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Abstract

Deep learning models have been instrumental in extracting critical indicators for breast cancer diagnosis - the prevalent
malignancy among women worldwide - from baseline magnetic resonance imaging. However, many existing models do
not fully leverage the rich spatial information available in the 3D structure of medical imaging data, potentially over-
looking important contextual details. This develops an explainable deep learning framework for classifying breast cancer
that leverages the complete 3D and provides classification results alongside visual explanations of the decision-making
process. The preprocessing pipeline is fed with 3D sequences containing ‘tumour’ and ‘non-tumour’ regions. It includes
a 3D Adaptive Unsharp Mask (AUM) filter to reduce noise and augment image class, followed by normalisation and data
augmentation. Classification is then achieved by training an augmented ResNet150 model. Three explainable artificial
intelligence (XAI) techniques, including Shapley Additive Explanations, 3D Gradient-Weighted Class Activation Map-
ping, and Contextual Importance and Utility, are employed to provide improved interpretability. The model demonstrates
state-of-the-art performance over the QIN-BREAST dataset, achieving testing accuracies of 98.861% for ‘tumours’ and
99.447% for ‘non-tumours’, as well as over the Duke Breast Cancer Dataset, where it achieves 99.104% for ‘tumours’
and 99.753% for ‘non-tumours’, while offering enhanced interpretability through XAI methods.
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Explainable Artificial Intelligence (XAI) significantly
advances artificial intelligence (AI) engineering, enhanc-
ing process interpretability and adaptability for more reli-
able results in scientific and technological fields [1]. This
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In this light, early diagnosis and intervention for breast
cancer are essential [13], but challenging due to its subtle,
hard-to-detect symptoms [14]. The literature highlights the
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complexity of the cellular structures of breast tumours, mak-
ing it challenging to determine their origin or growth rate.
In addition, the limitations of current diagnostic tools can
lead to misdiagnoses or unclear results, potentially postpon-
ing the start of treatment. This is harmful to these diseases,
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where it has become evident that timely identification is
one of the key factors in reducing mortality rates, lowering
treatment costs, and improving prognosis and therapeutic
outcomes [15].

In recent years, computer-aided detection (CAD) sys-
tems have gained traction in identifying cancerous cells.
However, the effectiveness of CAD is highly dependent
on the quality of soft tissue imaging. The introduction of
baseline Dynamic Contrast-Enhanced (DCE) Magnetic
Resonance Imaging (MRI) has improved the precision of
breast tumour diagnosis due to its visual quality. However,
image noise significantly limits prediction accuracy, requir-
ing pre-processing techniques that remove noise while pre-
serving image information. Furthermore, another barrier to
early diagnosis and prognosis of breast cancer is related to
costs, DCE-MRI being significantly more expensive than
other screening methods and, therefore, being used primar-
ily for high-risk patients. The risks of contrast allergy and
other physical limitations further limit the use of magnetic
resonance imaging [59].

Hence, maximising the extraction of information from
the available MRI scan is essential for multiple reasons.
The deep learning (DL) community has contributed to
this goal by urging the development of automated feature
extraction techniques [16] to increase the limited, manually
crafted radiomic features currently available. It offers clear
advantages for extracting features as it can detect ‘hidden-
to-human abnormal structures and tumour patterns at dif-
ferent extraction levels [17]. While 2D CNNs have been
commonly used due to their efficiency and simpler data
requirements [18], recent advances have demonstrated the
strong performance of 3D deep learning models in Tumour
analysis, particularly for brain and breast MRI [19]. This
work builds on that foundation by introducing a customised
3D-aware processing pipeline, which captures critical spa-
tial information across all three dimensions for improved
analysis and classification [17].

This study presents an automated decision support sys-
tem for healthcare professionals to make diagnoses from 3D
DCE-MRI scans. Using DL models and three XAI methods,
the resulting system not only predicts breast cancer but also
provides explanations for such classification outcomes and
additional graphical support to improve the interoperability
of the DL model. Its contributions can be summarised as
below:

e Development of a new customised 3D version of
ResNet150 tailored for volumetric breast MRI data,
incorporating depth-wise separable convolutions to re-
duce computational cost.

e Introduction of a new optimised preprocessing pipeline
to enhance image quality while reducing noise.
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e Provides interpretable overlays to highlight tumour and
periTumoural regions, enabling clinicians to understand
and validate Al decisions.

This article is structured as follows: Section 2 provides an
overview of the latest research on breast cancer classifica-
tion. Section 3 presents a detailed explanation of the pro-
posed methodology. Section 4 describes the experimental
setup and evaluation metrics used in the study. Section 5
discusses the results and provides analysis. Finally, Sec-
tion 6 concludes the paper and highlights areas for future
research.

2 Related works

This section reviews advancements in deep learning (DL)
for medical imaging, with a focus on breast cancer seg-
mentation and the integration of explainable artificial intel-
ligence (XAI) in healthcare. The review is structured into
three parts: general DL advancements in medical imaging,
specific techniques for breast cancer segmentation, and
XAI methods to enhance interpretability. A comparative
analysis positions our proposed ResNet150X framework,
which integrates an optimised 3D ResNet150 architecture
with advanced XAI techniques for precise and interpretable
breast cancer classification in 3D DCE-MRI data.

2.1 Deep learning in medical imaging

Convolutional Neural Networks (CNNs) have transformed
digital image processing for healthcare [3]. CNNs excel in
segmentation tasks, including tumour segmentation [20,
70], by extracting complex patterns from large datasets.
CNN architectures such as U-Net have become popular in
medical and biological fields for segmentation tasks [25, 70,
71]. Using these techniques, DL researchers are currently
trying to automate breast cancer detection, segmentation,
and classification [21, 28].

Most recent studies further extend DL capabilities by
integrating blockchain technology and the Internet of Medi-
cal Things (IoMT) to models for breast cancer diagnostics
[65], or sophisticated cascaded deep learning networks that
leverage meaningful patterns in medical images [66], or
hybrid approaches that exploit the joint use of artificial neu-
ral networks and multiple support vector machines [69]. For
instance, a federated learning framework was introduced
for breast tumor classification using magnified histopatho-
logical images, achieving 92.15% accuracy via IoMT [9].
However, its 2D focus and lack of explainability limit its
applicability to 3D DCE-MRI.
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However, DL models do not offer enough interpretability
and transparent reasoning to be fully accepted within the
healthcare domain. Efficient attempts using shallow mod-
els (see [68]) are plagued by similar considerations. In this
context, XAl frameworks have recently gained recognition
as a viable solution [22] seeking justification, transparency,
information, and quantification of uncertainties [24] in
healthcare DL models. Although not fully trusted [23], they
are promising research directions for diagnostics.

2.2 Advances on automatic breast cancer
segmentation

ResNet-based architectures and U-Net variants outperform
conventional machine learning methods in understanding
complex breast tumour structures [26]. The ResNet archi-
tecture [72] revolutionised DL by solving the vanishing
gradient problem with residual learning, simplifying deep
network training through residual optimisation. Its applica-
tion in medical imaging, particularly breast tumour segmen-
tation, has shown promising results [36].

Building on this foundation, ResNet-150 [73] enhances
the performance and feature extraction capabilities of its
predecessor. Its deeper architecture effectively captures
intricate features that can make a difference in breast can-
cer segmentation due to improved boundary delineation in
MRI images. Its residual connections reduce over-fitting
and enhance generalisation on limited datasets. Compared
to earlier models, ResNet-150 significantly improves seg-
mentation accuracy, achieving higher Dice scores and loU
metrics over many medical segmentation tasks [35, 37, 38].

A 3D ResNetl50 is available for improved spatio-tem-
poral analysis in 3D data such as medical imaging [61].
This is the case with DCE-MRI. This variant offers robust
feature extraction, versatility across tasks, and balanced
complexity. Compared to Swin Transformers [74] and Effi-
cientNet [75], it handles 3D data more efficiently, and it is
more stable than Generative Adversarial Neural Networks
and more generalisable than task-specific systems such as
DeepLabV3+ [62]. A review of ResNet50 and Transformer-
based models for breast cancer segmentation and diagnosis
highlights advancements in image augmentation and multi-
modal analysis across histopathological and MRI datasets
[8]. However, these models face interpretability challenges
due to opaque decision-making processes and limited 3D
generalisability, as they are optimized primarily for 2D
imaging, reducing their effectiveness for volumetric data
like DCE-MRI.

A framework, DeepMiCa, refines the detection of micro-
calcifications in mammograms through specialized con-
volutional architectures, delivering robust performance
for early breast cancer identification [6]. However, its

dependence on 2D mammography datasets and absence of
explainable Al mechanisms constrain its generalisability to
volumetric 3D DCE-MRI dataset. Similarly, Vision Trans-
former (ViT)-based approaches for breast cancer detection
uses self-attention mechanisms to achieve superior feature
extraction and diagnostic performance [7, 11]. Similarly,
ViT models for mammographic breast cancer detection
excel in pattern recognition through advanced self-attention
mechanisms [7]. Nevertheless, their reliance on high-reso-
lution images escalates computational requirements, and the
absence of explainability tools limits practical deployment.
In this light, the 3D ResNet150 is a state-of-the-art model
for three-dimensional imaging.

2.3 Explainability methods in healthcare

The model in [29] enriches the prediction outcomes with
a genetic, morphological, and clinical characteristics pro-
file. First, it generates a heat map to visualise cancer cells
and tumour-infiltrating lymphocytes (TiLS) in histologi-
cal images. Then, it predicts molecular features from MRI
data, including somatic mutations, protein expression, DNA
methylation, and copy number variations. Its XAI func-
tionalities provide explanations for classification choices,
enabling a deeper understanding of the connections between
the molecular and morphological characteristics of cancer
[30]. Visualisation techniques are valuable and effective
in healthcare applications. In this light, the authors of the
case-based reasoning (CBR) framework in [27] decided to
include visual explanations within the user interface.

The model in [31] classifies breast cancer tumours
according to their shape through CNN architectures. Gradi-
ent-Weighted Class Activation Mapping (Grad-CAM) and
Local Interpretable Model-agnostic Explanations (LIME)
are two XAI methods employed in this model to explain
classification decisions.

An interesting framework for classifying invasive dis-
ease episodes (IDEs) in breast cancer patients [32] employs
Shapley values [76], a highly used XAI method, to deter-
mine key factors influencing IDEs at five and ten years
post-diagnosis. Shapley values analysis in this study reveals
important factors that affect IDEs and model variables in
disease progression. Table 1 presents a comparative sum-
mary of existing literature, highlighting model architec-
tures, dataset characteristics, explainability techniques, and
reported accuracy, to contextualize the contributions of the
proposed ResNet150X framework.

Several studies recommend integrating XAl elements,
like the model in [63] for breast cancer detection, the one
in [64] for segmenting medical images to isolate tumours
in mammograms, and the ensemble decision tree approach
in [67] for extracting interpretable classification rules for
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Table 1 Comparing identified approaches from the literature to our ResNet150X framework (last row). The boldfaced value indicate the best

accuracy

Study Model Dataset XAI method Accuracy

Binder et al. [29] Multi-modal CNN with genetic Histological & Heatmaps, 86.49%
and morphological profiling MRI data feature-based

Hussain et al. [31] CNN with shape-based Breast cancer Grad-CAM, 85.72%
tumour classification MRI dataset G LIME

Massafra et al. [32] XGBoost classifier for Longitudinal Shapley 90.09%
IDE prediction clinical data values

Khater et al. [63] Deep CNN for DCE-MRI Not specified 89.66%
early detection Limited slices

Farrag et al. [64] U-Net for Mammography Visual overlays 89.42%
tumour segmentation images

Wang et al. [67] Ensemble decision tree rules Tabular breast Rule-based 91.70%
(Interpretable model) cancer data explanations

Lamy et al. [27] CBR MRI + clinical Visual 97.48%
system with visual interface records Ul

Duwairi and Melhem [61] ResNet150 variant 3D none 97.48%
for MRI classification MRI
Improved 3D ResNet150 Full 3D SHAP, CIU, 99.42
with optimised 3D-AUM DCE-MRI 3D Grad-CAM

breast cancer diagnosis. The objective of this research is to
elaborate a robust XAl framework for precise breast cancer
classification, leveraging the benefits of explainability to
enhance its applicability in clinical practice.

3 Proposed approach

The ResNet150X is proposed as an efficient XAl frame-
work for breast cancer classification.

In the proposed methodology, 3D DCE-MRI images
obtained from the input datasets undergo initial standardisa-
tion and preprocessing steps designed to reduce noise while
simultaneously enhancing image sharpness and contrast
effectively. This enhancement is achieved through the appli-
cation of an Adaptive Unsharp Mask (AUM) filter, specifi-
cally optimised for this task via a Bayesian Optimisation
(BO) algorithm [79]. The AUM filter incorporates an adap-
tive scaling factor determined by the local variance within
the images, which facilitates the sharpening of significant
edges while concurrently suppressing noise in regions con-
taining less diagnostic information. Standard data augmen-
tation is used to obtain a good-sized dataset that includes a
variety of geometrically transformed versions of the origi-
nal images. Subsequently, the data is classified through a
modified version of the ResNet-150 model [73] featuring
custom layers to achieve higher performance in the process-
ing of 3D DCE-MRI data.

To motivate the results, offer visual elucidation of the
network’s internal operations, and enhance transparency
of its underlying mechanisms, this framework integrates
three explainable Al methods, namely SHAP, CIU, and 3D
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Grad-CAM. The block diagram in Fig. 1 graphically shows
the core modules and phases of the proposed explainable
classification framework. Operationally, the articulated
classification methodology is derived from the procedural
steps in Algorithm 1.

Require: 3D DCE-MRI images from annotated datasets (Section 3.1)
Ensure: Classified breast cancer type (e.g., Tumour, non-Tumour)
Data Acquisition
Extract 3D DCE-MRI images from the annotated datasets
Split data into training, validation, and test sets
Pre-processing (Section 3.2)
Standardisation > Scaling and resizing
Selection of region of interest > Intensity-based threshold
Noise reduction > AUM Filter
Filtering > AUM Filter
Data augmentation > e.g., rotation, flipping, intensity scaling
Classification (Section 3.3)
Use ResNet-150 as the base model
Replace the last layers
Add batch normalisation and dropout layers
Training (Table 2)
Train the resulting model with a binary cross-entropy loss function
and Adam optimiser
Explanations (Section 3.4)
Feature contributions to predictions > SHAP
Analyse contextual feature importance > CIU
Visualise tumour regions > 3D Grad-CAM
return Classification outputs and explanations for clinical vali-
dation

> 3D GAP, FC (binary)

Algorithm 1 The ResNet150X framework.

3.1 Input

All publicly accessible 3D DCE-MRI scans from the QIN-
BREAST dataset [33] and the Duke University Breast
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Fig. 1 Graphical representation of the proposed framework

Cancer Dataset [34] are used. The QIN-BREAST dataset,
referred to as DS1 in the remainder of this article, comprises
76, 328 images derived from 672 series collected from 10
subjects throughout 20 investigations, where each scan was
meticulously annotated with three-dimensional tumour
bounding boxes by professional radiologists. The 3D DCE-
MRI scans are labelled for the binary classification of breast
cancer into tumour or non-tumour classes. This data set is
part of an initiative aimed at standardising pharmacokinetic
analysis and is widely used for machine learning applica-
tions in this field.

The Duke University Breast Cancer Dataset, referred to
as DS2 in the remainder of this article, contains scans col-
lected at Duke Medical Center between 2000 and 2014 from
922 patients through 5, 161 MRI series, totalling 773, 888
individual images. The dataset includes three to four post-
contrast sequences for most cases, along with fat-saturated
gradient echo T1-weighted pre-contrast sequences and non-
fat-saturated T1-weighted sequences.

These two datasets are mainly concentrated on inva-
sive breast cancer and provide comprehensive annotations
supplied by researchers and radiologists, in addition to 3D
bounding boxes that demarcate the tumour regions. They
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encompass a diverse collection of scans that illustrate vari-
ous tumour morphologies, sizes, and locations, thereby
enhancing the generalisability potential of the proposed
framework, as demonstrated in Fig. 2.

3D data augmentation was applied at the series level
after splitting the dataset to prevent data leakage and ensure
only training data was expanded to enhance generalisation.
Through the data augmentation process, the total number of
images was significantly increased, with DS1 expanding by
4, 032 series and DS2 gaining an additional 30, 966 series.

Labels are automatically retained during augmentation,
as transformations like flipping or scaling don’t alter the
ground truth. Each augmented sample inherits the original
label without manual relabeling, following standard prac-
tice. In terms of class distribution, DS1 is distributed into
2, 000 tumour images and 2, 032 non-tumour images, main-
taining a relatively balanced composition. DS2 presents a
significantly larger proportion of tumour cases, i.e., 15, 000
images, while the non-tumour category comprises 15, 966
images.

The obtained image data set is partitioned into three
distinct subsets: training, validation, and testing, follow-
ing a split ratio of 80 : 10 : 10. The training set facilitates

@ Springer
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Fig.2 Samples from DS1 and DS2

model development, while the validation set is employed
for hyperparameter optimisation.

3.2 Advanced preprocessing engine

Ensuring meticulous data preparation is crucial to maintain-
ing the integrity and effectiveness of the dataset for subse-
quent model training and validation.

3.2.1 Data standardisation

Original data from the source datasets undergo normali-
sation, which applies scaling and resizing operators to all
images to enforce a common predefined size of 224 x 224
pixels (typical size accepted by ResNet150). This improves
the model’s ability to discriminate by minimising imaging
data variability, allowing focus on subtle anatomical and
pathological features. Afterward, they are converted into
tensors and further normalised using the mean and standard
deviation values for each channel [38].

3.2.2 Regions of Interest (ROI)

ROI are then selected by creating a breast mask from the
3D DCE-MRI using Otsu’s threshold method [77], which
finds the optimal intensity threshold by minimising intra-
class variance. Morphological operations then clean the
mask, retaining the largest connected breast component.
The chest wall is excluded via anatomical cut-offs, and the
mask defines the bounding box for image cropping.

3.2.3 Filtering

An AUM filter is designed to remove noise from breast
health images while preserving critical structural features,
such as edge details and intensity, in the 3D scans. Build-
ing on the traditional Unsharp Mask filter, the AUM filter
enhances edges more sharply while reducing noise and arti-
facts through adaptive mechanisms that selectively enhance

@ Springer

Non-Tumor Non-Tumor

edges and preserve non-edge areas, avoiding standard noise
amplification and halo effects, thereby improving image vis-
ibility and classification performance [60]. To adapt the fil-
ter to the 3D data type', a 3D kernel is integrated.

Selecting the most appropriate kernel is not straightfor-
ward. Larger kernel sizes are effective for noise reduction
but may introduce blurring. Hence, an adaptive threshold
approach is used to determine the level of sharpness applied
to each voxel, informed by factors such as local intensity
gradients and noise levels. By representing the 3D MRI
image as I(x, y, z), where (x, y, z) are the coordinates of a
generic voxel in the 3D image, the filter is mathematically
described as in (1).

B(z,y,z) = Low-pass filter(I(z,y, z)),

Ulz,y,2) = 1(z,y,2) — B(x,y,2),

a(z,y,z) =1+ B - variance(I(z, y, 2)), ()
Lwarp(z,y, 2) = I(z,y,2) + a(z,y,2) - (L(z,y,2) — B(z,y, 2)),

where B(x, y, ) represents the blurring mask and U (x, y, z)
denotes the unsharp mask. The adaptive scaling factor,
a(z,y, 2), is calculated based on local image characteris-
tics to enhance the image adaptively. The enhanced 3D MRI
image obtained after applying the adaptive unsharp mask is
represented as Isharp (2, Y, 2). The original voxel intensity
of the image is given by I(z,y, z), and its blurred version is
expressed as B(z,y, z). Together, these components define
the adaptive enhancement process for 3D MRI images.

To fine-tune the filter coefficients for optimal image
enhancement, BO is applied, which models the objective
function f(x) using a Gaussian Process. BO iteratively
selects the next parameter set Xpext by maximizing the
Expected Improvement (El) as (2):

px) — f*

! AUM filters are meant for 2D images.
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This approach balances exploration and exploitation to
identify AUM settings that improve downstream classifica-
tion performance efficiently. Moreover, the optimised AUM
filter improves contrast between lesions and tissues, reduces
noise while preserving boundaries, and improves the quality
of the 3D DCE-MRI image for a more accurate diagnosis
(examples in Fig. 3).

3.2.4 Data augmentation

Breast tumour analysis is challenging due to the complex
and variable tumour morphology. To address this, data aug-
mentation is employed to improve the robustness of the
dataset and enhance model resilience, adaptability, abstrac-
tion, and generalisation in various clinical contexts [40].

Augmentation strategies include various transformations
aimed at introducing various variations that replicate real-
world tumour scenarios [39]. Vertical and horizontal flip-
ping is also important to mimic different tumour locations
within the breast. Scaling adjusts the model to detect dif-
ferent lesion sizes by cropping MRI scans to reflect clinical
lesion diameter ranges. Horizontal and vertical translations
improve tumour location accuracy, regardless of its location
in breast tissue.

It should be stressed that data augmentation is not only a
quantitative technique; it is a crucial part of making digital
imaging models more accurate for medical use, which in
turn helps with the detection and characterisation of breast
tumours [41].

3.3 Classification engine

To address the volumetric nature of breast imaging data, the
popular ResNet150 model is selected and replaced its stan-
dard 2D convolutional layers with 3D ones. Additionally,
depth-wise separable convolutions are employed to reduce
computational costs and parameter counts, ensuring effi-
ciency without compromising performance. This involves
separating the convolution into Depth-wise Convolution
(channel-wise) and Point-wise Convolution (combining
features), represented as (3) and (4).

M N
Y (i,7,¢) = Z ZX(@'—I—m,j—O—n,c)-Wc(m,n)

m=1

3)

n=1

c=1

Here Y(i, j, ¢)) is the feature map after depth-wise convolu-
tion, (X(, j, ¢) ) is the input feature map, (W.(m, n)) is the
depth-wise convolution kernel, (Z(i, j) ) is the feature map
after point-wise convolution, (C) is the number of chan-
nels, and (M, N) is the dimension of the kernel. Depth-wise
convolution processes each channel independently, while
point-wise convolution aggregates the features, reduc-
ing computational cost and the number of parameters. In
conclusion, ResNet150’s original fully connected layer is
replaced with a custom binary classification layer to distin-
guish between ‘Tumour and ‘Non-tumour’ classes.

The architecture keeps ResNet150’s deep residual struc-
ture with bottleneck designs, enhancing feature extraction
while being computationally efficient. Each bottleneck
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block follows a three-step process: 1 x 1 dimensionality
reduction (5), 3 x 3 spatial feature extraction (6), and 1 x 1
dimensional restoration (7), balancing resources and perfor-
mance. The residual block output is given by (8).

K

Vi(i, j) =Y X(i,5,k) - Wi (k). (%)
k=1
M N

Ya(iyj) =Y Y Yi(i+m,j+n)-Wa(m,n).  (6)
m=1n=1
K

Ya(i,j) =Y Ya(i, 5, k) - W(k). ()
k=1

F(X)=Y;+ X. @®)

The model uses Global Average Pooling (GAP) to condense
feature maps before classification, reducing overfitting and
preserving key information as shown in (9).

1 H W
YGAP(C) == ﬁzzx(i7jac)v (9)
i=1 j=1

where (X(i, j, ¢) ) is the value of the input feature map at
spatial location ( (7, /) ) and channel (c). (H, W) is the height
and width of the feature map. The final classification layer
outputs probabilities for ‘Tumour’ and ‘Non-tumour’ using
the Softmax function is represented as (10),

exp(z¢)

Ply=clax)= —————
W=cl9= 5o o

, (10)

where (z.) is the logit score for class (¢ € {1,2}).
3.4 XAl engine

Employing XAI methodologies facilitates the generation
of interpretable outcomes and visually indicates critical
regions within MRI scans that affect predictive results.
This approach promotes collaborative decision-making
processes between clinical practitioners and Al systems,
increasing confidence and trust in deep learning models
among patients and healthcare practitioners.

To improve transparency and aid clinical interpretation,
we use three XAl techniques—3D Grad-CAM, SHAP, and
CIU—tailored for volumetric MRI data. Each method high-
lights informative regions in the 3D input space, providing
unique insights into the model’s decision-making.

@ Springer

e SHAP (Shapley Additive Explanation) [45] provides
insights into which features most impact a model’s pre-
dictions. For breast tumour classification, SHAP assigns
a value to each pixel of the image, indicating its contri-
bution to the classification result. SHAP assigns impor-
tance to each voxel based on its marginal contribution to
the model output. The Shapley value ¢; for a voxel i is
given by (11),

gi= )

SCN\i

|S|!<|N||];|I!S\ “Ripsun-ss1.

Here, N is the set of all input voxels and S is a subset not
containing the i*" voxels. Since exhaustive computation is
infeasible in 3D, SHAP is approximated using KerneISHAP
over voxel groups.

e 3D Grad-CAM (Gradient-Waved Class Activation
Mapping) [46] is a technique used to visualise the re-
gions of a 3D image that are most important for a neu-
ral network to make the decision. It functions with pre-
trained 3D models and does not require any network
modifications or retraining [43]. Highlighting the sig-
nificant patterns in the volume of the image provides an
interpretable way to understand the model’s decision-
making process. 3D Grad-CAM is extended from its 2D
form by computing gradients of the class score y© with
respect to each feature map A*(x, y, z) in the 3D convo-
lutional layer. The importance weights o, are computed
as shown in (12) and (13),

. 1 oy*
U = Z%:%:EZ: 0Ak(z,y, 2)’ (12)

LETetOAM (g y, 2) = ReLU (Z aZA’“(%y,z)) . (13)
k

where Z is the number of voxels in the feature map and
ReLU ensures retention of positive influence. The resulting
activation map is upsampled and overlaid on the MRI vol-
ume to visualise class-discriminative regions in 3D.

e Context Importance and Utility [44] focuses on utilis-
ing only relevant features to explain breast tumour
classification based on Context Importance (CI) and
Context Utility (CU). CI measures the extent to which
the utility of the output changes when the input feature
values are adjusted relative to the overall resultant im-
age. CIU operates flexibly, even as the number of im-
ages increases, by incorporating an inverse operation.
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In this process, all super-pixels are rendered transparent,
enabling the effective identification of variations occur-
ring within the breast tumours. This approach enhances
the interpretability of the model by providing detailed
insights into the significance of individual features and
their impact on classification. Given a 3D MRI volume
x € RX*Y>Z CIU computes two core metrics: CI and
CU. These are defined as (14),

CI(r) = | f(z) = f(x\,)| and CU(r) = f(z,), (14)

where f(x) represents the model’s prediction for the full

volume, x\,. is the volume with region r masked (simulat-
ing exclusion), and x,- contains only region r, with all other
voxels set to a neutral or transparent value. This formula-
tion enables CIU to generate region-specific explanations
by quantifying the contextual influence of voxel clusters on
the prediction. Additionally, the method remains scalable
and computationally efficient across high-dimensional 3D
datasets by applying masking selectively over volumetric
patches, making it particularly useful for interpretability in
medical imaging applications.

4 Experimental and evaluation set-up
To replicate the training and fine-tuning of ResNet150X, the

relevant information and parameter values are reported in
Table 2.

Table 2 ResNet150X— Hyper-parameter settings
Component

Value Description

Measures the difference
between predicted and actual
labels for binary classification.
Adjusts network parameters
iteratively based on gradient
updates from the loss function.

Loss Function Binary
Cross-Entropy

Optimizer Adam

Learning Rate 0.005 Optimized learning rate for
effective model training and
convergence.

Number of samples per train-
ing batch, chosen based on

performance metrics.

Batch Size 16

Learning Rate Cosine Annealing  Systematically reduces the

Decay learning rate over time to
refine model training.

Epochs 10 Total number of iterations
over the entire training dataset.

Dropout N/A The Proposed model relies on

GAP and residual connections
instead.
Termination  N/A
criterion

The Proposed model uses
learning rate decay, which
helps convergence without
needing to halt training early.

Hyperparameters for the ResNet1 50X model were based
on prior research [48-50], empirical tuning and task-spe-
cific optimisation. The binary cross-entropy loss function
was used for binary classification. The Adam optimiser,
known for its adaptive learning rate, was chosen. A 0.005
learning rate was set to balance speed and stability. A batch
size of 16 was settled on after tests to manage memory and
stability. Cosine annealing was used for learning rate decay
for gradual model refinement. The model was trained for
10 epochs, achieving sufficient convergence. Dropout and
early termination were not used, as GAP and residual con-
nections enhanced performance and convergence.

A comprehensive set of established performance metrics
is used to assess the proposed model, including Accuracy, F2
Score, Area Under the Curve (AUC), F2 Score and Cohen
Kappa scores [13]. These performance metrics, in particulr
F1-Score and Cohen Kappa, are crucial to understanding the
predictive capabilities of the model and its ability to distin-
guish between breast lesions accurately. The F2-score is a
metric used to evaluate the performance of a binary classifi-
cation model, emphasising recall more than precision. You
can see the formula in (15),

(1 + (?) - Precision - Recall

Fg = , 15
p (82 - Precision) + Recall (15)
where 3 = 2, Precision = Tpiipﬂ, and Recall = %,

with TP, FP, and FN representing true positives, false
positives, and false negatives, respectively.

Cohen’s Kappa is another statistical metric used to mea-
sure the agreement between a classifier and ground truth
when assigning categorical labels, accounting for the agree-
ment that might occur by chance, as you can see in (16),

_Po_Pe

K= (16)

where P, = W is the observed agreement and

P, = (TP+FP)(TP+FN)2—2(TN+FP)(TN+FN) is the

expected agreement.

Moreover, interpretability metrics, including SHAP val-
ues, CIU, and 3D Grad-CAM visualisations, provide qualita-
tive insights by highlighting the areas of input data that most
influence the model’s predictions. These tools enhance the
transparency of the decision-making process, aligning the
model’s predictions with clinical expectations. By incorpo-
rating these diverse metrics, the evaluation process ensures
a robust assessment of the DL model’s performance, rein-
forcing its reliability and effectiveness in detecting breast
Tumours from MRI images within a clinical framework.
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Table 3 ResNet150X vs baseline and state-of-the-art models on DS1. Boldfaced values indicate the best results

Ref. Year Technique Accuracy Precision Recall F1-Score

Comes et al. [48] 2024 3D BB sequence 78.74% 78.20% 79.10% 78.65%
(3D customised CNN)

Igbal and Sharif [49] 2024 Encoder-decoder architecture 94.45% 94.10% 94.80% 94.45%
with feature fusion

Song et al. [50] 2023 CNN-EfficientNet and 93.56% 93.00% 94.00% 93.50%
Transformer-PS-ViT

Igbal and Sharif [51] 2023 Swin-Transformer + 94.40% 93.80% 95.10% 94.45%
UNet

Muduli et al. [52] 2022 Customised CNN 93.14% 92.70% 93.60% 93.15%

Khamparia et al. [53] 2021 MVGG and ImageNet 94.32% 93.50% 94.90% 94.20%

Ahmed et al. [54] 2021 Customised VGG16 97.12% 96.70% 97.50% 97.10%

Shrivastava and Bharti [55] 2020 Stochastic Residual 91.41% 91.00% 91.80% 91.40%
Gradient

Zhang et al. [56] 2020 Customised CNN 94.92% 94.60% 95.20% 94.90%

ResNet150X Improved 3D ResNet150 99.15% 99.42% 99.38% 99.40%

with optimised 3D-AUM

Table 4 ResNet150X vs. baseline and state-of-the-art models for DS2. Boldfaced values indicate the best results

Ref. Year Technique Accuracy Precision Recall F1-Score

Comes et al. [48] 2024 3D BB sequence 81.52% 80.90% 82.10% 81.49%
(3D customized CNN)

Igbal and Sharif [49] 2024 Encoder-decoder 95.13% 94.80 95.30% 95.05%
architecture with feature fusion

Song et al. [50] 2023 CNN-EfficientNet and 92.46% 91.90% 93.00% 92.45%
Transformer-PS-ViT

Igbal and Sharif [51] 2023 Swin-Transformer 92.16% 91.40% 92.90% 92.14%
+ UNet

Muduli et al. [52] 2022 Customised CNN 94.63% 94.10% 94.90% 94.50%

Khamparia et al. [53] 2021 MVGG and ImageNet 96.51% 96.20% 96.80% 96.50%

Ahmed et al. [54] 2021 Customised VGG16 98.18% 97.90% 98.40% 98.15%

Shrivastava and Bharti [55] 2020 Stochastic Residual 94.55% 94.10% 94.80% 94.45%
Gradient

Zhang et al. [56] 2020 Customised CNN 93.65% 93.20% 94.10% 93.64%

ResNet150X Improved 3D ResNet150 99.42% 99.38% 99.53% 99.45%
with optimised 3D-AUM

5 Results 98.861% for tumour and 99.447% for non-tumour in DS1,

The ResNet-150X model shows superior performance and
greater interpretability, often missing in traditional methods,
compared to baseline models such as those included in the
Table 3 for comparison. For a clear and fair comparison,
the methods listed in Tables 3 and 4 were reproduced on
DS1 and DS2 using the same validation protocol, since their
original studies did not report results on these datasets.
During the validation phase, the model showed remark-
able accuracy, reaching a maximum of one hundred percent
by the eighth epoch for the non-tumour class in DS2, as
graphically reported in Fig. 4. The reliability of the model
is further supported by the fact that its precision, recall,
and F1 score were near 100% during that epoch. In the
testing phase (Fig. 5), the model achieved an accuracy of

@ Springer

and 99.104% for tumour and 99.753% for non-tumour in
DS2. These outcomes underscore the model’s exceptional
reliability and high performance across both datasets (see
performance in Fig. 6).

In data set DS1, the model exceeds expectations in accu-
racy and reliability (Table 5). Its near-perfect F2 score of
99.4% emphasises recall, ideal for medical diagnostics
where minimising false negatives is crucial. A Cohen’s
Kappa of 97.5% shows near-perfect agreement between
predictions and actual labels, accounting for chance and
providing consistency even with unbalanced datasets.

Figure 7 presents the progression of AUC, Sensitivity,
and Specificity over 10 epochs for DS1 and DS2. Both data-
sets show consistent improvement across all metrics, indi-
cating effective model learning and convergence. For DS1,
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AUC increases from 97.0% to 99.3%, with sensitivity and
specificity closely aligned, reflecting balanced and reliable
classification. DS2 shows a similar upward trend, starting
at 96.0% and reaching 99.0% AUC, confirming the model’s
robustness across varying data distributions. The non-linear
growth patterns suggest typical model training behaviour,
with rapid early improvement followed by convergence,
and demonstrate strong diagnostic potential.

ResNet150X outperforms several state-of-the-art pre-
trained models on the two datasets under investigation
(Tables 6 and 7). With an exceptional accuracy (99.154%
on DS1 and 99.428% on DS2), it outperforms its prede-
cessor ResNet-150 and advanced models like MACUNet.
It would be noted that MACUNet, leveraging multi-scale

o~ o~ o~ o~ o
v wn [ w [}
e e e e e
g o & 2 9
o
5 2 £ <
3 2 3
< (7] Q
%2 w
Dataset

attention mechanisms, performed well (94.44% on DSI
and 96.177% on DS2), highlighting the benefits of atten-
tion for feature focus. EfficientNetB7 and InceptionResNet,
which use compound scaling and inception modules with
residual connections, respectively, also seem promising but
were outperformed by MACUNet and ResNet-based mod-
els. U-Net [57] shows the lowest accuracy (77.770% on
DS1 and 81.152% on DS2), reflecting the limitations of its
vanilla encoder-decoder structure.

In a nutshell, the proposed model is very competitive and
its high accuracy, combined with XAl integration for inter-
pretability, underscores its suitability for clinical applica-
tions requiring precision and transparency, establishing it as
a robust and trustworthy solution. Figure 8 visualises SHAP
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Fig. 6 Testing and training 100
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Table 5 Reliability metrics

%Dataset F2 Score Cohen Kappa Sensitivity Specificity AUC
DS1 0.99%  0.97% 99.38%  99.13%  99.62
DS2 0.97%  0.98% 99.53%  99.54%  99.36%

contributions by colouring relevant pixels according to the
colour map scheme overlayed on MRI scans.

While the ‘input’ column shows the original image,
the ‘Raw-SHAP’ column captures both positive and nega-
tive contributions across the tumour area, and the second
‘Threshold-SHAP’ column focuses on the most significant
contributions. In other words, Raw-SHAP provides a com-
prehensive overview of the contributions made by differ-
ent areas of the input image within the model. In contrast,
Threshold-SHAP highlights the pivotal regions that are
instrumental in influencing the decision-making process.

DS1: AUC, Sensitivity, Specificity

Train Test Train Test Train

Tumor No-Tumor Tumor

DS2

Although DS1 and DS2 comprise MRI scans in the same
anatomical region, the SHAP visualisations of their respec-
tive model outputs reveal distinct differences in the spatial
distribution and intensity of the metric. Within DS1, the two
output images for each MRI scan exhibit unique intensity
distributions, with one image demonstrating more promi-
nent high-intensity regions (red) compared to the other. A
similar pattern is identified in DS2, albeit with more dif-
fuse alterations. These disparities arise from variations in
the model’s sensitivity to features within the tumour region.
This visual representation of high- and low-intensity char-
acteristics increases interpretability, allowing healthcare
professionals better to understand the decision-making pro-
cess of the proposed framework and cultivate trust in Al-
driven methodologies. 3D-Grad-CAM also overlays heat

DS2: AUC, Sensitivity, Specificity
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Fig. 7 Performance of the proposed ResNet150X over DS1 and DS2
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Table 6 Comparison with pre-trained models using DS1. Boldfaced values indicate the best results

Model Description Accuracy Precision Recall F1-Score

VGG16 Stacked CNN layers 84.33% 83.20% 84.90% 84.04%

EfficientNetB7 Scales depth, 86.95 86.50% 87.10% 86.80%
width, and resolution

InceptionResNet Combines Inception 85.69% 84.80% 86.40% 85.59%
and residual connections

DenseNet Dense connections 82.18% 81.70% 83.20% 82.44%
to reuse features

MobileNet Use depthwise separable 84.13% 84.60% 83.20% 83.89%
convolutions

U-Net Encoder-decoder 77.77% 76.90% 78.40% 77.64%
with skip connections

MACUNet U-Net with multi-scale 94.44% 94.10% 94.80% 94.45%
attention mechanisms

ResNet150 Residual connections to 97.45% 97.10% 97.80% 97.44%
fix vanishing gradients

ResNet150X Improved 3D ResNet150 99.15% 99.42% 99.38% 99.40%
with optimised 3D-AUM

Table 7 Comparison with pre-trained models using DS2. Boldfaced values indicate the best results

Model Description Accuracy Precision Recall F1-Score

VGG16 Stacked CNN layers 85.19% 84.50% 85.80% 85.14%

EfficientNetB7 Scales depth, width, 87.47% 87.00% 87.90% 87.44%
and resolution

InceptionResNet Combines Inception 88.15% 87.60% 88.70% 88.15%
and residual connections

DenseNet Dense connections to 84.13% 83.70% 84.60 84.14%
reuse features across layers

MobileNet Use depthwise separable 85.16% 85.50% 84.80% 85.15%
convolutions

U-Net Encoder-decoder 81.15% 80.30 82.00% 81.14%
with skip connections

MACUNet U-Net with multi-scale 96.17% 95.90% 96.40% 96.15%
attention mechanisms

ResNet150 Residual connections to 98.93% 98.70% 99.10% 98.90%
fix vanishing gradients

ResNet150X Improved 3D ResNet150 99.42% 99.38% 99.53% 99.45%

with optimised 3D-AUM

maps onto MRI images to pinpoint areas that substantially
impact the model’s interpretations (Figs. 9 and 10).

To show how the focus of the model on critical regions
of breast tumour evolves during training, the Epoch-Wise
3D Grad-CAM visualisations for DS1 and DS2 are reported
in Figs. 11 and 12, respectively. Early epochs (columns 1-3)
exhibit broader and less focused activations, indicating the
model’s initial exploration of general patterns in the data.
As training advances (columns 4-6), activations become
more focused on tumour regions, highlighting the model’s
ability to identify relevant features and ignore background
noise. Over epochs, high-activation regions (red and yel-
low) align more with tumour areas, showing improved
accuracy. In contrast, low-activation regions (green and
blue) fade in irrelevant areas, indicating increased boundary

identification confidence. Focus variability decreases in
later epochs, indicating convergence and learning refine-
ment, essential for reliable clinical deployment.

These heat maps for non-tumour cases emphasise the
periTumoural area around the tumour as the critical zone
for prediction, whereas heat maps for tumour cases identi-
fied either parts or the entirety of the intraTumoural area
as saliency zones influencing the network’s final decisions.
Across multiple samples, the model consistently focuses
on similar anatomical areas, reflecting a robust and reli-
able identification of key structures. Sharply concentrated
overlays in some cases suggest confident feature detection,
while more diffuse overlays indicate uncertainty or contri-
butions from multiple regions.
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Input Raw-SHAP
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Raw-SHAP Threasholded-SHAP
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Fig. 8 Example of SHAP analysis and visualisations. The colour gradation spans from —0.0010, represented by blue, to 0.0010, represented by
red, where blue denotes regions of lower intensity and red areas of higher intensity

Input Grad-CAM

Fig.9 Example of 3D Grad-CAM visualisations on DS1

Input Grad-CAM

Fig. 10 Example of 3D Grad-CAM visualisations on DS2

The examples in Fig. 13 are annotated with the last
method, namely CIU, with a threshold value of 0.01. In
the CIU-based explanation module, each 3D MRI image
is segmented into fifty superpixels-compact, homogeneous
regions that group spatially and visually similar voxels. This
segmentation helps maintain anatomical structure and local
context while simplifying the interpretability analysis. The
model then evaluates each superpixel by computing its Con-
textual Importance (CI) and Contextual Utility (CU).

@ Springer
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CI quantifies how much the prediction outcome changes
when the features within a superpixel are altered, thereby
reflecting its sensitivity and impact. CU measures how posi-
tively or negatively a superpixel contributes to the classifi-
cation decision, with values close to 1 indicating high utility
(positive influence) and values near 0 denoting negligible or
negative impact.

During inference, the CIU engine iteratively perturbs
superpixels and observes the resulting changes in model
predictions. Superpixels with the highest CI and CU scores
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Input 2

Fig. 11 Epoch-Wise 3D Grad-CAM Visualisations for DS1

Input

Fig. 12 Epoch-Wise 3D Grad-CAM Visualisations for DS2

Input CIU-Output

CIU-Output Input

Fig. 13 Example of CIU Visualisations for DS1 and DS2

are considered the most influential in the decision-making
process. These regions are visually highlighted on the CIU
output map, allowing clinicians to identify critical anatomi-
cal structures, such as tumour boundaries or peri-tumour tis-
sue, that directly influenced Al classification. This not only
enhances model transparency but also fosters greater trust
and clinical utility by aligning explanations with radiologi-
cal expectations.

In the DS1 and DS2 datasets, the CIU overlays corre-
spond to clinically relevant abnormalities [ 78], such as dense
tissue or lesions, suggesting potential malignancies. The
uniformity of visualisations between datasets indicates the

Input CIU-Output Input
¥ -

Ds2

CIU-Output

robustness of the model in identifying significant regions,
despite variations in imaging characteristics.

The utility of these visualisations in healthcare is signifi-
cant, and their application should become more prevalent.
Their function extends beyond the interpretation of mod-
els, offering substantial visual support to healthcare profes-
sionals to make informed diagnoses. In addition, systematic
analysis of the voxels helps identify subtle abnormalities
that can otherwise be missed in ambiguous cases. The CIU
visualisations also play a crucial role in Al model training
and validation. By assessing whether the highlighted regions
align with the expected clinical characteristics, experts can
determine whether the model emphasises the relevant areas
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Table 8 Ablation study showing the effect of 3D AUM and customisa-
tion on ResNet150 across DS1 and DS2. Boldfaced values indicate
the best results

Model Dataset  Accuracy  Preci- Recall F1-Score
Variant sion

Baseline DS1 97.45% 97.10% 97.80% 97.44%
ResNet150

Baseline 98.35% 98.10% 98.20% 98.15
ResNet150 +

3D AUM

Customized 98.7%5 98.65% 98.85% 98.7%5
ResNet150

Full 99.15% 99.42  99.38% 99.40%
ResNet150X

Baseline DS2 98.93% 98.70% 99.10% 98.90%
ResNet150

Baseline 99.10% 98.95% 99.15% 99.05%
ResNet150 +

3D AUM

Customized 99.28% 99.10% 99.40% 99.25%
ResNet150

Full 99.42% 99.38% 99.53% 99.45%
ResNet150X

and implement the required adjustments. In addition, these
overlays have the potential to enhance patient engagement
by visually communicating diagnostic results, thus fostering
greater confidence in Al-driven healthcare solutions.

5.1 Ablation study

The ablation study presented in Table 8 systematically
evaluates the individual and combined contributions of the
main components integrated into the proposed ResNet150X
architecture: the 3D Attention-Upsampling Module (AUM)
and the customised ResNetl150 backbone. Results across
both DS1 and DS2 datasets clearly show that each compo-
nent brings measurable performance improvements over
the baseline ResNetl50 model. Specifically, adding the
3D AUM to the baseline improves accuracy from 97.45%
to 98.35% on DS1 and from 98.93% to 99.10% on DS2.
Similarly, incorporating the customized backbone raises

performance to 98.75% (DS1) and 99.28% (DS2), with cor-
responding increases in precision, recall, and F1-score.

The full ResNet150X model, which combines both
enhancements, achieves the highest scores across all evalua-
tion metrics-99.15% accuracy on DS1 and 99.42% on DS2,
with Fl-scores reaching 99.40% and 99.45%, respectively.
This demonstrates not only the complementary effectiveness
of the two modules but also the robustness and generalisa-
tion capability of the proposed architecture. The consistent
improvement in recall and F1-score is especially significant
in clinical or critical applications, where the cost of false
negatives can be high. Thus, the ablation results confirm
that the full integration of 3D AUM and customisation in
ResNet150X leads to a statistically and practically superior
model, validating its role as a meaningful advancement over
existing baselines.

5.2 Statistical significance study

The analysis in Table 9 shows that the proposed ResNet150X
consistently and significantly outperforms a range of base-
line and advanced models across both DS1 and DS2. All
p-values are well below 0.05, indicating strong statistical
significance. Models like InceptionResNet, EfficientNetB7,
MobileNet, and 3D BB CNN show large negative t-statis-
tics (e.g., -83.27 on DS1 and -57.51 on DS2 for Inception-
ResNet), reflecting a clear and consistent performance gap in
favor of ResNet150X. These negative values arise because
each model is statistically compared against ResNet150X,
which consistently exhibits higher average scores. Even the
base ResNet150 shows significant inferiority, underscoring
the impact of the proposed enhancements.

ResNet150X achieves this improvement by integrating
3D Attention-Upsampling Modules (AUM), a customised
ResNet150 backbone, and explainable Al (XAI) compo-
nents. These features enhance both interpretability and rep-
resentational capacity, helping the model capture deeper
semantic information while maintaining training stability.
Its consistent superiority across two datasets highlights

Table 9 Statistical comparison of top models against ResNet150X on DS1 and DS2

Model DSI1 DS2
T-Statistic P-Value T-Statistic P-Value

InceptionResNet -83.2663 0.000840 -57.5133 0.000008
3D BB CNN [48] (2024) -86.0256 0.000948 -83.8527 0.000003
EfficientNetB7 -64.9866 0.000364 -74.2339 0.000003
MobileNet -49.5198 0.000248 -112.7337 0.000001
Stochastic Gradient [55] -67.8402 0.000712 -38.6475 0.000017
DenseNet -45.3902 0.000441 -94.7456 0.000001
U-Net -50.1372 0.000830 -60.6312 0.000008
Custom CNN [52] -31.2398 0.000261 -33.4653 0.000033
SwinTrans+UNet [51] -43.1773 0.000053 -27.3620 0.000092
ResNet150 -17.7481 0.000829 -7.0587 0.002380
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Table 10 Performance of the proposed ResNet150x under varying class imbalance ratios for DS1 and DS2. Boldfaced values indicate the best

results
Dataset Class Ratio Accuracy Sensitivity Specificity F1
Tumour non-Tumour Tumour non-Tumour
1:1 (Balanced) 99.50% 99.00% 99.70% 99.40% 99.80%
S1 1:3 (Moderate Imb.) 99.65% 95.00% 99.85% 94.10% 99.90%
1:9 (Severe Imb.) 99.78% 88.00% 99.95% 86.50% 99.96%
1:1 (Balanced) 99.60% 99.30% 99.78% 99.50% 99.83%
DS2 1:3 (Moderate Imb.) 99.72% 96.00% 99.90% 95.20% 99.93%
1:9 (Severe Imb.) 99.85% 89.50% 99.97% 87.30% 99.98%

strong generalisation ability, making it a reliable and effec-
tive solution for complex classification tasks such as those
in medical or visual domains.

5.3 Dataimbalance study

To investigate the effects of class imbalance, we conducted
a controlled simulation using three different class distribu-
tions between Tumour and non-Tumour cases: balanced
(1:1), moderately imbalanced (1:3), and severely imbal-
anced (1:9). Table 10 summarises the impact of these distri-
butions on classification performance across both DS1 and
DS2 datasets.

The results reveal that while overall accuracy marginally
improves as the imbalance increases (e.g., DS1: 99.50% to
99.78%). A closer examination shows a sharp decline in
Tumour sensitivity and F1-score—from 99.00% to 88.00%
and 99.40% to 86.50% respectively in DS1—as the model
becomes biased towards the overrepresented non-Tumour
class. Meanwhile, non-Tumour specificity and F1-score
continue to rise, indicating a skew in favour of the major-
ity class. A similar trend is evident in DS2. These findings
highlight the importance of using class-aware evaluation
metrics and balancing techniques to mitigate the risks asso-
ciated with real-world class imbalances, particularly in criti-
cal domains like medical diagnosis.

6 Conclusions and future work

The proposed framework, using 3D DCE-MRI images and
three XAl techniques, achieved test accuracies of 98.861%
for tumours and 99. 447% for non-tumours in the first data-
set DS1 and 99. 104% for tumours and 99.753% for non-
tumours in the second dataset DS2, proving its effectiveness
in breast cancer diagnosis. The inclusion of XAI enhanced
the framework’s transparency by highlighting image regions
affecting predictions, thus boosting credibility and under-
standing in healthcare. Despite obtaining an exceptional
accuracy and high values in all the other metrics, there are
areas where improvement can still be made. For example,
the dataset may not reflect the variety of tumour types and

imaging modalities encountered in real-world settings. Fur-
thermore, the proposed framework’s reliance on MRI as the
sole diagnostic tool restricts its applicability in multi-modal
diagnostic settings. Consequently, forthcoming research
endeavours to enhance the model through the incorporation
of additional images to secure a more varied dataset, the
integration of multi-modal imaging data, and the employ-
ment of attention mechanisms that are presently underuti-
lised for this task.
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