Computer Methods in Applied Mechanics and Engineering 448 (2026) 118349

Contents lists available at ScienceDirect

Computer
Methods

in Applied
Mechanics and

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier.com/locate/cma

Stretch-based hyperelastic electromechanical constitutive
metamodels via gradient enhanced Gaussian predictors using
hierarchical structure discovery

Nathan Ellmer®*, Rogelio Ortigosa ' >*, Jestis Martinez-Frutos = >,

Roman Poya‘”’ ¢, Johann Sienz?, Antonio J. Gil @ &*

a Zienkiewicz Institute for Modelling, Data and Al Faculty of Science and Engineering, Swansea University, Bay Campus, SA1 8EN, United Kingdom
b Technical University of Cartagena, Campus Muralla del Mar, Cartagena, Murcia, 30202, Spain
¢ Meshing & Abstraction, Simulation and Test Solutions, Siemens Digital Industries Software, Cambridge, United Kingdom

ARTICLE INFO ABSTRACT
Keywords: This paper introduces a new approach to developing electromechanical constitutive metamodels
Gradient Kriging via the use of Gradient Enhanced Gaussian Predictors (Kriging). The formulation uses principal

Constitutive modelling
Principal stretches
Electromechanics
Anisotropy

stretches for the isotropic mechanics, invariants for the electrostatics and coupling terms, and
accounts for anisotropy through the relevant inclusion of anisotropic invariants associated with
a respective symmetry integrity basis. Three novelties are presented in this paper. The first is the
use of orthogonal projections to identify the most appropriate set of inputs - related to material
anisotropy - for use in the metamodel. By projecting the stress and electric field data into several
derivative bases - defined for each anisotropic class - and then reconstructing the quantities, the
errors in reconstruction can be assessed thus inferring the most appropriate class of anisotropy.
Furthermore, the procedure forms a pre-processing stage and is particularly useful when an un-
derlying model is completely unknown as seen when modelling Relative Volume Elements. The
second novelty arises from the use of a hybrid formulation, namely the principal stretches for
isotropic mechanics and the electromechanical anisotropic invariants. This is beneficial during
the projection procedure in reducing the cases where the projection matrix becomes singular but
requires careful development of the correlation function to maintain physical symmetry condi-
tions. Thirdly, the electromechanical metamodels are calibrated upon the concentric styled data
before being integrated within a Finite Element framework and tested upon a range of challeng-
ing simulations including bending actuators with induced torsion, frilling due to bending with
selected electrode placement, as well as buckling plates tested with three rank-one laminate ma-
terials with increasing levels of anisotropy due to physical contrasts. The successful calibration
and implementation of the metamodels can be witnessed amongst the wide range of presented
numerical examples.

1. Introduction

Soft robotics is a rapidly advancing field which aims to exploit the properties of soft active materials to improve several aspects
such as biomimetic actuation [1], or an improved human-machine interface via self-sensing capabilities [2]. To realise this capability,
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\begin {equation}\label {eqn:boundary_conditions} \underbrace { \begin {aligned} \partial \mathcal {B}_0 &= \partial _{\vect {\phi }}\mathcal {B}_0 \cup \partial _{\vect {t}}\mathcal {B}_0, \\ \emptyset &= \partial _{\vect {\phi }}\mathcal {B}_0 \cap \partial _{\vect {t}}\mathcal {B}_0, \end {aligned}}_{\text {Mechanical boundary regions}} \qquad \qquad \qquad \underbrace { \begin {aligned} \partial \mathcal {B}_0 &= \partial _{\varphi }\mathcal {B}_0 \cup \partial _{\omega }\mathcal {B}_0, \\ \emptyset &= \partial _{\varphi }\mathcal {B}_0 \cap \partial _{\omega }\mathcal {B}_0. \end {aligned}}_{\text {Electrostatic boundary regions}}\end {equation}
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\begin {equation}e:GL^{+}(3) \times \mathbb {R}^3 \rightarrow \mathbb {R}, \qquad \qquad \left ( \vect {F}, \vect {D}_0 \right ) \rightarrow e\left ( \vect {F}, \vect {D}_0 \right ). \label {Xeqn3-4}\end {equation}
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\begin {equation}\label {eqn:partials_of_e} \vect {P} = \partial _{\vect {F}} e\left ( \vect {F}, \vect {D}_0 \right ), \qquad \qquad \vect {E}_0 = \partial _{\vect {D}_0} e\left ( \vect {F}, \vect {D}_0 \right ).\end {equation}
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\begin {equation}\label {eqn:SVD_on_F} \vect {F}=\hat {\vect {U}}\vect {\Lambda }\hat {\vect {V}}^T, \qquad \vect {R}=\hat {\vect {U}}\hat {\vect {V}}^T, \qquad \vect {U}=\hat {\vect {V}}\vect {\Lambda }\hat {\vect {V}}^T.\end {equation}
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\begin {equation}I_4 = \vect {D}_0 \cdot \vect {D}_0, \qquad I_5 = \vect {FD}_0 \cdot \vect {FD}_0. \label {Xeqn11-15}\end {equation}
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\begin {equation}\label {eqn:log_likelihood} \mathscr {L} \left (\vect {U} | \beta , \sigma ^2, \vect {\theta }\right ) = \frac {A}{2}\log \left (2\pi \right ) + \frac {A}{2}\log \left (\sigma ^2\right ) + \frac {1}{2}\log \left (|\vect {R} \left ( \vect {\theta } \right )|\right ) + \frac {1}{2\sigma ^2} {\left ( \vect {U} - \vect {1}\beta \right )}^T \vect {R}^{-1}\left ( \vect {\theta } \right ) \left ( \vect {U} - \vect {1}\beta \right ),\end {equation}


$A = N \left ( 1 + {N_{inp}} \right )$


$\textbf {I}$


$\vect {R}$


$\vect {U}$


\begin {equation}\label {eqn:optimal_parameters} \begin {aligned} \beta ^* \left ( \vect {\theta } \right ) &= {\left ( \vect {1}^T \vect {R}^{-1} \left ( \vect {\theta } \right ) \vect {1} \right )}^{-1} \vect {1}^T \vect {R}^{-1} \left ( \vect {\theta } \right ) \vect {U}, \\ {\sigma ^2}^* \left ( \vect {\theta } \right ) &= \frac {1}{ {A}} {\left (\vect {U} - \vect {1}\beta ^*\left ( \vect {\theta } \right ) \right )}^T \vect {R}^{-1} \left ( \vect {\theta } \right ) \left ( \vect {U} - \vect {1}\beta ^*\left ( \vect {\theta } \right ) \right ). \end {aligned}\end {equation}


$\vect {\theta }$


$boxmin$


$fmincon$


$\{\beta ^*, {\sigma ^2}^*\}$


\begin {equation}{\bar {\mathscr {L}} \left (\vect {U} | \beta , \sigma ^2, \vect {\theta }\right ) = \frac {A}{2}\log \left ({\sigma ^2}^* \left (\bm {\theta }\right )\right ) + \frac {1}{2}\log \left (|\bm {R}|\left (\bm {\theta }\right )\right ),} \label {Xeqn32-34}\end {equation}


\begin {equation}\label {eqn:reduced_log_likelihood} \psi \left ( \vect {\theta } \right ) = {\sigma ^2}^* \left ( \vect {\theta } \right ) | \vect {R} \left ( \vect {\theta } \right ) |^{\frac {1}{ {A}}},\end {equation}


$\textbf {I}^{\bullet } \in \mathbb {R}^{M \times {N_{inp}}}$


$M$


\begin {equation}\label {eqn:joint_distribution} \begin {bmatrix} \vect {U} \\ \vect {U}^{\bullet } \left ( \textbf {I}^{\bullet } \right ) \end {bmatrix} \sim \left ( \begin {bmatrix} \vect {1} \\ \vect {1} \end {bmatrix} \beta ^*, {\sigma ^2}^* \begin {bmatrix} \vect {R} & \vect {r}^{T} \left ( \textbf {I}^{\bullet } \right ) \\ \vect {r} \left ( \textbf {I}^{\bullet } \right ) & \vect {I} \end {bmatrix} \right ),\end {equation}


$\vect {U} = \vect {U}(\textbf {I})$


$\vect {R} = \vect {R}(\textbf {I})$


$\bm {I}$


$\vect {r}\left ( \textbf {I}^{\bullet } \right )$


$\vect {r}\left ( \textbf {I}^{\bullet } \right )$


$\vect {R}$


\begin {equation}\label {eqn:r_block} \vect {r} \left (\textbf {I}^{\bullet } \right ) = \begin {bmatrix} \vect {q}_1 \\ \vect {q}_2 \end {bmatrix},\end {equation}


\begin {align}\label {eqn:r_q1_block} {\left [ \vect {q}_1 \right ]}^{\left (i\right )\left (j\right )} = \mathcal {R} \left ( \textbf {I}^{\bullet \left (i\right )}, \textbf {I}^{\left (j\right )}, \vect {\theta }^* \right ), \qquad i \in \left [1,\hdots ,M\right ]; \quad j \in \left [1,\hdots ,N\right ],\end {align}


\begin {align}\label {eqn:r_q2_block} {\left [ \vect {q}_2 \right ]}_k^{\left (i\right )\left (j\right )} = \partial _{\text {I}_k^{\left (j\right )}} \mathcal {R}, \qquad i \in \left [1,\hdots ,M\right ], \quad j \in \left [1,\hdots ,N\right ], \quad k \in \left [1,\hdots , {N_{inp}}\right ].\end {align}


\begin {equation}\label {eqn:conditional_mean} \vect {U}^{\bullet } \left ( \textbf {I}^{\bullet } \right ) = \vect {1}\beta ^* + \vect {r}\left (\textbf {I}^{\bullet }\right )\vect {R}^{-1} \left (\vect {U} - \vect {1}\beta ^*\right ).\end {equation}


$\vect {P}$


$\vect {E}_0$


$\textbf {I}^{\bullet }$


\begin {equation}\begin {aligned} \partial _{\textbf {I}^{\bullet }} \vect {U}^{\bullet } = \left ( \partial _{\textbf {I}^{\bullet }} \vect {r} \right ) \vect {R}^{-1} \left (\vect {U} - \vect {1}\beta ^*\right ), \end {aligned} \label {Xeqn39-41}\end {equation}


\begin {equation}\label {eqn:first_deriv_r} \partial _{\textbf {I}^{\bullet }} \vect {r} = \begin {bmatrix} \partial _{\textbf {I}^{\bullet }} \vect {q}_1 \\ \partial _{\textbf {I}^{\bullet }} \vect {q}_2 \end {bmatrix}, \qquad i \in \left [ 1,\hdots ,M \right ], \quad j \in \left [1,\hdots ,N\right ],\end {equation}


\begin {equation}\label {eqn:q1} {\left [ \partial _{\textbf {I}^{\bullet }} \vect {q}_1 \right ]}_k^{\left (i\right )\left (j\right )} = \partial _{\text {I}_k^{\bullet \left (i\right )}} \mathcal {R}, \qquad i \in \left [1,\hdots ,M\right ], \quad j \in \left [1,\hdots ,N\right ], \quad k \in \left [1, \hdots , {N_{inp}}\right ],\end {equation}


\begin {equation}\label {eqn:q2} {\left [ \partial _{\textbf {I}^{\bullet }} \vect {q}_2 \right ]}_{kl}^{\left (i\right )\left (j\right )} = \partial ^2_{\text {I}_l^{\bullet \left (i\right )}\text {I}_k^{\bullet \left (j\right )}} \mathcal {R}, \qquad i \in \left [1,\hdots ,M\right ], \quad j \in \left [1,\hdots ,N\right ], \quad k,l \in \left [1, \hdots , {N_{inp}}\right ].\end {equation}


$\bm {\Psi }$


$\bm {F}$


$\vect {D}_0$


$E_{\bm {P}}$


$E_{\bm {E}_0}$


\begin {equation}\label {eqn:l2_error} E_{\bm {P}} = \frac {\sum _{i=1}^{n}\| \bm {P}^i_{GT} - \bm {P}^i_{KR} \|}{\sum _{i=1}^{n}\| \bm {P}^i_{GT} \|}, \qquad E_{\bm {E}_0} = \frac {\sum _{i=1}^{n}\| {\bm {E}^i_0}_{GT} - {\bm {E}^i_0}_{KR} \|}{\sum _{i=1}^{n}\| {\bm {E}^i_0}_{GT} \|},\end {equation}


$100$


$\vect {R} \left ( \textbf {I}, \vect {\theta } \right )$


$\vect {R} \left ( \textbf {I}, \vect {\theta } \right )$


$\epsilon _1$


$\epsilon _2$


$\vect {R} \left ( \textbf {I}, \vect {\theta } \right )$


\begin {equation}\label {eqn:correlation_matrix_noisy} \vect {R} \left ( \textbf {I}, \vect {\theta } \right ) = \begin {bmatrix} \vect {Q}_{11} + \epsilon _1 \vect {I} & \vect {Q}_{12} \\ \vect {Q}_{12}^T & \vect {Q}_{22} + \epsilon _2 \vect {I} \\ \end {bmatrix},\end {equation}


$\vect {I}$


$\epsilon _1$


$\vect {Q}_{11}$


$\epsilon _2$


$\vect {Q}_{22}$


$\vect {\theta } = \left \{ \theta _1, \hdots , \theta _{ {N_{inp}}}, \epsilon _1, \epsilon _2 \right \}$


\begin {equation}\tilde {U} = U + \mathcal {N} \left ( 0, \sigma _U \right ), \qquad \widetilde {\partial _{\textbf {I}}U} = \partial _{\textbf {I}}U + \mathcal {N} \left ( 0, \sigma _{\partial _{\textbf {I}}U} \right ), \label {Xeqn44-45}\end {equation}


\begin {equation}\sigma _U = 0.2 \bar {U}, \qquad \sigma _{\partial _{\textbf {I}}U} = 0.2 \overline {\partial _{\textbf {I}}U}, \label {Xeqn45-46}\end {equation}


$\tilde {\blacksquare }$


$\bar {\blacksquare }$


$35$


$1000$


$\{\bm {F}, \bm {D}_0\}$


$\{\bm {P}, \bm {E}_0\}$


$100$


$100$


$\bm {P}$


$\bm {E}_0$


$\| \bm {P} \|$


$200$


$\| \bm {E}_0 \|$


$200$


$200$


$200$


$\bm {P}$


$\bm {E}_0$


$1000$


$50$


$50$


$\bm {P}$


$\bm {E}_0$


$800$


\begin {equation}\label {eqn:hat_error} \hat {E}_{\bm {P}} = \frac {\| \bm {P}_{GT} - \bm {P}_{KR} \|}{\| \bm {P}_{GT} \|}, \qquad \hat {E}_{\bm {E}_0} = \frac {\| {\bm {E}_0}_{GT} - {\bm {E}_0}_{KR} \|}{\| {\bm {E}_0}_{GT} \|},\end {equation}


$\| \blacksquare \|$


$\bm {P}_{GT}$


$\bm {P}_{KR}$


${\bm {E}_0}_{GT}$


${\bm {E}_0}_{KR}$


$\hat {E}_{\bm {P}}$


$\hat {E}_{\bm {E}_0}$


$n$


$R^2$


$\bm {A}$


\begin {equation}R^2 = \frac {\sum _{i=1}^{n}\| \bar {\bm {A}}_{GT} - \bm {A}^i_{KR} \|}{\sum _{i=1}^{n}\| \bm {A}^i_{GT} - \bar {\bm {A}}_{GT} \|}. \label {Xeqn48-49}\end {equation}


$19$


$2.75 \times 10^{-4}$


$E_{\bm {P}}$


$1.10 \times 10^{-3}$


$1.80 \times 10^{-3}$


$R^2$


$1.0000$


$23$


$\Psi \left ( \bm {F}, \bm {E}_0 \right )$


$\partial _{\bm {F}}\Psi \left ( \bm {F}, \bm {E}_0 \right )$


$\partial _{\bm {E}_0}\Psi \left ( \bm {F}, \bm {E}_0 \right )$


$\bm {P}$


$-\bm {D}_0$


$\bm {F}$


$\bm {D}_0$


$e\left (\bm {F}, \bm {D}_0\right )$


$\bm {F}$


$\bm {E}_0$


$\bm {E}_0$


$\bm {D}_0$


$I_5$


$\bm {FD}_0 \cdot \bm {FD}_0$


$\bm {HE}_0 \cdot \bm {HE}_0$


$40$


$44$


$40$


$20$


$R^2$


$R^2$


\begin {equation}\label {eqn:RVE_F_E0_1} \bm {F} = \begin {bmatrix} \lambda & \gamma & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac {1}{\lambda } \end {bmatrix}, \qquad \bm {E}_0 = \begin {bmatrix} 0.1 \\ 0.1 \\ 0.5 \end {bmatrix},\end {equation}


\begin {equation}\lambda \in \left [ 0.5, \hdots , 2.5 \right ], \qquad \gamma \in \left [0, \hdots , 0.7\right ]. \label {Xeqn50-51}\end {equation}


$\bm {P}$


$\bm {D}_0$


$\bm {P}$


$\bm {D}_0$


$F_{11}$


$2.0$


$\bm {P}$


$\bm {D}_0$


\begin {equation}\label {eqn:RVE_F_E0_2} \bm {F} = \begin {bmatrix} \lambda & \gamma & 0 \\ 0 & 0.98\lambda & 0 \\ 0 & 0 & \frac {1}{\lambda ^2} \end {bmatrix}, \qquad \bm {E}_0 = \begin {bmatrix} 0.1 \\ -0.1 \\ 0.3 \end {bmatrix},\end {equation}


\begin {equation}\lambda \in \left [ 0.7, \hdots , 1.5 \right ], \qquad \gamma \in \left [0, \hdots , 0.3\right ], \label {Xeqn52-53}\end {equation}


$x_{\text {max}}$


$1.5 \times 0.1 \times 0.01 (m)$
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$\bm {N} = {\left [ 0.44263, -0.8847, 0.1474 \right ]}^T$
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$0.75$
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$(V)$


$\{25,3,2\}$


$\{x,y,z\}$


$2.6 \times 10^{-3} (V)$


\begin {equation}\begin {aligned} \partial _{\vect {F}}\lambda _1&=\vect {n}^P_1\otimes \vect {N}^P_1, \qquad & \partial _{\vect {F}}\lambda _2&=\vect {n}^P_2\otimes \vect {N}^P_2, \qquad & \partial _{\vect {F}}\lambda _3&=\vect {n}^P_3\otimes \vect {N}^P_3, \\ \partial _{\vect {D}_0}\lambda _1&=\vect {0}, \qquad & \partial _{\vect {D}_0}\lambda _2&=\vect {0}, \qquad & \partial _{\vect {D}_0}\lambda _3&=\vect {0}, \end {aligned} \label {Xeqn53-B.1}\end {equation}


$\vect {n}^P_i$


$\hat {\vect {U}}$


$\vect {N}^P_i$


$\hat {\vect {V}}$


$P$


$\vect {n}^P$


$\vect {N}^P$


$\vect {N}$


\begin {equation}\begin {aligned} \partial _{\vect {F}}I_4&=\vect {0}, \qquad & \partial _{\vect {F}}I_5&=2\vect {FD}_0\otimes \vect {D}_0, \\ \partial _{\vect {D}_0}I_4&=2\vect {D}_0, \qquad & \partial _{\vect {D}_0}I_5&=2\vect {CD}_0, \end {aligned} \label {Xeqn54-B.2}\end {equation}


$\vect {C}$


$\vect {F}^T\vect {F}$


\begin {equation}\label {eqn:geometric lambda} \sum _{i=1}^3\Big (\partial _{\lambda _i}U\Big ) \partial ^2_{\vect {F}\vect {F}}\lambda _i=\sum _{i=1}^3\bar {\lambda }_i\vect {L}_i\otimes \vect {L}_i + \bar {\lambda }_{i+3}\vect {T}_i\otimes \vect {T}_i,\end {equation}


\begin {equation}\label {eqn:geometric lambda 2} \begin {aligned} \bar {\lambda }_1&=\frac {\partial _{\lambda _2}U-\partial _{\lambda _3}U}{\lambda _2-\lambda _3},\qquad \bar {\lambda }_2=\frac {\partial _{\lambda _1}U-\partial _{\lambda _3}U}{\lambda _1-\lambda _3},\qquad \bar {\lambda }_3=\frac {\partial _{\lambda _1}U-\partial _{\lambda _2}U}{\lambda _1-\lambda _2},\\ \bar {\lambda }_4&=\frac {\partial _{\lambda _2}U+\partial _{\lambda _3}U}{\lambda _2+\lambda _3},\qquad \bar {\lambda }_5=\frac {\partial _{\lambda _1}U+\partial _{\lambda _3}U}{\lambda _1+\lambda _3},\qquad \bar {\lambda }_6=\frac {\partial _{\lambda _1}U+\partial _{\lambda _2}U}{\lambda _1+\lambda _2}, \end {aligned}\end {equation}


$\vect {T}_i$


$\vect {L}_i$


\begin {equation}\begin {aligned} \vect {L}_1&=\frac {1}{\sqrt {2}}\hat {\vect {U}}\begin {bmatrix} 0&0&0\\ 0&0&1\\ 0&1&0 \end {bmatrix}\vect {V}^T, \quad & \vect {L}_2&=\frac {1}{\sqrt {2}}\hat {\vect {U}}\begin {bmatrix} 0&0&1\\ 0&0&0\\ 1&0&0 \end {bmatrix}\vect {V}^T, \quad & \vect {L}_3&=\frac {1}{\sqrt {2}}\hat {\vect {U}}\begin {bmatrix} 0&1&0\\ 1&0&0\\ 0&0&0 \end {bmatrix}\vect {V}^T,\\ \vect {T}_1&=\frac {1}{\sqrt {2}}\hat {\vect {U}}\begin {bmatrix} 0&0&0\\ 0&0&-1\\ 0&1&0 \end {bmatrix}\vect {V}^T, \quad & \vect {T}_2&=\frac {1}{\sqrt {2}}\hat {\vect {U}}\begin {bmatrix} 0&0&-1\\ 0&0&0\\ 1&0&0 \end {bmatrix}\vect {V}^T, \quad & \vect {T}_3&=\frac {1}{\sqrt {2}}\hat {\vect {U}}\begin {bmatrix} 0&-1&0\\ 1&0&0\\ 0&0&0 \end {bmatrix}\vect {V}^T. \end {aligned} \label {Xeqn57-B.5}\end {equation}


\begin {equation}\begin {aligned} \partial _{\vect {F}}I_6&=2\vect {FN}\otimes \vect {N}, \qquad & \partial _{\vect {F}}I_7&=2\left ( \vect {HN}\otimes \vect {N} \right ) \Cross \vect {F}, \qquad & \partial _{\vect {F}}I_8&=\vect {0}, \\ \partial _{\vect {D}_0}I_6&=\vect {0}, \qquad & \partial _{\vect {D}_0}I_7&=\vect {0}, \qquad & \partial _{\vect {D}_0}I_8&=2 \left ( \vect {D}_0 \cdot \vect {N} \right ) \vect {N}. \end {aligned} \label {Xeqn58-B.6}\end {equation}


\begin {equation}\begin {aligned} \partial _{\vect {F}}I_6&=2\vect {FN}_1\otimes \vect {N}_1, \qquad & \partial _{\vect {F}}I_7&=2\left ( \vect {HN}_1\otimes \vect {N}_1 \right ) \Cross \vect {F}, \qquad & \partial _{\vect {F}}I_8&=2\vect {FN}_2\otimes \vect {N}_2, \\ \partial _{\vect {D}_0}I_6&=\vect {0}, \qquad & \partial _{\vect {D}_0}I_7&=\vect {0}, \qquad & \partial _{\vect {D}_0}I_8&=\vect {0}, \\ \partial _{\vect {F}}I_9&=\vect {0}, \qquad & \partial _{\vect {F}}I_{10}&=\vect {0}, \\ \partial _{\vect {D}_0}I_9&=2\left ( \vect {D}_0 \cdot \vect {N}_1 \right ) \vect {N}_1, \qquad & \partial _{\vect {D}_0}I_{10}&=2\left ( \vect {D}_0 \cdot \vect {N}_2 \right ) \vect {N}_2, \end {aligned} \label {Xeqn59-B.7}\end {equation}


$\bm {\mathcal {T}_N} \in \mathbb {R}^{3 \times 2}$


$\bm {N}$


\begin {equation}\bm {\mathcal {T}_N} = \bm {T}_1 \otimes \bm {E}_1 + \bm {T}_2 \otimes \bm {E}_2, \label {Xeqn60-C.1}\end {equation}


$\bm {T}_1$


$\bm {T}_2$


$\bm {E}_1$


$\bm {E}_2$


${\left [1,0\right ]}^T$


${\left [0,1\right ]}^T$


$\bm {R}$


$\bm {R}$


$\mathcal {R} \left ( \textbf {I}^{\left (i\right )}, \textbf {I}^{\left (j\right )}, \bm {\theta } \right )$


\begin {equation}\label {eqn:correlation_function_derivative} \partial _{\text {I}_k^{\left (j\right )}} \mathcal {R} = 2\theta _k \left ( \text {I}_k^{\left (i\right )} - \text {I}_k^{\left (j\right )} \right ) \mathcal {R} \left ( \textbf {I}^{\left (i\right )}, \textbf {I}^{\left (j\right )}, \bm {\theta } \right ).\end {equation}


$\{I_1, I_2, I_3\}$


$\bm {\lambda }$


$\tilde {\mathcal {R}} \left ( \textbf {I} \left (\bm {\lambda }^{\left (i\right )}\right ), \textbf {I}\left (\bm {\lambda }^{\left (j\right )}\right ), \bm {\theta } \right )$


\begin {equation}\label {eqn:first_deriv_chain_rule} \partial _{\lambda _m^{\left (j\right )}} \mathcal {R} = \sum _{k=1}^{3} \left ( \partial _{\text {I}_k^{\left (j\right )}} \tilde {\mathcal {R}} \right ) \partial _{\lambda _m^{\left (j\right )}} \text {I}_k^{\left (j\right )}.\end {equation}


\begin {equation}\label {eqn:correlation_function_sec_derivative} \begin {aligned} \partial ^2_{\text {I}_l^{\left (i\right )} \text {I}_k^{\left (j\right )}} \mathcal {R} &= 2 \theta _k \left [ \delta _{kl} - 2 \theta _l \left (\text {I}_k^{\left (i\right )} - \text {I}_k^{\left (j\right )}\right ) \left (\text {I}_l^{\left (i\right )} - \text {I}_l^{\left (j\right )}\right ) \right ] \mathcal {R} \left ( \textbf {I}^{\left (i\right )}, \textbf {I}^{\left (j\right )}, \bm {\theta } \right ), \\ \partial ^2_{\lambda _n^{\left (i\right )} \lambda _m^{\left (j\right )}} \mathcal {R} &= \sum _{k,l=1}^{3} \partial _{ \lambda _n^{\left (i\right )}} \text {I}_l^{\left (i\right )} \left ( \partial ^2_{\text {I}_l^{\left (i\right )} \text {I}_k^{\left (j\right )}} \tilde {\mathcal {R}} \right ) \partial _{\lambda _m^{\left (j\right )}} \text {I}_k^{\left (j\right )} + \delta _{ij} \left [ \sum _{k=1}^{3} \left ( \partial ^2_{\lambda _n^{\left (i\right )} \lambda _m^{\left (j\right )}} \text {I}_k^{\left (j\right )} \right ) \partial _{\text {I}_k^{\left (j\right )}} \tilde {\mathcal {R}} \right ], \\ \partial ^2_{\lambda _n^{\left (i\right )} \text {I}_k^{\left (j\right )}} \mathcal {R} &= \sum _{l=1}^{3} \partial _{ \lambda _n^{\left (i\right )}} \text {I}_l^{\left (i\right )} \left ( \partial ^2_{\text {I}_l^{\left (i\right )} \text {I}_k^{\left (j\right )}} \tilde {\mathcal {R}} \right ), \\ \partial ^2_{\text {I}_l^{\left (i\right )} \lambda _m^{\left (j\right )}} \mathcal {R} &= \sum _{k=1}^{3} \left ( \partial ^2_{\text {I}_l^{\left (i\right )} \text {I}_k^{\left (j\right )}} \tilde {\mathcal {R}} \right ) \partial _{\lambda _m^{\left (j\right )}} \text {I}_k^{\left (j\right )}. \end {aligned}\end {equation}


$\bm {r}$


$\bm {q}_1$


$\bm {r}$


$i$


\begin {equation}\begin {aligned} \partial _{\text {I}_k^{\bullet \left (i\right )}} \mathcal {R} &= -2\theta _k \left ( \text {I}_k^{\bullet \left (i\right )} - \text {I}_k^{\left (j\right )} \right ) \mathcal {R} \left ( \textbf {I}^{\bullet \left (i\right )}, \textbf {I}^{\left (j\right )}, \bm {\theta }^* \right ), \\ \partial _{\lambda _m^{\bullet \left (i\right )}} \mathcal {R} &= \sum _{k=1}^{3} \left ( \partial _{\text {I}_k^{\bullet \left (i\right )}} \tilde {\mathcal {R}} \right ) \partial _{\lambda _m^{\bullet \left (i\right )}} \text {I}_k^{\bullet \left (i\right )}. \end {aligned} \label {Xeqn64-D.4}\end {equation}


$\bm {q}_2$


$\bm {r}$


\begin {equation}\begin {aligned} \partial ^2_{\text {I}_l^{\bullet \left (i\right )} \text {I}_k^{\left (j\right )}} \mathcal {R} &= 2 \theta _k \left [ \delta _{kl} - 2 \theta _l \left (\text {I}_k^{\bullet \left (i\right )} - \text {I}_k^{\left (j\right )}\right ) \left (\text {I}_l^{\bullet \left (i\right )} - \text {I}_l^{\left (j\right )}\right ) \right ] \mathcal {R} \left ( \textbf {I}^{\bullet \left (i\right )}, \textbf {I}^{\left (j\right )}, \bm {\theta } \right ), \\ \partial ^2_{\lambda _n^{\bullet \left (i\right )} \lambda _m^{\left (j\right )}} \mathcal {R} &= \sum _{k,l=1}^{3} \partial _{ \lambda _n^{\bullet \left (i\right )}} \text {I}_l^{\bullet \left (i\right )} \left ( \partial ^2_{\text {I}_l^{\bullet \left (i\right )} \text {I}_k^{\left (j\right )}} \tilde {\mathcal {R}} \right ) \partial _{\lambda _m^{\left (j\right )}} \text {I}_k^{\left (j\right )}, \\ \partial ^2_{\lambda _n^{\bullet \left (i\right )} \text {I}_k^{\left (j\right )}} \mathcal {R} &= \sum _{l=1}^{3} \partial _{ \lambda _n^{\bullet \left (i\right )}} \text {I}_l^{\bullet \left (i\right )} \left ( \partial ^2_{\text {I}_l^{\bullet \left (i\right )} \text {I}_k^{\left (j\right )}} \tilde {\mathcal {R}} \right ), \\ \partial ^2_{\text {I}_l^{\bullet \left (i\right )} \lambda _m^{\left (j\right )}} \mathcal {R} &= \sum _{k=1}^{3} \left ( \partial ^2_{\text {I}_l^{\bullet \left (i\right )} \text {I}_k^{\left (j\right )}} \tilde {\mathcal {R}} \right ) \partial _{\lambda _m^{\left (j\right )}} \text {I}_k^{\left (j\right )}. \end {aligned} \label {Xeqn65-D.5}\end {equation}


$\mathbb {R}^5$


\begin {align}\label {eqn:dev_dir_construction} \bm {X}_{\bm {F}}^i &= \begin {bmatrix} \cos \phi ^i_1 \\ \sin \phi ^i_1 \cos \phi ^i_2 \\ \sin \phi ^i_1 \sin \phi ^i_2 \cos \phi ^i_3 \\ \sin \phi ^i_1 \sin \phi ^i_2 \sin \phi ^i_3 \cos \phi ^i_4 \\ \sin \phi ^i_1 \sin \phi ^i_2 \sin \phi ^i_3 \sin \phi ^i_4 \end {bmatrix}, & i \in \left [1, \hdots , n_{\bm {X}_{\bm {F}}}\right ].\end {align}


$\bm {F}$


\begin {align}\bm {\Psi }_1 &= \sqrt {\frac {1}{6}} \begin {bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end {bmatrix}, & \bm {\Psi }_2 &= \sqrt {\frac {1}{2}} \begin {bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end {bmatrix}, & \bm {\Psi }_3 &= \sqrt {\frac {1}{2}} \begin {bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end {bmatrix}, \\ \bm {\Psi }_4 &= \sqrt {\frac {1}{2}} \begin {bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end {bmatrix}, & \bm {\Psi }_5 &= \sqrt {\frac {1}{2}} \begin {bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end {bmatrix}.\end {align}


$\{ I_1, I_2, I_3 \}$


\begin {align}I_1 &= \bm {F}:\bm {F}, & I_2 &= \bm {H}:\bm {H}, & I_3 &= \text {det} \bm {F}.\end {align}


$V_{scaled} = V \sqrt {\epsilon / \mu _1}$


\begin {equation}\label {Equation:OG} U \left (\lambda _1, \lambda _2, \lambda _3, I_3, I_5 \right ) = \sum _{p=1}^{N} \frac {\mu _p}{\alpha _p} \left ( \lambda _1^{\alpha _p} + \lambda _2^{\alpha _p} + \lambda _3^{\alpha _p} - 3 \right ) - \mu _p \ln \left ( \lambda _1 \lambda _2 \lambda _3 \right ) + \frac {\bar {\lambda }_p}{2} {\left ( \lambda _1 \lambda _2 \lambda _3 - 1 \right )}^2 + \frac {1}{2\epsilon } \frac {I_5}{I_3},\end {equation}


\begin {equation}\label {Equation:MR} U \left (I_1, I_2, I_3, I_5 \right ) = \frac {\mu _1}{2} \left (I_1 - 3 \right ) + \frac {\mu _2}{2} \left (I_2 - 3 \right ) - \left ( \mu _1 + 2\mu _2 \right ) \text {ln} \left (I_3 \right ) + \frac {\lambda }{2} {\left ( I_3 - 1 \right )}^2 + \frac {1}{2\epsilon } \frac {I_5}{I_3},\end {equation}


\begin {align}\label {Equation:TI} U \left (I_1, I_2, I_3, I_4, I_5, I_6, I_7 \right ) &= \frac {\mu _1}{2} \left (I_1 - 3 \right ) + \frac {\mu _2}{2} \left (I_2 - 3 \right ) - \left ( \mu _1 + 2\mu _2 + \mu _3 \right ) \text {ln} \left (I_3 \right ) \\ &+ \frac {\lambda }{2} {\left ( I_3 - 1 \right )}^2 + \frac {\mu _3}{2 \alpha } {\left (I_6 \right )}^{\alpha } + \frac {\mu _3}{2 \beta } {\left (I_7 \right )}^{\beta } + \frac {1}{2} \left ( \frac {1}{2 \alpha }\mu _3 + \frac {1}{2 \beta }\mu _3 \right ) + \frac {1}{2\epsilon } \frac {I_5}{I_3}, \nonumber \end {align}


\begin {align}\label {Equation:ROL} U^a \left (I^a_1, I^a_2, I^a_3, I^a_5 \right ) &= \frac {1}{2}\mu _1^a \left (I^a_1 - 3 \right ) + \frac {1}{2}\mu _2^a \left (I^a_2 - 3 \right ) - \left ( \mu _1^a + 2\mu _2^a \right ) \text {ln} \left (I^a_3 \right ) \\ &+ \frac {1}{2} \lambda ^a {\left ( I^a_3 - 1 \right )}^2 + \frac {1}{2\epsilon ^a} \frac {I^a_5}{I^a_3}, \nonumber \\ U^b \left (I^b_1, I^b_2, I^b_3, I^b_5 \right ) &= \frac {1}{2}\mu _1^b \left (I^b_1 - 3 \right ) + \frac {1}{2}\mu _2^b \left (I^b_2 - 3 \right ) - \left ( \mu _1^b + 2\mu _2^b \right ) \text {ln} \left (I^b_3 \right ) \\ &+ \frac {1}{2} \lambda ^b {\left ( I^b_3 - 1 \right )}^2 + \frac {1}{2\epsilon ^b} \frac {I^b_5}{I^b_3}. \nonumber \end {align}


$f_m$


$\mu _1$


$\mu _2$


$\lambda $


$\epsilon $


\begin {equation}f_m = \frac {\mu _1^b}{\mu _1^a} = \frac {\mu _2^b}{\mu _2^a} = \frac {\lambda ^b}{\lambda ^a}, \qquad f_e = \frac {\epsilon ^b}{\epsilon ^a}. \label {Xeqn68-F.7}\end {equation}


$c$


$c_a = c$


$c_b = 1 - c$


$\bm {N}$


$\alpha $


$\beta $


$\bm {N} = {\left [ \sin \beta \cos \alpha , \sin \beta \sin \alpha , \cos \beta \right ]}^T$


$1 \times 1 \times 1$


$\vect {X}_{\mu }\in \mathcal {B}^m_{0_{\mu }}$


$\vect {X}_{\mu }\in \mathcal {B}^i_{0_{\mu }}$


$\mathcal {B}_{0_{\mu }}=\mathcal {B}^m_{0_{\mu }}\cup \mathcal {B}^i_{0_{\mu }}$


$\mathcal {B}^m_{0_{\mu }}\cap \mathcal {B}^i_{0_{\mu }}=\emptyset $


$U_{\mu }(\vect {X}_{\mu },I_{1_{\mu }},I_{2_{\mu }},I_{3_{\mu }},I_{5_{\mu }})=\Psi _{\mu }(\vect {X}_{\mu },\vect {F}_{\mu }, {\bm {E}_0}_{\mu })$


\begin {equation}\Psi _{\mu }(\vect {X}_{\mu },\vect {F}_{\mu }, {\bm {E}_0}_{\mu })=U_{\mu }(\vect {X}_{\mu },I_{1_{\mu }},I_{2_{\mu }},I_{3_{\mu }},I_{5_{\mu }})= \left \{\begin {aligned} &U^m_{\mu }(I_{1_{\mu }},I_{2_{\mu }},I_{3_{\mu }},I_{5_{\mu }})\,\,&\vect {X}_{\mu }\in \mathcal {B}^m_{0_{\mu }}\\ &U^i_{\mu }(I_{1_{\mu }},I_{2_{\mu }},I_{3_{\mu }},I_{5_{\mu }})\,\,&\vect {X}_{\mu }\in \mathcal {B}^i_{0_{\mu }} \end {aligned}\right . \label {Xeqn69-F.8}\end {equation}


$f_m$


$\mu _1$


$\mu _2$


$\lambda $


$\epsilon $


\begin {equation}f_m = \frac {\mu _1^i}{\mu _1^m} = \frac {\mu _2^i}{\mu _2^m} = \frac {\lambda ^i}{\lambda ^m}, \qquad f_e = \frac {\epsilon ^i}{\epsilon ^m}. \label {Xeqn70-F.9}\end {equation}


$\alpha $


$\beta $


$xz$


$xy$


\begin {equation}\begin {aligned} \mathscr {L} \left (\vect {U} | \beta , \sigma ^2, \vect {\theta }\right ) &= \frac {A}{2}\log \left (2\pi \right ) + \frac {A}{2}\log \left (\sigma ^2\right ) + \frac {1}{2}\log \left (|\vect {R} \left ( \vect {\theta } \right )|\right ) + \frac {1}{2\sigma ^2} {\left ( \vect {U} - \vect {1}\beta \right )}^T \vect {R}^{-1}\left ( \vect {\theta } \right ) \left ( \vect {U} - \vect {1}\beta \right ), \\ \beta ^* \left ( \vect {\theta } \right ) &= {\left ( \vect {1}^T \vect {R}^{-1} \left ( \vect {\theta } \right ) \vect {1} \right )}^{-1} \vect {1}^T \vect {R}^{-1} \left ( \vect {\theta } \right ) \vect {U}, \\ {\sigma ^2}^* \left ( \vect {\theta } \right ) &= \frac {1}{ {A}} {\left (\vect {U} - \vect {1}\beta ^*\left ( \vect {\theta } \right ) \right )}^T \vect {R}^{-1} \left ( \vect {\theta } \right ) \left ( \vect {U} - \vect {1}\beta ^*\left ( \vect {\theta } \right ) \right ). \end {aligned} \label {Xeqn71-G.1}\end {equation}


\begin {equation}\begin {aligned} \bar {\mathscr {L}} \left (\vect {U} | \beta ^*, {\sigma ^2}^*, \vect {\theta }\right ) &= \frac {A}{2}\log \left (2\pi \right ) + \frac {A}{2}\log \left ({\sigma ^2}^*\right ) + \frac {1}{2}\log \left (|\vect {R} \left ( \vect {\theta } \right )|\right ) \\ &+ \frac {1}{2{\sigma ^2}^*} {\left ( \vect {U} - \vect {1}\beta ^* \right )}^T \vect {R}^{-1}\left ( \vect {\theta } \right ) \left ( \vect {U} - \vect {1}\beta ^* \right ). \end {aligned} \label {Xeqn72-G.2}\end {equation}


\begin {equation}{\bar {\mathscr {L}} \left (\vect {U} | \beta ^*, {\sigma ^2}^*, \vect {\theta }\right ) = \frac {A}{2}\log \left (2\pi \right ) + \frac {A}{2}\log \left ({\sigma ^2}^*\right ) + \frac {1}{2}\log \left (|\vect {R} \left ( \vect {\theta } \right )|\right ) + \frac {A{\sigma ^2}^*}{2{\sigma ^2}^*}}, \label {Xeqn73-G.3}\end {equation}


\begin {equation}{\bar {\mathscr {L}} \left (\vect {U} | \beta ^*, {\sigma ^2}^*, \vect {\theta }\right ) = \frac {A}{2} \left ( \log \left (2\pi \right ) + 1 \right ) + \frac {A}{2}\log \left ({\sigma ^2}^*\right ) + \frac {1}{2}\log \left (|\vect {R} \left ( \vect {\theta } \right )|\right )}. \label {Xeqn74-G.4}\end {equation}


\begin {equation}{\bar {\mathscr {L}} \left (\vect {U} | \beta ^*, {\sigma ^2}^*, \vect {\theta }\right ) = \frac {A}{2} \left ( \log \left ({\sigma ^2}^*\right ) + \frac {1}{A} \log \left (|\vect {R} \left ( \vect {\theta } \right )|\right ) \right ) }. \label {Xeqn75-G.5}\end {equation}


\begin {equation}{\bar {\mathscr {L}} \left (\vect {U} | \beta ^*, {\sigma ^2}^*, \vect {\theta }\right ) = \frac {A}{2} \left ( \log \left ( \psi \left ( \vect {\theta } \right ) \right ) \right )}, \label {Xeqn76-G.6}\end {equation}


\begin {equation}{\psi \left ( \vect {\theta } \right ) = {\sigma ^2}^* \left ( \vect {\theta } \right ) |\vect {R} \left ( \vect {\theta } \right )|^{\frac {1}{A}} }, \label {Xeqn77-G.7}\end {equation}


\begin {equation}\label {eqn:mixed variational principle II} {\Pi }\left (\vect {\phi },\varphi \right ) = \inf _{\vect {\phi }}\sup _{\varphi }\left \{ \int _{\mathcal {B}_0}{\Psi (\vect {F},\vect {E}_0)}\,dV - \Pi _{\text {ext}}^m\left (\vect {\phi }\right ) - \Pi _{\text {ext}}^e\left (\varphi \right ) \right \},\end {equation}


$\Pi _{\text {ext}}^m$


$\Pi _{\text {ext}}^e$


\begin {equation}\label {eqn:external terms in the potential} \Pi _{\text {ext}}^m\left (\vect {\phi }\right ) = \int _{\mathcal {B}_0}\vect {f}_0\cdot \vect {\phi }\,dV + \int _{\partial _{\boldsymbol {t}}\mathcal {B}_0}\vect {t}_0\cdot \vect {\phi }\,dA,\qquad \Pi _{\text {ext}}^e\left ({\varphi }\right ) = -\int _{\mathcal {B}_0}\rho ^e_0{\varphi }\,dV - \int _{\partial _\omega \mathcal {B}_0}\omega _0^e{\varphi }\,dA.\end {equation}


$\mathcal {B}_0$


$e\in \mathbb {E}$


\begin {equation}\mathcal {B}_0\approx \mathcal {B}_0^h = \bigcup _{e\in \mathbb {E}} \mathcal {B}^e_{0}. \label {Xeqn80-H.3}\end {equation}


$\left \{\vect {\phi },\varphi \right \}$


$\left \{\delta \vect {\phi },\delta \varphi \right \}$


$\mathbb {V}^{\vect {\phi }^h}\times \mathbb {V}^{{\varphi }^h}$


$\mathbb {V}_0^{\vect {\phi }^h}\times \mathbb {V}_0^{{\varphi }^h}$


\begin {equation}\label {eqn:functional spaces for discretisation} \begin {aligned} \mathbb {V}^{\vect {\phi }^h}& = \left \{\vect {\phi }\in \mathbb {V}^{\vect {\phi }};\,\,\,\,\left .\vect {\phi }^h\right \vert _{\mathcal {B}_0^e} = \sum _{a=1}^{n_{\text {node}}^{\vect {\phi }}}N^{\vect {\phi }}_a\vect {\phi }_a\right \},& \\ \mathbb {V}^{{\varphi }^h} &= \left \{{\varphi }\in \mathbb {V}^{{\varphi }};\,\,\,\,\left .{\varphi }^h\right \vert _{\mathcal {B}_0^e} = \sum _{a=1}^{n_{\text {node}}^{{\varphi }}}N^{{\varphi }}_a{\varphi }_a\right \},\\ \mathbb {V}_0^{{\vect {\phi }}^h} & = \left \{\forall \vect {\phi }\in \mathbb {V}^{\vect {\phi }^h};\,\,\,\,\, \vect {\phi } = \vect {0} \,\,\text {on}\,\,\partial _{\vect {\phi }}\mathcal {B}_0\right \},& \\ \mathbb {V}_0^{{\varphi }^h}& = \left \{\forall \varphi \in \mathbb {V}^{\varphi ^h};\,\,\,\,\,\,\,{\varphi } = {0} \,\,\text {on}\,\,\partial _{{\varphi }}\mathcal {B}_0\right \}. \end {aligned}\end {equation}


$\vect {\mathcal {Y}}$


$\left \{\vect {\phi },\varphi \right \}$


$n_{\text {node}}^{\vect {\mathcal {Y}}}$


$\vect {\mathcal {Y}}$


$N^{\vect {\mathcal {Y}}}_{a}:\mathcal {B}_0^e\rightarrow \mathbb {R}$


$a$


$\vect {\mathcal {Y}}$


$\vect {\mathcal {Y}}_a$


$\vect {\mathcal {Y}}$


$a$


\begin {equation}\label {eqn:stationary conditions} D{\Pi }[\delta \vect {\phi }] = \sum _{e=1}^N\delta \vect {\phi }_a\cdot \vect {R}_{a,e}^{\vect {\phi }}=0,\qquad D{\Pi }[\delta {\varphi }]= \sum _{e=1}^N\delta \varphi _a{R}_{a,e}^{\varphi }=0,\end {equation}


$N$


$\vect {R}^{\vect {\phi }}_{a,e}$


${R}^{{\varphi }}_{a,e}$


$\vect {t}_0$


$\omega _0^e$


\begin {equation}\label {eqn:the residuals} \begin {aligned} \vect {R}_{a,e}^{\vect {\phi }} = \int _{\mathcal {B}_0^e}\left (\partial _{\vect {F}}\Psi \right )\vect {\nabla }_0N^{\vect {\phi }}_a\,dV + \int _{\mathcal {B}_0^e}N^{\vect {\phi }}_{a}\vect {f}_{0}\,dV,\qquad R_{a,e}^{\varphi } =-\int _{\mathcal {B}^e_0}\left (\partial _{\vect {E}_0}\Psi \right )\cdot \vect {\nabla }_0N^{\varphi }_a\,dV + \int _{\mathcal {B}^e_0}N^{\varphi }_a\rho ^e\,dV. \end {aligned}\end {equation}


$\Delta \vect {\phi }\in \mathbb {V}_0^{\vect {\phi }}$


$\Delta {\varphi }\in \mathbb {V}_0^{{\varphi }}$


\begin {equation}\label {eqn:NR} \begin {aligned} 0=D{\Pi }[\delta \vect {\phi }] + D{\Pi }[\delta {\varphi }] + D^2{\Pi }[\delta \vect {\phi };\Delta \vect {\phi }] + D^2{\Pi }[\delta \vect {\phi };\Delta {\varphi }] + D^2{\Pi }[\delta {\varphi };\Delta \vect {\phi }] + D^2{\Pi }[\delta {\varphi };\Delta {\varphi }], \end {aligned}\end {equation}


\begin {equation}\begin {aligned} & D^2{\Pi }[\delta \vect {\phi },\Delta \vect {\phi }] = \sum _{e=1}^N\delta \vect {\phi }_a\cdot \vect {K}_{ab,e}^{\vect {\phi }\vect {\phi }}\Delta \vect {\phi }_b,\qquad D^2{\Pi }[\delta \vect {\phi },\Delta {\varphi }] = \sum _{e=1}^N\delta \vect {\phi }_a\cdot \vect {K}_{ab,e}^{\vect {\phi }{\varphi }}\Delta {\varphi }_b,\\ & D^2{\Pi }[\delta {\varphi },\Delta {\vect {\phi }}] = \sum _{e=1}^N\delta {\varphi }_a\cdot \vect {K}_{ab,e}^{{\varphi }\vect {\phi }}\Delta {\vect {\phi }}_b,\qquad D^2{\Pi }[\delta {\varphi },\Delta {{\varphi }}] = \sum _{e=1}^N\delta {\varphi }_a K_{ab,e}^{{\varphi }{\varphi }}\Delta {{\varphi }}_b, \end {aligned} \label {Xeqn85-H.8}\end {equation}


\begin {equation}\label {eqn:tangent matrices} \begin {aligned} {\left (\vect {K}_{ab,e}^{\vect {\phi }\vect {\phi }}\right )}_{ij}&=\int _{\mathcal {B}^e_0}{\left (\vect {\nabla }_0N_a^{\vect {\phi }}\right )}_I{\left (\vect {\nabla }_0N_b^{\vect {\phi }}\right )}_J{\left (\partial ^2_{\vect {F}\vect {F}}\Psi \right )}_{iIjJ}\,dV,\\ {\left (\vect {K}_{ab,e}^{\vect {\phi }{\varphi }}\right )}_{i}&=-\int _{\mathcal {B}^e_0}{\left (\vect {\nabla }_0N_a^{\vect {\phi }}\right )}_I{\left (\vect {\nabla }_0N_b^{{\varphi }}\right )}_J{\left (\partial ^2_{\vect {FE}_0}\Psi \right )}_{iIJ}\,dV,\\ K_{ab,e}^{{\varphi }{\varphi }}&=\int _{\mathcal {B}^e_0}{\Big (\vect {\nabla }_0N_a^{{\varphi }}\Big )}_I{\Big (\partial ^2_{\vect {E}_0\vect {E}_0}\Psi \Big )}_{IJ}{\Big (\vect {\nabla }_0N_b^{{\varphi }}\Big )}_{J}\,dV,\\ \vect {K}_{ab,e}^{\varphi \vect {\phi }}&={\left (\vect {K}_{ab,e}^{\varphi \vect {\phi }}\right )}^T. \end {aligned}\end {equation}


\begin {equation}\label {eqn:legendre transformation} \Psi (\vect {F},\vect {E}_0)=\inf _{\vect {D}_0}\{e\left (\vect {F},\vect {D}_0\right ) - \vect {D}_0\cdot \vect {E}_0\},\end {equation}


\begin {equation}\label {eqn:free energy dielectric} \begin {aligned} \partial _{\vect {E}_0\vect {E}_0}^2\Psi &={\left (\partial ^2_{\vect {D}_0\vect {D}_0}e\right )}^{-1},\\ {\Big (\partial ^2_{\vect {F}\vect {E}_0}\Psi \Big )}_{iIJ}&=-{\Big (\partial ^2_{\vect {F}\vect {D}_0}e\Big )}_{iIM}{\Big (\partial _{\vect {E}_0\vect {E}_0}^2\Psi \Big )}_{MJ},\\ {\Big (\partial ^2_{\vect {F}\vect {F}}\Psi \Big )}_{iIjJ}&={\Big (\partial ^2_{\vect {F}\vect {F}}e\Big )}_{iIjJ} - {\Big (\partial ^2_{\vect {F}\vect {D}_0}e\Big )}_{iIM}{\Big (\partial _{\vect {E}_0\vect {F}}^2\Psi \Big )}_{MjJ}. \end {aligned}\end {equation}


$\{\widetilde {\vect {\Delta \phi }},\widetilde {\vect {\Delta \varphi }}\}$


\begin {equation}\begin {bmatrix} \vect {K}^{\vect {\phi }\vect {\phi }} & \vect {K}^{\vect {\phi }{\varphi }}\\ \vect {K}^{{\varphi }\vect {\phi }} & \vect {K}^{{\varphi }{\varphi }} \end {bmatrix} \begin {bmatrix} \widetilde {\vect {\Delta \phi }}\\ \widetilde {\vect {\Delta \varphi }} \end {bmatrix}=-\begin {bmatrix} \vect {R}^{\vect {\phi }}\\ \vect {R}^{{\varphi }} \end {bmatrix}. \label {Xeqn89-H.12}\end {equation}


$\{\widetilde {\vect {\Delta \phi }},\widetilde {\vect {\Delta \varphi }}\}$


$\{\widetilde {\vect {\Delta \phi }},\widetilde {\vect {\Delta \varphi }}\}$


$k+1$


\begin {equation}\begin {aligned} \widetilde {\vect {\phi }}^{k+1}=\widetilde {\vect {\phi }}^{k} + \widetilde {\vect {\Delta \phi }},\qquad \widetilde {\vect {\varphi }}^{k+1}=\widetilde {\vect {\varphi }}^{k} + \widetilde {\vect {\Delta \varphi }}. \end {aligned} \label {Xeqn90-H.13}\end {equation}
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there is significant interest in soft smart materials which are electrically stimulated referred to as electroactive polymers (EAPs), and
more specifically their subclass - dielectric elastomers (DEs) - which consist of a soft dielectric layer sandwiched between two flexible
conductive electrode layers [3]. Maximising the potential of these material systems has propelled research into complex composites
to harness the advantageous properties from multiple materials whilst limiting the compromising impacts [4-6].

These composites tend to be fabricated using two distinct methods leading to either laminates or inclusions. Capturing the highly
nonlinear behaviour of these materials requires the development of intense analytical constitutive models which produce the macro-
scopic homogenised response of the material. This is achieved through employing rank-n homogenisation theory which yields the
effective material response by delving and computing the response of each material constituent within the composite [7]. Since the
lamination or inclusions exist at the micro-scale this introduces a multi-scale problem which necessitates the use of a Newton-Raphson
type procedure to solve the micro-fluctuations [8,9]. The intricacy involved in such analytical models clearly demonstrates that as
these composites continue to develop in complexity, the traditional model fitting techniques - homogenisation via fitting experimental
data directly to pre-existing frameworks - will be unable to maintain the adequate level of accuracy.

In search of model fitting techniques which are not restricted by rigid frameworks, an increasing number of researchers are turning
to leverage the capabilities of Machine Learning (ML). The most commonly applied ML technique is that of Neural Networks (NNs)
which come in a variety of forms. In the context of constitutive modelling, Constitutive Artificial Neural Networks (CANNs) were
introduced with the aim of assisting the satisfaction of physical constraints such as objectivity and material symmetry. Kuhl et al.
[10] applied CANNs to develop models for rubber materials validated via uniaxial, biaxial and shear experimental data. Moreover,
Linka et al. [11] compared the performance of CANNs to standard Artificial Neural Networks (ANNs) demonstrating that for isotropic
constitutive models, CANNs required less data for calibration. Outside of ML, development of constitutive models often considers
the notion of convexity to ensure stability and robustness [12-15]. The same can be achieved within ML as comprehensively studied
by Klein et al. showcasing the ability to train convex NNs. These NNs use inputs based on invariants or the deformation gradient
tensor, its cofactor and its determinant - quantities which are understood to develop polyconvex constitutive models [16]. Klein’s
work has additionally been extended to incorporate electromechanically coupled systems [17,18]. In addition, Ortigosa et al. [19] has
developed Physics-Augmented Neural Networks capable of calibrating thermo-electro-mechanically coupled systems. The generalised
approach ensures flexibility in calibrating on a variety of thermodynamic potentials given by different combinations of the physical
inputs as obtained via the appropriate Legendre transforms.

Furthermore, Laura De Lorenzis et al. [20] has developed the EUCLID scheme — unsupervised automated discovery of material
laws (EUCLID). Using a developed catalogue of constitutive material frameworks, the scheme is capable of handling a vast range of
data and fitting it to the appropriate frameworks. The model fitting aspect has been investigated in the context of NN’s [21] and
a Bayesian implementation [22] with the aim of learning elastic and viscoelastic models with varying amounts of anisotropy. This
scheme has also more recently been extended to handle data from biological tissue [23] which is hyperelastic in nature as well as a
framework for pressure-sensitive plasticity models [24].

Gaussian Process Regression (GPR) is an alternative ML approach which has advantageous characteristics due to its probabilistic
roots. The technique exploits properties of Gaussian distributions to formulate a joint distribution of known and predictive data
sites over the variables of interest. The resultant predictive distribution is then sampled yielding a solution accompanied with an
uncertainty - a useful quantity to indicate the accuracy of the prediction. Providing the uncertainty is essential for error estimation
and capitalising on infill strategies [25-27]. The heart of GPR lies with the correlation function which comes in a variety of forms. For
this work the authors have selected the Radial Basis Function (RBF) to correlate the observed data in the parametric space revealing
a weighting used to indicate the importance of specific variables. Kriging is a variation of GPR developed by Matheron upon theory
from mining engineer, Krige, in the field of geostatistics in the 1960’s [28]. Moreover, gradient data can be used to enhance Kriging’s
calibration - a process referred to as Gradient Enhanced Kriging [29]. The advantages of the enhancement have been investigated
by the authors in previous work, and include requiring fewer data points to achieve the same level of performance as employing the
Ordinary Kriging counterpart [30].

Re-aligning to the context of constitutive modelling, Frankel et al. [31] details two different approaches for the use of GPR.
The first models the stress-strain relationship directly, which requires additional measures to ensure satisfaction of physical con-
straints such as data augmentation. The second is an energy-invariant relationship which naturally satisfies constraints such as ther-
modynamics and objectivity — invariance to rigid body rotations. As illuded to, GPR can be enhanced by utilising gradient data
during calibration. Aggarwal et al. [32] demonstrated the significance of gradient data, thus requiring only limited functional data
to achieve an accurate constitutive model. This is particularly beneficial when considering experimental data, since the strain en-
ergy is not available on demand, whereas stress information is experimentally obtainable. Exploiting Kriging’s probabilistic roots,
Rocha [33] has used an adaptive infill strategy based upon Kriging’s uncertainty to improve the accuracy of model results when
simulating the elastoplastic response of fibre reinforced composites. Moreover, previous work by the authors showcased the excep-
tional capability of Gradient Enhanced Kriging to develop a variety of stretch-based hyperelastic mechanical constitutive metamod-
els. Examples were presented with metamodels from a range of anisotropic classes with high accuracy calibrated on as few as 16
datapoints [34].

This manuscript focuses on two main aspects of work, the first of which is showcasing a procedure for identifying classes
of anisotropy from stress and electric field data directly. In current ML techniques, to obtain information regarding the material
anisotropy group Fuhg et al. [35] and Kalina et al. [36] have introduced parameters into the NN which weights the contributions
from anisotropic invariants thus tailoring the model towards the required anisotropic formulation. In this work, a procedure which
exploits linear algebra - specifically orthogonal projections - is proposed to ascertain the anisotropic information prior to initiating
the metamodel calibration. As a result, this anisotropic identification forms a pre-processing stage on the data independent of the

2
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z
I
x
(a) Isotropic bending (b) Isotropic frilling

Fig. 1. Displays the progression of two DE inspired actuator devices both configured to apply an inhomogeneous electric field. Note that both
devices are split in half in the y-direction such that the left side is modelled using the ground truth constitutive model, and the right side using the
Kriging constitutive metamodel: (a) uses an isotropic Mooney-Rivlin model for the mechanical contribution; (b) uses an isotropic Ogden model for
the mechanical contribution, whilst in both an Ideal Dielectric is applied for the electro contribution.

metamodel calibration process thus enabling one to use this procedure to learn about the material data regardless of intentions to
use ML.

The second aspect involves developing a variety of coupled electromechanical constitutive metamodels which can be integrated
into the in-house 3D FEM framework to produce a range of complex deformations (see examples in Fig. 1). The formulations developed
in the following work are based on a mixed approach incorporating principal stretches for the isotropic mechanics and invariants for
the anisotropy and electromechanically coupled variables. Doing so enables advantageous properties to be utilised such as the ability
to project all purely mechanical and isotropic stresses without the need for perturbations which would be required with the invariant
based counterparts (as carried out in [30]). As a result, accurate projections can be taken in scenarios such as when principal stretches
take the same value - a necessity for employing Gradient Enhanced Kriging [34].

The layout of this paper is as follows: Section 2 initially introduces the reader to the core concepts of nonlinear continuum

electromechanics with specific emphasis on the formulation of constitutive models in finite strain hyperelasticity. Section 3 then
transitions to a description of the procedure for identifying the anisotropic group from data directly via a hierarchical approach. Next,
Section 4 provides an overview of the Kriging approach which is employed to develop the constitutive metamodels. The numerical
examples are then split into two parts, the first in Section 5 provides information regarding the data generation for Kriging and then
the results for the wide range of constitutive models that have been calibrated upon. Subsequently, Section 6 presents the equally
varied set of the FE numerical examples ranging from isotropic bending to anisotropic buckling. Concluding remarks then bring this
work to a close in Section 7.
Notation: Throughout the paper, A : B= A;;B;;, VA, B € R¥3, and the use of repeated indices implies summation. The tensor
product is denoted by ® and the second order identity tensor by I. The tensor cross product operation x between two artibrary second
order tensor A and B entails [A X Bl;; = £ po€ rsAprBgs [37]. Furthermore, £ represents the third-order alternating tensor. The
full and special orthogonal groups in R? are represented as O(3) = {A € R¥3| AT A = I} and SO3) = {A e R¥3| ATA =1, detA =1},
respectively and the set of invertible second order tensors with positive determinant is denoted by GL*(3) = {A € R¥| detA > 0}.

2. Finite strain electromechanics
2.1. Kinematics

A solid electroactive polymer (EAP) body undergoing a deformation can be described via two configurations, as illustrated in
Fig. 2. The first is the material (undeformed) configuration given by 5B, ¢ R* and the second, a spatial (deformed) configuration
given by B C R>. To transform between the configurations, a mapping exists for each material particle ¢ : B, — R thus translating
from material coordinates X € B, to spatial coordinates x € B through the relationship x = ¢(X). Moreover, this relationship is
employed to define the material deformation gradient F € GL*(3) also referred to as the fibre map, which leads to definitions for the
volume map J, and the area map H as

F=0x¢, J =detF = éF : (FxF), H=CofF=JF‘T=%FxF. 1
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:I:17X1

Fig. 2. Demonstrates the mappings of material coordinates to spatial coordinates (fibre map F' in blue, area map H in green, and volume map J
in red).(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

2.2. Governing equations in finite electromechanics

The response of an EAP body is governed by the following coupled boundary value problem

F =ox¢, in 3, Ey=—-0xo, in B,
DIVP =—f,,  inB, DIVD, = p,, in B, -
=9 on 04,'30 @ =", on 0(/,/30
PN =1, on 0,18, D, - N = —aw,, on d, 3,
-
Conservation of linear momentum and kinematics Gauss’ and Faraday’s Law

where the equations on the left represent the purely mechanical response whilst those on the right constitute the electrostatic response.
In (2), the DIV(H) operator denotes the divergence with respect to the material coordinates X € 3, whilst N represents the material
outward unit vector. On the left hand side of (2), the mechanical quantities f, and ¢, are the body and traction forces acting on the
undeformed body 53, and surface area 013, respectively. The electrostatic quantities on the right hand side of (2) include the electric
potential scalar field denoted ¢ as well as the electric charge acting on the undeformed body B, and surface area 93, denoted by p,
and w,, respectively. The boundary of the undeformed body, 05, is described by two non-overlapping regions for imposing Dirichlet
943, and Neumann 9,13, boundary conditions such that

9By = 04B) U 0, By, 0By = 9,y U d,By. -
f =048, N 0, By, § = 0,5y N 0,5
—— — ——
Mechanical boundary regions Electrostatic boundary regions

Finally, note the two pairs of work conjugates in (2), the deformation gradient tensor F and first Piola-Kirchhoff stress tensor P, as well
as the electric field vector E( and material electric displacement vector D,. Through the application of an appropriate constitutive
model, definitions for P and D, will be obtained consisting of contributions from mechanics and electrostatics thus demonstrating
the coupling of physics.

2.3. Internal energy density requirements in electromechanics

To close the system of governing equations outlined in (2) a constitutive relationship needs to be defined, often in the form of an
internal energy density. Moreover, this relationship can be seen to couple the physics as the internal energy density e is dependent
on the deformation gradient tensor F and the material electric displacement D, as

e: GL*3)xR® > R, (F,Dg) — e(F,Dy). 4

Taking partial derivatives of e(F, D,) with respect to both F and D, yields the first Piola-Kirchhoff stress tensor P and the material
electric field E, respectively, as described below

P =0pe(F,Dy), Ey=0p,e(F,Dy). (5)
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Additionally, taking the second partial derivatives yields three more quantities: the fourth order elasticity tensor C, the third order
coupled piezoelectric tensor Q, and the second order dielectric tensor 6 as

C=0ppe(F. Do), Q=03 ze(F.Dy),  6=0 , e(F.Dy). (6)

The internal energy density e(F, D) is required to conform to physical principles including that of objectivity, also referred to as
material frame indifference, namely

¢(QF,Dy) =¢(F,Dy), VFeGL*(3), QeS0B), D,ecR’. )
Furthermore, critical when considering anisotropy is that e(F, D) must adhere to the specific material symmetry group ¢ through
¢(FQ.Dy) =¢(F,Dy), VFeGL*3), Q€GC0@), D;eR. ®

It is also important to state that the internal energy e(F, D), first Piola-Kirchhoff stress tensor P, and material electric field vector
E, must all vanish in the absence of deformation and electric displacement. This can be mathematically described by

e(F,Dg)lr=1.py=0 = O, P(F,Dy)|por.py=0 =0, Eo(F,Dg)lp=1,py=0 = 0 9

The conditions presented in (7)-(9) are the essential physical principles. Additionally, it is customary to apply the notions of polycon-
vexity to the internal energy density thereby ensuring the propagation of real wave speeds, guarantees the existence of minimisers,
thus providing numerical stability [38]. Whilst outside the scope of this work, Poya et al. has outlined the steps to satisfy polycon-
vexity via a principal stretch approach which involves monitoring the Hessian matrix - formed of the second derivatives given in (6) -
and setting any subsequent subzero eigenvalues to zero [39,40]. Upon assessment of the numerical examples presented in this work,
all conducted examples converged without unphysical instabilities thus rendering the implementation of such steps unnecessary.

Remark 1. Note that there are several forms of free energies available such as the internal energy, e(F, D), Helmholtz’s energy,
¥(F,E,), enthalpy H (P, D). The definitions can be transitioned between using the appropriate Legendre transforms - for more
information the reader is referred to [19,41].

2.4. Principal stretch-based electromechanics

To embed objectivity into the internal energy density e(F, D,) and simultaneously satisfy material symmetry conditions it is
common to formulate in terms of invariants of the right Cauchy-Green strain tensor [38,42] or in terms of principal stretches [39,43]

e(F,Dy) =UD), (10

where I' denotes an input set that could consist of invariants, or principal stretches, or a mixture of both as will become evident.
Furthermore, recall (5) where the first Piola-Kirchhoff stress tensor P and material electric field E, were defined as partial derivatives
of e(F R DO) with respect to the deformation gradient tensor F and the electric displacement vector D. Application of the chain rule
and convenient decomposition into isotropic and anisotropic contributions enables them to be re-expressed as

P= 2(61 )aFI + z ( )aFI,.,

i=mjg,+1
;—-—v———’

Isotropic contribution  Anisotropic contribution

E,= 2(01 )aDOI + z ( )aDOI,.,
‘_ ImIYU
—— %,_/

Isotropic contribution  Anisotropic contribution

1)

where m;,, and m signify the number of isotropic inputs and the total number of inputs including the additional anisotropic invariants,
respectively. Similarly, a generic definition for the second derivatives can also be expressed as

(aIIU)aJZ,FI,. + i (aﬁlju)aFIi ® opl,,
i,j=1
(‘31 ) Dorli Z ( )‘)Doli@"Flr 12)
(aI ) o p i+ ‘21 (afinU)aDOIi ® dp, ;.
i

Note that (12) has not been separated into isotropic and anisotropic contributions for readability, but the deconstruction would follow
that of (11). Thus far, (11) and (12) have provided a generic formulation, and to provide the reader with specifics, the remainder of
this section has been broken into the contributions for a variety of anisotropic classes.

C:

M

©
1]
NeE

A=

™M=

i=1

! Notice that here I and I represent different quantities, namely the former is for the potential set of inputs consisting of either invariants or
principal stretches and the latter is the second order identity tensor.
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2.4.1. Isotropic contribution

Starting with isotropy, principal stretches will be used to describe the mechanics whilst invariants will be used for the electrostatics
and coupling. Firstly then, the principal stretches can be obtained through the right polar decomposition of the deformation gradient
tensor F as

F =RU, (13)

where R € SO(3) is the rotation tensor and U is the symmetric positive definite stretch tensor. To retrieve these quantities from F,
singular value decomposition (SVD) can be employed

F=0AV", R=0V", uU=vav" (14)

Note that in (14), U and V" are the left and right singular-matrices, respectively, and the tensor A encodes the singular-values of F,
i.e. the principal stretches 4; > 1, > 15 such that 4, = A;;. For the electromechanical invariants, the following definitions are utilised

I,=D,-D,, Is=FD,-FD,. (15)

With the principal stretches and invariants for isotropy established, the set I used in (10) can be set to I = {4, 45, 43,1, I5}. In the
interest of being concise the definitions for the relevant partial derivatives required in (11) and (12) can be found in Appendix A.1.

2.4.2. Anisotropic contribution (transverse isotropy)
Introducing anisotropy will require additional invariants which are used to incorporate favoured anisotropic directions. For trans-
verse isotropy, the anisotropic invariants are given by

Ig=FN-FN, I,=HN-HN, Iy= (D, - N), (16)

where N is the preferred anisotropic direction, perpendicular to the plane of isotropy in the material. With these invariants it can
be seen that in (10), m=8 and I = {A,, Ay, A3, 1y, Is, I, 15, Is}- The relevant partial derivatives for (11) and (12) can be found in
Appendix A.2.

2.4.3. Anisotropic contribution (orthotropy)
Another common form of anisotropy is that of orthotropy which is characterised by three unitary and orthogonal preferential

directions { N, N,, N3 }. Several invariants can be used to capture orthotropy and they are given by

Ig=FN,-FN,, I,=HN,-HN,  I;=FN, FN,,
a7
2 2

Iy= (Do~ Ny)", Iig = (Do~ N»)".
With these invariants it can be seen that in (10), m =10 and I = {/1 1o Ags Ay Iy I, I, 15, Ig, 1o, T 10}. The corresponding derivatives for
(11) and (12) can be found in Appendix A.3.

Remark 2. The invariants which have been presented throughout Section 2.4 have been carefully chosen by the authors to ensure
the sufficient characterisation of the constitutive models presented in the numerical examples. It must be noted however that this list
is not exhaustive and other invariants (up to 13 in the most comprehensive case for orthotropy - see Table 16 of [44]) can be included
and might be required for alternative constitutive models.

2.5. Application to composite materials

To model increasingly complex material microstructures it is critical to utilise composite related theory such as rank-n homogeni-
sation theory [7,45]. This process enables a material’s microstructure to be captured in homogenised macroscopic quantities which
will then be used during the Finite Element Method (FEM). However, this process is not trivial and involves a nonlinear problem
wrapped within the standard FEM process leading to what is commonly referred to as FEM2 [8,9]. Fig. 3 presents a side-by-side com-
parison of the electromechanical homogenisation process for the two most common composite types: rank-one laminates [4-6,9,46]
and matrix-inclusions described through representative volume elements [17,18].

3. Hierarchical structure discovery

Material anisotropy is categorised into material symmetry groups which are characterised by a set of invariants - some of which
can be found in Section 2.4. A primary aim of introducing GPR into constitutive model development is to reduce the analysis required
to identify and fit the most appropriate pre-existing framework, however, this is only achievable if the most appropriate material
symmetry group can be identified from the data directly without prior knowledge of a material sample. When the symmetry group
is isotropy, then the preparation and use of ML is immediate due to the metamodel inputs being invariants which are only functions
of the data itself - see Section 2.4.1. This is not the case when the material is anisotropic since the structural tensors and vectors
associated with the symmetry group also need to be identified. As an example, consider transverse isotropy where the material
symmetry group requires the structural rank-one tensor N ® NN - for full details see Section 2.4.2. Once transverse isotropy is found
to be the most appropriate symmetry group, the best vector IN also needs to be identified. Moreover, it must be noted that these
material parameters need to be identified a priori in order to prepare the data for metamodel calibration, since the inputs are formed
of invariants which are functions of these structural vectors or tensors.

6
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Rank-one Laminate Representative Volume Element

The macropscopic deformation gradient F' and elec-
tric displacement Dy comprises of the microscale
constituents as

F=c"F"+F°, Dy=c"Di+I Db (18)
where ¢, and ¢, are the constituent volume fractions.
Definitions for microscale components of F' and Dy
can be obtained in accordance with [[F]] XN =0 as
well as [Do] - N =0 by

F*(F,a)=F+a®N,

F'(F,a)=F —c"a®N,
(F,a) = ‘ (19)

Dg (Do, 8) = Do + ¢ T,

Dy (Do, B) = Do — ¢*Tn B,

where a and 3 denote the mechanical and electro-
static microscale fluctuations respectively, IN the di-
rection of lamination perpendicular to the plane of
isotropy, and Tn a projection operator - for details
see Appendix B. {a,3} can be obtained through
minimisation of the energy

e(F,Do)=argm%1{é(F,Do,a,B)}, (20)

where the effective energy, é(F, Dy, a,[3) is com-
prised of the energy for each constituent through

@), (D§.8))
+ et (F* (F,a), (D5,8)),

é=c'e" (F*"(F
(21)

To obtain {a, B3}, the stationary conditions of é
needs to be solved.

Défda) = ¢’ (P“ - P”) :(ba® N) =0,
(22)
Dé[6g] = e’ (Eg - Eg) (Twd8) = 0,

in turn yielding the macroscopic first Piola-Kirchhoff
stress P and material electric field Eq as

P=c"P"+P

(23)
Eo = c“E§ + ’ES,

rendering the microscale components of P and Ej

T e 0 (P (F0),(D§,5)
- OF” ’ (24)

o _ 0 (F* (F, ), (D£, 8))

0 — (9D8 )

For more in-depth information the reader is referred
to [4-6, 9, 46].

The macroscopic deformation gradient F' and electric
field Eq are related to their microscale counterparts
as

F=L [ mxyave

& Bow

1 (25)
Eo=— | EM(X")dv*,

Vi Jy,, 2 )

where F* and E¥ represent fields across the elements
volume, V*. Applying periodic boundary conditions,

[a] = 0 and [B] = 0, enables x* and ¢* to be
expressed by
St
F" = 7wherez =a+ FX",
oxH
P (26)
- b u
Ej = ~oxn where " =8 — Ey - X",
thus F* and E} can be expressed as
F'=Voa+F, E}=V3-—E,. (27)

{a, B}, can be found via an energy minimisation

U (F,Ey) = lnf sup
Va gev,

¥ (F,Bo, 0,8}, (28)

where the effective energy U (F, Eo, a,
ated according to

B) is evalu-

= i/ U* (F* (F, ), Ely (Eo, 8))dV*.
VE JBou
. (29)
The stationary conditions of II (a, 8) = UV* yield-
ing {e, B} are
oo
DII () [6e] = / P aXF av* =0,
(30)
I1(8) (58] = / by v =,

which yields the macroscopic first Piola-Kirchhoff
stress P and electric displacement Dy as

J PrAVH,

Bow (31)
D{dv*,
Bou

where the microscale components of P and Dy are

v (F* (F, o) , B (Eo, B))
OF* ’
owr (F“ (F7a) 7Eg (E07ﬂ))
oEL :

P' =
(32)

D=

A Legendre transform can be used to yield Ef from
F* and Df. For more details see [17, 18].

Fig. 3. Presents a side by side comparison of the approach to evaluate the homogenised quantities for rank-one laminates and representative volume

elements, with the aim of demonstrating their similarities.




N. Ellmer et al. Computer Methods in Applied Mechanics and Engineering 448 (2026) 118349

3.1. Hierarchical structure discovery procedure

In this work, the authors propose a systematic and algebraically grounded procedure to identify the most appropriate material
symmetry group and corresponding optimal structural tensors of the underlying data set. The approach relies on the tools of linear
algebra, particularly orthogonal projections. Each candidate symmetry group is associated with a set of invariants, as comprehensively
detailed by Zheng in [44]. The method centres on projecting constitutive quantities - specifically, the first Piola-Kirchhoff stress P
and the material electric field E,, - onto subspaces defined by these symmetry groups. To facilitate this operation, P and E,, are
vectorised and concatenated into a single 12-dimensional vector a € R!?

N

_|P
(2]

where ll denotes the vectorised form of the tensor. Each vector a corresponds to a data point associated with an (unknown) underlying
material symmetry group C. In principle, the data may originate either from numerical simulations or experimental observations
and can be assumed to be derived from an unknown internal energy density function U, which depends on a set of invariants
{1,,....1,} €6

a= Zaivi, a;=0,U, (34)
i=1
with
v, = [:FIII] i={1,....m}. (35)
D, i

Remark 3. Among the selected invariants {I],...,I".} € G*, some are isotropic, whilst others are anisotropic with respect to the
material symmetry group G*. The anisotropic invariants depend on a set of structural vectors or tensors that characterise the material
anisotropy. These structural quantities are, in general, unknown a priori. The procedure for identifying the optimal set of such vectors
or tensors that best approximate a* to a is detailed in Section 3.2. As a result, for the remainder of this Section, the structural vectors
and tensors required to evaluate the selected invariants are assumed to be known.

This formulation enables a direct analogy with linear algebra: the vector a resides in a subspace ¥V c R'?> determined by the
material symmetry group . The vectors v; span this subspace and form a generating set By, which, if linearly independent, constitute
a basis. The scalars g; represent the components of a with respect to this basis. The goal is to determine the material symmetry group
G* whose associated subspace V* is closest to the one inferred from the data. For this purpose, a new set of invariants { I f . I:;* } e g*
are selected and used to construct a surrogate internal energy function U* using Kriging interpolation. Differentiation with respect
to these invariants yields an approximate field

a* =) a‘v, ay =0;-U", (36)
i=1
where
-7
v = ani* .i={l,..,m") (37)
Ip, I

The selected invariants - more specifically their derivatives denoted by v;" - define a basis By for the subspace V* C R!2, allowing
the field a* to be expressed explicitly in terms of basis vectors and corresponding coefficients. To identify the projection of the true
response vector a onto the candidate subspace V", the orthogonal projection of a onto V* spanned by the known basis {v}, ..., v, }
is computed. The coefficients a; can be determined by solving the following linear system

a,-'vf aT
=M| : |, with [M],-j:v;“v;, ij={1,....,m"}. (38)

a- v, at,

m m

This projection framework allows for a rigorous and quantitative comparison between symmetry groups by measuring the proximity
between the actual field a and its best approximation a* within the subspace V*. A diagramatic view of this process can be seen in
Fig. 4.

Following this construction, a distance can be evaluated between the reconstructed vector a* and the true vector a via the standard
L2 error
lla* —all

, 39
llal ©%

distance =

which enables the assessment of the suitability of the chosen vector subspace V* and thus the chosen material symmetry group. If
the chosen V* is capable of fully describing the true vector a then the distance will of course be zero. However, when handling
more complex composite materials such as RVEs, the most suitable material symmetry group remains disputed and as a result, this
procedure will become a minimisation problem such that the process iterates through symmetry groups in order of complexity and

8
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Fig. 4. Displays a reference diagram used to describe the projection process during hierarchical structure discovery.

attempts to identify the most suitable group by minimising for the distance in (39). The procedure for a single selected material
symmetry group can be found summarised more clearly in Algorithm 1.

Additionally, one also needs to consider the structural tensors or vectors which are used to characterise specific anisotropic material
symmetry groups. For each symmetry group assessed, Algorithm 1 needs to be wrapped in an optimisation problem defined through

{M*} =arg rr)‘itn distance(a,a*), “o

where M denotes the relevant set of structural tensors or vectors for the selected material symmetry group. To summarise then,
for the hierarchical procedure of identifying the most appropriate symmetry group and structural tensors and vectors, one needs to
iterate over the optimisation problem in (40) for each symmetry group which is embedded with the process outlined in Algorithm 1
where the distance is the objective function.

Algorithm 1 Pseudo-code for the procedure of material symmetry group discovery.

1: Evaluate the set of appropriate derivatives to form V* as in (37) - see Section 2.4

2: Conduct the projections of a in V* - see (38)

3: Construct a* from the projected components - see (36)

4: Evaluate the distance between the true vector a and constructed vector a* - see (39)

3.2. Hierarchal structure discovery examples

To showcase the outlined procedure in action, a range of examples have been selected and provided across this subsection. The first
example is used to identify the appropriate material symmetry group and anisotropic direction for data produced via the transversely
isotropic material model provided in Appendix E.3. Moreover, this includes a small study assessing the performance of the method
when the “severity” of anisotropy (controlled by material parameter y5) is varied. Challenging examples utilising RVEs then follow
in Sections 3.2.2 and 3.2.3, which truly represent the need for such a method where the underlying material symmetry group and
corresponding anisotropic directions are simply unknown. In these cases the dataset is generated by running FEM simulations on the
RVE configurations for a selection of deformation gradient tensors F' and electric field vectors E, (the use of a Helmholtz type energy
instead of an internal energy will become clear later).

3.2.1. Transverse isotropy

The first example then takes a transversely isotropic model with material parameters corresponding to those in Appendix E.3, but
using a random direction N € R to be revealed shortly. A dataset was generated using the ground truth model consisting of only 27
data points each of which with a corresponding P and E,,. The first material class to be assessed via the procedure is that of isotropy
which is defined by the five inputs as covered in Section 2.4.1. When the outlined procedure was conducted for isotropy, the distance
was 4.97 x 10~!, which clearly indicates isotropy does not consist of a sufficient basis to describe this material. As a result, the next
most complex class, transverse isotropy, is assessed which is characterised using the anisotropic direction IN. Since IN is a parameter,
this must be obtained via an optimisation problem, i.e. finding the vector N which yields the smallest error in (39), whilst testing
for this material group. Fig. 5(a) showcases the evolution of the boxmin objective function denoted f - which is equal to the distance
in (39) - and Fig. 5(b) demonstrates the evolution and convergence of the anisotropic direction to [0.44263, —0.8847, 0.14741T . Within
ten boxmin iterations the distance was 3.22 x 107°, substantially lower and thus indicating that this anisotropic class is sufficient.

When verifying the results, the selected material was a transversely isotropic material with direction N =
[0.4423, —0.8847,0.1474]7. The L2 relative error between the actual and optimised directions came to 0.006 %. This discovered class
of anisotropy was then used to calibrate a metamodel for which the results can be seen later in Section 6.3.

A further investigation has been conducted to understand the impacts of the “severity” of anisotropy, namely the magnitude of
material parameter ys, on the ability for the projection procedure to accurately ascertain the material symmetry group and direction

9
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(a) Displays the log of the objective function error f. (b) Presents the trialled directions from the boxmin optimisation.

Fig. 5. Showcases the evolution of the anisotropic directions as the boxmin algorithm optimises two angles characterising the anisotropic direction
to minimise the objective function. In (a) f is the evaluation of the objective function which is equal to the distance in (39). In (b) the blue arrow
indicates the initial guess and the black arrows show the boxmin converging to the correct result presented by a red arrow.(For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1

Presents the results of a study using 27 data points to investigate the im-
pact of changing the y; material parameter on the ability to discover the
direction of anisotropy IN. Information about the transversely isotropic
model can be found in Appendix E.3.

H3t distance (see (39)) Relative error in predicted IN:

Isotropy: Transverse Isotropy:

0.0 5.24x1071° - -

1.0 2.90 x 107! 2.53x10°° 0.0062 %
3.0 4.48x 107! 2.91x107° 0.0052%
5.0 4.83x 107! 3.13%x107¢ 0.0052 %
7.5 4.97x 107! 3.22x107° 0.0052%

N. In the transversely isotropic model - see Appendix E.3 - the u; parameter scales the contribution from the transversely isotropic
invariants. Note, that for the investigation the same 27 data points were utilised with the same direction N = [0.4423, —0.8847, 0.147417
but the stresses and electric fields are updated to incorporate the adjusted yu; parameter. The results for a variety of selected values
for y; can be found in Table 1.

Starting with a p; of zero, the procedure correctly identifies that the data should correspond to a fully isotropic model. Interest-
ingly, the lower values for y; shown in Table 1 which would indicate a “weak anisotropy” can also be well captured. Larger values
additionally achieve an excellent level of accuracy as presented previously.

3.2.2. RVE - spherical inclusion

The previous example showcased a transversely isotropic material which is relatively simple to identify and verify. This next
example involves a representative volume element (RVE) consisting of a soft matrix with a stiffer (five times stiffer), spherical inclusion
- see Fig. 6(a) for a digram and see Appendix E.5 RVE(a) for information on the material parameters. The challenge associated with this
example is that the underlying analytical model to fully characterise this material is unknown and the data in which the metamodel
will be calibrated on is the result of finite element simulations utilising a multi-scale homogenisation procedure as demonstrated
in Section 2.5. During the procedure, it was seen that not all ten of the inputs presented in Section 2.4.3 were required as their
derivatives were not necessarily all linearly independent - which presented itself through numerical analysis of the projection matrix
which was observed to become rank deficient.

When passed to the hierarchical discovery procedure with a dataset of 27 data points, the isotropy and transverse isotropy classes
were tested yielding distances of 7.79 x 10~2 and 3.74 x 10~* respectively. In order to more accurately capture the RVE, the orthotropic
anisotropy class is generally considered which yielded a distance of 4.70 x 10~6. To provide an initial seed to the boxmin algorithm
for the anisotropic directions IN; and IN,, SVD was performed on P from a single data point, and the two left vectors associated
with the largest singular values taken. This ensures the initial seed vectors are firstly orthogonal and also in a region aligned with the
inclusion which intuitively would most influence the anisotropic directions. Note that for transverse isotropy it was possible to assess
the correct convergence of material parameter N, given that the underlying analytical model was known. The same is not possible
with an RVE which highlights the challenges of working with composites.

A cubic RVE with a central spherical inclusion (as demonstrated by RVE(a) in Fig. 6(a)) might give the impression that it should
yield an isotropic response due to its symmetry. However, this is not always the case as can be observed in Section 3.2.2. Kalina et
al. [36] showcased an isotropic response for two inclusion geometries, specifically with a radius of 0.1L and 0.5L, the latter of which
means the diameter spans the full width L of the RVE. In either of these, the matrix or inclusion are likely to dominate thus rendering

10



N. Ellmer et al. Computer Methods in Applied Mechanics and Engineering 448 (2026) 118349

Y Y
z x z z

(a) Displays an RVE with a spherical inclusion (b) Presents an RVE with an ellipsoidal inclusion

Fig. 6. Showecases two 1 x 1 x 1 RVE configurations with a soft matrix and a stiffer embedded particle inclusion.

isotropy, especially since any slice of the RVE should consist of a similar ratio between materials. Furthermore, a mechanical contrast
of 1.5 is used for some of the examples which is not significantly large. Thusly, if the correct combination of geometry and property
contrast is selected an isotropic response can be observed. Of course this may not be the case, as in Section 3.2.2, where orthotropy
is observed due to the use of an inclusion of radius 0.25L and mechanical contrast 5. This anisotropy has additionally been observed
by Kalina et al. (see Section 5.2.1 of [47]) where a cube shaped RVE with a central spherical inclusion produced a response best
captured via cubic symmetry group G;.

3.2.3. RVE - ellipsoidal inclusion

The final example in this section demonstrates an RVE with an ellipsoidal inclusion - see Fig. 6(b) for a digram and see Appendix E.5
RVE(b) for information on the material parameters - thus increasing the level of expected anisotropy. Once again, when passed through
the hierarchical structural discovery procedure with the isotropic and transversely isotropic classes, high distances were obtained of
7.65 x 1072 and 2.74 x 103 respectively. The next stage involved fitting the orthotropic class which achieved a reduced distance of
9.27 x 107> deducing it was the most suitable anisotropic class. An example ML metamodel has been calibrated using the results of
this procedure and is presented in Section 5.5.

4. Gaussian process prediction

The constitutive relationships outlined in Sections 2.3 and 2.4 are crucial for Finite Element modelling. Alternatives to the con-
ventional method of obtaining these models include generating a metamodel utilising data driven ML approaches, and the authors
are particularly advocating for the use of GPR. Gradient Enhanced Kriging, a particular form of GPR capable of employing gradient
data to enhance the prediction accuracy, will be the approach considered in this work. The following section will briefly outline the
process for developing a Gradient Enhanced Kriging metamodel, however the interested reader is directed to Section 3 of [34] for an
in-depth procedure.

4.1. Metamodel formulation

Section 2 outlined the need for a constitutive model which takes inputs relating to the deformation gradient tensor F and the
material electric displacement vector D, and produce an output used to obtain the first Piola-Kirchhoff stress tensor P and material
electric field vector E,,. As in Section 2.4.1, the input I will be comprised of principal stretches in conjunction with electromechanical
invariants. In the cases using anisotropy, this set of input variables can be extended as shown in Sections 2.4.2 and 2.4.3. The
metamodel outputs will be the scalar strain energy density U, and the partial derivatives d;, U, which can be used to reconstruct P
and E,, as seen in (11).

The notation used to handle a dataset formed of N data points and N,,, input variables (otherwise known as input features) is
outlined as follows: superscripts will be used to denote the ith data point (i.e. Wl for i = [1, ..., N]) whilst subscripts will refer to the
input feature, namely the kth input variable (i.e. ;). Moreover, input and output data is set into two categories, observed data and
prediction sites. These unobserved quantities relating to the prediction site are distinguished by having a superscript bullet (i.e. l°).
The foundations of a GPR metamodel are formed of a simple two-part additive expression given by

UD=pO+2ZO  where  Z@ ~ N(0,6°DRQ)). (41)

The two components introduced in (41) consist of a mean type term (model parameter f(I)) alongside a noise term which is char-
acterised using a zero mean normal distribution Z(I) with covariance denoted by o2(I)R(I). The covariance introduces the second
material parameter ¢>(I) as well as the fundamental correlation matrix R(I) which is seen to be a function of the observed data (no
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superscript bullet). To define R(I), a correlation function needs to be selected, of which there are several types available (see [25]).
In this work the authors use the Radial Basis Function (RBF) defined as

Ninp

B . - S\ 2
R(D,19,0) =exp| ¥ -0, (10 =10) | i€l NI (42)

The RBF in (42) introduces a set of hyperparameters 6 which scale the spatial correlation between the ith and jth data points,
effectively adjusting the sensitivity. Note that calibrating a model using principal stretches X requires an adjusted correlation function
as described by the authors in [34], where the correlation function takes inputs of the isotropic invariants {1}, I, I3} as a function
of principal stretches, namely Ig) = I, (A?D) for k € [1,2,3]. This is critical to ensure that material symmetry conditions are satisfied.
Thus far it may be unclear as to how this method is Gradient Enhanced, however this enhancement comes in the construction of R
as introduced by Ollar et al. [29]. The correlation matrix can be broken into the following blocks

0y Op

R(I,0) = [ , i
o, 0xn

where
[01]" =RO1D,19,0), i jell,..,N], (44a)
[le]f)(j) =0uR, i,j €ll,....Nl, ke[l,....N;,| i
k
[sz];:;(’)—OQ R i,jell,...,N], ke [lv“"Ninp]' @

ok
I, I

Notice that Q;, and Q,, in (44b) and (44c) are third and fourth order matrices respectively. For computational convenience these
are reshaped to fit into the correlation matrix format shown in (43) such that Q,, € R¥*(N"Nus) and Q,, € RN Nup)*(N-Nup) | thus
R € RNU+Nup)xN(1+Niny) For full definitions of the partial derivatives used in (44b) and (44c) see Appendix C. With the key definitions
in place, recall (41). Given that the noise term Z(I) is characterised by a Gaussian distribution, it is also appropriate to express the
output U(I) in terms of a Gaussian as

U®D ~ N(16,6>R(L 6)). (45)

Note that in (45), U(I) € R has become UI) € RV (14+Ninp) to account for N observed data points, and that the functional dependency
of I on the material parameters {f, s>} has been dropped for notational convenience. For consistency, this additionally introduces
the need for 1 € RN(1*Nim) | a vector of ones establishing a mean vector within the Gaussian definition. Defining the metamodel in
terms of a Gaussian distribution demonstrates GPR’s probabilistic roots and furthermore, (45) has a multi-variate probability density
function (referred to as the likelihood). The Maximum Likelihood Estimation (MLE) technique [25], uses the opposite log-likelihood
function to obtain the model parameters through the minimisation

{p,6°") = argmin Z (U4, 5%.6), (46)
p.o2
where the opposite log-likelihood function can be expressed by
Z(U1p,6%,0) = %log Qr) + % log (¢2) + % log (IRO)]) + 21—2(U — 15T R O)U - 1p), 47)
{0}

where A=N(1+N i,,p) and the functional dependence of the inputs I on the correlation matrix R and output U have been dropped

for notational convenience. In doing the minimisation outlined in (46), the optimal parameters are given by

-1

p©=(1"R"Y o)1) 1"R Y (O)U,

2% 1 T4 (48)
62 (0) = Z(U —-15%(0)) R7'(6)(U - 15%(9)).

The only remaining unknowns are the set of hyperparameters € which are more complex in nature, thus requiring an optimisation
algorithm to solve. The authors select the boxmin algorithm [48] however alternative algorithms are available (e.g. quasi-Newton
methods [49], genetic algorithms [50] or gradient descent type algorithms such as fmincon, commonly known to MatLab users [51]).
Any of these algorithms will require an objective function to optimise the hyperparameters against which draws upon a reduced
opposite log-likelihood found by substituting the optimised parameters {#*, 52"} into (47) and neglecting the constant terms yielding

— A * 1
Z(U1p.0%.0) = 5 log (? (9)) + 5 log (IRI(O)). (49)
from which the fully reduced form can be retrieved as
* 1
w(0) = o (O)|R(O)| 7, (50)
which is used for the objective function. The full details for obtaining (50) can be found in Appendix F.
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4.2. Metamodel evaluation

Having identified the model parameters and hyperparameters in Section 4.1, it is now possible to conduct evaluation of the
metamodel. Take now, an unobserved set of input prediction sites I' € RM*Niw where M is the number of unobserved data points.
Since the metamodel is given by a Gaussian distribution its properties allow for the introduction of a joint distribution given by

U 1] . »«[ R 7@
o] ~ (L, ) eV

where it is important to recall that U = U(I), R = R(I), and I is the identity matrix. Note the addition of the cross-correlation matrix
r(I') used to correlate the observed and unobserved data points. Moreover, r(I') is defined similarly to R as

) = ‘“], (52)
q>
where
(@] =R(r®,19,6*), iell,...,M]; jell,.., Nl (53)
(0] =00R.  i€ll...Ml jell...Nl ke&l[l...Ny]. (54)
k

Following these definitions, all constituents of (51) have been identified. Finally, to obtain the final predictive distribution the joint
distribution in (51) needs to be conditionalised which renders

U@ =14 +r@R (U - 1p%). (55)

Note that (55) is the conditional mean and as a result the same outcome will be achieved every evaluation at the same prediction
site due to not incorporating any conditional variance. This could of course be simply adjusted if required. In the context of elec-
tromechanics, the desired output of the constitutive model is that of the derivatives (i.e. P and E). These can be obtained from the
metamodel by taking derivatives of (55) with respect to I' via the following

opU" = (opr)R™H(U —1p%), (56)
where the differential of the cross-correlation matrix is comprised of the following blocks
dpr = [‘)I'ql], iell,...Ml, jell,...,Nl, 7)
orq,

which correspond to

[arql]ﬁf)”):@l;m’ i€ll,....M], jel[l...N], kell..,Ny,]. (58a)

[rar]V =%, (R, i€ll...Ml, jEll...Nl, kil€[lL...Ny,]. (58b)

(D))" c+»Vinp
II Ik

For full definitions of the partial derivatives used in (58a) and (58b), see Appendix C.
5. Numerical examples: metamodel calibration

The following section will provide details around the process of metamodel calibration as well as displaying results of the calibrated
metamodels. Section 5.1 will start by outlining the process used to generate experimentally styled synthetic data. Next, the calibration
procedure is outlined within Section 5.2 including the definition of the error used to measure the calibration accuracy. The impact
of using an infill strategy will then be presented in Section 5.3, followed by the adaptations to enable Kriging to become regression
based thus capable of calibrating with noisy data in Section 5.4. Finally, Section 5.5 presents the results of the calibrated metamodels
for a variety of electromechanical constitutive models.

5.1. Data generation

A concentric approach to generating the synthetic data for calibration has been utilised for all Kriging metamodels developed for
use in this paper. This approach is achieved by defining a set of deviatoric directions and amplitudes which when combined with
the basis for traceless symmetric tensors ¥ (see Appendix C of [52]) yields a range of deformation gradient tensors F' and electric
displacement vectors D, - for details see Algorithm 3. The procedure is outlined below in Algorithm 2, and follows the methodology
used by the authors in [53] and based upon that provided in [52].

Remark 4. Whilst a concentric approach to data generation has been used here, an experimental styled approach consisting of
deformation gradient tensors representing uniaxial, biaxial and shear deformations could be used, as carried out in [34]. For the
electromechanical case, electric displacements of varying magnitudes would also be sampled.
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Algorithm 2 Pseudo-code for process of sampling F' and D,,.

1: Set the number of amplitudes, directions and determinants: {n,,nx,n;};

2: Initialise the vector of amplitudes: 1 = [0, ..., 1.2], »1,tp, = [0, ..., 1.5], x5

: Initialise the vector of determinants: J = [0.9, ..., 1.1], 3

: Initialise a vector of Latin Hypercube sampled angles: ¢; = [0,27], ., % = [0,27]

: Initialise vectors of Latin Hypercube sampled angles: ¢, 34 = [0, 71, , i, ¥2 = [0, 7], x5

: Construct the directions, { Xz, X Dy }, using the extended spherical parametrisation in R - detailed in Appendix D;

: Evaluate the deformation gradient tensors, F', and electric displacement vectors, D,,, parametrised in terms of deviatoric directions
{(Xp. X Dy bs amplitudes {tz,¢ Dy b and determinants J - detailed in Algorithm 3.

nxxl;

N g w

Algorithm 3 Pseudo-code for process of constructing the set of F' and D,,.

1: fori=1:nx do

2 for j=1:n;do
3 fork=1:n,do

4 F=le/3exp(tFk [Z,ll X’F[\II,D;
5 Dy=1p, X5;
6: end for

7 end for

8: end for

Algorithm 4 Pseudo-code for the entire Kriging metamodel calibration process.

: Sample a set of deformation gradient tensors F' and electric displacements D, - see Algorithm 2
: Evaluate the ground truth stress P, electric field E,, and energy U - see models in Appendix E

: Conduct hierarchical structure discovery to identify a suitable anisotropic class - see Section 3

: Evaluate the singular matrices using singular value decomposition: U, A, V = SVD(F) - see (14)
: Evaluate the anisotropic and multiphysics invariants - see the relevant subsections of Section 2.4
: Evaluate the projections of P and E,: o;U - see Section 3.1

: Conduct the parameter minimisation: {#*, 62"} = arg ming 2 & (U1p.62,0) - see (48)

: Conduct the hyperparameter optimisation: 8* = arg ming y/(6) - see (50)

: Evaluate a test dataset - see Section 4.2

: Assess the success of the calibrated metamodel - see (62) and (63)

: if Using an infill strategy and metamodel error > tolerance then

Update the calibration set with points of highest error - see Section 5.3

goto step 4:

: end if

—
= O OV 00N O U A WN -

_
N

5.2. Calibration procedure

Following dataset generation, the Kriging metamodel can be calibrated. This procedure has been covered in considerable detail
in Section 4 and an overview has been outlined below for convenience in Algorithm 4.

5.3. Infill strategy

As with all ML approaches the quality of the input data for calibration is of the upmost importance on the accuracy of the developed
metamodel. In some cases, the approach to improve accuracy is to introduce a bulk of calibration data. However, this can lead to
an oversized dataset where unnecessary data exists due to the random selection or generation. Therefore, to ensure that a minimal
amount of data is being used and that all of the selected points are useful and necessary, an infill strategy is utilised. This involves
starting with a small dataset to calibrate a metamodel, before evaluating against a test dataset. An error is then evaluated for all test
data points and the ones with the largest error are selected as infill data points for the new calibration dataset. Several possible error
measurements are available, such as error in first derivative - the first Piola-Kirchhoff stress tensor - as in [30,53] or utilising Kriging’s
probabilistic properties to produce an error based upon uncertainty as in [54]. The authors conducted a comparison of these two
strategies previously in [34] demonstrating that it is advantageous to utilise the uncertainty based error. To highlight the benefits to
using an infill strategy the reader’s attention is directed to Fig. 7.

Two anisotropic constitutive models are presented in Fig. 7, a transversely isotropic material in Fig. 7(a) and a rank-one laminate
material in Fig. 7(b) - for constitutive model specifics the reader is referred to Appendix E.3 and ROL(a) in Appendix E.4, respectively.
Both materials showcase a very similar pattern when applying an infill strategy which is that utilising an uncertainty based approach
(denoted with circle markers) enables a continuous improvement in error for both derivative quantities. This highlights the signifi-
cance of allowing the uncertainty provided by Kriging directly, to select the most relevant data points as opposed to simply randomly

14



N. Ellmer et al. Computer Methods in Applied Mechanics and Engineering 448 (2026) 118349

100

Error

0 20 40 60 80 100 0 20 40 60 80 100

No. of Infill Points No. of Infill Points
(a) Transversely isotropic model (b) Rank-one laminate model

o Ep - Uncertainty o Epg - Uncertainty
s Ep - Random a EEU - Random

Fig.7. Showecases the benefit of utilising an infill strategy over simply increasing the dataset size for two anisotropic constitutive models. Subfigures
(a) and (b) present the evolution of the L2 error in stress, Ep (blue), and electric field E E, (red) for an uncertainty based infill approach (circles),
and a randomly increasing dataset size (triangles). For the L2 error equations the reader is directed to (63).(For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. Showcases the noisy calibration set where the black squares denote the unperturbed dataset and the red squares demonstrate the magnitude
of the incorporated noise.(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

growing the dataset (denoted by the triangular markers). Note that in Fig. 7 the infill strategy is for 100 data points increasing in single
point increments. This is used to show the trend but the aim is generally to use far fewer ensuring a simpler calibration process and
fast evaluation capability of the Kriging metamodel - heavily dependant on the size of the correlation matrix which itself is related
to the number of data points (see Section 4.1).

5.4. Noise regularisation

The Kriging approach detailed thus far is a direct interpolation method which will only be effective for a perfectly sampled
dataset which does not contain any noise. It is simple however, to extend Kriging’s capability to handle a realistic noisy dataset,
which involves introducing two new hyperparameters [55]. By using the definition of R(I, 6) stated in (43), Kriging will attempt to
directly interpolate between all noisy data points resulting in an ill-posed correlation matrix R(I, 0). To alleviate this, two perturbation
terms ¢, and ¢, are introduced to augment R(I, ) as follows

0y +el (P

R(10)=
.6 o, Op+el|

(59

where I is the identity matrix. Notice that there are two perturbation terms, ¢; for the functional correlation block Q;, and ¢,
for the derivative correlation block Q,, [29]. To calibrate these additional hyperparameters, the optimisation process outlined in

Section 4.1 remains the same with an extended set 0 = {01, 70N,-,,p’€17€2}' To demonstrate Kriging’s capability to handle noisy

data, an example calibration of a noisy data sample for a transversely isotropic ideal dielectric constitutive model is presented below
- see Appendix E.3 for details of the material parameters. Firstly, the noisy calibration dataset can be seen in Fig. 8, where the black
square points represent the ground truth data and the red squares indicate the perturbed data as a result of the added random noise.
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Fig. 9. Showcases the successful calibration of a regression Kriging metamodel where (a) displays the perturbed calibration dataset denoted by
red squares over the ground truth unperturbed black lined curve; (b) portrays now the Kriging metamodel output as the black lined curve with a
random selection of 100 ground truth data points denoted by blue squares.(For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

60 - S5r

Pl

1000 0 200 400 600 800 1000

No. of Validation Points No. of Validation Points
(a) Evaluated P for the Kriging metamodel (b) Evaluated Ey for the Kriging metamodel

Fig. 10. Showcases the evaluation of the derivative quantities from the calibrated regression Kriging metamodel where (a) displays the ground
truth || P|| denoted by the black solid curve and the evaluated Kriging counterpart for 200 data points in the blue squares; (b) portrays now the
ground truth || E,|| denoted by the black solid curve and the evaluated Kriging counterpart for 200 data points in the blue squares.(For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

To generate the perturbations of the dataset seen in Fig. 8, a zero mean Gaussian was added to the original dataset. This pertur-
bation via a Gaussian distribution was characterised by

U=U+N(0,0y), 5f0=aIU+N(0,aaIU), (60)
where
oy =020, o,y =020U, (61)

moreover, where [ll denotes the perturbed datasets and [l represents the average of a quantity. Upon calibration of the metamodel
using the 35 data points presented in Fig. 8, the metamodel was evaluated for the entire validation dataset of 1000 points - where to
clarify each data point within the validation dataset consists of a specific { F, D,} and hence corresponding { P, E}. These results of
which can be seen by the solid black line in Fig. 9(b) which is overlaid with a scattering of 100 ground truth data points denoted by
the blue squares. The agreement that can be seen in Fig. 9 demonstrates a strong construction of a regression metamodel considering
the level of noise witnessed in Fig. 9(a).

To further highlight the success, the norm of the derivative quantities - P and E,, - can also been seen in Fig. 10 where the full
ground truth validation dataset is plotted with a black continuous line and 200 Kriging evaluations have been overlaid using blue
square markers. Note that the 200 were chosen by evaluating and plotting every fifth data point from the validation dataset. The
accuracy of the metamodel’s prediction of P is very good noting that only the extrema points seem to deviate from the ground truth
curve in black. E, on the other hand, could still be improved but the trend shows a good correlation. It is important to state the
success given that this is a challenging model to capture consisting of eight input features all of which are handling a significant
magnitude of random noise.

In order to ensure the assessment of the noisy data is sufficient and accurate, a convergence study was carried out. This involved
evaluating the calibrated Kriging metamodel on the validation dataset which to start with consisted of the full 1000 validation data
points. Then 50 validation data points were randomly selected to be removed and Kriging re-evaluated, a process repeated until
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Fig. 11. Displays the convergence in errors for both (a) first Piola-Kirchhoff stress tensor P and (b) material electric field vector E, as the size of
the validation dataset increases.

Table 2
Presents the calibration results via a selection of metrics for a range of Kriging metamodels which utilise 5
infill data points.

Constitutive Model: No. Data: Brrors in P Errors In E,
R? Ep Ep R? Eg, Eg,

oG 19 1.0000 5.22x 1073 1.41x 1072 1.0000 3.72x 1073 2.04x 1072
MR 19 1.0000 2.01 x 1073 1.78 x 1072 1.0000 2.75% 107 4.53x 1073
TI 11 1.0000 5.77x 1073 1.03x 107! 09998  6.75x 107 4.05x 1072
ROL(a) 8 0.9868 9.50 x 1072 1.01 x 10° 0.9997 1.33x 1072 6.66 x 1072
ROL(b) 8 0.9535 1.70 x 107! 1.30 x 10° 0.9982 2.34x 1072 1.39 x 107!
ROL(c) 8 0.9633 1.58 x 107! 5.26x 107! 09916  7.19x 1072 4.58x 107!

only 50 points remained in the validation dataset. The results for this study can be seen in Fig. 11 and showcase convergence of the
error at approximately 800 points which provides confidence that the size of the chosen dataset is sufficient to accurately assess the
performance of the calibration.

5.5. Metamodel calibration results

Having discussed the procedure for metamodel calibration, it is necessary to now demonstrate a range of calibration results. But
before doing so, it is important to define the metrics used to evaluate the calibrations success. The most common metric being used
is that of the L2 error which is denoted for the two derivatives by

& _ 1 Por — Pyell s _ 1 Eogr — Eokgll

- , (62)
P I Pyl Eo 1 Eogr

where ||| represents the L2 norm and Pgy, Pyr, Eygr, Eygg are the vectorised quantities of the ground truth and Kriging first
Piola-Kirchhoff stress tensors and ground truth and Kriging material electric fields, respectively. Whilst £p and £ , Provide the local
error for a single data point, the following give a total error across all data points within a validation set
Y PL = Pigll Y 1By — Eg il
Ep=—%ipy = Fm= B ; (63)
> IR o IE

where # is the number of data points in the validation dataset. The other common metric for assessing ML calibration is the R? value
defined generically for some quantity A as

o Zi 1 Aar = Al

> AL, - Agrl
With these metrics defined, a series of example metamodels will be presented. Table 2 presents the results for six calibrated constitutive
models consisting of isotropy in the form of Ogden (OG) and Mooney-Rivlin (MR) as well as anisotropic in the form of transverse
isotropy (TI) and three different forms of the rank-one laminates (ROL). For detailed information of these constitutive models see

Appendixes E.2 to E.5.

Table 2 showcases the calibration results for six constitutive models with each calibration only including five infill data points -
selected based upon uncertainty - resulting in a very small overall calibration dataset size as seen in the second column. Having such
small dataset sizes is not suitable for calibrating the anisotropic models however, both the Ogden and Mooney-Rivlin models have

64

17



N. Ellmer et al. Computer Methods in Applied Mechanics and Engineering 448 (2026) 118349

Table 3
Presents the calibration results via a selection of metrics for a range of Kriging metamodels which utilise
10 infill data points.

Constitutive Model: ~ No. Data: Errors in P Errors in By
R? Ep Ep R? Eg, Eg,

0G 24 1.0000  524x107  1.67x1072  1.0000 2.71x107 176 x 1072
MR 24 1.0000  3.50x107%  1.19x 1072 1.0000 1.11x107%*  3.78x 1073
TI 16 10000 110x107  1.93x1072 10000 1.80x 107>  1.88x 1072
ROL(a) 13 0.9993  1.59x 1072 7.92x 1072 1.0000 437x 107  2.60x 1072
ROL(b) 13 0.9978  3.67x 1072 279x 107" 09997 142x102  6.28x 1072
ROL(c) 13 0.9928  7.78x 1072 981x 10~ 09994 2.16x 1072  1.24x 10"

Table 4
Presents the calibration results via a selection of metrics for a range of Kriging metamodels which utilise
20 infill data points.

Constitutive Model: No. Data: Errors in P Errors in B,
R? Ep Ep R? Eg, Eg,

OoG 34 1.0000 2.26% 1073 7.73 x 1073 1.0000 1.49 x 1073 1.27 x 1072
MR 34 1.0000  2.80x 1073 1.48 x 1072 1.0000 1.02x 1073 532x 1073
TI 26 1.0000 2.20% 1074 4.34x 1073 1.0000 3.93x 1074 6.84 x 1073
ROL(a) 23 0.9999 6.17x 1073 2.88 x 1072 1.0000 1.39 x 1073 1.82x 1072
ROL(b) 23 0.9999  6.68 x 1073 2.43x 1072 1.0000  3.93x 1073 3.52x 1072
ROL(c) 23 0.9998  835x 1073 5.74 x 1072 1.0000  3.86x 1073 3.44 %1072

great accuracy across both the mechanical and electrostatic error metrics. Notably the error in electric field for the Mooney-Rivlin
model calibrated on only 19 data points is a staggering 2.75 x 10~*.

It was clear that the dataset sizes for the anisotropic models were just too small, so Table 3 presents the results for the calibration
using five additional infill data points. Notice, that for the anisotropic models, simply adding five additional infill points seemingly
improves the accuracy in Ep achieved for mechanics by approximately an order of magnitude - an astounding improvement for so
little data added. This improvement enables the transversely isotropic model to now be at a usable accuracy level with errors in stress
and electric field at 1.10 x 10~3 and 1.80 x 103 respectively.

Moreover, an extra ten infill data points were provided to each constitutive models calibration dataset and the results of which are
provided in Table 4. In doing so the focus can now turn to the three rank-one laminate models. Each model (a) to (c) has an increasing
level of mechanical and electrical contrast respectively furthering the materials complexity - see Appendix E.4 for full details. Given
this, the calibration also becomes more challenging therefore highlighting how impressive calibrating an accurate model is - with R?
values approaching 1.0000 - with merely 23 data points.

5.5.1. RVE calibration results

Thus far, the laminate composite form has been presented, however, the inclusion form has not been covered. Notably, the
inclusion configuration is significantly more challenging given that the underlying constitutive model is unknown. Four calibrated
metamodels are discussed through this section with two related to the inclusion geometries demonstrated previously in Fig. 6. As
illuded to in Section 3, stress and electric field data for RVEs comes directly from running Finite Element simulations due to no
underlying analytical models existing. Instead, a multi-scale homogenisation procedure takes place within a FEM2 approach and the
resulting data taken to construct a calibration and validation dataset. Fig. 12 displays the meshes consisting of quadratic tetrahedral
elements, used for the four different RVE configurations. For these examples, the simulations take place using the Helmholtz energy,
namely ¥(F, E,) thus leading to the derivative outputs being dp¥(F, E,) and dg, ¥(F, E,) yielding P and —D,, respectively.
In order to keep continuity between the procedure for RVEs and all other constitutive models, metamodels were calibrated still on
invariants of F and Dy, - i.e. the internal energy e(F, D). The resulting calibrated models were suboptimal and it was deemed that by
switching variables there was an induced nonlinearity from an effective Legendre transform being applied. As a result, the metamodel
was also calibrated upon the Helmholtz energy - i.e. the input quantities are invariants based on F' and E,, - which yielded successful
results. Note this has an impact on the definitions for the invariants set out in Section 2.4.3 since now all electrostatic invariants
should consist of E, as opposed to D,. Furthermore, the coupled invariant I5 of F D, - F D, had to be replaced with HE, - HE,, -
as it is the natural invariant as a result of the Legendre transform. The results of all four calibrations can be seen in Table 5.

The first quantity of interest is column two of Table 5 which demonstrates that considerably more data points are required with
these substantially more challenging datasets to still achieve a reasonable accuracy. In this case, very few data points were introduced
in the initial calibration set and then infill points were added in to ensure that the minimal number of data points were being used. The
errors associated with the metamodel calibration can be found in the remainder of the columns in Table 5 which indicates reasonable
metamodel calibrations. Furthermore the R? plots for both error in the Piola-Kirchhoff stress tensor and electric displacement vector
can be found for all metamodels in Fig. 13, reiterating the success of the calibration.
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(b) RVE(b) - Ellipsoidal Inclusion

(c) RVE(c) - Body Centred Cubic (d) RVE(d) - Face Centred Fibre

Fig. 12. Presents the meshes used to generate the data for the respective RVE datasets. Further information around the material models for the
matrix and inclusion can be found in Appendix E.5.

Table 5

Presents the calibration results via a selection of metrics for four Kriging metamodels based upon RVE
data (RVE(a) with a spherical inclusion, RVE(b) with an ellipsoidal inclusion, RVE(c) as a body centred
cubic, and RVE(d) as a face centred fibre) which utilise 40, 44, 40, and 20 infill data points, respectively.

Constitutive Model: No. Data: Errors in P Errors in Dy

R Ep Ep R Ep, Ep,
RVE(a) 48 0.9998 1.28 x 1072 5.69 x 1072 0.9989 2.05x 1072 1.00 x 107!
RVE(b) 59 0.9984 3.06 x 1072 1.06 x 107! 0.9958 3.02x 1072 1.77 x 107!
RVE(c) 54 0.9972 3.78 x 1072 1.17 x 107! 0.9932 3.87x 1072 2.78 x 107!
RVE(d) 26 0.9923 6.05 x 1072 2.05x 107! 0.9703 1.06 x 107! 2.90x 107!

To further demonstrate the success and accuracy when utilising a metamodel calibrated on RVE data, three RVE models were
developed and tested on selected load paths. The first example uses the metamodel calibrated on data from the RVE with a spherical
inclusion (refer to RVE(a) in Appendix E.5 for more details) and was evaluated upon a load path which combines a uniaxial and shear
response via a deformation gradient tensor and electric field vector defined via

A oy 0 0.1
F=|0 1 0f E,=(0.1], (65)
1
0 0 2 0.5
for
A€105,...,2.5], y €10,...,0.7]. (66)

The numerical ground truth response and Kriging evaluation can be found in Fig. 14, where the ground truth data is shown through
a solid line and the Kriging metamodel prediction from the circular markers. The Kriging prediction for the stress tensor in Fig. 14(a)
appears very accurate with very strong agreement throughout the load path. This is echoed for the electric displacement as seen in
Fig. 14(b).
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Fig. 13. Displays the R? plots for both the electric displacement and stress data for all four RVE models.
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Fig. 14. Presents the load path validation for the RVE(a) constitutive model with the spherical inclusion. Subfigure (a) shows the components
P whilst (b) shows the components of D, where the solid lines represent the ground truth solution and the circle markers denote the Kriging
metamodel evaluation.
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Fig. 15. Presents the load path validation for the RVE(c) constitutive model with the body centred cubic configuration. Subfigure (a) shows the
components P whilst (b) shows the components of D, where the solid lines represent the ground truth solution and the circle markers denote the
Kriging metamodel evaluation.

The next example showcases the metamodel developed on data from RVE(c) - the body centred cubic (see Appendix E.5 for
additional details). Note that the load path follows the same uniaxial and shear combination presented in (65) and the results can be
seen in Fig. 15. Through the compression phase, the agreement is once again strong between the ground truth data and the Kriging
prediction, but this does appear to lose accuracy in Fig. 15(a) beyond an F,; value of 2.0. This is likely to be due to Kriging being used
for extrapolation at this point, which is not necessarily an objective of the Kriging framework since its performance in extrapolation
cannot be guaranteed.

Thirdly, an example presenting the evaluation of the Kriging metamodel developed to predict the response of RVE(d), a face
centred fibre configuration (see Appendix E.5 for more information), can be found in Fig. 16. For this example, the load path is
evaluated using

A y 0 0.1
F=|0 0981 0] E,=|-0.1], (67)
0 0 ;—2 0.3
for
A€[0.7,...,1.5], y €10,...,0.3], (68)

which provides a combined biaxial and shear response. Once more, a great likeness can be seen between the ground truth response
and the Kriging predicted load path for both the stress response in Fig. 16(a) and electric displacement response in Fig. 16(b).

6. Numerical examples: 3D simulations

This section aims to provide a comprehensive series of numerical examples showcasing the successful implementation of Kriging
constitutive metamodels for a range of material models and problems. Section 6.1 will demonstrate the use of an isotropic mate-
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Fig. 16. Displays the load path validation for the RVE(d) constitutive model with the face centred fibre configuration. Subfigure (a) shows the
components P whilst (b) shows the components of D, where the solid lines represent the ground truth solution and the circle markers denote the
Kriging metamodel evaluation.

Fig. 17. Depicts the schematic of the 1.5 x 0.1 X 0.01(m) domain and boundary conditions used for Examples 1, 2, and 3. The red region shows
the fixed surface, whilst the blue line indicates the midway surface with an electric potential set to zero. The green regions showcase the surfaces
where a non zero electric potential is prescribed. Note that the domain for the simulations is discretised into {75,5,2} in the {x, y, z} directions,
respectively.(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

rial model with a complex bending configuration, whilst Sections 6.2 and 6.3 showcases the change of deformation as a result of
the introduction of anisotropy. Section 6.4 displays an isotropic Ogden model in a frilling configuration where a combination of
inhomogeneous electric fields induce complex bending. To finish, Section 6.5 will display a set of wrinkling plate examples which
utilise a rank-one laminate constitutive model with varying magnitudes of mechanical and electrical contrast influencing the yielded
deformations.

To produce the 3D FEM numerical results, a custom in-house framework is used with the same Finite Element discretisation for
all simulations. Specifically, quadratic hexahedral elements are employed for the discretisation of both the displacement and electric
potential fields. Further information regarding domain dimensions are provided in each example subsection.

6.1. Example 1 - isotropic complex bending

The first example induces a complex bending mode for an isotropic Ideal Dielectric Mooney-Rivlin material model - details of which
can be found in Appendix E.2. This is achieved by fixing the surface at x,, (red region in Fig. 17), prescribing an electric potential
of 2.6 x 1073 (V) to specific regions of the upper and lower surface (green regions in Fig. 17), and setting zero electric potential to
the middle plane (blue line in Fig. 17). The domain is discretised into {75,5,2} elements in the {x, y, z} directions, respectively, and
detailed boundary conditions can be seen in Fig. 17.

The resulting deformations due to the configuration can be seen in Fig. 18. Specifically, Fig. 18(a) displays the progression in
increasing electric field of the bending actuator. Though not obvious due to the exceptionally calibrated Kriging metamodel, Fig. 18(a)
consists of a side-by-side view of the FEM results with both the ground truth (left) and Kriging (right) implemented constitutive models.
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Fig. 18. Displays the progression of a bending actuator where (a) provides a side-by-side view of the ground truth (left) and Kriging (right) based
models; (b) and (c) show the pressure and z-component of the electric displacement distributions, respectively; (d) and (e) presents the relative
errors in pressure whilst (f) shows the relative error in electric displacement.

The slight deviation noticeable in the final most curled configuration provides an early indication of the extent of success achieved
in this work. Fig. 18(b) and (c) compare the pressure and z-component of the electric displacement respectively. To see more clearly
the extent of the closeness, Fig. 18(d)-(f) portray the relative errors in the quantities shown above for both the penultimate and final
loading increments. The largest relative errors in pressure distribution are remarkably only 0.2 % in Fig. 18(d) to (e). This is even
further improved when considering the relative error in electric displacement as shown in Fig. 18(f) which has a maximum error of
only 0.04 %.

6.2. Example 2 - transversely isotropic complex bending

The next example introduces complex bending with curling as a result of the materials anisotropy. The effective electrode place-
ment forms the same configuration as the previous example, just with an applied electric potential of 3.0 x 10~ (V') - see Fig. 17 -
however, the resulting bending mode is vastly different as a result of the transversely isotropic material symmetry, with anisotropic
direction N = [0.5774,0.5774,0.5774]" . For further details on the Ideal Dielectric Transversely Isotropic material model, the reader is
directed to Appendix E.3.

Whilst the domain and electrode configurations are the same as the first example, the altered material renders a completely separate
torsional deformation as can be seen in Fig. 19. Each load increment stage presented in Fig. 19(a) consists of the ground truth solution
in purple overlaid with a slightly transparent Kriging metamodel solution. The impressive indistinguishability is reiterated across the
range of relative error plots for the pressure fields and electric displacement fields in Fig. 19(d)-(f) respectively. Despite the fact
the material is significantly more complex, the maximum errors demonstrated are equally small in pressure at 0.21 % and 0.25 % for
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Fig. 19. Portrays the progression of an anisotropic bending actuator where (a) showcases the ground truth solution in purple overlaid with the
Kriging solution in a transparent meshed view; (b) and (c) highlight the pressure distributions for two load increments of the twisted deformation
whilst (d) and (e) display the corresponding relative errors in pressure; (f) demonstrates the relative error in the final load increment for the z-
component of the electric displacement.(For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 19(d) and (e) respectively. Fig. 19(f) highlights that modelling the electric displacement field is more challenging, but still has a
very small maximum relative error of 0.2 %.

6.3. Example 3 - transversely isotropic direction discovery

The following example is used to demonstrate the success of a Kriging developed constitutive model where the direction of
anisotropy for a transversely isotropic material was not provided and has therefore been discovered using the process outlined in
Section 3. For clarity, the random anisotropic direction is N = [0.44263, —0.8847,0.1474]" and for further details on the Ideal Dielectric
Transversely Isotropic material model, the reader is directed to Appendix E.3. The numerical results presented in Fig. 20 were obtained
using the configuration detailed previously in Fig. 17.

After identifying the anisotropic direction with an insignificant derivative reconstruction error of 3.22 x 10~°, the 27 point dataset
(22 after filtering and infill) was used to calibrate a metamodel and produce the solution as seen in Fig. 20. To emphasise the
impeccable Kriging solution, Fig. 20(a) shows the Kriging solution laid over the ground truth solution with no visible separation
between them. Providing quantitative results, Fig. 20(b) and (c) provide the distributions of pressure and the resulting relative errors
respectively. The maximum relative error in pressure recorded for the final load increment was a mere 1.3 %.
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Fig. 20. Presents the progression of an anisotropic bending actuator where (a) displays the ground truth solution in purple overlaid with the Kriging
solution in a transparent meshed view; (b) demonstrates the distribution in pressure across the actuator whilst (c) provides the relative error in
pressure across the device.(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 21. Depicts the schematic of the 0.15 x 0.2 X 0.001(m) domain discretised into {24,50,2} elements in the respective {x, y, z}directions as well
as the boundary conditions used for Example 4. The red region shows the fixed surface, whilst the blue line indicates the midway surface with
an electric potential set to zero. There are two types of shaded green regions which showcase the surface where a non zero electric potential is
prescribed. The darker green regions have a higher potential of 3.0 x 10~ (V) compared to the large lighter shaded region which has an applied
electric potential of 5.0 x 10~ (V).(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

6.4. Example 4 - isotropic frilling

The fourth example aims to showcase an isotropic material model which is principal stretch based by nature - i.e. the Ideal Dielec-
tric Ogden model (see Appendix E.1 for details), with a configuration that enables a sophisticated deformation. Fig. 21 presents the
configuration which comprises of a 0.15x0.2x0.001(m) domain discretised into {24,50,2} elements in the respective
{x,y, z}directions. Moreover, the positioning of the electrodes are demonstrated which will produce an inhomogeneous electric field
leading to the combination of bending and frilling.

An intriguing solution is displayed in Fig. 22 whereby the configuration facilitates the slight bending from the low potential
applied across the bottom layer as well as the frilling across the front of the device due to the upper and lower arrangements of the
higher powered electrodes. Though hardly noticeable, Fig. 22(a) is split in two - the left half consisting of the ground truth solution
whilst the right uses the Kriging metamodel. The perfect join indicates the success of the calibration and implementation and this
is further evidenced by Fig. 22(b) with the overlaying of the two solutions. A comparison of the distributions in Cauchy stress o},
component is provided in Fig. 22(c) alongside the relative error in pressure. Fig. 22(d) shows the low average relative error with
maximum peaks lying at 0.75%. To assess the accuracy in the electric displacement evaluated via Kriging the reader is referred to
Fig. 22(e) and (f), which display the comparison in distribution of the z-component for the electric displacement as well as its relative
error on the top and bottom side of the device. The maximum relative error yielded for the electric displacement was an insignificant
0.1 %.

6.5. Example 5 - rank-one laminate wrinkling

The penultimate example takes a thin - 0.6 X 0.6 x 0.01(m) - square plate which is fixed all along the boundaries (red region in
Fig. 23). The domain is discretised into {40,40,2} elements in the corresponding {x, y, z} directions. An electric potential of zero is
prescribed midway through (blue line in Fig. 23) and a potential of 5.0 x 10~3 (V) is applied across the upper surface - green region
depicted in Fig. 23).
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Fig. 22. Portrays the complex progression of a bending and frilling actuator induced due to an inhomogeneous applied electric potential. Subfigure
(a) presents a side-by-side view of the ground truth and Kriging metamodel solutions and (b) shows an overlaid set of solutions where the ground
truth is purple in appearance and Kriging a slightly transparent mesh; (c) presents the distribution in Cauchy stress - component 12 - and (d) the
distribution in relative error of pressure; (e) and (f) show the z- component of the electric displacement and its relative error.

Fig. 23. Presents the schematic of the 0.6 X 0.6 X 0.01(m) domain as well as the boundary conditions used for Example 5. The red region shows
the fixed surface, whilst the blue line indicates the midway surface with an electric potential set to zero. The green region showcases the surface
where a potential of 5.0 x 103 (V) is prescribed. Note the domain is discretised into {40,40,2} elements in the corresponding {x, y, z} directions.(For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 24. Displays a range of plate buckling deformations where (a) - (c) demonstrate side-by-side views of the ground truth (left) and Kriging (right)
solutions for the three rank-one laminate setups distinguishable by column as {f,, =2, f, =2}; {f,, =5, f. =3}; {f,, = 10, f, = 5} respectively; (d)
- (f) show the stress distribution for the 0.75 load increment whilst (g) - (i) shows the final 1.00 load increment. The relative errors in pressure are
then presented in (j) - ().
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Fig. 25. Depicts the electrostatic quantities associated with the plate buckling configurations where (a) - (c) demonstrate the distribution of the
z-component of the electric displacement, whilst (d) - (f) highlights the relative errors in the same electric displacement quantity.

When defining a rank-one laminate material the mechanical contrast f,, and electrical contrast f,, i.e. the ratio between mechanical
and electrical material parameters, play a critical role. The response of the material under the same loading conditions can vary
significantly as a result of these simple parameters - as can be witnessed across Fig. 24. The three columns of Fig. 24 distinguish three
different rank-one laminates with contrasts as follows: { f,, = 2, f, =2}; { f,, =5, f. = 3}; {f,, = 10, f, = 5}, and the full details for the
Ideal Dielectric Rank-one Laminate material models can be found in Appendix E.4. The differing responses can be clearly seen in
Fig. 24(a)-(c) where the deformation goes from being relatively symmetric in different directions - due to the weaker contrasts - to
clearly symmetric in one direction. These figures additionally, provide the side-by-side view, where the ground truth solutions (left)
have been stitched with the Kriging solutions (right) for the final load increment.

Fig. 24(d)—(f) show the distribution for the 12-component of the Cauchy stress tensor. The emerging patterns are very similar
between the ground truth and Kriging solutions for the { f,, = 2, f, =2} and { f,, = 10, f, = 5}, however a small difference in magni-
tudes can be seen in the {f,, =5, f, = 3} setup. Whilst this is the case for the 0.75 load increment case, it can be seen that by the fully
applied load case in Fig. 24(h) the discrepancy between the two solutions has resolved. To affirm, Fig. 24(g)-(i) showcase the stress
component for the fully applied electric potential - which across the board showcase a very strong replication in distributions from
the Kriging solutions. Underneath, Fig. 24(j)—(1) finally show the relative errors in pressure for the three rank-one laminate solutions.
The { f,, = 5. f, = 3} setup appeared most challenging yielding maximum relative error of 3.6 %, whilst the others revealed maximum
errors of 3 % and 2 % respectively.

To provide information on the electrostatic solutions, Fig. 25 showcases a series of results. Fig. 25(a)—(c) display the z-component
of the electric displacement vector which appears to more clearly demonstrate the variations in deformations between the rank-one
laminate setups. Note that each column represents the same setup as Fig. 24. Interestingly, a higher value for electric displacement
seems to have formed on the buckled regions of the plate which is well captured by the Kriging solutions. The relative errors in
Fig. 25(d)-(f) seem to indicate a more challenging result for Kriging, whereby the average relative errors appear larger. However, it is
important to note the challenging nature of capturing a buckling pattern which is often associated with tougher numerical problems.
The maximum relative error values are still reasonable at 1% and 0.4 % for each respective setup.

6.6. Example 6 - RVE bending beam

To finish the numerical examples, the RVE metamodels demonstrated in Section 5.5.1 are being employed in a 3D FEM simulation.
This example will showcase the capability to utilise multiple metamodels in a single simulation by assigning two different regions of
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RVE(d)

RVE(a) .
‘ RVE(a)

) Domain formed of RVE(a) only (b) Domain split into half RVE(a) and RVE(d)

Fig. 26. Presents the schematics of the 1.0 X 0.1 X 0.01(m) domain as well as the boundary conditions used for Example 6. The red region shows
the fixed surface, whilst the blue line indicates the midway surface with an electric potential set to zero. The green region showcases the surface
where a potential of 2.6 x 1073 (V) is prescribed. Note the domain is discretised into {25,3,2} elements in the corresponding {x, y, z} directions.(For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 27. Displays the deformations achieved for the two examples, the green domain consisting of only RVE(a) and the purple domain consisting of
a domain split in half using both RVE(a) and RVE(d) - see Appendix E.5 for RVE details.(For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

the domain their own constitutive metamodel. Once again a bending configuration is being utilised and details for the domain and
boundary conditions can be found for both examples in Fig. 26.

An electric potential of 2.6 x 1073(V) is applied to the electrode configurations and the resulting deformations can be seen in
Fig. 27. Firstly, notice the green domain which bends in two directions as expected from the configuration described in Fig. 26. The
green domain consists of a single material metamodel calibrated on data from RVE(a) - see Appendix E.5 for more details on the
RVE. On the other hand, the purple domain consists of two material models, the first half for RVE(a) and the second for RVE(d). The
critical aspect to consider, is that RVE(d) consists of stiff fibres which are aligned parallel to the length of the device. As a result, the
bending can be seen to be resisted by the stiffer fibres and cannot be overcome, leading to the second half of the domain remaining
straight whilst the first half bends. Furthermore, whilst resisting bending it can also be seen that some curling occurs which again is
an artefact associated with simulating a soft matrix with stiff fibres.

7. Concluding remarks

The first element of this work highlighted the process to formulate the electromechanical problem in terms of principal stretches
for the isotropic mechanics and invariants for the anisotropic mechanics and the coupling of the physics. This has been further
extended to the required adjustments to be able to utilise this method with the outlined ML approach. The second focus outlined
a procedure for obtaining derivative contributions for each ML input variable via orthogonal projections. The use of linear algebra
enables the contributions to be evaluated which are critical when employing the Gradient Enhanced Kriging approach. Furthermore
it enables a hierarchical procedure to be used to discover the anisotropic material symmetry group for the respective dataset. This
is vital for the application of a ML approach to constitutive metamodelling since the advantages lie within the capability for ML to
be employed on a dataset from an unknown material or material with a complex microstructure resulting in a complex constitutive
model formulation. Furthermore, the challenges of handling a dataset without a known underlying model - such as the RVEs - have
been highlighted which include needing to see which input sets can sufficiently recover the known quantities. The third objective
achieved showcased an extensive set of constitutive models which have been successfully captured through the ML procedure and
integrated within the Finite Element framework to model a set of complex numerical examples which highlight that constitutive
metamodels can perform as well as their analytical counterparts. The final numerical example also presented the use of multiple
constitutive metamodels employed during a single simulation for select regions of a domain.
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Appendix A. Partial derivatives of internal energy
A.1. Isotropic contribution

The first derivatives are given by
opd =n’ @ NT, Opdy=nf @ NI, dpdy=nf @ NI,
dp, 41 =0, Opyia =0, dp,d3 =0,

(A1)

where nI.P corresponds to the columns of U/ and N f corresponds to the columns of ¥, where the superscript “P” distinguishes between
principal directions (n”, N*) and anisotropic directions (N). For the invariants the definitions are given by

opl, =0, 0pls =2FD, ® D,
dp, 14 = 2D, dp, 15 =2CD,,

(A.2)

where C is the right Cauchy-Green strain tensor (F” F). The second derivatives for the principal stretches are more complicated and
through ingredients given by Smith et al. [43], Poya et al. [39] states that these second partial derivatives can be expressed as

3 3
(aA,»U>0§FAi = Z AL ® L+ 45T ®T;, (A.3)
i=1 i=1
with
. 0,U-0,U . 0 U-0,U . 0, U-0,U
=" i=""2 J="_2
! Ay — Ay 2 A — Ay 3 A=Ay (A4
: 0,U+0,,U Z 0,U+0,,U Z 9,,U+09,,U ’
AR P T ST N+ T T A+ 4
and where T; and L, refer to the twist and flip tensors respectively, defined as
L ooo0 L oo N LU
L,=—0l0o o 17, L,=—0U0lo o ofv7, Ly=—0U0[1 0o o7,
V2 o 1 o0 V2 li o o V2o 0 o
(A.5)
L Jooo o L Jooo - N L
T,=—0l0 o -1|vT, T,=—Ulo 0o o |vT, T,=—U0|1 0o ol
V2o 1 o V2 1 o0 o V2o o o

The remaining partial derivatives are given as
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A.2. Anisotropic contribution (transverse isotropy)

dplg=2FN® N, opl; =2(HN ® N)x F, aply =0, A6
dp,Is =0, ap,I7 =0, dp, Iy =2(Dy- N)N. '
A.3. Anisotropic contribution (orthotropy)
d0ply =2FN, @ N, opl; =2(HN ® N|) X F, oplyg =2FN, ® N,,
ap I =0, ap I, =0, ap Iy =0,
Dy 16 Dy 17 Dy 18 (A.7)
dply =0, dplp =0,
Op,fo =2(Dg- N{)Ny, 0p,T10 =2(Dg - N,) N,

Appendix B. Rank-one laminate homogenisation details

The projection operator 7 5y € R3*? given in Fig. 3 is used to project onto the plane normal to the unit vector N defined by
Tn=T QE +T,QE,. (B.1)
where T and T, are two linearly independent vectors contained within the plane of lamination and vectors E,; and E, are [1,0]”
and [0, 117 respectively [9].

Appendix C. GPR additional info

The objective of this Appendix is to provide fully the definitions of the derivatives for the correlation matrix R as seen in (44b) and
(44c), and the derivatives of the cross-correlation matrix as seen in (58a) and (58b). Whilst this appears trivial, careful consideration
must be taken when considering the hybrid principle stretches and invariants approach.

C.1. Correlation matrix

For the correlation matrix R, the hybrid approach yields two first derivatives, the first of which is the derivative of the unchanged
correlation function R (I?,1¥), ) in terms of the input invariants given by

o0 R =20,(1 ~1)")R(1".19).6). 1)

For the isotropic invariants {I,, I, I3} which are functions of the principle stretches A, an adjusted correlation function denoted by
R(I(A®),1(AY), 8) which requires the use of the chain rule via

0,0R = Z < 1>R> A(/ﬂg)- (C.2)
With regards to the second derivatives required for (44c), there are four possible combinations within this hybrid approach

0 _ {0 (1D _ i 10
aImImR 29k[5k1 20,(Ik -1 )(I[ - )]R(I(’,I(/),e),

3

3
(@) 23 ) 2
/1(”,1(”72 Z 0/1(,)1 < 00 )04%)Ik +3; [Z (aim olk )al(”R]

k,l=1 k=1

3
AmI(nR Za/l(')l <I<r>1mR>

=1

3
2 2 R ()
dl(,w)R Z (am U) )a/ﬁ,{)lk :

k=1

(C.3)

C.2. Cross-correlation matrix

For the definition of the cross-correlation matrix = in (52), only the correlation function and the first derivatives are required
leading to the same expressions given in (C.1) and (C.2). Taking the first derivative of the g, block of » with respect to the ith
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evaluation point (needed for (58a)) has two components again given by
— «(i) () o(i j
o R = 20, (157 -1 )R (19,19, 6%),
3 _ (C.4)
0/1;'('()7?, = Z <dl;((,>R>aj:'(ll)I;((1).
k=1
Taking the first derivative of the g, block of = given in (58b) yields

a(w)R 29k[5k1—29,(r“) IE{/‘))(IM I“))]R(I‘QI(/),@),

3
2 _ 102 B R

afm AmR = Z aA;j‘)Il <al-<i>1(/)R>aA(”{)Ik g
n m =1 Ik

(C.5)
-( )
% (')Im Z 90l l ( ) (/>R>
3
2 _ 2 1)
al;m/lmR - Z <6I 010 >aj%)lk ‘
m =t
Appendix D. Metamodel synthetic data generation
The extended spherical parametrisation in R> for use in evaluating the deviatoric directions in Algorithm 2 is given by
cos ¢!
sin ¢ cos ¢,
Xip=| singsingjcosg] | i€ [lnx, (D.1)
sin 4)’1 sin ¢‘2 sin ¢’3 cos d)l
sin qb‘l sin 47‘2 sin ¢’3 sin ¢’4
The basis for the symmetric and traceless second order tensors used for the construction of F' in Algorithm 3 are given as
1 2 0 0 1 0 0 0 1 o 1 0
\1/1=\/;o 1ol w,=q/20 1 o} qx3=\/;1 0 ol (D.2)
0 0 -1 0o 0 -1 0o 0 O
1 0o 0 1 1 0O 0 0
\I’4=\/;O 0 0} \I’5=\/g0 0 1) (D.3)
1 0 0 0o 1 0

Appendix E. Constitutive model details

The extensive range of constitutive models used throughout this work are outlined in the following subsections. Note that often
these models are defined in terms of the isotropic mechanical invariants {I,, I,, I3} which are defined as

=F:F, IL,=H : H, I = detF. (E.1)

The material parameters for the selected constitutive models are not necessarily representative of electroactive polymer materials.
It is important to note that the deformations still reflect the true performance, but the resulting information and applied electric
potential is scaled, namely V..., = V' 1/€/u,. This has been covered comprehensively in previous work, see Remark 6 in Section 5 of
[53].

E.1. Ogden ideal dielectric

The definition for the Ogden Ideal Dielectric strain energy density is given by

U(Ay Ay, 23, 13, I5) = :2::1 Z—l‘:(,ﬂl"’ + A+ A - 3) — upIn (412943 + %(/11/12/13 -1)°+ 2%% (E.2)
where the material parameters are given in Table E.1.
E.2. Mooney-Rivlin ideal dielectric
The definition for the Mooney-Rivlin Ideal Dielectric strain energy density is given by
Ul Iy, Iy, Is) = %(11 -3)+ %(12 —3) = (uy +2m,)In(I3) + %([3 -1)*+ 215 i (E.3)

where the material parameters are given in Table E.2.
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Table E.1

Material parameters used for the Ogden ideal dielectric.

Parameter: (VIS T a, a (21,4, 43} €

Value: 0.5 1 35 5 5 1
Table E.2

Material parameters used with the
Mooney-Rivlin model.

Parameter: Hy 1y A €

Value: 0.5 0.5 5 1

E.3. Transversely isotropic ideal dielectric

The definition for the Transversely Isotropic Ideal Dielectric strain energy density is given by

U (L), I, Iy, Iy, 05, I, 1) = %(11 -3)+ %(12 =3) = () + 20, + m3)In(I3) (E.4)
A 2 H3 a, M p,1(1 1 115
# A= 1) 4 521" + S 1)+ (st s )+ 5

where the material parameters are given in Table E.3.

Table E.3

Material parameters used with the transversely isotropic model.

Parameter: My Hy Hs A a s N €
T

Value: 05 05 75 5 2 2 [1/\/5 13 1/\/5] 1

E.4. Rank-one laminate ideal dielectric

The definition for the Rank-one Laminate Ideal Dielectric strain energy density is given by

U (I 8T 2) = S (17 = 3) o 3812 = 3) = (ud + 208)In(15) (E5)
1 2 1 5
+34(15 = 1) +2—€”—2,
UP(IE I8 12 18) = S (10 = 3) + 343 (12 = 3) = (uf + 242)In( 1) (E.6)
Lip(rp —1)? 4 L 15
S it E

where the material parameters for the three variations given in Table E.4.

Table E.4
Material parameters used with the rank one laminate model.

a p VA P
Value (ROL(a)): 05 05 5 1 z/4 z/4 2 2 06

Parameter: ;4'1’ Mg A4 €

Value (ROL(b)): 0.5 0.5 5 1 /4 /4 5 3 0.6

Value (ROL(c)): 0.5 0.5 5 1 /4 /4 10 5 0.6

Note that the mechanical contrast f,, denotes the ratio between y,, u, 4, and the electric contrast, the ratio between e

=—= .

b b
Hy Hy yu eb
S N _< E.7
fm ”? Mz Aa fe ( )

Furthermore, ¢ represents the volume fraction where ¢, = ¢ and ¢, = 1 — ¢, whilst IV denotes the direction of lamination characterised
via the two angles « and # such that IN = [sin f cos a, sin fsin a, cos #]” .
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E.5. Relative volume element details

The RVE consists of a unit cell (1 x 1 x 1) cube design which is divided into two subdomains one associated with the matrix X u €
By and the other, associated with the inclusion X, € Bg , such that Bou =By U Bg , and By n Bf) = ). Within each subdomain,
" " " " "

U
the internal energy density is defined by U,(X,. 1 1 12,4 s 13;4 s 15;4) =Y,X,,F,E, M) according to

Upy,. I, 1, 15,) X, € B,

¥, (X, F o B = Uy(X o 0y I s, 05 = (E.8)

Uy, b, 15,0 15,) X, €85

Note that in all cases, RVE(a-d), the free energy density functions are of the Mooney-Rivlin type, as described in Appendix E.2 but
using the material parameters given in Table E.5.

Table E.5
Material parameters used for the RVE.

Parameter: u;” y;" AM em I fe ry r, r, a Yl

Value (RVE(a)): 1 1 10 1 5 5 0.25 0.25 0.25 - -

Value (RVE(b)): 1 1 10 1 5 5 0.1 0.4 0.2 /3 /4

Value (RVE(c)): 1 1 10 1 5 5 0.25 0.25 0.25 - -

Value (RVE(d)): 1 1 10 1 5 5 0.25 0.25 - . -

The configurations for each case above is as follows: RVE(a) has a spherical inclusion, RVE(b) has an ellipsoidal inclusion, RVE(c)
is a body centred cubic, and RVE(d) is a face centred fibre. The corresponding geometries are clearly depicted in Fig. 12. Note that
the mechanical contrast f,, denotes the ratio between y,, u,, 4, and the electric contrast, the ratio between ¢ as

MMy i ¢
fm:ﬁzﬁzi_’"’ fo=—. (E.9)

Furthermore, a and g are angles which determine the amount rotation in the xz and xy planes respectively.

Appendix F. Obtaining the reduced log likelihood

Recall the opposite log-likelihood function (47) and the optimal model parameters (48) as found via the Maximum Likelihood
Estimation technique

Z(UIp.0%.0) = glog @)+ % log (62) + % log (IR®)]) + 217(0 —1HTR OV - 1p),
@ = (1"R~' 1) 1" R} (O)U, (F.1)
> () = %(U -15°6))" R™'(6)(U - 15*(8)).
By substituting the optimal parameters (48) into the opposite log-likelihood function (47) one can obtain

5 w 0% _A A 2% 1
SZ(Ulﬁ o ,9) = 2 log(2m) + 3 log (0' )+ > log (IR©)))

1 T (F.2)
+—(U-1p*) R7(O)(U - 157).
202
which can be re-expressed as
(Ui o2 0) = A Ao (o) 4 L Ao®”
3(U|ﬁ o ,9) = £ log@m) + 5 log (a )+ 3 oz (RO + 2% (F.3)
which leads to a simple factorisation
o % 2% — é é 2% l
ff(UIﬂ .o ,9) = Zog@m) + 1)+ 7 log (0' )+ > log (IR©)). (F.4)

Here the constant term will now be neglected since it will not have an impact on the minimisation, and the term of interest can also
be factorised as follows

:Z(Um*,oz*,e) - §<log (02*> n % 1og(|R(9)|)). (F.5)

Finally, the rules of logs can be applied to first raise the pre-multiplied fraction to the power of the determinant term and then join
the two terms

Z(U157,6>',0) = S log WO, F.6)
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where
* 1
w(6) =" (0)|R(O)|7, (F.7)
thus retrieving (50).

Appendix G. Finite element implementation in nonlinear electromechanics

This Appendix presents the Finite Element discretisation of the weak forms associated with the coupled differential equations
governing the behaviour of EAPs, presented in (2). These weak forms correspond with the stationary conditions of the following
variational principle

T, ¢) = inf sup { / Y(F,Ep)dV —II" () — T, (@) } (G.1)
® By
where IT7,, and TI¢  represent the external energetic contributions, defined as
" () = / fo-ddvV + / to-pdA, T (@)= —/ pepdV — / @ dA. (G.2)
Bo 9,8 By 9B

As standard in finite elements, the domain B, described in Section 2, representing the EAP, undergoes partitioning into a finite
collection of distinct and non-overlapping elements, denoted as e € E. This division is carried out according to
By~ By = B (G.3)
eckE
The unknown fields {¢, ¢}, along with their corresponding test functions {5¢,5¢}, are discretised utilising the functional spaces
V4" x v¢" and \/g’ "% \/6” h, respectively. These are defined as follows

¢

n
node

2 Nid, .

a=1

4

pevt; ¢

e
By

@
n
node

ve' peEV?; " N?qg, ¢, (G.4)

Be
0 a=1

P L
V! {V¢e\/¢,¢—00na¢80},

ot _ h _
v _{v(pew, <p_00naq,130}.

In the context of any given field ) from the set {¢, ¢}, the quantity "fo 4o Signifies the count of nodes within each element of the
discretisation pertaining to the field Y. Furthermore, let N, ;v : By — R be representative of the ath shape function employed for the
purpose of interpolating the field Y. Additionally, Y, denotes the value attributed to the field Y at the ath node of a specific finite
element. By incorporating the functional spaces as defined in Eq. (G.4), it becomes feasible to express the stationary conditions of
Eq. (G.1) in relation to their corresponding residual contributions arising at the elemental level, namely

N N
DU[s¢] = ) 6¢,-R?, =0,  DIlsg] =) 5¢,R?, =0, (G.5)
e=1

e=1
where N signifies the count of elements utilised within the foundational discretisation framework. Additionally, each of the distinct
residual contributions, denoted as Rfe and RY,, is amenable to representation in the following manner?

R{fB:/ (aF\P)VONg’dV+/ NefodV, Rge=—/ <0EO‘I’)~V0N§’dV+/ N dv. (G.6)
55 55 B B

A Newton-Raphson scheme can be used for the solution of the weak forms in (G.5), which implies the following linearisation with
respect to incremental fields A¢ € \/(;’S and Ap € \/(;”

0 = DII[6¢] + DII[6¢] + D*TI[5¢; Ad] + D*TI[5¢p; Ag] + D*T1[5¢; Ad] + D*T1[5¢; Ag), (G.7)
with

N N
DM[6¢, Apl = Y ¢, - KIP A, DMIsp, Mgl =Y 60, K% Mgy,

e=1 e=1

N N (G.8)
DMI(sp, Adl = Y 60, - KOP Ay, D60, Apl = Y 69,K%Y Ay,

e=1 e=1

2 For the sake of simplicity, the external contributions, specifically those pertaining to t, and w at the boundary, have been omitted from the
expression in (G.6).
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where each of the stiffness contributions is expressed as
(K2.), = [ (FoN®),(Sane) (@3 9),,, v,
0
(K#0.), == [ (Fan), (Ban?), (33, ), 4
0 (G.9)
K= [, (), (G, (FoN2), v

K¢¢ — (K‘Pd’ )T.

abe — ab,e

A Legendre transformation to take one from an internal energy density to a Helmholtz free energy density is given by

Y(F,E,) = i]r)lf{e(F,DO) - Dy Ey}, (G.10)
0

from where the Hessian components are related as

-1
2 _ 2
L (aDoDoe) ,

(0%}30‘1‘)1_” - _<6%D0e>i1M(a%0E0W)MJ’ (G.11)

2 ) _ (42 2
(aFFT>inJ B (aFFe>inJ (aFDOe>iIM (aEOF\P)MjJ'
Finally, standard global assembly of the residual and stiffness contributions in (G.6) and (G.9), respectively, permits to obtain the
discrete form of Eq. (G.7) in terms of the nodal incremental vector fields {A¢, Agp}

K% k9o El’ R?
[Kwﬁ qu] A‘(h == [R“’] : (G.12)

Solution of {Ep,&}} permits the update of the nodal solution fields {ﬂ),ﬂ;} at every node of the underlying Finite Element dis-
cretisation at a given Newton-Raphson iteration k + 1 as

=3 +8p. =3+ (G.13)
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