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The role of primary and tertiary creep in defining the form of the Monkman-
Grant relation using the 4-6 methodology: an application to Waspaloy

Mark Evans

Institute of Structural Materials, Swansea University Bay Campus, Swansea, UK

ABSTRACT

It is important to be able to predict the life of materials at high temperatures and an analysis of
minimum creep rates vs. time to failure is one way of approaching this problem. However,
recent studies on 9Cr steels, for example, have shown that this Monkman-Grant plot exhibits a
low overall value for the exponent on the minimum creep rate (p =-0.85), together with a
substantial scatter of data points around the relation. Both these phenomena, together with it
being a mainly empirical relation, have restricted its use for life prediction purposes and so this
paper aims to identify the causes of these two phenomena and to provide an explanation of
this relation based on creep mechanisms. This is done within the 4-6 methodology so that the
roles played by hardening, softening and damage mechanisms in causing this large scatter and
low p value can be explicitly quantified. By manipulating the 4-8 equations, it was found that
the role played by hardening and softening in identifying the form of the Monkman-Grant
relation is restricted to the determination of a theoretical secondary creep rate measured as
030, - the exponent on which is predicted to equal —1 in this methodology. However, the data
obtained on Waspaloy revealed p to equal —0.778 over all test conditions. This paper demon-
strated that this was caused by the Monkman-Grant proportionality constant falling into three
well defined groupings depending on values for both the amount of accumulated damage and
the rate at which this damage occurred in a test specimen. It then turned out that within each
such grouping, the exponent on the secondary creep rate equalled —1 as suggested by the 4-0
methodology. Then, by considering the damage at failure and the rate of its accumulation in
the determination of the Monkman-Grant proportionality constant, together with the replace-
ment of the minimum creep rate with 66,, resulted in a Monkman-Grant exponent of —1 with
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minimal scatter around this relation.

Introduction

Waspaloy is a nickel-based superalloy used primarily in
high-temperature and high-stress applications, espe-
cially in the aerospace and power generation industries.
It has excellent creep and oxidation resistance at ele-
vated temperatures, especially up to temperatures of
around 1140K. The main aerospace components
made with this material include turbine discs, compres-
sor wheels, blades, seals, shafts and spacers. In gas
turbine engines, Waspaloy is used in the manufacture
of combustion chambers, afterburner components and
turbine section components. A gas turbine disc typi-
cally operates in the range 923K to 1023K, compressor
rotors at temperatures between 673K to 923K and
combustor ducts at temperatures between 1023K to
1140K. Compressor blades used in the high-pressure
section of the engine, typically experience a centrifugal
stress of between 300 and 600 MPa and a bending stress
between 50 and 150 MPa. High-pressure compressor
discs typically experience a centrifugal hoop stress of
between 500 and 900 MPa and an axial stress from
blade loading of between 100 and 300 MPa. For the

safe and economic operation of turbine blades, a creep
rupture life in the time range of 20,000 to 25,000 hours
for commercial engines is required (but 10,000-15,000
hours for military or high-performance engines) and
for turbine discs a creep rupture life in the time range of
30,000 to 50,000 hours is required.

Evaluation of such longer-term creep rupture is
typically done using accelerated creep tests (either
accelerated stresses and/or temperatures), with creep
models then being used to extrapolate to the lower
stresses observed in the above-mentioned systems.
However, there is little agreement on what creep mod-
els extrapolate best with respect to stress and tempera-
ture, and whilst some more recently developed models
have been shown to perform well at such extrapolation
over a wide range of materials, they currently lack the
theoretical backing that provides the additional con-
fidence required for widespread adoption (for exam-
ple, Yang et al. [1] and Wilshire et al. [2-6]). An
analysis of minimum creep rates vs. time to failure -
the so-called Monkman - Grant relation [7] - using
accelerated test data is another suggested way to
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evaluate long-term creep rupture by extrapolating this
accelerated relation using lower minimum creep rates
- because once the minimum rate of creep in an on-
going creep test at non accelerated stresses is obtained
at an early stage of creep, its rupture life is readily
evaluated from this accelerated relation without a need
to extrapolate with respect to stress and/or tempera-
ture. But again, there is limited theoretical backing for
this relation.

A relationship between time to failure tz and the
minimum creep rate &, was first put forward by
Monkman and Grant [7] and is now commonly
referred to as the Monkman - Grant relation (or MG
for short). They studied several materials (including,
but not exclusively, Aluminium, Titanium 75, Ferritic
Steels, Austenitic Steels and Inco 700) and identified
the following relation

P (1a)

where these authors found that the parameters p and
M were constant over all the test conditions contained
within the data sets that they analysed, but that they
differed in value from material to material. (M is
frequently termed the Monkman-Grant proportional-
ity constant and p the Monkman-Grant exponent).
For the materials investigated by these authors, p was
close to 1 but varied between a low of 0.77 and a high
of 0.93 (for Austenitic Steels). Likewise, M varied from
a low of 0.48 to a high of 1.3 (for Aluminium). In the
same year, and independently of Monkam and Grant,
Machlin [8] provided a theoretical explanation of
Eq (1a).

At a specific test condition, and when p =1, the
Monkman-Grant equation is a simple tautology or
identity (represented by the symbol =). To see this,

consider Figure 1, showing a hypothetical creep
curve containing primary, secondary and tertiary
creep obtained at a fixed stress and temperature.
The observed minimum creep rate ¢y is equal to
the gradient of the creep curve at the point of inflec-
tion, and the dashed line has such a slope - but has
been extrapolated to time zero and to the time at
failure. By the definition of a gradient, the slope of
this line equals the vertical distance M divided by the
time to failure tg

M
En=—— (1b)
tp
and so, upon rearranging
M L
tpE_—EM(SM) ! (1C)
&M

From this perspective, the Monkman-Grant rela-
tion requires the additional assumption that M is the
same at all stresses and temperatures (subject to sto-
chastic or random experimental variation). This
assumption then turns this simple identity into a use-
ful model or casual relation, because it then follows
that a fall in &y must led to an increase in the time to
failure (rather than to a change in M).

Since this relation was first identified, some doubt
has been cast as to the constancy of M and p with
respect to test conditions. For example, when studying
9Cr-1Mo steel, Abe [9] and Choudary [10] have
shown M and p are different in value at long failure
times (i.e. at lower stresses) compared to short and
intermediate failure times. More specifically, they
found that over most test conditions p = 1, but at the
lower stresses leading to the longest failure times, p fell
below 1. In order to explain the change in values for M

€p

Strain, € (%/100)

»

M =18,

Time, t (s)

Figure 1. Schematic representation of a uniaxial creep curve obtained at a constant stress and temperature.



and p at lower stresses, several modifications of Eq
(1a) have been proposed. Dobes and Milicka [11]
proposed the following modified form

t M

izwwith py=1 (1d)
where e is the strain at failure. Subsequent authors
have found some success with this modification. For
example, Sklenicka et al. [12] studied a Gr. 92 steel and
found a stable value for p; of 0.96 in Eq (1d) - in
contrast to p = 0.88 in Eq (1a). The MG relation in Eq
(1d) is related to the creep damage tolerance para-
meter A. This parameter measures the ability of a
material to withstand local concentrations of strain
accumulation without cracking,

1= M ~ o (le)

tpém teem My
where ¢, is the strain reached at the end of primary
creep. The approximation in Eq (le) corresponds to
test conditions where the magnitude and duration of
primary creep is small in relation to failure time - so
&p = 0. This approximation results in the MG propor-
tionality constant in Eq (1d) being equal to the reci-
procal of the damage tolerance parameter, A~ ' 2 M.
A values in the range 5-10 are though to ensure that
the strain concentrations typically encountered during
in service operation will not lead to premature crack-
ing and failure.

Abe [9] attributed the deviation from the simple
MG relation with p=1 in long-term creep, to
increases in dIn(¢)/de, and proposed the following
MG relation

din(e) ( tr

de (tF — tm

)) (ém) " (1f)

where ty; is the time taken to reach the minimum
creep rate, € is the creep strain and ¢ is the creep strain
rate. However, when applied to 9Cr steel, Abe
obtained a value for p that was still less than 1.

Maruyama et al. [13] studied this phenomenon of
p <1 in more detail, using data on 9Cr-1Mo (Grade
92) steel. They found that the value for p differed over
four different regions of stress and temperature, where
each of these regions corresponded to different creep
mechanisms. Whilst the value for p over all tests was
0.85, they found it to be especially low (0.62) in a
region corresponding to values of stress and tempera-
ture that induced long times to failure (in excess of 10*
hours). With long-term data points deviating from an
MG relation determined by short-term data points, it
becomes impossible to use this relationship to evaluate
long-term life from short-term data.

These authors then went onto to study the role
played by creep curve shape in determining the values
for M and p using the following equation
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e=Aln(l+at)—Bln(l-pt) (2a)

where t is the time and where A and B are parameters
related to strain, whilst a and [ are rate parameters. A
(approximately) measures the decelerating rate of
creep during primary creep (A =-1/(dln é/de)), and
B measures creep rate acceleration (B =1/(dln &/de))
in tertiary creep. Hence, A and B can be taken as
summary measures of creep curve shape. They found
that the values of A and B decreased with increasing
creep rupture life, and it was this changing shape with
tr that explained the p values of less than unity, i.e. p is
lowest when A and B are lowest. From this analysis,
they found that constraining M to a value of

M= (\/K+\/I_3>2 (2b)

in Eq (1a) resulted in the Monkman-Grant exponent
of p=1 when applied to all the data on Grade 92 steel
(both long and short-term tests results).

Abe [14] recently found that the following modified
Monkman-Grant relation was in complete agreement
with this work by Maruyama et al.

tp .1
— = C(én) (2¢)
ép

The better fit to the data obtained using this expres-
sion reflected the observation by the author that for
9Cr steel data ep was inversely proportional to &y over
a wide range of test conditions and test durations.

However, Eq (2a) is purely empirical in nature and
its parameters have not been explained in terms of
creep mechanisms. The aim of this paper is therefore
to identify a modified Monkman-Grant relation
whose parameters can be explained in terms of creep
processes such as hardening, softening and damage
mechanisms. It is hope that providing such a theore-
tical basis will encourage the use of the relation for
creep life prediction. To do this, a similar material to
that studied by Maruyama et al. [13] was selected -
namely a Grade 12 steel - but the creep equation used
was that from the 4-0 methodology developed by
Evans and Wilshire [15]

e=0,(1- 6792:) + 0, (694t -1) (2d)

where 6 are the four theta parameters that relate strain
to time. 0, and 6, are rate parameters and 0, and 0;
scale parameters — so, and for example, the strain
obtained by the end of primary creep is given by 0
The reason for selecting this methodology is that the
form of this equation has already been derived from an
analysis of mechanisms governing creep [16]. Eqs (2a,
2¢) are quite similar in nature with the main differ-
ences being seen in terms of creep rates: 0, =-In(d
&/de) and 0, =In(d &/dg).

The use of the 4-0 methodology enables deviations
from the Monkman-Grant relation of Eq (1b) to be
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explained not just in terms of creep curve shape, but
also mechanisms of creep. More specifically, this paper
will derive a MG relation from the 4-8 methodology to
gain insights into the roles played by creep hardening,
softening and damage mechanisms in determining the
form of the MG relation - and indeed whether these
mechanisms change with test conditions. This will
then enable insights to be made as to whether and
how the MG relation in short-term data can be used
to evaluate long-term rupture. To achieve these aims,
the paper is structured as follows. The next section
describes the creep tests carried out on Waspaloy, and
this is followed by a method section outlining how an
MG relation can be derived from the 4-8 methodol-
ogy. This modified relation is then applied to data on
12Cr steel in the results section. Finally, the conclusion
section outlines areas for future work.

The data

This section describes the used in this paper in more
detail. Thirty-one cylindrical test pieces were
machined from a as received Waspaloy bar, with a
gauge length of 28 mm and a diameter of 5 mm. The
chemical composition of this batch of material is
shown in Table 1. The material was heat treated for
4h at 1353 K (water quenched), 4h at 1123 K (air
cooled) and 16 h at 1033 K (air cooled). This resulted
in a uniform equiaxed structure of average grain dia-
meter 45 pum. The microstructure contained uniform
y' particles of mean diameter 0.3 um.

The tensile strength (o1s) values for this batch of
material are shown in Table 2.

The specimens were tested in tension over a range
of stresses at 873K, 923K, 973K and 1023K using high
precision  Andrade-Chalmers  constant-stress
machines. Loads and stresses could be applied and
maintained to an accuracy of 0.5%. Up to 403 creep
strain/time readings were taken during each of these
tests. In all cases, temperatures were controlled along
the gauge lengths and with respect to time to better
than + 1 K. The extensometer could measure tensile
strain to better than 10°. Loading machines, extens-
ometers and thermocouples were all calibrated with
respect to NPL traceable standards. At 873K, eight
specimens were placed on test over the stress range
1150 MPa to 700 MPa, at 923K seven specimens were

Table 1. Chemical composition of Waspaloy weight %).

placed on test over the stress range 1000 MPa to 550
MPa, at 973K nine specimens were placed on test over
the stress range 950 MPa to 200 MPa and at 1023K
seven specimens were tested over the stress range 700
MPa to 250 MPa. Figure 2 shows the normalised creep
curves obtained at 923K. Because Waspaloy can serve
at temperatures up to 920K for critical applications
and 1040K for less demanding situations, the test
programme covered stress ranges giving creep lives
up to 5,500 h (around 19,852,000 s) at 873-1023 K.
This data set has been published by Evans [16] and
Wilshire and Scharning [17].

Methodology
Overview of the 4-0 methodology

The theta methodology given by Eq (2d) started out as
a purely empirical equation to represent the shape of a
uniaxial creep curve obtained at constant stress and
temperature. As such it attracted the criticism that it
lacked theoretical foundations and could not be
related to the mechanisms of creep. Some 20 years
later, one of the founders of the methodology rectified
this position by explaining the form of Eq (2d) in
terms of different hardening, softening and damage
mechanism. In particular, Evans [16] showed that

1 R - 1 / s
&= = |:£O — T:| <]. — e_H£0t> + — (e%t — 1)
Heg, H w

where g, is the initial rate of creep and H, R and W are
constants determining the rate of hardening, softening
and damage accumulation as a function of the rate of
strain (to be defined more precisely in the following
sub section). In comparison to Eq (2d) it follows that
these important rate constants can be quantified from
the four theta parameters as

00 o 1
&o 93

b = 0160: + 0,0 1 = R

80
The importance of all of this to an understanding of
the Monkman-Grant relation has, however, not been
examined. The contribution of this paper to this exist-
ing knowledge is therefore to show that this model of
creep implies a Monkman-Grant relation of the form

Cr Co C Mn Si Fe Mo

Ti Al B Zr S P Cu

19.1 13.5 0.03 0.1 0.1 0.79 4.08

3.15 13 0.005 0.07 0.0025 0.01 0.1

Also 5 ppm of Ag, 10 ppm of Pb and 0.5 ppm of Bi with balance Ni.

Table 2. Variation of tensile strength with temperature.

Temperature (K) 873

923 973 1023

Tensile Strength (MPa) 1154

1120 975 827
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Figure 2. Normalised uniaxial creep curves obtained at various stresses at 923K.

1
tr =~ —

lnfl 4 W (:es) oM (es) -

where & = £ is the theoretical secondary creep rate

determined by the relative rates of hardening and
softening and Wk is the amount of damage accumu-
lated by the time of failure. Thus, this paper reveals in
more detail below that the Monkman-Grant constant
is a positive function of damage at failure and a nega-
tive function of the rate of damage accumulation. In
this paper, these findings are tested on data collected
on Waspaloy.

Creep mechanisms behind the 4-0 methodology

Based on Eq (2d), a specimen on test under uniaxial
constant stress and temperature will eventually rup-
ture with a failure time tg and with a strain at rupture
of e

er=0:(1— efeztf) + 05 (ee“tF —1) (3a)

Given that -0, is a small negative number and tr a
large number, e~ 2 0 and so

er & 0; + 05 (M — 1) (3b)

which can be re-arranged for the time to failure

Nl sF—Gl—l—Gg, _1 sF—61
T L RE P )

~ 1 &~ &

_641n[1—|— 5, } (3¢)

where 0,=60,. Although not obvious, Eq (3c) is a
variant of the Monkman-Grant relation. To see this
requires an understanding of the creep mechanisms
behind Eq (2d) and this was first outlined by Evans
[16]. Following this approach, internal state variables
can be used to explain the form of Eq (3a) using as a
starting point the following creep constitutive law for
the strain rate ¢

é:(D(o,T,fl,gz,...,ga,...,§p> (4a)

where o is stress, T absolute temperature, &, are the
internal state variables which are time dependent and
®() is (an unknown) functional form. Each of these
internal variables will have an equation associated
with them that describes their evolution through
time. All the &, describe continuum quantities that
could be classified as either hardening or softening,
static or dynamic, transitory or permanent. One pos-
sible functional form for Eq (4a) is

&= &f(&,) (4b)

where &, is the initial rate of strain occurring for virgin
material when placed on test — and this will depend on
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both stress and temperature. Here, f(£,) takes on the
value one for such material but thereafter is modified
by the creep processes occurring within the grains
and/or grain boundaries. Next, Evans assumed that
f(&,) is a linear function of these internal variables

é=&{1+(hy+..+hy+..+hyu) + (r1 + ..
FrgF oo+ Ime) + (W1 + oo+ Wt oo+ W)} (40)

where h,, r,, and w, are hardening, softening and
damage internal variables respectively.

Softening (or recovery) variables are static but posi-
tive variables. In Waspaloy, each of the r, variables
could include (but not exclusively so) the following
mechanisms that are temperature sensitive [18-20]:

(i) The coarsening of the fine y' precipitates
referred to as Ostwald ripening, especially at
temperatures above approximately 1023K.
This process involves the dissolution of smal-
ler precipitates and the growth of larger ones,
leading to a decrease in the number and den-
sity of the y' particles. As a result, the materi-

al’s resistance to dislocation motion
diminishes.
(ii) At higher temperatures (above 1223K),

dynamic recrystallisation becomes the domi-
nant softening mechanism. This process
involves the formation of new, strain-free grains
that replace deformed ones, leading to a reduc-
tion in dislocation density and an increase in
grain size.

(iii) At intermediate temperatures, dislocation
recovery processes such as climb and cross-
slip can occur, leading to a reduction in dis-
location density. This recovery softens the
material by reducing the obstacles to disloca-
tion movement.

On the other hand, hardening variables are dynamic in
nature and will be negative in quantity. In Waspaloy,
each of the h, variables could include (but not exclu-
sively so) the following mechanisms [21,22]:

(i) The precipitation of y’ (NisAl and NisTi) phase
particles. These fine, coherent precipitates
impede dislocation movement, enhancing the
alloy’s strength, particularly at elevated tem-
peratures. The ageing process promotes the
formation of these precipitates, contributing
significantly to the alloy’s high-temperature
performance. This is the primary strengthen-
ing mechanism in Waspaloy.

(ii) Alloying elements such as molybdenum,
cobalt, chromium, and titanium are dissolved
in the nickel matrix, creating lattice distor-
tions. These distortions hinder dislocation
motion, thereby increasing the yield strength

of the material. This mechanism is particularly
effective at higher temperatures, where the
solid solution strengthening continues to play
a significant role.

(iii) Elements like titanium and carbon form car-
bide precipitates (e.g. TiC) within the matrix
and at grain boundaries. These carbides act as
obstacles to dislocation movement and pin
grain boundaries, preventing grain growth
during high-temperature exposure.

(iv) At stresses above the yield point, dislocations
multiply and interact, forming dislocation tan-
gles or forests. These dense dislocation struc-
tures impede further dislocation movement,
leading to increased strength through a
mechanism known as forest hardening. This
mechanism is particularly relevant during
high-stress applications, such as turbine
engine components.

The damage variables are usually dynamic in nature
and positive in quantity. In Waspaloy, each of the w,
variables could include (but not exclusively so) the
following mechanisms [23-25]:

(i) At elevated temperatures and stresses,
Waspaloy undergoes grain boundary sliding,
leading to the nucleation and growth of cav-
ities at grain boundary triple points. These
cavities can coalesce, forming micro voids
that eventually lead to fracture. This process
is particularly pronounced at temperatures
between 973K and 1073K.

(ii) At high temperatures, the y’ phase precipitates
can dissolve or coarsen, reducing their effec-
tiveness in impeding dislocation movement.

(iii) Carbides such as MsC and MsCs can precipi-
tate at grain boundaries during service at ele-
vated temperatures. While these carbides can
strengthen the material, excessive precipita-
tion can embrittle the grain boundaries, mak-
ing them more susceptible to cracking under
stress.

(iv) At stresses above the yield strength, disloca-
tions accumulate and interact, forming dislo-
cation tangles or forests. These structures
impede further dislocation movement, leading
to increased strength through forest harden-
ing. However, at high temperatures, the mobi-
lity of dislocations increases, and the
effectiveness of forest hardening diminishes.

(v) As Waspaloy is subjected to high temperatures
and stresses, microstructural instabilities such
as the coarsening of y' precipitates and the
precipitation of carbides at grain boundaries
can occur. These changes can lead to intergra-
nular fracture, where cracks propagate along



the weakened grain boundaries, compromis-
ing the material’s structural integrity

All these processes can be dependent or independent
of each other, and the importance of a given process
can vary with stress and temperature. Also, more than
one process can occur at a time. Each mechanism will
be a function of stress and temperature, but since these
functional dependences may be different, the pro-
cesses will contribute varying amounts to the creep
process as conditions change. As the internal variables
in Eq (4¢) occur linearly, and because Eq (4c) is linear
in the coefficients, it is possible to quantify the over-all
hardening (H), softening (R) and damage (W)
through a simple summation

mh mr mw
H:Zha;R:ZraandW:Zwa (4d)
a=1 a=1 a=1

Evans then postulated the following evolutionary
equations for these internal variables

H= —ﬁé;R =Rand W = W¢ (4e)

where the dot above each variable refers to the rate of
change in this variable with respect to time and H, R
and W are parameter constants found as

R mh - mr R mw
H=Y hiR=) teand W => i,  (4f)
a=1 a=1 a=1
where ha = —l;aé, Wy = Woé and 7, = 7,. Eq (4b) can
then be written as
E=¢&(l+H+R+ W) (4g)

At constant stress and temperature, H, R, and W are
also constant, and if H=R =W =0, when ¢ =0, then
the differential of Eq (4g) with respect to time is

& =&(H+R) = &(R — Hé) (52)

for small times in relation to creep life, i.e. where the
effects of W are negligible. Upon carrying out the
following integration, which assumes damage over
short periods of primary creep is negligible,

é 1 L
Jéo 7(}} _ I:I) d€ =& _[(t) dt
we get

In[(R — He)] + C = —Hz,t

where C is the constant of integration. When ¢=0,
&€= ¢&yand so C = —ln((IAQ — Héo). Thus

In [%] = —Hé,t (5b)

which upon re-arrangement and simplification yields
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: : R —Heot R
E= |& — = |€ 4+ = 6a
{ ° H] H (¢
Eq (6a) states that an initial high creep rate of

&, gives way to a rapidly decreasing creep rate

. R
until a steady state rate of creep equal to 7 is

reached. This can be interpreted as the theoretical
secondary creep rate - that rate that would be
observed if creep continued to progress without
meaningful damage accumulation. Call this rate &g
and so

& =

(6b)

m>| =

The value for this secondary creep rate is deter-
mined by the rate of work hardening H in relation to
the rate of softening R occurring during primary
creep. This is a very general specification of creep to
which a variety of different creep mechanisms can be
attached.

The Monkman-Grant relation and damage

Another key assumption behind Eq (2d), that is also
key to a more in-depth understanding of the
Monkman-Grant relation, is that damage W leads to
strain rate accumulation by accelerating the secondary
creep rate &

: : R —He,t R
E= g —=le T+ 1+ W 7a
gt g naw o
or, upon extracting all primary creep

R

r = (14 W] (7b)

where ér is the tertiary strain rate. This can be rewrit-
ten in terms of time t by first noting that

. ﬁ[W] RW.

T = =« = = &

T 7 i T
so that

[ Wer der = w] dt
Thus

1 R
W er] 7

with C = %ln [%} and so upon further simplification
. R iy,

&7 = <€A 7c

=% (7¢)

Substituting this into Eqs (7a,7b)gives

Rl 4., R w
£ = [é(, - T} e Heat 4 2 T (8a)
H H
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and upon integration

&= AL [éo - 11 (1 - efm"t) + i (e%t - 1)
Heg, H w
(8b)

A comparison of Eq (8b) with Eq (2d) reveals that
0,= W% = W ¢ and 05 = 1/W. Using this measure of
the minimum creep rate allows Eq (3¢) to be written as

1 & — & & — & |, . 1
~—In|1l =05ln|1
tp 0, n[ + 5, ] 6 n[ + 0 ](85)

(92)
This is a Monkman-Grant type relation with
M, = 63ln [1 + %} To further interpret the mean-

ing of M,, it can be noted that the amount of damage
accumulated by the time of failure Wk can be calcu-
lated from Egs (7b,7c)

1+ Wg = engp
But
Wi =1 4 W (er — &) (9b)
and so
Wg = W(SF - ep) (9¢)
This then allows Eq (9a) to be written as

! (10)

s~ ——In[1 + Wil(és) " = Ma(és)™
w

which is a Monkman-Grant relation of Eq (1a) with
M = v—lvln[l + Wg|, p=1 and the minimum creep rate
&y replaced with the theoretical secondary creep rate
&s. The MG constant M, will only be a true constant if
both W and Wy are independent of test conditions.
But W is the reciprocal of 8; which is known to be
weakly dependent on test conditions, whilst Wg
depends on e and 0; which are also weakly dependent
on test conditions.

The role of primary creep in the determination of
time to failure is limited to &, which in turn is deter-
mined by the rate of hardening relative to the rate of
recovery. The larger is the rate of recovery relative to
the rate of hardening, the higher will be the secondary
creep rate and consequently the smaller will be the
time taken to fail. Eq (10) also makes it clear that the
Monkman-Grant constant M, depends on several fac-
tors. Tertiary creep determines the time to failure
through the amount of damage accumulated during
tertiary creep and the rate at which this damage accu-
mulates. The version of the Monkman-Grant relation
given by Eq (10) results from the assumed mechanism
that the role of damage accumulation in creep is to
accelerate the secondary creep rate &s. From Eq (10) it
follows that failure times will be larger for a given

secondary creep rate (i.e. M, will be larger) the more
ductile is the material, i.e. the greater is the amount of
tertiary strain er — ¢, and damage W (in the form of
voids, precipitate morphology, alteration in grain
boundary cavitation and cracking etc) that the mate-
rial can absorb before failing.

There are therefore some similarities between this
4-0 Monkman-Grant relation and those proposed by
Dobes and Milicka [11] and Abe [14]. In all three
versions the exponent on the minimum (or secondary)
creep rate is 1. Dobes and Milicka divide failure time
by rupture strain, whilst Abe divided it by the strain at
the end of primary creep. The 4-0 Monkman-Grant
relation can therefore be considered as a combination
of these two as it divides the failure time by

ln[l + SFe_} 8"}, i.e. by the difference between the rup-

ture strain and strain at the end of primary creep. It
can also be considered as a generalisation of these two
versions as it also divides failure time by the rate of
damage accumulation (1/8;) within a log
transformation.

The effect of a change in the rate of damage accu-
mulation on M, is less clear because an increase in W

will increase Wy but decrease 1/ W. It can be shown

that the derivative of M, with respect to W is negative
(see Appendix A), and so an increase in the rate of
damage accumulation will decrease the failure time at
a given secondary creep rate. This can be written as

M, = f(tWp, W) (11)

where the + and - signs indicate whether M, is posi-
tively or negatively related to the shown variable. In
summary, the 4-0 methodology suggests M, will be
larger the more the material can tolerate significant
creep strain or stress relaxation before damage (e.g.
voids, microcracks) leads to failure. It also suggests
that M, will be larger the slower this damage accumu-
lates over time. So, whether M, is independent of test
conditions, depends on whether this materials ability
to tolerate damage (and that rate of its accumulation
over time) is determined by the test condition. Past
studies on Ti-45A1-2Mn-2Nb [26] and Waspaloy [27]
have shown that W depends directly on stress and
indirectly on temperature via the material’s tensile
strength. The results section will later look at this in
more detail.

Measuring minimum creep rates

The actual or observed creep rate at a given test con-
dition is measured from the experimental creep curve.
If such a curve is made up of i=1 to n strain-time
pairings, then the first step is to create a smoothed
series for the experimental rates of strain using



& = 9N i a&iti — i & D i gt (12)

9D aff = 2 ()’
where the subscript on t and & denotes to the i™
measurement made for time and strain, respectively.
Thus, the creep rate at time t; is found by collecting
the pairing t;&;, the four t; pairings immediately
below tie; and the four tie; pairings immediately
above tig; and putting a least squares linear line fit
through these 9 data points. ¢ is then the slope of
this best fit line.

Figure 3 shows this smoothed experimental strain
rates obtained at 500MPa and 873K. The observed
minimum creep rate is not taken to be the smallest
observed value, but the mean of the strain rates along
the flat part of the strain rate curve. This observed
minimum strain rate is what is usually shown in
papers when studying the Monkman-Grant relation
and is therefore represented by the symbol &y
(although authors use variations of the smoothing
technique given by Eq (12)). For this test condition,
the observed minimum creep rate is estimated at
1.74-08 s~'. Such an estimate has a strong subjective
component, because it is down to the researcher to
identify exactly when the flat part of the curve starts
and ends (in Figure 3 the curve has been truncated
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before the failure strain to allow the flat part of the
curve to be seen more clearly).

In contrast to this, the theoretical secondary rate &g
cannot be directly measured from the actual experi-
mental creep curve when there is damage accumulating.
Instead, Eq (2d) must be fitted to this experimental
curve, to obtain estimates for 0, to 6, — see Evans
[28,29] for details on such appropriate estimation or
curve fitting techniques. If such estimates for 0, to 0, are
represented by 0;to 8, then éscan be calculated as

| =

& == = 050,

7 (13a)

The rate of damage accumulation can be mea-
sured as

A 1
6, (13b)
and so
R . ~
EW:&; (13C)

All the other internal rates can also be measured
from the parameters of the fitted creep curve
. - B, . 0,050
é0:6192+9364;H:_—2;R: 2_34
& £

()

(13d)

1.0E-06
O Smoothed rates baed on Eq. [11]
- - - Minimum creep rate
Secondary creep rate
o
o
{o
o
= o
> o
‘W
g 10E-07 %
2 1.0E-07 A
— 4
o 1o
5 Jow d
Z |8 ooooooooc“:‘oOcpooo
o 5®00000000°
1 B 000000
&y = 1.74E-08
® §=150E08 "]
1.0E-08 T r T r T T T . T . T T T T :
0 0.005 0.01 0.015 0.02

Creep strain, € (%/100)

Figure 3. Smoothed experimental strain rates at 500MPa and 973K obtained using Eq (12), together with an estimate for the

minimum creep rate and theoretical secondary rate.
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At 500MPa and 973K the estimates for 05 and 6, are
0; = 0.004947 and 0, = 3.02228E-06 and  so

&g = % = 050, = 1.50E — 08. There is no reason for

&s to exactly equal &) as the former measure depends
only on the rates of hardening and recover, whilst the
latter measure obtained from the actual creep curve will
contain some contributions from damage. If creep car-
ried on without any damage the creep strain rates seen
in Figure 3 would tend to the limit 1.50E — 08— which
is slightly lower than that seen in the experimental curve
where damage is contributing to the actual rates. They
should, however, be similar in value at most test condi-
tions (unless the damage rate is large early on).

Results

When applying Eq (1a) to all the experimental data
outlined in the data section, p=0.778 and M =1.2096
for the best fit line seen in Figure 4. There is, however,
a lot of variation around this relation, with it explain-
ing only around 90% of the variation in failure times.
There appears to be some points that appear to be well
above the fitted line and some that are well below the
line which may be an indication that the Monkman-
Grant constant M is not truly constant.

The following subsections demonstrate that the
data in Figure 4 fit into three distinctly different
groupings depending on the value for M, and thus
depending also on the tolerance to damage and the

rate of damage accumulation. It is important to note
that in the following analysis, three of the data points
in Figure 4 had to be removed because for these points
the tertiary creep strain was so small and the tertiary
period so short lived that 6, and/or 6, could not be
estimated. These three data points correspond to the
test conditions 300 MPa at 973K and 1023K and
1023K at 250 MPa. For the rest of the data, Figure 5
plots the values for M, as calculated using Eq (10),
against stress with the different symbols differentiat-
ing further with respect to temperature. Group la
corresponds to test conditions producing M, values
below 0.93%, whilst Group 1lc corresponds to test
conditions producing M, values above 4%. Group 1b
corresponds to test conditions producing M, values in
between these two limiting values.

Group 1c: relatively high values for M,

Six data points make up this group and they corre-
spond to all but one temperature (973K). They also
tend to correspond to the largest stresses used at these
temperatures. Thus, relatively high M, values are gen-
erated by high stresses irrespective of temperature.
Figure 6 shows the creep curves corresponding to
four of the six data points making up group lc. The
creep curves obtained at 1023K with 700 MPa and
873K with 1050 MPa have almost identical levels of
strain and failure, but the specimen tested at 1023K,
tolerated nearly twice the amount of damage before

1.OE+08 7
] tp = 1209680778 ®3873K
R2=90.63% 0923K
A A973K
1.0E+07 1 ©1023K
1.0E+06 1
@
iy
o)
5 LOE+05 4
&
8
Q
g
E  1.OE+04 {
1.0E+03 1
] A
1.0E+02 : ——r— —r— ——r— —rr—— —r—— ——rrr——
1.0E-10 1.0E-09 1.0E-08 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03

. c
Minimum creep rate gy (s!)

Figure 4. Variation in times to failure with the measured minimum creep rates, together with the least squares regression line.
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Figure 6. Some creep curves with M, values above 4% and so part of group 1c.

failing. Yet both specimens had very similar M, values,
and this can be explained by the fact the specimen
tested at 1023K accumulated damage at just over twice

the rate of the specimen test at 873K. The creep curves
obtained at 923K with 1000 MPa and 873K with 950
MPa have very similar rates of damage accumulation.
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Yet both specimens had similar M, values, and this
can be explained by the fact the specimen tested at
873K with 950 MPa, could tolerate more damage
before failing. However, all the specimens in group
Ic were characterised by low values for damage at
failure - all below 1 in values - and low values for
the rate of damage accumulation - all below 20. This
can be appreciated from a glance at Figure 10 that
displays the higher Wy values associated with the
other two groupings. Within group Ic, a slightly
higher value for W was compensated for by slightly
lower values for the rate of damage accumulation
resulting in M, always exceeding 4%.

Figure 7 plots the rates of creep corresponding to
the creep curves in Figure 6. Another characteristic of
the test results falling within group 1c is revealed in
this Figure — namely most of the test time is taken up
by declining creep rates or by primary creep followed
by a much shorter period of secondary creep. Finally,
there is a short period of accelerating creep or tertiary
creep, which explains the low damage at failure values
seen in test specimens within group lc. The low rates
of damage accumulation and small times spent in
tertiary creep result in small amounts of damage accu-
mulation by failure time.

Group 1b: relatively moderate M, values

The relatively moderate M, values associated with
this group tend to occur at the moderate stress’s
for temperatures below 1023K but at low stresses at
1023K. The creep curves in Figure 8 obtained at

1023K and 250 MPa and 1023K and 500 MPa are
in this group of moderate M, values (greater than
0.9% but less than 4%). The tolerance to damage at
250 MPa is roughly half that at 500 MPa, but
because the rate at which this damage accumulates
is approximately half that at 500 MPa, the failure
time is substantially larger. The counterbalance
between damage tolerance and rates of accumula-
tion (one variable has a positive effect and the
other a negative effect as explained in Eq (11))
result in these two specimens having the same
value for M,. When comparing these two creep
curves to the creep curves seen in Figure 6, it
becomes clear that the tolerance to damage is
much higher, as is the rate of damage accumula-
tion, both resulting in relatively moderate values
for M,.

Figure 9 shows the rates of creep associated with
the creep curves in Figure 8. When comparing this to
Figure 7 the time spent in tertiary creep is seen to be
higher for specimens in group 1b compared to 1c.
This fact combined with the realisation that the
damage rate accumulation is lower for all curves in
Figure 7 explains why the amount of damage accu-
mulation before failure is higher in group 1b. This is
more clearly seen in Figure 9, where all the tests in
group lc had lower amounts of damage at failure and
lower rates of damage accumulation. Given that W
has a positive effect on failure times and W a negative
effect, the fact that specimens in grouplb have a
lower value for M, suggests the latter effect domi-
nates the former.
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Figure 7. Rates of creep, obtained from Eq (12), that are associated with the creep curves displayed in Figure 6.
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Figure 8. Two measured creep curves corresponding to groups 1a (obtained at 1023
and group 1b (obtained at 1023K with 400 MPa and at 1023K with 500 MPa).

K with 400 MPa and at 973K with 450 MPa)
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Figure 9. Rates of creep, obtained from Eq (12), that are associated with the creep curves displayed in Figure 8.
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Group 1a: relatively low M, values

The relatively low M, values associated with this group
tend to occur at the moderate to low stresses used at
each temperature. The creep curves in Figure 8
obtained at 1023K and 400 MPa and 973K and 450
MPa are in this group of low M, value (less than 0.9%).
The tolerance to damage at these two conditions are
approximately the same, but because the rate at which
this damage accumulates is appreciably lower at 973K
with 450 MPa, the failure time is substantially smaller.
The counterbalance between damage tolerance and
rates of accumulation result in these two specimens
having relatively low M, values.

The data in Figures 10 provides a further insight
into the fundamental characteristics of the data points
in groups la and 1b. Figure 10b plots values for M,
against Wr and the data in groups la and 1b have
broadly similar W values — in group la Wr is scat-
tered around a mean value of 2.5, whilst in group 1b
Wk is scattered around a mean value of 2.2. Yet the
data in group 1b have higher M, values compared to
those in group la. Figure 10a, which plots values for
M, against W, explains why. It is the result of the rate
of damage accumulation being much lower in group
1b compared to group la — an average of 135 in group
1b compared to 662 in group la. And as Eq (10)

reveals, lower values for W results in larger M, (and

failure time) values. When comparing group lc with
group 1b specimens in group lc have a much lower
rate of damage accumulation (that results in a higher
M, value) and whilst they have a lower damage at
failure (that results in lower M, values) the former
effect dominates and so results in specimens in
group 1c having a higher value for M,.

Thus, for tolerances to damage between 1 and 4, a
low value for M, is caused by a relatively high rate of
damage accumulation (between 100 sand 1100),
whereas a rate of damage accumulation between 30
and 100 results in a moderate value for M,. The
defining characteristic for high M, values is very low
rates of damage accumulation (20 or less). Even those
specimens in this group also have low tolerance to
damage this is more than offset by the lower rates of
accumulation.

When studying Grade 92 steel, Maruyama et al.
[13] identified four distinctly different regions when
plotting failure times against stress (using iso-thermal
lines). These regions had different creep mechanisms
present and this led to distinctly different values for
the Monkman-Grant exponent and Norton’s n. That
is, the groupings were defined by differences in p. This
contrasts with the groupings la-c in this paper. These
groupings are identified such that p=1 in each of
these three groupings (and so the Monkman-Grant



constant M, differed between the three groups). So, in
this sense the groupings in this paper and that by
Maruyama et al. are not directly comparable. In
another sense, however, the groupings la-c are also
defined in terms of creep mechanism (as is the case for
9Cr steel) in that in group la these mechanisms lead to
low rates and amounts of damage accumulation,
whilst in group 1lc these mechanisms lead to high
rates and amounts of damage accumulation. Whilst
group 1b has similar amounts of damage at failure to
group la, group 1b is characterised by creep mechan-
isms leading to intermediate rates of damage accumu-
lation. Group 1a is therefore similar in nature to the
low-stress region defined by Maruyama et al. that had
the smallest rate of strain accumulation.

The flexibility of the theta methodology is that it
allows for many different hardening, softening and
damage mechanisms to play a role at any one time, but
it does not need to specify them precisely to define
overall  hardening, softening and damage.
Consequently, these three groupings are defined by the
characteristics of such overall hardening, softening and
damage. Thus, for example, group 1c is defined by high
M, values caused by low amounts of damage at failure
and by damage accumulating occurring at a slow rate.
This does not preclude the possibility that the groupings
are also defined by different creep mechanisms - it’s just
they are not used in the methodology to define these
groups. That said, the data in Figure 5 at 873K may fall
into groups 1b and 1c because of different creep mechan-
isms. In this figure, at this temperature, lower M, values
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are observed at approximately around 950 MPa, which is
very close to the reported 0.2% proof stress for this
material at this temperature [22].

This ties in with the work of Williams et al. [29]
who reported that at 873 K, Waspaloy shows a
mechanism change around the yield stress, which is
~ 920 MPa for typical test heats. Below ~ 900 MPa
(=below yield at 873 K), creep damage is dominated
by diffusion-assisted processes: dislocation climb and
grain-boundary activity, leading to intergranular cavi-
tation/voiding. Above ~ 900 MPa, deformation is con-
trolled by higher dislocation densities with forest-
hardening and y’ cutting, producing more trans gran-
ular/dislocation-controlled damage. When combined
with the theta analysis this suggests that the low
amounts of damage accumulated by failure for speci-
mens in group lc is trans granular in nature, whilst the
higher accumulations of damage for specimens in
group 1b takes the form of inter-granular voids.
Attaching specific types of damage to the damage
quantities in each group as identified using the theta
methodology would form an interesting area of future
research but is beyond the scope of this paper.

Failure times

Figure 11 shows the estimates made for the parameters
of the Monkman-Grant relation of Eq (10) within each
of the groupings identified above. The Monkman-
Grant constant M, increases from 0.29% in group la
to 2.48% in group 1b and to 4.33% in group lc. These
values correspond well with the average values for M,
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Figure 11. Variations in time to failure with the secondary creep rate, together with the estimated Monkman-Grant relation for
each group of data.
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in each group as shown in the second column of Table
3. The statistical significance of the seen difference in
these sample mean M, values can be tested using the
following t-value

(Mo = Mop) — (s — t)

2 2
4%

t — value =

(14a)

ny ny

where y, is the population (true) mean value for M, for
damage conditions that place results within one of the
three groups seen in Figure 9 and y, is the population
(true) mean value for M, for damage conditions that
place results within another of the three groups seen in
Figure 9. This test statistic allows for unequal variances
between the groupings. M,; and M, are the corre-
sponding estimated means from samples of size n; and
n,, with s?; and s,, being the sample variances. Under the
null hypothesis that the true mean values for M, between
two groupings are the same (Ho : y; — u, = 0), this t-
value follows (approximately) a student t distribution
with degrees of freedom (d.f.) estimated as

2 2\ 2
_ )
2\ 2 2\ 2
=)
These t-values for mean comparisons are shown in
the one but last column of Table 3. Thus, the t-value of
—11.22 tests the null hypothesis that the difference
between the true mean values for M, in group la
and group 1c are the same. Based on the t-value, the
probability that this null hypothesis is true is 0.01%.
So, at the 1% significance level, the mean value for M,
in these two groups are different, i.e. the negative value
for the sample mean difference of (0.0055-0.0628) has
not occurred by chance. Table 3 reveals that the three
mean values are all statistically significantly different
from each other at the 1% significance, so that the best
fit lines in Figure 11 differ from each other in a
statistically significant way.

This difference takes the form of a parallel shift as
damage characteristics change. That is, p=1 in all
three groupings. Even in group la where p is estimated

(14b)

at 1.033, this is not significantly different from 1 - the
p-value for the null hypothesis that the true value for p
is 1 is 63%. There is therefore a very high probability
that the true value for p is 1 (it would come out as 1 if
there were many more data points available). The p-
values for testing p = 1 in the other two groups are 74%
for group 1b and 76% for group lc. Thus, once
account is taken for different amounts and rates of
damage accumulation, the true value for p is 1, irre-
spective of these differences in damage characteristics.
p =1 is as predicted by the 4-0 methodology.

To further confirm the validity of the 4-0
Monkman-Grant relation, the data points in Figure
11 are replotted in Figure 12 according to Eq (10). The
gradient of —0.997 of the regression line in Figure 12
corresponds to the exponent on & in Eq (10) and so is
as predicted by the 4-0 methodology. The propor-
tional coefficient of 1.041 is close to the value of 1
that is predicted by the 4-0 methodology. Indeed, the
p-value for testing that the population value for this
proportional coefficient equals 1 comes out at 72%
and so this hypothesis cannot be rejected — even as
the 10% significance level. Unlike in Figures 4 and 11,
all the data points are closely packed around one
regression line, contrary to their larger deviations in
Figure 4 around a single regression line and around
multiple lines in Figure 11.

For the relation in Figure 12 to be of any use in
reducing the length of the development cycle for new
materials two things need to be considered, First, the
extent to which Wy and W can be accurately extra-
polated from accelerated test condition needs to be
assessed. This is really beyond the scope of this paper,
but this would form an interesting and necessary area
for future research. Second, the secondary creep rate
must be measurable in relatively short-time periods.
This question can be briefly addressed here using a
plot of & against &y as in Figure 13. Within each
grouping these is a very strong and clear relationship
between these two measures. Typically, &y can be
measured by running tests for around 30% of creep
life. One approach to measuring & within the same
time span is therefore to first find € and insert it into

Table 3. Mean values for M, in each grouping, together with tests for the statistical significance of

differences between these means.

Monkman-Grant constant M,

Group Mean Standard Deviation d.f. t-value p-value
Group Ta 0.0055 0.00275 17 —5.85% 0.0025
Group 1b 0.0208 0.00908 5 -11.22° 0.010

Group 1c 0.0628 0.01227 7 —7.54¢ 0.0013

d.f. is the degrees of freedom as calculated using Eq (14). p-value is the probability (in %) that there is no
difference between the population mean values in the groupings listed below:
a. This is the student t statistic for testing for a statistically significant difference between the population mean

value for M, in group 1a and group 1b.

b. This is the student t statistic for testing for a statistically significant difference between the population mean

value for M, in group 1a and group 1c.

c. This is the student t statistic for testing for a statistically significant difference between the population mean

value for M; in group 1b and group 1c.
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Figure 13. The variation in & with &y.

the equations present in Figure 13 to find the corre-
sponding value for &. As the R* vales in this figure
are between 97% and 99%, this approach should
determine & with a high degree of accuracy. The
only remaining question would then be which of
these groupings is most relevant for the typical

operating conditions experienced by Waspaloy?
This could form another area for future research
but once known, the M, value to use in Figure 12
are found by averaging the M, values in Figure 5 for
that grouping, i.e. use the value shown in column 2 of
Table 3.
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Conclusions

The Monkman-Grant relation offers the possibility of
reducing the cost and length of the development cycle
for new materials operating at high temperatures by
using minimum creep rates that can be obtained rela-
tively quickly even at low stresses. This paper used the
4-0 methodology to i. identify and explain the form of
this relation in terms of creep mechanisms such as
hardening, recover and damage and ii. to discover
whether this form was compatible with long-term
creep life assessment. The 4-0 methodology suggests
that the traditionally measured minimum creep rate
should be replaced by the theoretical minimum creep
rate measured as 030,. It also predicts that the expo-
nent on this secondary creep rate will equal —1. This
methodology also predicted that the Monkman-Grant
proportionality constant (M,) was positively related to
the amount of strain during tertiary creep, positively
related to the total amount of damage accumulated
during this stage but negatively related to the rate at
which damage accumulates. The methodology also
suggested that the role played by primary creep in
identifying the form of the Monkman-Grant relation
was restricted to the determination of the theoretical
secondary creep rate.

These predictions were confirmed by the data
obtained on Waspaloy steel. Without considering
any of these causal variables, the exponent on the
minimum creep rate was considerably different from
the 4-0 prediction that it should equal —1 (-0.778).
However, it was also found that the values for the
Monkman-Grant proportionality constant (M,) fell
into three well-defined groupings depending on the
amount of accumulated damage and the rate at which
it occurred. Two of the groupings had similar amounts
of damage at failure, but different rates of damage
accumulation that split the data into relatively low
and moderate M, values. It then turned out that
within each such grouping, the exponent on the sec-
ondary creep rate equalled —1. The other grouping had
rates of damage accumulation and damage at failure
below those seen in groups 1a,1b. An interesting area
for future research therefore is to study this possibility
for reducing the development cycle for new materials
in more detail by assessing the extent to which Wx and
W can be accurately extrapolated from accelerated test
conditions. If they can, then the value for M, can be
found for typical operating conditions for this mate-
rial. Eq (10) would then allow a failure time prediction
to be made as well. Other areas of future research
include identifying the relevant group for the typical
operating conditions for Waspaloy and approaches for
quantifying &s in shorter time spans than that required
for finding &y - by, for example, extrapolating the
theta creep curve equation that excludes damage
accumulation.
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Appendix A.

Here a short confirmation that the derivative of M, with respect to W is negative. From Eq (10)

1 1 A
2= il + W) = L[t +
where X = (sp - sp). Using the quotient rule for differentiation

—

Wx W
dM, _ o ln{l + Wx}

= A2
dw w2 (42)
Next, define u = Wx and h(u) as
h(u) = w2 dm =% [1+y] (A3)
dw 1+u

It needs to be shown that h(u) < 0 for all u> 1, u # 0 because In(1+u) is only defined for In(1+u) > 0. The derivative of h(u)
with respect to u is

= (A4)
du (14w
So, if u>0 then %(u”) <0 and so this derivative function is decreasing in u. If u<0 then %(u”) >0 and so this derivative
function is increasing in u. Further, #(0) = 0, h(u) <0 when u> 0 and h(u) <0 when u < 0. Thereforeh

u
14+u

h(u) = —In[1 +u] <0foru0> (A5)

and thus

dM, _ f(u) _ f(Wx) _
AR 0 (A6)
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