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1  Introduction

Explainable Artificial Intelligence (XAI) significantly 
advances artificial intelligence (AI) engineering, enhanc-
ing process interpretability and adaptability for more reli-
able results in scientific and technological fields [1]. This 
is particularly important in the healthcare sector, where AI 
plays a major role in diagnosing various medical conditions 
[2], even in very early stages, which is the key for people 
diagnosed with life-threatening diseases [3].

Breast cancer represents the most commonly diagnosed 
malignancy in women, accounting for one-quarter of all 
cancer diagnoses and one-sixth of all cancer-related deaths. 
In this light, early diagnosis and intervention for breast 
cancer are essential [13], but challenging due to its subtle, 
hard-to-detect symptoms [14]. The literature highlights the 
complexity of the cellular structures of breast tumours, mak-
ing it challenging to determine their origin or growth rate. 
In addition, the limitations of current diagnostic tools can 
lead to misdiagnoses or unclear results, potentially postpon-
ing the start of treatment. This is harmful to these diseases, 
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Abstract
Deep learning models have been instrumental in extracting critical indicators for breast cancer diagnosis - the prevalent 
malignancy among women worldwide - from baseline magnetic resonance imaging. However, many existing models do 
not fully leverage the rich spatial information available in the 3D structure of medical imaging data, potentially over-
looking important contextual details. This develops an explainable deep learning framework for classifying breast cancer 
that leverages the complete 3D and provides classification results alongside visual explanations of the decision-making 
process. The preprocessing pipeline is fed with 3D sequences containing ‘tumour’ and ‘non-tumour’ regions. It includes 
a 3D Adaptive Unsharp Mask (AUM) filter to reduce noise and augment image class, followed by normalisation and data 
augmentation. Classification is then achieved by training an augmented ResNet150 model. Three explainable artificial 
intelligence (XAI) techniques, including Shapley Additive Explanations, 3D Gradient-Weighted Class Activation Map-
ping, and Contextual Importance and Utility, are employed to provide improved interpretability. The model demonstrates 
state-of-the-art performance over the QIN-BREAST dataset, achieving testing accuracies of 98.861% for ‘tumours’ and 
99.447% for ‘non-tumours’, as well as over the Duke Breast Cancer Dataset, where it achieves 99.104% for ‘tumours’ 
and 99.753% for ‘non-tumours’, while offering enhanced interpretability through XAI methods.
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where it has become evident that timely identification is 
one of the key factors in reducing mortality rates, lowering 
treatment costs, and improving prognosis and therapeutic 
outcomes [15].

In recent years, computer-aided detection (CAD) sys-
tems have gained traction in identifying cancerous cells. 
However, the effectiveness of CAD is highly dependent 
on the quality of soft tissue imaging. The introduction of 
baseline Dynamic Contrast-Enhanced (DCE) Magnetic 
Resonance Imaging (MRI) has improved the precision of 
breast tumour diagnosis due to its visual quality. However, 
image noise significantly limits prediction accuracy, requir-
ing pre-processing techniques that remove noise while pre-
serving image information. Furthermore, another barrier to 
early diagnosis and prognosis of breast cancer is related to 
costs, DCE-MRI being significantly more expensive than 
other screening methods and, therefore, being used primar-
ily for high-risk patients. The risks of contrast allergy and 
other physical limitations further limit the use of magnetic 
resonance imaging [59].

Hence, maximising the extraction of information from 
the available MRI scan is essential for multiple reasons. 
The deep learning (DL) community has contributed to 
this goal by urging the development of automated feature 
extraction techniques [16] to increase the limited, manually 
crafted radiomic features currently available. It offers clear 
advantages for extracting features as it can detect ‘hidden-
to-human abnormal structures and tumour patterns at dif-
ferent extraction levels [17]. While 2D CNNs have been 
commonly used due to their efficiency and simpler data 
requirements [18], recent advances have demonstrated the 
strong performance of 3D deep learning models in Tumour 
analysis, particularly for brain and breast MRI [19]. This 
work builds on that foundation by introducing a customised 
3D-aware processing pipeline, which captures critical spa-
tial information across all three dimensions for improved 
analysis and classification [17].

This study presents an automated decision support sys-
tem for healthcare professionals to make diagnoses from 3D 
DCE-MRI scans. Using DL models and three XAI methods, 
the resulting system not only predicts breast cancer but also 
provides explanations for such classification outcomes and 
additional graphical support to improve the interoperability 
of the DL model. Its contributions can be summarised as 
below:

	● Development of a new customised 3D version of 
ResNet150 tailored for volumetric breast MRI data, 
incorporating depth-wise separable convolutions to re-
duce computational cost.

	● Introduction of a new optimised preprocessing pipeline 
to enhance image quality while reducing noise.

	● Provides interpretable overlays to highlight tumour and 
periTumoural regions, enabling clinicians to understand 
and validate AI decisions.

This article is structured as follows: Section 2 provides an 
overview of the latest research on breast cancer classifica-
tion. Section 3 presents a detailed explanation of the pro-
posed methodology. Section 4 describes the experimental 
setup and evaluation metrics used in the study. Section 5 
discusses the results and provides analysis. Finally, Sec-
tion 6 concludes the paper and highlights areas for future 
research.

2  Related works

This section reviews advancements in deep learning (DL) 
for medical imaging, with a focus on breast cancer seg-
mentation and the integration of explainable artificial intel-
ligence (XAI) in healthcare. The review is structured into 
three parts: general DL advancements in medical imaging, 
specific techniques for breast cancer segmentation, and 
XAI methods to enhance interpretability. A comparative 
analysis positions our proposed ResNet150X framework, 
which integrates an optimised 3D ResNet150 architecture 
with advanced XAI techniques for precise and interpretable 
breast cancer classification in 3D DCE-MRI data.

2.1  Deep learning in medical imaging

Convolutional Neural Networks (CNNs) have transformed 
digital image processing for healthcare [3]. CNNs excel in 
segmentation tasks, including tumour segmentation [20, 
70], by extracting complex patterns from large datasets. 
CNN architectures such as U-Net have become popular in 
medical and biological fields for segmentation tasks [25, 70, 
71]. Using these techniques, DL researchers are currently 
trying to automate breast cancer detection, segmentation, 
and classification [21, 28].

Most recent studies further extend DL capabilities by 
integrating blockchain technology and the Internet of Medi-
cal Things (IoMT) to models for breast cancer diagnostics 
[65], or sophisticated cascaded deep learning networks that 
leverage meaningful patterns in medical images [66], or 
hybrid approaches that exploit the joint use of artificial neu-
ral networks and multiple support vector machines [69]. For 
instance, a federated learning framework was introduced 
for breast tumor classification using magnified histopatho-
logical images, achieving 92.15% accuracy via IoMT [9]. 
However, its 2D focus and lack of explainability limit its 
applicability to 3D DCE-MRI.
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However, DL models do not offer enough interpretability 
and transparent reasoning to be fully accepted within the 
healthcare domain. Efficient attempts using shallow mod-
els (see [68]) are plagued by similar considerations. In this 
context, XAI frameworks have recently gained recognition 
as a viable solution [22] seeking justification, transparency, 
information, and quantification of uncertainties [24] in 
healthcare DL models. Although not fully trusted [23], they 
are promising research directions for diagnostics.

2.2  Advances on automatic breast cancer 
segmentation

ResNet-based architectures and U-Net variants outperform 
conventional machine learning methods in understanding 
complex breast tumour structures [26]. The ResNet archi-
tecture [72] revolutionised DL by solving the vanishing 
gradient problem with residual learning, simplifying deep 
network training through residual optimisation. Its applica-
tion in medical imaging, particularly breast tumour segmen-
tation, has shown promising results [36].

Building on this foundation, ResNet-150 [73] enhances 
the performance and feature extraction capabilities of its 
predecessor. Its deeper architecture effectively captures 
intricate features that can make a difference in breast can-
cer segmentation due to improved boundary delineation in 
MRI images. Its residual connections reduce over-fitting 
and enhance generalisation on limited datasets. Compared 
to earlier models, ResNet-150 significantly improves seg-
mentation accuracy, achieving higher Dice scores and IoU 
metrics over many medical segmentation tasks [35, 37, 38].

A 3D ResNet150 is available for improved spatio-tem-
poral analysis in 3D data such as medical imaging [61]. 
This is the case with DCE-MRI. This variant offers robust 
feature extraction, versatility across tasks, and balanced 
complexity. Compared to Swin Transformers [74] and Effi-
cientNet [75], it handles 3D data more efficiently, and it is 
more stable than Generative Adversarial Neural Networks 
and more generalisable than task-specific systems such as 
DeepLabV3+ [62]. A review of ResNet50 and Transformer-
based models for breast cancer segmentation and diagnosis 
highlights advancements in image augmentation and multi-
modal analysis across histopathological and MRI datasets 
[8]. However, these models face interpretability challenges 
due to opaque decision-making processes and limited 3D 
generalisability, as they are optimized primarily for 2D 
imaging, reducing their effectiveness for volumetric data 
like DCE-MRI.

A framework, DeepMiCa, refines the detection of micro-
calcifications in mammograms through specialized con-
volutional architectures, delivering robust performance 
for early breast cancer identification [6]. However, its 

dependence on 2D mammography datasets and absence of 
explainable AI mechanisms constrain its generalisability to 
volumetric 3D DCE-MRI dataset. Similarly, Vision Trans-
former (ViT)-based approaches for breast cancer detection 
uses self-attention mechanisms to achieve superior feature 
extraction and diagnostic performance [7, 11]. Similarly, 
ViT models for mammographic breast cancer detection 
excel in pattern recognition through advanced self-attention 
mechanisms [7]. Nevertheless, their reliance on high-reso-
lution images escalates computational requirements, and the 
absence of explainability tools limits practical deployment. 
In this light, the 3D ResNet150 is a state-of-the-art model 
for three-dimensional imaging.

2.3  Explainability methods in healthcare

The model in [29] enriches the prediction outcomes with 
a genetic, morphological, and clinical characteristics pro-
file. First, it generates a heat map to visualise cancer cells 
and tumour-infiltrating lymphocytes (TiLS) in histologi-
cal images. Then, it predicts molecular features from MRI 
data, including somatic mutations, protein expression, DNA 
methylation, and copy number variations. Its XAI func-
tionalities provide explanations for classification choices, 
enabling a deeper understanding of the connections between 
the molecular and morphological characteristics of cancer 
[30]. Visualisation techniques are valuable and effective 
in healthcare applications. In this light, the authors of the 
case-based reasoning (CBR) framework in [27] decided to 
include visual explanations within the user interface.

The model in [31] classifies breast cancer tumours 
according to their shape through CNN architectures. Gradi-
ent-Weighted Class Activation Mapping (Grad-CAM) and 
Local Interpretable Model-agnostic Explanations (LIME) 
are two XAI methods employed in this model to explain 
classification decisions.

An interesting framework for classifying invasive dis-
ease episodes (IDEs) in breast cancer patients [32] employs 
Shapley values [76], a highly used XAI method, to deter-
mine key factors influencing IDEs at five and ten years 
post-diagnosis. Shapley values analysis in this study reveals 
important factors that affect IDEs and model variables in 
disease progression. Table  1 presents a comparative sum-
mary of existing literature, highlighting model architec-
tures, dataset characteristics, explainability techniques, and 
reported accuracy, to contextualize the contributions of the 
proposed ResNet150X framework.

Several studies recommend integrating XAI elements, 
like the model in [63] for breast cancer detection, the one 
in [64] for segmenting medical images to isolate tumours 
in mammograms, and the ensemble decision tree approach 
in [67] for extracting interpretable classification rules for 
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Grad-CAM. The block diagram in Fig. 1 graphically shows 
the core modules and phases of the proposed explainable 
classification framework. Operationally, the articulated 
classification methodology is derived from the procedural 
steps in Algorithm 1.

Algorithm 1  The ResNet150X framework.

3.1  Input

All publicly accessible 3D DCE-MRI scans from the QIN-
BREAST dataset [33] and the Duke University Breast 

breast cancer diagnosis. The objective of this research is to 
elaborate a robust XAI framework for precise breast cancer 
classification, leveraging the benefits of explainability to 
enhance its applicability in clinical practice.

3  Proposed approach

The ResNet150X is proposed as an efficient XAI frame-
work for breast cancer classification.

In the proposed methodology, 3D DCE-MRI images 
obtained from the input datasets undergo initial standardisa-
tion and preprocessing steps designed to reduce noise while 
simultaneously enhancing image sharpness and contrast 
effectively. This enhancement is achieved through the appli-
cation of an Adaptive Unsharp Mask (AUM) filter, specifi-
cally optimised for this task via a Bayesian Optimisation 
(BO) algorithm [79]. The AUM filter incorporates an adap-
tive scaling factor determined by the local variance within 
the images, which facilitates the sharpening of significant 
edges while concurrently suppressing noise in regions con-
taining less diagnostic information. Standard data augmen-
tation is used to obtain a good-sized dataset that includes a 
variety of geometrically transformed versions of the origi-
nal images. Subsequently, the data is classified through a 
modified version of the ResNet-150 model [73] featuring 
custom layers to achieve higher performance in the process-
ing of 3D DCE-MRI data.

To motivate the results, offer visual elucidation of the 
network’s internal operations, and enhance transparency 
of its underlying mechanisms, this framework integrates 
three explainable AI methods, namely SHAP, CIU, and 3D 

Table 1  Comparing identified approaches from the literature to our ResNet150X framework (last row). The boldfaced value indicate the best 
accuracy
Study Model Dataset XAI method Accuracy
Binder et al. [29] Multi-modal CNN with genetic Histological & Heatmaps, 86.49%

and morphological profiling MRI data feature-based
Hussain et al. [31] CNN with shape-based Breast cancer Grad-CAM, 85.72%

tumour classification MRI dataset G LIME
Massafra et al. [32] XGBoost classifier for Longitudinal Shapley 90.09%

IDE prediction clinical data values
Khater et al. [63] Deep CNN for DCE-MRI Not specified 89.66%

early detection Limited slices
Farrag et al. [64] U-Net for Mammography Visual overlays 89.42%

tumour segmentation images
Wang et al. [67] Ensemble decision tree rules Tabular breast Rule-based 91.70%

(Interpretable model) cancer data explanations
Lamy et al. [27] CBR MRI + clinical Visual 97.48%

system with visual interface records UI
Duwairi and Melhem [61] ResNet150 variant 3D  none  97.48%

for MRI classification MRI
Improved 3D ResNet150 Full 3D SHAP, CIU, 99.42
 with optimised 3D-AUM DCE-MRI 3D Grad-CAM
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encompass a diverse collection of scans that illustrate vari-
ous tumour morphologies, sizes, and locations, thereby 
enhancing the generalisability potential of the proposed 
framework, as demonstrated in Fig. 2.

3D data augmentation was applied at the series level 
after splitting the dataset to prevent data leakage and ensure 
only training data was expanded to enhance generalisation. 
Through the data augmentation process, the total number of 
images was significantly increased, with DS1 expanding by 
4, 032 series and DS2 gaining an additional 30, 966 series.

Labels are automatically retained during augmentation, 
as transformations like flipping or scaling don’t alter the 
ground truth. Each augmented sample inherits the original 
label without manual relabeling, following standard prac-
tice. In terms of class distribution, DS1 is distributed into 
2, 000 tumour images and 2, 032 non-tumour images, main-
taining a relatively balanced composition. DS2 presents a 
significantly larger proportion of tumour cases, i.e., 15, 000 
images, while the non-tumour category comprises 15, 966 
images.

The obtained image data set is partitioned into three 
distinct subsets: training, validation, and testing, follow-
ing a split ratio of 80 : 10 : 10. The training set facilitates 

Cancer Dataset [34] are used. The QIN-BREAST dataset, 
referred to as DS1 in the remainder of this article, comprises 
76, 328 images derived from 672 series collected from 10 
subjects throughout 20 investigations, where each scan was 
meticulously annotated with three-dimensional tumour 
bounding boxes by professional radiologists. The 3D DCE-
MRI scans are labelled for the binary classification of breast 
cancer into tumour or non-tumour classes. This data set is 
part of an initiative aimed at standardising pharmacokinetic 
analysis and is widely used for machine learning applica-
tions in this field.

The Duke University Breast Cancer Dataset, referred to 
as DS2 in the remainder of this article, contains scans col-
lected at Duke Medical Center between 2000 and 2014 from 
922 patients through 5, 161 MRI series, totalling 773, 888 
individual images. The dataset includes three to four post-
contrast sequences for most cases, along with fat-saturated 
gradient echo T1-weighted pre-contrast sequences and non-
fat-saturated T1-weighted sequences.

These two datasets are mainly concentrated on inva-
sive breast cancer and provide comprehensive annotations 
supplied by researchers and radiologists, in addition to 3D 
bounding boxes that demarcate the tumour regions. They 

Fig. 1  Graphical representation of the proposed framework
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edges and preserve non-edge areas, avoiding standard noise 
amplification and halo effects, thereby improving image vis-
ibility and classification performance [60]. To adapt the fil-
ter to the 3D data type1, a 3D kernel is integrated.

Selecting the most appropriate kernel is not straightfor-
ward. Larger kernel sizes are effective for noise reduction 
but may introduce blurring. Hence, an adaptive threshold 
approach is used to determine the level of sharpness applied 
to each voxel, informed by factors such as local intensity 
gradients and noise levels. By representing the 3D MRI 
image as I(x, y, z), where (x, y, z) are the coordinates of a 
generic voxel in the 3D image, the filter is mathematically 
described as in (1).

B(x, y, z) = Low-pass filter(I(x, y, z)),
U(x, y, z) = I(x, y, z) − B(x, y, z),
α(x, y, z) = 1 + β · variance(I(x, y, z)),

Isharp(x, y, z) = I(x, y, z) + α(x, y, z) · (I(x, y, z) − B(x, y, z)),

� (1)

where B(x, y, z) represents the blurring mask and U(x, y, z) 
denotes the unsharp mask. The adaptive scaling factor, 
α(x, y, z), is calculated based on local image characteris-
tics to enhance the image adaptively. The enhanced 3D MRI 
image obtained after applying the adaptive unsharp mask is 
represented as Isharp(x, y, z). The original voxel intensity 
of the image is given by I(x, y, z), and its blurred version is 
expressed as B(x, y, z). Together, these components define 
the adaptive enhancement process for 3D MRI images.

To fine-tune the filter coefficients for optimal image 
enhancement, BO is applied, which models the objective 
function f(x) using a Gaussian Process. BO iteratively 
selects the next parameter set xnext by maximizing the 
Expected Improvement (EI) as (2):

EI(x) = (µ(x) − f∗)Φ(z) + σ(x)ϕ(z), with z = µ(x) − f∗

σ(x)
.� (2)

1  AUM filters are meant for 2D images.

model development, while the validation set is employed 
for hyperparameter optimisation.

3.2  Advanced preprocessing engine

Ensuring meticulous data preparation is crucial to maintain-
ing the integrity and effectiveness of the dataset for subse-
quent model training and validation.

3.2.1  Data standardisation

Original data from the source datasets undergo normali-
sation, which applies scaling and resizing operators to all 
images to enforce a common predefined size of 224 × 224 
pixels (typical size accepted by ResNet150). This improves 
the model’s ability to discriminate by minimising imaging 
data variability, allowing focus on subtle anatomical and 
pathological features. Afterward, they are converted into 
tensors and further normalised using the mean and standard 
deviation values for each channel [38].

3.2.2  Regions of Interest (ROI)

ROI are then selected by creating a breast mask from the 
3D DCE-MRI using Otsu’s threshold method [77], which 
finds the optimal intensity threshold by minimising intra-
class variance. Morphological operations then clean the 
mask, retaining the largest connected breast component. 
The chest wall is excluded via anatomical cut-offs, and the 
mask defines the bounding box for image cropping.

3.2.3  Filtering

An AUM filter is designed to remove noise from breast 
health images while preserving critical structural features, 
such as edge details and intensity, in the 3D scans. Build-
ing on the traditional Unsharp Mask filter, the AUM filter 
enhances edges more sharply while reducing noise and arti-
facts through adaptive mechanisms that selectively enhance 

Fig. 2  Samples from DS1 and DS2
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3.3  Classification engine

To address the volumetric nature of breast imaging data, the 
popular ResNet150 model is selected and replaced its stan-
dard 2D convolutional layers with 3D ones. Additionally, 
depth-wise separable convolutions are employed to reduce 
computational costs and parameter counts, ensuring effi-
ciency without compromising performance. This involves 
separating the convolution into Depth-wise Convolution 
(channel-wise) and Point-wise Convolution (combining 
features), represented as (3) and (4).

Y (i, j, c) =
M∑

m=1

N∑
n=1

X(i + m, j + n, c) · Wc(m, n)� (3)

Z(i, j) =
C∑

c=1
Y (i, j, c) · Wc� (4)

Here Y(i, j, c)) is the feature map after depth-wise convolu-
tion, (X(i, j, c) ) is the input feature map, (Wc(m, n)) is the 
depth-wise convolution kernel, (Z(i, j) ) is the feature map 
after point-wise convolution, (C) is the number of chan-
nels, and (M, N) is the dimension of the kernel. Depth-wise 
convolution processes each channel independently, while 
point-wise convolution aggregates the features, reduc-
ing computational cost and the number of parameters. In 
conclusion, ResNet150’s original fully connected layer is 
replaced with a custom binary classification layer to distin-
guish between ‘Tumour and ‘Non-tumour’ classes.

The architecture keeps ResNet150’s deep residual struc-
ture with bottleneck designs, enhancing feature extraction 
while being computationally efficient. Each bottleneck 

This approach balances exploration and exploitation to 
identify AUM settings that improve downstream classifica-
tion performance efficiently. Moreover, the optimised AUM 
filter improves contrast between lesions and tissues, reduces 
noise while preserving boundaries, and improves the quality 
of the 3D DCE-MRI image for a more accurate diagnosis 
(examples in Fig. 3).

3.2.4  Data augmentation

Breast tumour analysis is challenging due to the complex 
and variable tumour morphology. To address this, data aug-
mentation is employed to improve the robustness of the 
dataset and enhance model resilience, adaptability, abstrac-
tion, and generalisation in various clinical contexts [40].

Augmentation strategies include various transformations 
aimed at introducing various variations that replicate real-
world tumour scenarios [39]. Vertical and horizontal flip-
ping is also important to mimic different tumour locations 
within the breast. Scaling adjusts the model to detect dif-
ferent lesion sizes by cropping MRI scans to reflect clinical 
lesion diameter ranges. Horizontal and vertical translations 
improve tumour location accuracy, regardless of its location 
in breast tissue.

It should be stressed that data augmentation is not only a 
quantitative technique; it is a crucial part of making digital 
imaging models more accurate for medical use, which in 
turn helps with the detection and characterisation of breast 
tumours [41].

Fig. 3  Workflow for Image Preprocessing in the Proposed Framework
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	● SHAP (Shapley Additive Explanation) [45] provides 
insights into which features most impact a model’s pre-
dictions. For breast tumour classification, SHAP assigns 
a value to each pixel of the image, indicating its contri-
bution to the classification result. SHAP assigns impor-
tance to each voxel based on its marginal contribution to 
the model output. The Shapley value ϕi for a voxel i is 
given by (11), 

ϕi =
∑

S⊆N\i

|S|!(|N | − |S| − 1)!
|N |!

[f(S ∪ i) − f(S)] .� (11)

 Here, N is the set of all input voxels and S is a subset not 
containing the ith voxels. Since exhaustive computation is 
infeasible in 3D, SHAP is approximated using KernelSHAP 
over voxel groups.

	● 3D Grad-CAM (Gradient-Waved Class Activation 
Mapping) [46] is a technique used to visualise the re-
gions of a 3D image that are most important for a neu-
ral network to make the decision. It functions with pre-
trained 3D models and does not require any network 
modifications or retraining [43]. Highlighting the sig-
nificant patterns in the volume of the image provides an 
interpretable way to understand the model’s decision-
making process. 3D Grad-CAM is extended from its 2D 
form by computing gradients of the class score yc with 
respect to each feature map Ak(x, y, z) in the 3D convo-
lutional layer. The importance weights αc

k are computed 
as shown in (12) and (13), 

αc
k = 1

Z

∑
x

∑
y

∑
z

∂yc

∂Ak(x, y, z)
,� (12)

LGrad-CAM
c (x, y, z) = ReLU

(∑
k

αc
kAk(x, y, z)

)
,� (13)

 where Z is the number of voxels in the feature map and 
ReLU ensures retention of positive influence. The resulting 
activation map is upsampled and overlaid on the MRI vol-
ume to visualise class-discriminative regions in 3D.

	● Context Importance and Utility [44] focuses on utilis-
ing only relevant features to explain breast tumour 
classification based on Context Importance (CI) and 
Context Utility (CU). CI measures the extent to which 
the utility of the output changes when the input feature 
values are adjusted relative to the overall resultant im-
age. CIU operates flexibly, even as the number of im-
ages increases, by incorporating an inverse operation. 

block follows a three-step process: 1 × 1 dimensionality 
reduction (5), 3 × 3 spatial feature extraction (6), and 1 × 1 
dimensional restoration (7), balancing resources and perfor-
mance. The residual block output is given by (8).

Y1(i, j) =
K∑

k=1

X(i, j, k) · W1(k).� (5)

Y2(i, j) =
M∑

m=1

N∑
n=1

Y1(i + m, j + n) · W2(m, n).� (6)

Y3(i, j) =
K∑

k=1

Y2(i, j, k) · W3(k).� (7)

F (X) = Y3 + X.� (8)

The model uses Global Average Pooling (GAP) to condense 
feature maps before classification, reducing overfitting and 
preserving key information as shown in (9).

YGAP (c) = 1
H · W

H∑
i=1

W∑
j=1

X(i, j, c),� (9)

where (X(i,  j, c) ) is the value of the input feature map at 
spatial location ( (i, j) ) and channel (c). (H, W) is the height 
and width of the feature map. The final classification layer 
outputs probabilities for ‘Tumour’ and ‘Non-tumour’ using 
the Softmax function is represented as (10),

P (y = c | x) = exp(zc)∑C
i=1 exp(zi)

,� (10)

where (zc) is the logit score for class (c ∈ {1, 2}).

3.4  XAI engine

Employing XAI methodologies facilitates the generation 
of interpretable outcomes and visually indicates critical 
regions within MRI scans that affect predictive results. 
This approach promotes collaborative decision-making 
processes between clinical practitioners and AI systems, 
increasing confidence and trust in deep learning models 
among patients and healthcare practitioners.

To improve transparency and aid clinical interpretation, 
we use three XAI techniques—3D Grad-CAM, SHAP, and 
CIU—tailored for volumetric MRI data. Each method high-
lights informative regions in the 3D input space, providing 
unique insights into the model’s decision-making.
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Hyperparameters for the ResNet150X model were based 
on prior research [48–50], empirical tuning and task-spe-
cific optimisation. The binary cross-entropy loss function 
was used for binary classification. The Adam optimiser, 
known for its adaptive learning rate, was chosen. A 0.005 
learning rate was set to balance speed and stability. A batch 
size of 16 was settled on after tests to manage memory and 
stability. Cosine annealing was used for learning rate decay 
for gradual model refinement. The model was trained for 
10 epochs, achieving sufficient convergence. Dropout and 
early termination were not used, as GAP and residual con-
nections enhanced performance and convergence.

A comprehensive set of established performance metrics 
is used to assess the proposed model, including Accuracy, F2 
Score, Area Under the Curve (AUC), F2 Score and Cohen 
Kappa scores [13]. These performance metrics, in particulr 
F1-Score and Cohen Kappa, are crucial to understanding the 
predictive capabilities of the model and its ability to distin-
guish between breast lesions accurately. The F2-score is a 
metric used to evaluate the performance of a binary classifi-
cation model, emphasising recall more than precision. You 
can see the formula in (15),

Fβ = (1 + β2) · Precision · Recall
(β2 · Precision) + Recall

,� (15)

where β = 2, Precision = T P
T P +F P  and Recall = T P

T P +F N , 
with TP , FP , and FN  representing true positives, false 
positives, and false negatives, respectively.

Cohen’s Kappa is another statistical metric used to mea-
sure the agreement between a classifier and ground truth 
when assigning categorical labels, accounting for the agree-
ment that might occur by chance, as you can see in (16),

κ = Po − Pe

1 − Pe
,� (16)

where Po = T P +T N
n  is the observed agreement and 

Pe = (T P +F P )(T P +F N)+(T N+F P )(T N+F N)
n2  is the 

expected agreement.
Moreover, interpretability metrics, including SHAP val-

ues, CIU, and 3D Grad-CAM visualisations, provide qualita-
tive insights by highlighting the areas of input data that most 
influence the model’s predictions. These tools enhance the 
transparency of the decision-making process, aligning the 
model’s predictions with clinical expectations. By incorpo-
rating these diverse metrics, the evaluation process ensures 
a robust assessment of the DL model’s performance, rein-
forcing its reliability and effectiveness in detecting breast 
Tumours from MRI images within a clinical framework.

In this process, all super-pixels are rendered transparent, 
enabling the effective identification of variations occur-
ring within the breast tumours. This approach enhances 
the interpretability of the model by providing detailed 
insights into the significance of individual features and 
their impact on classification. Given a 3D MRI volume 
x ∈ RX×Y ×Z , CIU computes two core metrics: CI and 
CU. These are defined as (14), 

CI(r) =
∣∣f(x) − f(x\r)

∣∣ and CU(r) = f(xr),� (14)

 where f(x) represents the model’s prediction for the full 
volume, x\r is the volume with region r masked (simulat-
ing exclusion), and xr contains only region r, with all other 
voxels set to a neutral or transparent value. This formula-
tion enables CIU to generate region-specific explanations 
by quantifying the contextual influence of voxel clusters on 
the prediction. Additionally, the method remains scalable 
and computationally efficient across high-dimensional 3D 
datasets by applying masking selectively over volumetric 
patches, making it particularly useful for interpretability in 
medical imaging applications.

4  Experimental and evaluation set-up

To replicate the training and fine-tuning of ResNet150X, the 
relevant information and parameter values are reported in 
Table 2.

Table 2  ResNet150X– Hyper-parameter settings
Component Value Description
Loss Function Binary 

Cross-Entropy
Measures the difference 
between predicted and actual 
labels for binary classification.

Optimizer Adam Adjusts network parameters 
iteratively based on gradient 
updates from the loss function.

Learning Rate 0.005 Optimized learning rate for 
effective model training and 
convergence.

Batch Size 16 Number of samples per train-
ing batch, chosen based on 
performance metrics.

Learning Rate 
Decay

Cosine Annealing Systematically reduces the 
learning rate over time to 
refine model training.

Epochs 10 Total number of iterations 
over the entire training dataset.

Dropout N/A The Proposed model relies on 
GAP and residual connections 
instead.

Termination 
criterion

N/A The Proposed model uses 
learning rate decay, which 
helps convergence without 
needing to halt training early.
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98.861% for tumour and 99.447% for non-tumour in DS1, 
and 99.104% for tumour and 99.753% for non-tumour in 
DS2. These outcomes underscore the model’s exceptional 
reliability and high performance across both datasets (see 
performance in Fig. 6).

In data set DS1, the model exceeds expectations in accu-
racy and reliability (Table 5). Its near-perfect F2 score of 
99.4% emphasises recall, ideal for medical diagnostics 
where minimising false negatives is crucial. A Cohen’s 
Kappa of 97.5% shows near-perfect agreement between 
predictions and actual labels, accounting for chance and 
providing consistency even with unbalanced datasets.

Figure 7 presents the progression of AUC, Sensitivity, 
and Specificity over 10 epochs for DS1 and DS2. Both data-
sets show consistent improvement across all metrics, indi-
cating effective model learning and convergence. For DS1, 

5  Results

The ResNet-150X model shows superior performance and 
greater interpretability, often missing in traditional methods, 
compared to baseline models such as those included in the 
Table 3 for comparison. For a clear and fair comparison, 
the methods listed in Tables  3 and 4 were reproduced on 
DS1 and DS2 using the same validation protocol, since their 
original studies did not report results on these datasets.

During the validation phase, the model showed remark-
able accuracy, reaching a maximum of one hundred percent 
by the eighth epoch for the non-tumour class in DS2, as 
graphically reported in Fig. 4. The reliability of the model 
is further supported by the fact that its precision, recall, 
and F1 score were near 100% during that epoch. In the 
testing phase (Fig. 5), the model achieved an accuracy of 

Table 3  ResNet150X vs baseline and state-of-the-art models on DS1. Boldfaced values indicate the best results
Ref. Year Technique Accuracy Precision Recall F1-Score
Comes et al. [48] 2024 3D BB sequence 78.74% 78.20% 79.10% 78.65%

(3D customised CNN)
Iqbal and Sharif [49] 2024 Encoder-decoder architecture 94.45% 94.10% 94.80% 94.45%

with feature fusion
Song et al. [50] 2023 CNN-EfficientNet and 93.56% 93.00% 94.00% 93.50%

Transformer-PS-ViT
Iqbal and Sharif [51] 2023 Swin-Transformer + 94.40% 93.80% 95.10% 94.45%

UNet
Muduli et al. [52] 2022 Customised CNN 93.14% 92.70% 93.60% 93.15%
Khamparia et al. [53] 2021 MVGG and ImageNet 94.32% 93.50% 94.90% 94.20%
Ahmed et al. [54] 2021 Customised VGG16 97.12% 96.70% 97.50% 97.10%
Shrivastava and Bharti [55] 2020 Stochastic Residual 91.41% 91.00% 91.80% 91.40%

Gradient
Zhang et al. [56] 2020 Customised CNN 94.92% 94.60% 95.20% 94.90%
ResNet150X Improved 3D ResNet150 99.15% 99.42% 99.38% 99.40%

 with optimised 3D-AUM

Table 4  ResNet150X vs. baseline and state-of-the-art models for DS2. Boldfaced values indicate the best results
Ref. Year Technique Accuracy Precision Recall F1-Score
Comes et al. [48] 2024 3D BB sequence 81.52% 80.90% 82.10% 81.49%

(3D customized CNN)
Iqbal and Sharif [49] 2024 Encoder-decoder 95.13% 94.80 95.30% 95.05%

architecture with feature fusion
Song et al. [50] 2023 CNN-EfficientNet and 92.46% 91.90% 93.00% 92.45%

Transformer-PS-ViT
Iqbal and Sharif [51] 2023 Swin-Transformer 92.16% 91.40% 92.90% 92.14%

+ UNet
Muduli et al. [52] 2022 Customised CNN 94.63% 94.10% 94.90% 94.50%
Khamparia et al. [53] 2021 MVGG and ImageNet 96.51% 96.20% 96.80% 96.50%
Ahmed et al. [54] 2021 Customised VGG16 98.18% 97.90% 98.40% 98.15%
Shrivastava and Bharti [55] 2020 Stochastic Residual 94.55% 94.10% 94.80% 94.45%

Gradient
Zhang et al. [56] 2020 Customised CNN 93.65% 93.20% 94.10% 93.64%
ResNet150X Improved 3D ResNet150 99.42% 99.38% 99.53% 99.45%

with optimised 3D-AUM
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attention mechanisms, performed well (94.44% on DS1 
and 96.177% on DS2), highlighting the benefits of atten-
tion for feature focus. EfficientNetB7 and InceptionResNet, 
which use compound scaling and inception modules with 
residual connections, respectively, also seem promising but 
were outperformed by MACUNet and ResNet-based mod-
els. U-Net [57] shows the lowest accuracy (77.770% on 
DS1 and 81.152% on DS2), reflecting the limitations of its 
vanilla encoder-decoder structure.

In a nutshell, the proposed model is very competitive and 
its high accuracy, combined with XAI integration for inter-
pretability, underscores its suitability for clinical applica-
tions requiring precision and transparency, establishing it as 
a robust and trustworthy solution. Figure 8 visualises SHAP 

AUC increases from 97.0% to 99.3%, with sensitivity and 
specificity closely aligned, reflecting balanced and reliable 
classification. DS2 shows a similar upward trend, starting 
at 96.0% and reaching 99.0% AUC, confirming the model’s 
robustness across varying data distributions. The non-linear 
growth patterns suggest typical model training behaviour, 
with rapid early improvement followed by convergence, 
and demonstrate strong diagnostic potential.

ResNet150X outperforms several state-of-the-art pre-
trained models on the two datasets under investigation 
(Tables 6 and 7). With an exceptional accuracy (99.154% 
on DS1 and 99.428% on DS2), it outperforms its prede-
cessor ResNet-150 and advanced models like MACUNet. 
It would be noted that MACUNet, leveraging multi-scale 

Fig. 5  Testing results (%) on DS1 and DS2

 

Fig. 4  Accuracy and loss trends for training and validation
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Although DS1 and DS2 comprise MRI scans in the same 
anatomical region, the SHAP visualisations of their respec-
tive model outputs reveal distinct differences in the spatial 
distribution and intensity of the metric. Within DS1, the two 
output images for each MRI scan exhibit unique intensity 
distributions, with one image demonstrating more promi-
nent high-intensity regions (red) compared to the other. A 
similar pattern is identified in DS2, albeit with more dif-
fuse alterations. These disparities arise from variations in 
the model’s sensitivity to features within the tumour region. 
This visual representation of high- and low-intensity char-
acteristics increases interpretability, allowing healthcare 
professionals better to understand the decision-making pro-
cess of the proposed framework and cultivate trust in AI-
driven methodologies. 3D-Grad-CAM also overlays heat 

contributions by colouring relevant pixels according to the 
colour map scheme overlayed on MRI scans.

While the ‘input’ column shows the original image, 
the ‘Raw-SHAP’ column captures both positive and nega-
tive contributions across the tumour area, and the second 
‘Threshold-SHAP’ column focuses on the most significant 
contributions. In other words, Raw-SHAP provides a com-
prehensive overview of the contributions made by differ-
ent areas of the input image within the model. In contrast, 
Threshold-SHAP highlights the pivotal regions that are 
instrumental in influencing the decision-making process.

Table 5  Reliability metrics
%Dataset F2 Score Cohen Kappa Sensitivity Specificity AUC
DS1 0.99% 0.97% 99.38% 99.13% 99.62
DS2 0.97% 0.98% 99.53% 99.54% 99.36%

Fig. 7  Performance of the proposed ResNet150X over DS1 and DS2

 

Fig. 6  Testing and training 
performance of the proposed 
ResNet150X over DS1 and DS2
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identification confidence. Focus variability decreases in 
later epochs, indicating convergence and learning refine-
ment, essential for reliable clinical deployment.

These heat maps for non-tumour cases emphasise the 
periTumoural area around the tumour as the critical zone 
for prediction, whereas heat maps for tumour cases identi-
fied either parts or the entirety of the intraTumoural area 
as saliency zones influencing the network’s final decisions. 
Across multiple samples, the model consistently focuses 
on similar anatomical areas, reflecting a robust and reli-
able identification of key structures. Sharply concentrated 
overlays in some cases suggest confident feature detection, 
while more diffuse overlays indicate uncertainty or contri-
butions from multiple regions.

maps onto MRI images to pinpoint areas that substantially 
impact the model’s interpretations (Figs. 9 and 10).

To show how the focus of the model on critical regions 
of breast tumour evolves during training, the Epoch-Wise 
3D Grad-CAM visualisations for DS1 and DS2 are reported 
in Figs. 11 and 12, respectively. Early epochs (columns 1-3) 
exhibit broader and less focused activations, indicating the 
model’s initial exploration of general patterns in the data. 
As training advances (columns 4-6), activations become 
more focused on tumour regions, highlighting the model’s 
ability to identify relevant features and ignore background 
noise. Over epochs, high-activation regions (red and yel-
low) align more with tumour areas, showing improved 
accuracy. In contrast, low-activation regions (green and 
blue) fade in irrelevant areas, indicating increased boundary 

Table 6  Comparison with pre-trained models using DS1. Boldfaced values indicate the best results
Model Description Accuracy Precision Recall F1-Score
VGG16 Stacked CNN layers 84.33% 83.20% 84.90% 84.04%
EfficientNetB7 Scales depth, 86.95 86.50% 87.10% 86.80%

width, and resolution
InceptionResNet Combines Inception 85.69% 84.80% 86.40% 85.59%

and residual connections
DenseNet Dense connections 82.18% 81.70% 83.20% 82.44%

to reuse features
MobileNet Use depthwise separable 84.13% 84.60% 83.20% 83.89%

convolutions
U-Net Encoder-decoder 77.77% 76.90% 78.40% 77.64%

with skip connections
MACUNet U-Net with multi-scale 94.44% 94.10% 94.80% 94.45%

attention mechanisms
ResNet150 Residual connections to 97.45% 97.10% 97.80% 97.44%

fix vanishing gradients
ResNet150X Improved 3D ResNet150 99.15% 99.42% 99.38% 99.40%

with optimised 3D-AUM

Table 7  Comparison with pre-trained models using DS2. Boldfaced values indicate the best results
Model Description Accuracy Precision Recall F1-Score
VGG16 Stacked CNN layers 85.19% 84.50% 85.80% 85.14%
EfficientNetB7 Scales depth, width, 87.47% 87.00% 87.90% 87.44%

and resolution
InceptionResNet Combines Inception 88.15% 87.60% 88.70% 88.15%

and residual connections
DenseNet Dense connections to 84.13% 83.70% 84.60 84.14%

reuse features across layers
MobileNet Use depthwise separable 85.16% 85.50% 84.80% 85.15%

convolutions
U-Net Encoder-decoder 81.15% 80.30 82.00% 81.14%

with skip connections
MACUNet U-Net with multi-scale 96.17% 95.90% 96.40% 96.15%

attention mechanisms
ResNet150 Residual connections to 98.93% 98.70% 99.10% 98.90%

fix vanishing gradients
ResNet150X Improved 3D ResNet150 99.42% 99.38% 99.53% 99.45%

with optimised 3D-AUM
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CI quantifies how much the prediction outcome changes 
when the features within a superpixel are altered, thereby 
reflecting its sensitivity and impact. CU measures how posi-
tively or negatively a superpixel contributes to the classifi-
cation decision, with values close to 1 indicating high utility 
(positive influence) and values near 0 denoting negligible or 
negative impact.

During inference, the CIU engine iteratively perturbs 
superpixels and observes the resulting changes in model 
predictions. Superpixels with the highest CI and CU scores 

The examples in Fig. 13 are annotated with the last 
method, namely CIU, with a threshold value of 0.01. In 
the CIU-based explanation module, each 3D MRI image 
is segmented into fifty superpixels-compact, homogeneous 
regions that group spatially and visually similar voxels. This 
segmentation helps maintain anatomical structure and local 
context while simplifying the interpretability analysis. The 
model then evaluates each superpixel by computing its Con-
textual Importance (CI) and Contextual Utility (CU).

Fig. 10  Example of 3D Grad-CAM visualisations on DS2

 

Fig. 9  Example of 3D Grad-CAM visualisations on DS1

 

Fig. 8  Example of SHAP analysis and visualisations. The colour gradation spans from −0.0010, represented by blue, to 0.0010, represented by 
red, where blue denotes regions of lower intensity and red areas of higher intensity

 

1 3

  901   Page 14 of 20



Explainable breast cancer prediction from 3-dimensional dynamic contrast-enhanced magnetic resonance…

robustness of the model in identifying significant regions, 
despite variations in imaging characteristics.

The utility of these visualisations in healthcare is signifi-
cant, and their application should become more prevalent. 
Their function extends beyond the interpretation of mod-
els, offering substantial visual support to healthcare profes-
sionals to make informed diagnoses. In addition, systematic 
analysis of the voxels helps identify subtle abnormalities 
that can otherwise be missed in ambiguous cases. The CIU 
visualisations also play a crucial role in AI model training 
and validation. By assessing whether the highlighted regions 
align with the expected clinical characteristics, experts can 
determine whether the model emphasises the relevant areas 

are considered the most influential in the decision-making 
process. These regions are visually highlighted on the CIU 
output map, allowing clinicians to identify critical anatomi-
cal structures, such as tumour boundaries or peri-tumour tis-
sue, that directly influenced AI classification. This not only 
enhances model transparency but also fosters greater trust 
and clinical utility by aligning explanations with radiologi-
cal expectations.

In the DS1 and DS2 datasets, the CIU overlays corre-
spond to clinically relevant abnormalities [78], such as dense 
tissue or lesions, suggesting potential malignancies. The 
uniformity of visualisations between datasets indicates the 

Fig. 13  Example of CIU Visualisations for DS1 and DS2

 

Fig. 12  Epoch-Wise 3D Grad-CAM Visualisations for DS2

 

Fig. 11  Epoch-Wise 3D Grad-CAM Visualisations for DS1
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performance to 98.75% (DS1) and 99.28% (DS2), with cor-
responding increases in precision, recall, and F1-score.

The full ResNet150X model, which combines both 
enhancements, achieves the highest scores across all evalua-
tion metrics-99.15% accuracy on DS1 and 99.42% on DS2, 
with F1-scores reaching 99.40% and 99.45%, respectively. 
This demonstrates not only the complementary effectiveness 
of the two modules but also the robustness and generalisa-
tion capability of the proposed architecture. The consistent 
improvement in recall and F1-score is especially significant 
in clinical or critical applications, where the cost of false 
negatives can be high. Thus, the ablation results confirm 
that the full integration of 3D AUM and customisation in 
ResNet150X leads to a statistically and practically superior 
model, validating its role as a meaningful advancement over 
existing baselines.

5.2  Statistical significance study

The analysis in Table 9 shows that the proposed ResNet150X 
consistently and significantly outperforms a range of base-
line and advanced models across both DS1 and DS2. All 
p-values are well below 0.05, indicating strong statistical 
significance. Models like InceptionResNet, EfficientNetB7, 
MobileNet, and 3D BB CNN show large negative t-statis-
tics (e.g., -83.27 on DS1 and -57.51 on DS2 for Inception-
ResNet), reflecting a clear and consistent performance gap in 
favor of ResNet150X. These negative values arise because 
each model is statistically compared against ResNet150X, 
which consistently exhibits higher average scores. Even the 
base ResNet150 shows significant inferiority, underscoring 
the impact of the proposed enhancements.

ResNet150X achieves this improvement by integrating 
3D Attention-Upsampling Modules (AUM), a customised 
ResNet150 backbone, and explainable AI (XAI) compo-
nents. These features enhance both interpretability and rep-
resentational capacity, helping the model capture deeper 
semantic information while maintaining training stability. 
Its consistent superiority across two datasets highlights 

and implement the required adjustments. In addition, these 
overlays have the potential to enhance patient engagement 
by visually communicating diagnostic results, thus fostering 
greater confidence in AI-driven healthcare solutions.

5.1  Ablation study

The ablation study presented in Table  8 systematically 
evaluates the individual and combined contributions of the 
main components integrated into the proposed ResNet150X 
architecture: the 3D Attention-Upsampling Module (AUM) 
and the customised ResNet150 backbone. Results across 
both DS1 and DS2 datasets clearly show that each compo-
nent brings measurable performance improvements over 
the baseline ResNet150 model. Specifically, adding the 
3D AUM to the baseline improves accuracy from 97.45% 
to 98.35% on DS1 and from 98.93% to 99.10% on DS2. 
Similarly, incorporating the customized backbone raises 

Table 8  Ablation study showing the effect of 3D AUM and customisa-
tion on ResNet150 across DS1 and DS2. Boldfaced values indicate 
the best results
Model 
Variant

Dataset Accuracy Preci-
sion

Recall F1-Score

Baseline 
ResNet150

DS1 97.45% 97.10% 97.80% 97.44%

Baseline 
ResNet150 + 
3D AUM

98.35% 98.10% 98.20% 98.15

Customized 
ResNet150

98.7%5 98.65% 98.85% 98.7%5

Full 
ResNet150X

99.15% 99.42 99.38% 99.40%

Baseline 
ResNet150

DS2 98.93% 98.70% 99.10% 98.90%

Baseline 
ResNet150 + 
3D AUM

99.10% 98.95% 99.15% 99.05%

Customized 
ResNet150

99.28% 99.10% 99.40% 99.25%

Full 
ResNet150X

99.42% 99.38% 99.53% 99.45%

Table 9  Statistical comparison of top models against ResNet150X on DS1 and DS2
Model DS1 DS2

T-Statistic P-Value T-Statistic P-Value
InceptionResNet -83.2663 0.000840 -57.5133 0.000008
3D BB CNN [48] (2024) -86.0256 0.000948 -83.8527 0.000003
EfficientNetB7 -64.9866 0.000364 -74.2339 0.000003
MobileNet -49.5198 0.000248 -112.7337 0.000001
Stochastic Gradient [55] -67.8402 0.000712 -38.6475 0.000017
DenseNet -45.3902 0.000441 -94.7456 0.000001
U-Net -50.1372 0.000830 -60.6312 0.000008
Custom CNN [52] -31.2398 0.000261 -33.4653 0.000033
SwinTrans+UNet [51] -43.1773 0.000053 -27.3620 0.000092
ResNet150 -17.7481 0.000829 -7.0587 0.002380
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imaging modalities encountered in real-world settings. Fur-
thermore, the proposed framework’s reliance on MRI as the 
sole diagnostic tool restricts its applicability in multi-modal 
diagnostic settings. Consequently, forthcoming research 
endeavours to enhance the model through the incorporation 
of additional images to secure a more varied dataset, the 
integration of multi-modal imaging data, and the employ-
ment of attention mechanisms that are presently underuti-
lised for this task.
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strong generalisation ability, making it a reliable and effec-
tive solution for complex classification tasks such as those 
in medical or visual domains.

5.3  Data imbalance study

To investigate the effects of class imbalance, we conducted 
a controlled simulation using three different class distribu-
tions between Tumour and non-Tumour cases: balanced 
(1:1), moderately imbalanced (1:3), and severely imbal-
anced (1:9). Table 10 summarises the impact of these distri-
butions on classification performance across both DS1 and 
DS2 datasets.

The results reveal that while overall accuracy marginally 
improves as the imbalance increases (e.g., DS1: 99.50% to 
99.78%). A closer examination shows a sharp decline in 
Tumour sensitivity and F1-score—from 99.00% to 88.00% 
and 99.40% to 86.50% respectively in DS1—as the model 
becomes biased towards the overrepresented non-Tumour 
class. Meanwhile, non-Tumour specificity and F1-score 
continue to rise, indicating a skew in favour of the major-
ity class. A similar trend is evident in DS2. These findings 
highlight the importance of using class-aware evaluation 
metrics and balancing techniques to mitigate the risks asso-
ciated with real-world class imbalances, particularly in criti-
cal domains like medical diagnosis.

6  Conclusions and future work

The proposed framework, using 3D DCE-MRI images and 
three XAI techniques, achieved test accuracies of 98.861% 
for tumours and 99. 447% for non-tumours in the first data-
set DS1 and 99. 104% for tumours and 99.753% for non-
tumours in the second dataset DS2, proving its effectiveness 
in breast cancer diagnosis. The inclusion of XAI enhanced 
the framework’s transparency by highlighting image regions 
affecting predictions, thus boosting credibility and under-
standing in healthcare. Despite obtaining an exceptional 
accuracy and high values in all the other metrics, there are 
areas where improvement can still be made. For example, 
the dataset may not reflect the variety of tumour types and 

Table 10  Performance of the proposed ResNet150x under varying class imbalance ratios for DS1 and DS2. Boldfaced values indicate the best 
results
Dataset Class Ratio Accuracy Sensitivity Specificity F1

Tumour non-Tumour Tumour non-Tumour
1:1 (Balanced) 99.50% 99.00% 99.70% 99.40% 99.80%

S1 1:3 (Moderate Imb.) 99.65% 95.00% 99.85% 94.10% 99.90%
1:9 (Severe Imb.) 99.78% 88.00% 99.95% 86.50% 99.96%
1:1 (Balanced) 99.60% 99.30% 99.78% 99.50% 99.83%

DS2 1:3 (Moderate Imb.) 99.72% 96.00% 99.90% 95.20% 99.93%
1:9 (Severe Imb.) 99.85% 89.50% 99.97% 87.30% 99.98%
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