as the starting point for the RDF-based
framework that will be defined in this paper.

The rest of the paper is organized as follows. The next section defines irresolvable
conflicts in deontic logic from the perspective of legal reasoning. In particular, it presents
the categorization of such conflicts developed by the jurist and legal philosopher Hans
Kelsen, which this paper acknowledges. Section [3| introduces the main building block
of the proposed computational ontology: the logical framework for Natural Language

Semantics developed by Jerry R. Hobbs, which we import from reified I/0O logic. After
that, Section [d] provides a brief review of the relevant literature in deontic logic, with a
focus on the conflict-tolerant approaches surveyed in .

The subsequent three sections present the core contributions of this paper. Section [j]
illustrates the implementation of Hobbs’s framework, extended with deontic modalities,
using Semantic Web standards. The proposed computational ontology specifically em-
ploys RDF* and SPARQL*, which are extensions of standard RDF and SPARQL that
support a more natural and concise representation of metadata about statementsﬂ Sec-
tion |§| then extends this basic RDF*/SPARQL* implementation by incorporating rules
to address all categories of irresolvable conflicts identified by Kelsen. Finally, Section [7]
introduces additional constructs to properly model the interplay between deontic modali-
ties, conflicts, and contextual constraints present in the state of affairs. A section devoted
to future works and the conclusions close the paper.

All examples discussed in this paper, along with the Java code and detailed instruc-
tions for local execution, are available at: https://github.com/liviorobaldo/confli
ct-tolerantDeonticTraditionalSchemel

2 Irresolvable conflicts: Hans Kelsen’s categorization

As explained in the Introduction, the proposed computational ontology is based on the
notion of conflicts between deontic statements. Let us illustrate this notion by considering
the following two obligations:

(1) a. It is obligatory to leave the building.
b. It is obligatory to not leave the building.

a) could apply, for instance, in a situation where there is some danger inside the
building, e.g., a fire in the building, while b) could apply in a situation where there is
some danger outside the building, e.g., a sandstorm.

The interesting question, of course, is what to do when there is both a fire inside
the building and a sandstorm outside. In such a scenario, we must necessarily decide
which of the two dangers we are willing to take the risk with, and accordingly violate the
obligation associated with that danger.

As explained in the Introduction, most deontic logics proposed in the literature, in-
cluding Standard Deontic Logic (von Wright, 1951) and (reified) Input/Output Logic
(Sun and van der Torre, 2014)), derive a contradiction (denoted by the symbol “1”) from
the conjunction of (}a) and (Ib).

In our view, this approach is inadequate for modeling normative reasoning.

Contradictions should be associated with statements that are illogical in the state of
affairs in which they are asserted, and, as such, always false. For example, the statement
“Yoof is a dog and Yoof is a cat” is contradictory in a world where the sets of dogs and
cats are disjoint. Such a statement would be illogical.

By contrast, the conjunction of (L}a) and (I}b) does not appear to be illogical, even
in a scenario where there is both a fire inside the building and a sandstorm outside, a

Shttps://www.u3.org/2022/08/rdf-star-wg-charter

https://github.com/liviorobaldo/conflict-tolerantDeonticTraditionalScheme
https://github.com/liviorobaldo/conflict-tolerantDeonticTraditionalScheme
https://www.w3.org/2022/08/rdf-star-wg-charter

situation that could indeed occur in reality. In such a context, one of the two obligations
will necessarily have to be violated. However, as is well known, violations are not con-
tradictions. Therefore, there is no compelling reason to claim that a situation in which
some obligations must be violated is itself contradictory, i.e., illogical.

In light of this, the framework proposed in this paper does not model a) and b)
as contradictory, but rather as conflicting with one another, where a conflict is defined
as “a situation in which two deontic statements hold in a given context, but complying
with one of them entails violating the other”. This definition, originally proposed by Hans
Kelsen (Kelsen, 1991)), also encompasses cases where one of the two deontic statements is a
permission, although, as noted in , such conflicts are said to be “unilateral”,
i.e., they exist in only one direction. A simple example is:

(2) a. It is prohibited to leave the building.

b. It is permitted to leave the building.

If both afb) hold and we choose not to leave the building in order to comply with
a), we cannot say that we are actually “violating” b): the latter does not state that
we must leave the building, i.e., it does not express an obligation. On the contrary, if we
leave the building on the basis of what ([2]b) authorizes us to do, we do violate (2}a).

A final category of conflicts discussed by Kelsen is exemplified in .

(3) a. It is obligatory to pay in cash.
b. It is obligatory to pay by card.

Kelsen classifies conflicts such as the one between a) and b) as “partial conflicts”,
because the conflict concerns only part of the same obligatory action: a—b) prescribe
two different instruments for paying, and the conflict arises from the fact that these
instruments are mutually exclusive: payments made in cash are not made by card, and
payments made by card are not made in cash.

In deontic logic literature, conflicts such as those exemplified in , , and are
also referred to as “irresolvable conflicts”, where “irresolvable” means that neither of
the two deontic statements is stronger than, or can override, the other. Several conflict-
tolerant deontic logics have been proposed to formalize conflicts, though they mainly
focus on conflicts between obligations, i.e., they do not address conflicts like the one
exemplified in , where one of the two deontic statements is a permission.

Lou Goble is perhaps the author who has most thoroughly investigated the formaliza-
tion of conflicts in deontic logic. His seminal work in (Goble, 2013) is still considered a
reference surveyﬂ on the topic. The approaches reviewed in (Goble, 2013|) will be briefly
discussed below in Section

However, at this stage, it is already worth noting that all conflict-tolerant deontic
logics reviewed in represent conflicts as consistent formulae; in this sense,
these logics are said to be “conflict-tolerant”. Most importantly, in almostEl all of them,
conflicts cannot be distinguished from other consistent formulae.

7See https://plato.stanford.edu/entries/logic-deontic/#DeonDileConfToleDeonLogiRejeNC

8The exceptions are Adaptive Deontic Logics, e.g., (Goble, 2014) (van De Putte, Beirlaen, and Meheus,|
, where conflicts are viewed as “abnormalities” and stored in a separate set during the derivation.
See subsubsection below.

https://plato.stanford.edu/entries/logic-deontic/##DeonDileConfToleDeonLogiRejeNC

In our view, this is undesirable because, although conflicts are not contradictions, the
logical framework must still be able to explicitly represent them, with the aim of notifying
them, as they must eventually be removed from the normative system.

Indeed, it is not uncommon for existing legislation to contain conflicts among norms.
These conflicts are rather difficult to identify manually, for instance, by the legislators
responsible for updating the law. Artificial Intelligence (AI) could be of great help in
this context, as it may enable the creation of LegalTech applications capable of detecting
these conflicts, for the legislators to update the law so as to remove them.

Similar considerations can be found in a recent interview with Leon van der Torre
and Dov Gabbay, published in (Steen and Benzmuller, 2024)), in which the explicit repre-
sentation of fallacies, violations, mistakes, etc. (henceforth referred to under the general
term “abnormalities”) necessary for reasoning about them has been identified as a crucial
gap in contemporary logical frameworks for AI. Indeed, even in the LegalTech applica-
tion envisioned above, if conflicts were explicitly represented, the application could not
only notify them to the legislator but also reason about them, fit to suggest alternative
solutions to resolve them, while assessing the pros and cons of each solution, etc., to help
the legislator better ponder the decision on how to revise the law.

Furthermore, in our view, conflicts are not the only type of “abnormality” that ought
to be notified. The state of affairs may also include physical constraints that either
prevent compliance with obligations and prohibitions or prevent the execution of what
is permitted. Situations like these must also be notified, because perhaps agents should
not be sanctioned if it was impossible for them to comply with their obligations.

Contextual constraints might also be used to infer how they can comply with their
obligations. For instance, consider the obligation in (#]a) and the constraint in ([4b).

(4) a. Whoever parks in a parking spot is obliged to pay £3 at the parking meter
associated with that spot.

b. The parking meter in Sketty only accepts cash.

b) states that, in Sketty, it is necessary to pay in cash. Therefore, if John is parking
in Sketty, he will infer not only that he is obliged to pay £3, but more specifically, that
he is obliged to pay the £3 in cash.

Finally, contextual constraints might also interact with conflicts. For instance, sup-
pose that in the future the government decides to abolish cash as a way to combat
corruption. In this new context, only payments by digital means, e.g., credit card, are
allowed. The following prohibition is then added to the normative system:

(5) It is prohibited to pay in cash.

Now, it becomes impossible for John to comply with both a) and when he parks
in Sketty: the physical constraint in b) prevents compliance with the prohibition in
. So, either John will violate this prohibition, or he will violate his obligation to pay
£3. In either case, John’s violation appears to be justified, suggesting that he perhaps
should not be sanctioned for it.

The interplay between norms and contextual constraints has been scarcely addressed
in past conflict-tolerant deontic logics, at least not with the level of granularity exemplified

in and . Most deontic logics proposed in the literature use propositional symbols
as atomic formulae. However, to model examples like @ and , we need a first-order
framework capable of distinguishing between actions (e.g., paying) and their thematic
roles (e.g., the instrument of paying, cash rather than card).

This paper presents a novel computational ontology to represent and reason with
conflicts between deontic statements in all the cases exemplified so far, most of which are
not currently addressed by state-of-the-art conflict-tolerant deontic logics. The proposed
ontology aims to be a first step toward the future development of LegalTech applications
capable of detecting and reasoning with conflicts between norms in legislation.

The next two sections respectively illustrate the two main foundations from the litera-
ture that inform the computational ontology proposed in this paper: the logic for Natural
Language Semantics developed by Jerry R. Hobbs throughout his academic career, and
the key developments in past deontic logic literature, with particular attention to the
conflict-tolerant systems reviewed in (Goble, 2013).

The subsequent sections then build on the main insights from these two areas of
research to define a framework for representing and reasoning with conflicts, as well as
their interplay with constraints present in the state of affairs.

3 Background: encoding natural language statements
in Jerry R. Hobbs’s framework

This section introduces the framework outlined in (Gordon and Hobbs, 2017)), along with
earlier foundational work by Jerry R. Hobbs, particularly (Hobbs, 2003)). This framework
forms the basis for the computational ontology proposed in this paper.

(Gordon and Hobbs, 2017)) presents a first-order logical framework for natural lan-
guage semantics that is heavily based on the notion of reification. Philosophically, reifi-
cation refers to the process of treating abstract entities as concrete objects in the world.
In formal logic, this corresponds to representing such entities as first-order individuals,
i.e., as constants or variables within the logic.

The concept of reification was first introduced by Donald Davidson in
, though his use of reification was limited to a narrow set of abstract entities. In
contrast, (Gordon and Hobbs, 2017)) adopts a massive reification approach, whereby any
abstract entity may be reified into a first-order individual. Once reified, further assertions
can be made about these individuals, and those assertions themselves can, in turn, be
reified again into new individuals, allowing for recursive layers of abstraction and analysis.

According to (Gordon and Hobbs, 2017) and its philosophical and psycholinguistic
foundations, reification reflects the way people naturally conceptualize events, actions,
and states, and express them in language. For this reason, Hobbs’s framework is partic-
ularly well-suited to modeling the semantics of natural language expressions, and it has
been adopted here as the foundational logic for the proposed computational ontology.

Let’s illustrate how reification works on a simple example: the assertion “John leaves”.
In standard first-order logic, this would typically be represented as leave(John), where
leave is a first-order predicate and John is a first-order individual. In contrast,
land Hobbs, 2017)) associates this assertion with a distinct first-order individual elj,

referred to as an “eventuality”. According to the terminology used in (Gordon and Hobbs,|
, the assertion is said to be “reified into” the eventuality elj. In this paper, we will
also use the phrase “the fact that” to describe the relationship between eventualities and
the corresponding assertions; thus, elj denotes the fact that John leaves.

Since eventualities are treated as first-order individuals, they can be used as arguments
of first-order predicates. In particular, eventualities that reify actions or states such as
“to leave” may serve as arguments for predicates expressing specific modalities applicable
to those actions or states. In light of this, (Gordon and Hobbs, 2017) reformulates
leave(John) into the following formalization:

Rexist(elj) A leave’(elj, John)

In this representation, the predicate leave is transformed into the primed predicate
leave’, which includes an additional argument corresponding to the reified action. This
reified individual is then used as the argument of another predicate, Rexist, which cap-
tures the modality associated with John’s act of leaving. Specifically, Rexist(elj) asserts
that elj really exists in the actual state of affairs.

The use of the predicate Rexist highlights a fundamental difference between how
meaning is typically represented in standard first-order logic, e.g., leave(John), and how
it is modeled in the framework proposed in (Gordon and Hobbs, 2017)). In this framework,
actions are not considered true or false for given individuals; rather, they are treated as
eventualities that may or may not occur in the real world.

However, Rexist is not the only available modality. As (Gordon and Hobbs, 2017)
explains, an eventuality may be part of someone’s beliefs without actually occurring in
the real world, or it may exist within a fictional context, or be merely possible or probable
rather than real. Each of these alternative modalities must be represented by a unary
predicate different from Rexist. This paper will later introduce predicates to represent
deontic modalities, which are necessary for modeling compliance checking, as discussed
above in the Introduction.

Furthermore, to facilitate the encoding of the formulae in (Gordon and Hobbs, 2017)
into RDF, we will adopt the specific pattern proposed in (Robaldo et al., 2023)), shown
in @, rather than defining primed predicates derived from their unprimed counterparts.
This basic pattern will later be implemented and extended using RDF* and SPARQL*.

In @7 e denotes an eventuality representing either an action or a state, as specified
by the predicate ET, which stands for “Eventuality Type”. The predicate M denotes the
modality of the eventuality. Finally, t; represents thematic roles, while v; denotes their
corresponding values.

(6) M(eIAET(e) A A ts(e, v3)
i=1

=

In this pattern, the assertion “John leaves” is represented as shown in a). Another
example is provided in @b), which represents the assertion “John pays £3 in cash”.

(7) a. Rexist(elj) A Leave(elj) A has-agent(elj, John)

b. Rexist(epj) A Pay(epj) A has-agent(epj, John) A
has-object(epj, £3) A has-instrument (epj, cash)

In (]fla)7 Leave is a predicate distinct from the previous leave predicate, as it applies
to an eventuality rather than to a person. Therefore, while leave(John) indicates that
John belongs to the set of leavers, Leave(elj) indicates that elj belongs to the set of
leaving actions. However, Leave(elj) does not state whether elj really exists in the
state of affairs or only in someone’s imagination, etc. To assert that elj really exists in
the state of affairs, Rexist(elj) must be stated, thereby making elj belong to the set
of really existing eventualities.

The framework in (Gordon and Hobbs, 2017) encompasses a broad theory of com-
monsense psychology, formalizing sets, abstract and instantiated eventualities, causal and
temporal reasoning, composite entities, defeasibility, and more, all via reification. The
objectives of this paper do not require all these concepts; therefore, only the predicates
and axioms from (Gordon and Hobbs, 2017)) that are essential for implementing the
proposed compliance checking framework will be imported.

3.1 Negation, conjunction, and disjunction of eventualities

(Gordon and Hobbs, 2017)) defines the three predicates not, and, and or to relate pairs or
triples of eventualities. The predicates not, and, and or are intuitively defined as follows:

®)

a. not(en, e), where en and e are eventualities, states that en and e are opposite
eventualities. For example, if e refers to the fact that “John leaves”, en refers
to the fact that “John does not leave”.

b. and(ea, el, e2) states that ea represents the co-occurrence of el and e2; for
example, if el and e2 refer respectively to the facts that “John eats” and “John
drinks”, then ea may represent the fact that “John eats and drinks”.

c. or(eo, el, e2) states that eo represents the disjunctive occurrence of el and e2;
for example, if el and e2 refer respectively to the facts that “John eats” and
“John drinks”, then eo may represent the fact that “John eats or drinks”.

It is important to understand that these predicates do mot correspond to the standard
Boolean connectives =, A, and V. The latter operate on entire formulae, producing new
formulae whose truth values depend on those of the initial formulae. In contrast, the
former are predicates that relate eventualities, thereby forming atomic formulae.

The connectives =, A, and V are used, however, to constrain the meaning of not, and,
and or in relation to the various modalities. For the modality Rexist, the bi-implications
in @D are stipulated as valid.

9)

a. Ve en[not(en, e) = (Rexist(e) <> ~Rexist(en))]
b. Vea, e1,e2[and(ea, el, e2) = (Rexist (ea) <+ (Rexist(el) A Rexist(e2)))]

C. Vea, e1,e2l0r(ea, el, e2) — (Rexist (ea) <> (Rexist(el) V Rexist(e2)))]

Therefore, if the fact that John leaves really exists, then it is false that the fact that
John does not leave really exists (and vice versa). Similarly, if the fact that John eats

and drinks really exists, then both the fact that John eats and the fact that John drinks
really exist (and vice versa). Finally, if the fact that John eats or drinks really exists,
then either the fact that John eats or the fact that John drinks really exists (or both),
although we cannot necessarily determine which one, or whether both, really exist.

However, the bi-implications in (ED apply only to the Rexist modality and do not
extend to the deontic modalities, for which additional axioms will be provided below.

The bi-implications in @D ensure that any theorem involving =, A, and V applied to
the modality Rexist is equivalent to the corresponding theorem using the predicates not,
and, and or. For example, the formula in (10la) bi-implicates the formula in b), as
per the equivalences in (). Both (I0]a) and (L0]b) instantiate the so-called “Disjunctive
Syllogism”, i.e., the implication (AV B) A =B — A, on the predicate Rexist.

10
(10) a. Veo,e1,62,ent [(Rexist (eo) A or(eo, el, e2) A Rexist(enl) A not(enil, el)) —

Rexist(e2)]

b. Vei, e2[((Rexist(el) V Rexist(e2))A —Rexist(el)) — Rexist(e2)]

Other theorems on the modality Rexist, such as the distributivity laws for conjunction
and disjunction or De Morgan’s laws, could similarly be “translated” between the pred-
icates not, and, and or and the boolean connectives —, V, and A. However, these are
not included in the formalization below, as they are not relevant to the objectives of this
paper. Instead, this paper will focus on formalizing deontic modalities, for which, as
explained above, similar equivalences between the predicates not, and, and or and the
Boolean connectives =, A, and V do not hold.

3.2 Abstract eventualities and their instantiations

The second main notion imported from (Gordon and Hobbs, 2017) is the distinction
between abstract eventualities and their instantiations. Understanding this distinction is
crucial for determining when contradictions or conflicts may arise. Consider:

(11)

a. John does not pay.
b. John pays £3 in cash.

It seems unquestionable that the two sentences in (11la) and b) contradict each other:
if John makes no payment, then he cannot be paying £3 in cash. The same considerations
apply to the following pair of sentences:

12
(12) a. John pays in cash.

b. John pays by card.

Nevertheless, the contradictions between the sentences in and arise only under a
crucial assumption, namely that the sentences are made within the same context, meaning
they are both understood to apply “now” and thus refer to the same act of paying.

10

When we read the two sentences one after the other, we implicitly assume that they do;
however, this assumption is actually a pragmatic implicatureﬂ which must be explicitly
enforced in the derivations, in order to derive the contradiction.

In Hobbs’s logic, this is also formally required because each sentence in (11]) and
corresponds to different eventualities. For example, using the pattern in sentences
a—b) could be respectively represented as follows:

(13)
a. Rexist(enpja) A not(enpja, epja) A Pay(epja) A has-agent(epja, John)

b. Rexist(epj) A Pay(epj) A has-agent(epj, John) A
has-object(epj, £3) A has-instrument(epj, cash)

a) involves two opposite eventualities: enpja and epja, while b) contains a single
eventuality: epj. Notably, enpja and epja denote a cluster of eventualities, unlike epj,
which refers to a single eventuality. This is because if John does not pay, it implies he
did not pay anything (neither £3, nor £4, etc.) using any instrument (cash, card, etc.).

How, then, can we represent and infer the relationship between epja and epj in a
way that allows us to derive a contradiction between the two statements they represent?

To address representational challenges like these, Hobbs distinguishes between ab-
stract eventualities and their instantiations. The former are generic statements that hold
without necessarily requiring physical presence or concrete realization. These abstract
eventualities can then be instantiated into less abstract eventualities (partial instantia-
tions) or even into concrete eventualities (full instantiations). Instantiations represent
one of the different “variants” through which the eventuality can become real.

In light of this, asserting that an abstract eventuality does not exist entails that
none of its (partial or full) instantiations exist. Conversely, asserting that an abstract
eventuality exists entails that at least one of its partial instantiations and at least one of its
full instantiations exists. This is what will specifically enable the proposed computational
ontology to derive contradictions or conflicts.

This paper adopts the conceptual distinction between abstract eventualities and their
instantiations from (Gordon and Hobbs, 2017), but it uses a different, and hopefully
cleareﬂ formalization.

Abstract eventualities and their full instantiations (referred to as “instances”, fol-
lowing (Gordon and Hobbs, 2017))) are respectively represented by the unary predicates
AbstractEventuality and Instance, which are disjoint. Both predicates specialize the
predicate Eventuality. While only instances can satisfy the Rexist modality, a separate

9See https://plato.stanford.edu/entries/implicature

10(Gordon and Hobbs, 2017) distinguishes between partial and full instantiations using two different
predicates: partiallnstance and instance. The former refines abstract eventualities into less abstract
ones, while the latter refines abstract eventualities into their full instantiations. Conversely, (Gordon and|
defines a single unary predicate, Eventuality, that holds true for all eventualities. Here
we prefer to take the opposite approach, i.e., to distinguish between abstract eventualities and instances
at the class/predicate level. For this reason, this paper defines a single binary predicate, instantiates,
along with two unary predicates: AbstractEventuality and Instance. Moreover, (Gordon and Hobbs,|
also applies the Rexist modality to abstract eventualities, while we now believe that stating that
abstract eventualities really exist sounds somewhat awkward; therefore, we prefer to further distinguish
abstract eventualities from instances using two different modalities: Subsist and Rexist.

11

https://plato.stanford.edu/entries/implicature

modality is introduced for abstract eventualities, denoted by the predicate Subsist. This
distinction is absent in (Gordon and Hobbs, 2017)), where Rexist is used for both abstract
eventualities and their instantiations. Subsist denotes a form of existence in abstraction,
i.e., something that “exists” but does not necessarily have a material presence.

The proposed computational ontology stipulates that the Subsist modality applies
exclusively to abstract eventualities, while the Rexist modality applies exclusively to
instances. Consequently, when either of these modalities is applied to an eventuality, the
corresponding subcategory of that eventuality can be inferred. The predicates not, and,
and or, introduced in the previous section, apply to the Subsist modality in the same
manner as they do to Rexist (simply replace Rexist with Subsist in (ED) Moreover, if
one of the eventualities involved in a not, and, or or expression is an abstract eventuality
(or an instance), then the other must be as well.

A binary predicate instantiates is then introduced to relate abstract eventuali-
ties to their instantiations (whether partial or full). instantiates denotes a reflexive
and transitive relation; therefore, every abstract eventuality instantiates itself, and if el
instantiates e2, and e2 instantiates e3, then el also instantiates e3.

Additionally, the proposed computational ontology includes the inference rule in
to derive that if an eventuality is an action or state of the same type as another (abstract)
eventuality, and the former specifies a superset of thematic roles with identical values
for the shared ones, then the former instantiates the latter. In , the two “—3”
conditions in the antecedent of the implication assert that there must be no thematic
role tr specified for the abstract eventuality ea that is missing from its instantiation ei,
and no thematic role tr specified for both with differing values, va and vi.

(14) Vea,eirr [(AbstractEventuality(ea) AET(ea) AET(ei)A
—Jirva[tr(ea, va)A =3y [trled, vi)IIA
—3irvavi [tr(ea, va)Atr(ei, vi)A(va#vi)]) — instantiates(ei, ea)]

corresponds to the pragmatic implicature mentioned above. In other words, it allows
one to assume that the statements in this paper’s examples refer to the same actions or
states whenever they are presented together. Naturally, this assumption does not always
hold, and therefore, the implication in is not universally valid.

Now, as Hobbs explicitly states, what is typically negated in NL statements like (11]a)
is an abstract eventuality. Therefore, given the new modality Subsist, a) above is
not represented as in ((13|a), but rather as in (L5la). On the other hand, the formalization
of b) remains unchanged and is repeated again in b) for the reader’s convenience.

(15)

a. Subsist(enpja)/Anot(enpja, epja)APay(epja) /A has-agent(epja, John)

b. Rexist(epj) A Pay(epj) A has-agent(epj, John)A
has-object(epj, £3) A has-instrument (epj, cash)

Since ([15la-b) are uttered in the same context, the pragmatic implicature in allows
us to derive that epj instantiates epja, i.e., that instantiates(epj, epja) holds. In
parallel, = Subsist (epja) is derived from ([L5la) via the axioms previously introduced for

12

the predicate not. Finally, given that, as explained above, the non-subsistence of an ab-
stract eventuality entails the non-existence of all its full instantiations, —Subsist (epja)
and Rexist(epj) are inferred to be contradictory.

On the other hand, the contradiction between the two fully instantiated eventualities
corresponding to (12la) and b) arises from the assumption that they instantiate the
same abstract eventuality, i.e., that they refer to the same (abstract) payment made by
John in the state of affairs.

To derive that, a second implicature is introduced in : if the state of affairs
includes two eventualities of the same type, under the same modality, and performed by
the same agent, then allows us to derive the existence of an abstract eventuality
that both instantiate.

(16) Veit einer,a [(ET(eil) AET(ei2) AM(eil)AM(ei2) A
has-agent(eil, a) A has-agent(ei2, a)) —
Jea [instantiates(eil, ea) A instantiates(ei2, ea)]]

Once again, the implicature in cannot be considered universally valid, i.e., in every
possible state of affairs. This implicature (and the one in) is appropriate in the
present context because we consider only actions occurring “here” and “now”, focusing
on those that a single person cannot perform simultaneously. Under these constraints,
both implicatures appear reasonable. However, in a more general setting, e.g., one that
also involves temporal aspects, as outlined in the future work section below, it becomes
necessary to introduce more sophisticated implicatures to determine when an abstract
eventuality instantiates another eventuality in context, or when two eventualities are
both instantiations of the same abstract eventuality.

The proposed computational ontology then stipulates that if two instantiations of the
same abstract eventuality share at least one thematic role, and the values of those roles
are mutually exclusive, the two instantiations cannot coexist.

To enforce this in the example in , we add the two implications in , which
state that card and cash are mutually exclusive instruments for payment actions (i.e.,
if a payment e was made in cash, then it was not made by card, and vice versa), as
well as the implication in , which states that if two eventualities instantiate the same
abstract eventuality but differ in at least one thematic role, where it is asserted that one
eventuality has a certain value for that role and the other does not, then it is inferred
that the two eventualities are linked by the predicate not: if one eventuality really exists,
the other one does not, and vice versa.

(17)

a. Ve [(Pay(e) A has-instrument (e, cash))— —has-instrument (e, card)]
b. Ve [(Pay(e) A has-instrument (e, card)) — —has-instrument (e, cash)]
(18) Vei,e2.catrv[(instantiates(el, ea) A instantiates(e2, ea) A

TR(el, v) A—TR(e2, v))— not(el, e2)]

The above implications correctly lead to the inference that the logical representations of
(12la) and ([I2]b), shown respectively in (I9a) and (I9]b), are inconsistent.

13

19
(19) a. Rexist(el) APay(el) Ahas-agent(el, John) A has-instrument(el, cash)

b. Rexist(e2) A Pay(e2)Ahas-agent(e2, John) A has-instrument (e2, card)

The two implications in entail that the instrument of el is not card, and that the
instrument of e2 is not cash:

(20) —has-instrument(el, card) A —has-instrument(e2, cash)

From , the implication in entails not (el, e2) and, symmetrically, not (e2, el).
From these, the axiom shown above in @la) symmetrically derive —Rexist(el) and
—Rexist (e2), which contradict the corresponding positive literals in (19a) and b).

4 The Deontic Traditional Scheme and the state-of-
the-art conflict-tolerant deontic logics

Early studies in deontic logic can be traced back to the Middle Ages (Knuutila, 1981)).
The Stanford Encyclopedia of PhilosophyB provides a comprehensive literature review of

various systems of deontic logic, based on (McNamara, 1996a) and (McNamara, 1996b)).

Six normative statuses have been historically identified and are widely accepted by
the contemporary scientific community: obligatory (0B), permitted (PE), prohibiteﬂ
(PR), omissible (OM), optional (OP), and non-optional (NO). In formal deontic logic, these
statuses are typically expressed as deontic modalities applied to a well-formed formula of
the underlying logic, e.g., a proposition p in the case of propositional logic. Thus, 0B(p),
PE(p), PR(p), OM(p), OP(p), and NO(p) are basic deontic (propositional) statements indi-
cating that the proposition p is, respectively, obligatory, permitted, prohibited, omissible,
optional, and non-optional.

It is also widely acknowledged that the six deontic modalities are logically intercon-
nected. In particular, OB has traditionally been regarded as the primary deontic modality,
from which the other five can be formally derived, as shown in . The Stanford En-
cyclopedia of Philosophy refers to as “The Traditional Definitional Scheme”.

(21) (a
(b

) PE(p) <+ —0B(-p)
)
(c) OM(p) «+ —0B(p)
)
)

PR(p) > 0OB(—p)

(d) OP(p) «+ (—0B(p) A —0B(—p))
(e) NO(p) < (0B(p) V 0B(—p))

https://plato.stanford.edu/entries/logic-deontic

12The Stanford Encyclopedia of Philosophy uses the term “impermissible” instead of “prohibited”;
however, we prefer the latter as it is more commonly used in contemporary everyday language. For our
purposes, the two terms are considered equivalent.

14

https://plato.stanford.edu/entries/logic-deontic

Moreover, the deontic modalities are logically related to one another, as illustrated in
the Deontic Hexagorﬂ shown in Figure |1} which is also referred to in the Stanford
Encyclopedia of Philosophy as the “Traditional Threefold Classification”.

This paper takes into account both the logical entailments defined in the Traditional
Definitional Scheme (i.e., those in (21))) and those depicted in the Traditional Threefold
Classification (i.e., the Deontic Hexagon). The union of these entailments is hereafter
referred to as the “Deontic Traditional Scheme”.

OBp PRp

Implication: —p——
_________________) NOp Contraries:
= o Subcontraries:
s A C
P / Contradictories; --------
” A
V4
/ /
o
> ;
o |/
oo %
PEp OMp

Figure 1: The Deontic Hexagon. In the hexagon, when two vertices are connected by
an “Implication” arrow, the antecedent logically entails the consequent; when marked
as “Contraries”, both cannot be true; when marked as “Subcontraries”, both cannot be
false; and when marked as “Contradictories”, they always have opposing truth values,
i.e., they can neither both be true nor both be false.

I3Figure [1]is taken from |https://plato.stanford.edu/entries/logic-deontic/#TradScheModaAnal}
in line with the previous footnote, we have replaced the label “IMp” (standing for “impermissible”) with
“PRp” (standing for “prohibited”).

15

https://plato.stanford.edu/entries/logic-deontic/#TradScheModaAnal

In symbols, as explained in the caption of Figure |1} the Deontic Hexagon specifies that:

(22) i. Implication:
(a) 0B(p) — PE(p)
0B(p) — NO(p)
PR(p) — OM(p)
PR(p) — NO(p)
0P(p) — PE(p)
0P (p) — OM(p)
ontraries:
a) —(0B(p) A PR(p)) equivalent to 0B(p) — —PR(p) A PR(p) — —0B(p)
b) —(0B(p) A OP(p)) equivalent to 0B(p) — —OP(p) A OP(p) — —0B(p)
¢) = (PR(p) A OP(p)) equivalent to PR(p) — —0P(p) A OP(p) — —PR(p)

—~
=

—~ T~
O’—hCD Qo
NEANSENS NI N

ii.

—~ N~

iii. Subcontraries:
(a) =(=NO(p) A —=PE(p)) equivalent to —NO(p) — PE(p) A —PE(p) — NO(p)
(b) = (=NO(p) A —0M(p)) equivalent to —NO(p) — OM(p) A —OM(p) — NO(p)
(¢) =(=PE(p) A —0M(p)) equivalent to —PE(p) — OM(p) A —0M(p) — PE(p)
iv. Contradictories:
(a) —(0B(p) AOM(p)) A = (—0B(p) A —0M(p)) equivalent to OB(p) <> —0OM(p)
(b) = (PR(p) APE(p)) A —(=PE(p) A —=PE(p)) equivalent to PE(p) <> —PR(p)
(¢) =(OP(p) ANO(p)) A —=(—=0P(p) A —NO(p)) equivalent to OP(p) <> —NO(p)

In order to minimize the set of symbols and avoid redundancies between and ,
this paper adopts only the deontic modalities 0B, PE, and OP (obligatory, permitted, and
optional). By virtue of the bi-implications in (22iv.(a)—(c)), the remaining modalities,
i.e., OM, PR, and NO (omissible, prohibited, and non-optional), are represented as —0B,
—PE, and —0P, respectively. Nonetheless, the narrative that follows will frequently use
the terms “prohibitions” and “prohibited” for readability, even though they are formally
represented as non-permissions, given their common occurrence in legislative texts.

Thanks to the bi-implications in (22}iv.(a)—(c)), all entailments in the Deontic Tradi-
tional Scheme can be expressed solely in terms of 0B, PE, and OP, along with the Boolean
connectives =, A, —, and <. The complete set of entailments is thus reduced to only
those presented in , as all others follow from these three.

(23) a. PE(p) <+ —0B(—p)
b. OP(p) « (—0B(p) A —0B(—p))
c. 0B(p) — PE(p)

Although, as explained earlier, it is widely accepted that the entailments of the Deontic
Traditional Scheme accurately reflect our intuitions about the six deontic modalities,

most deontic logics proposed in the literature formalize only the so-called “main” deontic
modality, namely obligatoriness (0B).

16

In particular, according to (Goble, 2013)), the benchmark deontic logic, known as
“Standard Deontic Logic”, is the propositional modal logic that axiomatizes 0B as shown

in . In , D, C, NM, P, and N denote the axioms’ names, while [J and ¢ represent
the classical necessity and possibility operators. The axioms listed in assume the
standard deductive principles of normal modal logic, e.g., the axiom K for [0, and form
the basis of the normal modal logic K]lf'El for the operator 0B. Furthermore, in all formu-
lae presented in this section, the substitution principle is assumed to hold. Therefore,
symbols such as p, g, etc., should be understood not as propositional atomic formulas
but as metavariables that can be uniformly replaced by arbitrary non-deontic formulas.

(24) D) 0B(p) — —0B(~p)
)

(
(c (0B(p) A 0B(q)) — OB(pAq)
() O(p—q) — (0B(p) — 0B(q))
(P) 0B(p) — O (p)
() O(p) — 0B(p)

It is straightforward to see that the axiomatization in is not suitable for the objectives
of this paper, particularly due to the axiom D. This axiom states that the obligation of a
proposition p contradicts the obligation of its negation: the two deontic statements cannot
both hold simultaneously. Thus, referring to the first example seen above in , where
0B(1) corresponds to “It is obligatory to leave the building” and 0B(—1) corresponds to
“It is obligatory not to leave the building”, axiom (D) entails that 0B(1) A 0B(—1) — L.

By contrast, this paper aims to represent 0B(1) and 0B(—1) as conflicting, rather
than contradictory, deontic statements. Therefore, to meet our objectives, a different
axiomatization of the deontic operators must be adopted. The first step in this direction
is to analyze conflict-tolerant deontic logics proposed in the literature, with
providing, in our view, the most comprehensive survey.

N

4.1 Conflict-tolerant deontic logics proposed in the literature
Since the axiomatization in treats conflicts as contradictions, (Goble, 2013)) identifies

the first Desideratum for a conflict-tolerant deontic logic as follows:

(25) Desideratum #1: A conflict-tolerant deontic logic regards conflicts between pairs
of deontic statements as consistent. In , a conflict is intuitively defined
as a situation in which “an agent ought to do a number of things, each of which
is possible for the agent, but it is impossible for the agent to do them all”. Note
that this definition differs from the one proposed by Hans Kelsen and discussed in
Section [2] above; this difference underpins the key insights of the research presented
here, as will be explained below.

As exemplified above, what specifically prevents to achieve Desideratum #1 with the
axiomatization in is the axiom D. However, simply removing D is also unsatisfactory,

Mhttps://plato.stanford.edu/entries/logic-modal

17

https://plato.stanford.edu/entries/logic-modal

because the remaining axioms would lead to the so-called “deontic explosion”: once a
conflict between two or more deontic statements is inferred, it would imply that every-
thing is obligatory, which is clearly meaningless. In light of this, (Goble, 2013)) proposes
a second Desideratum for a conflict-tolerant deontic logic:

(26) Desideratum #2: A conflict-tolerant deontic logic must not produce deontic
explosion from conflicting deontic statements. In other words, if two deontic state-
ments conflict, the logic must not infer that everything is obligatory.

Finally, (Goble, 2013|) introduces a third Desideratum, which generally states that conflict-
tolerant deontic logics must be able to capture our intuitions regarding obligatoriness and
related concepts:

(27) Desideratum #3: A conflict-tolerant deontic logic should provide a plausible
explanation for the apparent validity of several paradigm arguments.

However, although refers to paradigm arguments in general, (Goble, 2013)) focuses

primarily on one particular argument known in the literature as “The Smith argument”,
along with several variants called the “Jones”, the “Roberts”, and the “Thomas” argu-
ments. The Smith argument, originally introduced in (Horty, 1994)), states the following:

(28) From: Smith ought to fight in the army or perform alternative national service.
And: Smith ought not to fight in the army.

It is intuitive to conclude that: Smith ought to perform alternative national service.

The axioms listed in cannot derive the Smith argument, as none of them involve the
Boolean connective V. Additional axioms must therefore be introduced to account for
it. The Jones, Roberts, and Thomas arguments are more elaborate variants of the Smith
argument, in which disjunction further interacts with the Boolean connective A.

On the other hand, we observe that Desideratum #3 refers to paradigm arguments
in general, even though (Goble, 2013)) focuses primarily on the Smith argument and
its named variants. While states that these cases include the relevant
paradigms, no additional paradigm scenarios are examined. In contrast, this paper con-
siders a broader range of cases involving conflicts among deontic statements, in particular
those derived from Kelsen’s categorization of conflicts and illustrated in Section [2 above.
The conflict-tolerant deontic logics reviewed in appear to be inadequate to
address these cases, as will be argued later in the paper.

The following three subsubsections briefly summarize the main approaches that have
been proposed in the literature to address irresolvable conflicts. These approaches are
categorized in as: (1) Revisionist strategies, (2) Paraconsistent deontic
logics, and (3) Other radical strategies.

4.1.1 Revisionist strategies

Revisionist strategies are approaches that represent and reason about conflicts in deontic

logic using axiomatizations alternative to the one in . Although (Goble, 2013) intro-
duces twelve different deontic logics of this kind, only one, called BDL, along with a slight

variant called BDLcc, satisfies all three Desiderata.

18

BDL retains only the axiom (C) from (24), while it rejects (D), (P), and (N). The
axiom (NM) is partially rejected in the sense that it is replaced by a weaker axiom, (RBE),
whose inferential strength is significantly more limited than that of (NM). In addition,
two further axioms, (DDS) and (M), are introduced to support derivations involving the
Boolean connectives V and A. These derivations are necessary to explain the Smith
argument and its variants. The full axiomatization of BDL is presented in .

In , the symbol “4+,” denotes a restricted version of the standard bi-implication
operator <». This restricted bi-implication is defined in such a way as to avoid deontic

explosion (see for formal details).
(29) (M) 0B(pAq) — 0B(p)
©) (0B(p) A 0B(q)) — 0B(pAq)
(DDS) (0B(pVq) A 0B(—q)) — 0B(p)

(RBE) (p<q) — (0B(p) > 0B(q))

The present paper considers the axiomatization of BDL to be correct, with one minor
exception concerning the axiom (RBE), which will be discussed below.

In particular, the authors of this paper fully support the decision to reject axioms
(D), (P), and (N) from the axiomatization of a conflict-tolerant deontic logic.

Axiom (D) must be rejected because, as explained earlier, it infers that conflicts are
contradictions in cases where both a proposition p and its negation are obligatory.

Axiom (P), on the other hand, appears counter-intuitive. It states that if something
is obligatory, then it is possible. However, it is easy to imagine situations where this
does not seem to hold. For example, @) above illustrates a case in which paying in cash
is prohibited, even though it is impossible to avoid doing so, since one must pay at a
parking meter in Sketty that only accepts cash.

Similar considerations apply to axiom (N), which asserts that if something is necessary,
then it is obligatory. This implication also conflicts with our intuitions. In the scenario
just considered, for instance, it is necessary to pay in cash at the parking meter in Sketty,
but this is not obligatory; in fact, doing so is prohibited.

In this paper, we adopt only the axioms (M), (C), and (DDS) from BDL. Axiom (RBE),
by contrast, is not relevant to the examples discussed here and is therefore omitted.
Furthermore, normative reasoning involving (bi-)implications among obligations relies
on concepts that fall outside the scope of this paper. These concepts have been recently
explored in (Robaldo and Liga, 2025|), where the axiom (RBE) is implemented in the
computational ontology presented there, using the standard bi-implication operator <+
instead of <»,. The rationale is that, as will become clear below, deontic explosion is
avoided in our framework by adopting the same criterion used in the paraconsistent
deontic logics discussed in the next subsection. As a result, it is unnecessary to (also)
restrict the bi-implication operator, as is done in BDL. For further details, we refer the
reader to (Robaldo and Liga, 2025)), as we do not repeat its formalization here.

4.1.2 Paraconsistent deontic logics

Revisionist strategies propose axiomatizations, within classical modal logic enriched with
the operator 0B, that represent conflicts as consistent formulae while avoiding deontic

19

explosion. In particular, to prevent such explosion, either the axiom (C) or the axiom
(NM) is suitably restricted to block the inferences that lead to it. For instance, the logic
BDL replaces (NM) with its restricted version (RBE) to achieve this goal.

Paraconsistent deontic logics, by contrast, avoid deontic explosion by rejecting a spe-
cific inference rule of classical modal logic: Ex falso quodlibet, which, together with
(C) and (NM), is responsible for deontic explosion. By blocking Ex falso quodlibet, the
axiomatization of the OB operator can retain the full inferential strength of (C) and (NM).

Ex falso quodlibet states that any proposition can be derived from a contradiction,
i.e., L— P, for any P. However, Ex falso quodlibet itself is derived from two well-known
inference rules associated with the Boolean connective V in standard logic: Disjunction
Introduction, which states that A— (AVB), and Disjunctive Syllogism, which states that
((AVB) A—B)— A. Therefore, in order to block Ex falso quodlibet, at least one of these two
inference rules must be rejected.

According to (Goble, 2013)), the trend in the literature on paraconsistent and relevant
logics is to block Disjunctive Syllogism. Nevertheless, without Disjunctive Syllogism,
deriving the Smith argument, and thereby satisfying Desideratum #3, becomes diffi-
cult. discusses some approaches to accommodate the Smith argument in
paraconsistent deontic logics that lack Disjunctive Syllogism.

On the other hand, regarding relevant logics more specifically, it is important to
note that “the rejection of Disjunctive Syllogism, however, has become one of the most
controversial aspects of relevance logic.” Even though most relevant logics opt to reject
Disjunctive Syllogism, the rule is at least admissible in some relevant logics, since it is
theorem-preserving: if AVB and —A are theorems, so is B . Moreover, weaker
relevant logics explore the consequences of including Disjunctive Syllogism as a primitive
rule (Robles and Méndez, 2010)), (Robles and Méndez, 2011)), with semantics grounded in
Routley-Meyer ternary frames (Routley and Meyer, 1973)), (Routley and Meyer, 1972al),
(Routley and Meyer, 1972b)), under which these logics remain sound and complete.

Another crucial aspect to take into account is the strong connection between Dis-
junctive Syllogism and the cut rule, a well-established property that plays a central role
in the design of proof systems and reasoning tools for a given logic (Gentzen, 1964).
Removing Disjunctive Syllogism may therefore compromise the ability to develop sound
and complete provers for relevant logics. Notably, the cut rule forms the basis of the
Prolog programming language, arguably the most widely used logic programming lan-
guage. This connection supports a preference for Disjunctive Syllogism over Disjunction
Introduction also from a practical standpoint.

It is particularly these practical considerations that led us to adopt Disjunctive Syl-
logism and reject Disjunction Introduction in the proposed computational ontology. As
stated in the Introduction, our aim is to develop a framework that, like Prolog, can be
concretely executed. For this reason, we tend to prioritize practical applicability. How-
ever, it is also evident that the choice between Disjunctive Syllogism and Disjunction
Introduction is not trivial and cannot be resolved lightly. It thus remains an open prob-
lem. Future work may explore and integrate into the proposed computational ontology
non-standard versions of these two rules that avoid generating Ex falso quodlibet.

15Citation from https://plato.stanford.edu/entries/logic-relevance

20

https://plato.stanford.edu/entries/logic-relevance

4.1.3 Other radical strategies

In (Goble, 2013), paraconsistent deontic logics are classified as a type of “radical strat-
egy” for addressing conflicts among obligations. However, in this paper, we prefer to

distinguish them from other radical strategies, as they share with revisionist strategies
the feature of being grounded in classical modal logic, on top of which the operator 0B
is defined and axiomatized.

By contrast, the other radical strategies presented in differ from both
revisionist strategies and paraconsistent logics in that they introduce an additional upper
level that governs and constrains inferences at the base level.

Three examples of such radical strategies, discussed in , include Two-
phase deontic logic (van der Torre and Tan, 2000), imperatival approaches (e.g., (Hansen,
2008) and (Horty, 2012)), and Adaptive Deontic Logics (e.g., (Goble, 2014) and (van,
De Putte, Beirlaen, and Meheus, 2019)).

In Two-phase deontic logic, the upper level controls and constrains the order in which
inference rules are applied to 0B and to the classical modal logic operators. Specifically,
this logic stipulates that aggregation rules, such as axiom (C), must always be applied
before distribution rules, such as axiom (NM). (van der Torre and Tan, 2000) demonstrate
that imposing this ordering allows the logic to represent conflicts as consistent formulae,
to correctly derive the Smith argument, and to avoid deontic explosion. Nevertheless,
while this solution works technically for the examples considered, questions
the underlying rationale. Why should the rules be applied in that particular order? What
intuitions about the nature of conflict does this order reflect? (van der Torre and Tan,|
do not seem to offer answers to these questions.

Imperatival approaches assume that obligations are always grounded in commands or
directives. The core intuition is that agents are obliged to act in a certain way because
they have been ordered to do so, by law, or by an authority empowered to issue such
commands. In this approach, the upper level comprises a set of commands associated with
the obligations in the lower level. Conflicts among obligations are interpreted as conflicts
among the associated commands. Agents are assumed to comply with a maximal set of
non-conflicting obligations, and, unless otherwise specified (e.g., through prioritization),
they are free to choose which obligations to include in that set. Once such a set is
identified, since it contains no conflicts, there is no need to restrict the underlying classical
modal logic or 0B’s axiomatization. Note that imperatival approaches are inherently non-
monotonic, since agents may have multiple valid choices when resolving conflicting orders.

Finally, Adaptive Deontic Logics are dynamic and non-monotonic logical systems in
which the application of inference rules may change over time. In their general form,
Adaptive Logics are defined as triples (LLL, 2, Strategy), where LLL is a basic logic
with specified properties (e.g., reflexivity and monotonicity, see for de-
tails), Q is a set of abnormalities (i.e., problematic formulae the logic must “adapt” to),
and Strategy is a set of rules that determine how the inference process adjusts when
abnormalities are detected. Under this schema, an Adaptive Deontic Logic may be con-
structed by taking LLL as classical modal logic enriched with the operator 0B, 2 as the set
of all formulae denoting conflicts, i.e., @ = A : 3C[A = 0B(C') A 0B(—C)], and Strategy
as a set of rules that block undesirable consequences (chiefly, deontic explosion) as soon
as a conflict or abnormality is derived. Multiple configurations of inference rules within

21

LLL and Strategy can be devised to account for the Smith argument and, more generally,
to satisfy Desideratum #3, while avoiding unwanted inferences.

4.2 Extending Hobbs’s framework with deontic modalities

In the final subsection of this section, Hobbs’s framework from Section [3]is extended to
incorporate deontic modalities, the Deontic Traditional Scheme (i.e., the axioms in),
and the axioms (M), (C), and (DDS) from BDL, needed to achieve Desideratum #3.

Desiderata #1 and #2 will instead be achieved by rejecting certain inference rules
from classical logic, following the approach of paraconsistent deontic logics. In particular,
Secti0n|§| will introduce rules that derive a conflict, rather than a contradiction, in all the
cases identified by Kelsen and discussed above in Section[2] Conversely, as already noted,
the proposed computational ontology will reject the rule of Disjunctive Introduction,
thereby preventing Ex falso quodlibet from occurring.

Deontic modalities can be implemented in Hobbs’s framework by introducing three
unary predicates: Obligatory, Permitted, and Optional. Similar to Rexist, these pred-
icates express modalities, indicating that the eventuality in their argument is obligatory,
permitted, or optional, respectively. In line with what has been explained earlier in this
section, omissions, prohibitions, and non-optionality are represented as —0Obligatory,
—Permitted, and —0Optional, respectively.

The proposed computational ontology establishes that, like the Subsist modality,
the three deontic modalities apply exclusively to abstract eventualities. In other words,
deontic modalities do not pertain to specific eventualities that actually occur in the state
of affairs; rather, they concern eventualities that exist only in abstraction and, in turn,
refer to sets of concrete eventualities that do occur: namely, all those that fulfill an
obligation or are permitted under a given permission. See Subsection below for the
corresponding implementation in SPARQL*.

The axioms in corresponds to the following bi-implications in Hobbs:

30
(30) a. Ve .en[not(en, e) = (Permitted(e) <+ ~0bligatory(en))]

b. Ve enl[not(en, e) = (Optional(e) <+ (~0bligatory(e) A—0Obligatory(en)))]

c. Vo[Obligatory(e)— Permitted(e)]

There is a key conceptual difference between the formulae in and those in : while
the latter use a single type of negation (—), the former employ two types of negation:
= and not. The Deontic Traditional Scheme considers only whole propositions and
applies negation in the same way to both the proposition and the outer deontic modality
operators. In contrast, the approach proposed here focuses on eventualities, e.g., actions,
rather than propositions. Given an eventuality e, the predicate not is used to refer to its
opposite eventualities, i.e., those that do not really exist when e does and vice versa.
The operator — is still used to negate deontic modalities, as in the Deontic Traditional
Scheme. However, there is another key difference with respect to the Deontic Traditional
Scheme: as mentioned earlier, whenever a deontic modality both holds and does not hold
for the same eventuality, a conflict, rather than a contradiction, is inferred. In other
words, the following rule, which defines the standard semantics for the operator —:

22

(31) Vo [(P(e)A-P(e))—L1]

does not hold when P is one of Obligatory, Permitted, or Optional. This is one of the
inference rules from classical logic that the proposed computational ontology rejects.
The axioms (M), (C), and (DDS) from BDL are implemented as follows:
32
(32) a. Vea e1,e2[and(ea, el, e2) —
(Obligatory(ea) <> (Obligatory(el) A Obligatory(e2)))]

b. Veo, e1,e2[((or(eo, el, e2)Vor(eo, €2, e1))Anot(en2, e2))—
((Obligatory(eo) A Obligatory(en2))— Obligatory(el))]

In particular, (M) and (C) correspond to a) while (DDS) corresponds to b).

With the new introduce deontic modalities, it is now possible to represent, for in-
stance, that John is obliged to not leave and that John is prohibited to pay in cash.
These are respectively represented as in (33]a) and (33]b).

33
(33) a. Obliged(enlj) A not(enlj, elj) A Leave(elj) A has-agent(elj, John)

b. —Permitted(epjc) A Pay(epjc) A has-agent(epjc, John) A
has-instrument (epjc, cash)

It must be pointed out, however, that, unlike facts, represented in Hobbs’s framework
via the Rexist or Subsist modalities, what we typically need to represent through the
deontic modalities Obligatory, Permitted, and Optional does not usually concern a
single individual (e.g., John, in the examples in)7 but rather a set of individuals.

This is especially true when formalizing norms from legislation: norms rarely apply
to a single individual. Instead, they generally specify that all individuals belonging to
certain categories or meeting specific criteria are obliged, prohibited, or permitted to
perform certain actions. These individuals are typically referred to as the norm’s bearers.

For this reason, standard legal theory usually represents norms as if-then rules, where
the antecedent specifies the conditions an entity must satisfy to qualify as the norm’s
bearer, and the consequent specifies what the bearer is obliged, prohibited, or permitted
to do (see (Searle, 1995)), among others).

Consequently, in the proposed formalization, every eventuality associated with one of
the deontic modalities must always include the has-agent role: this role identifies the
bearer specified in the norm’s antecedent.

This assumption is not new in the literature on deontic logic either. In fact, there
is extensive research on the interaction between deontic modalities and agency[®} with a
recent approach presented in (Frijters, Meheus, and van De Putte, 2021)). This body of
work has led to the development of the so-called “normative positions”, which formalize
the well-known Hohfeldian legal relations .

Sometimes the bearers of norms are implicit, although they can be easily deduced
from the context of the norms, even in the case of hypothetical norms such as the very
first ones considered in this paper, which are repeated in for the reader’s convenience:

16See https://plato.stanford.edu/entries/logic-deontic/#DeonLogiAgen

23

https://plato.stanford.edu/entries/logic-deontic/#DeonLogiAgen

34
(34) a. It is obligatory to leave the building.

b. It is obligatory to not leave the building.

Naturally, the bearer of a—b) is “every human inside the building”, even though this
is not explicitly stated. In other words, the two obligations do not apply to cats, dogs,
or other inanimate entities inside the building, as they are incapable of understanding
the norms. Nor do they apply to humans outside the building. In general, legal norms
apply to entities with decisional capacity. These typically include humans, but also legal
persons such as companies or, in some cases, robots.
Under these assumptions, a—b) are represented in Hobbs’s framework by the if-
then implications in a—b), respectively:
(35) :
a. Vy[dei [Rexist(el) ABe(el) Ahas-agent(el, u)A
Human (u) A has-inside-location(el, B)]—
Jeo [Obligatory(e2) A Leave (e2) A has-agent(e2, u) A
has-from-location(e2, B)]]

b. Vy[Je1 [Rexist(el) ABe(el) Ahas-agent(el, u) A
Human (u) A has-inside-location(el, B)]—
Jen2 [Obligatory(en2) A not(en2, e2) A Leave(e2) A has-agent (e2, u) A
has-from-location(e2, B)]]

Another example is shown in ([36)); this if-then rule formalizes the sentence in ([4a) above,
repeated in for the reader’s convenience:

(36) Whoever parks in a parking spot is obliged to pay £3 at the parking meter associ-
ated with that spot.

Va,pn [Je1,p [Rexist (e1) APark(el) A has-agent(el, a) Ahas-location(el, p)A
parkingSpot (p) A associated-with(p, pm)]—
Je2 [Obligatory(e2) A Pay(e2) A has-agent (e2, a)A
has-object(e2, £3) Ahas-recipient(e2, pm)]

The formula in states that if John or anyone else parks in a parking spot, will
infer that the individual, i.e., the agent performing the parking action, is obliged to pay
£3 at the parking meter associated with that spot.

5 Implementing Hobbs’s extended framework
in RDF* and SPARQL*

This paper aims to define a conflict-tolerant deontic logic compatible with RDF, the
standard used to encode data on the Semantic Web.

As is well known, RDF is a graph-based data model that merely represents knowledge,
yet it does not include inference mechanisms to derive logical consequences from explicitly

24

asserted information. Consequently, RDF alone is insufficient for developing applications
for compliance checking or other AI systems based on symbolic reasoning, as it lacks
native reasoning capabilities. To enable reasoning, RDF must be used in conjunction
with a dedicated reasoning language, such as OWL, SWRL, LegalRuleML, or the other
languages introduced in the Introduction and used in prior literature.

This paper, which focuses exclusively on irresolvable conflicts, employs knowledge
bases and inference rules encoded in RDF* and SPARQL*. These are extensions of
standard RDF and SPARQL designed to support and simplify reification, a core feature
of Hobbs’s formalization and, therefore, also of the framework proposed here.

As is well known, the standard RDF reification vocabulary is verbose and impractical
for large-scale applications. To address this limitation, RDF* has been proposed as an
extension of RDF to streamline the reification proces{’’| RDF* enables a more concise
and efficient representation of metadata about triples, significantly reducing the verbosity
of traditional RDF reification. It is important to note, however, that RDF* does not ex-
tend the expressivity or semantics of standard RDF; rather, it only introduces a more
compact syntax that allows for statements about statements to be embedded directly
within the triple structure. This makes RDF* particularly useful for practical implemen-
tations that require reasoning over embedded statements. RDF* is already supported
by numerous RDF processing frameworks, including Apache Jenﬂ which is used in the
GitHub repository associated with this paper.

Therefore, the core semantics of the proposed formalization remain those of RDFH
and SPARQIH (Perez, Arenas, and Gutierrez, 2006). The automated reasoner operates
as a SPARQL rule engine, iteratively executing rules in the form CONSTRUCT-WHERE until
no additional triples can be derived. This approach mirrors the behavior of standard
OWL reasoners such as HermiT (Glimm et al., 2014)), which similarly reapply OWL ax-
ioms until no new RDF triples are inferred. All other facets of Hobbs’s logical framework
and the Deontic Traditional Scheme are “embedded” within the semantics of RDF and
SPARQL, as detailed in the following subsections.

While this logical core establishes the necessary semantic foundations, it is not, by it-
self, sufficient for a full-fledged compliance-checking framework. Real-world use cases also
involve solvable conflicts, in which norms defeasibly overrides others, and they demand
reasoning engines that scale efficiently to large RDF datasets (Robaldo et al., 2023)). De-
feasibility can be captured by replacing SPARQL rules with SHACL-SPARQL rules as
in (Anim, Robaldo, and Wyner, 2024)). SHACL, as noted in the Introduction, permits
rule prioritization and thus rule overriding. To address efficiency at scale, future work
will investigate the use of ASP-based reasoners such as DLV2 (Calimeri et al., 2020)) and
Vadalog (Bellomarini et al., 2022), which are fully compatible with RDF and SPARQL.

The following subsections explain how the formalizations presented in the previous
two sections have been implemented using RDF* and SPARQL*.

Yhttps://wuw.w3.org/2022/08/rdf-star-wg- charter
18https://jena.apache.org/
Yhttps://www.w3.org/TR/rdf11-mt
2Ohttps://www.w3.org/TR/sparqlil-query

25

https://www.w3.org/2022/08/rdf-star-wg-charter
https://jena.apache.org/
https://www.w3.org/TR/rdf11-mt
https://www.w3.org/TR/sparql11-query

5.1 Basic classes, properties, and inference rules

All predicates introduced earlier in the paper can be directly encoded in RDF. For exam-
ple, the formula shown above in @a) can be directly implemented in RDF by mapping
the predicates Leave and Rexist to homonymous RDF classes, has-agent to a homony-
mous RDF property, and elj and John to homonymous RDF individuals.

Furthermore, the class Leave is asserted as an individual of an additional class
EventualityType, the class Rexist as an individual of an additional class Modality,
and the property has-agent as an individual of an additional class ThematicRole. For-
mula (7}a) is then encoded in RDF, Turtle Syntaxlﬂ as shown in . Formula @b) can
be similarly represented by introducing additional RDF classes and properties to encode
the predicates Pay, has-object, and has-instrument.

(37) :Eventuality a rdfs:Class. :ThematicRole a rdfs:Class.
:Modality a rdfs:Class. :EventualityType a rdfs:Class.

:Rexist a rdfs:Class, :Modality.

soa:Leave a rdfs:Class, :EventualityType.
soa:has-agent a rdf:Property,:ThematicRole.

soa:elj a :Rexist,soa:Leave; soa:has-agent soa:John.

7))

The empty prefix is associated with the following namespace:

https://w3id.org/ontology/conflict-tolerantdeontictraditionalscheme#

This namespace is used for RDF resources defined within the proposed computational
ontology. We also introduce the prefix “soa:” for RDF resources that represent states
of affairs, i.e., the ABoxes encoding the examples:

https://w3id.org/ontology/conflict-tolerantdeontictraditionalscheme#soa

The SPARQL rules, written in the form CONSTRUCT-WHERE, are also part of the pro-
posed computational ontology. Specifically, the ontology includes a dedicated class
InferenceRule, whose individuals represent the SPARQL rules. A special RDF prop-
erty, has-sparql-code, links each of these individuals to the string encoding of the
corresponding rule in standard SPARQL v1.1.

In all examples shown below and in the GitHub repository, the inference rules are
represented as anonymous RDF individuals, which conform to the following template:

(38) [a :InferenceRule;
:has-sparql-code """CONSTRUCT{...}WHERE{...}"""]

Two examples of inference rules are those implementing the pragmatic implicatures shown
above in and . states that if the state of affairs contains an abstract
eventuality ea, and another eventuality ei of the same type as ea, such that the thematic
roles of ei form a superset of those of ea and share identical values for the overlapping
roles, then it is (pragmatically and contextually) assumed that ei instantiates ea. This
is implemented in SPARQL as shown in . Note that the “—3” conditions in are
directly implemented in corresponding SPARQL NOT EXISTS clauses.

2Thttps://www.u3.org/TR/turtle

26

https://www.w3.org/TR/turtle

(39) [a :InferenceRule; :has-spargl-code """
CONSTRUCT{?ei :instantiates 7ea}
WHERE{7ea a :AbstractEventuality,?ET. 7ei a 7ET. 7ET a :EventualityType.
NOT EXISTS{?tr a :ThematicRole. 7ea 7tr 7va.
NOT EXISTS{7ei 7tr 7vi}}
NOT EXISTS{?tr a :ThematicRole. 7ea 7tr ?va. 7ei 7tr ?7vi.
FILTER(?va!=?vi)}}"""]

states that if two eventualities eil and ei2 share the same type, modality, and agent,
then the state of affairs includes an additional abstract eventuality that is instantiated
by both eventualities; this is implemented as follows:

(40) [a :InferenceRule; :has-sparql-code
CONSTRUCT{?eil :instantiates 7ea. 7ei2 :instantiates 7ea}
WHERE{?eil a 7ET,7M; soa:has-agent 7a. 7ei2 a 7ET,7M; soa:has—agent 7a.

7ET a :EventualityType. ?M rdf:type/rdfs:subClass0f* :Modality.
FILTER(STR(7eil)<STR(7ei2)) BIND(BNode() AS 7ea)
NOT EXISTS{?7eil :instantiates 7ear. 7ei2 :instantiates 7ear}}"""]

Note the FILTER condition in the rule in : the rule is triggered only once for each pair
7eil and 7ei2. If 7eil is lexicographically smaller than 7ei2, the rule is triggered for
the ordered pair (?7eil, 7ei2), but not for the reverse ordered pair (?7ei2, 7eil), and vice
versa. This ensures that only one abstract eventuality 7ea is created via the SPARQL
command BNode, rather than two.

In connection with this, the rule in also includes a NOT EXISTS clause to prevent
infinite execution loops. Since the automated reasoner re-applies the rules until no new
triples is inferred, omitting this clause would result in repeated creation of new anonymous
nodes and two additional triples linking 7eil and ?7ei2 to those nodes via the property
instantiates. In contrast, with this clause, the rule triggers only once, specifically only
if 7eil and 7ei2 do not already instantiate the same abstract eventuality.

5.2 Axiomatizing —, A, and V in RDF* and SPARQL*,
and deriving contradictions: semantical embedding

As explained earlier, the predicates not, and, and or of Hobbs’s framework do not cor-
respond directly to the boolean connectives =, A, and V. Instead, these connectives are
used to define the semantics of not, and, and or in relation to the different modalities.
This is achieved by introducing axioms that constrain the modalities of the eventualities
connected by not, and, and or based on the modalities assigned to the others. These
axioms make use of the boolean connectives =, A, and V.

Nevertheless, these axioms cannot be directly implemented in RDF and SPARQL.
This is because RDF does not natively support operators for negation and disjunction,
i.e., its vocabulary does not include constructs corresponding to = and V. By contrast,
one could argue that RDF implicitly supports A, since RDF triples are jointly true; in
other words, the knowledge graph can be interpreted as the logical conjunction of all its
triples. Although this interpretation is valid, it should be noted that conjunctions might

27

be embedded within negations or disjunctions, e.g., in the formula AV(BAC)V - (DAE).
This makes it necessary to introduce an explicit construct for representing A as well,
alongside those for representing — and V.

We also remind that RDF semantics follows the Open World Assumption, meaning
that in cases where some triples do not occur in the knowledge graph, it does not follow
that these triples are false. Instead, it is simply unknown whether these are true or false.

To address this representational gap, the proposed computational ontology explicitly
asserts that a triple is false by stating that its reification holds false. This is done by
asserting the reified triple as an instance of a special class called false. This class
parallels standard negation — in the proposed computational ontology.

RDF* provides a concise syntax to reify triples: the operator “<< ... >>”. Thus, for
example, the literal —Rexist(e), which encodes that the eventuality e does not really
exist, is represented in the proposed computational ontology as follows:

(41) <<soa:e rdf:type :Rexist>> rdf:type :false.

(41) is a standard RDF triple, where <<soa:e rdf:type :Rexist>> serves as the sub-
ject. This subject is an individual, i.e., an RDF resource, representing the reification
of the triple “soa:e rdf:type :Rexist”. In the technical jargon used in this paper, it
explicitly refers to the fact that soa:e really exists.

The proposed computational ontology also includes the class true, which is the dual
of false. When the reification of a triple is asserted as an instance of true, it indicates
that the triple holds true in the state of affairs. However, since all triples explicitly
asserted in a knowledge graph are already considered true, reifying and re-asserting each
positive triple as an instance of true is redundant and could even easily lead to infinite
loops. Accordingly, the proposed computational ontology does not include a SPARQL*
rule to implement this inference.

On the other hand, as it will be illustrated below, the reverse inference can occasionally
be useful: during the derivations, it may be concluded that the reification of a triple
belongs to the class true, after which the triple itself can be safely added to the knowledge
graph. This is achieved through the SPARQL* rule in :

(42) [a :InferenceRule; :has-sparql-code """
CONSTRUCT{?s ?p 7o}WHERE{<<?s ?p 70>> a :true}"""]

Having formalized truth, and more importantly, falsity, which is natively absent in RDF,
it becomes possible to represent and infer contradictions, which naturally arise when a
triple is asserted as both true and false. To this end, the SPARQL* rule in is added
to the proposed computational ontology. The SPARQL* rule in corresponds to the
rule Vo [(P(e) A=P(e))— 11, except in cases where P denotes a deontic modality. In such
cases, as explained in the previous section, we do not aim to derive a contradiction, but
rather a conflict. The next section will illustrate how conflicts are derived in the proposed
ontology, which, as previously noted, aligns with the definitions proposed by Hans Kelsen
rather than those of Lou Goble.

28

(43) [a :InferenceRule; :has-sparql-code """
CONSTRUCT{<<<<?s ?p 70>> a :true>> :is-in-contradiction-with
<<<<?s ?p 7o0>> a :false>>}
WHERE{?s 7p 70. <<?7s 7p 70>> a :false.
NOT EXISTS{?70 a :DeonticModality}}"""]

In , the RDF property is-in-contradiction-with parallels the standard logical
symbol L, which denotes a contradiction. However, there is a crucial distinction between
the two: while is-in-contradiction-with is part of the vocabulary of the proposed
computational ontology, the symbol L is not part of the object-level logic’s vocabulary.
Instead, 1 belongs to the meta-language used to describe the semantics of the logic.
In standard logic, the rule Vo, [(P(e)A—P(e))— 1] is therefore an interpretative rule,
belonging to the proof theory rather than to the syntax of the logic. It defines how the
formula P (e) A=P(e) is interpreted, mapping it to its meaning, denoted by the symbol L.

In other words, the proposed computational ontology embeds the proof theory di-
rectly into the syntax of the logic. This technique, known as “semantical embedding”,
is widely adopted in modern logical frameworks such as LogiKEy (Benzmiiller, Parent,|
land van der Torre, 2020). It has also been recently applied to model deontic statements
and argumentation (Pasetto and Benzmiiller, 2024)).

The key difference between the mentioned works and this one, however, is that our
implementation is fully compatible with RDF whereas, to the best of our knowledge, all
existing applications of LogiKEy have been implemented in Isabelle/ HOL@ As stated
earlier, the choice of using RDF as the underlying framework, which was set as the
primary objective of our research, was made to promote interoperability, standardiza-
tion, and seamless integration with existing Semantic Web technologies, while ensuring
compatibility with widely adopted tools and practices in knowledge representation.

Further rules may be added to derive contradictions or other forms of meaning, e.g.,
conflicts, as will be discussed in the next section.

For example, as explained in Subsection[3.2] if an abstract eventuality does not subsist,
then none of its partial instantiations subsist either, and none of its full instantiations
really exist. Therefore, if the ontology asserts that any of them does, a contradiction can
be inferred. This constraint can be enforced by the following SPARQL* rule. Note that
the rule uses instantiates+, where the + symbol indicates one or more occurrences of
the instantiates property. This is necessary because the property is transitive.

(44) [a :InferenceRule; :has-sparql-code """
CONSTRUCT{<< <<7ea a :Subsist>> a :false>> :is-in-contradiction-with
<<<<%e a TM>> a :true>>}
WHERE{<<7ea a :Subsist>> a :false. 7e :instantiates+ 7ea.
?e a 7M. VALUES 7M {:Rexist :Subsist}}"""]

In addition, it is useful to introduce rules that derive a contradiction when an individual is
asserted to belong to two disjoint sets. For instance, the rule in infers a contradiction
for any individual that is classified as both a dog and a cat. A similar rule, which enforces
disjointness between the classes AbstractEventuality and Instance, is available in the
GitHub repository.

2?https://isabelle.in.tum.de/

29

https://isabelle.in.tum.de/

(45) [a :InferenceRule; :has-sparql-code """
CONSTRUCT{<<?i a soa:Dog>> :is-in-contradiction-with
<<7i a soa:Cat>>}
WHERE{?i a soa:Dog, soa:Cat}"""]

Consequently, if an individual, e.g., soa:Yoof, is asserted to belong to both the set of
dogs and the set of cats, the following triple is inferred through the rule in :

<<soa:Yoof a soa:Dog>> :is-in-contradiction-with <<soa:Yoof a soa:Cat>>

This triple straightforwardly reads as follows: “the fact that Yoof is a dog is in contra-
diction with the fact that Yoof is a cat”.

Having explicitly represented truth and falsity in the proposed computational ontol-
ogy, we can now introduce operators that parallel the Boolean connectives A and V: these
are the RDF properties conjunction and disjunction, respectively. Both the subjects
and the objects of these properties are reifications of triples in the form “R a tf”, where
R is the reification of another triple and tf is either the class true or the class false.

The use of conjunction and disjunction is best illustrated through a few examples.
The disjunction Rexist (el)V Rexist(e2) is represented as:

<<<<soa:el a :Rexist>> a :true>> :disjunction
<<<<soa:e2 a :Rexist>> a :true>>.

Note that neither Rexist (el) nor Rexist (e2) is asserted to hold true; this is appropriate,
as we know that at least one of them does hold true, but we do not know which one.
This is precisely why the subject and object of disjunction are reifications: they refer
to the fact that the two triples hold true, without actually asserting that they do.
Another example is the representation of Rexist (e1) V—(Rexist (e2) A—Rexist (e3)):

<<<<soa:el a :Rexist>> a :true>> :disjunction
<K<K
<<<<soa:e2 a :Rexist>> a :true>> :conjunction
<<<<goa:e3 a :Rexist>> a :false>>
>> a :false>>.

As in the previous example, it remains unknown whether Rexist(el), Rexist(e2),
and/or Rexist (e3) hold true or false.

It is now possible to introduce standard axioms for =, A, and V. For example, axiom
states that if a conjunction holds true, then each of its conjuncts also does.

(46) [a :InferenceRule; :has-spargl-code
CONSTRUCT{?s1 7pl 7ol. 7?s2 7p2 702.}
WHERE{<<?s1 ?pl 701>> :conjunction <<?7s2 7p2 7o2>>}"""]

Conversely, in cases where a conjunction holds false, we can apply De Morgan’s law
= (P1AP2)— (=P1V—P2) to infer a disjunction that holds true. Similarly, if a disjunction
holds false, we can apply De Morgan’s law = (P1VP2) — (=P1A—=P2) to infer a conjunction
that holds true. These two inference rules can be implemented using a single SPARQL

30

rule as in @, where the IF operator allows both the truth values and the properties
:disjunction and :conjunction to be swapped in the inferred triplﬂ

(47) [a :InferenceRule; :has-sparql-code """

CONSTRUCT{<<?t1 a ?vnl>> ?doc <<7t2 a ?7vn2>>}

WHERE{<< <<7t1 a ?vi>> ?cod <<7t2 a 7v2>>>> a :false.
BIND(IF(?cod=:conjunction, :disjunction,

IF(?cod=:disjunction, :conjunction,?doc)) AS ?doc)

FILTER(BOUND(?doc))
BIND(IF(?vli=:false, :true,:false) AS ?vnl)
BIND(IF(?v2=:false,:true,:false) AS ?vn2)}"""]

Another axiom worth including in the proposed computational ontology, in light of the
discussion from the previous section, is the Disjunctive Syllogism, implemented as follows:

(48) [a :InferenceRule; :has-sparql-code
CONSTRUCT{?7t2 a 7v2}
WHERE{{<< <<?s ?p ?70>> a ?v1>> :disjunction <<7t2 a ?7v2>>}UNION
{<<?t2 a ?7v2>> :disjunction <<<<?s 7p 7o>> a ?vi>>}
FILTER((?vi=:false && EXISTS{?s ?p 7o}) ||
(?vl=:true && EXISTS{<<?s 7p 7o>> a :false}))}"""]

Additional axioms could similarly be added to the proposed computational ontology;
however, doing so goes well beyond the scope of the present paper.

It is nonetheless important to emphasize that while many axioms of standard logic
are theoretically valid, their direct implementation in a concrete framework such as RDF
may lead to impossible or undesirable consequences. For example, the rule of Conjunctive
Introduction, which states that if both A and B hold true, then their conjunction AAB
also holds true, is arguably redundant in RDF, given that, as observed above, all asserted
triples in a knowledge graph are already assumed to be jointly true. A similar issue arises
with Disjunction Introduction, which states that if a triple is true, then the disjunction
of that triple with any other triple is also true. Generating all such disjunctions in the
knowledge graph would be superfluous unless some of them are required as antecedents
in other inference rules (see discussions in (Parry, 1989) and (Faroldi and van De Putte,|
2023)). For this reason, restricted forms of the Disjunction Introduction rule should be
adopted. For example, argues that A— (AVB) should be considered valid
only if all propositional variables in B also occur in A. Moreover, as already discussed in
Subsubsection including both Disjunction Introduction and Disjunctive Syllogism
in their standard forms may lead to Ex falso quodlibet. Therefore, it is essential to verify
that the proposed restricted versions do not also give rise to Ex falso quodlibet.

In light of these considerations, a thorough examination of the relevant literature is
necessary to determine how axioms involving —, A, and V from standard logic should
be implemented, either within the reification-based approach adopted in the proposed
computational ontology or through alternative RDF representations specifically designed
for this purpose. This undertaking requires substantial further research, which, as we
emphasize once again, lies beyond the scope of the present work.

23Note that FILTER (BOUND (?doc)) is true only if ?doc is bound to either :disjunction or :conjunction.
Conversely, if ?doc is bound to itself within the IF statement, FILTER(BOUND(?doc)) evaluates to false.

31

5.3 Axiomatizing not in RDF* and SPARQL*

Having introduced the modeling of =, A, and V in the proposed computational ontology,
we can now implement the predicates not, and, and or, along with the axioms that
infer/constrain the modalities of the involved eventualities based on one another.

We begin with the predicate not, which is used more frequently and is a binary
predicate (unlike the other two, which are ternary).

The predicate not from Hobbs’s framework is represented by a corresponding RDF
property of the same name in the proposed computational ontology. Both the domain
and range of this property are individuals of the class Eventuality:

:not a rdf:Property; rdfs:domain :Eventuality; rdfs:range :Eventuality.

Implementing in SPARQL* the axiom for the Rexist modality shown above in (@a) and
repeated again in for reader’s convenience, as well as the corresponding axiom for
the Subsist modality, is similarly straightforward. The SPARQL* rule in again
uses the IF clause to invert the truth value in the inferred triple and employs the VALUES
clause to handle both the Rexist and Subsist modalities.

(49) Ve, en[not(en, e) - (Rexist(e)<> ~Rexist(en))]

[a :InferenceRule; :has-sparql-code """
CONSTRUCT{?s a 7o}
WHERE{?e :not|~:not ?7ne. VALUES ?m {:Rexist :Subsist}
BIND (IF (EXISTS{7e a 7m}, <<?ne a 7m>>,
IF(EXISTS{<<?e a ?m>> a :false}, 7ne, 7s)) AS 7?s)
FILTER(BOUND(?s)) BIND(IF(isTriple(?s), :false, ?m) AS 70)}"""]

The property not is also all we need to implement, in SPARQL*, the axioms of the
Deontic Traditional Scheme as encoded in Hobbs’s logic and shown earlier in . These
axioms establish constraints among the three deontic modalities. For example, axiom
a), repeated in for the reader’s convenience, is implemented through the following
SPARQL* rule, which closely resembles the one shown in :

(50) Veenlnot(en, e) — (Permitted(e) <> ~0bligatory(en))]

[a :InferenceRule; :has-sparql-code """

CONSTRUCT{?s a 7o}
WHERE{?e :not|~:not 7ne. VALUES ?m {:0bligatory :Permitted}
VALUES ?om {:0bligatory :Permitted} FILTER(?7m!=7om)
BIND (IF (EXISTS?e a 7m,<<7ne a Zom>>,
IF(EXISTS<<?e a 7m>> a :false,?ne,?s))AS 7s)
FILTER(BOUND(?s)) BIND(IF(isTriple(?s),:false,?om) AS 7o) }"""]

32

5.4 Axiomatizing and and or in RDF* and SPARQL*

Unlike the predicate not, and and or are ternary predicates. To represent them in RDF,
we chose to introduce two RDF properties for each: and1l and and2 for and, and orl and
or2 for or. The domains and ranges of these properties are, again, individuals of the
class Eventuality. Accordingly, and(ea, el, e2) and or(eo, el, e2) are represented in
the proposed computational ontology as follows:

soa:ea :andl soa:el; :and2 soa:el.

soa:eo :orl soa:el; :or2 soa:el.

Unlike the not predicate, implementing the bi-implications that constrain the modalities
of eventualities connected by the predicates and and or requires two SPARQL* rules, one
for each direction of the bi-implication. This is because the two sides of the bi-implication
involve a different number of predicates.

For example, the bi-implication in @lb) above, which applies to both the Rexist and
Subsist modalities, as well as the Obligatory modality since we accept BDL axioms (M)
and (C), as discussed in (32la) above, is represented by the following SPARQL* rules:

(51) Veaet,e2[and(ea, el, e2) — (M(ea) <> (M(e1)AM(e2))],
with Mc{Rexist, Subsist, Obligatory}

[a :InferenceRule; :has-spargl-code """
CONSTRUCT{?el a 7M. 7e2 a 7M}
WHERE{?ea :andl 7el; :and2 7e2; a 7M.
VALUES ?M {:Rexist :Subsist :0bligatory}}"""]

[a :InferenceRule; :has-spargl-code """
CONSTRUCT{?ea a 7M}
WHERE{?ea :andl 7el; :and2 7e2. 7el a 7M. 7e2 a 7M.
VALUES ?M {:Rexist :Subsist :0bligatory}}"""]

On the other hand, the bi-implication in @lc), which, unlike the previous one, applies to
the Rexist and Subsist modalities but not to Obligatory, is implemented through the
following SPARQL* rule:

(52) Veae1,e2lor(eo, el, e2) — (M(eo) <> (M(e1l)VM(e2))], with Mc{Rexist, Subsist}

[a :InferenceRule; :has-sparql-code """
CONSTRUCT{<<<<7el a 7M>> a :true>> :disjunction <<<<7e2 a 7M>> a :true>>}
WHERE{?eo corl 7el; :or2 7e2; a 7M.
VALUES ?M {:Rexist :Subsist}}"""]

[a :InferenceRule; :has-sparql-code """
CONSTRUCT{?e0 a 7M}
WHERE{7eo :orl 7el; :or2 7e2.
{?el a ?M}UNION{?7e2 a ?M}UNION
{<<<<7el a ?M>> a :true>> :disjunction <<<<7e2 a 7M>> a :true>>}
VALUES ?M {:Rexist :Subsist}}"""]

33

In the second rule in 7 note that the second UNION clause could be replaced by just
its third branch, provided an inference rule is added to derive, from either 7el a ?M or
7e2 a 7M, the triple in the third branch. However, instead of introducing a new ad hoc
rule, we prefer to add a three-branch UNION clause.

Finally, we provide the SPARQL* implementation of axiom (DDS) from BDL, as pre-

sented in ([32}b):

(53) Veo, o1, e2[((or(eo, el, e2)Vor(eo, €2, el))Anot (en2, e2))—
((Obligatory(eo)AObligatory(en2))— Obligatory(el))]

[a :InferenceRule; :has-spargl-code """
CONSTRUCT{?el a :0bligatory}
WHERE{{7eo :orl 7el; :or2 7e2}UNION{?7eo :orl 7e2; :or2 7el}
7eo a :0bligatory. 7en2 :not|”:not 7e2. 7en2 a :0bligatory}"""]

5.5 Axiomatizing Abstract Eventualities and Instances in RDF*
and SPARQL*

To account for Hobbs’s distinction between abstract eventualities and instances, the pro-
posed computational ontology defines two classes: AbstractEventuality and Instance,
corresponding to the two Hobbs’s homonymous predicates. These classes are disjoint,
therefore the ontology includes a rule similar to that infers a contradiction whenever
an eventuality is classified as belonging to both.

In addition, in line with the content of the previous section, the ontology specifies
that any eventuality associated with either the Subsist modality (or its negation) or
with any of the deontic modalities (or their negations) must be an abstract eventuality,
whereas any eventuality associated with the Rexist modality (or its negation) must be
an instance. This distinction is enforced through the following SPARQL* rules:

(54) [a :InferenceRule; :has-sparql-code """
CONSTRUCT{?e a :AbstractEventuality}
WHERE{VALUES ?m {:Subsist :0bligatory :Permitted :Optional}
{?e a 7m}UNION{<<?7e a 7m>> a :false}}"""]

[a :InferenceRule; :has-spargl-code """
CONSTRUCT{?e a :Instance}
WHERE{{7e a :Rexist}UNION{<<?7e a :Rexist>> a :false}}"""]

Furthermore, the proposed computational ontology stipulates that all arguments of the
predicates not, and, and or must be of the same type: they must either all be abstract
eventualities or all be instances. This constraint is enforced by the following SPARQL*
rule. If one of these three predicates mixes abstract eventualities with instances, all its
arguments will be inferred to belong to both classes. However, since these classes are
declared disjoint, this will in turn result in a contradiction.

34

(55) [a :InferenceRule; :has-sparql-code """
CONSTRUCT{?eao a 7C}
WHERE{VALUES ?C {:AbstractEventuality :Instance}
VALUES 7P {:not :andl :and2 :orl :or2}
?7e a 7C. {7e 7P 7eao}UNION{7eao 7P 7e}}"""]

Finally, the ontology includes a SPARQL* rule that parallels the implication shown above
in : if two eventualities instantiate the same abstract eventuality but differ in at least
one thematic role (specifically, if one is asserted to have a certain value for that role while
the other is asserted not to), then the two eventualities are inferred to be linked by the
not property: if one of the two instantiations exists, the other does not, and vice versa.

(56) [a :InferenceRule; :has-sparql-code
CONSTRUCT{?el :not 7e2}
WHERE{7el :instantiates+ 7ea. 7e2 :instantiates+ 7ea.
FILTER(7el!=7e2) 7tr a :ThematicRole.
7el 7tr ?7v. <<7e2 7tr 7v>> a :false}"""]

Although the examples so far have only illustrated contradictions, such as those among
eventualities that exist or do not, the next section will show that the distinction be-
tween abstract eventualities and instances is fundamental to also define concepts such as
compliance and violation (and, in turn, conflict, drawing from Kelsen’s definitions). As
stipulated in the proposed computational ontology, deontic modalities apply exclusively
to abstract eventualities. These can be either complied with or violated by an instance
that really exists and instantiates the abstract eventuality, or by another abstract even-
tuality that subsists and is instantiated by the one bearing the deontic modality.

5.6 Examples

Before moving on to the next section, we conclude the present one with a few examples of
derivations enabled by the SPARQL* rules introduced so far. All examples are available
in the GitHub repository, allowing readers to re-run them locally, verify the results, and
experiment with new variants if desired.

Let us begin with a simple example illustrating the axiomatization of the predicates
not, and, and or with respect to the Rexist modality. Consider sentence (H7la), for-
malized in Hobbs’s framework as (57}b) and represented in RDF as (57]c), along with
sentence (57]d), formalized in RDF as (57}e).

(57) a. John leaves or John eats and drinks.

b. Rexist(eo) A or(eo, elj, ea) A Leave(elj) A and(ea, eej, edj) A
Eat(eej) A Drink(edj) A has-agent(elj, John) A
has-agent(eej, John) A has-agent(edj, John)

c. soa:eo a :Rexist; :orl soa:elj; :or2 soa:ea.
soa:elj a soa:Leave; soa:has-agent soa:John.
soa:ea :andl soa:eej; :and2 soa:edj.

35

soa:eej a soa:Eat; soa:has-agent soa:John.
soa:edj a soa:Drink; soa:has-agent soa:John.

d. John does not leaves.

€. soa:enlj :not soa:elj; a :Rexist.

From (57c¢) and (57]e), the first rule in derives the triple in (58la), while the rule in
infers the triple in (58/b).

(58) a. <<<<soa:elj a :Rexist>> a :true>> :disjunction
<<<<soa:ea a :Rexist>> a :true>>.

b. <<soa:elj a :Rexist>> a :false.

From (58a-b), the rule of Disjunctive Syllogism shown above in , followed by the
rule in, which adds to the knowledge graph every triple whose reification belongs to
the class true, infers the triple in (59 a). From this triple and (57}c), the first rule shown
above in infers the two triples in b): the fact that John eats really exists and
the fact that John drinks really exists.

(59) a. soa:ea a :Rexist

b. soa:eej a :Rexist. soa:edj a :Rexist.

An example similar to the previous one is the Smith argument discussed in above.
Here, we consider the simplified version given in sentences (60la—b), which are formalized
in RDF in cfd), respectively.

(60) a. Smith is obliged to eat or drink.

b. Smith is obliged to not eat.

c. soa:eo a :0bligatory; :orl soa:ees; :or2 soa:eds.
soa:ees a soa:Eat; soa:has-agent soa:Smith.
soa:eds a soa:Drink; soa:has-agent soa:Smith.

d. soa:enes :not soa:ees; a :0bligatory.

The first rule shown in above does not apply here, as it is defined only for the Rexist
and Subsist modalities. It is well known that the formula 0B (pVp) <> (0B(p)V 0B(p))
is invalid. Therefore, for example, from “Smith is obliged to eat or drink”, it does not
follow that “Smith is obliged to eat or Smith is obliged to drink”.

The axiom (DDS) was specifically introduced in BDL to allow the derivation in the Smith
argument even without rules that parallel those in for the Obligatory modality. The
SPARQL* rule corresponding to (DDS), shown above in , infers the triple in from
cfd), enabling us to conclude that Smith is obliged to drink.

(61) soa:eds a :0bligatory.

36

The GitHub repository associated with this paper also includes the variants of the Smith
argument examined in , namely the Jones, Roberts, and Thomas arguments.
The proposed computational ontology supports the correct derivations in these arguments
as well, since it implements the same axioms from BDL.

Let us now present an example illustrating the relationship between abstract even-
tualities and their instantiations. Consider the two contradictory sentences in (62la-b),
which are formalized in RDF respectively as shown in c-d).

(62) a. John pays £3 in cash.
b. John does not pay.

c. soa:epj a :Rexist, soa:Pay; soa:has-agent soa:John;
soa:has-object soa:3pounds; soa:has-instrument soa:cash.

d. soa:enpja :not soa:epja; rdf:type :Subsist.
soa:epja rdf:type soa:Pay; soa:has-agent soa:John.

The pragmatic implicature shown above in allows us to infer that the eventualities
in c—d) belong to the same context; that is, they refer to the same payment. The
following rule then infers the triple: the fact that, in this context, John pays £3 in cash
instantiates the fact that John pays.

(63) soa:epj :instantiates soa:epja.
In parallel, from the axioms on not derive that soa:epja does not subsist:
(64) <<soa:epja a :Subsist>> a :false.

From this, and from the triple soa:epj a :Rexist in (62|c), the SPARQL* rule shown
above in infers the contradiction:

(65) <<<<soa:epja a :Subsist>> a :false>> :is-in-contradiction-with
<<<<soa:epj a :Rexist>> a :true>>.

If it is false that John pays, then it is illogical to also assert, in the same context, that
John pays £3 in cash.

Another pair of contradictory sentences is presented in afb); these are respectively
formalized in RDF as shown in Cfd). These two sentences contradict one another
because cash and card are mutually exclusive instruments for making a payment, as
encoded by the SPARQL* rules in (66le) (if the instrument is cash, then it is not card)
and (66]f) (if the instrument is card, then it is not cash).

(66) a. John pays in cash.
b. John pays by card.

c. soa:epjcash a :Rexist, soa:Pay; soa:has-agent soa:John;
soa:has-instrument soa:cash.

37

d. soa:epjcard a :Rexist, soa:Pay; soa:has-agent soa:John;
soa:has-instrument soa:card.

e. [a :InferenceRule; :has-sparql-code """
CONSTRUCT{<<7e soa:has-instrument soa:card>> a :false}
WHERE{7e a soa:Pay; soa:has-instrument soa:cash}"""].

f. [a :InferenceRule; :has-sparql-code """
CONSTRUCT{<<?7e soa:has-instrument soa:cash>> a :false}
WHERE{7e a soa:Pay; soa:has-instrument soa:card}"""].

From ([66]c) and (66]d), the second pragmatic implicature shown above in infers that
there exists an abstract eventuality instantiated by both soa:epjcash and soa:epjcard
(this abstract eventuality is an anonymous individual newly created by the rule in):

(67) _:b0 a :AbstractEventuality.
soa:epjcash :instantiates _:b0. soa:epjcard :instantiates _:b0.

In parallel, the two rules in (66]e) and (66]f) symmetrically infer that it is not true that
the instrument of soa:epjcash is card, and that the instrument of soa:epjcard is cash:

(68) <<soa:epjcash soa:has-instrument soa:card>> a :false.

<<soa:epjcard soa:has-instrument soa:cash>> a :false.

From @ and , the rule in (56| infers the triple soa:epjcash :not soa:epjcard,
meaning that the two instances cannot really exist simultaneously. Nevertheless, since
they do, two symmetric contradictions are again inferred:

(69) <<<<soa:epjcash
<< <<soa:epjcash

:Rexist>> a :true>> :is-in-contradiction-with
:Rexist>> a :false>>.

PP

<< <<soa:epjcard :Rexist>> a :true>> :is-in-contradiction-with
<<<<soa:epjcard a :Rexist>> a :false>>.

»

As a final example, we present the encoding of a norm, i.e., the one shown in (4la) above,
repeated in for the reader’s convenience, and formalized in Hobbs’s as in (36 above.

(70) Whoever parks in a parking spot is obliged to pay £3 at the parking meter associ-
ated with that spot.

[a :InferenceRule; :has-sparql-code """
CONSTRUCT{?e2 a soa:Pay,:0bligatory; soa:has-agent 7a;
soa:has-object soa:3pounds; soa:has-recipient 7pm}

WHERE{?el a soa:Park, :Rexist; soa:has-agent 7a; soa:has-location 7p.
?p a soa:parkingSpot. 7pm soa:associated-with 7p
BIND(BNode() AS ?7e2) NOT EXISTS{?er2 a soa:Pay,:0bligatory;
soa:has-agent 7a; soa:has-object soa:3pounds;
soa:has-recipient 7pm}}"""]

38

Since the consequent of the implication involves an existential quantification, similarly
to the SPARQL* rule in the rule in generates a new anonymous RDF resource,
corresponding to the Skolemization of the existential quantifier. Additionally, the rule
includes a NOT EXISTS clause to prevent infinite loops.

Now, if the state of affairs includes the triples in b)7 which encodes sentence a),
then the rule in adds to the knowledge graph the triples in ([71}c), in which _:b0 is
again an anonymous individual: John is obliged to pay £3 to the parking meter associated
with the spot in Sketty where he parked.

(71) a. John parks in Sketty.

b. soa:epkj a soa:Park, :Rexist; soa:has-agent soa:John;
soa:has-location soa:psSketty. soa:psSketty a soa:parkingSpot.
soa:pmSketty soa:associated-with soa:psSketty.

c. _:b0 a :0bligatory, soa:Pay; soa:has-agent soa:John;
soa:has-object soa:3pounds; soa:has-recipient soa:pmSketty.

6 Incorporating Kelsen’s categorization of irresolvable
conflicts into the proposed framework

With the basic framework now established, this section presents our proposal for incor-
porating irresolvable conflicts among deontic statements.

This paper adopts Kelsen’s categorization of irresolvable conflicts, as outlined in Sec-
tion[2]above. We recall that Kelsen identifies three primary types of irresolvable conflicts:

(72) a. Bilateral conflicts: a situation in which two deontic statements hold in a
given context, but complying with one of them entails violating the other.

Ezxample:
- John is obliged to leave the building.
- John is obliged to not leave the building.

b. Unilateral conflicts: a situation in which an obligation and a permission
hold in a given context, but acting in accordance with the permission entails
a violation of the obligation.

Ezxample:
- John is permitted to leave the building.
- John is prohibited to leave the building.
c. Partial conflicts: a type of bilateral conflict where the conflict arises only

from a “part” of the actions involved, or, according to this paper’s terminology,
due to at least one thematic role having incompatible values.

Example:

- John is obliged to pay in cash.
- John is obliged to pay by card.

39

The review in (Goble, 2013) addresses only the category in (72}a), but it remains unclear
to us how the reviewed approaches could be extended to encompass b) or c).

Moreover, even for the category in (72}a), adopts a definition of irresolvable
conflicts that, in our view, is not fully adequate. We will examine Goble’s definition in
detail and compare it with Kelsen’s in Subsection below.

The key characteristic of Kelsen’s definitions in ([72la-c), which is absent in Goble’s,
is that they are grounded in the notion of wiolation: a conflict arises when an agent does
what he is obliged or permitted to do, but this action violates another of his obligations.

Despite its close connection to the notions of obligation and prohibition, the concept
of violation, and its corresponding formalization, has been largely overlooked in previous
deontic logic literature. This paper argues, instead, that violation should be taken as
a foundational concept. For this reason, the next subsection introduces and formalizes
the notion of violation, along with the dual notion of compliance, within the proposed
computational ontology. We will then build on this foundation to identify and formalize
the notion of conflict between deontic statements.

6.1 Understanding and formalizing compliance and violations

Obligations and prohibitions (i.e., non-permissions) can be either complied with or vi-
olated. This may occur when the bearer of an obligation or prohibition performs an
action that specializes the one specified by the obligation or prohibition. In the proposed
computational ontology, this is represented by requiring the knowledge graph to contain
an eventuality that really exists and that instantiates the abstract eventuality to which
Obligatory or mPermitted applies. Specifically, if the really existing eventuality instan-
tiates an obligatory abstract eventuality, it complies with it; if it instantiates a prohibited
abstract eventuality, it violates it. This is illustrated in Figure 2] where the dotted line
denotes the instantiates property and the solid line indicates the inferred statement.

Obligatory (eo) —Permitted (ep)
i i
1 1
1 1
1 1
Rexist (e) Rexist (e)
eo is complied with ep is violated

Figure 2: Schema illustrating compliance with obligations and violation of prohibitions.
The dotted line represents the instantiates property while the solid line indicates the
inferred statement.

(73) presents three brief example sentences illustrating the rationale behind the schema
in Figure [2] along with their corresponding RDF representations:

40

73
(73) a. John is obliged to pay £3:

soa:eo a Obligatory; soa:has-agent soa:John;
soa:has-object soa:3pounds.

b. John is not permitted to pay in cash.

<<soa:ep a Permitted>> a :false. soa:ep a soa:Pay;
soa:has-agent soa:John; soa:has-instrument soa:cash.

c. John pays £3 in cash:

soa:e a :Rexist; soa:has-agent soa:John; soa:has-object
soa:3pounds; soa:has-instrument soa:cash.

The sentence in) complies with (73a) but violates (73|b). To comply with (73]a)
without violating (73|b), John would have needed to make the payment by card or any
means other than cash. Indeed, note that (73la) does not specify any instrument for
making the payment: John can choose whichever he wishes. Similarly, b) prohibits
John from paying any amount in cash, whether £3, £4, or otherwise.

Regarding the corresponding (RDF) formal representations, as illustrated in the ex-
amples from the previous section, the first pragmatic implicature shown in allows
us to infer that e instantiates both eo and ep.

Now, in order to infer that the fact that eo is obligatory is complied with by the fact
that e really exists, while the fact that ep is not permitted is violated by the fact that
e really exists, we need to introduce SPARQL* rules similar to the one shown above in
, which allow us to infer when a fact is-in-contradiction-with another one.

To this end, we introduce in the proposed computational ontology the following two
SPARQL* rules, along with the properties is-complied-with-by and is-violated-by.
These rules implement the schema shown in Figure

(74) [a :InferenceRule; :has-sparql-code
CONSTRUCT{<< <<7eo a :0bligatory>> a :true>> :is-complied-with-by
<<<<%e a Tm>> a :true>>}
WHERE{?7eo a :0bligatory. ?e a 7m; :instantiates+ 7eo.
VALUES ?m {:Rexist :Subsist}}"""]

[a :InferenceRule; :has-sparql-code """

CONSTRUCT{<< <<7ep a :Permitted>> a :false>> :is-violated-by
<<<<7e a m>> a :true>>}
WHERE{<<?7ep a :Permitted>> a :false. 7e a ?m; :instantiates+ 7ep.
VALUES 7m {:Rexist :Subsist}}"""]

It is worth noting that the rules in check whether 7e holds under either the Rexist or
the Subsist modality. Therefore, even when 7e is an abstract eventuality that partially
instantiates ?eo (or 7ep), it is still inferred that the former complies with (or violates)
the latter. This is because, as explained in Subsection above, whenever an abstract
eventuality subsist, at least one of its full instantiations really exists. Since instantiates

41

is a transitive relation, if in 7e is an abstract eventuality that subsists and instanti-
ates 7eo, then each of 7e’s full instantiations (including the one that really exists) also
instantiates 7eo, and the schema in Figure 2] applies again.

The key difference between the examples presented in the previous section, where
is-in-contradiction-with is inferred, and those involving the rules in , where
is-complied-with-by and is-violated-by are inferred, lies in the modalities involved.
When both modalities indicate existence, i.e., Rexist or Subsist, a contradiction is
inferred. On the other hand, when the more abstract eventuality indicates a deontic
modality, specifically, an obligation or a non-permission, and the modality instantiat-
ing that eventuality indicates existence, compliance or violation is inferred. In the next
subsection, we will see that conflicts, instead, isomorphically involve two deontic modal-
ities: when two facts are both obligatory and non-obligatory, or both permitted and
non-permitted, a conflict is inferred.

Two additional symmetric rules are introduced to infer when a prohibition is complied
with and when an obligation is violated. This inference is possible when the knowledge
graph includes an eventuality that is more abstract than the obligatory and the non-
permitted ones, and this eventuality does not subsist, as illustrated in Figure [3]

- Subsist(e) - Subsist(e)

| |

1 1

1 1

1 1
Obligatory (eo) —Permitted (ep)
eo is violated ep is complied with

Figure 3: Schema illustrating violation of obligations and compliance with prohibitions.
The dotted line represents the instantiates property while the solid line indicates the
inferred statement.

The two rules are the following:

(75) [a :InferenceRule; :has-sparql-code """
CONSTRUCT{<< <<?e0 a :0bligatory>> a :true>> :is-violated-by
<<<<7e a :Subsist>> a :false>>}
WHERE{7eo a :0bligatory. 7eo :instantiates+ 7e.
<<7e a :Subsist>> a :false}"""]

[a :InferenceRule; :has-sparql-code """
CONSTRUCT{<< <<7ep a :Permitted>> a :false>> :is-complied-with-by
<<<<7e a :Subsist>> a :false>>}
WHERE{<<7ep a :Permitted>> a :false. 7ep :instantiates+ ?e.
<<7e a :Subsist>> a :false}"""]

The next subsubsection provides additional examples illustrating the four rules in
and . We remind the reader once again that all examples have been implemented
and are available in the GitHub repository associated with this paper.

42

6.1.1 Examples

above has already shown some simple examples of the rules in . Another example
is the following:

76

(76) a. John is prohibited to not pay.

b. <<soa:enpj a :Permitted>> a :false. soa:enpj :not soa:epj.
soa:epj a soa:Pay; soa:has-agent soa:John.

c. John pays £3.

d. soa:epj3 a :Rexist, soa:Pay; soa:has-agent soa:John.

This example differs from the previous ones because the rules in do not apply directly
to the RDF representations in b) and d). Instead, first the rules from the Deontic
Traditional Scheme apply to derive that, since John is prohibited from not paying, he is
obliged to pay. Specifically, the SPARQL* rule in (50)) derives a) from b). Then,
from (77a) and (R1]d), the first rule in infersb): the fact that John is obliged
to pay is complied with by the fact that he pays £3.

7

(77) a. soa:epj a :0bligatory.

b. <<<<epj a :0bligatory>> a :true>> :is-complied-with-by
<<<<epj3 a :Rexist>> a :true>>

Let us now remind the reader that the two rules in also accept the modality Subsist
for the eventuality that instantiates the obligatory or non-permitted eventuality. How-
ever, all examples presented so far in this subsection feature only the Rexist modality
for the instantiating eventuality.

Nevertheless, it is indeed rather difficult to construct clearly understandable examples
involving non-negated abstract eventualities in the present tense. Therefore, let us instead
consider some examples in the past tense. Suppose, for instance, that we knew John had
£100 in cash yesterday, but now he has none. When asked about it, he replied that he
spent it all yesterday. From this, we might deduce that:

(78) Yesterday, John paid in cash.

soa:eay a :Subsist, soa:Pay; soa:has-agent soa:John;
soa:has-time soa:Y; soa:has-instrument soa:cash.

The formal representation in introduces a new thematic role not previously consid-
ered: soa:has-time. The value of soa:has-time is ‘soa:Y’, which stands for “yester-
day”. This is the only example in the paper that includes this thematic role, because
time management is regarded as an area for future research, as discussed in Section
Apart from this, eay in is an abstract eventuality in that it does not refer to a
specific action of paying that took place yesterday. Conversely, since John spent his £100

in cash, indicates that John made some cash payments yesterday amounting to a

43

total of £100. While the exact number of payments is unknown (nor is it important for
the meaning that the sentence in intends to convey), we do know there was at least
one; i.e., in the extreme case, John spent all of his £100 in a single payment.

Assuming that the prohibition in b) was also in force yesterday, i.e., that it holds:

(79) Yesterday, John was not permitted to pay in cash.

<<soa:epy a :Permitted>> a :false. soa:epy a soa:Pay;
soa:has-agent soa:John; soa:has-time soa:Y; soa:has-instrument soa:cash.

From and , the second rule in infers that the fact that eay subsists violates
the fact that epy is not permitted, i.e.:

(80) <<<<epy a :Permitted>> a :false>> :is-violated-by
<< <<eay a :Subsist>> a :true>>

As an example of the two rules in , which are symmetrical to those in , we need
to consider abstract eventualities that do not subsist, such as:

81
(81) a. John does not pay.

b. <<soa:ejnp a :Subsist>> a :false. soa:ejnp a soa:Pay;
soa:has—agent soa:John.

c. John is obliged to pay £3 in cash.

d. soa:eopj3c a :0bligatory, soa:Pay; soa:has-agent soa:John;
soa:has-object soa:3pounds; soa:has-instrument soa:cash.

If John does not pay, then he fails to pay any amount of money by any means, thereby
violating his obligation in (81}c). This is inferred by the first rule in :

(82) << <<eopj3c a :0bligatory>> a :true>> :is-violated-by
<<<<Kejnp a :Subsist>> a :false>>

6.2 Understanding and formalizing conflicts among
deontic statements

The previous subsection introduced the notion of violations of obligations and prohibi-
tions and demonstrated how to formalize it within the proposed computational ontology.

The rationale behind the rules introduced in the previous subsubsection can be illus-
trated as shown in Figure [4] which again refers to the two examples in (73|a) and (73]b).
Each obligation is associated with a “green area” representing the set of all really exist-
ing eventualities that instantiate the obligatory eventuality; these eventualities comply
with the obligation. For example, in Figure a, the obligation in (73]a) is complied with
by any eventuality that really exists and specifies the same thematic roles as the obli-
gation (possibly including additional thematic roles, e.g., the instrument). Conversely,

44

each prohibition is associated with a “red area” representing the set of all really exist-
ing eventualities that instantiate the prohibited eventuality; these eventualities violate
the prohibition. For instance, in Figure Elb, the prohibition in b) is violated by any
eventuality that really exists and specifies the same thematic roles as the prohibition
(possibly including additional thematic roles, e.g., the object).

(a) John is obliged to pay £3. (b) John is prohibited to pay in cash.
Obligatory(eo) A Pay(eo) A - Permitted(enp) A Pay(enp) A
has-agent(eo, John) A has-object(eo, £3) has-agent(enp, John) A has-instrument(enp, cash)
John pays £3 in cash. John pays £3 by card. John pays £3 in cash. John pays £4 in cash.
Rexist(e£3) APay(e£3) A Rexist(ef£3) APay(ef£3)A Rexist(ec) A Pay(ec) A Rexist(ec) A Pay(ec) A
has-agent(e£3, John) A has-agent(e£3, John) A has-agent(ec, John) A has-agent(ec, John) A
has-object(e£3, £3)A has-object(e£3, £3)A has-object(ec, £3) A has-object(ec, £4) A
has-instrument(ef£3, cash) has-instrument(ef3, card) has-instrument(ec, cash) has-instrument(ec, cash)

Figure 4: Compliance of the obligation (73la) and violations of the prohibition b)

To understand and formalize conflicts, we need to consider two eventualities that both
hold for specific deontic modalities, such as an obligation and a prohibition.

When a prohibited eventuality instantiates an obligatory one, meaning it specifies the
same action or state and the same thematic roles with identical values as the latter, no
conflict occurs. In such a context, it is indeed possible to select an eventuality within
the green area but outside the red area. In other words, there is an eventuality that
complies with the obligation without violating the prohibition. For example, in Figure
[Fla, John paying £3 by card complies with his obligation to pay £3 and does not violate
his prohibition against paying £3 in cash.

On the other hand, when an obligatory eventuality instantiates a prohibited one, the
red area includes the green area, making it impossible to find an eventuality that complies
with the obligation without also violating the prohibition. This situation constitutes a
conflict: any eventuality that complies with the obligation also violates the prohibition.
An example appears in Figure [5}b, where the only way for John to comply with his
obligation to pay £3 in cash is to violate his prohibition against using cash for payments.
The same logic applies to permissions, although permissions are not “complied with” or
“violated” but rather “applied” or “denied”. Apart from this difference in terminology,
permissions behave like obligations in relation to conflicts. For instance, as shown in
Figure [5lc, if John performs a more specific action allowed by his permission to pay £3
in cash, he again violates his prohibition against paying in cash.

Since, according to the Deontic Traditional Scheme, obligations entail permissions (in
symbols: 0B(p)—PE(p)), both configurations in Figure [5}b and Figure [5|c, which corre-
spond respectively to Kelsen’s bilateral and unilateral conflicts (see above), can be
addressed using a single SPARQL* rule, shown in . This rule searches the knowledge
graph for the pattern PE(p) A—PE(q), where p denotes an eventuality that instantiates
the one denoted by q. If this pattern is found, the rule asserts that the two statements

45

(a) John is obliged to pay £3. (b) John is prohibited to pay in cash (C) John is prohibited to pay in cash

John is prohibited John is obliged John is permitted
to pay £3 in cash. to pay £3 in cash to pay £3 in cash

Figure 5: General schema of conflicts between deontic statements.

are in conflict. This is done by connecting the reifications of the two statements through
the RDF property is-in-conflict-with.
(83) [a :InferenceRule; :has-sparql-code """
CONSTRUCT{<< <<7ep a :Permitted>> a :true>> :is-in-conflict-with
<<<<7enp a :Permitted>> a :false>>}
WHERE{7ep a :Permitted; :instantiates+ ?7enp.
<<7enp a :Permitted>> a :false}"""]

6.2.1 Examples

This subsubsection presents examples of inferred conflicts using the SPARQL* rule in
(83). As a first example, consider sentences (84}a) and (84]c), which are formalized in
RDF as shown in (84]b) and (84]d), respectively.

84
(84) a. It is optional for John to leave the building.

b. soa:elj a soa:Leave,:0Optional; soa:has-agent soa:John;
soa:has-from-location soa:B; :not soa:enlj.

c. John is not permitted to leave the building.

d. <<soa:elpj a :Permitted>> a :false. soa:elpj a soa:Leave;
soa:has-agent soa:John; soa:has-from-location soa:B.

The SPARQL* rules corresponding to the axioms of the Deontic Traditional Scheme,
shown above in , infer from (84}a) that John is not obliged to leave the building and
that he is not obliged to not leave the building, i.e., a). From this, they further infer
that John is permitted to leave the building and that he is permitted to not leave the
building, i.e., b). Finally, from b) and b), the SPARQL* rule in infers
that the fact that John is not permitted to leave the building is in conflict with the fact
that he is permitted to leave the building, encoded as in (85}c).

46

a. <<soa:elj a :0bligatory>> a :false.
<<soa:enlj a :0bligatory>> a :false.

b. soa:elj a :Permitted. soa:enlj a :Permitted.

c. <<<<soa:elj a :Permitted>> a :true>> :is-in-conflict-with
<<<<soa:elpj a :Permitted>> a :false>>.

Let us now present an example of partial conflict, which corresponds to the third category
of conflicts defined by Kelsen. Consider the two conflicting obligations in (86la—b), which
represent a “deontic variant” of the two contradictory sentences shown in (66la—b) above:

(86) a. John is obliged to pay in cash.

b. John is obliged to pay by card.

(86la—b) are represented in RDF as follows. The only difference between (87}a) and (87b)
lies in the instrument used for the action of paying: cash in one case, card in the other.

(87)

a. soa:eopjcash a :0bligatory, soa:Pay; soa:has-agent soa:John;
soa:has-instrument soa:cash.

b. soa:eopjcard a :0bligatory, soa:Pay; soa:has-agent soa:John;
soa:has-instrument soa:card.

As in the examples in arb)7 the second pragmatic implicature shown above in
infers the existence of an (anonymous) abstract eventuality that both soa:eopjcash and
soa:eopjcard instantiate. In other words, soa:eopjcash and soa:eopjcard are inferred
to be two different “variants” of the same abstract act of paying that John is obliged to
perform. This is represented in RDF' as follows:

(88) _:b0 a :AbstractEventuality.

soa:eopjcash :instantiates _:b0O. soa:eopjcard :instantiates _:b0.

As in the examples in afb), from and , the two SPARQL* rules in (66le)
and f), which state that cash and card are mutually exclusive instruments for paying,
together with the rule in 7 which specifies that eventualities instantiating the same
abstract eventuality and differing on mutually exclusive values for the same thematic role
are connected by the not property, infer the following triple:

(89) soa:eopjcash :not soa:eopjcard
From this, the SPARQL™* rules implementing the Deontic Traditional Scheme infer that

soa:eopjcash and soa:eopjcard are both permitted and not permitted. From this, the
rule in in turn infers the following two symmetric conflicts:

47

a. <<<<soa:eopjcash a :Permitted>> a :true>> :is-in-conflict-with
<<<<soa:eopjcash a :Permitted>> a :false>>.
b. <<<<soa:eopjcard a :Permitted>> a :true>> :is-in-conflict-with

<<<<soa:eopjcard a :Permitted>> a :false>>.

6.3 Comparing the proposed solution with the conflict-tolerant
deontic logics reviewed in (Goble, 2013)

In Subsection [4.1} we reviewed the principal approaches proposed in the literature to
address irresolvable normative conflicts. These approaches are systematically categorized
by Goble in his seminal review into three main strategies: (1) Revisionist
strategies, (2) Paraconsistent deontic logics, and (3) Other radical strategies. (Goble,
2013) remains one of the most comprehensive and influential surveys in the field for
researchers studying deontic conflicts.

In addition to categorizing conflict-tolerant strategies, Goble systematically evaluates
individual approaches within each of the three categories by examining how well they
satisfy three central desiderata. These desiderata, articulated in , reflect
key logical and conceptual requirements for any deontic system intended to handle irre-
solvable normative conflicts. Desideratum #1 demands that the logic treat conflicting
deontic statements as consistent, recognizing that agents may face genuine normative
dilemmas without producing illogical conclusions. Desideratum #2 seeks to avoid de-
ontic explosion, ensuring that the presence of conflict does not trivialize the system by
implying that everything is obligatory. Desideratum #a3 requires that the logic preserve
intuitive deontic reasoning, offering plausible accounts of commonly accepted normative
inferences. Goble’s comparison highlights the trade-offs faced by different approaches
and underscores the difficulty of satisfying all three desiderata simultaneously.

The present subsection sheds some light on the similarities and differences between
the approach proposed in this paper and the three main strategies categorized by Goble,
in light of the three desiderata.

Each of these strategies is discussed in detail in the corresponding subsubsections of
Subsection Their rationale could be depicted as in Figure [0}

All three approaches build on Standard Deontic Logic (SDL), which extends classical
modal logic by introducing a deontic operator, 0B, whose inferences are governed by a
specific axiomatization. However, SDL is unable to represent irresolvable conflicts.

To address this limitation, each of the three strategies modifies the underlying in-
frastructure of SDL in a different way. Revisionist strategies, as indicated by the red
arrow, revise the axiomatization of the OB operator itself; in other words, they operate at
the second level by exploring alternative axioms that avoid problematic inferences such
as deontic explosion (Desideratum #2) while still supporting intuitive ones, such as the
Smith argument (Desideratum #3). Paraconsistent deontic logics, by contrast, achieve
this by intervening at the level of classical logic, specifically targeting the principle of
Ex falso quodlibet, which is responsible for the explosive behavior when contradictions
arise. Finally, other radical strategies typically preserve the first two levels but introduce
an additional layer whose constructs govern the reasoning process over the base logic to

48

Additional level to control
the inferences

% OB operatorand OB operatorand OB operatorand

axiomatization axiomatization axiomatization

Classical Modal Logic % Classical Modal Logic Classical Modal Logic
(=, v, O, 0, ete.) (—, v, O, 0, etc) (=, v, O, 0, etc)
Revisionist strategies Paraconsistent logics Other radical strategies

Figure 6: A graphical comparison of conflict-tolerant deontic logics proposed in the lit-
erature

satisfy the three desiderata. This additional layer may enforce a specific rule execution
order (as in Two-phase Deontic Logic), represent commands associated with obligations
(as in imperatival approaches), or encode abnormalities along with strategies for handling
them (as in Adaptive Deontic Logics).

The main technical difference between the three types of conflict-tolerant deontic log-
ics depicted in Figure[f] and the computational ontology proposed in this paper concerns
the structure of the underlying levels. As illustrated in Figure[7]} the proposed ontology
swaps the first two levels. Modalities, such as Rexist and the deontic modalities (e.g.,
Obligatory), are placed at the lowest level. The operators of classical modal logic, in-
cluding Boolean connectives such as — and V, and as will be shown in the next section,
the modal operators [J and ¢, are then implemented above this. The third level rep-
resents abnormalities, including contradictions and conflicts, which are encoded by the
RDF properties is-in-contradiction-with and is-in-conflict-with respectively.

Another important technical difference is that, due to the use of semantical embedding,
all three levels are implemented using the same formal languages: RDF* and SPARQL*.
These are Semantic Web standards, which makes the ontology suitable for practical
implementation and wide-scale industrial deployment, as discussed in the Introduction.
In contrast, to the best of our knowledge the approaches reviewed in have
not been implemented and remain at a purely theoretical level.

Representing and reasoning
with abnormalities
(is-in-contradiction-with,
is-in-conflict-with, etc.)

-~
Level of the statements

(—, v, O, 0, etc.)

Level of the eventualities

(Rexist, Obligatory, etc.)

Figure 7: The three levels of the computational ontology proposed in this paper

49

On the other hand, the proposed computational ontology also shares insights with each
of the three strategies of conflict-tolerant deontic logics depicted in Figure[f]and, in some
sense, can be seen as a solution that mediates among all three.

The SPARQL* rules defined for handling the meaning of the deontic modalities closely
parallel the axiomatization of the BDL logic discussed in Subsubsection above. This
logic is one of the only two revisionist approaches reviewed in that success-
fully meet all three desiderata (the other being a slight variant of BDL). The only minor
difference between the SPARQL* rules proposed here and the BDL axiomatization lies
in the BDL’s RBE axiom, which essentially states that if two formulas are equivalent and
one is obligatory, then the other is also obligatory. Our formalization uses the standard
bi-implication (+») to represent logical equivalence, whereas RBE imposes additional con-
straints on bi-implication, thereby restricting the standard notion of logical equivalence
(see (Robaldo and Liga, 2025) for further details).

The additional constraints implemented by RBE are necessary to avoid deontic ex-
plosion in BDL. In contrast, the proposed computational ontology achieves this by fol-
lowing the approach of paraconsistent logics: deontic explosion is prevented by avoiding
SPARQL* rules that would lead to the Ex falso quodlibet. Specifically, this paper chooses
not to implement SPARQL* rules corresponding to the rule of Disjunctive Introduction,
which, together with the rule of Disjunctive Syllogism, lead to Ex falso quodlibet.

Finally, the proposed computational ontology also shares a key feature with Adaptive
Deontic Logics, one of the radical strategies reviewed in . Specifically, Adap-
tive Deontic Logics is the only conflict-tolerant deontic logic that explicitly represents
abnormalities, such as conflicts, whereas all other logics merely treat conflicting obliga-
tions as consistent formulae, indistinguishable from other consistent statements. In our
proposed computational ontology, contradictions and conflicts are inferred as new triples
using the RDF properties is-in-contradiction-with and is-in-conflict-with, en-
abling their detection through a simple SPARQL query over the inferred knowledge graph.
Moreover, as will be clarified in the next section, it is both possible and arguably de-
sirable to introduce a broader range of abnormalities beyond contradictions and con-
flicts, to capture more nuanced meanings. To implement this within the proposed on-
tology, it suffices to add RDF properties isomorphic to is-in-contradiction-with and
is-in-conflict-with, along with corresponding SPARQL* inference rules.

On the other hand, there are also more fundamental, non-technical differences between
the proposed computational ontology and the conflict-tolerant deontic logics reviewed in
, specifically regarding differing intuitions about the notion of irresolvable
conflict. We consider these differences in intuition to be the main contribution of this
work to the ongoing research in deontic logic.

The conflict-tolerant deontic logics reviewed in are based on the intu-
ition and definition given in Desideratum #1: a conflict (of obligations) is described as
a situation in which “an agent ought to do a number of things, each of which is possible
for the agent, but it is impossible for the agent to do them all”.

explicitly formalizes this notion as 0B(A) A 0B(B)A—O(AAB) and em-
ploys this formula in derivations to assess whether the various conflict-tolerant deontic
logics reviewed meet the three desiderata.

In this paper, we argue that Goble’s definition captures an important subclass of
normative conflicts but does not generalize to the broader range of conflicts that arise

50

when permissions, contextual constraints, and violations are taken into account.

In particular, rather than modeling genuine clashes between obligations and/or per-
missions, Goble’s definition addresses the relationship between what an agent must do
and what an agent can do. That is, it focuses on the interaction between deontic prescrip-
tions and the contextual constraints governing the agent’s practical possibilities. From
this perspective, Goble’s definition is more concerned with feasibility than with norma-
tivity in the stricter legal-theoretical sense.

By contrast, the present work adopts an alternative but compatible intuition inspired
by Kelsen’s legal theory, in which obligations and prohibitions are defined independently
of what is factually possible. In this view, the central notion is not feasibility but violation:
a conflict arises when fulfilling one obligation, or acting in accordance with what is
permitted, necessarily leads to the violation of another.

This alternative perspective does not contradict Goble’s account but rather extends
it by addressing a broader class of normative phenomena. Whereas Goble highlights
conflicts rooted in practical limitations, our framework allows for modeling conflicts that
arise from the internal structure of normative systems, even in idealized settings where
all actions are feasible. Both perspectives can be naturally accommodated within the
proposed ontology, provided that contextual constraints are explicitly represented.

To account for situations involving contextual constraints on action, our framework
must be extended to represent what is possible or necessary for an agent within a given
state of affairs. The next section presents how these modal concepts are modeled in the
proposed computational ontology, thereby extending its expressive power to encompass
both the normative and the practical dimensions of agency.

7 Deontic modalities and contextual constraints

As mentioned earlier, adopts the following formal definition of conflicts
among obligations to determine whether the conflict-tolerant deontic logics proposed in
the literature satisfy the three desiderata: 0B(A) A 0B(B) A—O(AAB).

As explained above, we chose not to use this formal definition, as we believe it concerns
the interaction between obligation and possibility, rather than the interaction between
two obligations. In fact, this definition also appears to hold in cases involving a single
obligation, such as 0B(C)A—{(C). Consider again the sentences previously shown in b)
and , which are repeated in (91}a-b) for the reader’s convenience.

(91) a. The parking meter in Sketty only accepts cash.
b. It is prohibited to pay in cash.

a) denotes a constraint holding in the state of affairs: in Sketty, it is not possible
to avoid paying in cash, i.e., it is mecessary to pay in cash. In standard propositional
modal logic, this could be represented as ~0(—C). (91]b) states that paying in cash is
prohibited, i.e., it is obligatory not to pay in cash. In standard propositional deontic logic,
this could be represented as 0B(—C). Therefore, whenever 0B(AAB) <> 0B(A) AOB(B) holds,
as in BDL and in the proposed computational ontology, the definition used in
corresponds to a specific case of what is exemplified in : when AAB <+ —C.

o1

Note that the prohibition in b) will be wiolated. However, this violation does
not occur because its bearers comply with another obligation or prohibition, but rather
because of the constraint present in the state of affairs, i.e., due to what the prohibition’s
bearers can do in the given context, as discussed above.

This constitutes an abnormality different from those modeled in the previous section
and should therefore correspond, in the proposed computational ontology, to a different
RDF property: the bearers of b) will necessarily violate the prohibition.

Building on the foregoing, this section extends the proposed computational ontology
to capture the interplay between deontic statements and contextual constraints.

Two new classes are introduced in the ontology’s vocabulary: necessary and possible,
which serve as alternatives to true and false:

(92) :necessary a rdfs:Class; rdfs:subClassOf rdf:Statement.

:possible a rdfs:Class; rdfs:subClass0f rdf:Statement.

In parallel, we observe that contextual constraints seem to apply only to the thematic
roles of an eventuality. In other words, they restrict how certain actions or states may
occur. For example, a) constrains the instrument used in parking payments made
in Sketty: only cash is permitted. Therefore, by using these classes, the fact that it is
necessary for the instrument of the paying action ep to be cash is encoded as in (93}a)
while the fact that this is possible is encoded as in b):

93)
(93) a. <<soa:ep soa:has-instrument soa:cash>> a :necessary.

b. <<soa:ep soa:has-instrument soa:cash>> a :possible.

In Hobbs’s framework, a) may be represented as [Jsoa:has-instrument(ep, cash),
while b) as { soa:has-instrument(ep, cash). Since RDF does not provide operators
corresponding to [J and ¢, the classes in have been introduced in a manner analogous
to the handling of standard negation —.

As is well known, the equivalence (JA<++—{—A holds. This means that if something is
necessary, then its negation is not possible, and vice versa. However, the SPARQL* rules
implementing this equivalence are not included in this paper, as they are not needed
for the examples presented below. As with the distributive laws for conjunction and
disjunction or De Morgan’s laws, their implementation is left to the reader as an exercise.

One well-known property of [must instead be incorporated into the proposed com-
putational ontology to support the correct derivations in the examples that follow: the
axiom [JA—A, which, in standard Kripke semantics, corresponds to reflexivity of the
accessibility relation. The SPARQL* rule expressing this axiom is shown in and
asserts as true every statement that is necessary.

(94) [a :InferenceRule; :has-spargl-code """
CONSTRUCT{?s 7p 70}WHERE{<<?s ?p 70>> a :necessary}"""]

a) can now be represented using the SPARQL* rule in 7 which states that every
payment made at the parking meter associated with the parking spot in Sketty was
necessarily carried out using cash.

92

(95) [a :InferenceRule; :has-sparql-code """
CONSTRUCT{<<7ep soa:has-instrument soa:cash>> a :necessary}
WHERE{?ep a soa:Pay; soa:has-recipient 7pm.
7pm soa:associated-with soa:psSketty}"""]

Now, by encoding that John pays at the parking meter linked to the parking spot in
Sketty, that is, by asserting the RDF triples in :

(96) soa:epsj a soa:Pay,:Rexist; soa:has-agent soa:John;
soa:has-recipient soa:pmSketty. soa:psSketty a soa:parkingSpot.
soa:pmSketty soa:associated-with soa:psSketty.

From , it is inferred that it is necessary for the instrument of soa:epsj to be cash.
Then, based on (94), it follows that the instrument of soa:epsj is in fact cash. This is
represented by the following triples:

(97) <<soa:epsj soa:has-instrument soa:cash>> a :necessary.

soa:eps]j soa:has-instrument soa:cash.

Let us now complete the example in by adding the representation of the prohibition
stated in b). This corresponds to the following SPARQL* rule:

(98) [a :InferenceRule; :has-spargl-code """
CONSTRUCT{<<7eppca a :Permitted>> a :false.
7eppca a soa:Pay; soa:has-agent 7a; soa:has-instrument soa:cash}
WHERE{7e soa:has-agent 7a. BIND(BNode() AS 7eppca)
NOT EXISTS{<<7eppcar a :Permitted>> a :false. 7eppcar a soa:Pay;
soa:has-agent ?a; soa:has-instrument soa:cash}}"""]

After adding this prohibition, it is easy to see that a violation is inferred: from the RDF
triples in , the SPARQL* rule in generates and infers a new prohibition, namely
that John is prohibited from paying in cash (in general, not only in Sketty):

(99) <<_:b0O a :Permitted >> a :false.

_:b0 a soa:Pay; soa:has-agent soa:John; soa:has-instrument soa:cash.

However, since John does pay in cash, as specified in and @, the second rule shown
above in infers the following violation: the fact that John is prohibited to pay in
cash is violated by the fact that he pays in cash at the parking meter in Sketty.

(100) << << b0 a :Permitted>> a :false>> :is-violated-by
<<<<epsj a :Rexist>> a :true>>

It is easy to see that, in , if the modality of epsj is changed from Rexist to

Obligatory, a conflict is inferred rather than a violation: John would be obligated to
pay in cash while simultaneously being prohibited from doing so.

93

Nevertheless, regardless of the modality of epsj, it is clear that the prohibition against
paying in cash is incompatible with the necessity of doing so in Sketty. This incompatibil-
ity represents an additional form of “abnormality” that LegalTech applications should be
able to automatically identify and report, alongside violations and conflicts. Note that,
in the example under examination, this would also allow John to appeal the potential
sanction for his violation by arguing that he had no choice but to violate the norm.

In order to do so, as already indicated at the beginning of this section, a new RDF
property is-necessarily-violated-by is added to the vocabulary of the proposed com-
putational ontology, along with the SPARQL* rule in . This rule states that if it is
necessary for the thematic role of a given eventuality to have a specific value, but there is
another more abstract eventuality that features that value in the same thematic role and
is prohibited, then the fact that the latter is prohibited is-necessarily-violated-by
the fact that it is necessary for that thematic role to have that value.

(101) [a :InferenceRule; :has-spargl-code """
CONSTRUCT{<< <<?ep a :Permitted>> a :false>>
:is-necessarily-violated-by
<<<<?en 7tr ?v>> a :necessary>>}
WHERE{?tr a :ThematicRole. 7ep 7tr 7v. <<7ep a :Permitted>> a :false.
7en :instantiates 7ep. <<7en 7tr ?v>> a :necessary}"""]

The SPARQL* rule in (101]) adds the following RDF triples to (100]): the fact that John is
prohibited to pay in cash is-necessarily-violated-by by the fact that it is necessary
for the instrument of soa:epsj to be cash.

(102) << << b0 a :Permitted>> a :false>> :is-necessarily-violated-by
<<soa:epsj soa:has-instrument soa:cash>> a :necessary

A symmetric SPARQL rule may be added to infer that, whenever it is not possible for a
certain thematic role to take on a certain value, although this value is obligatory for a given
eventuality, then the fact that the latter is obligatory is-necessarily-violated-by the
fact that it is not possible for that thematic role to assume the specified value. Similarly,
we may introduce a new RDF property is-nullified-by along with a SPARQL rule
stating that, whenever it is not possible for a certain thematic role to take a given value,
yet this value is permitted for a certain eventuality, then the permission is-nullified-by
the fact that it is actually impossible to do what is permitted.

Developing an exhaustive list of properties that explicitly represent abnormalities
between deontic statements and contextual constraints goes far beyond the scope of this
paper. Therefore, the computational ontology available on GitHub does not include these
additional properties or the corresponding SPARQL* rules.

8 Future works: resolvable conflicts and
temporal management

To the best of our knowledge, this paper represents the first substantial attempt to unify
contributions from three research strands, previously investigated largely in isolation,

o4

within a single framework: (1) RDF-based LegalTech solutions, (2) Natural Language
Semantics via reification, and (3) conflict-tolerant approaches in deontic logic.

In addition, this paper addresses the incorporation of irresolvable conflicts into deontic
logic. This is a topic of paramount importance in Al, as shown by extensive research in
defeasible logic and argumentation theory over the past decades. However, it has received
little attention within deontic logic itself. A notable exception is , to which
this paper offers an alternative approach grounded in the legal theory of Hans Kelsen,
one of the most influential jurists and legal philosophers of the 20th century.

Precisely because of the innovative and exploratory nature of the research presented
here, much future work remains to be done.

Providing an exhaustive list of possible directions for future research would be overly
extensive and not particularly useful. Therefore, this section only briefly discusses the two
main aspects needed to make the proposed computational ontology suitable for deploy-
ment in real-world applications, which we identify as our next contributions to this topic:
extending the ontology to address (1) resolvable conflicts and (2) temporal management.

8.1 Resolvable conflict

Identifying and notifying irresolvable conflicts and other abnormalities in legislation is of
paramount importance. For this reason, the proposed solution provides a way to explicitly
represent such conflicts, rather than merely associating conflicting deontic statements
with consistent formulae that are indistinguishable from other consistent formulae.

However, once these conflicts are detected, it becomes the role of the legislator to
resolve them. Since it is clearly impractical to rewrite the normative system from scratch
each time a conflict is identified, the standard solution is to indicate within the normative
code which of the two conflicting norms is stronger than the other one in the specific
context where the conflict occurs, perhaps under specific interpretations of the legal
concept occurring therein (cf. (Bartolini et al., 2016)).

Not surprisingly, norms from existing legislation often include numerous exceptions,
sometimes even exceptions of exceptions, and so on. A common way to resolve conflicts
when laws are amended is to add an ezception to one of the conflicting norms, specifically
to the one considered “weaker”. In the particular context identified, the “weaker” norm
does not apply because the “stronger” conflicting norm takes precedence.

In light of this, LegalTech applications require a formal mechanism to represent and
process this conflict resolution strategy. (Robaldo et al., 2023) offers a recent comprehen-
sive overview of the main computational approaches for implementing defeasibility and
managing exceptions in normative reasoning. We plan to develop and integrate such a
mechanism into the proposed computational ontology as well.

In (Robaldo et al., 2023)) it is explained that two main alternative constructs have been
used in formalizations of defeasible rules: negation-as-failure and superiority relations.
The former is commonly used in reasoners based SHACL-SPARQL (Robaldo et al., 2023)
and Answer Set Programming (ASP) (Calimeri et al., 2020]), while the latter is found in
systems such as DLV (Leone et al., 2006), PROLEG (Satoh et al., 2011)), Arg2P (Billi et|
lal., 2021)), and SPINdle (Lam and Governatori, 2009).

According to (Satoh et al., 2011)), superiority relations are generally more intuitive
and easier to manipulate than negation-as-failure, particularly for legal practitioners.

99

The original version of PROLEG employed negation-as-failure, but based on experiments
involving lawyers and law students, its developers later replaced it with an exception
predicate that serves a similar role to superiority relations.

It is argued in (Robaldo et al., 2023) that the formalization of use cases in vari-
ous formats supports Satoh et al.’s claims. It is simpler to explicitly state which rules
override others through superiority relations than to encode overrides implicitly via spe-
cial predicates relying on negation-as-failure. For example, managing defeasibility via
negation-as-failure required multiple additional special predicates and classes in the on-
tology, complicating editing and revision. More complex cases would demand even more
such predicates, which would be challenging for legal experts to track.

In contrast, a single meta-predicate such as PROLEG’s exception can represent
superiority relations. This operator allows for an intuitive definition of a directed acyclic
graph indicating which rules override which. This simplicity makes superiority relations
more accessible to lawyers and easier to maintain.

However, a key technical challenge remains. PROLEG is goal-oriented and evaluates
rules top-down, allowing it to directly handle exceptions by attempting to satisfy excep-
tion goals before considering others. In contrast, SPARQL* rules and other reasoners
based on ASP, though significantly more efficient than PROLEG, operate as forward-
chaining production systems that generate inferences in a bottom-up manner.

Emulating PROLEG’s goal-oriented exception handling within these frameworks is
not straightforward. Therefore, our future research will focus on implementing superi-
ority relations in a way that is compatible with forward-chaining reasoning. The work
on SPINdle, which uses superiority relations and also operates as a forward-chaining
reasoner, offers valuable inspiration in this regard. A notable limitation of SPINdle
compared to SPARQL* and ASP is its inability to process RDF data directly, and its
generally lower efficiency. However, this performance limitation has been mitigated in
(Governatori, 2024)), which presents an ASP-based implementation of SPINdle.

In summary, while negation-as-failure has proven to be a practical solution in existing
systems, superiority relations provide a more intuitive and lawyer-friendly alternative.
Our computational ontology aims to build on this insight while preserving efficiency. To
this end, we plan to investigate future approaches for reconciling superiority relations
with the proposed forward-chaining rules in SPARQL*.

8.2 Temporal management

All (but one) examples considered above in the paper are assumed to take place “here”
and “now”. In other words, the present paper does not consider the temporal dimension.
Under the assumption that all eventualities occur “here” and “now”, and that the same
agent cannot perform the same action twice, it was possible to include the pragmatic
implicature implemented in SPARQL* as shown in above: if two eventualities eil
and ei2 share the same type, modality, and agent, then the state of affairs includes an
additional abstract eventuality instantiated by both. However, it is clear that the rule
in cannot be used as it is in contexts where eventualities are linked to specific time
instants or intervals, for example through a thematic role has-time. In such cases, a
more refined version of the rule is required.

96

The temporal dimension, together with the definition of constraints and inference
rules for the has-time thematic role, will be addressed in our future work, along with
the handling of resolvable conflicts discussed in the previous subsection.

It is well known that temporal information is essential for automated compliance
checking and legal reasoning in general. This is not only because it helps identify the
contextually relevant sets of bearers to which deontic statements apply, but also because
every deontic statement is, either explicitly or implicitly, associated with a temporal
validity and with temporal constraints within which obligations must be fulfilled.

This is especially true for deontic statements derived from existing legislation, which
is the main focus of our research. Every legislative act is associated with a date on which
it enters into force. The norms contained in the act may later be amended, with each
amendment also carrying a date of effect. Nevertheless, the previous version of a norm
continues to apply to facts that occurred in the time interval between the two dates.

In light of this, it is evident that the proposed computational ontology cannot yet
be used in LegalTech applications for checking compliance with existing legislation until
temporal management mechanisms are incorporated. While all examples discussed above
involve eventualities taking place at the instant “now”, additional SPARQL rules must
be introduced to process deontic statements that refer to specific temporal intervals. For
instance, consider the following sentences:

103
(103) a. It is prohibited to enter the park from 3pm until 5pm.

b. John was in the park from 4pm until 6pm.

From a—b)7 it can be inferred that John violated the obligation in (103la) only during
the interval from 4pm to 5pm. To enable this inference within the proposed computational
ontology, it is necessary to introduce rules that identify the overlap between the two time
intervals in (103la-b) and construct a new interval representing their intersection. One
possible solution is to add SPARQL rules that encode the well-known Allen’s relations
, and use the CONSTRUCT clause to generate the relevant new intervals in
which the deontic statements are violated, complied with, or in conflict with one another.

Similar considerations apply to the intervals between the instant an obligation enters
into force and the time at which the actual eventualities complying with that obligation
take place. For example, if John receives a fine for not paying for parking, he will have a
specific amount of time, say one month, to pay the fine. Otherwise, he will receive another
fine. In the literature, the payment of a fine is usually represented as a further obligation
(see (Governatori and Rotolo, 2019))): if John violates his obligation to pay for parking, he
is then obliged to pay a fine within a certain period. The obligation to pay the fine replaces
the obligation to pay for parking. If John pays the fine within the specified interval, the
obligation is considered compensated by the payment. Otherwise, a new obligation to pay
an increased fine replaces the previous one. Based on these considerations,
presents an approach in which obligations are subcategorized according to the
time at which the corresponding eventualities occur, and how the interval during which
obligations are in force evolves after they are fulfilled.

In our future work, we plan to incorporate this subcategorization into the proposed

o7

computational ontology, using the Time OntologyF_Zl to represent time. The Time On-
tology provides RDF resources for representing instants, intervals, and Allen’s relations
between intervals. We will introduce specific thematic roles to associate eventualities
with instants or intervals, along with SPARQL* rules to perform the necessary infer-
ences over temporal data. Since the Time Ontology is based on OWL, which does not
support temporal reasoning constructs, it does not natively enable such inferences. This
limitation makes it necessary to implement additional SPARQL* rules.

9 Conclusions

This paper presented a novel computational ontology for conflict-tolerant deontic rea-
soning, entirely implemented in RDF* and SPARQL*. To the best of our knowledge,
this is the first substantial attempt to devise a deontic logic fully compatible with the
Semantic Web, by integrating contributions from three research strands that have so far
been investigated largely in isolation: (1) RDF-based LegalTech solutions, (2) Natural
Language Semantics via reification, and (3) conflict-tolerant approaches in deontic logic.

A central contribution of this work is the explicit incorporation of irresolvable conflicts
into a deontic logic framework. Although the importance of conflicts has been widely
recognized in Al subfields such as defeasible reasoning and argumentation theory, they
have rarely been addressed within deontic logic itself. A notable exception is
, which this paper critically engages. In contrast to Goble’s definition, which centers
on an agent’s inability to fulfill multiple obligations simultaneously, our approach follows
Hans Kelsen’s legal theory and is grounded in the concept of wviolation. A conflict, in
this view, arises when complying with one norm or acting in accordance with what is
permitted necessarily results in the violation of another norm, regardless of the agent’s
practical capabilities. This reconceptualization supports a more principled and legally
grounded form of deontic reasoning.

In addition, what fundamentally distinguishes the proposed approach from the other
conflict-tolerant deontic logics proposed in the literature is its capacity to explicitly rep-
resent abnormalities, such as contradictions, conflicts, and violations. This is a key de-
parture from traditional logical systems, where such inconsistencies are treated as fatal
errors. Standard reasoners typically halt execution upon encountering a contradiction.
In contrast, our ontology supports reasoning with such abnormalities. This enables ad-
vanced reasoning tasks, such as identifying database inconsistencies, analyzing conflicting
legal norms, or evaluating alternative law revisions.

Similar considerations were raised in a recent interview with Leon van der Torre and
Dov Gabbay published in (Steen and Benzmuller, 2024)), where the explicit representation
of fallacies, violations, mistakes, and other abnormalities, enabling reasoning about them,
was identified as a crucial gap in contemporary logical frameworks for Al.

Therefore, in the LegalTech application envisioned above, explicitly representing con-
flicts would not only allow the system to notify legislators about them, but also to reason
about potential solutions, weigh the pros and cons of each, and thereby assist legislators
in making better-informed decisions on how to revise the law.

24https://www.w3.org/TR/owl-time

98

https://www.w3.org/TR/owl-time

This capability is made possible through the technique of semantical embedding,
whereby elements typically confined to the proof theory, such as contradictions, are
incorporated directly into the syntax of the logic. For example, the RDF property
is-in-contradiction-with corresponds to the standard logical symbol L, which de-
notes a contradiction. Unlike |, which exists only in the meta-language used to formalize
the logic’s proof theory, is-in-contradiction-with is part of the object-level vocabu-
lary, enabling contradictions to be represented, queried, and reasoned about directly with
SPARQL*. This embedding of the proof theory into the logic aligns with methodologies
developed in modern higher-order logic frameworks like LogiKEy (Benzmiiller, Parent,|
land van der Torre, 2020), (Pasetto and Benzmiiller, 2024)), although, to the best of our
knowledge, this is the first time such an approach has been implemented natively in RDF.
This ensures full compatibility with W3C standards, making the framework suitable for
integration within the broader Semantic Web ecosystem.

Another important contribution is the formalization of all deontic modalities outlined
in the Deontic Traditional Scheme: obligations, permissions, optionality, and their nega-
tions, as well as various forms of violations and conflicts. Previous RDF-based approaches
in this direction have typically been limited in scope and reliant on non-standard lan-
guages such as SWRL or constrained by the limited expressivity of OWL. By contrast,
the proposed ontology employs SPARQL rules capable of expressing nuanced deontic
interactions, including those dependent on contextual constraints and thematic roles.

Another novelty of our approach is the prominent inferential role assigned to the
permission deontic modality. Unlike most traditional deontic logic frameworks, including
Standard Deontic Logic (von Wright, 1951)), which treat obligation as the foundational
deontic modality, we consider permission to be the most informative deontic modality
for detecting conflicts. As demonstrated by the SPARQL* rule shown above in ,
a conflict is inferred when two eventualities exist such that one is permitted, the other
is not, and the permitted one is more specific than (instantiates) the other one. While
an obligation entails permission, a permission does not entail an obligation but rather
a not-obligation, which prevents direct conflict detection. Thus, basing the inferential
framework on permissions rather than obligations allows for a more general and effective
treatment of conflicts among deontic statements.

These reflections culminate in a novel framework that significantly generalizes the
one proposed in , which, as discussed above, is widely regarded as the state
of the art for representing normative conflicts in deontic logic. Unlike ,
which focuses solely on obligations and operates at the level of propositional formulas,
our framework incorporates a broader range of deontic modalities and contextual con-
straints. Most importantly, as explained in Section [7] the definition of normative conflict
adopted in (Goble, 2013), formalized as 0B(A) A 0B(B) A—{(A A B), is understood within
our framework as a special case of the interaction between obligations and contextual con-
straints. In our model, this corresponds to the formula 0B(C)A—={(C), of which Goble’s
definition constitutes a special case: where C is logically equivalent to A A B.

While the work presented here is foundational, it has broad and significant implica-
tions. The formalization of norms is not merely a theoretical exercise; it is essential for
building reliable Al systems in areas such as eHealth compliance, financial regulation, and
other data-intensive domains where normative constraints are deeply embedded. Legal
norms serve not only as restrictions on data but also as instruments for structuring and

99

enriching it. Matching and annotating Big Data with legislative information can generate
even larger and more valuable datasets. In this sense, research in LegalTech and compli-
ance checking is key to advancing a wide range of disciplines and industrial applications,
especially since effective legal systems are a critical factor in economic development.
Given the widespread adoption of Semantic Web technologies across both the public
and private sectors, we consider the development of deontic logics fully compatible with
RDF to be essential. In our view, this is the only way to ensure the interoperability,
scalability, and practical integration of normative reasoning into real-world applications.

References

[Allen1984] Allen, J.F. 1984. Towards a general theory of action and time. Artificial
Intelligence, 23(2).

[Anim, Robaldo, and Wyner2024] Anim, J., L. Robaldo, and A. Wyner. 2024. A SHACL-
Based Approach for Enhancing Automated Compliance Checking with RDF Data.
Information, 15.

[Bartolini et al.2016] Bartolini, Cesare, Andra Giurgiu, Gabriele Lenzini, and Livio
Robaldo. 2016. Towards legal compliance by correlating standards and laws with
a semi-automated methodology. In BNCAI, volume 765 of Communications in Com-
puter and Information Science, pages 47—62. Springer.

[Bellomarini et al.2022] Bellomarini, L., D. Benedetto, G. Gottlob, and E. Sallinger.
2022. Vadalog: A modern architecture for automated reasoning with large knowl-
edge graphs. Information Systems, 105.

[Benzmiiller, Parent, and van der Torre2020] Benzmiiller, C., X. Parent, and L. van der
Torre. 2020. Designing normative theories for ethical and legal reasoning: Logikey
framework, methodology, and tool support. Artificial Intelligence, 287.

[Billi et al.2021] Billi, Marco, Roberta Calegari, Giuseppe Contissa, Francesca Lagioia,
Giuseppe Pisano, Galileo Sartor, and Giovanni Sartor. 2021. Argumentation and
defeasible reasoning in the law. J, special issue “The Impact of Artificial Intelligence
on Law”, 4(4).

[Calimeri et al.2020] Calimeri, F., C. Dodaro, D. Fusca, S. Perri, and J. Zangari. 2020.
Efficiently coupling the I-DLV grounder with ASP solvers. Theory and Practice of
Logic Programming, 20(2).

[Ceci2013] Ceci, M. 2013. Representing judicial argumentation in the semantic web. In
P. Casanovas, P. Pagallo, M. Palmirani, and G. Sartor, editors, Al Approaches to
the Complexity of Legal Systems, volume 8929 of Lecture Notes in Computer Science.
Springer.

[Davidson1967] Davidson, D. 1967. The logical form of action sentences. In Nicholas
Rescher, editor, The Logic of Decision and Action. University of Pittsburgh Press.

60

[De Vos et al.2019] De Vos, Marina, Sabrina Kirrane, Julian A. Padget, and Ken Satoh.
2019. ODRL policy modelling and compliance checking. In Paul Fodor, Marco Mon-
tali, Diego Calvanese, and Dumitru Roman, editors, Rules and Reasoning - Third
International Joint Conference, RuleML+RR.

[Faroldi and van De Putte2023] Faroldi, F. and F. van De Putte, editors. 2023. Kit Fine
on Truthmakers, Relevance, and Non-Classical Logic. Springer Verlag.

[Francesconi and Governatori2023] Francesconi, E. and G. Governatori. 2023. Patterns
for legal compliance checking in a decidable framework of linked open data. Artificial
Intelligence and Law, 53(3).

[Frijters, Meheus, and van De Putte2021] Frijters, S., J. Meheus, and F. van De Putte.
2021. Reasoning with rules and rights : term-modal deontic logic. In Rahman, S. and
Armgardt, M. and Kvernenes, H., editor, New developments in legal reasoning and
logic : from ancient law to modern legal systems, volume 23 of Logic, Argumentation
& Reasoning. Springer.

[Gabbay et al.2013] Gabbay, D., J. Horty, X. Parent, R. van der Meyden, and L. (eds.)
van der Torre. 2013. Handbook of Deontic Logic and Normative Systems. College
Publications.

[Gandon, Governatori, and Villata2017] Gandon, F., G. Governatori, and S. Villata.
2017. Normative requirements as linked data. In A. Wyner and G. Casini, editors,
Legal Knowledge and Information Systems., volume 302. IOS Press.

[Gentzen1964] Gentzen, G. 1964. Investigations into logical deduction. American Philo-
sophical Quarterly, 1(4).

[Glimm et al.2014] Glimm, B., I. Horrocks, B. Motik, G. Stoilos, and Z. Wang. 2014.
HermiT: An OWL 2 Reasoner. Journal of Automated Reasoning, 53(3).

[Goble2013] Goble, L. 2013. Prima facie norms, normative conflicts, and dilemmas. In
D. Gabbay, J. Horty, X. Parent, R. van der Meyden, and L. van der Torre, editors,
Handbook of Deontic Logic and Normative Systems. College Publications.

[Goble2014] Goble, L. 2014. Deontic logic (adapted) for normative conflicts. Logic Jour-
nal of the IGPL, 22(2).

[Gordon and Hobbs2017] Gordon, A.S. and J.R. Hobbs. 2017. A formal theory of com-
monsense psychology - how people think people think. Cambridge University Press.

[Gordon2008] Gordon, T. 2008. Constructing legal arguments with rules in the legal
knowledge interchange format (LKIF). In Pompeu Casanovas, Giovanni Sartor, Nuria
Casellas, and Rossella Rubino, editors, Computable Models of the Law. Springer.

[Governatori2015] Governatori, G. 2015. The regorous approach to process compliance.
In J. Kolb, B. Weber, S. Hallé, W. Mayer, A. K. Ghose, and G. Grossmann, editors,
19th IEEE International Enterprise Distributed Object Computing Workshop, EDOC
Workshops. IEEE Computer Society.

61

[Governatori2024] Governatori, G. 2024. An ASP implementation of defeasible deontic
logic. Kiinstliche Intelligence, 38(1-2).

[Governatori and Rotolo2019] Governatori, Guido and Antonino Rotolo. 2019. Time and
compensation mechanisms in checking legal compliance. Journal of Applied Logics -
IfCoLog Journal, 6(5):815-846.

[Hansen2008] Hansen, J. 2008. Prioritized conditional imperatives: problems and a new
proposal. Autonomous Agents and Multi-Agent Systems, 17(1).

[Hobbs2003] Hobbs, J.R. 2003. The logical notation: Ontological promiscuity. In Chap-
ter 2 of Discourse and Inference. Available at http://www.isi.edu/~hobbs/disinf-
tc.html.

[Hoekstra et al.2007] Hoekstra, R., J. Breuker, M. Di Bello, and A. Boer. 2007. The LKIF
core ontology of basic legal concepts. In P. Casanovas, M. Biasiotti, E. Francesconi,
and M. Sagri, editors, Proc. of the Workshop on Legal Ontologies and Artificial In-
telligence Techniques (LOAIT 2007).

[Horty1994] Horty, J. 1994. Moral dilemmas and nonmonotonic logic. Journal of Philo-
sophical Logic, 23.

[Horty2012] Horty, J.F. 2012. Reasons as Defaults. Oxford University Press, USA.

[Jago2020] Jago, Mark. 2020. Truthmaker semantics for relevant logic. Journal of philo-
sophical logic, 49(4):681-702.

[Kelsen1991] Kelsen, H. 1991. Conflicts of Norms. In General Theory of Norms. Oxford
University Press.

[Knuutila1981] Knuutila, S. 1981. The emergence of deontic logic in the fourteenth cen-
tury. In R. Hilpinen, editor, New Studies in Deontic Logic. Dordrecht.

[Lam and Governatori2009] Lam, Ho-Pun and Guido Governatori. 2009. The Making
of SPINdle. In Adrian Paschke, Guido Governatori, and John Hall, editors, Proc.
of International Symposium on Rule Interchange and Applications (RuleML 2009),
Available online at http://spindle.data6l.csiro.au/spindle. Springer-Verlag.

[Leone et al.2006] Leone, Nicola, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg
Gottlob, Simona Perri, and Francesco Scarcello. 2006. The dlv system for knowledge
representation and reasoning. ACM Transactions on Computational Logic, 7(3).

[Makinson and van der Torre2000] Makinson, David and Leendert W. N. van der Torre.
2000. Input/output logics. Journal of Philosophical Logic, 29(4):383-408.

[McNamaral996a] McNamara, P. 1996a. Doing well enough: Toward a logic for common-
sense morality. Studia Logica, 57(1).

[McNamaral996b] McNamara, P. 1996b. Making room for going beyond the call. Mind,
105(419).

62

http://spindle.data61.csiro.au/spindle

[Palmirani and Governatori2018] Palmirani, M. and G. Governatori. 2018. Modelling le-
gal knowledge for GDPR compliance checking. In M. Palmirani, editor, Legal Knowl-
edge and Information Systems - JURIX, volume 313 of Frontiers in Artificial Intelli-
gence and Applications, pages 101-110. IOS Press.

[Parent and van der Torre2014] Parent, X. and L. van der Torre. 2014. “Sing and Dance!”
- Input/Output Logics without Weakening. In Proc. of 12th International Conference
in Deontic Logic and Normative Systems (DEON 201}).

[Parry1989] Parry, W. 1989. Analytic implication; its history, justification and varietiess.
In J. Norman and R. Sylvan, editors, Directions in Relevant Logic. Springer Nether-
lands, Dordrecht.

[Pasetto and Benzmiiller2024] Pasetto, L. and C. Benzmiiller. 2024. Implementing the
fatio protocol for multi-agent argumentation in logikey. In C. Benzmiiller, J. Otten,
and R. Ramanayake, editors, Proc. of the 5th International Workshop on Automated
Reasoning in Quantified Non-Classical Logics (ARQNL 2024), volume 3875 of CEUR
Workshop Proceedings. CEUR-WS.org.

[Perez, Arenas, and Gutierrez2006] Perez, Jorge, Marcelo Arenas, and Claudio Gutierrez.
2006. Semantics and complexity of sparqgl.

[Robaldo2021] Robaldo, L. 2021. Towards compliance checking in reified I/O logic via
SHACL. In Juliano Maranhdao and Adam Zachary Wyner, editors, Proc. of 18th
International Conference for Artificial Intelligence and Law (ICAIL 2021). ACM.

[Robaldo et al.2020] Robaldo, L., C. Bartolini, M. Palmirani, A. Rossi, M. Martoni, and
G. Lenzini. 2020. Formalizing GDPR provisions in reified I/O logic: the DAPRECO
knowledge base. The Journal of Logic, Language, and Information, 29.

[Robaldo et al.2023] Robaldo, L., S. Batsakis, R. Calegari, F. Calimeri, M. Fujita, G. Gov-
ernatori, M. Morelli, F. Pacenza, G. Pisano, K. Satoh, I. Tachmazidis, and J. Zan-
gari. 2023. Compliance checking on first-order knowledge with conflicting and com-
pensatory norms - a comparison among currently available technologies. Artificial
Intelligence and Law (to appear).

[Robaldo and Liga2025] Robaldo, L. and D. Liga. 2025. On the interplay between en-
tailments among obligations and their violations. In Y. Nakano and T. Suzumura,
editors, New Frontiers in Artificial Intelligence. Springer Nature Singapore.

[Robaldo et al.2023] Robaldo, L., F. Pacenza, J. Zangari, R. Calegari, F. Calimeri, and
G. Siragusa. 2023. Efficient compliance checking of rdf data. Journal of Logic and
Computation (to appear).

[Robaldo and Sun2017] Robaldo, L. and X. Sun. 2017. Reified input/output logic: Com-
bining input/output logic and reification to represent norms coming from existing
legislation. The Journal of Logic and Computation, 7.

63

[Robles and Méndez2010] Robles, G. and J. M. Méndez. 2010. A Routley-Meyer type
semantics for relevant logics including Br plus the Disjunctive Syllogism. Journal of
philosophical logic, 39(2).

[Robles and Méndez2011] Robles, G. and J. M. Méndez. 2011. A Routley-Meyer seman-
tics for relevant logics including TWR plus the Disjunctive Syllogism. Logic Journal
of IGPL, 19(1).

[Routley and Meyer1972a] Routley, R. and R. Meyer. 1972a. The semantics of entailment
I1. Journal of Philosophical Logic, 1(1).

[Routley and Meyer1972b] Routley, R. and R. Meyer. 1972b. The semantics of entailment
III. Journal of Philosophical Logic, 1(1).

[Routley and Meyer1973] Routley, R. and R. Meyer. 1973. The semantics of entailment
I. In H. Leblanc, editor, Truth, Syntax, and Semantics. North-Holland.

[Satoh et al.2011] Satoh, Ken, Kento Asai, Takamune Kogawa, Masahiro Kubota,
Megumi Nakamura, Yoshiaki Nishigai, Kei Shirakawa, and Chiaki Takano. 2011.
PROLEG: An Implementation of the Presupposed Ultimate Fact Theory of Japanese
Civil Code by PROLOG Technology. In Takashi Onada, Daisuke Bekki, and Elin Mc-
Cready, editors, New Frontiers in Artificial Intelligence, Berlin, Heidelberg. Springer
Berlin Heidelberg.

[Searle1995] Searle, J. 1995. The construction of social reality. The Free Press, New
York.

[Sergot2013] Sergot, M. 2013. Normative positions. In D. Gabbay, J. Horty, X. Parent,
R. van der Meyden, and L. van der Torre, editors, Handbook of Deontic Logic and
Normative Systems. College Publications.

[Steen and Benzmuller2024] Steen, A. and C. Benzmuller. 2024. What are Non-classical
Logics and Why Do We Need Them? An Extended Interview with Dov Gabbay and
Leon van der Torre. Kiunstliche Intelligenz, To appear.

[Sun and Robaldo2017] Sun, X. and L. Robaldo. 2017. On the complexity of input/output
logic. The Journal of Applied Logic, 25:69-88.

[Sun and van der Torre2014] Sun, X. and L. van der Torre. 2014. Combining Constitu-
tive and Regulative Norms in Input/Output Logic. In Proc. of 12th International
Conference in Deontic Logic and Normative Systems (DEON 2014).

[van De Putte, Beirlaen, and Meheus2019] van De Putte, F., M. Beirlaen, and J. Meheus.
2019. Adaptive deontic logics: a survey. Journal of Applied Logics - IfCoLog Journal,
6(3).

[van der Torre and Tan2000] van der Torre, L. and Y.H. Tan. 2000. Two-phase deontic
logic. Logique et Analyse, 43.

[von Wright1951] von Wright, G. 1951. Deontic logic. Mind, 60.

64

[Vranes2006] Vranes, E. 2006. The Definition of ‘Norm Conflict’ in International Law
and Legal Theory. Furopean Journal of International Law, 17(2).

65

	Introduction
	Irresolvable conflicts: Hans Kelsen's categorization
	Background: encoding natural language statements in Jerry R. Hobbs's framework
	Negation, conjunction, and disjunction of eventualities
	Abstract eventualities and their instantiations

	The Deontic Traditional Scheme and the state-of-the-art conflict-tolerant deontic logics
	Conflict-tolerant deontic logics proposed in the literature
	Revisionist strategies
	Paraconsistent deontic logics
	Other radical strategies

	Extending Hobbs’s framework with deontic modalities

	Implementing Hobbs’s extended framework in RDF* and SPARQL*
	Basic classes, properties, and inference rules
	Axiomatizing , , and in RDF* and SPARQL*, and deriving contradictions: semantical embedding
	Axiomatizing not in RDF* and SPARQL*
	Axiomatizing and and or in RDF* and SPARQL*
	Axiomatizing Abstract Eventualities and Instances in RDF* and SPARQL*
	Examples

	Incorporating Kelsen’s categorization of irresolvable conflicts into the proposed framework
	Understanding and formalizing compliance and violations
	Examples

	Understanding and formalizing conflicts among deontic statements
	Examples

	Comparing the proposed solution with the conflict-tolerant deontic logics reviewed in (Goble, 2013)

	Deontic modalities and contextual constraints
	Future works: resolvable conflicts and temporal management
	Resolvable conflict
	Temporal management

	Conclusions

