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The role of primary and tertiary creep in defining the form of the Monkman- 
Grant relation using the 4-θ methodology: an application to Waspaloy
Mark Evans

Institute of Structural Materials, Swansea University Bay Campus, Swansea, UK

ABSTRACT
It is important to be able to predict the life of materials at high temperatures and an analysis of 
minimum creep rates vs. time to failure is one way of approaching this problem. However, 
recent studies on 9Cr steels, for example, have shown that this Monkman-Grant plot exhibits a 
low overall value for the exponent on the minimum creep rate (ρ = –0.85), together with a 
substantial scatter of data points around the relation. Both these phenomena, together with it 
being a mainly empirical relation, have restricted its use for life prediction purposes and so this 
paper aims to identify the causes of these two phenomena and to provide an explanation of 
this relation based on creep mechanisms. This is done within the 4-θ methodology so that the 
roles played by hardening, softening and damage mechanisms in causing this large scatter and 
low ρ value can be explicitly quantified. By manipulating the 4-θ equations, it was found that 
the role played by hardening and softening in identifying the form of the Monkman-Grant 
relation is restricted to the determination of a theoretical secondary creep rate measured as 
θ3θ4 - the exponent on which is predicted to equal −1 in this methodology. However, the data 
obtained on Waspaloy revealed ρ to equal −0.778 over all test conditions. This paper demon
strated that this was caused by the Monkman-Grant proportionality constant falling into three 
well defined groupings depending on values for both the amount of accumulated damage and 
the rate at which this damage occurred in a test specimen. It then turned out that within each 
such grouping, the exponent on the secondary creep rate equalled −1 as suggested by the 4-θ 
methodology. Then, by considering the damage at failure and the rate of its accumulation in 
the determination of the Monkman-Grant proportionality constant, together with the replace
ment of the minimum creep rate with θ3θ4, resulted in a Monkman-Grant exponent of −1 with 
minimal scatter around this relation.
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Introduction

Waspaloy is a nickel-based superalloy used primarily in 
high-temperature and high-stress applications, espe
cially in the aerospace and power generation industries. 
It has excellent creep and oxidation resistance at ele
vated temperatures, especially up to temperatures of 
around 1140K. The main aerospace components 
made with this material include turbine discs, compres
sor wheels, blades, seals, shafts and spacers. In gas 
turbine engines, Waspaloy is used in the manufacture 
of combustion chambers, afterburner components and 
turbine section components. A gas turbine disc typi
cally operates in the range 923K to 1023K, compressor 
rotors at temperatures between 673K to 923K and 
combustor ducts at temperatures between 1023K to 
1140K. Compressor blades used in the high-pressure 
section of the engine, typically experience a centrifugal 
stress of between 300 and 600 MPa and a bending stress 
between 50 and 150 MPa. High-pressure compressor 
discs typically experience a centrifugal hoop stress of 
between 500 and 900 MPa and an axial stress from 
blade loading of between 100 and 300 MPa. For the 

safe and economic operation of turbine blades, a creep 
rupture life in the time range of 20,000 to 25,000 hours 
for commercial engines is required (but 10,000–15,000  
hours for military or high-performance engines) and 
for turbine discs a creep rupture life in the time range of 
30,000 to 50,000 hours is required.

Evaluation of such longer-term creep rupture is 
typically done using accelerated creep tests (either 
accelerated stresses and/or temperatures), with creep 
models then being used to extrapolate to the lower 
stresses observed in the above-mentioned systems. 
However, there is little agreement on what creep mod
els extrapolate best with respect to stress and tempera
ture, and whilst some more recently developed models 
have been shown to perform well at such extrapolation 
over a wide range of materials, they currently lack the 
theoretical backing that provides the additional con
fidence required for widespread adoption (for exam
ple, Yang et al. [1] and Wilshire et al. [2–6]). An 
analysis of minimum creep rates vs. time to failure – 
the so-called Monkman – Grant relation [7] – using 
accelerated test data is another suggested way to 
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evaluate long-term creep rupture by extrapolating this 
accelerated relation using lower minimum creep rates 
– because once the minimum rate of creep in an on- 
going creep test at non accelerated stresses is obtained 
at an early stage of creep, its rupture life is readily 
evaluated from this accelerated relation without a need 
to extrapolate with respect to stress and/or tempera
ture. But again, there is limited theoretical backing for 
this relation.

A relationship between time to failure tF and the 
minimum creep rate _εM was first put forward by 
Monkman and Grant [7] and is now commonly 
referred to as the Monkman – Grant relation (or MG 
for short). They studied several materials (including, 
but not exclusively, Aluminium, Titanium 75, Ferritic 
Steels, Austenitic Steels and Inco 700) and identified 
the following relation 

where these authors found that the parameters ρ and 
M were constant over all the test conditions contained 
within the data sets that they analysed, but that they 
differed in value from material to material. (M is 
frequently termed the Monkman-Grant proportional
ity constant and ρ the Monkman-Grant exponent). 
For the materials investigated by these authors, ρ was 
close to 1 but varied between a low of 0.77 and a high 
of 0.93 (for Austenitic Steels). Likewise, M varied from 
a low of 0.48 to a high of 1.3 (for Aluminium). In the 
same year, and independently of Monkam and Grant, 
Machlin [8] provided a theoretical explanation of 
Eq (1a).

At a specific test condition, and when ρ = 1, the 
Monkman-Grant equation is a simple tautology or 
identity (represented by the symbol ;Þ. To see this, 

consider Figure 1, showing a hypothetical creep 
curve containing primary, secondary and tertiary 
creep obtained at a fixed stress and temperature. 
The observed minimum creep rate _εM is equal to 
the gradient of the creep curve at the point of inflec
tion, and the dashed line has such a slope – but has 
been extrapolated to time zero and to the time at 
failure. By the definition of a gradient, the slope of 
this line equals the vertical distance M divided by the 
time to failure tF

and so, upon rearranging 

From this perspective, the Monkman-Grant rela
tion requires the additional assumption that M is the 
same at all stresses and temperatures (subject to sto
chastic or random experimental variation). This 
assumption then turns this simple identity into a use
ful model or casual relation, because it then follows 
that a fall in _εM must led to an increase in the time to 
failure (rather than to a change in M).

Since this relation was first identified, some doubt 
has been cast as to the constancy of M and ρ with 
respect to test conditions. For example, when studying 
9Cr-1Mo steel, Abe [9] and Choudary [10] have 
shown M and ρ are different in value at long failure 
times (i.e. at lower stresses) compared to short and 
intermediate failure times. More specifically, they 
found that over most test conditions ρ = 1, but at the 
lower stresses leading to the longest failure times, ρ fell 
below 1. In order to explain the change in values for M 

Figure 1. Schematic representation of a uniaxial creep curve obtained at a constant stress and temperature.
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and ρ at lower stresses, several modifications of Eq 
(1a) have been proposed. Dobes and Milicka [11] 
proposed the following modified form 

where εF is the strain at failure. Subsequent authors 
have found some success with this modification. For 
example, Sklenicka et al. [12] studied a Gr. 92 steel and 
found a stable value for ρ1 of 0.96 in Eq (1d) – in 
contrast to ρ = 0.88 in Eq (1a). The MG relation in Eq 
(1d) is related to the creep damage tolerance para
meter λ. This parameter measures the ability of a 
material to withstand local concentrations of strain 
accumulation without cracking, 

where εp is the strain reached at the end of primary 
creep. The approximation in Eq (1e) corresponds to 
test conditions where the magnitude and duration of 
primary creep is small in relation to failure time – so 
εp ffi 0. This approximation results in the MG propor
tionality constant in Eq (1d) being equal to the reci
procal of the damage tolerance parameter, λ� 1 ffi M1. 
λ values in the range 5–10 are though to ensure that 
the strain concentrations typically encountered during 
in service operation will not lead to premature crack
ing and failure.

Abe [9] attributed the deviation from the simple 
MG relation with ρ = 1 in long-term creep, to 
increases in dln(ε ̇)/dε, and proposed the following 
MG relation 

where tM is the time taken to reach the minimum 
creep rate, ε is the creep strain and _ε is the creep strain 
rate. However, when applied to 9Cr steel, Abe 
obtained a value for ρ that was still less than 1.

Maruyama et al. [13] studied this phenomenon of 
ρ < 1 in more detail, using data on 9Cr-1Mo (Grade 
92) steel. They found that the value for ρ differed over 
four different regions of stress and temperature, where 
each of these regions corresponded to different creep 
mechanisms. Whilst the value for ρ over all tests was 
0.85, they found it to be especially low (0.62) in a 
region corresponding to values of stress and tempera
ture that induced long times to failure (in excess of 104 

hours). With long-term data points deviating from an 
MG relation determined by short-term data points, it 
becomes impossible to use this relationship to evaluate 
long-term life from short-term data.

These authors then went onto to study the role 
played by creep curve shape in determining the values 
for M and ρ using the following equation 

where t is the time and where A and B are parameters 
related to strain, whilst α and β are rate parameters. A 
(approximately) measures the decelerating rate of 
creep during primary creep (A = −1/(dln _ε/dε)), and 
B measures creep rate acceleration (B = 1/(dln _ε/dε)) 
in tertiary creep. Hence, A and B can be taken as 
summary measures of creep curve shape. They found 
that the values of A and B decreased with increasing 
creep rupture life, and it was this changing shape with 
tF that explained the ρ values of less than unity, i.e. ρ is 
lowest when A and B are lowest. From this analysis, 
they found that constraining M to a value of 

in Eq (1a) resulted in the Monkman-Grant exponent 
of ρ = 1 when applied to all the data on Grade 92 steel 
(both long and short-term tests results).

Abe [14] recently found that the following modified 
Monkman-Grant relation was in complete agreement 
with this work by Maruyama et al. 

The better fit to the data obtained using this expres
sion reflected the observation by the author that for 
9Cr steel data εP was inversely proportional to _εM over 
a wide range of test conditions and test durations.

However, Eq (2a) is purely empirical in nature and 
its parameters have not been explained in terms of 
creep mechanisms. The aim of this paper is therefore 
to identify a modified Monkman-Grant relation 
whose parameters can be explained in terms of creep 
processes such as hardening, softening and damage 
mechanisms. It is hope that providing such a theore
tical basis will encourage the use of the relation for 
creep life prediction. To do this, a similar material to 
that studied by Maruyama et al. [13] was selected – 
namely a Grade 12 steel – but the creep equation used 
was that from the 4-θ methodology developed by 
Evans and Wilshire [15] 

where θl are the four theta parameters that relate strain 
to time. θ2 and θ4 are rate parameters and θ1 and θ3 
scale parameters – so, and for example, the strain 
obtained by the end of primary creep is given by θ1. 
The reason for selecting this methodology is that the 
form of this equation has already been derived from an 
analysis of mechanisms governing creep [16]. Eqs (2a, 
2c) are quite similar in nature with the main differ
ences being seen in terms of creep rates: θ2 = -ln(d 
_ε/dε) and θ4 = ln(d _ε/dε).

The use of the 4-θ methodology enables deviations 
from the Monkman-Grant relation of Eq (1b) to be 
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explained not just in terms of creep curve shape, but 
also mechanisms of creep. More specifically, this paper 
will derive a MG relation from the 4-θ methodology to 
gain insights into the roles played by creep hardening, 
softening and damage mechanisms in determining the 
form of the MG relation – and indeed whether these 
mechanisms change with test conditions. This will 
then enable insights to be made as to whether and 
how the MG relation in short-term data can be used 
to evaluate long-term rupture. To achieve these aims, 
the paper is structured as follows. The next section 
describes the creep tests carried out on Waspaloy, and 
this is followed by a method section outlining how an 
MG relation can be derived from the 4-θ methodol
ogy. This modified relation is then applied to data on 
12Cr steel in the results section. Finally, the conclusion 
section outlines areas for future work.

The data

This section describes the used in this paper in more 
detail. Thirty-one cylindrical test pieces were 
machined from a as received Waspaloy bar, with a 
gauge length of 28 mm and a diameter of 5 mm. The 
chemical composition of this batch of material is 
shown in Table 1. The material was heat treated for 
4 h at 1353 K (water quenched), 4 h at 1123 K (air 
cooled) and 16 h at 1033 K (air cooled). This resulted 
in a uniform equiaxed structure of average grain dia
meter 45 µm. The microstructure contained uniform 
γ/ particles of mean diameter 0.3 µm.

The tensile strength (σTS) values for this batch of 
material are shown in Table 2.

The specimens were tested in tension over a range 
of stresses at 873K, 923K, 973K and 1023K using high 
precision Andrade-Chalmers constant-stress 
machines. Loads and stresses could be applied and 
maintained to an accuracy of 0.5%. Up to 403 creep 
strain/time readings were taken during each of these 
tests. In all cases, temperatures were controlled along 
the gauge lengths and with respect to time to better 
than ± 1 K. The extensometer could measure tensile 
strain to better than 10−5. Loading machines, extens
ometers and thermocouples were all calibrated with 
respect to NPL traceable standards. At 873K, eight 
specimens were placed on test over the stress range 
1150 MPa to 700 MPa, at 923K seven specimens were 

placed on test over the stress range 1000 MPa to 550 
MPa, at 973K nine specimens were placed on test over 
the stress range 950 MPa to 200 MPa and at 1023K 
seven specimens were tested over the stress range 700 
MPa to 250 MPa. Figure 2 shows the normalised creep 
curves obtained at 923K. Because Waspaloy can serve 
at temperatures up to 920K for critical applications 
and 1040K for less demanding situations, the test 
programme covered stress ranges giving creep lives 
up to 5,500 h (around 19,852,000 s) at 873–1023 K. 
This data set has been published by Evans [16] and 
Wilshire and Scharning [17].

Methodology

Overview of the 4-θ methodology

The theta methodology given by Eq (2d) started out as 
a purely empirical equation to represent the shape of a 
uniaxial creep curve obtained at constant stress and 
temperature. As such it attracted the criticism that it 
lacked theoretical foundations and could not be 
related to the mechanisms of creep. Some 20 years 
later, one of the founders of the methodology rectified 
this position by explaining the form of Eq (2d) in 
terms of different hardening, softening and damage 
mechanism. In particular, Evans [16] showed that 

where _εo is the initial rate of creep and Ĥ, R̂ and Ŵ are 
constants determining the rate of hardening, softening 
and damage accumulation as a function of the rate of 
strain (to be defined more precisely in the following 
sub section). In comparison to Eq (2d) it follows that 
these important rate constants can be quantified from 
the four theta parameters as 

The importance of all of this to an understanding of 
the Monkman-Grant relation has, however, not been 
examined. The contribution of this paper to this exist
ing knowledge is therefore to show that this model of 
creep implies a Monkman-Grant relation of the form 

Table 1. Chemical composition of Waspaloy weight %).
Cr Co C Mn Si Fe Mo Ti Al B Zr S P Cu

19.1 13.5 0.03 0.1 0.1 0.79 4.08 3.15 1.3 0.005 0.07 0.0025 0.01 0.1

Also 5 ppm of Ag, 10 ppm of Pb and 0.5 ppm of Bi with balance Ni.

Table 2. Variation of tensile strength with temperature.
Temperature (K) 873 923 973 1023

Tensile Strength (MPa) 1154 1120 975 827
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where _εs ¼
R̂
Ĥ is the theoretical secondary creep rate 

determined by the relative rates of hardening and 
softening and WF is the amount of damage accumu
lated by the time of failure. Thus, this paper reveals in 
more detail below that the Monkman-Grant constant 
is a positive function of damage at failure and a nega
tive function of the rate of damage accumulation. In 
this paper, these findings are tested on data collected 
on Waspaloy.

Creep mechanisms behind the 4-θ methodology

Based on Eq (2d), a specimen on test under uniaxial 
constant stress and temperature will eventually rup
ture with a failure time tF and with a strain at rupture 
of εF 

Given that -θ2 is a small negative number and tF a 
large number, e� θ2tF � 0 and so 

which can be re-arranged for the time to failure 

where θp¼θ1. Although not obvious, Eq (3c) is a 
variant of the Monkman-Grant relation. To see this 
requires an understanding of the creep mechanisms 
behind Eq (2d) and this was first outlined by Evans 
[16]. Following this approach, internal state variables 
can be used to explain the form of Eq (3a) using as a 
starting point the following creep constitutive law for 
the strain rate _ε 

where σ is stress, T absolute temperature, �α are the 
internal state variables which are time dependent and 
Φ() is (an unknown) functional form. Each of these 
internal variables will have an equation associated 
with them that describes their evolution through 
time. All the �α describe continuum quantities that 
could be classified as either hardening or softening, 
static or dynamic, transitory or permanent. One pos
sible functional form for Eq (4a) is 

where _εo is the initial rate of strain occurring for virgin 
material when placed on test – and this will depend on 
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Figure 2. Normalised uniaxial creep curves obtained at various stresses at 923K.
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both stress and temperature. Here, f �αð Þ takes on the 
value one for such material but thereafter is modified 
by the creep processes occurring within the grains 
and/or grain boundaries. Next, Evans assumed that 
f �αð Þ is a linear function of these internal variables 

where hα, rα, and wα are hardening, softening and 
damage internal variables respectively.

Softening (or recovery) variables are static but posi
tive variables. In Waspaloy, each of the rα variables 
could include (but not exclusively so) the following 
mechanisms that are temperature sensitive [18–20]:

(i) The coarsening of the fine γ′ precipitates 
referred to as Ostwald ripening, especially at 
temperatures above approximately 1023K. 
This process involves the dissolution of smal
ler precipitates and the growth of larger ones, 
leading to a decrease in the number and den
sity of the γ′ particles. As a result, the materi
al’s resistance to dislocation motion 
diminishes.

(ii) At higher temperatures (above 1223K), 
dynamic recrystallisation becomes the domi
nant softening mechanism. This process 
involves the formation of new, strain-free grains 
that replace deformed ones, leading to a reduc
tion in dislocation density and an increase in 
grain size.

(iii) At intermediate temperatures, dislocation 
recovery processes such as climb and cross- 
slip can occur, leading to a reduction in dis
location density. This recovery softens the 
material by reducing the obstacles to disloca
tion movement.

On the other hand, hardening variables are dynamic in 
nature and will be negative in quantity. In Waspaloy, 
each of the hα variables could include (but not exclu
sively so) the following mechanisms [21,22]:

(i) The precipitation of γ′ (Ni₃Al and Ni₃Ti) phase 
particles. These fine, coherent precipitates 
impede dislocation movement, enhancing the 
alloy’s strength, particularly at elevated tem
peratures. The ageing process promotes the 
formation of these precipitates, contributing 
significantly to the alloy’s high-temperature 
performance. This is the primary strengthen
ing mechanism in Waspaloy.

(ii) Alloying elements such as molybdenum, 
cobalt, chromium, and titanium are dissolved 
in the nickel matrix, creating lattice distor
tions. These distortions hinder dislocation 
motion, thereby increasing the yield strength 

of the material. This mechanism is particularly 
effective at higher temperatures, where the 
solid solution strengthening continues to play 
a significant role.

(iii) Elements like titanium and carbon form car
bide precipitates (e.g. TiC) within the matrix 
and at grain boundaries. These carbides act as 
obstacles to dislocation movement and pin 
grain boundaries, preventing grain growth 
during high-temperature exposure.

(iv) At stresses above the yield point, dislocations 
multiply and interact, forming dislocation tan
gles or forests. These dense dislocation struc
tures impede further dislocation movement, 
leading to increased strength through a 
mechanism known as forest hardening. This 
mechanism is particularly relevant during 
high-stress applications, such as turbine 
engine components.

The damage variables are usually dynamic in nature 
and positive in quantity. In Waspaloy, each of the wα 
variables could include (but not exclusively so) the 
following mechanisms [23–25]:

(i) At elevated temperatures and stresses, 
Waspaloy undergoes grain boundary sliding, 
leading to the nucleation and growth of cav
ities at grain boundary triple points. These 
cavities can coalesce, forming micro voids 
that eventually lead to fracture. This process 
is particularly pronounced at temperatures 
between 973K and 1073K.

(ii) At high temperatures, the γ′ phase precipitates 
can dissolve or coarsen, reducing their effec
tiveness in impeding dislocation movement.

(iii) Carbides such as M₆C and M₆C₆ can precipi
tate at grain boundaries during service at ele
vated temperatures. While these carbides can 
strengthen the material, excessive precipita
tion can embrittle the grain boundaries, mak
ing them more susceptible to cracking under 
stress.

(iv) At stresses above the yield strength, disloca
tions accumulate and interact, forming dislo
cation tangles or forests. These structures 
impede further dislocation movement, leading 
to increased strength through forest harden
ing. However, at high temperatures, the mobi
lity of dislocations increases, and the 
effectiveness of forest hardening diminishes.

(v) As Waspaloy is subjected to high temperatures 
and stresses, microstructural instabilities such 
as the coarsening of γ′ precipitates and the 
precipitation of carbides at grain boundaries 
can occur. These changes can lead to intergra
nular fracture, where cracks propagate along 
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the weakened grain boundaries, compromis
ing the material’s structural integrity

All these processes can be dependent or independent 
of each other, and the importance of a given process 
can vary with stress and temperature. Also, more than 
one process can occur at a time. Each mechanism will 
be a function of stress and temperature, but since these 
functional dependences may be different, the pro
cesses will contribute varying amounts to the creep 
process as conditions change. As the internal variables 
in Eq (4c) occur linearly, and because Eq (4c) is linear 
in the coefficients, it is possible to quantify the over-all 
hardening (H), softening (R) and damage (W) 
through a simple summation 

Evans then postulated the following evolutionary 
equations for these internal variables 

where the dot above each variable refers to the rate of 
change in this variable with respect to time and Ĥ, R̂ 
and Ŵ are parameter constants found as 

where _hα ¼ � ĥα _ε, _wα ¼ ŵα _ε and _rα ¼ r̂α. Eq (4b) can 
then be written as 

At constant stress and temperature, Ĥ; R̂; andŴ are 
also constant, and if H = R = W = 0, when t = 0, then 
the differential of Eq (4g) with respect to time is 

for small times in relation to creep life, i.e. where the 
effects of W are negligible. Upon carrying out the 
following integration, which assumes damage over 
short periods of primary creep is negligible, 

we get 

where C is the constant of integration. When t = 0, 
_ε ¼ _εoand so C = -ln( R̂ � Ĥ _εo

� �
. Thus 

which upon re-arrangement and simplification yields 

Eq (6a) states that an initial high creep rate of 
_εo, gives way to a rapidly decreasing creep rate 
until a steady state rate of creep equal to R̂

Ĥ is 
reached. This can be interpreted as the theoretical 
secondary creep rate – that rate that would be 
observed if creep continued to progress without 
meaningful damage accumulation. Call this rate _εS 
and so 

The value for this secondary creep rate is deter
mined by the rate of work hardening Ĥ in relation to 
the rate of softening R̂ occurring during primary 
creep. This is a very general specification of creep to 
which a variety of different creep mechanisms can be 
attached.

The Monkman-Grant relation and damage

Another key assumption behind Eq (2d), that is also 
key to a more in-depth understanding of the 
Monkman-Grant relation, is that damage W leads to 
strain rate accumulation by accelerating the secondary 
creep rate _εS 

or, upon extracting all primary creep 

where _εT is the tertiary strain rate. This can be rewrit
ten in terms of time t by first noting that 

so that 

Thus 

with C ffi 1
Ŵ ln R̂

Ĥ

h i
and so upon further simplification 

Substituting this into Eqs (7a,7b)gives 
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and upon integration 

A comparison of Eq (8b) with Eq (2d) reveals that 
θ4 ¼ Ŵ R̂

Ĥ¼ Ŵ _εs and θ3 = 1/Ŵ. Using this measure of 
the minimum creep rate allows Eq (3c) to be written as 

This is a Monkman-Grant type relation with 
M2 ¼ θ3ln 1þ εF� εp

θ3

h i
. To further interpret the mean

ing of M2, it can be noted that the amount of damage 
accumulated by the time of failure WF can be calcu
lated from Eqs (7b,7c) 

But 

and so 

This then allows Eq (9a) to be written as 

which is a Monkman-Grant relation of Eq (1a) with 
M ¼ 1

Ŵ ln 1þWF½ �, ρ = 1 and the minimum creep rate 
_εM replaced with the theoretical secondary creep rate 
_εS. The MG constant M2 will only be a true constant if 
both Ŵ and WF are independent of test conditions. 
But Ŵ is the reciprocal of θ3 which is known to be 
weakly dependent on test conditions, whilst WF 
depends on εF and θ1 which are also weakly dependent 
on test conditions.

The role of primary creep in the determination of 
time to failure is limited to _εS, which in turn is deter
mined by the rate of hardening relative to the rate of 
recovery. The larger is the rate of recovery relative to 
the rate of hardening, the higher will be the secondary 
creep rate and consequently the smaller will be the 
time taken to fail. Eq (10) also makes it clear that the 
Monkman-Grant constant M2 depends on several fac
tors. Tertiary creep determines the time to failure 
through the amount of damage accumulated during 
tertiary creep and the rate at which this damage accu
mulates. The version of the Monkman-Grant relation 
given by Eq (10) results from the assumed mechanism 
that the role of damage accumulation in creep is to 
accelerate the secondary creep rate _εS. From Eq (10) it 
follows that failure times will be larger for a given 

secondary creep rate (i.e. M2 will be larger) the more 
ductile is the material, i.e. the greater is the amount of 
tertiary strain εF � εp and damage W (in the form of 
voids, precipitate morphology, alteration in grain 
boundary cavitation and cracking etc) that the mate
rial can absorb before failing.

There are therefore some similarities between this 
4-θ Monkman-Grant relation and those proposed by 
Dobes and Milicka [11] and Abe [14]. In all three 
versions the exponent on the minimum (or secondary) 
creep rate is 1. Dobes and Milicka divide failure time 
by rupture strain, whilst Abe divided it by the strain at 
the end of primary creep. The 4-θ Monkman-Grant 
relation can therefore be considered as a combination 
of these two as it divides the failure time by 
ln 1þ εF� εp

θ3

h i
, i.e. by the difference between the rup

ture strain and strain at the end of primary creep. It 
can also be considered as a generalisation of these two 
versions as it also divides failure time by the rate of 
damage accumulation (1/θ3) within a log 
transformation.

The effect of a change in the rate of damage accu
mulation on M2 is less clear because an increase in bW 
will increase WF but decrease 1/ bW. It can be shown 
that the derivative of M2 with respect to bW is negative 
(see Appendix A), and so an increase in the rate of 
damage accumulation will decrease the failure time at 
a given secondary creep rate. This can be written as  

where the + and – signs indicate whether M2 is posi
tively or negatively related to the shown variable. In 
summary, the 4-θ methodology suggests M2 will be 
larger the more the material can tolerate significant 
creep strain or stress relaxation before damage (e.g. 
voids, microcracks) leads to failure. It also suggests 
that M2 will be larger the slower this damage accumu
lates over time. So, whether M2 is independent of test 
conditions, depends on whether this materials ability 
to tolerate damage (and that rate of its accumulation 
over time) is determined by the test condition. Past 
studies on Ti-45Al-2Mn-2Nb [26] and Waspaloy [27] 
have shown that WF depends directly on stress and 
indirectly on temperature via the material’s tensile 
strength. The results section will later look at this in 
more detail.

Measuring minimum creep rates

The actual or observed creep rate at a given test con
dition is measured from the experimental creep curve. 
If such a curve is made up of i = 1 to n strain-time 
pairings, then the first step is to create a smoothed 
series for the experimental rates of strain using 
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where the subscript on t and ε denotes to the ith 

measurement made for time and strain, respectively. 
Thus, the creep rate at time ti is found by collecting 
the pairing tiεi, the four tiεi pairings immediately 
below tiεi and the four tiεi pairings immediately 
above tiεi and putting a least squares linear line fit 
through these 9 data points. _εi is then the slope of 
this best fit line.

Figure 3 shows this smoothed experimental strain 
rates obtained at 500MPa and 873K. The observed 
minimum creep rate is not taken to be the smallest 
observed value, but the mean of the strain rates along 
the flat part of the strain rate curve. This observed 
minimum strain rate is what is usually shown in 
papers when studying the Monkman-Grant relation 
and is therefore represented by the symbol _εM 
(although authors use variations of the smoothing 
technique given by Eq (12)). For this test condition, 
the observed minimum creep rate is estimated at 
1.74–08 s−1. Such an estimate has a strong subjective 
component, because it is down to the researcher to 
identify exactly when the flat part of the curve starts 
and ends (in Figure 3 the curve has been truncated 

before the failure strain to allow the flat part of the 
curve to be seen more clearly).

In contrast to this, the theoretical secondary rate _εS 
cannot be directly measured from the actual experi
mental creep curve when there is damage accumulating. 
Instead, Eq (2d) must be fitted to this experimental 
curve, to obtain estimates for θ1 to θ4 – see Evans 
[28,29] for details on such appropriate estimation or 
curve fitting techniques. If such estimates for θ1 to θ4 are 
represented by ~θ1to ~θ4, then _εScan be calculated as 

The rate of damage accumulation can be mea
sured as 

and so 

All the other internal rates can also be measured 
from the parameters of the fitted creep curve 

Figure 3. Smoothed experimental strain rates at 500MPa and 973K obtained using Eq (12), together with an estimate for the 
minimum creep rate and theoretical secondary rate.
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At 500MPa and 973K the estimates for θ3 and θ4 are 
~θ3 ¼ 0:004947 and ~θ4 ¼ 3.02228E–06 and so 
_εS ¼

R̂
Ĥ ¼

~θ3~θ4 ¼ 1:50E � 08: There is no reason for 
_εS to exactly equal _εM as the former measure depends 
only on the rates of hardening and recover, whilst the 
latter measure obtained from the actual creep curve will 
contain some contributions from damage. If creep car
ried on without any damage the creep strain rates seen 
in Figure 3 would tend to the limit 1:50E � 08� which 
is slightly lower than that seen in the experimental curve 
where damage is contributing to the actual rates. They 
should, however, be similar in value at most test condi
tions (unless the damage rate is large early on).

Results

When applying Eq (1a) to all the experimental data 
outlined in the data section, ρ = 0.778 and M = 1.2096 
for the best fit line seen in Figure 4. There is, however, 
a lot of variation around this relation, with it explain
ing only around 90% of the variation in failure times. 
There appears to be some points that appear to be well 
above the fitted line and some that are well below the 
line which may be an indication that the Monkman- 
Grant constant M is not truly constant.

The following subsections demonstrate that the 
data in Figure 4 fit into three distinctly different 
groupings depending on the value for M2 and thus 
depending also on the tolerance to damage and the 

rate of damage accumulation. It is important to note 
that in the following analysis, three of the data points 
in Figure 4 had to be removed because for these points 
the tertiary creep strain was so small and the tertiary 
period so short lived that θ1 and/or θ2 could not be 
estimated. These three data points correspond to the 
test conditions 300 MPa at 973K and 1023K and 
1023K at 250 MPa. For the rest of the data, Figure 5 
plots the values for M2 as calculated using Eq (10), 
against stress with the different symbols differentiat
ing further with respect to temperature. Group 1a 
corresponds to test conditions producing M2 values 
below 0.93%, whilst Group 1c corresponds to test 
conditions producing M2 values above 4%. Group 1b 
corresponds to test conditions producing M2 values in 
between these two limiting values.

Group 1c: relatively high values for M2

Six data points make up this group and they corre
spond to all but one temperature (973K). They also 
tend to correspond to the largest stresses used at these 
temperatures. Thus, relatively high M2 values are gen
erated by high stresses irrespective of temperature. 
Figure 6 shows the creep curves corresponding to 
four of the six data points making up group 1c. The 
creep curves obtained at 1023K with 700 MPa and 
873K with 1050 MPa have almost identical levels of 
strain and failure, but the specimen tested at 1023K, 
tolerated nearly twice the amount of damage before 

Figure 4. Variation in times to failure with the measured minimum creep rates, together with the least squares regression line.
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failing. Yet both specimens had very similar M2 values, 
and this can be explained by the fact the specimen 
tested at 1023K accumulated damage at just over twice 

the rate of the specimen test at 873K. The creep curves 
obtained at 923K with 1000 MPa and 873K with 950 
MPa have very similar rates of damage accumulation. 

Figure 6. Some creep curves with M2 values above 4% and so part of group 1c.

Figure 5. Variations in M2, as calculated using Eq (10), with stress and temperature.
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Yet both specimens had similar M2 values, and this 
can be explained by the fact the specimen tested at 
873K with 950 MPa, could tolerate more damage 
before failing. However, all the specimens in group 
1c were characterised by low values for damage at 
failure – all below 1 in values – and low values for 
the rate of damage accumulation – all below 20. This 
can be appreciated from a glance at Figure 10 that 
displays the higher WF values associated with the 
other two groupings. Within group 1c, a slightly 
higher value for WF was compensated for by slightly 
lower values for the rate of damage accumulation 
resulting in M2 always exceeding 4%.

Figure 7 plots the rates of creep corresponding to 
the creep curves in Figure 6. Another characteristic of 
the test results falling within group 1c is revealed in 
this Figure – namely most of the test time is taken up 
by declining creep rates or by primary creep followed 
by a much shorter period of secondary creep. Finally, 
there is a short period of accelerating creep or tertiary 
creep, which explains the low damage at failure values 
seen in test specimens within group 1c. The low rates 
of damage accumulation and small times spent in 
tertiary creep result in small amounts of damage accu
mulation by failure time.

Group 1b: relatively moderate M2 values

The relatively moderate M2 values associated with 
this group tend to occur at the moderate stress’s 
for temperatures below 1023K but at low stresses at 
1023K. The creep curves in Figure 8 obtained at 

1023K and 250 MPa and 1023K and 500 MPa are 
in this group of moderate M2 values (greater than 
0.9% but less than 4%). The tolerance to damage at 
250 MPa is roughly half that at 500 MPa, but 
because the rate at which this damage accumulates 
is approximately half that at 500 MPa, the failure 
time is substantially larger. The counterbalance 
between damage tolerance and rates of accumula
tion (one variable has a positive effect and the 
other a negative effect as explained in Eq (11)) 
result in these two specimens having the same 
value for M2. When comparing these two creep 
curves to the creep curves seen in Figure 6, it 
becomes clear that the tolerance to damage is 
much higher, as is the rate of damage accumula
tion, both resulting in relatively moderate values 
for M2.

Figure 9 shows the rates of creep associated with 
the creep curves in Figure 8. When comparing this to 
Figure 7 the time spent in tertiary creep is seen to be 
higher for specimens in group 1b compared to 1c. 
This fact combined with the realisation that the 
damage rate accumulation is lower for all curves in 
Figure 7 explains why the amount of damage accu
mulation before failure is higher in group 1b. This is 
more clearly seen in Figure 9, where all the tests in 
group 1c had lower amounts of damage at failure and 
lower rates of damage accumulation. Given that WF 
has a positive effect on failure times and Ŵ a negative 
effect, the fact that specimens in group1b have a 
lower value for M2 suggests the latter effect domi
nates the former.

Figure 7. Rates of creep, obtained from Eq (12), that are associated with the creep curves displayed in Figure 6.
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Figure 9. Rates of creep, obtained from Eq (12), that are associated with the creep curves displayed in Figure 8.

Figure 8. Two measured creep curves corresponding to groups 1a (obtained at 1023K with 400 MPa and at 973K with 450 MPa) 
and group 1b (obtained at 1023K with 400 MPa and at 1023K with 500 MPa).
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Group 1a: relatively low M2 values

The relatively low M2 values associated with this group 
tend to occur at the moderate to low stresses used at 
each temperature. The creep curves in Figure 8 
obtained at 1023K and 400 MPa and 973K and 450 
MPa are in this group of low M2 value (less than 0.9%). 
The tolerance to damage at these two conditions are 
approximately the same, but because the rate at which 
this damage accumulates is appreciably lower at 973K 
with 450 MPa, the failure time is substantially smaller. 
The counterbalance between damage tolerance and 
rates of accumulation result in these two specimens 
having relatively low M2 values.

The data in Figures 10 provides a further insight 
into the fundamental characteristics of the data points 
in groups 1a and 1b. Figure 10b plots values for M2 
against WF and the data in groups 1a and 1b have 
broadly similar WF values – in group 1a WF is scat
tered around a mean value of 2.5, whilst in group 1b 
WF is scattered around a mean value of 2.2. Yet the 
data in group 1b have higher M2 values compared to 
those in group 1a. Figure 10a, which plots values for 
M2 against Ŵ, explains why. It is the result of the rate 
of damage accumulation being much lower in group 
1b compared to group 1a – an average of 135 in group 
1b compared to 662 in group 1a. And as Eq (10) 
reveals, lower values for Ŵ results in larger M2 (and 

failure time) values. When comparing group 1c with 
group 1b specimens in group 1c have a much lower 
rate of damage accumulation (that results in a higher 
M2 value) and whilst they have a lower damage at 
failure (that results in lower M2 values) the former 
effect dominates and so results in specimens in 
group 1c having a higher value for M2.

Thus, for tolerances to damage between 1 and 4, a 
low value for M2 is caused by a relatively high rate of 
damage accumulation (between 100 sand 1100), 
whereas a rate of damage accumulation between 30 
and 100 results in a moderate value for M2. The 
defining characteristic for high M2 values is very low 
rates of damage accumulation (20 or less). Even those 
specimens in this group also have low tolerance to 
damage this is more than offset by the lower rates of 
accumulation.

When studying Grade 92 steel, Maruyama et al. 
[13] identified four distinctly different regions when 
plotting failure times against stress (using iso-thermal 
lines). These regions had different creep mechanisms 
present and this led to distinctly different values for 
the Monkman-Grant exponent and Norton’s n. That 
is, the groupings were defined by differences in ρ. This 
contrasts with the groupings 1a-c in this paper. These 
groupings are identified such that ρ = 1 in each of 
these three groupings (and so the Monkman-Grant 
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constant M2 differed between the three groups). So, in 
this sense the groupings in this paper and that by 
Maruyama et al. are not directly comparable. In 
another sense, however, the groupings 1a-c are also 
defined in terms of creep mechanism (as is the case for 
9Cr steel) in that in group 1a these mechanisms lead to 
low rates and amounts of damage accumulation, 
whilst in group 1c these mechanisms lead to high 
rates and amounts of damage accumulation. Whilst 
group 1b has similar amounts of damage at failure to 
group 1a, group 1b is characterised by creep mechan
isms leading to intermediate rates of damage accumu
lation. Group 1a is therefore similar in nature to the 
low-stress region defined by Maruyama et al. that had 
the smallest rate of strain accumulation.

The flexibility of the theta methodology is that it 
allows for many different hardening, softening and 
damage mechanisms to play a role at any one time, but 
it does not need to specify them precisely to define 
overall hardening, softening and damage. 
Consequently, these three groupings are defined by the 
characteristics of such overall hardening, softening and 
damage. Thus, for example, group 1c is defined by high 
M2 values caused by low amounts of damage at failure 
and by damage accumulating occurring at a slow rate. 
This does not preclude the possibility that the groupings 
are also defined by different creep mechanisms – it’s just 
they are not used in the methodology to define these 
groups. That said, the data in Figure 5 at 873K may fall 
into groups 1b and 1c because of different creep mechan
isms. In this figure, at this temperature, lower M2 values 

are observed at approximately around 950 MPa, which is 
very close to the reported 0.2% proof stress for this 
material at this temperature [22].

This ties in with the work of Williams et al. [29] 
who reported that at 873 K, Waspaloy shows a 
mechanism change around the yield stress, which is  
~ 920 MPa for typical test heats. Below ~ 900 MPa 
(≈below yield at 873 K), creep damage is dominated 
by diffusion-assisted processes: dislocation climb and 
grain-boundary activity, leading to intergranular cavi
tation/voiding. Above ~ 900 MPa, deformation is con
trolled by higher dislocation densities with forest- 
hardening and γ′ cutting, producing more trans gran
ular/dislocation-controlled damage. When combined 
with the theta analysis this suggests that the low 
amounts of damage accumulated by failure for speci
mens in group 1c is trans granular in nature, whilst the 
higher accumulations of damage for specimens in 
group 1b takes the form of inter-granular voids. 
Attaching specific types of damage to the damage 
quantities in each group as identified using the theta 
methodology would form an interesting area of future 
research but is beyond the scope of this paper.

Failure times
Figure 11 shows the estimates made for the parameters 
of the Monkman-Grant relation of Eq (10) within each 
of the groupings identified above. The Monkman- 
Grant constant M2 increases from 0.29% in group 1a 
to 2.48% in group 1b and to 4.33% in group 1c. These 
values correspond well with the average values for M2 

Figure 11. Variations in time to failure with the secondary creep rate, together with the estimated Monkman-Grant relation for 
each group of data.
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in each group as shown in the second column of Table 
3. The statistical significance of the seen difference in 
these sample mean M2 values can be tested using the 
following t-value

where µ1 is the population (true) mean value for M2 for 
damage conditions that place results within one of the 
three groups seen in Figure 9 and µ2 is the population 
(true) mean value for M2 for damage conditions that 
place results within another of the three groups seen in 
Figure 9. This test statistic allows for unequal variances 
between the groupings. �M2;1 and �M2;2 are the corre
sponding estimated means from samples of size n1 and 
n2, with s2

1 and s22 being the sample variances. Under the 
null hypothesis that the true mean values for M2 between 
two groupings are the same (Ho : μ1 � μ2 ¼ 0Þ, this t- 
value follows (approximately) a student t distribution 
with degrees of freedom (d.f.) estimated as 

These t-values for mean comparisons are shown in 
the one but last column of Table 3. Thus, the t-value of 
−11.22 tests the null hypothesis that the difference 
between the true mean values for M2 in group 1a 
and group 1c are the same. Based on the t-value, the 
probability that this null hypothesis is true is 0.01%. 
So, at the 1% significance level, the mean value for M2 
in these two groups are different, i.e. the negative value 
for the sample mean difference of (0.0055–0.0628) has 
not occurred by chance. Table 3 reveals that the three 
mean values are all statistically significantly different 
from each other at the 1% significance, so that the best 
fit lines in Figure 11 differ from each other in a 
statistically significant way.

This difference takes the form of a parallel shift as 
damage characteristics change. That is, ρ = 1 in all 
three groupings. Even in group 1a where ρ is estimated 

at 1.033, this is not significantly different from 1 – the 
p-value for the null hypothesis that the true value for ρ 
is 1 is 63%. There is therefore a very high probability 
that the true value for ρ is 1 (it would come out as 1 if 
there were many more data points available). The p- 
values for testing ρ = 1 in the other two groups are 74% 
for group 1b and 76% for group 1c. Thus, once 
account is taken for different amounts and rates of 
damage accumulation, the true value for ρ is 1, irre
spective of these differences in damage characteristics. 
ρ = 1 is as predicted by the 4-θ methodology.

To further confirm the validity of the 4-θ 
Monkman-Grant relation, the data points in Figure 
11 are replotted in Figure 12 according to Eq (10). The 
gradient of −0.997 of the regression line in Figure 12 
corresponds to the exponent on _εs in Eq (10) and so is 
as predicted by the 4-θ methodology. The propor
tional coefficient of 1.041 is close to the value of 1 
that is predicted by the 4-θ methodology. Indeed, the 
p-value for testing that the population value for this 
proportional coefficient equals 1 comes out at 72% 
and so this hypothesis cannot be rejected – even as 
the 10% significance level. Unlike in Figures 4 and 11, 
all the data points are closely packed around one 
regression line, contrary to their larger deviations in 
Figure 4 around a single regression line and around 
multiple lines in Figure 11.

For the relation in Figure 12 to be of any use in 
reducing the length of the development cycle for new 
materials two things need to be considered, First, the 
extent to which WF and Ŵ can be accurately extra
polated from accelerated test condition needs to be 
assessed. This is really beyond the scope of this paper, 
but this would form an interesting and necessary area 
for future research. Second, the secondary creep rate 
must be measurable in relatively short-time periods. 
This question can be briefly addressed here using a 
plot of _εS against _εM as in Figure 13. Within each 
grouping these is a very strong and clear relationship 
between these two measures. Typically, _εM can be 
measured by running tests for around 30% of creep 
life. One approach to measuring _εS within the same 
time span is therefore to first find _εM and insert it into 

Table 3. Mean values for M2 in each grouping, together with tests for the statistical significance of 
differences between these means.

Group

Monkman-Grant constant M2

Mean Standard Deviation d.f. t-value p-value

Group 1a 0.0055 0.00275 17 −5.85a 0.0025
Group 1b 0.0208 0.00908 5 −11.22b 0.010
Group 1c 0.0628 0.01227 7 −7.54c 0.0013

d.f. is the degrees of freedom as calculated using Eq (14). p-value is the probability (in %) that there is no 
difference between the population mean values in the groupings listed below:

a. This is the student t statistic for testing for a statistically significant difference between the population mean 
value for M2 in group 1a and group 1b.

b. This is the student t statistic for testing for a statistically significant difference between the population mean 
value for M2 in group 1a and group 1c.

c. This is the student t statistic for testing for a statistically significant difference between the population mean 
value for M2 in group 1b and group 1c.
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the equations present in Figure 13 to find the corre
sponding value for _εS. As the R2 vales in this figure 
are between 97% and 99%, this approach should 
determine _εS with a high degree of accuracy. The 
only remaining question would then be which of 
these groupings is most relevant for the typical 

operating conditions experienced by Waspaloy? 
This could form another area for future research 
but once known, the M2 value to use in Figure 12 
are found by averaging the M2 values in Figure 5 for 
that grouping, i.e. use the value shown in column 2 of 
Table 3.

Figure 12. The modified 4-θ Monkman-Grant relation.

Figure 13. The variation in _εS with _εM.
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Conclusions

The Monkman-Grant relation offers the possibility of 
reducing the cost and length of the development cycle 
for new materials operating at high temperatures by 
using minimum creep rates that can be obtained rela
tively quickly even at low stresses. This paper used the 
4-θ methodology to i. identify and explain the form of 
this relation in terms of creep mechanisms such as 
hardening, recover and damage and ii. to discover 
whether this form was compatible with long-term 
creep life assessment. The 4-θ methodology suggests 
that the traditionally measured minimum creep rate 
should be replaced by the theoretical minimum creep 
rate measured as θ3θ4. It also predicts that the expo
nent on this secondary creep rate will equal −1. This 
methodology also predicted that the Monkman-Grant 
proportionality constant (M2) was positively related to 
the amount of strain during tertiary creep, positively 
related to the total amount of damage accumulated 
during this stage but negatively related to the rate at 
which damage accumulates. The methodology also 
suggested that the role played by primary creep in 
identifying the form of the Monkman-Grant relation 
was restricted to the determination of the theoretical 
secondary creep rate.

These predictions were confirmed by the data 
obtained on Waspaloy steel. Without considering 
any of these causal variables, the exponent on the 
minimum creep rate was considerably different from 
the 4-θ prediction that it should equal −1 (−0.778). 
However, it was also found that the values for the 
Monkman-Grant proportionality constant (M2) fell 
into three well-defined groupings depending on the 
amount of accumulated damage and the rate at which 
it occurred. Two of the groupings had similar amounts 
of damage at failure, but different rates of damage 
accumulation that split the data into relatively low 
and moderate M2 values. It then turned out that 
within each such grouping, the exponent on the sec
ondary creep rate equalled −1. The other grouping had 
rates of damage accumulation and damage at failure 
below those seen in groups 1a,1b. An interesting area 
for future research therefore is to study this possibility 
for reducing the development cycle for new materials 
in more detail by assessing the extent to which WF and 
Ŵ can be accurately extrapolated from accelerated test 
conditions. If they can, then the value for M2 can be 
found for typical operating conditions for this mate
rial. Eq (10) would then allow a failure time prediction 
to be made as well. Other areas of future research 
include identifying the relevant group for the typical 
operating conditions for Waspaloy and approaches for 
quantifying _εS in shorter time spans than that required 
for finding _εM – by, for example, extrapolating the 
theta creep curve equation that excludes damage 
accumulation.
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Appendix A.

Here a short confirmation that the derivative of M2 with respect to Ŵ is negative. From Eq (10) 

M2 ¼
1

Ŵ
ln 1þWF½ � ¼

1
Ŵ

ln 1þ Ŵx
� �

(A1) 

where X = εF � εp
� �

. Using the quotient rule for differentiation 

dM2

dŴ
¼

cWx
1þcWx

� ln 1þdWx
h i

Ŵ2 (A2) 

Next, define u = Ŵx and h(uÞ as 

hðuÞ ¼ Ŵ2 dm
dw
¼

u
1þ u

� ln ½1þ u� (A3) 

It needs to be shown that h(u) < 0 for all u ≥ 1, u ≠ 0 because ln(1+u) is only defined for ln(1+u) > 0. The derivative of h(u) 
with respect to u is 

dh uð Þ
du
¼

� u
1þ uð Þ

2 (A4) 

So, if u > 0 then dh uð Þ
du < 0 and so this derivative function is decreasing in u. If u < 0 then dh uð Þ

du > 0 and so this derivative 
function is increasing in u. Further, h 0ð Þ ¼ 0, h uð Þ< 0 when u > 0 and h uð Þ< 0 when u < 0. Thereforeh 

hðuÞ ¼
u

1þ u
� ln 1þ u½ � < 0 for u 0 > (A5) 

and thus 

dM2

dŴ
¼

f uð Þ

Ŵ2 ¼
f Ŵx
� �

Ŵ2 < 0 (A6) 
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