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Fig. 1. (a) A user controls a smart home device (i.e., selects and turns on lights) by moving his or her hands
above the coffee table, which incorporates an Indoor Photovoltaic (IPV) sensor to recognize appropriate
user-defined registration and control gestures. (b) A user performs a gesture with the hand movement casting
a shadow on the IPV sensor, which generates a gesture signal. (c) A semi-transparent IPV tabletop as shown
in (a).

Indoor photovoltaic materials are novel low-cost light sensors that can be flexible, decorative, self-powered, and
battery-free, and can be embedded in various surfaces throughout the home. They offer a unique opportunity
for contextual control of multiple different devices in a smart home using guessable and favorite gestures.
Currently available gesture vocabularies are survey-based and sensor-agnostic, but still require experimental
validation. Therefore, we present experimentally generated and validated original gesture vocabularies using
two user elicitation methods, the guessability and production methods, for such sensors. The capabilities of the
sensor was used to prime participants for design thinking to multi-control smart home devices. We provide
guidelines for designing gesture vocabularies using the two elicitation methods and report on their similarities
and differences. The methodological findings and experimentally validated gesture sets would inform HCI
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researchers in the design of user-elicited interactions for such versatile light or electromagnetic field sensors
and similar gesture-driven applications.
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1 Introduction

Smart home devices such as televisions, speakers, lights, air conditioning/heating, ovens, security
cameras, etc. can be conveniently controlled through their dedicated smartphone applications or
voice assistants. However, such interaction methods may become increasingly cumbersome [103]
or less preferred due to security and privacy concerns [28] when controlling multiple different
types of devices shared by multiple different types of users. Expert users may often prefer to use
smartphone applications, while others may be more satisfied with traditional methods such as
dedicated remote controls or traditional physical controls on the device control panel. Gestural
interfaces for controlling smart home devices are gaining popularity due to their convenience and
accessibility. Gesture control is seen as an innovative and futuristic way to interact with smart
home devices. A gestural interface that can be conveniently placed or embedded on surfaces around
the home to control multiple different types of smart devices could be highly desirable. Imagine
people in the home being able to select and control the cooker, oven, the lights, etc., smart devices
by moving or hovering their hand over the kitchen countertop or the coffee table with gestures
without wearing a control device [45].

There are many sensors that enable hand gesture interaction, such as an ordinary camera [34], an
infrared camera [39], a time-of-flight camera [100], an acoustic system [66], an ultrasonic Doppler
sensor [70] and a lidar [45], etc. These sensors are relatively expensive and cannot be embedded
or installed on many surfaces in a house. Recently developed Indoor Photovoltaic (IPV) materials
are inexpensive [48] and have been used for indoor light energy harvesting and to power many
other sensors to create self-powered [18] and battery-free [67] ‘internet of things’ sensors for
smart homes. The IPV materials can be flexible [69] and decorative [7, 80], and can be placed or
embedded on many surfaces in a home. They may be used as large area light sensors for hand
gesture recognition [4, 75], and users may prefer to use them for smart home control [3, 55]. To
this end, we have explored the contextual control of multiple smart home devices by multiple
users using such an embeddable IPV tabletop sensor and a gesture vocabulary, i.e., by performing a
unique ‘registration’ gesture to select a device and then performing distinct ‘control” gestures to
operate the device.

The design of gesture vocabularies has been a focus of HCI research to make interaction more
intuitive and user-friendly [93]. Gesture vocabularies have been designed using expert-led, user-led
or computationally based methods [102]. User-led gesture design could help to achieve ‘preferred’
gesture vocabularies that are more learnable, memorable and discoverable by target users than
expert-led designs [27, 59, 60, 72, 99, 102]. The guessability method [98] has been widely used to
generate user-defined gesture vocabularies in a wide variety of devices, applications, environments
and usage contexts [19, 52, 56, 87, 88]. It recommends first presenting the ‘effect’ of a gesture (or a
‘referent’), and then asking users to perform its ‘cause’ (or a gesture) in order to collect user-defined
gesture suggestions. This method is often used to create a gesture vocabulary targeted at interacting
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with or controlling a specific device [37]. To control multiple devices from a single IPV interactive
surface as a multi-controller, a more universal gesture is required for which we present a more
generalized guessability method [20, 27, 90, 91].

The one-to-one cause-and-effect approach may not be the most effective way to create such a
versatile gesture set that is also users’ favorite. In this respect, the production method allows users
to suggest multiple gestures for each referent and to nominate their favorite gesture [58]. Gesture
elicitation studies in the literature have not examined the guessability and production methods
together. There is a lack of direct comparisons of the similarities and differences in their outcomes
and guidelines. The two methods aim to create gestures with two different core characteristics:
guessable versus favorite. Therefore, we pose the following research questions: (RQ1) How do
the guessable and favorite combinations of gestures and referents found using the two methods
compare?, and (RQ2) How do users’ levels of agreement differ for the matching combinations
of gestures and referents found using the two methods? In the production method, participants
are primed using various techniques that lead to more creative and reflective gesture suggestions
and reduce legacy bias — the tendency for participants to suggest gestures influenced by previous
technological interactions [16, 25, 35, 42, 51, 53, 54, 57, 58, 63]. Popular priming techniques are the
use of prerecorded videos or the Wizard of Oz technique to present the referents or effects [1, 57].
It is not clear what priming techniques could be used with new sensor technologies and new form
factors [58]. We therefore propose a priming technique that asks participants to create different
shapes of signals by playing with arbitrary hand movements to explore the capabilities of the sensor.
However, a traditional lab-based elicitation study with a typically smaller number of participants is
not recommended for validating a priming technique (with a priming and a no-priming control
group), as it may not produce statistically significant results [1, 35]. Therefore, we pose the following
research questions: (RQ3) To what extent is the legacy bias effect reduced in the production method
compared to the guessability method?, and (RQ4) What design guidelines can be derived through
a direct comparison of the two methods? We explore these research questions while designing a
gestural interface using the IPV sensor.

In this paper, we investigate the use of an IPV sensor as a multi-controller for user-agnostic smart
home control via contactless hovering surface interaction. Taking a holistic approach, we design
user-elicited gesture vocabularies by applying the guessability (one gesture suggestion for one
effect) and production (many gesture suggestions for one effect) methods described by Wobbrock
et al. [98] and Morris et al. [58], and experimentally validate their usability. We contribute the
following:

(1) user elicited and experimentally validated agreed, popular, and primitive dynamic hand

gestures for hovering surface interaction in the smart homes context,

(2) a comparison of guessability and production methods for creating dynamic hand gestures,

(3) guidelines for designing new dynamic hand gestures using the gesture vocabulary.

2 Related Work
2.1 Indoor Photovoltaic Gesture Sensing Technologies

Recently, Indoor Photovoltaic (IPV) technologies have been demonstrated as systems using the
light energy harvesting principle, which has been applied to various applications, leading to future
sustainability [24]. Photovoltaic (PV) cells utilize the PV effect to convert natural sunlight and
artificial indoor light into electricity [49]. PV cells have been used in many HCI applications.
For example, ultra-thin PV cells have been used in a flexible, wearable wristband designed for
electromyography (EMG) gesture sensing for healthcare applications [40]. Similarly, XSolar is a (PV)
solar cell-based gesture sensing system that also uses a self-powered wearable device to detect hand
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gestures. Their system uses a cross-model framework that captures hand gestures through the light
variations that generate PV current variations [101]. An ultra-low power smart camera was used
to sense hand gestures, which is powered by PV cells harvesting ambient light [5]. SolarSense is
another self-powered gesture recognition system that uses solar cells to detect gestures. These cells
demonstrate the versatility of using the PV technology for power generation and gesture sensing,
providing a sustainable approach to HCI [47]. Recent studies have emphasized the use of IPV cells
for the purpose of decorative interactive surfaces such as PV-Tiles and PV-Pix [55, 71]. Previous
related work has shown how self-powered technologies have been used in various devices, making
these PV materials more popular for gesture sensing. However, there is no prior research that
has explored large area IPV sensors as indoor interactive surfaces or to control multiple different
devices such as in a smart home. There is no prior research to create hovering or dynamic gesture
vocabularies suitable for IPV-type electromagnetic field sensors.

2.2 On Gesture Elicitation Methods

Elicitation methods are a popular user-centered or participatory design approach [9, 11, 17, 31, 38,
41, 44], allowing participants to shape their technological futures [89] and designers and developers
to gather requirements to build a user-derived interface [30] or to draw on the “wisdom of the crowd”
for interaction or gesture design [102]. Williams and Ortega [97] have provided a comprehensive,
concise guide to the methodological foundations of gesture elicitation methods by highlighting
a framework for designing and analyzing gesture-focused elicitation studies. Nielsen et al. [64]
have presented the basic principles of gesture elicitation through participatory design, such as
finding the functions (or effects, referents, outputs), collecting gestures from users, extracting
gesture vocabularies, and testing for guessability, memory, and stress. Wobbrock et al. [98] then
proposed to maximize the guessability of a referent by collecting gestures (one gesture per referent)
from participants and presented an ‘agreement’ formula to evaluate and analyze the guessability
elicitation data [83]. Wobbrock et al. [99] thus formalized the guessability method by generating
user-defined multi-touch gestures for tabletop interaction. They used recorded animation and
speech in the experiment, restricted users to suggesting one gesture per referent, did not allow
users to see all referents before starting, and did not allow users to change their suggestion by
going back, in order to maximize guessability. This approach is widely used as the standard method
for gesture elicitation for interactive surfaces such as touchscreen [77], public display [72], on-body
[19] and in interactive spaces [10, 56] and devices such as mobile phones [104].

Morris et al. [58] suggested a different approach — conducted the elicitation study in a group
(partners), introduced the referents at the beginning of the study, allowed participants to suggest
more than one gestures (production) and asked participants to think and imagine the capability of
the gesture sensor (priming). The priming technique also varies in the related work. For example,
participants were primed by showing them gestures outside computing scenarios (e.g., by sports
referees) [58]. Hoff et al. [35] used covert kinaesthetic priming and made participants to do some
physical activities. Also, Chan et al. [16] showed various tap and swipe etc. gestures for priming,
and the gesture vocabulary consisted of similar tap and swipe etc. gestures. Moreover, Williams et
al. [94] have utilized the elicitation production method to explore its impacts on the legacy bias. The
authors found that legacy bias was reduced within the production technique by moving beyond
their initial and familiar proposal as participants proposed more than one gesture for each referent,
causing later proposals to be less biased. Recently, Danielescu and Piorkowski [25] reported that 34%
of participants’ preferred gestures occurred after the first three gestures and that limiting production
may prevent participants from finding their preferred gestures, as they investigated unlimited
production techniques within their elicitation study. Priming and production have helped to reduce
legacy gestures, but often marginally and not statistically significantly [35], even negatively affecting
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the agreement rates [16] and reducing the consensus on preferred proposals [94]. The existing
literature has used elicitation techniques to compare different scenarios, for example, elicitation on
different types of surfaces that take into account the properties and texture of the surface (i.e., rigid
and soft) [15] or moderated and unmoderated elicitation methods that consider the researchers’
supervision on the study [14]. However, the two elicitation methods guessability and production
have not been investigated together in the literature.

Fig. 2. Experimental setup: (1) A flexible IPV light sensor, (2) an oscilloscope, (3) a laptop with a USB camera
placed on top to record the session, (4) a PC monitor to view the gesture signal.

3 User Elicitation of Gestures

Experimental setup: The experimental setup shown in Fig. 2 was used in both guessability and
production gesture elicitation studies. The IPV sensor is a 110 cm long and 28 cm wide unfurled
sheet (infinityPV). The IPV sensor generates gesture signals from the subtle variations in light
intensity across its surface from the distinct shadow patterns and temporal signature of each
gesture, which modulates the current and voltage output of the sensor. The detection signal is a
one-dimensional time series data collected from the two electrodes, i.e., the positive and negative
terminals. We recorded the signal using a digital oscilloscope (PicoScope 5442D) and displayed it on
a PC monitor to allow participants to visualize and verify that the gesture signals were perceptible.
A laptop with a USB camera was used to record the session, e.g., the hand gesture video and the
think-aloud audio. The IPV sensor is particularly suited for dynamic hovering (non-contact) gestures
which are more comfortable to perform than similar contact gestures. For example, swiping or
moving a hand from left to right would be similar contact/non-contact gestures, but the hovering
action is more comfortable. We asked the participants to explore such gestures in the elicitation
studies.

Participants: We conducted both guessability and production studies with different groups of
participants. We recruited 20 non-experts (10 female and 10 male; aged 26-35 years, mean = 28.4, std.
= 6.2) and 25 new non-experts (15 female and 10 male; aged 26-35 years, mean = 29.4, std. = 4.6) for
the guessability and production studies, respectively, from the university campus through an open
call for participation via physical and digital advertisements. We chose this sample size because it
is the most popular option in the literature [88]. None of the participants had previously used IPV
sensors or had experience with gesture elicitation studies. In both studies, only two participants
were left-handed, and rest were right-handed. The studies were designed to last for approximately
one hour. The experiment was approved by our university’s the independent ethics committee.
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Informed consent was obtained from the participants after an initial briefing at the start of the
session.

Guessability study: The guessability study was designed using common smart home devices (15)
and their commands (18) that we found in the literature [6, 12, 14, 22, 29, 33, 36, 37, 44, 50, 76, 91].
This resulted in 78 referents (see Fig. 3 and Fig. 4) with 15 device registration commands and 63
device control commands. Participants were given the 78 referents in the text format [95] in random
order on a sheet of paper. The referents were randomized uniformly across the 20 participants to
minimize bias [94]. Participants were instructed to design unique device registration gestures that
could be used to independently select a particular smart home device regardless of context at any
point in the interaction, and distinct control gestures in the context of the device to control it. They
were also asked to look at the PC monitor for a noticeable change in the signal while suggesting
the gestures, without worrying about the uniqueness and distinctiveness of the waveform. In the
end, we obtained 20 X 78 = 1560 gestures from the guessability study.

Production study: The production study was conducted after the guessability study with new
participants. In order to limit the study to one hour, it was designed after considering the 15 smart
home devices from the guessability study and the literature [91, 92] that could possibly allow
capturing all or more of the gestures found in the guessability study. We selected the 3 smart home
devices TV, lights, and audio/video players with speakers (AP.VP.S) and 22 referents, all of which
were control commands. We did not choose registration commands because of time constraints
and also because the production method allows participants to suggest an unlimited number of
gestures, which would lead to low agreement rates with different icons and symbols suggested for
device registration, as found in the guessability study. Before starting the gesture design session,
we conducted a short priming session, in which we asked the participants to playfully create
innovative shapes of waveforms with arbitrary midair hand gestures. We suggested, they start with
simple, natural and intuitive gestures and observe the IPV signal shown on the PC monitor and
then try to create newer waveforms. The real-time signal visualization not only demonstrated the
capabilities of the sensor to the participants but also provided real-time feedback to think creatively.
Participants were then given the 22 referents in the text format [95] in random order on a sheet
of paper. The referents were randomized uniformly across the 25 participants to minimize bias
[94]. Participants were asked to look at the PC monitor for a noticeable change in the signal while
suggesting the unlimited number of gestures for each referent, but also to try to create unique and
distinct waveforms in the IPV signal for subsequent gesture suggestions for each referent. In the
end, we obtained 1055 gestures from the production study.

4 Results
4.1 Gesture Vocabulary

After labeling the 1560 and 1055 gesture proposals from the guessability and production methods,
we used the binning procedure in [105] to combine the similar gestures into equivalence groups.
For the equivalence criteria, we considered left or right hand use, flat or angled hand pose, palm
direction, hand position, and area covered, etc. as equivalent. The binning analysis resulted in 147
and 144 distinct gesture proposals for the guessability and production methods, respectively. We
conducted two different agreement analyses for the two studies, and propose and compare three
vocabulary gesture sets — (1) the “Agreed” gestures for control and registration commands (see
Figs. 4 and 5), which are based on the agreement rate of each referent, (2) the “Popular” gestures
(Fig. 6(a)), which are control gestures frequently suggested by the participants, and finally (3)
the “Primitive” gestures (Fig. 6(b)), which are the basic components of the agreed and popular
registration and control gestures.
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Fig. 3. The agreement rate (sorted from highest to lowest values) for each referent for each device from the
guessability study is shown. Markers of different colors and shapes indicate very high (green diamonds), high
(blue squares), medium (black circles), or low (red triangles) level of agreement.

Guessability study analysis: We followed the agreement analysis method in [82, 99] and AGATe
toolkit to calculate the Agreement Rate (AR) for the 78 referents in the guessability study, and show
them in Fig. 3. The level of agreement is indicated as low (AR<0.1), medium (0.1<AR<0.3), high
(0.3<0.5) and very high (AR>0.5), according to [82] (see Fig. 3). In the guessability study, out of
78 referents, 6 (8%), 12 (15%), 41 (53%), and 19 (24%) referents have very high, high, medium, and
low agreement, respectively, which means that consensus was reached for 18 (23%) out of the 78
referents in the guessability study. The level of agreement did not seem to depend on the number
of referents per device (see TV vs. Audio Player, and Blinds vs. Garden Irrigation).

Production study analysis: The agreement equation and analysis used in the guessability method
are not suitable for the production method due to the unlimited number of gesture proposals for
each referent [2]. Therefore, we followed the agreement analysis procedure in [57] and calculated
for each referent the max-consensus (i.e., the percentage of participants suggesting the most popular
gesture for the referent) and consensus-distinct ratio (i.e., the percentage of the distinct gestures
proposed for the referent by at least two participants) metrics [25]. Nine out of 22 (41%) of gesture-
referent combinations had a max-consensus greater than 0.3, meaning a high consensus, compared
to 23% high consensus reached in the guessability study.

1) Agreed gesture set: We then obtained the agreed ‘control’ gestures with the associated control
referents for the guessability study following the procedure in [82, 99], and show them in Fig. 4.
We found 11 agreed gestures for the 78 referents to control the 15 smart home devices. All of them
were also the most frequently proposed gestures (popular) for the referents. The G1:'Move down’
and G2:'Move up’ were the most frequently proposed gestures, followed by G3:'Move right’ and
G4:"Move left’.

The agreed ‘registration’ gesture set for registering the 15 smart home devices for the guessability
study is shown in Fig. 5. The agreed gestures used letters to represent the devices and were different
from the gestures used to control the respective devices. The number of participants out of the
20 who proposed them and the level of agreement are (RG1) “T” (11; 0.29) for telephone; (RG2)
“B” (10; 0.26) for blinds; (RG3) “L” (10; 0.24) for lights; (RG4) “H” (9; 0.19) for heater; (RG5) “V” (8;
0.17) for video player; (RG6) “C” (8; 0.15) for car garage; (RG7) “TV” (7; 0.13) for television; (RG8)
“G” (7; 0.12) for garden irrigation; (RG9) “AC” (6; 0.11) for air conditioner; (RG10) “F” (5; 0.09) for
fan; (RG11) “A” (6; 0.09) for audio player; (RG12) “M” (3; 0.07) for alarm; (RG13) “E” (2; 0.07) for
oven; (RG14) “S” (5; 0.06) for speakers; and (RG15) “SC” (4; 0.04) for security camera. The agreed
registration gesture set had no consensus gesture because they had medium to low agreement
levels, i.e., there are no registration gestures that received high or very high agreement rates.
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‘<> Very high > 0.50 []High 0.30—0.50 O Medium 0.10—0.30 A Low < 0.10 \

T B LRWY

RG10O rRG2 O RG3O RG410O RG5O RGIOA RGIIA RGIZA
CTV @ AC E $SC
RG6 O RG7O RG8Q RGO RGI3A RGI4 A RG15 A
(@ (b)

Fig. 5. The agreed gesture set for registering 15 smart home devices is shown with their level of agreement. (a)
Registration gestures that received medium agreement: RG1 (T, Telephone); RG2 (B, Blinds); RG3 (L, Lights);
RG4 (H, Heater); RG5 (V, Video Player); RG6 (C, Car Garage); RG7 (TV, Television); RG8 (G, Garden Irrigation);
RG9 (AC, Air Conditioner); and (b) registration gestures that received low agreement; RG10 (F, Fan); RG11 (A,
Audio Player); RG12 (M, Alarm); RG13 (E, Oven); RG14 (S, Speakers); and RG15 (SC, Security Camera). There
are no registration gestures that received high or very high agreement rates.

The agreed ‘control’” gestures for the 22 control referents of the three smart home devices (TV,
lights, and AP.VP.S) used in the production study are shown in Table 1. Interestingly, the agreed
gesture sets from the guessability and production studies were identical. G1:'Move down’ and
G2:'Move up’ (3%x) were the most frequently proposed gestures, followed by G3:'‘Move right’ and
G4:'Move left’ (2x), as in the guessability study. Interestingly, G5:°Closing fist’ and G10:‘Split hands’
were also the most frequently proposed(3x), followed by G11:‘Combine hands’. All but 7 (68.2%)
of the gesture-referent combinations in the production study are the same as in the guessability
study. The agreed combinations are the same for TV. Interestingly, the gestures agreed upon in
the production study seem to be more preferable, for example, ‘Clockwise’ and ‘Counterclockwise’
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rather than ‘Move right” and ‘Move left’ for ‘Fast forward” and ‘Fast rewind’, even though they
have medium level scores in both studies. Another example could be, ‘Split hands’ and ‘Closing fist’
for ‘Lights on/off” in the production study versus ‘Move right’ and ‘Move left’ in the guessability
study, where they have medium level of agreement or max-consensus scores.

Table 1. The max-consensus (sorted from the highest to the lowest values) for each referent for each device
and consensus-distinct ratio (using a consensus threshold of 2) for the production study are shown for each
referent. The highest scoring referent(s) for each metric are indicated with green shading, and the lowest
scoring are indicated with gray shading.

Devices  Referents Gestures with Highest Consensus Max Consensus Consensus-Distinct Ratio
TV Previous Channel G4: Move left 40% 44%
Next Channel G3: Move right 39% 41%
Volume Down G1: Move down 31% 69%
Volume Up G2: Move up 29% 36%
Mute G5: Closing fist 26% 44%
Turn On G10: Split hands 23% 64%
Turn Off G11: Combine hands 15% 52%
Lights Dim Up G2: Move up 29% 53%
Turn Off G5: Closing fist 28% 63%
Turn On G10: Split hands 25% 42%
Dim Down G1: Move down 21% 47%
APVP.S Previous G4: Move left 40% 35%
Next G3: Move right 36% 33%
Play/Pause G9: Move down quickly 36% 28%
Stop G6: Move forward 34% 47%
Volume Up G2: Move up 33% 42%
Volume Down G1: Move down 32% 50%
Mute G5: Closing fist 29% 50%
Turn On G10: Split hands 24% 37%
Turn Off G11: Combine hands 24% 39%
Fast Forward G7: Clockwise 22% 20%
Fast Rewind G8: Counterclockwise 22% 21%
Mean 29% 44%
SD 7% 13%

2) Popular gestures: The agreed gesture set did not include many gestures that were frequently
proposed by different participants. Therefore, we present an additional set of popular gestures,
shown in Fig. 6(a) (G12 - G15) with a threshold of 10 (i.e., proposed at least by 10 times). All agreed
gestures were proposed more often than these popular gestures and are also considered as popular
gestures as well. The gestures G12:'Move backward’ and G13:‘Opening fist’ came second in the
agreement analysis and were not included in the agreed gesture set, but are included in the popular
gesture set. They are the inverse gestures of G6:'Move forward’ and G5:‘Closing fist’. The popular
gestures account for a total of 81.7% of the proposed 20x63 control gestures. Many popular control
gestures were also proposed as registration gestures by some participants (e.g., G7:‘Clockwise’ as ‘O’
for oven), but were not included in this calculation. We did not find any other popular registration
gestures. Participants mainly proposed icons and letters as registration gestures.

The additional set of popular gestures from the production study were also obtained with a
threshold of 10. We found two new popular control gestures in the production method, (G16) ‘Move
down diagonally to the left’ (10, 0.9%) and (G17) ‘Move up diagonally to the right’ (10, 0.9%) along
the vertical direction (see Fig. 6(a)). They were mainly proposed for ‘Volume Down/Up’ referents.
The agreed and popular gestures represented 72.3% of all the proposed gestures in the production
study. This is less than the guessability method (81.7%), possibly due to the higher number of
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unusual gesture proposals. The number and percentage of popularity of the gestures decreased in
the production method, as they were more distributed than in the guessability study.

3) Primitive gestures: We analyzed the distinct gestures from the guessability and production
studies for distinct simpler gestures that repeated or combined to create the more complex gestures,
and to obtain a primitive gesture set. For both guessability and production studies, it turned out
that the set of primitive ‘control’ gestures for controlling the devices was the same as the respective
set of popular gestures shown in Fig. 6(a). G16 and G17 are the additional gestures found in the
production study. We then analyzed the 147 distinct gestures from the guessability study to create a
set of primitive ‘registration’ gestures for registering smart home devices. These primitive gestures
for registering smart home devices are shown in Fig. 6(b). Interestingly, the gestures did not include
two cardinal directions, south-west (‘move backward to the left’) and north-west (‘move forward
to the left’). This may be due to more right-handed participants and how the English alphabets are
written. We did not explore registration referents in the production study.

0@0\“! BT D= =1t /N

G16 PRG1 PRG2 PRG3 PRG4 PRG5 PRG6 PRG7 PRG8

(@) (b)

Fig. 6. (a) The set of additional popular control gestures is shown that were proposed more than 10 times.
G12 to G15 are from the guessability study and G16 and G17 are from the production study. (b) The set
of primitive gestures for registering smart home devices is shown. These gestures are performed with a
horizontal hand hovering over an interactive tabletop surface.

4.2 Experimental Validation of Gesture Vocabulary

We experimentally validated the registration, agreed, popular and primitive gesture sets by con-
ducting two preliminary experiments and collecting the data from a single user using two different
types of IPV sensors (see Fig. 1 (b) and (c)). The primary objective of these experiments was to
verify the ability of the IPV sensors to detect the gestures via machine learning (ML) classification.
These experiments were conducted after the guessability and production studies because repeated
measurements were needed to train the ML models. In the first experiment, we used the more
portable IPV tape sensor shown in Fig. 1(b) to classify the agreed control (G1 - G11), registration
(RG1 - RG15), and primitive gestures (PRG1 — PRG8) shown in Figs. 3, 4, and 5 (b). For this, we
collected 32 samples as time series data for one user at 3 kHz and 5 seconds length. In the second
experiment, we used the IPV tabletop sensor shown in Fig. 1(c) to classify the all popular control
gestures from both studies (G1 — G17). For this, we collected 10 samples as time series data for one
user at 333.3 Hz and 3 seconds length.

We applied data preprocessing techniques such as augmentation (e.g., noise injection, time
shifting, and scaling) [46] to increase the diversity of the datasets and improve the robustness and
performance of the machine learning model. This helped us to mitigate the risk of overfitting. We
then used different supervised machine learning classifiers to train 70% of our data and test the
predicted accuracy with 30% of the remaining data. The Random Forest classifier [13] achieved the
highest accuracy for all the gesture vocabulary sets, ranging from 99% (agreed registration and
popular sets) to 100% (agreed control and primitive sets). The confusion matrices of the datasets
are shown in Fig. 7 and Fig. 8. For the agreed registration gesture set, the confusion was between
RG12: Draw ‘M’ and RG1: Draw “T’, while for the popular gesture set, the confusion was between
G5: ‘Closing fist’ and G14: ‘Flip hand’. These results demonstrate that an IPV sensor can recognize
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Fig. 7. The Random Forest confusion matrices of the (a) 11 agreed control gestures and (b) 15 agreed
registration gestures.
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Fig. 8. The Random Forest confusion matrices of the (a) 17 popular gestures and (b) 8 primitive gestures.

various hovering registration and control hand gestures performed by one user, enabling them
to interact with multiple smart home devices. Further research is needed to demonstrate the IPV
sensor’s ability to recognize registration and control gestures from multiple users.

4.3 Data Saturation

We calculated the cumulative number of unique gestures [25] across participants for the guessability
and production studies on the 15 popular gestures (see Fig. 4 and Fig. 6(a)), and show a comparison
between the two in Table 2. We found that with 2 participants, 87% and 80% of the total popular
gestures were proposed in the guessability and production studies respectively. With 5 and 4
participants respectively, the cumulative number of popular gestures increased to 100% in the
guessability and production studies respectively, where the data saturation occurred. For both
studies, we performed subsample permutations with n > 2, which showed that 3 participants were
sufficient to capture the most common gestures across the participants [79].
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Table 2. Summary on comparison of data saturation of both studies guessability and production on 15 popular

gestures.

Nora Abdullah Almania, Sarah Yousef Alhouli, and Deepak Ranjan Sahoo

Parameters

Guessability Elicita-
tion

Production Elicitation

Number of Devices

15 smart home devices

3 smart home devices

Number of Referents

78 referents

22 referents

Number of Partici-
pants

20 participants

25 participants

Initial Saturation After 2 participants After 2 participants
Point (87%) (80%)
Time Time took a little longer Data saturation reached

to reach the data satura-

quicker with 100% due

tion with 100% to unlimited production

technique

Long-Tail gestures Final Long-Tail gestures
(100% Saturation Point) reached after 5 partici-
pants

Final Long-Tail gestures
reached after 4 partici-
pants

4.4 Effect of Legacy Bias

The production method was later proposed to reduce the legacy bias in the guessability method.
However, a direct comparison between the two methods considering the legacy bias has not been
reported in the literature. We compare the effect of legacy bias on the two different elicitation
methods guessability and production, considering the first 20 participants due to data saturation,
along with two smart home devices, TV and Lights, common to both studies. The prevalence of
legacy bias in gesture elicitation studies highlights the role of prior interaction experience with
established technologies in influencing participants’ proposals. We classified gestures that are
known in the common usage of a certain device as legacy gestures [94, 96] by categorizing them
from the 39 and 66 unique gestures of the guessability and production studies, respectively. The list
of gestures we considered as legacy gestures are (G3) moving the hand to the right on the X-axis,
(G4) moving the hand to the left on the X-axis, (G6) moving the hand forward on the Y-axis, (G12)
moving the hand backwards on the Y-axis, and (G9) moving the hand down quickly like tapping,
as well as (G7) clockwise and (G8) counterclockwise, like rotating a knob in stereo for “Volume
Up/Down”. These gestures could be found in common interactions on devices such as smartphones,
tablets, and stereos. For example, participants suggested moving their hands to the right and left to
navigate to the “Next/Previous” TV channel, which is a common interaction technique used on a
tablet for flipping pages.

The legacy gesture counts for different referents are shown in Figure 9. In the guessability data,
we had less number of referents (7 out of 9) that were affected by the legacy gestures, as we did not
observe any legacy in the “Turn On/Off” referents that existed in production. The total frequency
count in production was much greater with freq. = 116 than in guessability with freq. = 61; this is
due to the higher number of gesture productivity. Additionally, we noticed an increment in the
legacy gestures for certain referents in production. For example, we observed two extra gestures
(G7) ‘Clockwise’ and (G8) ‘Counterclockwise’ in “Next/Previous” and “Dim Up/Down” referents.
The “Mute” referent for both studies had the least count of legacy gestures with freq. = 1 to 3.

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 8, Article ISS003. Publication date: December 2025.



Indoor Photovoltaic Interactive Surfaces for Sustainable Smart Home Control 1SS003:13

6 | 1 Legacy Gestures 4 g 5 [ Loy Gestures
15l 15 == Move forward 16 . .
Move backward
14 Move right 14 2] 12
12 Move left
= Move down quickly 12 G
E 0 Clockwise ~ 2 Counterclockwise
o Counterclockwise g 10
> 2 3 9 5
Q o
58 1 7 s
&
-
ol B 2 4 4 2 | s
5 L)
. 4
' I ’ ' :
2
2 2 2 2 1
0 | | I BN BN BN BN B |
o g % 3 e g 2 0 —%5 '« = s = 2 - - Y
=) g 5 3 =} H E] o 3 =) z 5 2 =) Z E
2 ] z 3 i ] = £ E ER- g E I
E 2 & a g L £ 5 g
3 E a = 3 a
s s
Referents Referents
(a) Guessability (b) Production

Fig. 9. Legacy gesture count of referents in a) guessability and b) production elicitation studies.

In addition, we analyzed the legacy effect by following Williams et al. [94] in calculating the
percentage of legacy gestures from each referent and the referent’s contribution to the total legacy
across the TV and Lights devices (see Table 3). We found that the guessability study had a higher
legacy effect with a mean of 43% compared to 37% in the production study, as shown in Table 3. This
indicates that in the guessability study, participants usually guess a gesture based mainly on their
intuition, relying heavily on their knowledge and previous experience with existing technologies.
On the other hand, in the production study, users mainly suggest more than one gesture due to
the unlimited number of proposals, which is more likely to produce creative and varied gestures
without any constraints and may not rely on pre-existing interaction techniques, as suggested in
the literature.

4.5 Design Guidelines

We propose the following guidelines for the design of hovering tabletop interaction using IPV
sensors to control multiple devices in smart home contexts. Our findings from the guessability and
production studies should be transferable to other similar electromagnetic principle based gesture
sensors because they work on similar principles, i.e., measuring the position or movement of the
hands.

1) Which elicitation study: A guessability study with about 10 or less participants may be
enough to find all the popular gestures considering about 10 or more smart home devices. In our
study, all popular gestures were found after the first 5 participants considering 15 smart home
devices. Many gesture-referent mappings with medium to very high agreement levels (76% in our
case) may be found with this approach. However, with the production method, all popular gestures
may be found after about 5 participants (4 in our case) considering about 5 smart home devices.
Interestingly, most gesture-referent mappings with medium to very high agreement levels (100% in
our case) may be found with the production approach. The guessability method would be more
efficient at finding popular gestures (81.7% of the proposed gestures were popular in our case), but
it has an increased legacy bias. The production method reduces legacy bias but is less efficient
at finding popular gestures (72.3% of the proposed gestures were popular in our case) due to the
higher number of creative gesture proposals.

2) Use a sensor for elicitation: Design effective gesture interactions using guessability or pro-
duction elicitation methods with a sensor-based setup. This results in discoverable and recognizable
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Table 3. The percentages of the legacy gestures and referents’ contribution to total legacy for each referent
of a) guessability and b) production studies are shown. The highest scoring referent(s) for each metric are
indicated with green shading, and the lowest scoring are indicated with gray shading

(a) Guessability

Devices  Referents Legacy Gestures Percentage Referents’ Percentage
Contribu-
tion to Total
Legacy
TV Turn On 7/20 35% 0/7 0%
Volume Up 7/20 35% 717 100%
Next Channel 16/20 80% 16/16 100%
Volume Down 7/20 35% 717 100%
Mute 3/20 15% 3/3 100%
Turn Off 7/20 35% 0/7 0%
Previous Channel ~ 16/20 80% 16/16 100%
Lights  Dim Up 6/20 30% 6/6 100%
Turn On 10/20 50% 0/10 0%
Turn Off 10/20 50% 0/10 0%
Dim Down 6/20 30% 6/6 100%
Mean 43% 64%
SD 21% 50%

(b) Production

Devices  Referents Legacy Gestures Percentage Referents’ Percentage
Contribu-
tion to Total
Legacy
TV Turn On 16/41 39% 5/16 31%
Volume Up 17/39 44% 17/17 100%
Next Channel 18/34 53% 15/18 83%
Volume Down 15/36 42% 15/15 100%
Mute 7/29 24% 1/7 14%
Turn Off 12/40 30% 6/12 50%
Previous Channel 17/32 53% 14/17 82%
Lights  Dim Up 17/41 41% 17/17 100%
Turn On 7/39 18% 4/7 57%
Turn Off 7/38 18% 4/7 57%
Dim Down 17/42 40% 17/17 100%
Mean 37% 71%
SD 12% 30%

elicited gesture vocabulary sets aligned with real-time physical execution and sensor capabilities
that have been experimentally validated to ensure robust system performance.

3) Use letters for device registration: In a multiple device environment, users may find that
drawing the first letter of the name of the device is a good first guess to register the device to set
the context (e.g. Fig. 5). The second best guess might be to draw the first two letters of the device
name. Another guessable gesture could be drawing a unique shape representing the device.

4) Use a primitive gesture set: A primitive gesture set may be found for the agreed and popular
registration and control gestures by decomposing them into smaller gestures (e.g. Fig. 6(b)) from the
guessability or production study. The gesture recognition algorithm may detect them sequentially
to detect the intended gesture.

5) Start with popular gestures: Popular gestures (see Figs 6(a)) can be used as a starting point,
as they can save designers time by minimizing the need to filter through numerous gesture options,
for example, by excluding the icons or letters for control commands because they were not popular
with participants.
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6) Use some popular gestures for no-context control: With registration gestures setting a
context, and some devices having only a few commands, it may be possible to use spare popular
gestures for non-contextual interaction. This can be particularly useful if a gesture and referent of
one device are not confused with a referent of another device.

7) Use consistent gestures for similar commands across devices: It is possible that multiple
devices will have similar commands. With the registration gesture setting the context, it is possible
to use consistent gestures for similar commands across devices.

8) Use inverse gesture for inverse command: Many devices have commands that also have
an inverse, such as ‘on’ and ‘off”. Similarly, many popular gestures also have associated inverse
gestures. As users also prefer inverse gestures for inverse commands this approach would be
consistent across devices.

5 Discussion

Limitations: In our study, participants mostly agreed at medium to low levels to draw the first
or first two letters of the device names as registration gestures (see Fig. 5). This is consistent
with the literature highlighting the use of letters as preferred gestures due to their familiarity
and simplicity [81, 84]. However, this approach has drawbacks because device names differ across
languages and different character sets. Non-letter suggestions include unique shapes or actions to
indicate the devices, which could be possible alternatives. However, the agreement levels were low,
with only 1 or 2 participants out of 20 suggesting them. Interesting shape suggestions were drawing
a rectangle (TV), a pentagon (car garage), two adjacent circles (video player), four adjacent circles
(oven), a circle within a rectangle (security camera), a circle with a sine wave (air conditioner),
a sine wave (fan), a flower (garden irrigation), and a music note icon (audio player). Interesting
action suggestions were bringing both hands together and separating them as if opening curtains
(blinds), opening and closing a fist with both hands as if depicting blinking lights (lights), opening
and closing a hand as if talking (speaker), shaking a hand (alarm), closing a fist and moving the
hand up as if picking up a telephone (telephone) and shaking both hands and moving them up to
depict flames (heater). Future work could consider such cultural aspects of gesture design with
participants from different language backgrounds.

We conducted our user studies in a controlled environment to eliminate external distractions.
However, observing users in real-world contexts could expand our understanding of how their
behavior changes in spaces where smart home interactions typically occur. For example, we could
observe users interacting with a smart home in real time, such as sitting in a living room or cooking
in a kitchen while controlling lights, speakers, the air conditioner, or the oven with hand gestures.
The IPV sensors that we used are flexible and sustainable, and can be embedded in various surfaces
throughout the home. However, they present some challenges, particularly regarding their reliance
on ambient lighting conditions.

Generalization to other contexts and sensors: The gestural findings from our studies may be
applicable to other scenarios that use interactive control surfaces, such as dashboards in the
automotive, aviation, medical, gaming, and alternate reality interfaces [21, 68, 87]. We explored the
device registration approach to set the context of controlling individual devices. This approach
could be used in a car, for example, to select the audio player by drawing an ‘A’ in front of the
dashboard and then choosing the next track with the ‘move forward’ gesture. In fields such as
medicine and aviation, where different instruments are used, different letters would be required to
register them via hovering hand gestures. This approach can also be used to invoke (register) a
menu by drawing a letter and use (control) the menu with appropriate gestures from the agreed set.
The menu would be useful where an audio or video feedback is available, as it is in most modern
applications, including those mentioned above. However, the IPV interface allows for eyes-free
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interaction which would be useful. The IPV sensor uses the area and separation of the hand from
the sensor surface to detect hand movements. Other sensors, such as capacitive [65, 86], infrared
proximity [8, 23, 78], LiDAR [45], Doppler radar [70] and radio frequency (RF) [66] sensors work on
similar principles and could sense hovering hand gestures over a relatively large area, like the IPV
sensor. We believe that the gesture-referent combinations are transferable to systems using these
sensors. Other sensors, such as depth cameras (table or wall mounted) or a wrist-worn sensors
(inertial or accelerometers) could also be used to detect the hovering hand gestures and register
and control devices. Many of these sensors may be used on systems using non-flat interfaces or
on-body [12, 43]. We believe that our findings will be usable in these scenarios as well.

Connections to gesture interaction literature: Gesture vocabularies can be developed using survey-
based methods, i.e., questionnaires and interviews, in which participants suggest gestures they
find intuitive for specific tasks [21, 87, 88]. While these methods provide meaningful insights into
the design of end-user gesture vocabulary, they often provide only verbal descriptions for the
gestures. Sensor-based gesture vocabularies are performed in relevant contexts, ensuring gestures
are performed ergonomically [102]. This reflects the validation of direct physical execution in
more practical and implementable gesture vocabularies rather than only relying on theoretical
assumptions. Additionally, this method gives an empirical foundation for a gesture classification
system through an experimental validation of gesture vocabularies.

Our work provides a starting point that can be iterated upon to develop an application-specific
interface. Xia et al. [102] recently identified 13 factors critical to gesture vocabulary design and
proposed an iterative user-centered and factor-centered approach to gesture design. Reflecting on
their work, we have addressed many important factors to a variety of levels. The framing of the
intelligent environment in the elicitation studies considered the situation factor. The participatory
design captured the cognitive factors through discoverability, intuitiveness, learnability, and trans-
ferability of the user-elicited gestures. The use of an interactive tabletop and hovering interaction
captured some of the physical factors. The use of embedded sensors, as we have used, and hovering
interaction while sitting on a chair would effectively address the occlusion and ergonomic factors.
Some of the system factors are addressed by generating noticeable signals and creating a primitive
gesture vocabulary. The effectiveness of a gesture vocabulary sets recognition were validated
through machine learning. Nevertheless, full development and evaluation with a working system
that addresses all the factors will be necessary.

Implications: The integration of IPV gesture sensing with surfaces such as walls, windows, or
tables presents a promising direction for the HCI and smart home communities, enabling sustainable
interaction design. For the HCI community, such sensors imply new possibilities for redefining
interaction models in situations where power availability or hardware constraints constrain tradi-
tional input modalities. On the other hand, IPV sensors in a smart home system could augment
the control of multiple devices, making the interaction more embedded and less dependent on
other control mechanisms like physical controllers, voice, or touch displays. Ethical and inclusivity
considerations are crucial in integrating sensing technologies within homes [32]. IPV sensing
preserves privacy more than camera-based systems. However, socio-technical considerations are
another aspect that takes into account user acceptance and usability of such gesture systems [85].
Additionally, using IPV sensors with hover gestures could also assist people with disability or
mobility impairments [26], by using comfortable and user-friendly contactless gestures, such as
hovering a hand momentarily above photovoltaic materials to activate a device, enabling low-effort
interactions that tolerate imprecise or weak motions [61, 62, 73, 74].

Future Work: In this paper, we proposed and utilized a sensor signal waveform-based creative task
as a priming technique for the production method. In the future, this technique may be validated
by conducting an end-user elicitation study with two priming groups, i.e., a non-priming group and
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a sensor-based priming group, and analyzing the priming effect on participants’ gesture proposals,
e.g., time taken to think of a gesture and the number of legacy bias gesture, between-subjects from
the two groups. Hoff et al. suggested that a large-scale experiment, e.g., with 170 participants,
would be required to expect to find statistically significant differences [35]. Ali et al. conducted a
large-scale distributed end-user elicitation study over the internet to validate a priming effect [1, 35].
Our sensor-based priming technique requires an experimental setup to conduct the end-user gesture
elicitation study. In the future, a web-based simulation system may be developed for a distributed
end-user elicitation study to validate the technique with statistically significant outcomes. However,
Hoff et al. investigated a covert kinaesthetic priming technique, so validation of the sensor-based
priming technique could be attempted in a lab-based study.

In the future, the use of the IPV sensor for multimodal interaction may be explored. For example,
a feedback mechanism embedded within the tabletop surface could offer seamless interaction
by providing haptic or auditory responses that confirm users’ gestures. Additionally, projected
prompts on the tabletop interface could provide visual cues offering immediate instructions on
how to perform specific gestures and serve as a guide for users.

6 Conclusion

In this paper, we explored the potential use of indoor photovoltaic sensors as gesture sensors for
controlling smart home devices. We conducted two gesture elicitation studies using the guessability
and production methods to design a more guessable and favorite universal vocabulary of dynamic
hovering surface gestures and consequently present the agreed, popular, and primitive gesture sets
for both registration and control commands. We found that more participants drew the first or first
two letters of the devices to register them, but there was no consensus among them with medium
to low agreement levels. The agreed set offers an adequate number of gestures (11) for controlling
multiple smart home devices, with an additional (6) gestures in the popular set. Similar commands
across the devices can be invoked with the same gestures, and opposite commands with opposite
gestures. The IPV sensor offers gesture-referent combinations most (68.2%) of which could be both
guessable and favorite, and can be found using either the guessability or production method. All
control and registration gestures can be decomposed into simpler primitive gestures for sequential
recognition to select and control multiple devices. We experimentally validated all gesture sets with
a user and found that all gestures can be recognized with about 99% accuracy. Our comparison of
the guessability and production methods revealed similarities in the agreed gesture sets, but some
differences in the agreed gesture-referent assignments. The guessability method reached saturation
faster, however, the production method reached full saturation with fewer participants. We provide
a starting point with user-elicited gesture sets and guidelines to help HCI designers to further
refine them through user testing, to create guessable and favorite surface gestural interaction for
smart home control and beyond using many types of indoor photovoltaic materials as sensors.
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