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 a b s t r a c t

This paper introduces a new approach to developing electromechanical constitutive metamodels 
via the use of Gradient Enhanced Gaussian Predictors (Kriging). The formulation uses principal 
stretches for the isotropic mechanics, invariants for the electrostatics and coupling terms, and 
accounts for anisotropy through the relevant inclusion of anisotropic invariants associated with 
a respective symmetry integrity basis. Three novelties are presented in this paper. The first is the 
use of orthogonal projections to identify the most appropriate set of inputs - related to material 
anisotropy - for use in the metamodel. By projecting the stress and electric field data into several 
derivative bases - defined for each anisotropic class - and then reconstructing the quantities, the 
errors in reconstruction can be assessed thus inferring the most appropriate class of anisotropy. 
Furthermore, the procedure forms a pre-processing stage and is particularly useful when an un-
derlying model is completely unknown as seen when modelling Relative Volume Elements. The 
second novelty arises from the use of a hybrid formulation, namely the principal stretches for 
isotropic mechanics and the electromechanical anisotropic invariants. This is beneficial during 
the projection procedure in reducing the cases where the projection matrix becomes singular but 
requires careful development of the correlation function to maintain physical symmetry condi-
tions. Thirdly, the electromechanical metamodels are calibrated upon the concentric styled data 
before being integrated within a Finite Element framework and tested upon a range of challeng-
ing simulations including bending actuators with induced torsion, frilling due to bending with 
selected electrode placement, as well as buckling plates tested with three rank-one laminate ma-
terials with increasing levels of anisotropy due to physical contrasts. The successful calibration 
and implementation of the metamodels can be witnessed amongst the wide range of presented 
numerical examples.

1.  Introduction

Soft robotics is a rapidly advancing field which aims to exploit the properties of soft active materials to improve several aspects 
such as biomimetic actuation [1], or an improved human-machine interface via self-sensing capabilities [2]. To realise this capability, 
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\begin {equation}\label {eqn:boundary_conditions} \underbrace { \begin {aligned} \partial \mathcal {B}_0 &= \partial _{\vect {\phi }}\mathcal {B}_0 \cup \partial _{\vect {t}}\mathcal {B}_0, \\ \emptyset &= \partial _{\vect {\phi }}\mathcal {B}_0 \cap \partial _{\vect {t}}\mathcal {B}_0, \end {aligned}}_{\text {Mechanical boundary regions}} \qquad \qquad \qquad \underbrace { \begin {aligned} \partial \mathcal {B}_0 &= \partial _{\varphi }\mathcal {B}_0 \cup \partial _{\omega }\mathcal {B}_0, \\ \emptyset &= \partial _{\varphi }\mathcal {B}_0 \cap \partial _{\omega }\mathcal {B}_0. \end {aligned}}_{\text {Electrostatic boundary regions}}\end {equation}
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\begin {equation}\label {eqn:log_likelihood} \mathscr {L} \left (\vect {U} | \beta , \sigma ^2, \vect {\theta }\right ) = \frac {A}{2}\log \left (2\pi \right ) + \frac {A}{2}\log \left (\sigma ^2\right ) + \frac {1}{2}\log \left (|\vect {R} \left ( \vect {\theta } \right )|\right ) + \frac {1}{2\sigma ^2} {\left ( \vect {U} - \vect {1}\beta \right )}^T \vect {R}^{-1}\left ( \vect {\theta } \right ) \left ( \vect {U} - \vect {1}\beta \right ),\end {equation}


$A = N \left ( 1 + {N_{inp}} \right )$


$\textbf {I}$


$\vect {R}$


$\vect {U}$


\begin {equation}\label {eqn:optimal_parameters} \begin {aligned} \beta ^* \left ( \vect {\theta } \right ) &= {\left ( \vect {1}^T \vect {R}^{-1} \left ( \vect {\theta } \right ) \vect {1} \right )}^{-1} \vect {1}^T \vect {R}^{-1} \left ( \vect {\theta } \right ) \vect {U}, \\ {\sigma ^2}^* \left ( \vect {\theta } \right ) &= \frac {1}{ {A}} {\left (\vect {U} - \vect {1}\beta ^*\left ( \vect {\theta } \right ) \right )}^T \vect {R}^{-1} \left ( \vect {\theta } \right ) \left ( \vect {U} - \vect {1}\beta ^*\left ( \vect {\theta } \right ) \right ). \end {aligned}\end {equation}


$\vect {\theta }$


$boxmin$


$fmincon$


$\{\beta ^*, {\sigma ^2}^*\}$


\begin {equation}{\bar {\mathscr {L}} \left (\vect {U} | \beta , \sigma ^2, \vect {\theta }\right ) = \frac {A}{2}\log \left ({\sigma ^2}^* \left (\bm {\theta }\right )\right ) + \frac {1}{2}\log \left (|\bm {R}|\left (\bm {\theta }\right )\right ),} \label {Xeqn32-34}\end {equation}


\begin {equation}\label {eqn:reduced_log_likelihood} \psi \left ( \vect {\theta } \right ) = {\sigma ^2}^* \left ( \vect {\theta } \right ) | \vect {R} \left ( \vect {\theta } \right ) |^{\frac {1}{ {A}}},\end {equation}


$\textbf {I}^{\bullet } \in \mathbb {R}^{M \times {N_{inp}}}$


$M$


\begin {equation}\label {eqn:joint_distribution} \begin {bmatrix} \vect {U} \\ \vect {U}^{\bullet } \left ( \textbf {I}^{\bullet } \right ) \end {bmatrix} \sim \left ( \begin {bmatrix} \vect {1} \\ \vect {1} \end {bmatrix} \beta ^*, {\sigma ^2}^* \begin {bmatrix} \vect {R} & \vect {r}^{T} \left ( \textbf {I}^{\bullet } \right ) \\ \vect {r} \left ( \textbf {I}^{\bullet } \right ) & \vect {I} \end {bmatrix} \right ),\end {equation}


$\vect {U} = \vect {U}(\textbf {I})$


$\vect {R} = \vect {R}(\textbf {I})$


$\bm {I}$


$\vect {r}\left ( \textbf {I}^{\bullet } \right )$


$\vect {r}\left ( \textbf {I}^{\bullet } \right )$


$\vect {R}$


\begin {equation}\label {eqn:r_block} \vect {r} \left (\textbf {I}^{\bullet } \right ) = \begin {bmatrix} \vect {q}_1 \\ \vect {q}_2 \end {bmatrix},\end {equation}


\begin {align}\label {eqn:r_q1_block} {\left [ \vect {q}_1 \right ]}^{\left (i\right )\left (j\right )} = \mathcal {R} \left ( \textbf {I}^{\bullet \left (i\right )}, \textbf {I}^{\left (j\right )}, \vect {\theta }^* \right ), \qquad i \in \left [1,\hdots ,M\right ]; \quad j \in \left [1,\hdots ,N\right ],\end {align}


\begin {align}\label {eqn:r_q2_block} {\left [ \vect {q}_2 \right ]}_k^{\left (i\right )\left (j\right )} = \partial _{\text {I}_k^{\left (j\right )}} \mathcal {R}, \qquad i \in \left [1,\hdots ,M\right ], \quad j \in \left [1,\hdots ,N\right ], \quad k \in \left [1,\hdots , {N_{inp}}\right ].\end {align}


\begin {equation}\label {eqn:conditional_mean} \vect {U}^{\bullet } \left ( \textbf {I}^{\bullet } \right ) = \vect {1}\beta ^* + \vect {r}\left (\textbf {I}^{\bullet }\right )\vect {R}^{-1} \left (\vect {U} - \vect {1}\beta ^*\right ).\end {equation}


$\vect {P}$


$\vect {E}_0$


$\textbf {I}^{\bullet }$


\begin {equation}\begin {aligned} \partial _{\textbf {I}^{\bullet }} \vect {U}^{\bullet } = \left ( \partial _{\textbf {I}^{\bullet }} \vect {r} \right ) \vect {R}^{-1} \left (\vect {U} - \vect {1}\beta ^*\right ), \end {aligned} \label {Xeqn39-41}\end {equation}


\begin {equation}\label {eqn:first_deriv_r} \partial _{\textbf {I}^{\bullet }} \vect {r} = \begin {bmatrix} \partial _{\textbf {I}^{\bullet }} \vect {q}_1 \\ \partial _{\textbf {I}^{\bullet }} \vect {q}_2 \end {bmatrix}, \qquad i \in \left [ 1,\hdots ,M \right ], \quad j \in \left [1,\hdots ,N\right ],\end {equation}


\begin {equation}\label {eqn:q1} {\left [ \partial _{\textbf {I}^{\bullet }} \vect {q}_1 \right ]}_k^{\left (i\right )\left (j\right )} = \partial _{\text {I}_k^{\bullet \left (i\right )}} \mathcal {R}, \qquad i \in \left [1,\hdots ,M\right ], \quad j \in \left [1,\hdots ,N\right ], \quad k \in \left [1, \hdots , {N_{inp}}\right ],\end {equation}


\begin {equation}\label {eqn:q2} {\left [ \partial _{\textbf {I}^{\bullet }} \vect {q}_2 \right ]}_{kl}^{\left (i\right )\left (j\right )} = \partial ^2_{\text {I}_l^{\bullet \left (i\right )}\text {I}_k^{\bullet \left (j\right )}} \mathcal {R}, \qquad i \in \left [1,\hdots ,M\right ], \quad j \in \left [1,\hdots ,N\right ], \quad k,l \in \left [1, \hdots , {N_{inp}}\right ].\end {equation}


$\bm {\Psi }$


$\bm {F}$


$\vect {D}_0$


$E_{\bm {P}}$


$E_{\bm {E}_0}$


\begin {equation}\label {eqn:l2_error} E_{\bm {P}} = \frac {\sum _{i=1}^{n}\| \bm {P}^i_{GT} - \bm {P}^i_{KR} \|}{\sum _{i=1}^{n}\| \bm {P}^i_{GT} \|}, \qquad E_{\bm {E}_0} = \frac {\sum _{i=1}^{n}\| {\bm {E}^i_0}_{GT} - {\bm {E}^i_0}_{KR} \|}{\sum _{i=1}^{n}\| {\bm {E}^i_0}_{GT} \|},\end {equation}


$100$


$\vect {R} \left ( \textbf {I}, \vect {\theta } \right )$


$\vect {R} \left ( \textbf {I}, \vect {\theta } \right )$


$\epsilon _1$


$\epsilon _2$


$\vect {R} \left ( \textbf {I}, \vect {\theta } \right )$


\begin {equation}\label {eqn:correlation_matrix_noisy} \vect {R} \left ( \textbf {I}, \vect {\theta } \right ) = \begin {bmatrix} \vect {Q}_{11} + \epsilon _1 \vect {I} & \vect {Q}_{12} \\ \vect {Q}_{12}^T & \vect {Q}_{22} + \epsilon _2 \vect {I} \\ \end {bmatrix},\end {equation}


$\vect {I}$


$\epsilon _1$


$\vect {Q}_{11}$


$\epsilon _2$


$\vect {Q}_{22}$


$\vect {\theta } = \left \{ \theta _1, \hdots , \theta _{ {N_{inp}}}, \epsilon _1, \epsilon _2 \right \}$


\begin {equation}\tilde {U} = U + \mathcal {N} \left ( 0, \sigma _U \right ), \qquad \widetilde {\partial _{\textbf {I}}U} = \partial _{\textbf {I}}U + \mathcal {N} \left ( 0, \sigma _{\partial _{\textbf {I}}U} \right ), \label {Xeqn44-45}\end {equation}


\begin {equation}\sigma _U = 0.2 \bar {U}, \qquad \sigma _{\partial _{\textbf {I}}U} = 0.2 \overline {\partial _{\textbf {I}}U}, \label {Xeqn45-46}\end {equation}


$\tilde {\blacksquare }$


$\bar {\blacksquare }$


$35$


$1000$


$\{\bm {F}, \bm {D}_0\}$


$\{\bm {P}, \bm {E}_0\}$


$100$


$100$


$\bm {P}$


$\bm {E}_0$


$\| \bm {P} \|$


$200$


$\| \bm {E}_0 \|$


$200$


$200$


$200$


$\bm {P}$


$\bm {E}_0$


$1000$


$50$


$50$


$\bm {P}$


$\bm {E}_0$


$800$


\begin {equation}\label {eqn:hat_error} \hat {E}_{\bm {P}} = \frac {\| \bm {P}_{GT} - \bm {P}_{KR} \|}{\| \bm {P}_{GT} \|}, \qquad \hat {E}_{\bm {E}_0} = \frac {\| {\bm {E}_0}_{GT} - {\bm {E}_0}_{KR} \|}{\| {\bm {E}_0}_{GT} \|},\end {equation}


$\| \blacksquare \|$


$\bm {P}_{GT}$


$\bm {P}_{KR}$


${\bm {E}_0}_{GT}$


${\bm {E}_0}_{KR}$


$\hat {E}_{\bm {P}}$


$\hat {E}_{\bm {E}_0}$


$n$


$R^2$


$\bm {A}$


\begin {equation}R^2 = \frac {\sum _{i=1}^{n}\| \bar {\bm {A}}_{GT} - \bm {A}^i_{KR} \|}{\sum _{i=1}^{n}\| \bm {A}^i_{GT} - \bar {\bm {A}}_{GT} \|}. \label {Xeqn48-49}\end {equation}


$19$


$2.75 \times 10^{-4}$


$E_{\bm {P}}$


$1.10 \times 10^{-3}$


$1.80 \times 10^{-3}$


$R^2$


$1.0000$


$23$


$\Psi \left ( \bm {F}, \bm {E}_0 \right )$


$\partial _{\bm {F}}\Psi \left ( \bm {F}, \bm {E}_0 \right )$


$\partial _{\bm {E}_0}\Psi \left ( \bm {F}, \bm {E}_0 \right )$


$\bm {P}$


$-\bm {D}_0$


$\bm {F}$


$\bm {D}_0$


$e\left (\bm {F}, \bm {D}_0\right )$


$\bm {F}$


$\bm {E}_0$


$\bm {E}_0$


$\bm {D}_0$


$I_5$


$\bm {FD}_0 \cdot \bm {FD}_0$


$\bm {HE}_0 \cdot \bm {HE}_0$


$40$


$44$


$40$


$20$


$R^2$


$R^2$


\begin {equation}\label {eqn:RVE_F_E0_1} \bm {F} = \begin {bmatrix} \lambda & \gamma & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac {1}{\lambda } \end {bmatrix}, \qquad \bm {E}_0 = \begin {bmatrix} 0.1 \\ 0.1 \\ 0.5 \end {bmatrix},\end {equation}


\begin {equation}\lambda \in \left [ 0.5, \hdots , 2.5 \right ], \qquad \gamma \in \left [0, \hdots , 0.7\right ]. \label {Xeqn50-51}\end {equation}


$\bm {P}$


$\bm {D}_0$


$\bm {P}$


$\bm {D}_0$


$F_{11}$


$2.0$


$\bm {P}$


$\bm {D}_0$


\begin {equation}\label {eqn:RVE_F_E0_2} \bm {F} = \begin {bmatrix} \lambda & \gamma & 0 \\ 0 & 0.98\lambda & 0 \\ 0 & 0 & \frac {1}{\lambda ^2} \end {bmatrix}, \qquad \bm {E}_0 = \begin {bmatrix} 0.1 \\ -0.1 \\ 0.3 \end {bmatrix},\end {equation}


\begin {equation}\lambda \in \left [ 0.7, \hdots , 1.5 \right ], \qquad \gamma \in \left [0, \hdots , 0.3\right ], \label {Xeqn52-53}\end {equation}


$x_{\text {max}}$


$1.5 \times 0.1 \times 0.01 (m)$
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\begin {equation}\begin {aligned} \partial _{\vect {F}}\lambda _1&=\vect {n}^P_1\otimes \vect {N}^P_1, \qquad & \partial _{\vect {F}}\lambda _2&=\vect {n}^P_2\otimes \vect {N}^P_2, \qquad & \partial _{\vect {F}}\lambda _3&=\vect {n}^P_3\otimes \vect {N}^P_3, \\ \partial _{\vect {D}_0}\lambda _1&=\vect {0}, \qquad & \partial _{\vect {D}_0}\lambda _2&=\vect {0}, \qquad & \partial _{\vect {D}_0}\lambda _3&=\vect {0}, \end {aligned} \label {Xeqn53-B.1}\end {equation}


$\vect {n}^P_i$


$\hat {\vect {U}}$


$\vect {N}^P_i$


$\hat {\vect {V}}$


$P$


$\vect {n}^P$


$\vect {N}^P$


$\vect {N}$


\begin {equation}\begin {aligned} \partial _{\vect {F}}I_4&=\vect {0}, \qquad & \partial _{\vect {F}}I_5&=2\vect {FD}_0\otimes \vect {D}_0, \\ \partial _{\vect {D}_0}I_4&=2\vect {D}_0, \qquad & \partial _{\vect {D}_0}I_5&=2\vect {CD}_0, \end {aligned} \label {Xeqn54-B.2}\end {equation}


$\vect {C}$


$\vect {F}^T\vect {F}$


\begin {equation}\label {eqn:geometric lambda} \sum _{i=1}^3\Big (\partial _{\lambda _i}U\Big ) \partial ^2_{\vect {F}\vect {F}}\lambda _i=\sum _{i=1}^3\bar {\lambda }_i\vect {L}_i\otimes \vect {L}_i + \bar {\lambda }_{i+3}\vect {T}_i\otimes \vect {T}_i,\end {equation}


\begin {equation}\label {eqn:geometric lambda 2} \begin {aligned} \bar {\lambda }_1&=\frac {\partial _{\lambda _2}U-\partial _{\lambda _3}U}{\lambda _2-\lambda _3},\qquad \bar {\lambda }_2=\frac {\partial _{\lambda _1}U-\partial _{\lambda _3}U}{\lambda _1-\lambda _3},\qquad \bar {\lambda }_3=\frac {\partial _{\lambda _1}U-\partial _{\lambda _2}U}{\lambda _1-\lambda _2},\\ \bar {\lambda }_4&=\frac {\partial _{\lambda _2}U+\partial _{\lambda _3}U}{\lambda _2+\lambda _3},\qquad \bar {\lambda }_5=\frac {\partial _{\lambda _1}U+\partial _{\lambda _3}U}{\lambda _1+\lambda _3},\qquad \bar {\lambda }_6=\frac {\partial _{\lambda _1}U+\partial _{\lambda _2}U}{\lambda _1+\lambda _2}, \end {aligned}\end {equation}


$\vect {T}_i$


$\vect {L}_i$


\begin {equation}\begin {aligned} \vect {L}_1&=\frac {1}{\sqrt {2}}\hat {\vect {U}}\begin {bmatrix} 0&0&0\\ 0&0&1\\ 0&1&0 \end {bmatrix}\vect {V}^T, \quad & \vect {L}_2&=\frac {1}{\sqrt {2}}\hat {\vect {U}}\begin {bmatrix} 0&0&1\\ 0&0&0\\ 1&0&0 \end {bmatrix}\vect {V}^T, \quad & \vect {L}_3&=\frac {1}{\sqrt {2}}\hat {\vect {U}}\begin {bmatrix} 0&1&0\\ 1&0&0\\ 0&0&0 \end {bmatrix}\vect {V}^T,\\ \vect {T}_1&=\frac {1}{\sqrt {2}}\hat {\vect {U}}\begin {bmatrix} 0&0&0\\ 0&0&-1\\ 0&1&0 \end {bmatrix}\vect {V}^T, \quad & \vect {T}_2&=\frac {1}{\sqrt {2}}\hat {\vect {U}}\begin {bmatrix} 0&0&-1\\ 0&0&0\\ 1&0&0 \end {bmatrix}\vect {V}^T, \quad & \vect {T}_3&=\frac {1}{\sqrt {2}}\hat {\vect {U}}\begin {bmatrix} 0&-1&0\\ 1&0&0\\ 0&0&0 \end {bmatrix}\vect {V}^T. \end {aligned} \label {Xeqn57-B.5}\end {equation}


\begin {equation}\begin {aligned} \partial _{\vect {F}}I_6&=2\vect {FN}\otimes \vect {N}, \qquad & \partial _{\vect {F}}I_7&=2\left ( \vect {HN}\otimes \vect {N} \right ) \Cross \vect {F}, \qquad & \partial _{\vect {F}}I_8&=\vect {0}, \\ \partial _{\vect {D}_0}I_6&=\vect {0}, \qquad & \partial _{\vect {D}_0}I_7&=\vect {0}, \qquad & \partial _{\vect {D}_0}I_8&=2 \left ( \vect {D}_0 \cdot \vect {N} \right ) \vect {N}. \end {aligned} \label {Xeqn58-B.6}\end {equation}


\begin {equation}\begin {aligned} \partial _{\vect {F}}I_6&=2\vect {FN}_1\otimes \vect {N}_1, \qquad & \partial _{\vect {F}}I_7&=2\left ( \vect {HN}_1\otimes \vect {N}_1 \right ) \Cross \vect {F}, \qquad & \partial _{\vect {F}}I_8&=2\vect {FN}_2\otimes \vect {N}_2, \\ \partial _{\vect {D}_0}I_6&=\vect {0}, \qquad & \partial _{\vect {D}_0}I_7&=\vect {0}, \qquad & \partial _{\vect {D}_0}I_8&=\vect {0}, \\ \partial _{\vect {F}}I_9&=\vect {0}, \qquad & \partial _{\vect {F}}I_{10}&=\vect {0}, \\ \partial _{\vect {D}_0}I_9&=2\left ( \vect {D}_0 \cdot \vect {N}_1 \right ) \vect {N}_1, \qquad & \partial _{\vect {D}_0}I_{10}&=2\left ( \vect {D}_0 \cdot \vect {N}_2 \right ) \vect {N}_2, \end {aligned} \label {Xeqn59-B.7}\end {equation}


$\bm {\mathcal {T}_N} \in \mathbb {R}^{3 \times 2}$


$\bm {N}$


\begin {equation}\bm {\mathcal {T}_N} = \bm {T}_1 \otimes \bm {E}_1 + \bm {T}_2 \otimes \bm {E}_2, \label {Xeqn60-C.1}\end {equation}


$\bm {T}_1$


$\bm {T}_2$


$\bm {E}_1$


$\bm {E}_2$


${\left [1,0\right ]}^T$


${\left [0,1\right ]}^T$


$\bm {R}$


$\bm {R}$


$\mathcal {R} \left ( \textbf {I}^{\left (i\right )}, \textbf {I}^{\left (j\right )}, \bm {\theta } \right )$


\begin {equation}\label {eqn:correlation_function_derivative} \partial _{\text {I}_k^{\left (j\right )}} \mathcal {R} = 2\theta _k \left ( \text {I}_k^{\left (i\right )} - \text {I}_k^{\left (j\right )} \right ) \mathcal {R} \left ( \textbf {I}^{\left (i\right )}, \textbf {I}^{\left (j\right )}, \bm {\theta } \right ).\end {equation}


$\{I_1, I_2, I_3\}$


$\bm {\lambda }$


$\tilde {\mathcal {R}} \left ( \textbf {I} \left (\bm {\lambda }^{\left (i\right )}\right ), \textbf {I}\left (\bm {\lambda }^{\left (j\right )}\right ), \bm {\theta } \right )$


\begin {equation}\label {eqn:first_deriv_chain_rule} \partial _{\lambda _m^{\left (j\right )}} \mathcal {R} = \sum _{k=1}^{3} \left ( \partial _{\text {I}_k^{\left (j\right )}} \tilde {\mathcal {R}} \right ) \partial _{\lambda _m^{\left (j\right )}} \text {I}_k^{\left (j\right )}.\end {equation}


\begin {equation}\label {eqn:correlation_function_sec_derivative} \begin {aligned} \partial ^2_{\text {I}_l^{\left (i\right )} \text {I}_k^{\left (j\right )}} \mathcal {R} &= 2 \theta _k \left [ \delta _{kl} - 2 \theta _l \left (\text {I}_k^{\left (i\right )} - \text {I}_k^{\left (j\right )}\right ) \left (\text {I}_l^{\left (i\right )} - \text {I}_l^{\left (j\right )}\right ) \right ] \mathcal {R} \left ( \textbf {I}^{\left (i\right )}, \textbf {I}^{\left (j\right )}, \bm {\theta } \right ), \\ \partial ^2_{\lambda _n^{\left (i\right )} \lambda _m^{\left (j\right )}} \mathcal {R} &= \sum _{k,l=1}^{3} \partial _{ \lambda _n^{\left (i\right )}} \text {I}_l^{\left (i\right )} \left ( \partial ^2_{\text {I}_l^{\left (i\right )} \text {I}_k^{\left (j\right )}} \tilde {\mathcal {R}} \right ) \partial _{\lambda _m^{\left (j\right )}} \text {I}_k^{\left (j\right )} + \delta _{ij} \left [ \sum _{k=1}^{3} \left ( \partial ^2_{\lambda _n^{\left (i\right )} \lambda _m^{\left (j\right )}} \text {I}_k^{\left (j\right )} \right ) \partial _{\text {I}_k^{\left (j\right )}} \tilde {\mathcal {R}} \right ], \\ \partial ^2_{\lambda _n^{\left (i\right )} \text {I}_k^{\left (j\right )}} \mathcal {R} &= \sum _{l=1}^{3} \partial _{ \lambda _n^{\left (i\right )}} \text {I}_l^{\left (i\right )} \left ( \partial ^2_{\text {I}_l^{\left (i\right )} \text {I}_k^{\left (j\right )}} \tilde {\mathcal {R}} \right ), \\ \partial ^2_{\text {I}_l^{\left (i\right )} \lambda _m^{\left (j\right )}} \mathcal {R} &= \sum _{k=1}^{3} \left ( \partial ^2_{\text {I}_l^{\left (i\right )} \text {I}_k^{\left (j\right )}} \tilde {\mathcal {R}} \right ) \partial _{\lambda _m^{\left (j\right )}} \text {I}_k^{\left (j\right )}. \end {aligned}\end {equation}


$\bm {r}$


$\bm {q}_1$


$\bm {r}$


$i$


\begin {equation}\begin {aligned} \partial _{\text {I}_k^{\bullet \left (i\right )}} \mathcal {R} &= -2\theta _k \left ( \text {I}_k^{\bullet \left (i\right )} - \text {I}_k^{\left (j\right )} \right ) \mathcal {R} \left ( \textbf {I}^{\bullet \left (i\right )}, \textbf {I}^{\left (j\right )}, \bm {\theta }^* \right ), \\ \partial _{\lambda _m^{\bullet \left (i\right )}} \mathcal {R} &= \sum _{k=1}^{3} \left ( \partial _{\text {I}_k^{\bullet \left (i\right )}} \tilde {\mathcal {R}} \right ) \partial _{\lambda _m^{\bullet \left (i\right )}} \text {I}_k^{\bullet \left (i\right )}. \end {aligned} \label {Xeqn64-D.4}\end {equation}


$\bm {q}_2$


$\bm {r}$


\begin {equation}\begin {aligned} \partial ^2_{\text {I}_l^{\bullet \left (i\right )} \text {I}_k^{\left (j\right )}} \mathcal {R} &= 2 \theta _k \left [ \delta _{kl} - 2 \theta _l \left (\text {I}_k^{\bullet \left (i\right )} - \text {I}_k^{\left (j\right )}\right ) \left (\text {I}_l^{\bullet \left (i\right )} - \text {I}_l^{\left (j\right )}\right ) \right ] \mathcal {R} \left ( \textbf {I}^{\bullet \left (i\right )}, \textbf {I}^{\left (j\right )}, \bm {\theta } \right ), \\ \partial ^2_{\lambda _n^{\bullet \left (i\right )} \lambda _m^{\left (j\right )}} \mathcal {R} &= \sum _{k,l=1}^{3} \partial _{ \lambda _n^{\bullet \left (i\right )}} \text {I}_l^{\bullet \left (i\right )} \left ( \partial ^2_{\text {I}_l^{\bullet \left (i\right )} \text {I}_k^{\left (j\right )}} \tilde {\mathcal {R}} \right ) \partial _{\lambda _m^{\left (j\right )}} \text {I}_k^{\left (j\right )}, \\ \partial ^2_{\lambda _n^{\bullet \left (i\right )} \text {I}_k^{\left (j\right )}} \mathcal {R} &= \sum _{l=1}^{3} \partial _{ \lambda _n^{\bullet \left (i\right )}} \text {I}_l^{\bullet \left (i\right )} \left ( \partial ^2_{\text {I}_l^{\bullet \left (i\right )} \text {I}_k^{\left (j\right )}} \tilde {\mathcal {R}} \right ), \\ \partial ^2_{\text {I}_l^{\bullet \left (i\right )} \lambda _m^{\left (j\right )}} \mathcal {R} &= \sum _{k=1}^{3} \left ( \partial ^2_{\text {I}_l^{\bullet \left (i\right )} \text {I}_k^{\left (j\right )}} \tilde {\mathcal {R}} \right ) \partial _{\lambda _m^{\left (j\right )}} \text {I}_k^{\left (j\right )}. \end {aligned} \label {Xeqn65-D.5}\end {equation}


$\mathbb {R}^5$


\begin {align}\label {eqn:dev_dir_construction} \bm {X}_{\bm {F}}^i &= \begin {bmatrix} \cos \phi ^i_1 \\ \sin \phi ^i_1 \cos \phi ^i_2 \\ \sin \phi ^i_1 \sin \phi ^i_2 \cos \phi ^i_3 \\ \sin \phi ^i_1 \sin \phi ^i_2 \sin \phi ^i_3 \cos \phi ^i_4 \\ \sin \phi ^i_1 \sin \phi ^i_2 \sin \phi ^i_3 \sin \phi ^i_4 \end {bmatrix}, & i \in \left [1, \hdots , n_{\bm {X}_{\bm {F}}}\right ].\end {align}


$\bm {F}$


\begin {align}\bm {\Psi }_1 &= \sqrt {\frac {1}{6}} \begin {bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end {bmatrix}, & \bm {\Psi }_2 &= \sqrt {\frac {1}{2}} \begin {bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end {bmatrix}, & \bm {\Psi }_3 &= \sqrt {\frac {1}{2}} \begin {bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end {bmatrix}, \\ \bm {\Psi }_4 &= \sqrt {\frac {1}{2}} \begin {bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end {bmatrix}, & \bm {\Psi }_5 &= \sqrt {\frac {1}{2}} \begin {bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end {bmatrix}.\end {align}


$\{ I_1, I_2, I_3 \}$


\begin {align}I_1 &= \bm {F}:\bm {F}, & I_2 &= \bm {H}:\bm {H}, & I_3 &= \text {det} \bm {F}.\end {align}


$V_{scaled} = V \sqrt {\epsilon / \mu _1}$


\begin {equation}\label {Equation:OG} U \left (\lambda _1, \lambda _2, \lambda _3, I_3, I_5 \right ) = \sum _{p=1}^{N} \frac {\mu _p}{\alpha _p} \left ( \lambda _1^{\alpha _p} + \lambda _2^{\alpha _p} + \lambda _3^{\alpha _p} - 3 \right ) - \mu _p \ln \left ( \lambda _1 \lambda _2 \lambda _3 \right ) + \frac {\bar {\lambda }_p}{2} {\left ( \lambda _1 \lambda _2 \lambda _3 - 1 \right )}^2 + \frac {1}{2\epsilon } \frac {I_5}{I_3},\end {equation}


\begin {equation}\label {Equation:MR} U \left (I_1, I_2, I_3, I_5 \right ) = \frac {\mu _1}{2} \left (I_1 - 3 \right ) + \frac {\mu _2}{2} \left (I_2 - 3 \right ) - \left ( \mu _1 + 2\mu _2 \right ) \text {ln} \left (I_3 \right ) + \frac {\lambda }{2} {\left ( I_3 - 1 \right )}^2 + \frac {1}{2\epsilon } \frac {I_5}{I_3},\end {equation}


\begin {align}\label {Equation:TI} U \left (I_1, I_2, I_3, I_4, I_5, I_6, I_7 \right ) &= \frac {\mu _1}{2} \left (I_1 - 3 \right ) + \frac {\mu _2}{2} \left (I_2 - 3 \right ) - \left ( \mu _1 + 2\mu _2 + \mu _3 \right ) \text {ln} \left (I_3 \right ) \\ &+ \frac {\lambda }{2} {\left ( I_3 - 1 \right )}^2 + \frac {\mu _3}{2 \alpha } {\left (I_6 \right )}^{\alpha } + \frac {\mu _3}{2 \beta } {\left (I_7 \right )}^{\beta } + \frac {1}{2} \left ( \frac {1}{2 \alpha }\mu _3 + \frac {1}{2 \beta }\mu _3 \right ) + \frac {1}{2\epsilon } \frac {I_5}{I_3}, \nonumber \end {align}


\begin {align}\label {Equation:ROL} U^a \left (I^a_1, I^a_2, I^a_3, I^a_5 \right ) &= \frac {1}{2}\mu _1^a \left (I^a_1 - 3 \right ) + \frac {1}{2}\mu _2^a \left (I^a_2 - 3 \right ) - \left ( \mu _1^a + 2\mu _2^a \right ) \text {ln} \left (I^a_3 \right ) \\ &+ \frac {1}{2} \lambda ^a {\left ( I^a_3 - 1 \right )}^2 + \frac {1}{2\epsilon ^a} \frac {I^a_5}{I^a_3}, \nonumber \\ U^b \left (I^b_1, I^b_2, I^b_3, I^b_5 \right ) &= \frac {1}{2}\mu _1^b \left (I^b_1 - 3 \right ) + \frac {1}{2}\mu _2^b \left (I^b_2 - 3 \right ) - \left ( \mu _1^b + 2\mu _2^b \right ) \text {ln} \left (I^b_3 \right ) \\ &+ \frac {1}{2} \lambda ^b {\left ( I^b_3 - 1 \right )}^2 + \frac {1}{2\epsilon ^b} \frac {I^b_5}{I^b_3}. \nonumber \end {align}


$f_m$


$\mu _1$


$\mu _2$


$\lambda $


$\epsilon $


\begin {equation}f_m = \frac {\mu _1^b}{\mu _1^a} = \frac {\mu _2^b}{\mu _2^a} = \frac {\lambda ^b}{\lambda ^a}, \qquad f_e = \frac {\epsilon ^b}{\epsilon ^a}. \label {Xeqn68-F.7}\end {equation}


$c$


$c_a = c$


$c_b = 1 - c$


$\bm {N}$


$\alpha $


$\beta $


$\bm {N} = {\left [ \sin \beta \cos \alpha , \sin \beta \sin \alpha , \cos \beta \right ]}^T$


$1 \times 1 \times 1$


$\vect {X}_{\mu }\in \mathcal {B}^m_{0_{\mu }}$


$\vect {X}_{\mu }\in \mathcal {B}^i_{0_{\mu }}$


$\mathcal {B}_{0_{\mu }}=\mathcal {B}^m_{0_{\mu }}\cup \mathcal {B}^i_{0_{\mu }}$


$\mathcal {B}^m_{0_{\mu }}\cap \mathcal {B}^i_{0_{\mu }}=\emptyset $


$U_{\mu }(\vect {X}_{\mu },I_{1_{\mu }},I_{2_{\mu }},I_{3_{\mu }},I_{5_{\mu }})=\Psi _{\mu }(\vect {X}_{\mu },\vect {F}_{\mu }, {\bm {E}_0}_{\mu })$


\begin {equation}\Psi _{\mu }(\vect {X}_{\mu },\vect {F}_{\mu }, {\bm {E}_0}_{\mu })=U_{\mu }(\vect {X}_{\mu },I_{1_{\mu }},I_{2_{\mu }},I_{3_{\mu }},I_{5_{\mu }})= \left \{\begin {aligned} &U^m_{\mu }(I_{1_{\mu }},I_{2_{\mu }},I_{3_{\mu }},I_{5_{\mu }})\,\,&\vect {X}_{\mu }\in \mathcal {B}^m_{0_{\mu }}\\ &U^i_{\mu }(I_{1_{\mu }},I_{2_{\mu }},I_{3_{\mu }},I_{5_{\mu }})\,\,&\vect {X}_{\mu }\in \mathcal {B}^i_{0_{\mu }} \end {aligned}\right . \label {Xeqn69-F.8}\end {equation}


$f_m$


$\mu _1$


$\mu _2$


$\lambda $


$\epsilon $


\begin {equation}f_m = \frac {\mu _1^i}{\mu _1^m} = \frac {\mu _2^i}{\mu _2^m} = \frac {\lambda ^i}{\lambda ^m}, \qquad f_e = \frac {\epsilon ^i}{\epsilon ^m}. \label {Xeqn70-F.9}\end {equation}


$\alpha $


$\beta $


$xz$


$xy$


\begin {equation}\begin {aligned} \mathscr {L} \left (\vect {U} | \beta , \sigma ^2, \vect {\theta }\right ) &= \frac {A}{2}\log \left (2\pi \right ) + \frac {A}{2}\log \left (\sigma ^2\right ) + \frac {1}{2}\log \left (|\vect {R} \left ( \vect {\theta } \right )|\right ) + \frac {1}{2\sigma ^2} {\left ( \vect {U} - \vect {1}\beta \right )}^T \vect {R}^{-1}\left ( \vect {\theta } \right ) \left ( \vect {U} - \vect {1}\beta \right ), \\ \beta ^* \left ( \vect {\theta } \right ) &= {\left ( \vect {1}^T \vect {R}^{-1} \left ( \vect {\theta } \right ) \vect {1} \right )}^{-1} \vect {1}^T \vect {R}^{-1} \left ( \vect {\theta } \right ) \vect {U}, \\ {\sigma ^2}^* \left ( \vect {\theta } \right ) &= \frac {1}{ {A}} {\left (\vect {U} - \vect {1}\beta ^*\left ( \vect {\theta } \right ) \right )}^T \vect {R}^{-1} \left ( \vect {\theta } \right ) \left ( \vect {U} - \vect {1}\beta ^*\left ( \vect {\theta } \right ) \right ). \end {aligned} \label {Xeqn71-G.1}\end {equation}


\begin {equation}\begin {aligned} \bar {\mathscr {L}} \left (\vect {U} | \beta ^*, {\sigma ^2}^*, \vect {\theta }\right ) &= \frac {A}{2}\log \left (2\pi \right ) + \frac {A}{2}\log \left ({\sigma ^2}^*\right ) + \frac {1}{2}\log \left (|\vect {R} \left ( \vect {\theta } \right )|\right ) \\ &+ \frac {1}{2{\sigma ^2}^*} {\left ( \vect {U} - \vect {1}\beta ^* \right )}^T \vect {R}^{-1}\left ( \vect {\theta } \right ) \left ( \vect {U} - \vect {1}\beta ^* \right ). \end {aligned} \label {Xeqn72-G.2}\end {equation}


\begin {equation}{\bar {\mathscr {L}} \left (\vect {U} | \beta ^*, {\sigma ^2}^*, \vect {\theta }\right ) = \frac {A}{2}\log \left (2\pi \right ) + \frac {A}{2}\log \left ({\sigma ^2}^*\right ) + \frac {1}{2}\log \left (|\vect {R} \left ( \vect {\theta } \right )|\right ) + \frac {A{\sigma ^2}^*}{2{\sigma ^2}^*}}, \label {Xeqn73-G.3}\end {equation}


\begin {equation}{\bar {\mathscr {L}} \left (\vect {U} | \beta ^*, {\sigma ^2}^*, \vect {\theta }\right ) = \frac {A}{2} \left ( \log \left (2\pi \right ) + 1 \right ) + \frac {A}{2}\log \left ({\sigma ^2}^*\right ) + \frac {1}{2}\log \left (|\vect {R} \left ( \vect {\theta } \right )|\right )}. \label {Xeqn74-G.4}\end {equation}


\begin {equation}{\bar {\mathscr {L}} \left (\vect {U} | \beta ^*, {\sigma ^2}^*, \vect {\theta }\right ) = \frac {A}{2} \left ( \log \left ({\sigma ^2}^*\right ) + \frac {1}{A} \log \left (|\vect {R} \left ( \vect {\theta } \right )|\right ) \right ) }. \label {Xeqn75-G.5}\end {equation}


\begin {equation}{\bar {\mathscr {L}} \left (\vect {U} | \beta ^*, {\sigma ^2}^*, \vect {\theta }\right ) = \frac {A}{2} \left ( \log \left ( \psi \left ( \vect {\theta } \right ) \right ) \right )}, \label {Xeqn76-G.6}\end {equation}


\begin {equation}{\psi \left ( \vect {\theta } \right ) = {\sigma ^2}^* \left ( \vect {\theta } \right ) |\vect {R} \left ( \vect {\theta } \right )|^{\frac {1}{A}} }, \label {Xeqn77-G.7}\end {equation}


\begin {equation}\label {eqn:mixed variational principle II} {\Pi }\left (\vect {\phi },\varphi \right ) = \inf _{\vect {\phi }}\sup _{\varphi }\left \{ \int _{\mathcal {B}_0}{\Psi (\vect {F},\vect {E}_0)}\,dV - \Pi _{\text {ext}}^m\left (\vect {\phi }\right ) - \Pi _{\text {ext}}^e\left (\varphi \right ) \right \},\end {equation}


$\Pi _{\text {ext}}^m$


$\Pi _{\text {ext}}^e$


\begin {equation}\label {eqn:external terms in the potential} \Pi _{\text {ext}}^m\left (\vect {\phi }\right ) = \int _{\mathcal {B}_0}\vect {f}_0\cdot \vect {\phi }\,dV + \int _{\partial _{\boldsymbol {t}}\mathcal {B}_0}\vect {t}_0\cdot \vect {\phi }\,dA,\qquad \Pi _{\text {ext}}^e\left ({\varphi }\right ) = -\int _{\mathcal {B}_0}\rho ^e_0{\varphi }\,dV - \int _{\partial _\omega \mathcal {B}_0}\omega _0^e{\varphi }\,dA.\end {equation}


$\mathcal {B}_0$


$e\in \mathbb {E}$


\begin {equation}\mathcal {B}_0\approx \mathcal {B}_0^h = \bigcup _{e\in \mathbb {E}} \mathcal {B}^e_{0}. \label {Xeqn80-H.3}\end {equation}


$\left \{\vect {\phi },\varphi \right \}$


$\left \{\delta \vect {\phi },\delta \varphi \right \}$


$\mathbb {V}^{\vect {\phi }^h}\times \mathbb {V}^{{\varphi }^h}$


$\mathbb {V}_0^{\vect {\phi }^h}\times \mathbb {V}_0^{{\varphi }^h}$


\begin {equation}\label {eqn:functional spaces for discretisation} \begin {aligned} \mathbb {V}^{\vect {\phi }^h}& = \left \{\vect {\phi }\in \mathbb {V}^{\vect {\phi }};\,\,\,\,\left .\vect {\phi }^h\right \vert _{\mathcal {B}_0^e} = \sum _{a=1}^{n_{\text {node}}^{\vect {\phi }}}N^{\vect {\phi }}_a\vect {\phi }_a\right \},& \\ \mathbb {V}^{{\varphi }^h} &= \left \{{\varphi }\in \mathbb {V}^{{\varphi }};\,\,\,\,\left .{\varphi }^h\right \vert _{\mathcal {B}_0^e} = \sum _{a=1}^{n_{\text {node}}^{{\varphi }}}N^{{\varphi }}_a{\varphi }_a\right \},\\ \mathbb {V}_0^{{\vect {\phi }}^h} & = \left \{\forall \vect {\phi }\in \mathbb {V}^{\vect {\phi }^h};\,\,\,\,\, \vect {\phi } = \vect {0} \,\,\text {on}\,\,\partial _{\vect {\phi }}\mathcal {B}_0\right \},& \\ \mathbb {V}_0^{{\varphi }^h}& = \left \{\forall \varphi \in \mathbb {V}^{\varphi ^h};\,\,\,\,\,\,\,{\varphi } = {0} \,\,\text {on}\,\,\partial _{{\varphi }}\mathcal {B}_0\right \}. \end {aligned}\end {equation}


$\vect {\mathcal {Y}}$


$\left \{\vect {\phi },\varphi \right \}$


$n_{\text {node}}^{\vect {\mathcal {Y}}}$


$\vect {\mathcal {Y}}$


$N^{\vect {\mathcal {Y}}}_{a}:\mathcal {B}_0^e\rightarrow \mathbb {R}$


$a$


$\vect {\mathcal {Y}}$


$\vect {\mathcal {Y}}_a$


$\vect {\mathcal {Y}}$


$a$


\begin {equation}\label {eqn:stationary conditions} D{\Pi }[\delta \vect {\phi }] = \sum _{e=1}^N\delta \vect {\phi }_a\cdot \vect {R}_{a,e}^{\vect {\phi }}=0,\qquad D{\Pi }[\delta {\varphi }]= \sum _{e=1}^N\delta \varphi _a{R}_{a,e}^{\varphi }=0,\end {equation}


$N$


$\vect {R}^{\vect {\phi }}_{a,e}$


${R}^{{\varphi }}_{a,e}$


$\vect {t}_0$


$\omega _0^e$


\begin {equation}\label {eqn:the residuals} \begin {aligned} \vect {R}_{a,e}^{\vect {\phi }} = \int _{\mathcal {B}_0^e}\left (\partial _{\vect {F}}\Psi \right )\vect {\nabla }_0N^{\vect {\phi }}_a\,dV + \int _{\mathcal {B}_0^e}N^{\vect {\phi }}_{a}\vect {f}_{0}\,dV,\qquad R_{a,e}^{\varphi } =-\int _{\mathcal {B}^e_0}\left (\partial _{\vect {E}_0}\Psi \right )\cdot \vect {\nabla }_0N^{\varphi }_a\,dV + \int _{\mathcal {B}^e_0}N^{\varphi }_a\rho ^e\,dV. \end {aligned}\end {equation}


$\Delta \vect {\phi }\in \mathbb {V}_0^{\vect {\phi }}$


$\Delta {\varphi }\in \mathbb {V}_0^{{\varphi }}$


\begin {equation}\label {eqn:NR} \begin {aligned} 0=D{\Pi }[\delta \vect {\phi }] + D{\Pi }[\delta {\varphi }] + D^2{\Pi }[\delta \vect {\phi };\Delta \vect {\phi }] + D^2{\Pi }[\delta \vect {\phi };\Delta {\varphi }] + D^2{\Pi }[\delta {\varphi };\Delta \vect {\phi }] + D^2{\Pi }[\delta {\varphi };\Delta {\varphi }], \end {aligned}\end {equation}


\begin {equation}\begin {aligned} & D^2{\Pi }[\delta \vect {\phi },\Delta \vect {\phi }] = \sum _{e=1}^N\delta \vect {\phi }_a\cdot \vect {K}_{ab,e}^{\vect {\phi }\vect {\phi }}\Delta \vect {\phi }_b,\qquad D^2{\Pi }[\delta \vect {\phi },\Delta {\varphi }] = \sum _{e=1}^N\delta \vect {\phi }_a\cdot \vect {K}_{ab,e}^{\vect {\phi }{\varphi }}\Delta {\varphi }_b,\\ & D^2{\Pi }[\delta {\varphi },\Delta {\vect {\phi }}] = \sum _{e=1}^N\delta {\varphi }_a\cdot \vect {K}_{ab,e}^{{\varphi }\vect {\phi }}\Delta {\vect {\phi }}_b,\qquad D^2{\Pi }[\delta {\varphi },\Delta {{\varphi }}] = \sum _{e=1}^N\delta {\varphi }_a K_{ab,e}^{{\varphi }{\varphi }}\Delta {{\varphi }}_b, \end {aligned} \label {Xeqn85-H.8}\end {equation}


\begin {equation}\label {eqn:tangent matrices} \begin {aligned} {\left (\vect {K}_{ab,e}^{\vect {\phi }\vect {\phi }}\right )}_{ij}&=\int _{\mathcal {B}^e_0}{\left (\vect {\nabla }_0N_a^{\vect {\phi }}\right )}_I{\left (\vect {\nabla }_0N_b^{\vect {\phi }}\right )}_J{\left (\partial ^2_{\vect {F}\vect {F}}\Psi \right )}_{iIjJ}\,dV,\\ {\left (\vect {K}_{ab,e}^{\vect {\phi }{\varphi }}\right )}_{i}&=-\int _{\mathcal {B}^e_0}{\left (\vect {\nabla }_0N_a^{\vect {\phi }}\right )}_I{\left (\vect {\nabla }_0N_b^{{\varphi }}\right )}_J{\left (\partial ^2_{\vect {FE}_0}\Psi \right )}_{iIJ}\,dV,\\ K_{ab,e}^{{\varphi }{\varphi }}&=\int _{\mathcal {B}^e_0}{\Big (\vect {\nabla }_0N_a^{{\varphi }}\Big )}_I{\Big (\partial ^2_{\vect {E}_0\vect {E}_0}\Psi \Big )}_{IJ}{\Big (\vect {\nabla }_0N_b^{{\varphi }}\Big )}_{J}\,dV,\\ \vect {K}_{ab,e}^{\varphi \vect {\phi }}&={\left (\vect {K}_{ab,e}^{\varphi \vect {\phi }}\right )}^T. \end {aligned}\end {equation}


\begin {equation}\label {eqn:legendre transformation} \Psi (\vect {F},\vect {E}_0)=\inf _{\vect {D}_0}\{e\left (\vect {F},\vect {D}_0\right ) - \vect {D}_0\cdot \vect {E}_0\},\end {equation}


\begin {equation}\label {eqn:free energy dielectric} \begin {aligned} \partial _{\vect {E}_0\vect {E}_0}^2\Psi &={\left (\partial ^2_{\vect {D}_0\vect {D}_0}e\right )}^{-1},\\ {\Big (\partial ^2_{\vect {F}\vect {E}_0}\Psi \Big )}_{iIJ}&=-{\Big (\partial ^2_{\vect {F}\vect {D}_0}e\Big )}_{iIM}{\Big (\partial _{\vect {E}_0\vect {E}_0}^2\Psi \Big )}_{MJ},\\ {\Big (\partial ^2_{\vect {F}\vect {F}}\Psi \Big )}_{iIjJ}&={\Big (\partial ^2_{\vect {F}\vect {F}}e\Big )}_{iIjJ} - {\Big (\partial ^2_{\vect {F}\vect {D}_0}e\Big )}_{iIM}{\Big (\partial _{\vect {E}_0\vect {F}}^2\Psi \Big )}_{MjJ}. \end {aligned}\end {equation}


$\{\widetilde {\vect {\Delta \phi }},\widetilde {\vect {\Delta \varphi }}\}$


\begin {equation}\begin {bmatrix} \vect {K}^{\vect {\phi }\vect {\phi }} & \vect {K}^{\vect {\phi }{\varphi }}\\ \vect {K}^{{\varphi }\vect {\phi }} & \vect {K}^{{\varphi }{\varphi }} \end {bmatrix} \begin {bmatrix} \widetilde {\vect {\Delta \phi }}\\ \widetilde {\vect {\Delta \varphi }} \end {bmatrix}=-\begin {bmatrix} \vect {R}^{\vect {\phi }}\\ \vect {R}^{{\varphi }} \end {bmatrix}. \label {Xeqn89-H.12}\end {equation}


$\{\widetilde {\vect {\Delta \phi }},\widetilde {\vect {\Delta \varphi }}\}$


$\{\widetilde {\vect {\Delta \phi }},\widetilde {\vect {\Delta \varphi }}\}$


$k+1$


\begin {equation}\begin {aligned} \widetilde {\vect {\phi }}^{k+1}=\widetilde {\vect {\phi }}^{k} + \widetilde {\vect {\Delta \phi }},\qquad \widetilde {\vect {\varphi }}^{k+1}=\widetilde {\vect {\varphi }}^{k} + \widetilde {\vect {\Delta \varphi }}. \end {aligned} \label {Xeqn90-H.13}\end {equation}
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N. Ellmer et al.

there is significant interest in soft smart materials which are electrically stimulated referred to as electroactive polymers (EAPs), and 
more specifically their subclass - dielectric elastomers (DEs) - which consist of a soft dielectric layer sandwiched between two flexible 
conductive electrode layers [3]. Maximising the potential of these material systems has propelled research into complex composites 
to harness the advantageous properties from multiple materials whilst limiting the compromising impacts [4–6].

These composites tend to be fabricated using two distinct methods leading to either laminates or inclusions. Capturing the highly 
nonlinear behaviour of these materials requires the development of intense analytical constitutive models which produce the macro-
scopic homogenised response of the material. This is achieved through employing rank-n homogenisation theory which yields the 
effective material response by delving and computing the response of each material constituent within the composite [7]. Since the 
lamination or inclusions exist at the micro-scale this introduces a multi-scale problem which necessitates the use of a Newton-Raphson 
type procedure to solve the micro-fluctuations [8,9]. The intricacy involved in such analytical models clearly demonstrates that as 
these composites continue to develop in complexity, the traditional model fitting techniques - homogenisation via fitting experimental 
data directly to pre-existing frameworks - will be unable to maintain the adequate level of accuracy.

In search of model fitting techniques which are not restricted by rigid frameworks, an increasing number of researchers are turning 
to leverage the capabilities of Machine Learning (ML). The most commonly applied ML technique is that of Neural Networks (NNs) 
which come in a variety of forms. In the context of constitutive modelling, Constitutive Artificial Neural Networks (CANNs) were 
introduced with the aim of assisting the satisfaction of physical constraints such as objectivity and material symmetry. Kuhl et al. 
[10] applied CANNs to develop models for rubber materials validated via uniaxial, biaxial and shear experimental data. Moreover, 
Linka et al. [11] compared the performance of CANNs to standard Artificial Neural Networks (ANNs) demonstrating that for isotropic 
constitutive models, CANNs required less data for calibration. Outside of ML, development of constitutive models often considers 
the notion of convexity to ensure stability and robustness [12–15]. The same can be achieved within ML as comprehensively studied 
by Klein et al. showcasing the ability to train convex NNs. These NNs use inputs based on invariants or the deformation gradient 
tensor, its cofactor and its determinant - quantities which are understood to develop polyconvex constitutive models [16]. Klein’s 
work has additionally been extended to incorporate electromechanically coupled systems [17,18]. In addition, Ortigosa et al. [19] has 
developed Physics-Augmented Neural Networks capable of calibrating thermo-electro-mechanically coupled systems. The generalised 
approach ensures flexibility in calibrating on a variety of thermodynamic potentials given by different combinations of the physical 
inputs as obtained via the appropriate Legendre transforms.

Furthermore, Laura De Lorenzis et al. [20] has developed the EUCLID scheme – unsupervised automated discovery of material 
laws (EUCLID). Using a developed catalogue of constitutive material frameworks, the scheme is capable of handling a vast range of 
data and fitting it to the appropriate frameworks. The model fitting aspect has been investigated in the context of NN’s [21] and 
a Bayesian implementation [22] with the aim of learning elastic and viscoelastic models with varying amounts of anisotropy. This 
scheme has also more recently been extended to handle data from biological tissue [23] which is hyperelastic in nature as well as a 
framework for pressure-sensitive plasticity models [24].

Gaussian Process Regression (GPR) is an alternative ML approach which has advantageous characteristics due to its probabilistic 
roots. The technique exploits properties of Gaussian distributions to formulate a joint distribution of known and predictive data 
sites over the variables of interest. The resultant predictive distribution is then sampled yielding a solution accompanied with an 
uncertainty - a useful quantity to indicate the accuracy of the prediction. Providing the uncertainty is essential for error estimation 
and capitalising on infill strategies [25–27]. The heart of GPR lies with the correlation function which comes in a variety of forms. For 
this work the authors have selected the Radial Basis Function (RBF) to correlate the observed data in the parametric space revealing 
a weighting used to indicate the importance of specific variables. Kriging is a variation of GPR developed by Matheron upon theory 
from mining engineer, Krige, in the field of geostatistics in the 1960’s [28]. Moreover, gradient data can be used to enhance Kriging’s 
calibration - a process referred to as Gradient Enhanced Kriging [29]. The advantages of the enhancement have been investigated 
by the authors in previous work, and include requiring fewer data points to achieve the same level of performance as employing the 
Ordinary Kriging counterpart [30].

Re-aligning to the context of constitutive modelling, Frankel et al. [31] details two different approaches for the use of GPR. 
The first models the stress-strain relationship directly, which requires additional measures to ensure satisfaction of physical con-
straints such as data augmentation. The second is an energy-invariant relationship which naturally satisfies constraints such as ther-
modynamics and objectivity – invariance to rigid body rotations. As illuded to, GPR can be enhanced by utilising gradient data 
during calibration. Aggarwal et al. [32] demonstrated the significance of gradient data, thus requiring only limited functional data 
to achieve an accurate constitutive model. This is particularly beneficial when considering experimental data, since the strain en-
ergy is not available on demand, whereas stress information is experimentally obtainable. Exploiting Kriging’s probabilistic roots, 
Rocha [33] has used an adaptive infill strategy based upon Kriging’s uncertainty to improve the accuracy of model results when 
simulating the elastoplastic response of fibre reinforced composites. Moreover, previous work by the authors showcased the excep-
tional capability of Gradient Enhanced Kriging to develop a variety of stretch-based hyperelastic mechanical constitutive metamod-
els. Examples were presented with metamodels from a range of anisotropic classes with high accuracy calibrated on as few as 16
datapoints [34].

This manuscript focuses on two main aspects of work, the first of which is showcasing a procedure for identifying classes 
of anisotropy from stress and electric field data directly. In current ML techniques, to obtain information regarding the material 
anisotropy group Fuhg et al. [35] and Kalina et al. [36] have introduced parameters into the NN which weights the contributions 
from anisotropic invariants thus tailoring the model towards the required anisotropic formulation. In this work, a procedure which 
exploits linear algebra - specifically orthogonal projections - is proposed to ascertain the anisotropic information prior to initiating 
the metamodel calibration. As a result, this anisotropic identification forms a pre-processing stage on the data independent of the 
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Fig. 1. Displays the progression of two DE inspired actuator devices both configured to apply an inhomogeneous electric field. Note that both 
devices are split in half in the 𝑦-direction such that the left side is modelled using the ground truth constitutive model, and the right side using the 
Kriging constitutive metamodel: (a) uses an isotropic Mooney-Rivlin model for the mechanical contribution; (b) uses an isotropic Ogden model for 
the mechanical contribution, whilst in both an Ideal Dielectric is applied for the electro contribution.

metamodel calibration process thus enabling one to use this procedure to learn about the material data regardless of intentions to 
use ML.

The second aspect involves developing a variety of coupled electromechanical constitutive metamodels which can be integrated 
into the in-house 3D FEM framework to produce a range of complex deformations (see examples in Fig. 1). The formulations developed 
in the following work are based on a mixed approach incorporating principal stretches for the isotropic mechanics and invariants for 
the anisotropy and electromechanically coupled variables. Doing so enables advantageous properties to be utilised such as the ability 
to project all purely mechanical and isotropic stresses without the need for perturbations which would be required with the invariant 
based counterparts (as carried out in [30]). As a result, accurate projections can be taken in scenarios such as when principal stretches 
take the same value - a necessity for employing Gradient Enhanced Kriging [34].

The layout of this paper is as follows: Section 2 initially introduces the reader to the core concepts of nonlinear continuum 
electromechanics with specific emphasis on the formulation of constitutive models in finite strain hyperelasticity. Section 3 then 
transitions to a description of the procedure for identifying the anisotropic group from data directly via a hierarchical approach. Next, 
Section 4 provides an overview of the Kriging approach which is employed to develop the constitutive metamodels. The numerical 
examples are then split into two parts, the first in Section 5 provides information regarding the data generation for Kriging and then 
the results for the wide range of constitutive models that have been calibrated upon. Subsequently, Section 6 presents the equally 
varied set of the FE numerical examples ranging from isotropic bending to anisotropic buckling. Concluding remarks then bring this 
work to a close in Section 7.
Notation: Throughout the paper, 𝑨 ∶ 𝑩 = 𝐴𝐼𝐽𝐵𝐼𝐽 , ∀𝑨,𝑩 ∈ ℝ3×3, and the use of repeated indices implies summation. The tensor 
product is denoted by ⊗ and the second order identity tensor by 𝑰 . The tensor cross product operation × between two artibrary second 
order tensor 𝑨 and 𝑩 entails [𝑨 × 𝑩]𝐼𝐽 = 𝐼𝑃𝑄𝐽𝑅𝑆𝐴𝑃𝑅𝐵𝑄𝑆 [37]. Furthermore,  represents the third-order alternating tensor. The 
full and special orthogonal groups in ℝ3 are represented as O(3) = {𝑨 ∈ ℝ3×3

|𝑨𝑇𝑨 = 𝑰} and SO(3) = {𝑨 ∈ ℝ3×3
|𝑨𝑇𝑨 = 𝑰 , det𝑨 = 1}, 

respectively and the set of invertible second order tensors with positive determinant is denoted by GL+(3) = {𝑨 ∈ ℝ3×3
|det𝑨 > 0}.

2.  Finite strain electromechanics

2.1.  Kinematics

A solid electroactive polymer (EAP) body undergoing a deformation can be described via two configurations, as illustrated in 
Fig. 2. The first is the material (undeformed) configuration given by 0 ⊂ ℝ3 and the second, a spatial (deformed) configuration 
given by  ⊂ ℝ3. To transform between the configurations, a mapping exists for each material particle 𝝓 ∶ 0 → ℝ3 thus translating 
from material coordinates 𝑿 ∈ 0 to spatial coordinates 𝒙 ∈  through the relationship 𝒙 = 𝝓(𝑿). Moreover, this relationship is 
employed to define the material deformation gradient 𝑭 ∈ GL+(3) also referred to as the fibre map, which leads to definitions for the 
volume map 𝐽 , and the area map 𝑯 as 

𝑭 = 𝜕𝑿𝝓, 𝐽 = det𝑭 = 1
6
𝑭 ∶ (𝑭 × 𝑭 ), 𝑯 = Cof𝑭 = 𝐽𝑭 −𝑇 = 1

2
𝑭 × 𝑭 . (1)
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Fig. 2. Demonstrates the mappings of material coordinates to spatial coordinates (fibre map F  in blue, area map H in green, and volume map 𝐽
in red).(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

2.2.  Governing equations in finite electromechanics

The response of an EAP body is governed by the following coupled boundary value problem
𝑭 = 𝜕𝑿𝝓, in 0

DIV𝑷 = −𝒇 0, in 0

𝝓 = 𝝓∗, on 𝜕𝝓0

𝑷𝑵 = 𝒕0, on 𝜕𝒕0
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Conservation of linear momentum and kinematics

𝑬0 = −𝜕𝑿𝜑, in 0

DIV𝑫0 = 𝜌0, in 0

𝜑 = 𝜑∗, on 𝜕𝜑0

𝑫0 ⋅𝑵 = −𝜔0, on 𝜕𝜔0
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Gauss’ and Faraday’s Law

(2)

where the equations on the left represent the purely mechanical response whilst those on the right constitute the electrostatic response. 
In (2), the DIV(■) operator denotes the divergence with respect to the material coordinates 𝑿 ∈ 0 whilst 𝑵 represents the material 
outward unit vector. On the left hand side of (2), the mechanical quantities 𝒇 0 and 𝒕0 are the body and traction forces acting on the 
undeformed body 0 and surface area 𝜕0, respectively. The electrostatic quantities on the right hand side of (2) include the electric 
potential scalar field denoted 𝜑 as well as the electric charge acting on the undeformed body 0 and surface area 𝜕0 denoted by 𝜌0
and 𝜔0, respectively. The boundary of the undeformed body, 𝜕0, is described by two non-overlapping regions for imposing Dirichlet 
𝜕𝝓0 and Neumann 𝜕𝒕0 boundary conditions such that

𝜕0 = 𝜕𝝓0 ∪ 𝜕𝒕0,

∅ = 𝜕𝝓0 ∩ 𝜕𝒕0,
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Mechanical boundary regions

𝜕0 = 𝜕𝜑0 ∪ 𝜕𝜔0,

∅ = 𝜕𝜑0 ∩ 𝜕𝜔0.
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Electrostatic boundary regions

(3)

Finally, note the two pairs of work conjugates in (2), the deformation gradient tensor 𝑭  and first Piola-Kirchhoff stress tensor 𝑷 , as well 
as the electric field vector 𝑬0 and material electric displacement vector 𝑫0. Through the application of an appropriate constitutive 
model, definitions for 𝑷  and 𝑫0 will be obtained consisting of contributions from mechanics and electrostatics thus demonstrating 
the coupling of physics.

2.3.  Internal energy density requirements in electromechanics

To close the system of governing equations outlined in (2) a constitutive relationship needs to be defined, often in the form of an 
internal energy density. Moreover, this relationship can be seen to couple the physics as the internal energy density 𝑒 is dependent 
on the deformation gradient tensor 𝑭  and the material electric displacement 𝑫0 as

𝑒 ∶ 𝐺𝐿+(3) ×ℝ3 → ℝ,
(

𝑭 ,𝑫0
)

→ 𝑒
(

𝑭 ,𝑫0
)

. (4)

Taking partial derivatives of 𝑒(𝑭 ,𝑫0
) with respect to both 𝑭  and 𝑫0 yields the first Piola-Kirchhoff stress tensor 𝑷  and the material 

electric field 𝑬0 respectively, as described below
𝑷 = 𝜕𝑭 𝑒

(

𝑭 ,𝑫0
)

, 𝑬0 = 𝜕𝑫0
𝑒
(

𝑭 ,𝑫0
)

. (5)
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Additionally, taking the second partial derivatives yields three more quantities: the fourth order elasticity tensor , the third order 
coupled piezoelectric tensor , and the second order dielectric tensor 𝜽 as

 = 𝜕2𝑭𝑭 𝑒
(

𝑭 ,𝑫0
)

,  = 𝜕2𝑫0𝑭
𝑒
(

𝑭 ,𝑫0
)

, 𝜽 = 𝜕2𝑫0𝑫0
𝑒
(

𝑭 ,𝑫0
)

. (6)

The internal energy density 𝑒(𝑭 ,𝑫0
) is required to conform to physical principles including that of objectivity, also referred to as 

material frame indifference, namely 
𝑒
(

𝑸𝑭 ,𝑫0
)

= 𝑒
(

𝑭 ,𝑫0
)

, ∀𝑭 ∈ 𝐺𝐿+(3), 𝑸 ∈ 𝑆𝑂(3), 𝑫0 ∈ ℝ3. (7)

Furthermore, critical when considering anisotropy is that 𝑒(𝑭 ,𝑫0
) must adhere to the specific material symmetry group  through 

𝑒
(

𝑭𝑸,𝑫0
)

= 𝑒
(

𝑭 ,𝑫0
)

, ∀𝑭 ∈ 𝐺𝐿+(3), 𝑸 ∈  ⊆ 𝑂(3), 𝑫0 ∈ ℝ3. (8)

It is also important to state that the internal energy 𝑒(𝑭 ,𝑫0
)

, first Piola-Kirchhoff stress tensor 𝑷 , and material electric field vector 
𝑬0 must all vanish in the absence of deformation and electric displacement. This can be mathematically described by 

𝑒
(

𝑭 ,𝑫0
)

|𝑭=𝑰 ,𝑫0=𝟎 = 0, 𝑷
(

𝑭 ,𝑫0
)

|𝑭=𝑰 ,𝑫0=𝟎 = 𝟎, 𝑬0
(

𝑭 ,𝑫0
)

|𝑭=𝑰 ,𝑫0=𝟎 = 𝟎. (9)

The conditions presented in (7)–(9) are the essential physical principles. Additionally, it is customary to apply the notions of polycon-
vexity to the internal energy density thereby ensuring the propagation of real wave speeds, guarantees the existence of minimisers, 
thus providing numerical stability [38]. Whilst outside the scope of this work, Poya et al. has outlined the steps to satisfy polycon-
vexity via a principal stretch approach which involves monitoring the Hessian matrix - formed of the second derivatives given in (6) - 
and setting any subsequent subzero eigenvalues to zero [39,40]. Upon assessment of the numerical examples presented in this work, 
all conducted examples converged without unphysical instabilities thus rendering the implementation of such steps unnecessary.
Remark 1. Note that there are several forms of free energies available such as the internal energy, 𝑒(𝑭 ,𝑫0

)

, Helmholtz’s energy, 
Ψ
(

𝑭 ,𝑬0
)

, enthalpy 𝐻(

𝑷 ,𝑫0
)

. The definitions can be transitioned between using the appropriate Legendre transforms - for more 
information the reader is referred to [19,41]. 

2.4.  Principal stretch-based electromechanics

To embed objectivity into the internal energy density 𝑒(𝑭 ,𝑫0
) and simultaneously satisfy material symmetry conditions it is 

common to formulate in terms of invariants of the right Cauchy-Green strain tensor [38,42] or in terms of principal stretches [39,43]
𝑒
(

𝑭 ,𝑫0
)

= 𝑈 (I), (10)

where I1 denotes an input set that could consist of invariants, or principal stretches, or a mixture of both as will become evident. 
Furthermore, recall (5) where the first Piola-Kirchhoff stress tensor 𝑷  and material electric field 𝑬0 were defined as partial derivatives 
of 𝑒(𝑭 ,𝑫0

) with respect to the deformation gradient tensor 𝑭  and the electric displacement vector 𝑫0. Application of the chain rule 
and convenient decomposition into isotropic and anisotropic contributions enables them to be re-expressed as

𝑷 =
𝑚𝑖𝑠𝑜
∑

𝑖=1

(

𝜕I𝑖𝑈
)

𝜕𝑭 I𝑖

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
Isotropic contribution

+
𝑚
∑

𝑖=𝑚𝑖𝑠𝑜+1

(

𝜕I𝑖𝑈
)

𝜕𝑭 I𝑖,

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Anisotropic contribution

𝑬0 =
𝑚𝑖𝑠𝑜
∑

𝑖=1

(

𝜕I𝑖𝑈
)

𝜕𝑫0
I𝑖

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
Isotropic contribution

+
𝑚
∑

𝑖=𝑚𝑖𝑠𝑜+1

(

𝜕I𝑖𝑈
)

𝜕𝑫0
I𝑖,

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Anisotropic contribution

(11)

where 𝑚𝑖𝑠𝑜 and 𝑚 signify the number of isotropic inputs and the total number of inputs including the additional anisotropic invariants, 
respectively. Similarly, a generic definition for the second derivatives can also be expressed as

 =
𝑚
∑

𝑖=1

(

𝜕I𝑖𝑈
)

𝜕2𝑭𝑭 I𝑖 +
𝑚
∑

𝑖,𝑗=1

(

𝜕2I𝑖I𝑗𝑈
)

𝜕𝑭 I𝑖 ⊗ 𝜕𝑭 I𝑗 ,

 =
𝑚
∑

𝑖=1

(

𝜕I𝑖𝑈
)

𝜕2𝑫0𝑭
I𝑖 +

𝑚
∑

𝑖,𝑗=1

(

𝜕2I𝑖I𝑗𝑈
)

𝜕𝑫0
I𝑖 ⊗ 𝜕𝑭 I𝑗 ,

⨔ =
𝑚
∑

𝑖=1

(

𝜕I𝑖𝑈
)

𝜕2𝑫0𝑫0
I𝑖 +

𝑚
∑

𝑖,𝑗=1

(

𝜕2I𝑖I𝑗𝑈
)

𝜕𝑫0
I𝑖 ⊗ 𝜕𝑫0

I𝑗 .

(12)

Note that (12) has not been separated into isotropic and anisotropic contributions for readability, but the deconstruction would follow 
that of (11). Thus far, (11) and (12) have provided a generic formulation, and to provide the reader with specifics, the remainder of 
this section has been broken into the contributions for a variety of anisotropic classes.

1 Notice that here I and I represent different quantities, namely the former is for the potential set of inputs consisting of either invariants or 
principal stretches and the latter is the second order identity tensor.
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2.4.1.  Isotropic contribution
Starting with isotropy, principal stretches will be used to describe the mechanics whilst invariants will be used for the electrostatics 

and coupling. Firstly then, the principal stretches can be obtained through the right polar decomposition of the deformation gradient 
tensor 𝑭  as

𝑭 = 𝑹𝑼 , (13)

where 𝑹 ∈ 𝑆𝑂(3) is the rotation tensor and 𝑼 is the symmetric positive definite stretch tensor. To retrieve these quantities from 𝑭 , 
singular value decomposition (SVD) can be employed

𝑭 = 𝑼̂𝚲𝑽̂ 𝑇 , 𝑹 = 𝑼̂ 𝑽̂ 𝑇 , 𝑼 = 𝑽̂ 𝚲𝑽̂ 𝑇 . (14)

Note that in (14), 𝑼̂ and 𝑽̂ 𝑇  are the left and right singular-matrices, respectively, and the tensor 𝚲 encodes the singular-values of 𝑭 , 
i.e. the principal stretches 𝜆1 ≥ 𝜆2 ≥ 𝜆3 such that 𝜆𝑖 = Λ𝑖𝑖. For the electromechanical invariants, the following definitions are utilised

𝐼4 = 𝑫0 ⋅𝑫0, 𝐼5 = 𝑭𝑫0 ⋅ 𝑭𝑫0. (15)

With the principal stretches and invariants for isotropy established, the set I used in (10) can be set to I = {

𝜆1, 𝜆2, 𝜆3, 𝐼4, 𝐼5
}

. In the 
interest of being concise the definitions for the relevant partial derivatives required in (11) and (12) can be found in Appendix A.1.

2.4.2.  Anisotropic contribution (transverse isotropy)
Introducing anisotropy will require additional invariants which are used to incorporate favoured anisotropic directions. For trans-

verse isotropy, the anisotropic invariants are given by
𝐼6 = FN ⋅ FN , 𝐼7 = HN ⋅HN , 𝐼8 =

(

𝑫0 ⋅𝑵
)2, (16)

where N is the preferred anisotropic direction, perpendicular to the plane of isotropy in the material. With these invariants it can 
be seen that in (10), 𝑚 = 8 and I = {

𝜆1, 𝜆2, 𝜆3, 𝐼4, 𝐼5, 𝐼6, 𝐼7, 𝐼8
}

. The relevant partial derivatives for (11) and (12) can be found in 
Appendix A.2.

2.4.3.  Anisotropic contribution (orthotropy)
Another common form of anisotropy is that of orthotropy which is characterised by three unitary and orthogonal preferential 

directions {𝑵1,𝑵2,𝑵3
}

. Several invariants can be used to capture orthotropy and they are given by
𝐼6 = FN1 ⋅ FN1, 𝐼7 = HN1 ⋅HN1, 𝐼8 = FN2 ⋅ FN2,

𝐼9 =
(

𝑫0 ⋅𝑵1
)2, 𝐼10 =

(

𝑫0 ⋅𝑵2
)2.

(17)

With these invariants it can be seen that in (10), 𝑚 = 10 and I = {

𝜆1, 𝜆2, 𝜆3, 𝐼4, 𝐼5, 𝐼6, 𝐼7, 𝐼8, 𝐼9, 𝐼10
}

. The corresponding derivatives for 
(11) and (12) can be found in Appendix A.3.
Remark 2. The invariants which have been presented throughout Section 2.4 have been carefully chosen by the authors to ensure 
the sufficient characterisation of the constitutive models presented in the numerical examples. It must be noted however that this list 
is not exhaustive and other invariants (up to 13 in the most comprehensive case for orthotropy - see Table 16 of [44]) can be included 
and might be required for alternative constitutive models. 

2.5.  Application to composite materials

To model increasingly complex material microstructures it is critical to utilise composite related theory such as rank-n homogeni-
sation theory [7,45]. This process enables a material’s microstructure to be captured in homogenised macroscopic quantities which 
will then be used during the Finite Element Method (FEM). However, this process is not trivial and involves a nonlinear problem 
wrapped within the standard FEM process leading to what is commonly referred to as FEM2 [8,9]. Fig. 3 presents a side-by-side com-
parison of the electromechanical homogenisation process for the two most common composite types: rank-one laminates [4–6,9,46] 
and matrix-inclusions described through representative volume elements [17,18].

3.  Hierarchical structure discovery

Material anisotropy is categorised into material symmetry groups which are characterised by a set of invariants - some of which 
can be found in Section 2.4. A primary aim of introducing GPR into constitutive model development is to reduce the analysis required 
to identify and fit the most appropriate pre-existing framework, however, this is only achievable if the most appropriate material 
symmetry group can be identified from the data directly without prior knowledge of a material sample. When the symmetry group 
is isotropy, then the preparation and use of ML is immediate due to the metamodel inputs being invariants which are only functions 
of the data itself - see Section 2.4.1. This is not the case when the material is anisotropic since the structural tensors and vectors 
associated with the symmetry group also need to be identified. As an example, consider transverse isotropy where the material 
symmetry group requires the structural rank-one tensor N ⊗N - for full details see Section 2.4.2. Once transverse isotropy is found 
to be the most appropriate symmetry group, the best vector N also needs to be identified. Moreover, it must be noted that these 
material parameters need to be identified a priori in order to prepare the data for metamodel calibration, since the inputs are formed 
of invariants which are functions of these structural vectors or tensors.
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Fig. 3. Presents a side by side comparison of the approach to evaluate the homogenised quantities for rank-one laminates and representative volume 
elements, with the aim of demonstrating their similarities.
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3.1.  Hierarchical structure discovery procedure

In this work, the authors propose a systematic and algebraically grounded procedure to identify the most appropriate material 
symmetry group and corresponding optimal structural tensors of the underlying data set. The approach relies on the tools of linear 
algebra, particularly orthogonal projections. Each candidate symmetry group is associated with a set of invariants, as comprehensively 
detailed by Zheng in [44]. The method centres on projecting constitutive quantities - specifically, the first Piola–Kirchhoff stress P
and the material electric field E0 - onto subspaces defined by these symmetry groups. To facilitate this operation, P  and E0 are 
vectorised and concatenated into a single 12-dimensional vector a ∈ ℝ12

a =
[

P̂

E0

]

, (33)

where ■̂ denotes the vectorised form of the tensor. Each vector a corresponds to a data point associated with an (unknown) underlying 
material symmetry group . In principle, the data may originate either from numerical simulations or experimental observations 
and can be assumed to be derived from an unknown internal energy density function 𝑈 , which depends on a set of invariants 
{𝐼1,… , 𝐼𝑚} ∈ 

𝒂 =
𝑚
∑

𝑖=1
𝑎𝑖𝒗𝑖, 𝑎𝑖 = 𝜕𝐼𝑖𝑈, (34)

with

v𝑖 =

[

𝜕F 𝐼𝑖
𝜕D0

𝐼𝑖

]

, 𝑖 = {1,… , 𝑚}. (35)

Remark 3. Among the selected invariants {𝐼∗1 ,… , 𝐼∗𝑚∗} ∈ ∗, some are isotropic, whilst others are anisotropic with respect to the 
material symmetry group ∗. The anisotropic invariants depend on a set of structural vectors or tensors that characterise the material 
anisotropy. These structural quantities are, in general, unknown a priori. The procedure for identifying the optimal set of such vectors 
or tensors that best approximate 𝒂∗ to 𝒂 is detailed in Section 3.2. As a result, for the remainder of this Section, the structural vectors 
and tensors required to evaluate the selected invariants are assumed to be known. 

This formulation enables a direct analogy with linear algebra: the vector a resides in a subspace  ⊂ ℝ12 determined by the 
material symmetry group . The vectors v𝑖 span this subspace and form a generating set 𝐵  which, if linearly independent, constitute 
a basis. The scalars 𝑎𝑖 represent the components of a with respect to this basis. The goal is to determine the material symmetry group 
∗ whose associated subspace ∗ is closest to the one inferred from the data. For this purpose, a new set of invariants {𝐼∗1 ,… , 𝐼∗𝑚∗} ∈ ∗
are selected and used to construct a surrogate internal energy function 𝑈∗ using Kriging interpolation. Differentiation with respect 
to these invariants yields an approximate field

𝒂∗ =
𝑚∗
∑

𝑖=1
𝑎∗𝑖 𝒗

∗
𝑖 , 𝑎∗𝑖 = 𝜕𝐼∗𝑖 𝑈

∗, (36)

where

v∗
𝑖 =

[

𝜕F 𝐼∗𝑖
𝜕D0

𝐼∗𝑖

]

, 𝑖 = {1,… , 𝑚∗}. (37)

The selected invariants - more specifically their derivatives denoted by v∗
𝑖  - define a basis 𝐵∗  for the subspace ∗ ⊂ ℝ12, allowing 

the field a∗ to be expressed explicitly in terms of basis vectors and corresponding coefficients. To identify the projection of the true 
response vector a onto the candidate subspace ∗, the orthogonal projection of a onto ∗ spanned by the known basis {v∗

1 ,… ,v∗
𝑚∗}

is computed. The coefficients 𝑎∗𝑖  can be determined by solving the following linear system

⎡

⎢

⎢

⎣

a ⋅ v∗
1

⋮
a ⋅ v∗

𝑚∗

⎤

⎥

⎥

⎦

= M
⎡

⎢

⎢

⎣

𝑎∗1
⋮
𝑎∗𝑚∗

⎤

⎥

⎥

⎦

, with [M ]𝑖𝑗 = v∗
𝑖 ⋅ v

∗
𝑗 , 𝑖, 𝑗 = {1,… , 𝑚∗}. (38)

This projection framework allows for a rigorous and quantitative comparison between symmetry groups by measuring the proximity 
between the actual field a and its best approximation a∗ within the subspace ∗. A diagramatic view of this process can be seen in 
Fig. 4.

Following this construction, a 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 can be evaluated between the reconstructed vector a∗ and the true vector a via the standard 
L2 error

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
‖a∗ − a‖

‖a‖
, (39)

which enables the assessment of the suitability of the chosen vector subspace ∗ and thus the chosen material symmetry group. If 
the chosen ∗ is capable of fully describing the true vector a then the 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 will of course be zero. However, when handling 
more complex composite materials such as RVEs, the most suitable material symmetry group remains disputed and as a result, this 
procedure will become a minimisation problem such that the process iterates through symmetry groups in order of complexity and 
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Fig. 4. Displays a reference diagram used to describe the projection process during hierarchical structure discovery.

attempts to identify the most suitable group by minimising for the 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 in (39). The procedure for a single selected material 
symmetry group can be found summarised more clearly in Algorithm 1.

Additionally, one also needs to consider the structural tensors or vectors which are used to characterise specific anisotropic material 
symmetry groups. For each symmetry group assessed, Algorithm 1 needs to be wrapped in an optimisation problem defined through

{∗} = argmin


𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
(

a,a∗), (40)

where  denotes the relevant set of structural tensors or vectors for the selected material symmetry group. To summarise then, 
for the hierarchical procedure of identifying the most appropriate symmetry group and structural tensors and vectors, one needs to 
iterate over the optimisation problem in (40) for each symmetry group which is embedded with the process outlined in Algorithm 1 
where the 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is the objective function.

Algorithm 1 Pseudo-code for the procedure of material symmetry group discovery.
1: Evaluate the set of appropriate derivatives to form ∗ as in (37) - see Section 2.4
2: Conduct the projections of a in ∗ - see (38)
3: Construct a∗ from the projected components - see (36)
4: Evaluate the 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 between the true vector a and constructed vector a∗ - see (39)

3.2.  Hierarchal structure discovery examples

To showcase the outlined procedure in action, a range of examples have been selected and provided across this subsection. The first 
example is used to identify the appropriate material symmetry group and anisotropic direction for data produced via the transversely 
isotropic material model provided in Appendix E.3. Moreover, this includes a small study assessing the performance of the method 
when the “severity” of anisotropy (controlled by material parameter 𝜇3) is varied. Challenging examples utilising RVEs then follow 
in Sections 3.2.2 and 3.2.3, which truly represent the need for such a method where the underlying material symmetry group and 
corresponding anisotropic directions are simply unknown. In these cases the dataset is generated by running FEM simulations on the 
RVE configurations for a selection of deformation gradient tensors F  and electric field vectors E0 (the use of a Helmholtz type energy 
instead of an internal energy will become clear later).

3.2.1.  Transverse isotropy
The first example then takes a  transversely isotropic model with material parameters corresponding to those in Appendix E.3, but 

using a random direction N ∈ ℝ3 to be revealed shortly. A dataset was generated using the ground truth model consisting of only 27
data points each of which with a corresponding P  and 𝑬0. The first material class to be assessed via the procedure is that of isotropy 
which is defined by the five inputs as covered in Section 2.4.1. When the outlined procedure was conducted for isotropy, the 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
was 4.97 × 10−1, which clearly indicates isotropy does not consist of a sufficient basis to describe this material. As a result, the next 
most complex class, transverse isotropy, is assessed which is characterised using the anisotropic direction N . Since N is a parameter, 
this must be obtained via an optimisation problem, i.e. finding the vector N which yields the smallest error in (39), whilst testing 
for this material group. Fig. 5(a) showcases the evolution of the boxmin objective function denoted 𝑓 - which is equal to the 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
in (39) - and Fig. 5(b) demonstrates the evolution and convergence of the anisotropic direction to [0.44263,−0.8847, 0.1474]𝑇 . Within 
ten boxmin iterations the 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 was 3.22 × 10−6, substantially lower and thus indicating that this anisotropic class is sufficient.

When verifying the results, the selected material was a transversely isotropic material with direction N =
[0.4423,−0.8847, 0.1474]𝑇 . The L2 relative error between the actual and optimised directions came to 0.006%. This discovered class 
of anisotropy was then used to calibrate a metamodel for which the results can be seen later in Section 6.3.

A further investigation has been conducted to understand the impacts of the “severity” of anisotropy, namely the magnitude of 
material parameter 𝜇3, on the ability for the projection procedure to accurately ascertain the material symmetry group and direction 
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Fig. 5. Showcases the evolution of the anisotropic directions as the boxmin algorithm optimises two angles characterising the anisotropic direction 
to minimise the objective function. In (a) 𝑓 is the evaluation of the objective function which is equal to the 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 in (39). In (b) the blue arrow 
indicates the initial guess and the black arrows show the boxmin converging to the correct result presented by a red arrow.(For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1 
Presents the results of a study using 27 data points to investigate the im-
pact of changing the 𝜇3 material parameter on the ability to discover the 
direction of anisotropy N . Information about the transversely isotropic 
model can be found in Appendix E.3.

𝜇3:
 distance (see (39))

Relative error in predicted N :
 Isotropy:  Transverse Isotropy:

 0.0 5.24 × 10−16  –  –
 1.0 2.90 × 10−1 2.53 × 10−6  0.0062%
 3.0 4.48 × 10−1 2.91 × 10−6  0.0052%
 5.0 4.83 × 10−1 3.13 × 10−6  0.0052%
 7.5 4.97 × 10−1 3.22 × 10−6  0.0052%

N . In the transversely isotropic model - see Appendix E.3 - the 𝜇3 parameter scales the contribution from the transversely isotropic 
invariants. Note, that for the investigation the same 27 data points were utilised with the same direction N = [0.4423,−0.8847, 0.1474]𝑇

but the stresses and electric fields are updated to incorporate the adjusted 𝜇3 parameter. The results for a variety of selected values 
for 𝜇3 can be found in Table 1.

Starting with a 𝜇3 of zero, the procedure correctly identifies that the data should correspond to a fully isotropic model. Interest-
ingly, the lower values for 𝜇3 shown in Table 1 which would indicate a “weak anisotropy” can also be well captured. Larger values 
additionally achieve an excellent level of accuracy as presented previously.

3.2.2.  RVE - spherical inclusion
The previous example showcased a transversely isotropic material which is relatively simple to identify and verify. This next 

example involves a representative volume element (RVE) consisting of a soft matrix with a stiffer (five times stiffer), spherical inclusion 
- see Fig. 6(a) for a digram and see Appendix E.5 RVE(a) for information on the material parameters. The challenge associated with this 
example is that the underlying analytical model to fully characterise this material is unknown and the data in which the metamodel 
will be calibrated on is the result of finite element simulations utilising a multi-scale homogenisation procedure as demonstrated 
in Section 2.5. During the procedure, it was seen that not all ten of the inputs presented in Section 2.4.3 were required as their 
derivatives were not necessarily all linearly independent - which presented itself through numerical analysis of the projection matrix 
which was observed to become rank deficient.

When passed to the hierarchical discovery procedure with a dataset of 27 data points, the isotropy and transverse isotropy classes 
were tested yielding 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 of 7.79 × 10−2 and 3.74 × 10−4 respectively. In order to more accurately capture the RVE, the orthotropic 
anisotropy class is generally considered which yielded a 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 of 4.70 × 10−6. To provide an initial seed to the boxmin algorithm 
for the anisotropic directions N1 and N2, SVD was performed on P  from a single data point, and the two left vectors associated 
with the largest singular values taken. This ensures the initial seed vectors are firstly orthogonal and also in a region aligned with the 
inclusion which intuitively would most influence the anisotropic directions. Note that for transverse isotropy it was possible to assess 
the correct convergence of material parameter N , given that the underlying analytical model was known. The same is not possible 
with an RVE which highlights the challenges of working with composites.

A cubic RVE with a central spherical inclusion (as demonstrated by RVE(a) in Fig. 6(a)) might give the impression that it should 
yield an isotropic response due to its symmetry. However, this is not always the case as can be observed in Section 3.2.2. Kalina et 
al. [36] showcased an isotropic response for two inclusion geometries, specifically with a radius of 0.1𝐿 and 0.5𝐿, the latter of which 
means the diameter spans the full width 𝐿 of the RVE. In either of these, the matrix or inclusion are likely to dominate thus rendering 
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Fig. 6. Showcases two 1 × 1 × 1 RVE configurations with a soft matrix and a stiffer embedded particle inclusion.

isotropy, especially since any slice of the RVE should consist of a similar ratio between materials. Furthermore, a mechanical contrast 
of 1.5 is used for some of the examples which is not significantly large. Thusly, if the correct combination of geometry and property 
contrast is selected an isotropic response can be observed. Of course this may not be the case, as in Section 3.2.2, where orthotropy 
is observed due to the use of an inclusion of radius 0.25𝐿 and mechanical contrast 5. This anisotropy has additionally been observed 
by Kalina et al. (see Section 5.2.1 of [47]) where a cube shaped RVE with a central spherical inclusion produced a response best 
captured via cubic symmetry group 7.

3.2.3.  RVE - ellipsoidal inclusion
The final example in this section demonstrates an RVE with an ellipsoidal inclusion - see Fig. 6(b) for a digram and see Appendix E.5 

RVE(b) for information on the material parameters - thus increasing the level of expected anisotropy. Once again, when passed through 
the hierarchical structural discovery procedure with the isotropic and transversely isotropic classes, high 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 were obtained of 
7.65 × 10−2 and 2.74 × 10−3 respectively. The next stage involved fitting the orthotropic class which achieved a reduced 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 of 
9.27 × 10−5 deducing it was the most suitable anisotropic class. An example ML metamodel has been calibrated using the results of 
this procedure and is presented in Section 5.5.

4.  Gaussian process prediction

The constitutive relationships outlined in Sections 2.3 and 2.4 are crucial for Finite Element modelling. Alternatives to the con-
ventional method of obtaining these models include generating a metamodel utilising data driven ML approaches, and the authors 
are particularly advocating for the use of GPR. Gradient Enhanced Kriging, a particular form of GPR capable of employing gradient 
data to enhance the prediction accuracy, will be the approach considered in this work. The following section will briefly outline the 
process for developing a Gradient Enhanced Kriging metamodel, however the interested reader is directed to Section 3 of [34] for an 
in-depth procedure.

4.1.  Metamodel formulation

Section 2 outlined the need for a constitutive model which takes inputs relating to the deformation gradient tensor 𝑭  and the 
material electric displacement vector 𝑫0 and produce an output used to obtain the first Piola-Kirchhoff stress tensor 𝑷  and material 
electric field vector 𝑬0. As in Section 2.4.1, the input I will be comprised of principal stretches in conjunction with electromechanical 
invariants. In the cases using anisotropy, this set of input variables can be extended as shown in Sections 2.4.2 and 2.4.3. The 
metamodel outputs will be the scalar strain energy density 𝑈 , and the partial derivatives 𝜕I𝑖𝑈 , which can be used to reconstruct 𝑷
and 𝑬0, as seen in (11).

The notation used to handle a dataset formed of 𝑁 data points and 𝑁𝑖𝑛𝑝 input variables (otherwise known as input features) is 
outlined as follows: superscripts will be used to denote the 𝑖th data point (i.e. ■(𝑖) for 𝑖 = [1,… , 𝑁]) whilst subscripts will refer to the 
input feature, namely the 𝑘th input variable (i.e. ■𝑘). Moreover, input and output data is set into two categories, observed data and 
prediction sites. These unobserved quantities relating to the prediction site are distinguished by having a superscript bullet (i.e. ■∙). 
The foundations of a GPR metamodel are formed of a simple two-part additive expression given by

𝑈 (I) = 𝛽(I) +𝑍(I)  where 𝑍(I) ∼ 
(

𝟎, 𝜎2(I)𝑹(I)
)

. (41)

The two components introduced in (41) consist of a mean type term (model parameter 𝛽(I)) alongside a noise term which is char-
acterised using a zero mean normal distribution 𝑍(I) with covariance denoted by 𝜎2(I)𝑹(I). The covariance introduces the second 
material parameter 𝜎2(I) as well as the fundamental correlation matrix 𝑹(I) which is seen to be a function of the observed data (no 
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superscript bullet). To define 𝑹(I), a correlation function needs to be selected, of which there are several types available (see [25]). 
In this work the authors use the Radial Basis Function (RBF) defined as


(

I(𝑖), I(𝑗),𝜽
)

= exp
⎡

⎢

⎢

⎣

𝑁𝑖𝑛𝑝
∑

𝑘=1
−𝜃𝑘

(

I(𝑖)𝑘 − I(𝑗)𝑘
)2⎤

⎥

⎥

⎦

, 𝑖, 𝑗 ∈ [1,… , 𝑁]. (42)

The RBF in (42) introduces a set of hyperparameters 𝜽 which scale the spatial correlation between the 𝑖th and 𝑗th data points, 
effectively adjusting the sensitivity. Note that calibrating a model using principal stretches λ requires an adjusted correlation function 
as described by the authors in [34], where the correlation function takes inputs of the isotropic invariants {𝐼1, 𝐼2, 𝐼3} as a function 
of principal stretches, namely I(𝑖)𝑘 = 𝐼𝑘

(

λ(𝑖)) for 𝑘 ∈ [1, 2, 3]. This is critical to ensure that material symmetry conditions are satisfied. 
Thus far it may be unclear as to how this method is Gradient Enhanced, however this enhancement comes in the construction of 𝑹
as introduced by Ollar et al. [29]. The correlation matrix can be broken into the following blocks

𝑹(I,𝜽) =
[

𝑸11 𝑸12
𝑸𝑇

12 𝑸22

]

, (43)

where 
[

𝑸11
](𝑖)(𝑗) = 

(

I(𝑖), I(𝑗),𝜽
)

, 𝑖, 𝑗 ∈ [1,… , 𝑁], (44a)

[

𝑸12
](𝑖)(𝑗)
𝑘 = 𝜕I(𝑗)𝑘

, 𝑖, 𝑗 ∈ [1,… , 𝑁], 𝑘 ∈
[

1,… , 𝑁𝑖𝑛𝑝
]

, (44b)

[

𝑸22
](𝑖)(𝑗)
𝑘𝑙 = 𝜕2

I(𝑖)𝑙 I
(𝑗)
𝑘

, 𝑖, 𝑗 ∈ [1,… , 𝑁], 𝑘, 𝑙 ∈
[

1,… , 𝑁𝑖𝑛𝑝
]

. (44c)

Notice that Q12 and Q22 in (44b) and (44c) are third and fourth order matrices respectively. For computational convenience these 
are reshaped to fit into the correlation matrix format shown in (43) such that Q12 ∈ ℝ𝑁×

(

𝑁 ⋅𝑁𝑖𝑛𝑝
)

 and Q22 ∈ ℝ
(

𝑁 ⋅𝑁𝑖𝑛𝑝
)

×
(

𝑁 ⋅𝑁𝑖𝑛𝑝
)

, thus 
R ∈ ℝ𝑁

(

1+𝑁𝑖𝑛𝑝
)

×𝑁
(

1+𝑁𝑖𝑛𝑝
)

. For full definitions of the partial derivatives used in (44b) and (44c) see Appendix C. With the key definitions 
in place, recall (41). Given that the noise term 𝑍(I) is characterised by a Gaussian distribution, it is also appropriate to express the 
output 𝑈 (I) in terms of a Gaussian as

𝑼 (I) ∼ 
(

𝟏𝛽, 𝜎2𝑹(I,𝜽)
)

. (45)

Note that in (45), 𝑈 (I) ∈ ℝ has become 𝑼 (I) ∈ ℝ𝑁
(

1+𝑁𝑖𝑛𝑝
)

 to account for 𝑁 observed data points, and that the functional dependency 
of I on the material parameters {𝛽, 𝜎2} has been dropped for notational convenience. For consistency, this additionally introduces 
the need for 𝟏 ∈ ℝ𝑁

(

1+𝑁𝑖𝑛𝑝
)

, a vector of ones establishing a mean vector within the Gaussian definition. Defining the metamodel in 
terms of a Gaussian distribution demonstrates GPR’s probabilistic roots and furthermore, (45) has a multi-variate probability density 
function (referred to as the likelihood). The Maximum Likelihood Estimation (MLE) technique [25], uses the opposite log-likelihood 
function to obtain the model parameters through the minimisation

{𝛽∗, 𝜎2∗} = argmin
𝛽,𝜎2

ℒ
(

𝑼 |𝛽, 𝜎2,𝜽
)

, (46)

where the opposite log-likelihood function can be expressed by

ℒ
(

𝑼 |𝛽, 𝜎2,𝜽
)

= 𝐴
2
log (2𝜋) + 𝐴

2
log

(

𝜎2
)

+ 1
2
log (|𝑹(𝜽)|) + 1

2𝜎2
(𝑼 − 𝟏𝛽)𝑇𝑹−1(𝜽)(𝑼 − 𝟏𝛽), (47)

where 𝐴 = 𝑁
(

1 +𝑁𝑖𝑛𝑝
) and the functional dependence of the inputs I on the correlation matrix 𝑹 and output 𝑼 have been dropped 

for notational convenience. In doing the minimisation outlined in (46), the optimal parameters are given by

𝛽∗(𝜽) =
(

𝟏𝑇𝑹−1(𝜽)𝟏
)−1𝟏𝑇𝑹−1(𝜽)𝑼 ,

𝜎2∗(𝜽) = 1
𝐴
(

𝑼 − 𝟏𝛽∗(𝜽)
)𝑇𝑹−1(𝜽)

(

𝑼 − 𝟏𝛽∗(𝜽)
)

.
(48)

The only remaining unknowns are the set of hyperparameters 𝜽 which are more complex in nature, thus requiring an optimisation 
algorithm to solve. The authors select the 𝑏𝑜𝑥𝑚𝑖𝑛 algorithm [48] however alternative algorithms are available (e.g. quasi-Newton 
methods [49], genetic algorithms [50] or gradient descent type algorithms such as 𝑓𝑚𝑖𝑛𝑐𝑜𝑛, commonly known to MatLab users [51]). 
Any of these algorithms will require an objective function to optimise the hyperparameters against which draws upon a reduced 
opposite log-likelihood found by substituting the optimised parameters {𝛽∗, 𝜎2∗} into (47) and neglecting the constant terms yielding

ℒ̄
(

𝑼 |𝛽, 𝜎2,𝜽
)

= 𝐴
2
log

(

𝜎2∗(θ)
)

+ 1
2
log (|R|(θ)), (49)

from which the fully reduced form can be retrieved as

𝜓(𝜽) = 𝜎2∗(𝜽)|𝑹(𝜽)|
1
𝐴 , (50)

which is used for the objective function. The full details for obtaining (50) can be found in Appendix F.
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4.2.  Metamodel evaluation

Having identified the model parameters and hyperparameters in Section 4.1, it is now possible to conduct evaluation of the 
metamodel. Take now, an unobserved set of input prediction sites I∙ ∈ ℝ𝑀×𝑁𝑖𝑛𝑝  where 𝑀 is the number of unobserved data points. 
Since the metamodel is given by a Gaussian distribution its properties allow for the introduction of a joint distribution given by

[

𝑼
𝑼 ∙(I∙)

]

∼
([

𝟏
𝟏

]

𝛽∗, 𝜎2∗
[

𝑹 𝒓𝑇 (I∙)
𝒓(I∙) 𝑰

])

, (51)

where it is important to recall that 𝑼 = 𝑼 (I), 𝑹 = 𝑹(I), and I is the identity matrix. Note the addition of the cross-correlation matrix 
𝒓(I∙) used to correlate the observed and unobserved data points. Moreover, 𝒓(I∙) is defined similarly to 𝑹 as

𝒓(I∙) =
[

𝒒1
𝒒2

]

, (52)

where 
[

𝒒1
](𝑖)(𝑗) = 

(

I∙(𝑖), I(𝑗),𝜽∗
)

, 𝑖 ∈ [1,… ,𝑀]; 𝑗 ∈ [1,… , 𝑁], (53)

[

𝒒2
](𝑖)(𝑗)
𝑘 = 𝜕I(𝑗)𝑘

, 𝑖 ∈ [1,… ,𝑀], 𝑗 ∈ [1,… , 𝑁], 𝑘 ∈
[

1,… , 𝑁𝑖𝑛𝑝
]

. (54)

Following these definitions, all constituents of (51) have been identified. Finally, to obtain the final predictive distribution the joint 
distribution in (51) needs to be conditionalised which renders

𝑼 ∙(I∙) = 𝟏𝛽∗ + 𝒓(I∙)𝑹−1(𝑼 − 𝟏𝛽∗
)

. (55)

Note that (55) is the conditional mean and as a result the same outcome will be achieved every evaluation at the same prediction 
site due to not incorporating any conditional variance. This could of course be simply adjusted if required. In the context of elec-
tromechanics, the desired output of the constitutive model is that of the derivatives (i.e. 𝑷  and 𝑬0). These can be obtained from the 
metamodel by taking derivatives of (55) with respect to I∙ via the following

𝜕I∙𝑼 ∙ =
(

𝜕I∙𝒓
)

𝑹−1(𝑼 − 𝟏𝛽∗
)

, (56)

where the differential of the cross-correlation matrix is comprised of the following blocks

𝜕I∙𝒓 =
[

𝜕I∙𝒒1
𝜕I∙𝒒2

]

, 𝑖 ∈ [1,… ,𝑀], 𝑗 ∈ [1,… , 𝑁], (57)

which correspond to 
[

𝜕I∙𝒒1
](𝑖)(𝑗)
𝑘 = 𝜕I∙(𝑖)𝑘

, 𝑖 ∈ [1,… ,𝑀], 𝑗 ∈ [1,… , 𝑁], 𝑘 ∈
[

1,… , 𝑁𝑖𝑛𝑝
]

, (58a)

[

𝜕I∙𝒒2
](𝑖)(𝑗)
𝑘𝑙 = 𝜕2

I∙(𝑖)𝑙 I∙(𝑗)𝑘

, 𝑖 ∈ [1,… ,𝑀], 𝑗 ∈ [1,… , 𝑁], 𝑘, 𝑙 ∈
[

1,… , 𝑁𝑖𝑛𝑝
]

. (58b)

For full definitions of the partial derivatives used in (58a) and (58b), see Appendix C.

5.  Numerical examples: metamodel calibration

The following section will provide details around the process of metamodel calibration as well as displaying results of the calibrated 
metamodels. Section 5.1 will start by outlining the process used to generate experimentally styled synthetic data. Next, the calibration 
procedure is outlined within Section 5.2 including the definition of the error used to measure the calibration accuracy. The impact 
of using an infill strategy will then be presented in Section 5.3, followed by the adaptations to enable Kriging to become regression 
based thus capable of calibrating with noisy data in Section 5.4. Finally, Section 5.5 presents the results of the calibrated metamodels 
for a variety of electromechanical constitutive models.

5.1.  Data generation

A concentric approach to generating the synthetic data for calibration has been utilised for all Kriging metamodels developed for 
use in this paper. This approach is achieved by defining a set of deviatoric directions and amplitudes which when combined with 
the basis for traceless symmetric tensors Ψ (see Appendix C of [52]) yields a range of deformation gradient tensors F  and electric 
displacement vectors 𝑫0 - for details see Algorithm 3. The procedure is outlined below in Algorithm 2, and follows the methodology 
used by the authors in [53] and based upon that provided in [52].
Remark 4. Whilst a concentric approach to data generation has been used here, an experimental styled approach consisting of 
deformation gradient tensors representing uniaxial, biaxial and shear deformations could be used, as carried out in [34]. For the 
electromechanical case, electric displacements of varying magnitudes would also be sampled. 
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Algorithm 2 Pseudo-code for process of sampling F  and D0.
1: Set the number of amplitudes, directions and determinants: {𝑛𝑡, 𝑛X , 𝑛𝐽 };
2: Initialise the vector of amplitudes: 𝑡F = [0,… , 1.2]𝑛𝑡×1, 𝑡D0

= [0,… , 1.5]𝑛𝑡×1;
3: Initialise the vector of determinants: 𝐽 = [0.9,… , 1.1]𝑛𝐽×1;
4: Initialise a vector of Latin Hypercube sampled angles: φ1 = [0, 2𝜋]𝑛X×1,ϕ1 = [0, 2𝜋]𝑛X×1;
5: Initialise vectors of Latin Hypercube sampled angles: φ2,3,4 = [0, 𝜋]𝑛X×1,ϕ2 = [0, 𝜋]𝑛X×1;
6: Construct the directions, {XF ,XD0

}, using the extended spherical parametrisation in ℝ5 - detailed in Appendix D;
7: Evaluate the deformation gradient tensors, F , and electric displacement vectors, D0, parametrised in terms of deviatoric directions 

{XF ,XD0
}, amplitudes {𝑡F , 𝑡D0

}, and determinants 𝐽 - detailed in Algorithm 3.

Algorithm 3 Pseudo-code for process of constructing the set of F  and D0.
1: for 𝑖 = 1 ∶ 𝑛X do
2:  for 𝑗 = 1 ∶ 𝑛𝐽  do
3:  for 𝑘 = 1 ∶ 𝑛𝑡 do
4:  F = 𝐽 1∕3

𝑗 exp
(

𝑡F𝑘
[

∑5
𝑙=1𝑋

𝑖
F𝑙
Ψ𝑙

])

;
5:  D0 = 𝑡D0𝑘

X 𝑖
F
;

6:  end for
7:  end for
8: end for

Algorithm 4 Pseudo-code for the entire Kriging metamodel calibration process.
1: Sample a set of deformation gradient tensors F  and electric displacements D0 - see Algorithm 2
2: Evaluate the ground truth stress P , electric field E0, and energy 𝑈 - see models in Appendix E
3: Conduct hierarchical structure discovery to identify a suitable anisotropic class - see Section 3
4: Evaluate the singular matrices using singular value decomposition: Û ,Λ, V̂ = SVD(F ) - see (14)
5: Evaluate the anisotropic and multiphysics invariants - see the relevant subsections of Section 2.4
6: Evaluate the projections of P  and E0: 𝜕I𝑈 - see Section 3.1
7: Conduct the parameter minimisation: {𝛽∗, 𝜎2∗} = argmin𝛽,𝜎2 ℒ

(

U |𝛽, 𝜎2,θ
) - see (48)

8: Conduct the hyperparameter optimisation: θ∗ = argminθ 𝜓(θ) - see (50)
9: Evaluate a test dataset - see Section 4.2
10: Assess the success of the calibrated metamodel - see (62) and (63)
11: if Using an infill strategy and metamodel error > tolerance then
12:  Update the calibration set with points of highest error - see Section 5.3
13:  goto step 4:
14: end if

5.2.  Calibration procedure

Following dataset generation, the Kriging metamodel can be calibrated. This procedure has been covered in considerable detail 
in Section 4 and an overview has been outlined below for convenience in Algorithm 4.

5.3.  Infill strategy

As with all ML approaches the quality of the input data for calibration is of the upmost importance on the accuracy of the developed 
metamodel. In some cases, the approach to improve accuracy is to introduce a bulk of calibration data. However, this can lead to 
an oversized dataset where unnecessary data exists due to the random selection or generation. Therefore, to ensure that a minimal 
amount of data is being used and that all of the selected points are useful and necessary, an infill strategy is utilised. This involves 
starting with a small dataset to calibrate a metamodel, before evaluating against a test dataset. An error is then evaluated for all test 
data points and the ones with the largest error are selected as infill data points for the new calibration dataset. Several possible error 
measurements are available, such as error in first derivative - the first Piola-Kirchhoff stress tensor - as in [30,53] or utilising Kriging’s 
probabilistic properties to produce an error based upon uncertainty as in [54]. The authors conducted a comparison of these two 
strategies previously in [34] demonstrating that it is advantageous to utilise the uncertainty based error. To highlight the benefits to 
using an infill strategy the reader’s attention is directed to Fig. 7.

Two anisotropic constitutive models are presented in Fig. 7, a transversely isotropic material in Fig. 7(a) and a rank-one laminate 
material in Fig. 7(b) - for constitutive model specifics the reader is referred to Appendix E.3 and ROL(a) in Appendix E.4, respectively. 
Both materials showcase a very similar pattern when applying an infill strategy which is that utilising an uncertainty based approach 
(denoted with circle markers) enables a continuous improvement in error for both derivative quantities. This highlights the signifi-
cance of allowing the uncertainty provided by Kriging directly, to select the most relevant data points as opposed to simply randomly 

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118349 

14 



N. Ellmer et al.

Fig. 7. Showcases the benefit of utilising an infill strategy over simply increasing the dataset size for two anisotropic constitutive models. Subfigures 
(a) and (b) present the evolution of the L2 error in stress, 𝐸P  (blue), and electric field 𝐸E0

 (red) for an uncertainty based infill approach (circles), 
and a randomly increasing dataset size (triangles). For the L2 error equations the reader is directed to (63).(For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Showcases the noisy calibration set where the black squares denote the unperturbed dataset and the red squares demonstrate the magnitude 
of the incorporated noise.(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

growing the dataset (denoted by the triangular markers). Note that in Fig. 7 the infill strategy is for 100 data points increasing in single 
point increments. This is used to show the trend but the aim is generally to use far fewer ensuring a simpler calibration process and 
fast evaluation capability of the Kriging metamodel - heavily dependant on the size of the correlation matrix which itself is related 
to the number of data points (see Section 4.1).

5.4.  Noise regularisation

The Kriging approach detailed thus far is a direct interpolation method which will only be effective for a perfectly sampled 
dataset which does not contain any noise. It is simple however, to extend Kriging’s capability to handle a realistic noisy dataset, 
which involves introducing two new hyperparameters [55]. By using the definition of 𝑹(I,𝜽) stated in (43), Kriging will attempt to 
directly interpolate between all noisy data points resulting in an ill-posed correlation matrix 𝑹(I,𝜽). To alleviate this, two perturbation 
terms 𝜖1 and 𝜖2 are introduced to augment 𝑹(I,𝜽) as follows

𝑹(I,𝜽) =
[

𝑸11 + 𝜖1𝑰 𝑸12
𝑸𝑇

12 𝑸22 + 𝜖2𝑰

]

, (59)

where 𝑰 is the identity matrix. Notice that there are two perturbation terms, 𝜖1 for the functional correlation block 𝑸11 and 𝜖2
for the derivative correlation block 𝑸22 [29]. To calibrate these additional hyperparameters, the optimisation process outlined in 
Section 4.1 remains the same with an extended set 𝜽 =

{

𝜃1,… , 𝜃𝑁𝑖𝑛𝑝 , 𝜖1, 𝜖2
}

. To demonstrate Kriging’s capability to handle noisy 
data, an example calibration of a noisy data sample for a transversely isotropic ideal dielectric constitutive model is presented below 
- see Appendix E.3 for details of the material parameters. Firstly, the noisy calibration dataset can be seen in Fig. 8, where the black 
square points represent the ground truth data and the red squares indicate the perturbed data as a result of the added random noise.
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Fig. 9. Showcases the successful calibration of a regression Kriging metamodel where (a) displays the perturbed calibration dataset denoted by 
red squares over the ground truth unperturbed black lined curve; (b) portrays now the Kriging metamodel output as the black lined curve with a 
random selection of 100 ground truth data points denoted by blue squares.(For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

Fig. 10. Showcases the evaluation of the derivative quantities from the calibrated regression Kriging metamodel where (a) displays the ground 
truth ‖P ‖ denoted by the black solid curve and the evaluated Kriging counterpart for 200 data points in the blue squares; (b) portrays now the 
ground truth ‖E0‖ denoted by the black solid curve and the evaluated Kriging counterpart for 200 data points in the blue squares.(For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)

To generate the perturbations of the dataset seen in Fig. 8, a zero mean Gaussian was added to the original dataset. This pertur-
bation via a Gaussian distribution was characterised by

𝑈̃ = 𝑈 +
(

0, 𝜎𝑈
)

, 𝜕I𝑈 = 𝜕I𝑈 +
(

0, 𝜎𝜕I𝑈
)

, (60)

where

𝜎𝑈 = 0.2𝑈̄ , 𝜎𝜕I𝑈 = 0.2𝜕I𝑈, (61)

moreover, where ■̃ denotes the perturbed datasets and ■̄ represents the average of a quantity. Upon calibration of the metamodel 
using the 35 data points presented in Fig. 8, the metamodel was evaluated for the entire validation dataset  of 1000 points - where to 
clarify each data point within the validation dataset consists of a specific {F ,D0} and hence corresponding {P ,E0}. These results of 
which can be seen by the solid black line in Fig. 9(b) which is overlaid with a scattering of 100 ground truth data points denoted by 
the blue squares. The agreement that can be seen in Fig. 9 demonstrates a strong construction of a regression metamodel considering 
the level of noise witnessed in Fig. 9(a).

To further highlight the success, the norm of the derivative quantities - P  and E0 - can also been seen in Fig. 10 where the full 
ground truth validation dataset is plotted with a black continuous line and 200 Kriging evaluations have been overlaid using blue 
square markers. Note that the 200 were chosen by evaluating and plotting every fifth data point from the validation dataset. The 
accuracy of the metamodel’s prediction of P  is very good noting that only the extrema points seem to deviate from the ground truth 
curve in black. E0 on the other hand, could still be improved but the trend shows a good correlation. It is important to state the 
success given that this is a challenging model to capture consisting of eight input features all of which are handling a significant 
magnitude of random noise.

In order to ensure the assessment of the noisy data is sufficient and accurate, a convergence study was carried out. This involved 
evaluating the calibrated Kriging metamodel on the validation dataset which to start with consisted of the full 1000 validation data 
points. Then 50 validation data points were randomly selected to be removed and Kriging re-evaluated, a process repeated until 
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Fig. 11. Displays the convergence in errors for both (a) first Piola-Kirchhoff stress tensor P  and (b) material electric field vector E0 as the size of 
the validation dataset increases.

Table 2 
Presents the calibration results via a selection of metrics for a range of Kriging metamodels which utilise 5 
infill data points.

Constitutive Model: No. Data:  Errors in P  Errors in E0

𝑅2 𝐸P 𝐸̂P 𝑅2 𝐸E0
𝐸̂E0

 OG  19  1.0000 5.22 × 10−3 1.41 × 10−2 1.0000 3.72 × 10−3 2.04 × 10−2

 MR  19  1.0000 2.01 × 10−3 1.78 × 10−2 1.0000 2.75 × 10−4 4.53 × 10−3

 TI  11  1.0000 5.77 × 10−3 1.03 × 10−1 0.9998 6.75 × 10−3 4.05 × 10−2

 ROL(a)  8  0.9868 9.50 × 10−2 1.01 × 100 0.9997 1.33 × 10−2 6.66 × 10−2

 ROL(b)  8  0.9535 1.70 × 10−1 1.30 × 100 0.9982 2.34 × 10−2 1.39 × 10−1

 ROL(c)  8  0.9633 1.58 × 10−1 5.26 × 10−1 0.9916 7.19 × 10−2 4.58 × 10−1

only 50 points remained in the validation dataset. The results for this study can be seen in Fig. 11 and showcase convergence of the 
error at approximately 800 points which provides confidence that the size of the chosen dataset is sufficient to accurately assess the 
performance of the calibration.

5.5.  Metamodel calibration results

Having discussed the procedure for metamodel calibration, it is necessary to now demonstrate a range of calibration results. But 
before doing so, it is important to define the metrics used to evaluate the calibrations success. The most common metric being used 
is that of the L2 error which is denoted for the two derivatives by

𝐸̂P =
‖P𝐺𝑇 −P𝐾𝑅‖

‖P𝐺𝑇 ‖
, 𝐸̂E0

=
‖E0𝐺𝑇 −E0𝐾𝑅‖

‖E0𝐺𝑇 ‖
, (62)

where ‖■‖ represents the L2 norm and P𝐺𝑇 , P𝐾𝑅, E0𝐺𝑇 , E0𝐾𝑅 are the vectorised quantities of the ground truth and Kriging first 
Piola-Kirchhoff stress tensors and ground truth and Kriging material electric fields, respectively. Whilst 𝐸̂P  and 𝐸̂E0

 provide the local 
error for a single data point, the following give a total error across all data points within a validation set

𝐸P =
∑𝑛
𝑖=1 ‖P

𝑖
𝐺𝑇 −P 𝑖

𝐾𝑅‖
∑𝑛
𝑖=1 ‖P

𝑖
𝐺𝑇 ‖

, 𝐸E0
=

∑𝑛
𝑖=1 ‖E

𝑖
0𝐺𝑇 −E𝑖

0𝐾𝑅‖
∑𝑛
𝑖=1 ‖E

𝑖
0𝐺𝑇 ‖

, (63)

where 𝑛 is the number of data points in the validation dataset. The other common metric for assessing ML calibration is the 𝑅2 value 
defined generically for some quantity A as

𝑅2 =
∑𝑛
𝑖=1 ‖Ā𝐺𝑇 −A𝑖

𝐾𝑅‖
∑𝑛
𝑖=1 ‖A

𝑖
𝐺𝑇 − Ā𝐺𝑇 ‖

. (64)

With these metrics defined, a series of example metamodels will be presented. Table 2 presents the results for six calibrated constitutive 
models consisting of isotropy in the form of Ogden (OG) and Mooney-Rivlin (MR) as well as anisotropic in the form of transverse 
isotropy (TI) and three different forms of the rank-one laminates (ROL). For detailed information of these constitutive models see 
Appendixes E.2 to E.5.

Table 2 showcases the calibration results for six constitutive models with each calibration only including five infill data points - 
selected based upon uncertainty - resulting in a very small overall calibration dataset size as seen in the second column. Having such 
small dataset sizes is not suitable for calibrating the anisotropic models however, both the Ogden and Mooney-Rivlin models have 
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Table 3 
Presents the calibration results via a selection of metrics for a range of Kriging metamodels which utilise 
10 infill data points.

Constitutive Model: No. Data:  Errors in P  Errors in E0

𝑅2 𝐸P 𝐸̂P 𝑅2 𝐸E0
𝐸̂E0

 OG 24 1.0000 5.24 × 10−3 1.67 × 10−2 1.0000 2.71 × 10−3 1.76 × 10−2

 MR 24 1.0000 3.50 × 10−3 1.19 × 10−2 1.0000 1.11 × 10−3 3.78 × 10−3

 TI 16 1.0000 1.10 × 10−3 1.93 × 10−2 1.0000 1.80 × 10−3 1.88 × 10−2

 ROL(a) 13 0.9993 1.59 × 10−2 7.92 × 10−2 1.0000 4.37 × 10−3 2.60 × 10−2

 ROL(b) 13 0.9978 3.67 × 10−2 2.79 × 10−1 0.9997 1.42 × 10−2 6.28 × 10−2

 ROL(c) 13 0.9928 7.78 × 10−2 9.81 × 10−1 0.9994 2.16 × 10−2 1.24 × 10−1

Table 4 
Presents the calibration results via a selection of metrics for a range of Kriging metamodels which utilise 
20 infill data points.

Constitutive Model: No. Data:  Errors in P  Errors in E0

𝑅2 𝐸P 𝐸̂P 𝑅2 𝐸E0
𝐸̂E0

 OG 34 1.0000 2.26 × 10−3 7.73 × 10−3 1.0000 1.49 × 10−3 1.27 × 10−2

 MR 34 1.0000 2.80 × 10−3 1.48 × 10−2 1.0000 1.02 × 10−3 5.32 × 10−3

 TI 26 1.0000 2.20 × 10−4 4.34 × 10−3 1.0000 3.93 × 10−4 6.84 × 10−3

 ROL(a) 23 0.9999 6.17 × 10−3 2.88 × 10−2 1.0000 1.39 × 10−3 1.82 × 10−2

 ROL(b) 23 0.9999 6.68 × 10−3 2.43 × 10−2 1.0000 3.93 × 10−3 3.52 × 10−2

 ROL(c) 23 0.9998 8.35 × 10−3 5.74 × 10−2 1.0000 3.86 × 10−3 3.44 × 10−2

great accuracy across both the mechanical and electrostatic error metrics. Notably the error in electric field for the Mooney-Rivlin 
model calibrated on only 19 data points is a staggering 2.75 × 10−4.

It was clear that the dataset sizes for the anisotropic models were just too small, so Table 3 presents the results for the calibration 
using five additional infill data points. Notice, that for the anisotropic models, simply adding five additional infill points seemingly 
improves the accuracy in 𝐸P  achieved for mechanics by approximately an order of magnitude - an astounding improvement for so 
little data added. This improvement enables the transversely isotropic model to now be at a usable accuracy level with errors in stress 
and electric field at 1.10 × 10−3 and 1.80 × 10−3 respectively.

Moreover, an extra ten infill data points were provided to each constitutive models calibration dataset and the results of which are 
provided in Table 4. In doing so the focus can now turn to the three rank-one laminate models. Each model (a) to (c) has an increasing 
level of mechanical and electrical contrast respectively furthering the materials complexity - see Appendix E.4 for full details. Given 
this, the calibration also becomes more challenging therefore highlighting how impressive calibrating an accurate model is - with 𝑅2

values approaching 1.0000 - with merely 23 data points.

5.5.1.  RVE calibration results
Thus far, the laminate composite form has been presented, however, the inclusion form has not been covered. Notably, the 

inclusion configuration is significantly more challenging given that the underlying constitutive model is unknown. Four calibrated 
metamodels are discussed through this section with two related to the inclusion geometries demonstrated previously in Fig. 6. As 
illuded to in Section 3, stress and electric field data for RVEs comes directly from running Finite Element simulations due to no 
underlying analytical models existing. Instead, a multi-scale homogenisation procedure takes place within a FEM2 approach and the 
resulting data taken to construct a calibration and validation dataset. Fig. 12 displays the meshes consisting of quadratic tetrahedral 
elements, used for the four different RVE configurations. For these examples, the simulations take place using the Helmholtz energy, 
namely Ψ(F ,E0

) thus leading to the derivative outputs being 𝜕FΨ
(

F ,E0
) and 𝜕E0

Ψ
(

F ,E0
) yielding P  and −D0, respectively. 

In order to keep continuity between the procedure for RVEs and all other constitutive models, metamodels were calibrated still on 
invariants of F  and D0 - i.e. the internal energy 𝑒

(

F ,D0
)

. The resulting calibrated models were suboptimal and it was deemed that by 
switching variables there was an induced nonlinearity from an effective Legendre transform being applied. As a result, the metamodel 
was also calibrated upon the Helmholtz energy - i.e. the input quantities are invariants based on F  and E0 - which yielded successful 
results. Note this has an impact on the definitions for the invariants set out in Section 2.4.3 since now all electrostatic invariants 
should consist of E0 as opposed to D0. Furthermore, the coupled invariant 𝐼5 of FD0 ⋅ FD0 had to be replaced with HE0 ⋅HE0 - 
as it is the natural invariant as a result of the Legendre transform. The results of all four calibrations can be seen in Table 5.

The first quantity of interest is column two of Table 5 which demonstrates that considerably more data points are required with 
these substantially more challenging datasets to still achieve a reasonable accuracy. In this case, very few data points were introduced 
in the initial calibration set and then infill points were added in to ensure that the minimal number of data points were being used. The 
errors associated with the metamodel calibration can be found in the remainder of the columns in Table 5 which indicates reasonable 
metamodel calibrations. Furthermore the 𝑅2 plots for both error in the Piola-Kirchhoff stress tensor and electric displacement vector 
can be found for all metamodels in Fig. 13, reiterating the success of the calibration.
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Fig. 12. Presents the meshes used to generate the data for the respective RVE datasets. Further information around the material models for the 
matrix and inclusion can be found in Appendix E.5.

Table 5 
Presents the calibration results via a selection of metrics for four Kriging metamodels based upon RVE 
data (RVE(a) with a spherical inclusion, RVE(b) with an ellipsoidal inclusion, RVE(c) as a body centred 
cubic, and RVE(d) as a face centred fibre) which utilise 40, 44, 40, and 20 infill data points, respectively.

Constitutive Model: No. Data:  Errors in P  Errors in D0

𝑅2 𝐸P 𝐸̂P 𝑅2 𝐸D0
𝐸̂D0

 RVE(a) 48 0.9998 1.28 × 10−2 5.69 × 10−2 0.9989 2.05 × 10−2 1.00 × 10−1

 RVE(b) 59 0.9984 3.06 × 10−2 1.06 × 10−1 0.9958 3.02 × 10−2 1.77 × 10−1

 RVE(c) 54 0.9972 3.78 × 10−2 1.17 × 10−1 0.9932 3.87 × 10−2 2.78 × 10−1

 RVE(d) 26 0.9923 6.05 × 10−2 2.05 × 10−1 0.9703 1.06 × 10−1 2.90 × 10−1

To further demonstrate the success and accuracy when utilising a metamodel calibrated on RVE data, three RVE models were 
developed and tested on selected load paths. The first example uses the metamodel calibrated on data from the RVE with a spherical 
inclusion (refer to RVE(a) in Appendix E.5 for more details) and was evaluated upon a load path which combines a uniaxial and shear 
response via a deformation gradient tensor and electric field vector defined via

F =
⎡

⎢

⎢

⎣

𝜆 𝛾 0
0 1 0
0 0 1

𝜆

⎤

⎥

⎥

⎦

, E0 =
⎡

⎢

⎢

⎣

0.1
0.1
0.5

⎤

⎥

⎥

⎦

, (65)

for 
𝜆 ∈ [0.5,… , 2.5], 𝛾 ∈ [0,… , 0.7]. (66)

The numerical ground truth response and Kriging evaluation can be found in Fig. 14, where the ground truth data is shown through 
a solid line and the Kriging metamodel prediction from the circular markers. The Kriging prediction for the stress tensor in Fig. 14(a) 
appears very accurate with very strong agreement throughout the load path. This is echoed for the electric displacement as seen in 
Fig. 14(b).

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118349 

19 



N. Ellmer et al.

Fig. 13. Displays the 𝑅2 plots for both the electric displacement and stress data for all four RVE models.
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Fig. 14. Presents the load path validation for the RVE(a) constitutive model with the spherical inclusion. Subfigure (a) shows the components 
P  whilst (b) shows the components of D0 where the solid lines represent the ground truth solution and the circle markers denote the Kriging 
metamodel evaluation.

Fig. 15. Presents the load path validation for the RVE(c) constitutive model with the body centred cubic configuration. Subfigure (a) shows the 
components P  whilst (b) shows the components of D0 where the solid lines represent the ground truth solution and the circle markers denote the 
Kriging metamodel evaluation.

The next example showcases the metamodel developed on data from RVE(c) - the body centred cubic (see Appendix E.5 for 
additional details). Note that the load path follows the same uniaxial and shear combination presented in (65) and the results can be 
seen in Fig. 15. Through the compression phase, the agreement is once again strong between the ground truth data and the Kriging 
prediction, but this does appear to lose accuracy in Fig. 15(a) beyond an 𝐹11 value of 2.0. This is likely to be due to Kriging being used 
for extrapolation at this point, which is not necessarily an objective of the Kriging framework since its performance in extrapolation 
cannot be guaranteed.

Thirdly, an example presenting the evaluation of the Kriging metamodel developed to predict the response of RVE(d), a face 
centred fibre configuration (see Appendix E.5 for more information), can be found in Fig. 16. For this example, the load path is 
evaluated using 

F =
⎡

⎢

⎢

⎣

𝜆 𝛾 0
0 0.98𝜆 0
0 0 1

𝜆2

⎤

⎥

⎥

⎦

, E0 =
⎡

⎢

⎢

⎣

0.1
−0.1
0.3

⎤

⎥

⎥

⎦

, (67)

for 
𝜆 ∈ [0.7,… , 1.5], 𝛾 ∈ [0,… , 0.3], (68)

which provides a combined biaxial and shear response. Once more, a great likeness can be seen between the ground truth response 
and the Kriging predicted load path for both the stress response in Fig. 16(a) and electric displacement response in Fig. 16(b).

6.  Numerical examples: 3D simulations

This section aims to provide a comprehensive series of numerical examples showcasing the successful implementation of Kriging 
constitutive metamodels for a range of material models and problems. Section 6.1 will demonstrate the use of an isotropic mate-
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Fig. 16. Displays the load path validation for the RVE(d) constitutive model with the face centred fibre configuration. Subfigure (a) shows the 
components P  whilst (b) shows the components of D0 where the solid lines represent the ground truth solution and the circle markers denote the 
Kriging metamodel evaluation.

Fig. 17. Depicts the schematic of the 1.5 × 0.1 × 0.01(𝑚) domain and boundary conditions used for Examples 1, 2, and 3. The red region shows 
the fixed surface, whilst the blue line indicates the midway surface with an electric potential set to zero. The green regions showcase the surfaces 
where a non zero electric potential is prescribed. Note that the domain for the simulations is discretised into {75, 5, 2} in the {𝑥, 𝑦, 𝑧} directions, 
respectively.(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

rial model with a complex bending configuration, whilst Sections 6.2 and 6.3 showcases the change of deformation as a result of 
the introduction of anisotropy. Section 6.4 displays an isotropic Ogden model in a frilling configuration where a combination of 
inhomogeneous electric fields induce complex bending. To finish, Section 6.5 will display a set of wrinkling plate examples which 
utilise a rank-one laminate constitutive model with varying magnitudes of mechanical and electrical contrast influencing the yielded 
deformations.

To produce the 3D FEM numerical results, a custom in-house framework is used with the same Finite Element discretisation for 
all simulations. Specifically, quadratic hexahedral elements are employed for the discretisation of both the displacement and electric 
potential fields. Further information regarding domain dimensions are provided in each example subsection.

6.1.  Example 1 - isotropic complex bending

The first example induces a complex bending mode for an isotropic Ideal Dielectric Mooney-Rivlin material model - details of which 
can be found in Appendix E.2. This is achieved by fixing the surface at 𝑥max (red region in Fig. 17), prescribing an electric potential 
of 2.6 × 10−3 (𝑉 ) to specific regions of the upper and lower surface (green regions in Fig. 17), and setting zero electric potential to 
the middle plane (blue line in Fig. 17). The domain is discretised into {75, 5, 2} elements in the {𝑥, 𝑦, 𝑧} directions, respectively, and 
detailed boundary conditions can be seen in Fig. 17.

The resulting deformations due to the configuration can be seen in Fig. 18. Specifically, Fig. 18(a) displays the progression in 
increasing electric field of the bending actuator. Though not obvious due to the exceptionally calibrated Kriging metamodel, Fig. 18(a) 
consists of a side-by-side view of the FEM results with both the ground truth (left) and Kriging (right) implemented constitutive models. 
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Fig. 18. Displays the progression of a bending actuator where (a) provides a side-by-side view of the ground truth (left) and Kriging (right) based 
models; (b) and (c) show the pressure and 𝑧-component of the electric displacement distributions, respectively; (d) and (e) presents the relative 
errors in pressure whilst (f) shows the relative error in electric displacement.

The slight deviation noticeable in the final most curled configuration provides an early indication of the extent of success achieved 
in this work. Fig. 18(b) and (c) compare the pressure and 𝑧-component of the electric displacement respectively. To see more clearly 
the extent of the closeness, Fig. 18(d)–(f) portray the relative errors in the quantities shown above for both the penultimate and final 
loading increments. The largest relative errors in pressure distribution are remarkably only 0.2% in Fig. 18(d) to (e). This is even 
further improved when considering the relative error in electric displacement as shown in Fig. 18(f) which has a maximum error of 
only 0.04%.

6.2.  Example 2 - transversely isotropic complex bending

The next example introduces complex bending with curling as a result of the materials anisotropy. The effective electrode place-
ment forms the same configuration as the previous example, just with an applied electric potential of 3.0 × 10−3 (𝑉 ) - see Fig. 17 - 
however, the resulting bending mode is vastly different as a result of the transversely isotropic material symmetry, with anisotropic 
direction N = [0.5774, 0.5774, 0.5774]𝑇 . For further details on the Ideal Dielectric Transversely Isotropic material model, the reader is 
directed to Appendix E.3.

Whilst the domain and electrode configurations are the same as the first example, the altered material renders a completely separate 
torsional deformation as can be seen in Fig. 19. Each load increment stage presented in Fig. 19(a) consists of the ground truth solution 
in purple overlaid with a slightly transparent Kriging metamodel solution. The impressive indistinguishability is reiterated across the 
range of relative error plots for the pressure fields and electric displacement fields in Fig. 19(d)–(f) respectively. Despite the fact 
the material is significantly more complex, the maximum errors demonstrated are equally small in pressure at 0.21% and 0.25% for 
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Fig. 19. Portrays the progression of an anisotropic bending actuator where (a) showcases the ground truth solution in purple overlaid with the 
Kriging solution in a transparent meshed view; (b) and (c) highlight the pressure distributions for two load increments of the twisted deformation 
whilst (d) and (e) display the corresponding relative errors in pressure; (f) demonstrates the relative error in the final load increment for the 𝑧-
component of the electric displacement.(For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.)

Fig. 19(d) and (e) respectively. Fig. 19(f) highlights that modelling the electric displacement field is more challenging, but still has a 
very small maximum relative error of 0.2%.

6.3.  Example 3 - transversely isotropic direction discovery

The following example is used to demonstrate the success of a Kriging developed constitutive model where the direction of 
anisotropy for a transversely isotropic material was not provided and has therefore been discovered using the process outlined in 
Section 3. For clarity, the random anisotropic direction is N = [0.44263,−0.8847, 0.1474]𝑇  and for further details on the Ideal Dielectric 
Transversely Isotropic material model, the reader is directed to Appendix E.3. The numerical results presented in Fig. 20 were obtained 
using the configuration detailed previously in Fig. 17.

After identifying the anisotropic direction with an insignificant derivative reconstruction error of 3.22 × 10−6, the 27 point dataset 
(22 after filtering and infill) was used to calibrate a metamodel and produce the solution as seen in Fig. 20. To emphasise the 
impeccable Kriging solution, Fig. 20(a) shows the Kriging solution laid over the ground truth solution with no visible separation 
between them. Providing quantitative results, Fig. 20(b) and (c) provide the distributions of pressure and the resulting relative errors 
respectively. The maximum relative error in pressure recorded for the final load increment was a mere 1.3%.
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Fig. 20. Presents the progression of an anisotropic bending actuator where (a) displays the ground truth solution in purple overlaid with the Kriging 
solution in a transparent meshed view; (b) demonstrates the distribution in pressure across the actuator whilst (c) provides the relative error in 
pressure across the device.(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 21. Depicts the schematic of the 0.15 × 0.2 × 0.001(𝑚) domain discretised into {24, 50, 2} elements in the respective {𝑥, 𝑦, 𝑧}𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠 as well 
as the boundary conditions used for Example 4. The red region shows the fixed surface, whilst the blue line indicates the midway surface with 
an electric potential set to zero. There are two types of shaded green regions which showcase the surface where a non zero electric potential is 
prescribed. The darker green regions have a higher potential of 3.0 × 10−4 (𝑉 ) compared to the large lighter shaded region which has an applied 
electric potential of 5.0 × 10−5 (𝑉 ).(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)

6.4.  Example 4 - isotropic frilling

The fourth example aims to showcase an isotropic material model which is principal stretch based by nature - i.e. the Ideal Dielec-
tric Ogden model (see Appendix E.1 for details), with a configuration that enables a sophisticated deformation. Fig. 21 presents the
configuration which comprises of a 0.15 × 0.2 × 0.001(𝑚) domain discretised into {24, 50, 2} elements in the respective 
{𝑥, 𝑦, 𝑧}𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠. Moreover, the positioning of the electrodes are demonstrated which will produce an inhomogeneous electric field 
leading to the combination of bending and frilling.

An intriguing solution is displayed in Fig. 22 whereby the configuration facilitates the slight bending from the low potential 
applied across the bottom layer as well as the frilling across the front of the device due to the upper and lower arrangements of the 
higher powered electrodes. Though hardly noticeable, Fig. 22(a) is split in two - the left half consisting of the ground truth solution 
whilst the right uses the Kriging metamodel. The perfect join indicates the success of the calibration and implementation and this 
is further evidenced by Fig. 22(b) with the overlaying of the two solutions. A comparison of the distributions in Cauchy stress 𝜎12
component is provided in Fig. 22(c) alongside the relative error in pressure. Fig. 22(d) shows the low average relative error with 
maximum peaks lying at 0.75%. To assess the accuracy in the electric displacement evaluated via Kriging the reader is referred to 
Fig. 22(e) and (f), which display the comparison in distribution of the 𝑧-component for the electric displacement as well as its relative 
error on the top and bottom side of the device. The maximum relative error yielded for the electric displacement was an insignificant 
0.1%.

6.5.  Example 5 - rank-one laminate wrinkling

The penultimate example takes a thin - 0.6 × 0.6 × 0.01(𝑚) - square plate which is fixed all along the boundaries (red region in 
Fig. 23). The domain is discretised into {40, 40, 2} elements in the corresponding {𝑥, 𝑦, 𝑧} directions. An electric potential of zero is 
prescribed midway through (blue line in Fig. 23) and a potential of 5.0 × 10−3 (𝑉 ) is applied across the upper surface - green region 
depicted in Fig. 23).
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Fig. 22. Portrays the complex progression of a bending and frilling actuator induced due to an inhomogeneous applied electric potential. Subfigure 
(a) presents a side-by-side view of the ground truth and Kriging metamodel solutions and (b) shows an overlaid set of solutions where the ground 
truth is purple in appearance and Kriging a slightly transparent mesh; (c) presents the distribution in Cauchy stress - component 12 - and (d) the 
distribution in relative error of pressure; (e) and (f) show the 𝑧- component of the electric displacement and its relative error.

Fig. 23. Presents the schematic of the 0.6 × 0.6 × 0.01(𝑚) domain as well as the boundary conditions used for Example 5. The red region shows 
the fixed surface, whilst the blue line indicates the midway surface with an electric potential set to zero. The green region showcases the surface 
where a potential of 5.0 × 10−3 (𝑉 ) is prescribed. Note the domain is discretised into {40, 40, 2} elements in the corresponding {𝑥, 𝑦, 𝑧} directions.(For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 24. Displays a range of plate buckling deformations where (a) - (c) demonstrate side-by-side views of the ground truth (left) and Kriging (right) 
solutions for the three rank-one laminate setups distinguishable by column as {𝑓𝑚 = 2, 𝑓𝑒 = 2}; {𝑓𝑚 = 5, 𝑓𝑒 = 3}; {𝑓𝑚 = 10, 𝑓𝑒 = 5} respectively; (d) 
- (f) show the stress distribution for the 0.75 load increment whilst (g) - (i) shows the final 1.00 load increment. The relative errors in pressure are 
then presented in (j) - (l).
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Fig. 25. Depicts the electrostatic quantities associated with the plate buckling configurations where (a) - (c) demonstrate the distribution of the 
𝑧-component of the electric displacement, whilst (d) - (f) highlights the relative errors in the same electric displacement quantity.

When defining a rank-one laminate material the mechanical contrast 𝑓𝑚 and electrical contrast 𝑓𝑒, i.e. the ratio between mechanical 
and electrical material parameters, play a critical role. The response of the material under the same loading conditions can vary 
significantly as a result of these simple parameters - as can be witnessed across Fig. 24. The three columns of Fig. 24 distinguish three 
different rank-one laminates with contrasts as follows: {𝑓𝑚 = 2, 𝑓𝑒 = 2}; {𝑓𝑚 = 5, 𝑓𝑒 = 3}; {𝑓𝑚 = 10, 𝑓𝑒 = 5}, and the full details for the 
Ideal Dielectric Rank-one Laminate material models can be found in Appendix E.4. The differing responses can be clearly seen in 
Fig. 24(a)–(c) where the deformation goes from being relatively symmetric in different directions - due to the weaker contrasts - to 
clearly symmetric in one direction. These figures additionally, provide the side-by-side view, where the ground truth solutions (left) 
have been stitched with the Kriging solutions (right) for the final load increment.

Fig. 24(d)–(f) show the distribution for the 12-component of the Cauchy stress tensor. The emerging patterns are very similar 
between the ground truth and Kriging solutions for the {𝑓𝑚 = 2, 𝑓𝑒 = 2} and {𝑓𝑚 = 10, 𝑓𝑒 = 5}, however a small difference in magni-
tudes can be seen in the {𝑓𝑚 = 5, 𝑓𝑒 = 3} setup. Whilst this is the case for the 0.75 load increment case, it can be seen that by the fully 
applied load case in Fig. 24(h) the discrepancy between the two solutions has resolved. To affirm, Fig. 24(g)–(i) showcase the stress 
component for the fully applied electric potential - which across the board showcase a very strong replication in distributions from 
the Kriging solutions. Underneath, Fig. 24(j)–(l) finally show the relative errors in pressure for the three rank-one laminate solutions. 
The {𝑓𝑚 = 5, 𝑓𝑒 = 3} setup appeared most challenging yielding maximum relative error of 3.6%, whilst the others revealed maximum 
errors of 3% and 2% respectively.

To provide information on the electrostatic solutions, Fig. 25 showcases a series of results. Fig. 25(a)–(c) display the 𝑧-component 
of the electric displacement vector which appears to more clearly demonstrate the variations in deformations between the rank-one 
laminate setups. Note that each column represents the same setup as Fig. 24. Interestingly, a higher value for electric displacement 
seems to have formed on the buckled regions of the plate which is well captured by the Kriging solutions. The relative errors in 
Fig. 25(d)–(f) seem to indicate a more challenging result for Kriging, whereby the average relative errors appear larger. However, it is 
important to note the challenging nature of capturing a buckling pattern which is often associated with tougher numerical problems. 
The maximum relative error values are still reasonable at 1% and 0.4% for each respective setup.

6.6.  Example 6 - RVE bending beam

To finish the numerical examples, the RVE metamodels demonstrated in Section 5.5.1 are being employed in a 3D FEM simulation. 
This example will showcase the capability to utilise multiple metamodels in a single simulation by assigning two different regions of 
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Fig. 26. Presents the schematics of the 1.0 × 0.1 × 0.01(𝑚) domain as well as the boundary conditions used for Example 6. The red region shows 
the fixed surface, whilst the blue line indicates the midway surface with an electric potential set to zero. The green region showcases the surface 
where a potential of 2.6 × 10−3 (𝑉 ) is prescribed. Note the domain is discretised into {25, 3, 2} elements in the corresponding {𝑥, 𝑦, 𝑧} directions.(For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 27. Displays the deformations achieved for the two examples, the green domain consisting of only RVE(a) and the purple domain consisting of 
a domain split in half using both RVE(a) and RVE(d) - see Appendix E.5 for RVE details.(For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

the domain their own constitutive metamodel. Once again a bending configuration is being utilised and details for the domain and 
boundary conditions can be found for both examples in Fig. 26.

An electric potential of 2.6 × 10−3(𝑉 ) is applied to the electrode configurations and the resulting deformations can be seen in 
Fig. 27. Firstly, notice the green domain which bends in two directions as expected from the configuration described in Fig. 26. The 
green domain consists of a single material metamodel calibrated on data from RVE(a) - see Appendix E.5 for more details on the 
RVE. On the other hand, the purple domain consists of two material models, the first half for RVE(a) and the second for RVE(d). The 
critical aspect to consider, is that RVE(d) consists of stiff fibres which are aligned parallel to the length of the device. As a result, the 
bending can be seen to be resisted by the stiffer fibres and cannot be overcome, leading to the second half of the domain remaining 
straight whilst the first half bends. Furthermore, whilst resisting bending it can also be seen that some curling occurs which again is 
an artefact associated with simulating a soft matrix with stiff fibres.

7.  Concluding remarks

The first element of this work highlighted the process to formulate the electromechanical problem in terms of principal stretches 
for the isotropic mechanics and invariants for the anisotropic mechanics and the coupling of the physics. This has been further 
extended to the required adjustments to be able to utilise this method with the outlined ML approach. The second focus outlined 
a procedure for obtaining derivative contributions for each ML input variable via orthogonal projections. The use of linear algebra 
enables the contributions to be evaluated which are critical when employing the Gradient Enhanced Kriging approach. Furthermore 
it enables a hierarchical procedure to be used to discover the anisotropic material symmetry group for the respective dataset. This 
is vital for the application of a ML approach to constitutive metamodelling since the advantages lie within the capability for ML to 
be employed on a dataset from an unknown material or material with a complex microstructure resulting in a complex constitutive 
model formulation. Furthermore, the challenges of handling a dataset without a known underlying model - such as the RVEs - have 
been highlighted which include needing to see which input sets can sufficiently recover the known quantities. The third objective 
achieved showcased an extensive set of constitutive models which have been successfully captured through the ML procedure and 
integrated within the Finite Element framework to model a set of complex numerical examples which highlight that constitutive 
metamodels can perform as well as their analytical counterparts. The final numerical example also presented the use of multiple 
constitutive metamodels employed during a single simulation for select regions of a domain.
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Appendix A.  Partial derivatives of internal energy

A.1.  Isotropic contribution

The first derivatives are given by
𝜕𝑭 𝜆1 = 𝒏𝑃1 ⊗𝑵𝑃

1 , 𝜕𝑭 𝜆2 = 𝒏𝑃2 ⊗𝑵𝑃
2 , 𝜕𝑭 𝜆3 = 𝒏𝑃3 ⊗𝑵𝑃

3 ,

𝜕𝑫0
𝜆1 = 𝟎, 𝜕𝑫0

𝜆2 = 𝟎, 𝜕𝑫0
𝜆3 = 𝟎,

(A.1)

where 𝒏𝑃𝑖  corresponds to the columns of 𝑼̂ and 𝑵𝑃
𝑖  corresponds to the columns of 𝑽̂ , where the superscript “𝑃 ” distinguishes between 

principal directions (𝒏𝑃 , 𝑵𝑃 ) and anisotropic directions (𝑵). For the invariants the definitions are given by
𝜕𝑭 𝐼4 = 𝟎, 𝜕𝑭 𝐼5 = 2𝑭𝑫0 ⊗𝑫0,

𝜕𝑫0
𝐼4 = 2𝑫0, 𝜕𝑫0

𝐼5 = 2𝑪𝑫0,
(A.2)

where 𝑪 is the right Cauchy-Green strain tensor (𝑭 𝑇𝑭 ). The second derivatives for the principal stretches are more complicated and 
through ingredients given by Smith et al. [43], Poya et al. [39] states that these second partial derivatives can be expressed as

3
∑

𝑖=1

(

𝜕𝜆𝑖𝑈
)

𝜕2𝑭𝑭 𝜆𝑖 =
3
∑

𝑖=1
𝜆̄𝑖𝑳𝑖 ⊗𝑳𝑖 + 𝜆̄𝑖+3𝑻 𝑖 ⊗ 𝑻 𝑖, (A.3)

with

𝜆̄1 =
𝜕𝜆2𝑈 − 𝜕𝜆3𝑈
𝜆2 − 𝜆3

, 𝜆̄2 =
𝜕𝜆1𝑈 − 𝜕𝜆3𝑈
𝜆1 − 𝜆3

, 𝜆̄3 =
𝜕𝜆1𝑈 − 𝜕𝜆2𝑈
𝜆1 − 𝜆2

,

𝜆̄4 =
𝜕𝜆2𝑈 + 𝜕𝜆3𝑈
𝜆2 + 𝜆3

, 𝜆̄5 =
𝜕𝜆1𝑈 + 𝜕𝜆3𝑈
𝜆1 + 𝜆3

, 𝜆̄6 =
𝜕𝜆1𝑈 + 𝜕𝜆2𝑈
𝜆1 + 𝜆2

,
(A.4)

and where 𝑻 𝑖 and 𝑳𝑖 refer to the twist and flip tensors respectively, defined as

𝑳1 =
1
√

2
𝑼̂
⎡

⎢

⎢

⎣

0 0 0
0 0 1
0 1 0

⎤

⎥

⎥

⎦

𝑽 𝑇 , 𝑳2 =
1
√

2
𝑼̂
⎡

⎢

⎢

⎣

0 0 1
0 0 0
1 0 0

⎤

⎥

⎥

⎦

𝑽 𝑇 , 𝑳3 =
1
√

2
𝑼̂
⎡

⎢

⎢

⎣

0 1 0
1 0 0
0 0 0

⎤

⎥

⎥

⎦

𝑽 𝑇 ,

𝑻 1 =
1
√

2
𝑼̂
⎡

⎢

⎢

⎣

0 0 0
0 0 −1
0 1 0

⎤

⎥

⎥

⎦

𝑽 𝑇 , 𝑻 2 =
1
√

2
𝑼̂
⎡

⎢

⎢

⎣

0 0 −1
0 0 0
1 0 0

⎤

⎥

⎥

⎦

𝑽 𝑇 , 𝑻 3 =
1
√

2
𝑼̂
⎡

⎢

⎢

⎣

0 −1 0
1 0 0
0 0 0

⎤

⎥

⎥

⎦

𝑽 𝑇 .

(A.5)

The remaining partial derivatives are given as
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A.2.  Anisotropic contribution (transverse isotropy)

𝜕𝑭 𝐼6 = 2𝑭𝑵 ⊗𝑵 , 𝜕𝑭 𝐼7 = 2(𝑯𝑵 ⊗𝑵) × 𝑭 , 𝜕𝑭 𝐼8 = 𝟎,
𝜕𝑫0

𝐼6 = 𝟎, 𝜕𝑫0
𝐼7 = 𝟎, 𝜕𝑫0

𝐼8 = 2
(

𝑫0 ⋅𝑵
)

𝑵 .
(A.6)

A.3.  Anisotropic contribution (orthotropy)

𝜕𝑭 𝐼6 = 2𝑭𝑵1 ⊗𝑵1, 𝜕𝑭 𝐼7 = 2
(

𝑯𝑵1 ⊗𝑵1
)

× 𝑭 , 𝜕𝑭 𝐼8 = 2𝑭𝑵2 ⊗𝑵2,

𝜕𝑫0
𝐼6 = 𝟎, 𝜕𝑫0

𝐼7 = 𝟎, 𝜕𝑫0
𝐼8 = 𝟎,

𝜕𝑭 𝐼9 = 𝟎, 𝜕𝑭 𝐼10 = 𝟎,
𝜕𝑫0

𝐼9 = 2
(

𝑫0 ⋅𝑵1
)

𝑵1, 𝜕𝑫0
𝐼10 = 2

(

𝑫0 ⋅𝑵2
)

𝑵2,

(A.7)

Appendix B.  Rank-one laminate homogenisation details

The projection operator  N ∈ ℝ3×2 given in Fig. 3 is used to project onto the plane normal to the unit vector N defined by
 N = T1 ⊗E1 + T2 ⊗E2, (B.1)

where T1 and T2 are two linearly independent vectors contained within the plane of lamination and vectors E1 and E2 are [1, 0]𝑇
and [0, 1]𝑇  respectively [9].

Appendix C.  GPR additional info

The objective of this Appendix is to provide fully the definitions of the derivatives for the correlation matrix R as seen in (44b) and 
(44c), and the derivatives of the cross-correlation matrix as seen in (58a) and (58b). Whilst this appears trivial, careful consideration 
must be taken when considering the hybrid principle stretches and invariants approach.

C.1.  Correlation matrix

For the correlation matrix R, the hybrid approach yields two first derivatives, the first of which is the derivative of the unchanged 
correlation function (

I(𝑖), I(𝑗),θ
) in terms of the input invariants given by

𝜕I(𝑗)𝑘
 = 2𝜃𝑘

(

I(𝑖)𝑘 − I(𝑗)𝑘
)


(

I(𝑖), I(𝑗),θ
)

. (C.1)

For the isotropic invariants {𝐼1, 𝐼2, 𝐼3} which are functions of the principle stretches λ, an adjusted correlation function denoted by 
̃
(

I
(

λ(𝑖)), I
(

λ(𝑗)),θ
) which requires the use of the chain rule via

𝜕𝜆(𝑗)𝑚
 =

3
∑

𝑘=1

(

𝜕I(𝑗)𝑘
̃
)

𝜕𝜆(𝑗)𝑚
I(𝑗)𝑘 . (C.2)

With regards to the second derivatives required for (44c), there are four possible combinations within this hybrid approach

𝜕2
I(𝑖)𝑙 I

(𝑗)
𝑘

 = 2𝜃𝑘
[

𝛿𝑘𝑙 − 2𝜃𝑙
(

I(𝑖)𝑘 − I(𝑗)𝑘
)(

I(𝑖)𝑙 − I(𝑗)𝑙
)]


(

I(𝑖), I(𝑗),θ
)

,

𝜕2
𝜆(𝑖)𝑛 𝜆

(𝑗)
𝑚
 =

3
∑

𝑘,𝑙=1
𝜕𝜆(𝑖)𝑛

I(𝑖)𝑙

(

𝜕2
I(𝑖)𝑙 I

(𝑗)
𝑘

̃
)

𝜕𝜆(𝑗)𝑚
I(𝑗)𝑘 + 𝛿𝑖𝑗

[ 3
∑

𝑘=1

(

𝜕2
𝜆(𝑖)𝑛 𝜆

(𝑗)
𝑚
I(𝑗)𝑘

)

𝜕I(𝑗)𝑘
̃

]

,

𝜕2
𝜆(𝑖)𝑛 I

(𝑗)
𝑘

 =
3
∑

𝑙=1
𝜕𝜆(𝑖)𝑛

I(𝑖)𝑙

(

𝜕2
I(𝑖)𝑙 I

(𝑗)
𝑘

̃
)

,

𝜕2
I(𝑖)𝑙 𝜆

(𝑗)
𝑚
 =

3
∑

𝑘=1

(

𝜕2
I(𝑖)𝑙 I

(𝑗)
𝑘

̃
)

𝜕𝜆(𝑗)𝑚
I(𝑗)𝑘 .

(C.3)

C.2.  Cross-correlation matrix

For the definition of the cross-correlation matrix r in (52), only the correlation function and the first derivatives are required 
leading to the same expressions given in (C.1) and (C.2). Taking the first derivative of the q1 block of r with respect to the 𝑖th 
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evaluation point (needed for (58a)) has two components again given by
𝜕I∙(𝑖)𝑘

 = −2𝜃𝑘
(

I∙(𝑖)𝑘 − I(𝑗)𝑘
)


(

I∙(𝑖), I(𝑗),θ∗),

𝜕𝜆∙(𝑖)𝑚
 =

3
∑

𝑘=1

(

𝜕I∙(𝑖)𝑘
̃
)

𝜕𝜆∙(𝑖)𝑚
I∙(𝑖)𝑘 .

(C.4)

Taking the first derivative of the q2 block of r given in (58b) yields
𝜕2
I∙(𝑖)𝑙 I(𝑗)𝑘

 = 2𝜃𝑘
[

𝛿𝑘𝑙 − 2𝜃𝑙
(

I∙(𝑖)𝑘 − I(𝑗)𝑘
)(

I∙(𝑖)𝑙 − I(𝑗)𝑙
)]


(

I∙(𝑖), I(𝑗),θ
)

,

𝜕2
𝜆∙(𝑖)𝑛 𝜆(𝑗)𝑚

 =
3
∑

𝑘,𝑙=1
𝜕𝜆∙(𝑖)𝑛

I∙(𝑖)𝑙

(

𝜕2
I∙(𝑖)𝑙 I(𝑗)𝑘

̃
)

𝜕𝜆(𝑗)𝑚
I(𝑗)𝑘 ,

𝜕2
𝜆∙(𝑖)𝑛 I(𝑗)𝑘

 =
3
∑

𝑙=1
𝜕𝜆∙(𝑖)𝑛

I∙(𝑖)𝑙

(

𝜕2
I∙(𝑖)𝑙 I(𝑗)𝑘

̃
)

,

𝜕2
I∙(𝑖)𝑙 𝜆(𝑗)𝑚

 =
3
∑

𝑘=1

(

𝜕2
I∙(𝑖)𝑙 I(𝑗)𝑘

̃
)

𝜕𝜆(𝑗)𝑚
I(𝑗)𝑘 .

(C.5)

Appendix D.  Metamodel synthetic data generation

The extended spherical parametrisation in ℝ5 for use in evaluating the deviatoric directions in Algorithm 2 is given by 

X 𝑖
F

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

cos𝜙𝑖1
sin𝜙𝑖1 cos𝜙

𝑖
2

sin𝜙𝑖1 sin𝜙
𝑖
2 cos𝜙

𝑖
3

sin𝜙𝑖1 sin𝜙
𝑖
2 sin𝜙

𝑖
3 cos𝜙

𝑖
4

sin𝜙𝑖1 sin𝜙
𝑖
2 sin𝜙

𝑖
3 sin𝜙

𝑖
4

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑖 ∈
[

1,… , 𝑛XF

]

. (D.1)

The basis for the symmetric and traceless second order tensors used for the construction of F  in Algorithm 3 are given as

Ψ1 =
√

1
6

⎡

⎢

⎢

⎣

2 0 0
0 −1 0
0 0 −1

⎤

⎥

⎥

⎦

, Ψ2 =
√

1
2

⎡

⎢

⎢

⎣

0 0 0
0 1 0
0 0 −1

⎤

⎥

⎥

⎦

, Ψ3 =
√

1
2

⎡

⎢

⎢

⎣

0 1 0
1 0 0
0 0 0

⎤

⎥

⎥

⎦

, (D.2)

Ψ4 =
√

1
2

⎡

⎢

⎢

⎣

0 0 1
0 0 0
1 0 0

⎤

⎥

⎥

⎦

, Ψ5 =
√

1
2

⎡

⎢

⎢

⎣

0 0 0
0 0 1
0 1 0

⎤

⎥

⎥

⎦

. (D.3)

Appendix E.  Constitutive model details

The extensive range of constitutive models used throughout this work are outlined in the following subsections. Note that often 
these models are defined in terms of the isotropic mechanical invariants {𝐼1, 𝐼2, 𝐼3} which are defined as 

𝐼1 = F ∶ F , 𝐼2 = H ∶ H , 𝐼3 = detF . (E.1)

The material parameters for the selected constitutive models are not necessarily representative of electroactive polymer materials. 
It is important to note that the deformations still reflect the true performance, but the resulting information and applied electric 
potential is scaled, namely 𝑉𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑉

√

𝜖∕𝜇1. This has been covered comprehensively in previous work, see Remark 6 in Section 5 of 
[53].

E.1.  Ogden ideal dielectric

The definition for the Ogden Ideal Dielectric strain energy density is given by

𝑈
(

𝜆1, 𝜆2, 𝜆3, 𝐼3, 𝐼5
)

=
𝑁
∑

𝑝=1

𝜇𝑝
𝛼𝑝

(

𝜆
𝛼𝑝
1 + 𝜆

𝛼𝑝
2 + 𝜆

𝛼𝑝
3 − 3

)

− 𝜇𝑝 ln
(

𝜆1𝜆2𝜆3
)

+
𝜆̄𝑝
2
(

𝜆1𝜆2𝜆3 − 1
)2 + 1

2𝜖
𝐼5
𝐼3
, (E.2)

where the material parameters are given in Table E.1.

E.2.  Mooney-Rivlin ideal dielectric

The definition for the Mooney-Rivlin Ideal Dielectric strain energy density is given by

𝑈
(

𝐼1, 𝐼2, 𝐼3, 𝐼5
)

=
𝜇1
2
(

𝐼1 − 3
)

+
𝜇2
2
(

𝐼2 − 3
)

−
(

𝜇1 + 2𝜇2
)

ln
(

𝐼3
)

+ 𝜆
2
(

𝐼3 − 1
)2 + 1

2𝜖
𝐼5
𝐼3
, (E.3)

where the material parameters are given in Table E.2.
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Table E.1 
Material parameters used for the Ogden ideal dielectric.
 Parameter: {𝜇1 , 𝜇2 , 𝜇3} 𝛼1 𝛼2 𝛼3 {𝜆̄1 , 𝜆̄2 , 𝜆̄3} 𝜖

 Value: 0.5 1 3.5 5 5 1

Table E.2 
Material parameters used with the 
Mooney-Rivlin model.
 Parameter: 𝜇1 𝜇2 𝜆 𝜖

 Value: 0.5 0.5 5 1

E.3.  Transversely isotropic ideal dielectric

The definition for the Transversely Isotropic Ideal Dielectric strain energy density is given by

𝑈
(

𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5, 𝐼6, 𝐼7
)

=
𝜇1
2
(

𝐼1 − 3
)

+
𝜇2
2
(

𝐼2 − 3
)

−
(

𝜇1 + 2𝜇2 + 𝜇3
)

ln
(

𝐼3
)

(E.4)

+ 𝜆
2
(

𝐼3 − 1
)2 +

𝜇3
2𝛼

(

𝐼6
)𝛼 +

𝜇3
2𝛽

(

𝐼7
)𝛽 + 1

2

(

1
2𝛼
𝜇3 +

1
2𝛽
𝜇3

)

+ 1
2𝜖
𝐼5
𝐼3
,

where the material parameters are given in Table E.3.

Table E.3 
Material parameters used with the transversely isotropic model.
 Parameter: 𝜇1 𝜇2 𝜇3 𝜆 𝛼 𝛽 N 𝜖

 Value: 0.5 0.5 7.5 5 2 2
[

1∕
√

3 1∕
√

3 1∕
√

3
]𝑇

1

E.4.  Rank-one laminate ideal dielectric

The definition for the Rank-one Laminate Ideal Dielectric strain energy density is given by

𝑈𝑎(𝐼𝑎1 , 𝐼
𝑎
2 , 𝐼

𝑎
3 , 𝐼

𝑎
5
)

= 1
2
𝜇𝑎1

(

𝐼𝑎1 − 3
)

+ 1
2
𝜇𝑎2

(

𝐼𝑎2 − 3
)

−
(

𝜇𝑎1 + 2𝜇𝑎2
)

ln
(

𝐼𝑎3
)

(E.5)

+ 1
2
𝜆𝑎
(

𝐼𝑎3 − 1
)2 + 1

2𝜖𝑎
𝐼𝑎5
𝐼𝑎3
,

𝑈 𝑏(𝐼𝑏1 , 𝐼
𝑏
2 , 𝐼

𝑏
3 , 𝐼

𝑏
5
)

= 1
2
𝜇𝑏1

(

𝐼𝑏1 − 3
)

+ 1
2
𝜇𝑏2

(

𝐼𝑏2 − 3
)

−
(

𝜇𝑏1 + 2𝜇𝑏2
)

ln
(

𝐼𝑏3
)

(E.6)

+ 1
2
𝜆𝑏
(

𝐼𝑏3 − 1
)2 + 1

2𝜖𝑏
𝐼𝑏5
𝐼𝑏3
.

where the material parameters for the three variations given in Table E.4.

Table E.4 
Material parameters used with the rank one laminate model.
 Parameter: 𝜇𝑎1 𝜇𝑎2 𝜆𝑎 𝜖𝑎 𝛼 𝛽 𝑓𝑚 𝑓𝑒 𝑐

 Value (ROL(a)): 0.5 0.5 5 1 𝜋∕4 𝜋∕4 2 2 0.6

 Value (ROL(b)): 0.5 0.5 5 1 𝜋∕4 𝜋∕4 5 3 0.6

 Value (ROL(c)): 0.5 0.5 5 1 𝜋∕4 𝜋∕4 10 5 0.6

Note that the mechanical contrast 𝑓𝑚 denotes the ratio between 𝜇1, 𝜇2 𝜆, and the electric contrast, the ratio between 𝜖

𝑓𝑚 =
𝜇𝑏1
𝜇𝑎1

=
𝜇𝑏2
𝜇𝑎2

= 𝜆𝑏

𝜆𝑎
, 𝑓𝑒 =

𝜖𝑏

𝜖𝑎
. (E.7)

Furthermore, 𝑐 represents the volume fraction where 𝑐𝑎 = 𝑐 and 𝑐𝑏 = 1 − 𝑐, whilst N denotes the direction of lamination characterised 
via the two angles 𝛼 and 𝛽 such that N = [sin 𝛽 cos 𝛼, sin 𝛽 sin 𝛼, cos 𝛽]𝑇 . 
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E.5.  Relative volume element details

The RVE consists of a unit cell (1 × 1 × 1) cube design which is divided into two subdomains one associated with the matrix 𝑿𝜇 ∈
𝑚0𝜇  and the other, associated with the inclusion 𝑿𝜇 ∈ 𝑖0𝜇 , such that 0𝜇 = 𝑚0𝜇 ∪ 𝑖0𝜇 , and 

𝑚
0𝜇

∩ 𝑖0𝜇 = ∅. Within each subdomain, 
the internal energy density is defined by 𝑈𝜇(𝑿𝜇 , 𝐼1𝜇 , 𝐼2𝜇 , 𝐼3𝜇 , 𝐼5𝜇 ) = Ψ𝜇(𝑿𝜇 ,𝑭 𝜇 ,E0𝜇) according to

Ψ𝜇(𝑿𝜇 ,𝑭 𝜇 ,E0𝜇) = 𝑈𝜇(𝑿𝜇 , 𝐼1𝜇 , 𝐼2𝜇 , 𝐼3𝜇 , 𝐼5𝜇 ) =

⎧

⎪

⎨

⎪

⎩

𝑈𝑚
𝜇 (𝐼1𝜇 , 𝐼2𝜇 , 𝐼3𝜇 , 𝐼5𝜇 ) 𝑿𝜇 ∈ 𝑚0𝜇

𝑈 𝑖
𝜇(𝐼1𝜇 , 𝐼2𝜇 , 𝐼3𝜇 , 𝐼5𝜇 ) 𝑿𝜇 ∈ 𝑖0𝜇

(E.8)

Note that in all cases, RVE(a-d), the free energy density functions are of the Mooney-Rivlin type, as described in Appendix E.2 but 
using the material parameters given in Table E.5.

Table E.5 
Material parameters used for the RVE.
 Parameter: 𝜇𝑚1 𝜇𝑚2 𝜆𝑚 𝜖𝑚 𝑓𝑚 𝑓𝑒 𝑟𝑥 𝑟𝑦 𝑟𝑧 𝛼 𝛽

 Value (RVE(a)): 1 1 10 1 5 5 0.25 0.25 0.25  –  –
 Value (RVE(b)): 1 1 10 1 5 5 0.1 0.4 0.2 𝜋∕3 𝜋∕4

 Value (RVE(c)): 1 1 10 1 5 5 0.25 0.25 0.25  –  –
 Value (RVE(d)): 1 1 10 1 5 5 0.25 0.25  –  –  –

The configurations for each case above is as follows: RVE(a) has a spherical inclusion, RVE(b) has an ellipsoidal inclusion, RVE(c) 
is a body centred cubic, and RVE(d) is a face centred fibre. The corresponding geometries are clearly depicted in Fig. 12. Note that 
the mechanical contrast 𝑓𝑚 denotes the ratio between 𝜇1, 𝜇2, 𝜆, and the electric contrast, the ratio between 𝜖 as

𝑓𝑚 =
𝜇𝑖1
𝜇𝑚1

=
𝜇𝑖2
𝜇𝑚2

= 𝜆𝑖

𝜆𝑚
, 𝑓𝑒 =

𝜖𝑖

𝜖𝑚
. (E.9)

Furthermore, 𝛼 and 𝛽 are angles which determine the amount rotation in the 𝑥𝑧 and 𝑥𝑦 planes respectively.

Appendix F.  Obtaining the reduced log likelihood

Recall the opposite log-likelihood function (47) and the optimal model parameters (48) as found via the Maximum Likelihood 
Estimation technique

ℒ
(

𝑼 |𝛽, 𝜎2,𝜽
)

= 𝐴
2
log (2𝜋) + 𝐴

2
log

(

𝜎2
)

+ 1
2
log (|𝑹(𝜽)|) + 1

2𝜎2
(𝑼 − 𝟏𝛽)𝑇𝑹−1(𝜽)(𝑼 − 𝟏𝛽),

𝛽∗(𝜽) =
(

𝟏𝑇𝑹−1(𝜽)𝟏
)−1𝟏𝑇𝑹−1(𝜽)𝑼 ,

𝜎2∗(𝜽) = 1
𝐴
(

𝑼 − 𝟏𝛽∗(𝜽)
)𝑇𝑹−1(𝜽)

(

𝑼 − 𝟏𝛽∗(𝜽)
)

.

(F.1)

By substituting the optimal parameters (48) into the opposite log-likelihood function (47) one can obtain

ℒ̄
(

𝑼 |𝛽∗, 𝜎2∗,𝜽
)

= 𝐴
2
log (2𝜋) + 𝐴

2
log

(

𝜎2∗
)

+ 1
2
log (|𝑹(𝜽)|)

+ 1
2𝜎2∗

(

𝑼 − 𝟏𝛽∗
)𝑇𝑹−1(𝜽)

(

𝑼 − 𝟏𝛽∗
)

.
(F.2)

which can be re-expressed as

ℒ̄
(

𝑼 |𝛽∗, 𝜎2∗,𝜽
)

= 𝐴
2
log (2𝜋) + 𝐴

2
log

(

𝜎2∗
)

+ 1
2
log (|𝑹(𝜽)|) + 𝐴𝜎2∗

2𝜎2∗
, (F.3)

which leads to a simple factorisation

ℒ̄
(

𝑼 |𝛽∗, 𝜎2∗,𝜽
)

= 𝐴
2
(log (2𝜋) + 1) + 𝐴

2
log

(

𝜎2∗
)

+ 1
2
log (|𝑹(𝜽)|). (F.4)

Here the constant term will now be neglected since it will not have an impact on the minimisation, and the term of interest can also 
be factorised as follows

ℒ̄
(

𝑼 |𝛽∗, 𝜎2∗,𝜽
)

= 𝐴
2

(

log
(

𝜎2∗
)

+ 1
𝐴

log (|𝑹(𝜽)|)
)

. (F.5)

Finally, the rules of logs can be applied to first raise the pre-multiplied fraction to the power of the determinant term and then join 
the two terms

ℒ̄
(

𝑼 |𝛽∗, 𝜎2∗,𝜽
)

= 𝐴
2
(log (𝜓(𝜽))), (F.6)
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where

𝜓(𝜽) = 𝜎2∗(𝜽)|𝑹(𝜽)|
1
𝐴 , (F.7)

thus retrieving (50).

Appendix G.  Finite element implementation in nonlinear electromechanics

This Appendix presents the Finite Element discretisation of the weak forms associated with the coupled differential equations 
governing the behaviour of EAPs, presented in (2). These weak forms correspond with the stationary conditions of the following 
variational principle

Π(𝝓, 𝜑) = inf
𝝓

sup
𝜑

{

∫0

Ψ(𝑭 ,𝑬0) 𝑑𝑉 − Π𝑚ext(𝝓) − Π𝑒ext(𝜑)

}

, (G.1)

where Π𝑚ext and Π𝑒ext represent the external energetic contributions, defined as

Π𝑚ext(𝝓) = ∫0

𝒇 0 ⋅ 𝝓 𝑑𝑉 + ∫𝜕𝒕0

𝒕0 ⋅ 𝝓 𝑑𝐴, Π𝑒ext(𝜑) = −∫0

𝜌𝑒0𝜑𝑑𝑉 − ∫𝜕𝜔0

𝜔𝑒0𝜑𝑑𝐴. (G.2)

As standard in finite elements, the domain 0 described in Section 2, representing the EAP, undergoes partitioning into a finite 
collection of distinct and non-overlapping elements, denoted as 𝑒 ∈ 𝔼. This division is carried out according to

0 ≈ ℎ0 =
⋃

𝑒∈𝔼
𝑒0. (G.3)

The unknown fields {𝝓, 𝜑}, along with their corresponding test functions {𝛿𝝓, 𝛿𝜑}, are discretised utilising the functional spaces 
𝕍𝝓ℎ × 𝕍𝜑ℎ  and 𝕍𝝓ℎ

0 × 𝕍𝜑
ℎ

0 , respectively. These are defined as follows

𝕍𝝓ℎ =

⎧

⎪

⎨

⎪

⎩

𝝓 ∈ 𝕍𝝓; 𝝓ℎ||
|𝑒0

=
𝑛𝝓node
∑

𝑎=1
𝑁𝝓
𝑎 𝝓𝑎

⎫

⎪

⎬

⎪

⎭

,

𝕍𝜑ℎ =

⎧

⎪

⎨

⎪

⎩

𝜑 ∈ 𝕍𝜑; 𝜑ℎ||
|𝑒0

=
𝑛𝜑node
∑

𝑎=1
𝑁𝜑
𝑎 𝜑𝑎

⎫

⎪

⎬

⎪

⎭

,

𝕍𝝓ℎ
0 =

{

∀𝝓 ∈ 𝕍𝝓ℎ ; 𝝓 = 𝟎 on 𝜕𝝓0

}

,

𝕍𝜑
ℎ

0 =
{

∀𝜑 ∈ 𝕍𝜑ℎ ; 𝜑 = 0 on 𝜕𝜑0

}

.

(G.4)

In the context of any given field  from the set {𝝓, 𝜑}, the quantity 𝑛node signifies the count of nodes within each element of the 
discretisation pertaining to the field  . Furthermore, let 𝑁

𝑎 ∶ 𝑒0 → ℝ be representative of the 𝑎th shape function employed for the 
purpose of interpolating the field  . Additionally, 𝑎 denotes the value attributed to the field  at the 𝑎th node of a specific finite 
element. By incorporating the functional spaces as defined in Eq. (G.4), it becomes feasible to express the stationary conditions of 
Eq. (G.1) in relation to their corresponding residual contributions arising at the elemental level, namely

𝐷Π[𝛿𝝓] =
𝑁
∑

𝑒=1
𝛿𝝓𝑎 ⋅𝑹𝝓

𝑎,𝑒 = 0, 𝐷Π[𝛿𝜑] =
𝑁
∑

𝑒=1
𝛿𝜑𝑎𝑅

𝜑
𝑎,𝑒 = 0, (G.5)

where 𝑁 signifies the count of elements utilised within the foundational discretisation framework. Additionally, each of the distinct 
residual contributions, denoted as 𝑹𝝓

𝑎,𝑒 and 𝑅𝜑𝑎,𝑒, is amenable to representation in the following manner2

𝑹𝝓
𝑎,𝑒 = ∫𝑒0

(

𝜕𝑭Ψ
)

𝛁0𝑁
𝝓
𝑎 𝑑𝑉 + ∫𝑒0

𝑁𝝓
𝑎 𝒇 0 𝑑𝑉 , 𝑅𝜑𝑎,𝑒 = −∫𝑒0

(

𝜕𝑬0
Ψ
)

⋅ 𝛁0𝑁
𝜑
𝑎 𝑑𝑉 + ∫𝑒0

𝑁𝜑
𝑎 𝜌

𝑒 𝑑𝑉 . (G.6)

A Newton-Raphson scheme can be used for the solution of the weak forms in (G.5), which implies the following linearisation with 
respect to incremental fields Δ𝝓 ∈ 𝕍𝝓

0  and Δ𝜑 ∈ 𝕍𝜑0
0 = 𝐷Π[𝛿𝝓] +𝐷Π[𝛿𝜑] +𝐷2Π[𝛿𝝓; Δ𝝓] +𝐷2Π[𝛿𝝓; Δ𝜑] +𝐷2Π[𝛿𝜑; Δ𝝓] +𝐷2Π[𝛿𝜑; Δ𝜑], (G.7)

with

𝐷2Π[𝛿𝝓,Δ𝝓] =
𝑁
∑

𝑒=1
𝛿𝝓𝑎 ⋅𝑲

𝝓𝝓
𝑎𝑏,𝑒Δ𝝓𝑏, 𝐷2Π[𝛿𝝓,Δ𝜑] =

𝑁
∑

𝑒=1
𝛿𝝓𝑎 ⋅𝑲

𝝓𝜑
𝑎𝑏,𝑒Δ𝜑𝑏,

𝐷2Π[𝛿𝜑,Δ𝝓] =
𝑁
∑

𝑒=1
𝛿𝜑𝑎 ⋅𝑲

𝜑𝝓
𝑎𝑏,𝑒Δ𝝓𝑏, 𝐷2Π[𝛿𝜑,Δ𝜑] =

𝑁
∑

𝑒=1
𝛿𝜑𝑎𝐾

𝜑𝜑
𝑎𝑏,𝑒Δ𝜑𝑏,

(G.8)

2 For the sake of simplicity, the external contributions, specifically those pertaining to 𝒕0 and 𝜔𝑒0 at the boundary, have been omitted from the 
expression in (G.6).
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where each of the stiffness contributions is expressed as
(

𝑲𝝓𝝓
𝑎𝑏,𝑒

)

𝑖𝑗
= ∫𝑒0

(

𝛁0𝑁
𝝓
𝑎
)

𝐼

(

𝛁0𝑁
𝝓
𝑏

)

𝐽

(

𝜕2𝑭𝑭Ψ
)

𝑖𝐼𝑗𝐽 𝑑𝑉 ,

(

𝑲𝝓𝜑
𝑎𝑏,𝑒

)

𝑖
= −∫𝑒0

(

𝛁0𝑁
𝝓
𝑎
)

𝐼
(

𝛁0𝑁
𝜑
𝑏
)

𝐽

(

𝜕2𝑭𝑬0
Ψ
)

𝑖𝐼𝐽
𝑑𝑉 ,

𝐾𝜑𝜑
𝑎𝑏,𝑒 = ∫𝑒0

(

𝛁0𝑁
𝜑
𝑎

)

𝐼

(

𝜕2𝑬0𝑬0
Ψ
)

𝐼𝐽

(

𝛁0𝑁
𝜑
𝑏

)

𝐽
𝑑𝑉 ,

𝑲𝜑𝝓
𝑎𝑏,𝑒 =

(

𝑲𝜑𝝓
𝑎𝑏,𝑒

)𝑇
.

(G.9)

A Legendre transformation to take one from an internal energy density to a Helmholtz free energy density is given by
Ψ(𝑭 ,𝑬0) = inf

𝑫0
{𝑒
(

𝑭 ,𝑫0
)

−𝑫0 ⋅ 𝑬0}, (G.10)

from where the Hessian components are related as

𝜕2𝑬0𝑬0
Ψ =

(

𝜕2𝑫0𝑫0
𝑒
)−1

,
(

𝜕2𝑭𝑬0
Ψ
)

𝑖𝐼𝐽
= −

(

𝜕2𝑭𝑫0
𝑒
)

𝑖𝐼𝑀

(

𝜕2𝑬0𝑬0
Ψ
)

𝑀𝐽
,

(

𝜕2𝑭𝑭Ψ
)

𝑖𝐼𝑗𝐽
=
(

𝜕2𝑭𝑭 𝑒
)

𝑖𝐼𝑗𝐽
−
(

𝜕2𝑭𝑫0
𝑒
)

𝑖𝐼𝑀

(

𝜕2𝑬0𝑭
Ψ
)

𝑀𝑗𝐽
.

(G.11)

Finally, standard global assembly of the residual and stiffness contributions in (G.6) and (G.9), respectively, permits to obtain the 
discrete form of Eq. (G.7) in terms of the nodal incremental vector fields {𝚫𝝓,𝚫𝝋}

[

𝑲𝝓𝝓 𝑲𝝓𝜑

𝑲𝜑𝝓 𝑲𝜑𝜑

]

[

𝚫𝝓
𝚫𝝋

]

= −
[

𝑹𝝓

𝑹𝜑

]

. (G.12)

Solution of {𝚫𝝓,𝚫𝝋} permits the update of the nodal solution fields {𝚫𝝓,𝚫𝝋} at every node of the underlying Finite Element dis-
cretisation at a given Newton-Raphson iteration 𝑘 + 1 as

𝝓̃
𝑘+1

= 𝝓̃
𝑘
+ 𝚫𝝓, 𝝋̃𝑘+1 = 𝝋̃𝑘 + 𝚫𝝋. (G.13)
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