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ABSTRACT: The extremely narrow natural linewidths of rovibrational energy levels
in the molecular hydrogen ion H,", and the prospect of synthesising its antimatter
counterpart H, , make it a promising candidate for high-precision tests of fundamental
symmetries such as Lorentz and CPT invariance. In this paper, we present a detailed
analysis of the rovibrational spectrum of the (anti-)hydrogen molecular ion in a low-
energy effective theory incorporating Lorentz and CPT violation. The focus is on the
spin-independent couplings in this theory, and especially the CPT odd couplings for
which the best current bounds come from measurements of the 15-25 transition in
atomic hydrogen and antihydrogen. We show that in addition to the improvement
in these bounds from the increased precision of the transition frequencies, potentially
reaching 1 part in 10'7, rovibrational transitions in the H,” and H, molecular ions
have an enhanced sensitivity to Lorentz and CPT violation of O(m,/m.) in the proton
(hadron) sector compared to H and H atomic transitions.
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1 Introduction

Local relativistic quantum field theories are the foundation of our current understanding
of elementary particle physics. Together with microcausality, their basic principles of
locality and Lorentz invariance imply the existence of antimatter and the necessity of
CPT invariance as an exact symmetry of nature [1-4].

Given their essential role in our current theories, it is crucial that these fundamental
principles — Lorentz invariance, CPT symmetry and locality — are tested experimentally
to the highest possible precision [5]. To achieve such ultimate standards of precision,
however, it is necessary to look beyond high-energy particle physics experiments to
fundamental atomic physics, especially spin-precession measurements on elementary
particles and atomic spectroscopy. For example, by comparing cyclotron frequencies,
the BASE experiment at CERN has established the equality of the charge-to-mass ratios
of the proton and antiproton to 16 parts in 10'? [6], while the ALPHA collaboration has
measured the equality of the 15-295 transition in antihydrogen with that of hydrogen
to 2 parts in 10 [7], both key tests of CPT invariance.

The progress made in recent years by ALPHA in cooling, trapping and investigating
antihydrogen has opened an era of high precision anti-atom spectroscopy, and future
developments will push towards the benchmark precision of O(107!%) achieved for the
15-2S transition in hydrogen. Already several transitions have been studied in detail,
including 15 hyperfine [8] and 15-2P [9] transitions in addition to 15-2S [7, 10], and
the results interpreted theoretically in terms of constraints on CPT violation.

In this paper, building on the work of [11], we extend the theoretical analysis of
Lorentz and CPT symmetry breaking from (anti-)atoms to (anti-)molecules, in particu-
lar the molecular hydrogen ion Hy™ and its antimatter counterpart, H, . The compelling
feature of molecular ions for precision tests of fundamental symmetries is the existence
of long-lived, extremely narrow linewidth, rovibrational states in which the two bound
(anti-)protons make transitions between energy levels E,y characterised by discrete vi-
brational and orbital angular momentum states, labelled here by v and N respectively.

These rovibrational transitions offer the possibility in principle of testing Lorentz
and CPT invariance at up to O(10717) [14, 15]. In addition, as we show here, the nature
of rovibrational states of the bound protons makes it possible to isolate the potential
violation of Lorentz and CPT invariance in the proton (or more generically, hadron)

!For a comprehensive recent review see [12]; earlier work is described in [13].



sector from the combined electron-proton effect observable in atomic spectroscopy. We
show here that this feature alone gives an enhancement of O(m,/m.) ~ 10* in the
precision of constraints on CPT violation from rovibrational transitions with molecular
ions compared to those possible with atoms alone.

The theoretical framework we use to discuss Lorentz and CPT violation is a low-
energy effective theory in which the QED Lagrangian is extended to include Lorentz
tensor operators with fixed couplings. These couplings may be thought of as the vacuum
expectation values of new tensor fields which, unlike the familiar case of the scalar
Higgs field VEV, necessarily spontaneously break Lorentz, and in some cases also CPT,
symmetry.

This framework is more generally known as the Standard Model Extension (SME)
[16, 17] and for many years has been used extensively to systematise constraints on
Lorentz and CPT symmetry breaking from a wide variety of experimental data [19]. In
the form we use in this paper, the Lagrangian for a single Dirac fermion field ¢ (x) is
extended to include a set of Lorentz tensor operators as follows:
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To understand the structure of the SME couplings, recall that the standard basis for
the 16 possible 4 x 4 matrices acting on the Dirac spinor is I' = 1, 4%, 4#, y54*, o#,
respectively scalar, pseudoscalar, vector, axial vector and tensor. The basic operators
then take the form Iy, and we can then add increasing numbers of derivatives, which
increases the dimension of the operator.

Restricting to operators with dimension < 4 leaves the theory renormalisable, just
like the Standard Model itself. This restriction is known as the minimal SME. If on
the other hand the SME is regarded as a low-energy effective theory, valid below some
very high energy scale A, then we may include higher-dimensional operators. The

corresponding couplings, such as a have negative mass dimensions. Here, we keep

2N
only the renormalisable couplings in the expansion (1.1) except for the inclusion of
the coupling a,,,, of the higher dimensional operator PpyrO¥ 0N, since this gives the
leading spin-independent contribution to the difference of the Hj and H, spectra. As

usual we assume that like the electron, the proton itself is effectively described by



this Lagrangian, with its own distinct couplings, despite it being a bound state of the
fundamental quarks,

In this paper, our main focus is on the ‘spin-independent’ couplings ¢, and a,,
(so-called because in the non-relativistic limit they do not couple to the spin operator;
see (3.1)), though we comment on spin and the hyperfine structure of Hj and H, in
section 7. These couplings are not observable in spin precession experiments and are
therefore much less stringently constrained than the remaining, spin-dependent, cou-
plings b,,d,,., H,, and g,,. Indeed the best existing laboratory constraint on the CPT
violating coupling a,, comes from the ALPHA antihydrogen 15-2S measurement.

The SME has important advantages in analysing potential violations of Lorentz and
CPT symmetry. It provides a systematic parametrisation of possible symmetry breaking
effects in terms of a standard set of couplings, which allows quantitative comparisons
between experiments. It also makes it very clear that Lorentz and CPT violation may
occur in many different ways and show up in some experimental measurements while
remaining entirely hidden in others.

For example, it is entirely possible for CPT violation to be absent in the antihy-
drogen 15-2S transition, yet appear in transitions such as 15-2P involving states
with non-zero orbital angular momentum, since these involve different SME couplings
(see section 7). This is an important motivation to pursue an extensive programme of
high-precision measurements of many different spectral transitions in H and H, also in-
cluding searching for sidereal and annual variations of the transition frequencies which
would be a clear indication of Lorentz violation.

On the other hand, the symmetry breaking realised in the SME is comparatively
mild and, as we have mentioned above, can be interpreted as spontaneous symmetry
breaking in a theory which maintains all the essential features of local relativistic QF'T,
including Lorentz covariance. In particular, the usual equality of masses of particles
and antiparticles (and of course their identical, but opposite, charges) is maintained in
the SME, since the Lagrangian (1.1) is built on the original local causal fields of QED.
We should therefore keep an open mind about more radical alternatives, including
non-local theories, even though they generally lead more immediately to fundamental
problems with unitarity and causality (see, for example, [5]).

The analysis of the molecular H," ion described here is based on the traditional
Bohr-Oppenheimer approximation, in which the 3-body problem is separated into two
Schrodinger equations. The first describes the electron wavefunction at fixed nucleon



separation R. The corresponding energy eigenvalues are then interpreted as an inter-
nucleon potential Vy;(R) (Fig. 1) in a second Schrodinger equation describing the rovi-
brational motion of the nucleons. The SME is introduced perturbatively as a non-
relativistic Hamiltonian (see (3.1)) derived from the Lagrangian (1.1).

The application of the SME to the hydrogen molecule and molecular ion has been
previously studied in [11] (see also [20]). In this paper, we develop and extend this work
in a number of important respects. First, we develop a systematic perturbation theory
to determine the rovibrational energy levels and their SME corrections in terms of the
potential Vj;(R) including anharmonic contributions. We see how these are essential
to give an accurate characterisation of the rovibrational energy spectrum from which
to evaluate the contribution of the SME couplings.

Most importantly, we include the Lorentz and CPT violating couplings for the
protons, as well as the electron, which were not considered in [11, 20]. These have
two roles. Along with the electron SME couplings, they modify the inter-nucleon
potential and consequently the rovibrational energies. The dependence on the electron
and proton SME couplings from this mechanism is identical to that encountered already
in the single atom energy levels. However, the proton couplings also enter directly in
the nucleon Schrodinger equation. We show here that the different mass dependence of
the coefficients of the SME couplings in this case results in the O(m,/m.) enhancement
in sensitivity to CPT violation in the proton sector highlighted above.

We present our results in terms of the following expansion of the rovibrational
energy levels:

EUNMN = VSeME —+ (1 + 5SME) (U —+ %) Wy — (Q?o + xSME) (’U —+ %)2(,00
+ (B[) + BSME) N(N + 1) Wy — (D() + DSME) (N(N + 1))2 Wo

— (Oéo—i—OéSME) (v+%)N(N+1)w0 + ... (12)

We show that the coefficients here satisfy a hierarchy in terms of the small dimensionless
parameter A = 2/(m,wy R3) = 0.027 (where wy is the fundamental vibration frequency
and Ry is the mean bond length in the absence of centrifugal and SME corrections),
with &y, o, Bo, o, Do of order 1, X\, X\, A2, A3 respectively. Each of these coefficients
is itself a perturbative expansion in A2

The SME coefficients dsug, Bsvg, ... are themselves the sum of electron and
proton parts, reflecting the two ways described above in which the SME couplings
influence the rovibrational spectrum. We determine explicitly how these coefficients



depend on certain combinations of the spin-independent SME couplings ¢, and a,,
in the Lagrangian (1.1). In a standard spherical tensor notation [17], these are denoted
chRw g JBw - and alRY) where w = e,p. Of these, the (200) couplings are
constrained by the two-photon 15 -2S transitions in atomic H and H, while the (220)
only appear in the single-photon 15 -2P transitions for which the natural linewidth is
much broader and the constraint on the SME couplings correspondingly weaker. Both
may be equally extracted from rovibrational transition data on the molecular ions
H," and H, . The dependence on the (220) couplings introduces the My dependence in
E,nu, and shows that even the spin-independent couplings contribute to the hyperfine-

Zeeman levels for N # 0.

The paper is organised as follows. The Born-Oppenheimer approach is reviewed
briefly in section 2 and extended to include the SME in section 3. Section 4 and
Appendix A are devoted to solving the electron Schrodinger equation in the presence of
the SME couplings, including numerical evaluations of the relevant expectation values.
In section 5 and Appendix B we develop a systematic perturbation theory for calculating
the SME contributions to the rovibrational energies for Hy in terms of the inter-
nucleon potential Vj,(R) and its derivatives in two complementary ways. Section 6
then describes the quantitative effect on the rovibrational spectrum.

Finally, in section 7 we take a first look at the rovibrational transitions arising
from E,npu, in (1.2) in comparison with analogous results for electron transitions in
single H and H atoms, and discuss the constraints on the SME couplings that could be
obtained from measurements of rovibrational frequencies with Hy and H, , including
the search for sidereal and annual variations. We also comment briefly on the hyperfine-
Zeeman spectrum, where both the spin-independent and spin-dependent SME couplings
contribute to the energy levels. This is described in detail in a sequel to this paper [18],
which we refer to as Paper 2.



2 Born-Oppenheimer analysis of the hydrogen molecular ion

We begin by reviewing the standard analysis of the spectrum of the hydrogen molecular
ion HJ in the Born-Oppenheimer approximation, before introducing Lorentz and CPT
violation in section 3.

The starting point is the 3-body Schrodinger equation for the bound state. We
denote the positions of the nucleons as 71, r5 and the electron as r., with corresponding
momenta p,, p, and p.. For generality, we temporarily allow the masses m; and ms
to be different in this section. The Hamiltonian is

2
Hmol = Z 2pw + Vmol(Ra T1€7T26) ) (2]‘)

m
w=1,2,e w

with the electromagnetic potential,
1 1 1
Vmol(Ra e, TZe) =« (_ - - _) ) (22)

where R = |ry — 13|, 11 = |71 — 7|, T9e = |72 — 7| and « is the fine structure constant.

Next, we introduce CM variables for the coordinates and momenta. Iterating the
standard construction for a 2-body system, we define

1
R:T1—T2, r:re—M(m1r1+m2r2)
1
RCM = M (m1r1 +m2’l"2 +m37°3) s (23)

with M = my + my and M = m1 + ms + m,, so that R is the inter-nucleon separation,
r is the electron position relative to the nucleon CM, and R¢), is the position of the
CM of the whole molecule. The corresponding momenta are

1

. 1 .
P =R = M(mgp1 —mip,) , p = jr = E(Mpe — me(py +P2))

Pey = MRy = Py +Dy + P, (2.4)

where we introduce the reduced masses y = mymso/M and i = m M/ M. The relative
motion of the nucleons is then treated as that of a single particle at position R with
momentum P and reduced mass pu.



With these definitions,? the kinetic term in the Hamiltonian (2.1) becomes simply

2
Py . I Lo
- _p — —PZy 2.5
om. ol Tl tgyfom (2.5)

The Schrédinger equation for the molecule wavefunction V(R, r, Royy) is therefore

1 1 1,
(_ZVRQ — ﬁvrz — ﬁVRCM + Vmol<Ra r167r26)> \I](RaraRCM)

— EV(R,r,Roy) - (2.6)

Of course since we are not interested in the bulk motion of the molecule, from now on
we set the CM momentum Pcj, to zero, and equivalently neglect the V% oy tETI N
(2.6).

The Born-Oppenheimer approximation® now consists of separating the Schrodinger
equation into two parts. Writing the molecular wave function ¥(R,r) = ®(R) ¢(r; R),
we first solve the Schrodinger equation for the electron wavefunction ¢ (r; R) for fixed
nucleon separation R. The energy eigenvalues E.(R) = Vj,(R) then appear as a poten-
tial in the effective Schrodinger equation for the nucleons, which determines the rovibra-
tional energy levels of the molecular ion. We therefore write the “electron Schrodinger
equation”,

21A V2 + Viaa(R, rle,r26)> (r;R) = E.(R)Y(r;R) . (2.7)

(-
We also restrict to the electron ground state 1so,. Substituting back into (2.6), the
“nucleon Schrodinger equation” is then

(—%v; ; VM(R)> ®(R) = EO(R) . (28)

Finally, exploiting the spherical symmetry of the molecular axis in the fixed frame of
the experiment (denoted EXP, see section 3) to write ®(R) = £¢(R)Ynury (0, ¢) in
terms of spherical harmonics, we find

(_idd_m N ﬁz\r(z\u 1) + VM(R)) 6(R) = E,x ¢(R) (2.9)

2Notice that with these definitions, in contrast to defining the electron momentum relative to the
geometric centre of the molecule, there are no mixed terms in the momenta of the form P.p in (2.5)
and the Schrédinger equation (2.6) even for a heteronuclear molecule with my # ma.

3A detailed justification of the Born-Oppenheimer method may be found in most standard text-
books; see, for example, [21].



Here, we follow the widely-used convention of denoting the discrete vibrational energy
states by the integer v and the nucleon angular momentum states by N, My, with My
the 3-component with respect to the EXP frame.

An approximate solution to the electron Schrédinger equation, based on an R-
dependent ansatz for the wavefunction ¢(r; R), is discussed in detail in Appendix A.
The method is essentially standard, but we require some special features and numerical
results which ultimately feed into the coefficients of the Lorentz and CPT violating cou-
plings constrained by the rovibrational spectrum of the (anti-)molecular ion. Inserting
the resulting R-dependent energy eigenvalues into the nucleon Schrodinger equation
then gives an inter-nucleon potential of the typical Morse potential form illustrated in
Fig. 1 in section 4.

For Hy , this has a minimum at Ry ~ 2ag (where aq is the Bohr radius) about which
the nucleons undergo approximately simple harmonic motion with angular frequency
wo and integer vibrational quantum number v. For Hy , wy =~ 0.02 Ry, where Ry is the
Rydberg energy, 13.6eV. The spherical symmetry implies that the rovibrational energy
levels depend only on the nucleon orbital angular momentum quantum number N, and
not the component Mpy. As we see in the next section, however, this is no longer true
when the Lorentz and CPT violating interactions are introduced.

Solving the nucleon Schrodinger equation then allows the rovibrational energy levels
E,N to be written as an expansion in (v + 3) and N(N + 1), viz.*

By =@+ Hwy — zo(v + 3)%wp
+ BoN(N+1)W0 — ao(v+%)N(N—|—1)w0 — DO(N(N+1))2w0 + ...,
(2.10)

where w? = Vy;(Ro)/p. It will be very useful in organising this expansion to introduce
the small dimensionless parameter A = 1/(puwoR2), which for Hy is A ~ 0.027. From
(2.9) it follows directly that at leading order, By = A\/2. In fact, all the coefficients are
themselves power series in A, determined by higher derivatives of the potential Vy,(R),
with their leading terms displaying a hierarchy in this small parameter. In section 5,
we show explicitly that the leading terms for zy, o and Dy are of order A\, A\? and A3
respectively.

Explicit analytic expressions for these coefficients will be given later, and evaluated
numerically to a precision sufficient to determine the prefactors of the contributions of

4The notation here is relatively standard (see e.g. [22]), but note that we have taken out a common
energy factor wy so the coefficients By, xg, ag, Dy, . . . here are all dimensionless.



the Lorentz and CPT violating couplings to the rovibrational energy levels. Of course,
extensive calculations in high-order QED carried out over many years have determined
them to extremely high precisions of a few parts in 10'2, enabling direct comparisons of
experiment with ab intio theory (see e.g. [23]), but this sort of precision is not needed
for our purpose here.

3 Born-Oppenheimer analysis with Lorentz and CPT violation

In this section, we extend the Born-Oppenheimer analysis of the H; molecular ion to
include the effects of possible Lorentz and CPT violation.

We start from the non-relativistic Hamiltonian derived from the SME Lagrangian

(1.1) for a single Dirac fermion:
NR  _ k N k 'y

Hygg = (A +2BS*) + (C; + 2DyS )E + (Eyj + 2F;S )W , (3.1)

where S* is the spin operator. Since QED conserves parity, the leading perturbative

contributions to expectation values from C; and D;; vanish, while A gives only a com-

mon addition to the energy levels and does not affect the spectrum. In terms of the

fundamental SME couplings, the relevant coefficients for spectroscopy are [17, 24, 25|

Bk = - bk + mdkO + %kan(Hmn - mgmn()) ;
Eij = — m(c,-j + %Coo 51]) + m2(3 aol'j + apoo 51]) s
Fijr = 5(bk6i; — bj i) + m (doj + 5 djo)0ir — 10ik€jmn Hmn
— M E€ikm (gm()j + %gmjo) . (3.2
To keep the presentation reasonably simple, and because the spin-dependent cou-
plings are experimentally already far more constrained than the spin-independent cou-

plings, we discuss mainly the spin-independent effects in this paper. These arise from

the coupling combinations Efj,

sis of the spin-dependent contributions is then conceptually largely straightforward and

EF; for the protons and electron respectively. The analy-

will be briefly introduced in section 7, where we discuss some aspects of the spectrum
including hyperfine-Zeeman splittings.

With the inclusion of the Lorentz violating couplings, we need to be especially
careful in specifying the reference frame in which the components are defined. Alto-
gether, there are four frames of reference which are relevant to our discussion of the

— 10 —



molecular ion. In order to compare constraints on the SME couplings between different
experiments it has become standard practice to quote bounds ultimately in terms of
a standard Sun-centred frame (SUN), which is in turn related to a “standard labora-
tory frame” (LAB). The precise definitions of these standard frames and the coordinate
transformations relating them may be found, for example, in [20].

Here, we are mainly concerned with two further frames. An “apparatus frame”
(EXP), with basis vectors e; (i = 1,2,3), is chosen which is specific to the particular
experiment and, importantly, in which the angular momentum components considered
below are defined. Typically it will be chosen such that the es basis vector is aligned
with a background magnetic field. We define the nucleon rotational quantum numbers
N, My with respect to this EXP frame. Importantly, the SME couplings E;; are, as
indicated by the indices, also expressed here in the EXP frame.

Finally, in particular in the solution of the electron Schrodinger equation, we will
also work in a frame (MOL) with basis vectors e, (a = z,y, z) with the z—axis aligned
with the inter-nucleon, or molecular, axis.

To implement the Born-Oppenheimer analysis in this theory, we first rewrite the
SME Hamiltonian in terms of the CM momenta introduced above. For Hj , the reduced
masses are = my,/2 and i = m, (1 +m,/2m,)”" and we find, keeping only the Fj;
couplings,

AHgyg = %Ei’] P'PI + (2—;2151; + %E%)pipj : (3.3)

P P e
Notice that there is no mixed momentum term proportinal to P’p’ in this SME Hamil-
tonian. This is a special feature of the homonuclear case, where m; = mo, and is not

true for heteronuclear molecular ions such as HD™.

Splitting the Schrodinger equation for the molecule in the Born-Oppenheimer ap-
proximation as above, and evaluating throughout in the MOL frame, we therefore find

(<572 + Vialrera) + (a2 + s Pl ) wiriB) = E(R)(rsR),

(3.4)
where we understand p — —iV,. We write E.(R) = Vi (R) + Viyugp(R) here to
remember that V§p(R) depends on the orientation (6, ¢) of the molecular axis in the
EXP frame, but through the SME couplings alone. The relation of these couplings in

the MOL and EXP frames is calculated in the next section.

- 11 -



The nucleon Schrodinger equation, which is expressed in the EXP frame, is then

1 . 2 Py
(_EV% + Vu(R) + Viup(R) + WEZP PJ) ®(R) = Euxnuy @(R) . (3.5)
P
We see here that with the Lorentz and CPT breaking term Vg (R), the usual spherical
symmetry of the unperturbed nucleon Schrodinger equation is broken. In turn, the
degeneracy of the rovibrational energy levels at fixed N is broken and they acquire a
dependence also on the quantum number M.

Notice also how, perhaps unexpectedly, the proton SME couplings appear already
in the Schrodinger equation for the electron and so modify the effective potential for
the nucleon motion as well as their direct appearance in (3.5). To simplify notation,
from now on we use the abbreviated notation notation E~’f] = E5+3(m2/m2) EY;. Note
that despite the small pre-factor, we should not immediately drop the second term as
we have no a priori knowledge of the relative sizes of the SME couplings for different
particles (see also section 7).

Next, expressing ®(R) in terms of spherical harmonics as before, we may write the
analogue of (2.9) as follows:

(_i % + QuleN(N+ 1) + Vu(R) + VSeME(R)) O(R) = Eynary ¢(R) , (3.6)

where

VSEME<R> = <NMN| VSGME(R) |NMN> = /dQ YJTIMN(Qvgb) ‘/éeME(R) YNMN(Q’ Cb) :
(3.7)
The contribution of the Ef; term in (3.5) to the total rovibrational energies E,nus, is
calculated in first order perturbation theory by evaluating (P'P’) in the unperturbed
nucleon state. Defining

2 .
AB4p = 5 Bl (v NMy| PP [o NMy) | (3.8)
p

we finally have
Eonvy = Eonmy + AESg (3.9)

In the following sections, we solve these equations and evaluate the SME corrections
to the rovibrational energy levels.

- 12 —



4 Electron Schrodinger equation and inter-nucleon potential

We are now in a position to determine the inter-nucleon potential Vj;(R) by solving the
electron Schrodinger equation (2.7). We then include the Lorentz and CPT breaking
couplings and evaluate the potential Vgz(R) in (3.6) and its consequent effect on the
rovibrational energy levels.

The detailed calculations of the energy eigenvalues and momentum expectation
values in the absence of Lorentz and CPT breaking are described in Appendix A, so
here we just summarise the essential features. We start from the following ansatz for
the electron wave function, as always in the 1so, ground state,

1
¢(T’R) = 2(1 +]0(R)) (wH(rlevR) + ¢H(T26’R)) ) (41)
where
Yu(r;R) = ,775};3)3 e V(B)r/ao (4.2)

and the overlap function [y(R) ensures the wavefunction is correctly normalised. The
¥y (r; R) are hydrogen 1s wavefunctions with reduced Bohr radius ag, modified by an
interpolating function (R) which adjusts the effective Bohr radius according to the
inter-nucleon separation R [11]. This function is determined numerically by minimising
the energy eigenvalue E.(R) for each value of R. It is also constrained physically to
take the values v(0) = 2 and (R) — 1 for large R. This ensures the wavefunction
reduces to that of a hydrogen-like atom with Z = 2 as the nucleon separation goes
to zero, while for large separations the molecule effectively separates into an isolated
proton and a single hydrogen atom in the 1s state with the usual Bohr radius.

With «(R) set to 1, the energy eigenvalues may be calculated analytically in terms
of elementary integrals, and we find a simple expression for E.(R) = K;(R) + U;(R)
in terms of the corresponding kinetic and potential energies, with

Ki(R) = a j 7 (1 +(1+R— §R2)e—3) : (4.3)
and
U\(R) = % - ffo) (1 + % +2(1+ R)e R — (1+ %)em) L (44)

where Io(R) = (1 4+ R+ 3R?) exp(—R).”> Reinstating v(R), the energy E.(R) may be
deduced from these results by inspection, following through the appropriate rescalings.

SHere we are using atomic units (see Appendix A) where R is rescaled by the reduced Bohr radius
ao and is dimensionless and energies are similarly scaled by the reduced Rydberg constant Ry .

— 13 —



This gives

E.(R) = (R Ki(v(R)R) + v(R) Li(v(R)R) . (4.5)
Inserting the interpolating function v(R) found numerically in Appendix A, E.(R) is
plotted in Fig. 1. As anticipated, it takes the characteristic Morse-like form, with a
minimum at Ry = 2.003 ag. For small R, it is dominated by the inter-nucleon repulsion
2/ R while otherwise F.(0) — —4Ry, as appropriate for an atom with Z = 2. For large
R we recover E.(R) = Ey5 = —RH, the ground state energy of a hydrogen atom.

Vu(R)
~0.90

-0.95F

-1.05F
-1.10F

-1.15F

Figure 1. The nucleon potential Vj;(R) = E.(R) as the inter-nucleon distance, or bond
length, R is varied. The minimum is at Ry = 2.003 in units of the reduced Bohr radius ay.

As explained above, in the Born-Oppenheimer approximation, the energy eigen-
value F.(R) is identified as the inter-nucleon potential Vj,(R). Its curvature at the
minimum gives the fundamental vibrational frequency wg of the molecule. We find

1 " -

The expectation values for the momentum, required to evaluate the potential

that is, wg = 0.275eV.

V$ur(R) are given by

() = - / & ap(r: R) VOV 4 R) | (4.7)

where we are working in the MOL frame where the z-axis is aligned with the molecular
axis. Cylindrical symmetry then implies (p®p®) = (p¥p?), while (p?p®) vanishes for
a # b. WIth v(R) set to 1, we find the analytic expressions

b = 0P = g (R (18)

— 14 —
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(pp*) = 30T (1+(1+R—-PR»e ). (4.9)
Reinstating v(R), in this case we have
(p0")(R) = (R (pp" )1 (v(R)R) . (4.10)

These momentum expectation values are plotted in Fig. 2 (see also Fig. 5 in Appendix
A. Since full spherical symmetry is restored as both R — 0 and R — oo, we expect all
three expectation values to be equal in these limits and related in the obvious way to
the kinetic energy, implying (no sum on a) (p®p*) — 4/3 as R — 0 and (p®p*) — 1/3
for large R. This is confirmed in the explicit numerical solutions.

— “PuPs> 7 — Ir <p.pp>
— <D P> [ — try<pqpp>
0 2 4 6 s B 0 1 2 3 4 5 s It

Figure 2. The momentum expectation values which determine the Lorentz and CPT violating
contributions to the nucleon Schrodinger equation arising from the SME couplings of the
electron as a function of the bond length R. The left hand figure shows (p® p*) (red,upper)
and (p®p®) (blue) evaluated with the scaling factor v(R). The right hand figure is the same
for tr (p?p®) (red) and try (p® p?) (blue) defined below.

Next, since these momentum expectation values are evaluated in the MOL frame
whereas we want to express the rovibrational energies in terms of the Lorentz and CPT
couplings E;; in the EXP frame, we need to find the relation between these frames.

The rotation matrix relating the EXP and MOL basis vectors, where e; = e, Ry,

isf

cosf cos¢p cosfsing —sinf
R, = —sin ¢ cos ¢ 0 ) (4.11)
sinf cos¢  sinf sin¢ cos 6

6To transform from the MOL to the EXP frame we use the usual Euler angles, noting that only two
of the three required in general are necessary here because of the cylindrical symmetry in the MOL
frame of reference. Then R,; comprises (i) a rotation of —f about the MOL y-axis, followed by (ii) a
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The angles (0, ¢) here are the standard spherical polar coordinates specifying the ori-
entation of the molecular axis in the EXP frame.

The SME couplings are then related by

E¢ = Ry Ej (R - (4.12)

The SME potential V§g(R) = V§ur(R, 0, ¢) in (3.5) is therefore

e 1 a e
VSME<R’6)7 925) = m(P pb>Eab

1 “ -~
- W <p pb> R Eij (RT)jb (413)

e

and using the cylindrical symmetry to set (p¥p¥) = (p”p”*), we can rewrite this as

e 1 T, T z,z T, T ne
Vau(R.0,0) = — [(p p*) oy + ((p°p7) — (p"D")) (RT)iszj} B . (4.14)
This greatly simplifies the calculation, since we now only need to evaluate the symmetric
matrix

sin? @ cos? ¢ % sin? @ sin 2¢ % sin 260 cos ¢

(R")i. R.; = . sin®f sin®¢  £sin26 sing | . (4.15)

cos?d

The final step to derive the potential Vg (R) to be used in the nucleon Schrédinger
equation (3.6) is to take the expectation value in (3.7), viz.

Veus(R) = / 02 0r (6. 6) Vi (R, 0, 0) Yaoary (6, ) (4.16)

Notice that this assumes the states are eigenstates of both N and My. This will not
necessarily be the case when we consider the hyperfine-Zeeman spectrum, which we
discuss in detail in Paper 2 [18].

rotation of —¢ about the new MOL z-axis, that is

cosf 0 —sinf cos ¢ sing 0
Ry = 0 1 0 —sing cos¢p 0] .
sinf 0 cos 0 0 1
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To evaluate (4.16), first expand (R");, R.; in terms of spherical harmonics as

RT zz zg Z C YQM + ég YE)() y (417)

with
cif = [0 (R") Ry Yau(6.0) (4.18)
The combination C’ Yoo = 1/34;; follows without further calculation by noting that

tr (R, R,; =1 and tr CZJ;” = 0. In fact, we only need to calculate C’Z]y for M = 0, and
with standard normalisations of the spherical harmonics we readily find [25],

o = (1 0 0
Gy=—3ys (0 1 o, (4.19)
0 2

The expectation value (4.16) is evaluated in terms of Clebsch-Gordan coefficients
using the Gaunt integral,

. 1 /5 N
/dQ YNMN(07¢) YZM(97¢) YNMN(97 ¢) = 5\/; ng\%v :20 0%8;20 5M0 ) (4'20)

and we find

Vaue(R) = 7713 [<Pxpz>5ij
+ ((pzpz> - <pmpx>) (%\/gczj\\frﬂj\gmc]vwooo + =6 )}
(4.21)

The Clebsch-Gordan coefficients are known analytically, and simplifying we have

N My _ N(N+1)—-3M3,

Narmiz0 CNopo = ON-D(2N+3) CNMy » (4.22)

which vanishes for N = 0. Collecting these results and rearranging, we therefore find
our final result for the Lorentz and CPT violating contribution V§r(R) to the inter-
nucleon potential [11],

11
VSEME<R> = gmz

e

[(2<p“”px> +(p7p*)) trE

+ ((p°p*) — (P"P")) enmy try ES| (4.23)

— 17 —



where we define try Eij = Eu + Egg — 2533. As anticipated, the Lorentz and CPT vio-
lating couplings introduce an explicit My dependence in V,y(R)” ultimately breaking
the degeneracy of the nucleon rovibrational levels with fixed v, N.

5 Rovibrational energy levels

We now move on to an explicit derivation of the rovibrational energy levels for the
(anti-)hydrogen molecular ion, first without Lorentz and CPT violation and then incor-
porating the breaking potential V§r(R). We work analytically throughout, quoting
our final answers in terms of derivatives of Vj,(R) and V§g(R) with respect to the
inter-nucleon separation R, the latter being governed by the derivatives of the momen-
tum expectation values in (4.21). Numerical estimates for these derivatives have been
calculated in Appendix A, but we delay using these to keep maximum generality for as
long as possible. An alternative approach, potentially more systematic, to calculating
the rovibrational levels is given in Appendix B. Both approaches bring different physical
insights into the physical origin of the various contributions to the energy levels.

We now pick up the discussion from the end of section 2. The first objective is to
calculate the coefficients g, By, ag and Dy in the theory with no Lorentz or CPT vio-
lation. We start by including the angular momentum term in the nucleon Schrodinger
equation (2.9) in an effective potential Vg (R) and study the simple harmonic motion
about the minimum of this potential. So we define

Ve (R) = VM(R) +

N(N +1) . 5.1
e NV D (51)
The angular momentum term changes the mean inter-nucleon separation (bond length)
and the vibration frequency perturbatively in the small parameter A = 1/(puwoR2) that
was introduced in section 2.

First, let R,, = Ry + 0R be the minimum of the effective potential. Setting

!

Vg (Rm) =0, we find
SR 1 RoVy; (Ro)
— = MN(N+1) — (3 + 2L MEDVNNE(N(N+1))2 + ... 5.2
i (V1) = (3 ) X VOV + 1)) + (52)

"Logically, we should display the N, My dependence explicitly by writing VSME: N My (R) as we do
for the energy eigenvalues E, xar, but this notation becomes cumbersome and we suppress these labels
in what follows.
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The corresponding shift in the bond length is interpreted as “centrifugal stretching”
as the centrifugal force due to the orbital angular momentum stretches the effective
spring binding the nucleons.

Evaluating the effective potential at the new minimum gives

/ 1 "
Ve (Rm) = Veg(Ro) + ORVz(Ro) + 551%2 Vg (Ro) + ...
1 1
= Vu(Ry) + §>\N(N+ 1wy — §>\3 (N(N 4+ 1))?wy + ... (5.3)

The coefficient of this O(N(N + 1))? term is of importance later. It arises here as
a combination of two terms, one with a pre-factor —1 from the O(0R) contribution,
where it is interpreted as reduced kinetic energy due to centrifugal stretching at fixed
N, and one with pre-factor 1/2 from the O(§R)?* contribution which is interpreted as
the extra potential energy due to this stretching of the inter-nucleon bond.

Next, we need the change in the effective vibrational frequency due to expanding
about the minimum of Vg (R). Here,

1" 1" 1"

Vg (Bm) = Vog(Ro) + 0RV,g(Ro) + ...

€ €
"

Ry Vy; (Ro)

= V3, (Ro) [1 + (3 + 7 (Ro)

) AIN(N +1) + O (N(N + 1))2)] .
(5.4)

We have also calculated the O(A* (N(N + 1))?) term here, which has a coefficient
involving up to four derivatives of the potential Vj,;(R). These lead to contributions
to the rovibrational energy (2.10) of O((v+ 3)(N(N + 1))?), which are obviously very
small and are omitted in this paper for simplicity.

The new oscillation frequency w is then

"

RoV,; (Ry)

w = w1+ 1<3 "V (R)

> )AQN(N+1)+...}, (5.5)

with a corresponding contribution (v + %) w to the energy.

"

The term proportional to V,,(Ry) in (5.5), which contributes to the coefficient
o below, has an interesting interpretation in terms of “vibrational stretching” of the
bond length in the presence of an asymmetric potential. In particular, in the case of an
anharmonic oscillator with a cubic interaction, the expectation value of the position is
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shifted from the minimum of the potential.® Applying this result to the expansion of
the angular momentum term Vy(R) in (5.1),
1 (z)
Vy(R) = ~Awo N(N + 1) (1—2—+...), (5.6)
2 Ry
where we write R = Ro+x, and evaluating (z) approximating Vi, (R) as an anharmonic
oscillator, we have
(z) 1 RoVy (Ro) 1
ASAN N 3, 2.7
R 2 ViR T 57)
which reproduces the equivalent term in the energy found through the alternative route
in (5.5). This derivation makes clear that this is an increase in kinetic energy at fixed
N due to the reduction in mean bond length from (5.7).

Finally, collecting all these results, we find the coefficients in the expansion

E’UN :(/U—F%)(.Uo — (130(1)"‘%)20.)0

+ ByN(N + 1wy — ap (v+ 3NN +1)wy — Do (N(N +1))*wp + ...

(5.8)
of the rovibrational energies are
1 1 RoVy,
Bo= A, ] G P
° 73 a =53
1 5 (RoVy\2 1 RV
D(): _A3 ) Ty = _<—//M> __( 0//]\4) A ’ (59)
2 48 \ 'V, 16 \ Vy,

where all the indicated derivatives of V);(R) are taken at Rj.

The result for xy arises from taking into account the anharmonic nature of the
potential and including the O(v + %)2 contributions to the energy of an anharmonic
oscillator with a gz + ha* potential, where we identify g = %V](} and h = iVj\(j‘ ). These
are proportional to h at first order and ¢? at second order. The explicit formulae, which

determine ¢ in (5.9), are quoted in footnote 9.

8Consider an anharmonic oscillator with potential V(z) = % pwiz? + gz3. The expectation value
() evaluated in the unperturbed SHO states gives

3 1
<$>:_gm(v+§)~

Notice that the sign of (x) is opposite to the sign of the cubic anharmonic term in the potential.
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Importantly, each quoted coefficient is the leading term in an expansion in . At
each order, the prefactors are known numbers involving successively higher derivatives
of the basic inter-nucleon potential. We have derived these in Appendix A to a precision
sufficient for our purpose here, which is to determine the leading corrections to (5.8)
when Lorentz and CPT violating interactions are introduced.

We now need to extend this calculation to include the Lorentz and CPT violating
potential V§r(R) in the nucleon Schrodinger equation. The idea is to iterate the
effective potential method for the hierarchy of perturbations, first including only the
angular momentum term as above, then including the potential V§,s(R) as a further
small perturbation. As always, the Lorentz and CPT perturbations are considered the
smallest, and we work only to first order in the SME couplings so terms of O(Vx)?
are immediately dropped.

So here we define
Ueg(R) = Veg(R) + Voyp(R) , (5.10)

and expand about the minimum R, of Uy (R). Setting Uly(R,) = 0 with R, =

R,, + 0R,, we have
OR 1 )
o V& u(Rm) . (5.11)
R, RV (Ry) NP
We then find, repeating the steps (5.3) and (5.4) above and neglecting terms of O(SME)?,
that

Ueg(Ru) = Uer(Rm) + 0Ry Ul (Rin)

= Vg (Rn) + Vaug(Bm) (5.12)
and ,,,( |
" " e Ve Rm o/
Ugg(Ru) = Vog(Rm) + Vaur(Bm) — o Veur(Rn) (5.13)
Veﬁ(‘Rm)

the latter giving the new effective vibration frequency ws,.

The next step is to rewrite (5.12) and (5.13) in terms of derivatives at the minimum
Ry of the original potential Vj/(R), rather than at R,,. We have already found V.z(R,,)

- 921 —



and Ve}(Rm) in (5.3) and (5.4), so we just need

! 1 "
Ueﬁ(Ru) = Veﬁ(Rm) + VSGME(RO) + 5RVSeME(R0) + §5R2 VSeME(RU)
= Veg(BRm) + Vaug(Ro)

"

1 RyV, /
+ [)\2 N(N+1) - (3 + =M ) XH(N(N +1))?| Ro Véyr(Ro)
1 1
+ 5)\4 (N(N +1))* R Vs (Ro) (5.14)

which gives the Lorentz and CPT violating contributions BSyy and Dgy in (5.17)
below, then from (5.13), and after some lengthy but straightforward algebra, we find

"

1 " e// V 6/
Ueyg(Ru) = Veg(Rim) + Vaue(LRo) — V_]\//{VSME(RO)
M
" VN/ " I
+ A2 N(N + 1) | Ro Vi (Ro) — V_A’{(RO Véur(Ro) + ﬁvseME(R0)> } )
M
(5.15)
again with the understanding that all derivatives of V), are taken at R,. Here,
Vi, ReVy RV
/B = 3 — 12 noo 17 + ”{\4 . (516)
Ry Vy, Vs Vs

The new effective vibration frequency is now given by w? = w? U;;jr(RO) /Vii(Ro) and
the corresponding energy levels by (v + %)wu This gives contributions to agyy; and
0&up, defined below.

The Lorentz and CPT corrections to the rovibrational energies (5.8) can therefore
be written in the form

Exviy = Veur + (1+05yr) (0 4+ 5)wo — (20 + 28ym) (v + 5)% wo
+ (Bo + B§yg) N(N + 1wy — (a0 + agyg) (v+ 3)N(N + 1) wo
— (Do + Déy) (N(N 4+ 1)) wp + ... (5.17)
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with Ve = Véur(Ro) and coefficients,

"

1 1 [ 1 VM !

e = - — Ve - M Ve i|

SME 2 VM SME VM SME

e 1 e’
BSME = A Vv [R_o VSME}

M

. 1 1 o3 RoViar\ «or

agyg = A’ v [_ §R0 Voue + Z<1 + #) Vame
_<6+9RO_VA’2 %(RO_VAZ)Q_zR%Vﬁ’pVe/
4 vy 4\ vy 2 Vv, ) Ry SME

. 1 1o LR Vyy N 1o

Dy = N’ v [— 5 Ve + (3 + E—V]&M ) R#OVSME} : (5.18)

Notice that the wp-independent term Vg should be retained here since it depends
on the quantum numbers N, My through (4.23) and so contributes to rovibrational
transition energies in which AN # 0.

The final coefficient &) is found from the anharmonic terms as before, where
here g = %U;}(Ru) and h = iUij?(Ru)- Since we are not calculating terms involving
the angular momentum at O(v + 3)?, we may simplify Ugy(R) in (5.10) to be just
Vi (R) 4+ Véyg(R), with the corresponding simplification of 0 R, in (5.11). Then we use
the AHO energies in footnote? to extract z&g, keeping terms of first order in the SME
couplings only. There are two sources of extra terms beyond the simple extension of
xo in (5.9). The first comes from writing the derivatives at Ry rather than R,; thus,
for example, Uégp)(Ru) — V]\(f)(RO) + Vsel\fé)(Ro) + 0R, V]\(f)(RO), which produces extra
terms proportional to VSEI\;IE Next, we must remember that the frequency in the AHO
"+(R,) in (5.15). Including both corrections

energies is now w, not wp, where pw? = U,

9Explicitly, for an anharmonic oscillator with potential V = % pwir? + gx® + hat, and working to
2nd order perturbation theory in g, the kinetic energy K = p?/2u is

1 1 3 h 1\2 1 1 g
() = 52w + 5053 ((v+3) JrZ)wOfﬁu?’wS

3 o (60(v+ $)* + T)wo
1

= 3B + BP0 + EP(%)

v

where F, are the total energies at the indicated order.
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eventually gives

"

. 1[5 Vi (e Vi o Vine VAN
T = A {_ Rj it <VSME - _]\///[VSME + <<_M> - X )VSME)

Vi 12470V Vi Vi Vir
U ol e Vi vovid vy
- R (VSME - P Vi + ( AT >VSME . (5.19)

We should perhaps emphasise that while these expressions appear complicated,
the coefficients of Vgp and its derivatives are just simple numerical factors determined
by Vis(R) and have been evaluated in Appendix A. That said, all the Vj,;-dependent
terms shown in these coefficients are necessary, since there is no reason to discard those
with higher derivatives of V), as being smaller. As a check that the effective potential
method used here has indeed correctly and completely identified all the terms occurring
at the required order in A, we present an alternative, especially systematic, perturbative
method of evaluation in Appendix B.

At this point, in addition to the rovibrational energies themselves, we can deduce
expressions for the Lorentz and CPT violating effects on the mean inter-nucleon bond
length and the dissociation energy.

As well as the N-dependent centrifugal stretching, the mean bond length is also
affected by the SME couplings. This contribution, ARgy/g, is simply identified in the
effective potential method as §R, in (5.11). Expanding the potentials Vi (R,,) and

"

V.4 (Ry,) about Ry instead of R,,, we find
I ) RoVar\ «rer
ARss =~ Ve + ANV +1) (Ro Vi — (3 + W> Vaie ) |+ (520

up to higher order terms of O(A? N(N + 1))2.

We define the dissociation energy E%* as the difference between the energy of the
ground state and the value of the inter-nucleon potential in the large-R limit. The
SME correction to the dissociation energy is then,

. 1
AEéllz\fE = VseME(OO) - VSEME<R0) - §5§MEWO . (5.21)

This is evaluated explicitly in the following section, noting that since (p® p®) — (1/3)5%
as R — oo, reflecting the spherical symmetry in this limit, the second term in (4.23)
for V§p(00) vanishes.

— 24 —



The remaining contribution to the rovibrational energies comes from the direct
contribution AEg,r from the Lorentz and CPT violating proton couplings Efj in the
nucleon Schrodinger equation. Recall from (3.8) that this requires us to evaluate the
expectation value

AEg g = WEZ (vNMy| P'P? |[v NMy) (5.22)
p
in the original nucleon states |v N My), with all quantities expressed in the EXP frame.
The analysis mirrors that described in detail in section 4. First, we expand P'P7 in
spherical harmonics,

PP = P (36 SO Yau(0,0)) (529
M

where (0, ¢) are the spherical polar angles made by the molecular axis (and therefore
P) in the EXP frame, i.e. P, = |P|(sinfcos¢,sinfsin¢,cosd). Noting then that
P,P; = P*(R");,R,;, which of course is inherent in the construction of (4.15), the
coefficient C% here is identical to that found in section 4. Taking the expectation
value as in (4.20) and evaluating the Clebsch-Gordan equations (4.22), we find without
further calculation that

: 2 r1 1
ABgyp = (vN| P*[oN) — [gtrEfj — < ey try B (5.24)
p

The problem therefore reduces to finding the expectation value ( P?) of the nucleon
momentum. In this case, we do not have a simple explicit wave function solving the
Schrodinger equation, so a direct evaluation is not straightforward. However, since
P? /2y is just the kinetic energy, all we need in practice is to identify the kinetic energy
part of the total rovibrational energy E,x in (5.8). This requires examining each of the
coefficients xg, By, ap and Dy derived above and deducing on physical grounds what is
their kinetic energy component.

First, write (5.24) as
AEgp = (vN|K|vN) VS?\/IE ) (5.25)
with

2
Vame = gm—p tr Bf; — enuy try B | (5.26)
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Then, adding this contribution to (5.17), the rovibrational energies including all the
Lorentz and CPT breaking contributions are written as

Eunmy = Véup + (1 + 05ug + 05ue) (v + %) wo — (2o + 2§up + TuE) (v + %)2 Wo
+ (Bo + BSug + Bgup) N(N + 1) wo
— (a0 + agup + ague) (v + %)N(N + 1) wo
— (Do + Déyg + D) (N(N +1))2wp + .. (5.27)

Beginning with the angular momentum independent terms, x, is found to O(X) by
approximating Vj;(R) as an anharmonic oscillator with cubic and quartic interactions.
An explicit calculation, consistent with the virial theorem, shows that at O(v + 1/2)
the kinetic energy is F,/2 while at O(v+1/2)? the whole energy is kinetic (see footnote
9). It follows immediately that the corresponding coefficients in (5.27) are

‘N/STIL\/IE ) TéE = To ‘N/SGL\/[E . (5-28)

N —

n —
5SME -

Turning to the N-dependent terms, it is clear that By is a pure kinetic energy term.
However, For Dy we emphasised above there were two contributions, weighted -1 and
1/2, which arose due to centrifugal stretching. Of these the first represents a reduction
in kinetic energy, while the second is potential energy due to stretching the mean bond
length. This means we must take

BSME = By f@?\/{E ) gLME = 2Dy ‘757\/@ . (5-29)

For agp, an interpretation based on the effective potential is less clear, but a careful
analysis using the methods in Appendix B shows that it follows the same pattern as
above, and we have

AgvE = 5040 ‘7£\4E . (5'30)

Together, (5.26) to (5.30) complete the derivation of the Lorentz and CPT violating
contributions to the rovibrational energy levels.
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6 The rovibrational spectrum

In this section, we draw together all the results of sections 4 and 5 and the appendices to
describe the implications of Lorentz and CPT violation for the rovibrational spectrum
of the (anti-)hydrogen molecular ion.

First, we verify that our approximate methods describe the rovibrational spectrum
in the absence of Lorentz and CPT symmetry breaking sufficiently for our objective, that
is to constrain the SME couplings with greater precision than is possible with atomic
(anti-)hydrogen alone. For this, we need the numerical results for Vj,(R) and its deriva-
tives tabulated in Appendix A, Table 1. The key result is for the vibrational angular
frequency wo. Converting from the atomic units of Table 1 using Ry = 1 /(2fta3), we
find (with h =c=1),

2VN R
wo = ,/% = 0.020 Ry = 0.275¢eV . (6.1)
P

In standard spectroscopic units (with h = ¢ = 1), 1eV = 2.418x10* Hz = 8065.5cm ™,

so the corresponding frequency is 2218 cm™!.

The dimensionless expansion parameter )\ is then determined for the H; ion as
A = 1/(pwoR2) = 0.027. Note that this is parametrically A ~ /™.

Mp
The coefficients of the expansion (5.8) of the rovibrational energy levels,

E’UN :(/U—F%)(.Uo — 330(1)"‘%)2(.&)0

+ ByN(N + 1wy — ag (v+ 3)N(N+1)wy — Do (N(N +1))*wp + ...

(6.2)
are then found from Table 1 to be
1
By = §>\ = 0.0135, ap = 1.133)% = 0.819 x 107? |
1
Dy = §>\3 = 1.944 x 107° zo = 1.230 X = 0.033 . (6.3)

Substituting back, we find the rovibrational levels in spectroscopic units of cm™! in the
form,
E,n =2218(v+3) — 73.2(v+ 3)?
+ 2982 N(N +1) — 1.82 (v + HN(N +1) — 0.0216 (N(N +1))* + ...
(6.4)
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which may be compared with precision calculations and data.' The hierarchy of the
coefficients in powers of \ is immediately evident. A particular point of interest already
here is that the term in (5.9) involving the third derivative V,; is essential even to give
the correct sign for the O(v + £) N(N + 1) contribution. Moreover, the zq coefficient,
which is determined entirely by the higher derivative terms in Vj;(R), has the correct
value and sign to produce the narrowing of vibrational energy level splittings as v be-
comes larger, allowing roughly 20 vibrational states below the dissociation energy. Both
these observations confirm the necessity of including a full analysis of the anharmonic
terms in Vs (R) to produce a realistic match to the rovibrational spectrum and ensure
our results remain valid beyond the lowest vibrational states.

We now turn to the Lorentz and CPT violating effects in the rovibrational spec-
trum. Writing the coefficients 0§z, Béyg, - - - in (5.18), (5.19) in terms of Vi and its
derivatives using the numerical values in Table 1 gives, in atomic units,

Seup = [2.669 Vg + 7.018 Viyg ]

Béup = A[2.664 Ve ]

afyp = AN [~ 5.346 Vi — 17.084 Ve — 3.408 Vg |
Diyp = N [ —2.669 Vs + 0.897 Vg |

Toe = M = 1337V — 11738 Vi — 22.004 Vi — 5215V . (6.5)

The next step is to re-express V§g in (4.23) in atomic units, as assumed here.
Recalling Ry = 1/(2m.a?),'! we write Vs (R) as

2 1 ~ 1 1 -
Vou(R) = [gtr (" p") ol E — gtrﬂpapb) CNMy m—tryEfj] ; (6.6)

10As a reference, we compare with the corresponding result quoted in [22] (see also [23]),

E,n =2322.99 (v+ 1) — 67.361 (v + 3)?
+ 20.944 N(N +1) — 1.591 (v + L)N(N + 1) — 0.0198 (N(N +1))® + ...

Comparing with (6.4), we find agreement at better than 1% for By, less than 5% for wp, and within
around 10% for the others. This is reasonable given the very simplistic model of the electron wavefunc-
tion used in Appendix A, and will be quite sufficient for their réle below in determing the prefactors
of the SME couplings.

"UFrom now on we ignore the distinction between fi, o, Ry and Me, g, Ry which is of course
numerically very small.
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where recall the shorthand,

N(N +1) — 3M2
NMy = 9N —1)(2N +3) 6.7)

and the momentum expectation values and their derivatives take their numerical values
as given in Table 1. Substituting these values, we can express the coefficients in (6.5)
directly in terms of the SME couplings tr £; and try Ef; as follows:

e 1 re 1 e
Vés = [0.782 — tr Bfj — 0.120 exar, — try £ ]
S = [ — 1.000 — tr E¢ 272 Lty B
SME — [— .OOOEJCI' ij + 0.27 CNMy Etl‘y ij:|
Big = A L i L ey B
SME — [ — 0.666 m_etr ij + 0.112 CNMy E tI‘Y Z]}
Con = M= 2152 tr B + 0.005 Loy e
e 3 1 e 1 ~

1 - 1 =
o = A= 1620 —tr Ef + 0.065 cxary — try B ] (6.8)
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For reference, we also quote here the equivalent results for the coefficients 68y, Béyg, - - -

in the same format. From (5.26), (5.28)-(5.30) and (6.3) we find:

1 1
p p

n 1 1

. 1 1
OgvE = 1133)\2 [gptrEf] — CNMy EptryEZ}

1 1
Dy = 0.667\° [—trEfj — CNMy EUYEZ‘}
P

mp
n 1 p 1 »
28yp = 0.820 A [m—ptrEij — CNMy EtryEij} : (6.9)

We can also write the expressions for the SME corrections to the mean bond length
and dissociation energy in this form. From the leading term in (5.20), omitting the
weak N-dependence of O(A? N(N + 1)) here, we find

1 - 1 =
ARsup = [1,340EtrEfj — 0.226 cyary m—etryEfj} : (6.10)

The dissociation energy is defined in (5.21) in terms of V§g(Rp), given in (6.6),
V&g (00), where tr (p®p®) — 1 and try( p®p®) — 0, and §5ys, which modifies the
ground state energy. Substituting from Table 1, we then find

| 1 - 1 -
ABg = [=0.105 —tr By + 0.117 enary, — try B | (6.11)

where both ARgyr and AEZS, in (6.10) and (6.11) are in atomic units.

Finally, to make contact with previous work, we should express tr Efj, tryEfj and
tr £

4i» try B} directly in terms of the original SME couplings in the Lagrangian (1.1).

It is often convenient in spectroscopy applications to use a spherical harmonic
decomposition of the SME couplings. To make the translation, we need to compare
the non-relativistic Hamiltonian HJ&: in (3.1) with its equivalent in terms of the SME
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NR
njm

12

couplings ¢, and an]m in the spherical harmonic basis,

njm

where ... represents the spin-dependent couplings in By, Dy and Fjj,. Specialising to
the terms with n = 2, we then write

b = (305 + > ClfYan(h) ) ol (6.13)

and comparing coefficients of the spherical harmonics between (3.1) and (6.12), using

(4.19) for C?;

i, we identify

1 1 1

S By = —3m—— (AR — o)R) —t E1_3,/ -

m L m Jin (c200 — @200) Ty fij m (caz0 — az0)
(6.14)

with the obvious extension to EZ = B + $(m2/m2)E}, and EI. In terms of the

75
original SME couplings in (3.2), we therefore have

1 1 5 1
AR — %<Cu + 3c0) = —coo \/Eago% = Qoii + dooo

\/_ 200 6m

/5 1 [ 5
ECQNQ% = —% tI'yCZ‘j s 47T aggé = —tryamj s (615)

recalling that ¢, should be chosen to have vanishing spacetime trace [16].

Altogether, equations (5.27) with (6.3), (6.8), (6.9) and (6.14) complete our de-
scription of the dependence of the rovibrational energy levels E, s, of the molecular
(anti-)hydrogen ion on the spin-independent SME couplings.

7 Rovibrational transitions

In this final section, we take a first look at how the results in section 6 may be used to
constrain the Lorentz and CPT couplings through measurements of the rovibrational
transitions HJ, and eventually its antimatter counterpart H, , and explain why these

12Note the rather unintuitive but now standard notation (see e.g. [17]) where mass terms are inserted
in these definitions so that both cijm and aSJRm have the same dimensions, i.e. mass dimension 1 —n,

unlike the corresponding Lagrangian couplings c,, and a,,, where c,, is dimensionless.
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offer the possibility of improving existing bounds on the CPT odd spin-independent
SME couplings by several orders of magnitude. Further discussion, together with an
assessment of current and future experimental possibilities, will be presented elsewhere.

We begin by describing some basic features of the spectrum of the molecular hy-
drogen ion (see, for example, [12]). Since the 1so, electron state in Hy is symmetric,
the total nucleon state must be antisymmetric under exchange of the two protons —
this implies that for even N, the two protons are in an antisymmetric spin state I =0
(where I is the sum of the spins of the two protons), while for odd N, the spin state
is symmetric so I = 1. These two groupings are referred to as Para- and Ortho-Hj
respectively. Since HJ is a homonuclear molecule, it has no permanent dipole moment
and electric dipole transitions (denoted E1) between rovibrational states (which would
allow AN = 1 transitions) are forbidden. The remaining possibilities are single-photon
electric quadrupole (E2) and two-photon (TP) transitions, for which the selection rule
AN = 0, £2 applies (with N =0 — N = 0 transitions disallowed for E2 but permit-
ted for TP only). These selection rules therefore forbid transitions between the Ortho
and Para states, so their spectra are essentially independent of each other.

To illustrate some of the possibilities of constraining the SME couplings by precision
measurements of rovibrational transitions, we consider here just the leading coefficients
S and Bgyii from (6.9). In this case,

1 NRe  ~NRe 5 NRe  NR.
Euny = [— ﬁ(2.35me(c§o% — axp )) — A\ 1= enay (O.36me(02NZP5 — &R ))}

(o4 D [T+ ——=(300m (B8 — BR) — my(ehs” — adis”))

1
vVAar
) NRe  ~NRe NR NR
+ in CNMy (0'82 Me (012\12% - a12\12P5 ) - mp(czzop - a220p) )}

1 1
+ ANV + D |1+ —=(3.99m. (R — ) — 2my(0? — adii”))

Vi

5 NRe ~NRe NR NR
+ \/ ECNMN (O.67me(c§2% - a2N2R0 ) - 2mp(0220p - a220p) )} )

ith sNRe _ NRe ;, 1 NRp
with C300° = 00 + 3 €200 5 €lC.

The simplest case is a transition where the angular momentum quantum number
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is unchanged, i.e. Av # 0 but AN =0 (and AMy = 0). In this case,

AFEsvE .
AE Osve T O5nE

1 NRe ~NRe NR NR
= — [B.OOme(CzNO% — Ghoe®) — 1.00my,(ch00” — agos”)

vAar
+ cNMy NG (0.82 me(ég;%e — dQNQ%e) — mp(cg;%p — azNQ%p) )] ) (7.2)

This already demonstrates a number of important features. First, even for a purely
vibrational transition, the Clebsch-Gordan factor ¢y, arising with the (njm) = (220)
SME couplings implies that the transition frequency is dependent on N and My. By
comparing transitions with different /V, it is then possible to separate the contributions
from the (200) and (220) couplings, which can therefore be constrained individually.

Conversely, it is evident from (7.1) that even a purely rotational transition [26] with
AN # 0 but Av = 0 will also depend on the vibrational quantum number v through
the (220) couplings.

Furthermore, because of the different numerical coefficients of the electron and
proton terms in dgyp and Bsuvg, and Vi, by comparing different transitions where

Av # 0, AN = 0, or Av = 0, AN # 0, or both non-zero, it is also possible to

distinguish the contributions from ()5 — ajj¢) and the purely proton coupling

(012\10%” — ahe? ). Similarly for the (220) couplings. A relatively small number of rovibra-
tional transitions in Hy could therefore lead to precision constraints on all four types
of (epjt, — anyv,) couplings in (7.1).

Finally, if similar precision experiments become possible with the antihydrogen

molecular ion [27-30], then because the ¢}, couplings are CPT even while the ay\,
couplings are CPT-odd, taking the difference of the HJ and H, spectra would isolate

the dependence on the a)}, couplings. This would allow individual constraints to be

placed on all 8 SME couplings in (7.1).

To see why these constraints are potentially so powerful for the molecular ions, we
should compare with the equivalent transitions with atomic hydrogen and antihydrogen.
Keeping only the spin-independent SME couplings, we find for the 1.5;- 25, transition
[5, 20] measured for antihydrogen by ALPHA [7] (where the suffix d labels the particular
hyperfine state),

AE%%% 25, 2m [ NR NR NR NR
= © C - a € + C P a b :| . 73
N o ( 200 200 ) ( 200 200 ) (7.3)
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Notice this is only sensitive to the (njm) = (200) couplings.

To access a transition sensitive to the (njm) = (220) couplings in (anti-)hydrogen,
we need to consider a state with electron orbital momentum ¢ # 0 (in the same way
that we require N # 0 to access the (220) contributions to the rovibrational states
in (7.1)). ALPHA has measured the 1S;-2P,._ transition [9] for which we can show
[5, 20],

SME
AElsd*QPc— _ 2m6 [(CNRe o aNRe) + (CNRp o aNRp)
= 200 200 200 200
AFEis_9s VAT

V5

T 30 (1 + 3cos2n) <(C2NQR06 - a12\12%e) + (012\12%10 - ag;%p) )} )
(7.4)

where cos 7 is a magnetic field dependent mixing angle.

This brings us to the key point. Focusing on the CPT violating couplings, the
two-photon 15-2S transition in (anti-)hydrogen constrains the combination

me (300" + asne’) S Risoas (7.5)

where Ryg_sg is the relative precision of the measurement. ALPHA has measured this
transition for antihydrogen with a precision Rig o5 ~ 2 x 10712 [7], while a precision
of O(107) is known for hydrogen [31, 32]. Knowing this, the single-photon 15 -2P
transition, which is measured by ALPHA with the much weaker precision Ris_sp =~
1078 [9], constrains the (220) combination,

me (ago° + ag;%p) S Risap - (7.6)

With just four measurements, 1.5-25 and 1.5-2P for hydrogen and antihydrogen, we
are able to constrain only the combinations (7.5), (7.6) of electron and proton couplings,

and similar for the ¢NE

njm- Crucially, both the electron and proton couplings are multiplied

by me.

In contrast, for Hy , by measuring only a small number of rovibrational transitions
as indicated above, together with the equivalent for H, , we have sufficient data to
constrain all 8 coefficients. Denoting the precisions generically by R,.., in this case
we find the constraints,

NRe , 1 NRp NR p
Me (a200 + §a200 ) S/ RTOUib ) mp aQOO 5 Rrovib s (77)
and
NRe 1 _NRp NRp
Me (a220 + 5200 ) f§ R ovit ) myp Qg9 SJ R ovit ) (78)
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NR

with equivalent bounds for the ¢,;;,. Here, we have written out in full the couplings

6NRe NRe
njm njm *

their indirect influence on the electron Schrodinger equation have the same m,. mass

and a Notice that the bounds on the proton SME couplings arising from
dependence as those found in the atomic transitions. This is not true of the proton
couplings arising directly in the nucleon Schrodinger equation, which involve m,, itself.

So not only do the rovibrational transitions allow us to constrain the electron and
proton couplings separately, the constraint on the proton couplings ago%p and a§2%p is
enhanced by a factor m,/m. ~ 10° compared to the atomic transitions. This is in
addition to the potential enhancement from the greater precision of frequency mea-
surements for the rovibrational transitions, which of course is especially marked for
the (220) couplings where the precision of the 15 -2P measurement in antihydrogen is

necessarily 4 orders of magnitude below that achieved for 15-25.

In practice, by far the most stringent bounds on the proton (cgjip —QQNJ-Ifnp ) couplings

arise not from atomic hydrogen transitions but from those associated with heavier
elements, in particular **C's clock transitions [33-35]. However, unlike the molecular
ions discussed here, these do not have accessible antimatter counterparts and cannot
isolate the CPT odd couplings. From the standpoint of the SME, therefore, the unique
strength of spectroscopy of the (anti-)molecular ions Hj and H, is in providing a direct
test of CPT symmetry at high precision.

So far, we have only considered the rovibrational states to be described by quantum
numbers v, N, My and have neglected spin (see [36-38]). In general, the 1so, states in
Hy will be labelled as |v N I S F J Mjy), according to the angular momentum addition
scheme F' = I 4+ S, where I and S are the total nucleon and electron spins respectively,
followed by J = N + F'.

The hyperfine structure is then determined by a Hamiltonian incorporating 5 com-
binations of spin-spin and spin-orbit interactions, with known coefficients calculated at
O(a?) to six-figure precision in QED [36]. This simplifies greatly for the case of Para-H,"
and we illustrate our results for this case here. The energy eigenstates, at zero back-
ground magnetic field, are then |[v NS J M;) with S = 1/2 always and J = N + S.
The corresponding hyperfine interaction is simply,

Hyrps = co(v, N)N.§ = %ce(v,N) (J? - N*-5°) . (7.9)

The values of c.(v, V) for low values of v and N are given in Table 1 of [36]. It follows
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directly that the rovibrational energies are split by the value of J = N +1/2 as follows,
1
AEHFS: §CQ(U,N)N, (J:N—i-%)
1
= —§ce(v,N) (N+1), (J=N-1), (7.10)
and are degenerate with respect to M.

To calculate the SME contributions to the hyperfine states, we first express the
eigenstates |J M) in terms of the |My Mg) basis states through Clebsch-Gordan coef-
ficients as follows,

My) = S My My M, My = M; — Mg) . 11
|J M) ZCNMN2 |My Ms) (My = M; — Ms) (7.11)
Ms
Now, at the point (4.16) for the electron Vg (R), or (5.24) for the proton Vi, our
derivation of the rovibrational energies requires the evaluation of > _,, C Yo between
eigenstates, taken there to be [v N My). Using the hyperfine states |JMJ> instead, we
find

E; Z (T M| Yar |J My)

— B Z cy (oM L )? (My M| Yao | My Mg)

S

o7 M 2
= ——tl"yEU Z NM;] 2MS CN(MJ*MS) 5 (712)

in terms of the factor cypr, in (6.7). The results of these calculations are presented
in Paper 2 [18], showing in detail how the spin-independent SME couplings break the
degeneracy with respect to M of the hyperfine energy levels.

In practice, spectroscopy will be performed in a background magnetic field, which
we may use to define the 3-axis of the EXP frame, B = (0,0, B). The rovibrational
energies will therefore acquire a shift due to the Zeeman effect. Restricting again to
Para-H,", the Zeeman Hamiltonian is

Hy = g S+ B — gn(v, N)ug N - B | (7.13)

where the effective g-factor g,,(v, N) depends on the rovibrational quantum numbers
[18, 37]. It is O(m./m,) so the electron spin dominates the energy shifts. For large B,
where the hyperfine splitting is negligible compared to the Zeeman effect, the combined
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hyperfine-Zeeman eigenstates become approximately just the |v N S My Mg) states.
For intermediate magnetic fields, apart from the extremal states |J = N + %, M; =
+(N + 3)) = |[My = £N, Mg = +1) where the two bases coincide, the remaining
4N hyperfine-Zeeman eigenstates are mixed pairwise, with 2N B-dependent mixing
angles.'3

Our original derivation of the rovibrational energy levels therefore applies directly
in the large B regime where the eigenstates are essentially given by |My Mg), and
the results above with cyjs, hold, showing the extra My dependence of the energy
levels due to the SME couplings. For intermediate values of the magnetic field, the
corresponding SME energies involving chiy and adiy will depend in an individual way
on the state mixing, described in detail in Paper 2.

Our focus in this paper has been on the spin-independent SME couplings, for rea-
sons given above. Inclusion of the spin-dependent couplings is in principle a straightfor-
ward extension of the results given here, though inevitably more complicated in general
given the spin dependence of the hyperfine states. Again, our results are fully described
in Paper 2.

Finally, apart from precision measurements of rovibrational energy levels, including
a comparison of Hy” and H, as a direct CPT test, Lorentz symmetry breaking would
reveal itself through annual (and sidereal) variations in the transition frequencies result-
ing from the SME coupling contributions derived above. This analysis is well-known
(see e.g. [19]) and we only comment briefly here.

The first step is to rewrite the SME couplings in components referred to the stan-
dard SUN frame (see section 3). In general this involves a rotation from the EXP to
SUN frames, which depends on the location and orientation of the background magnetic
field of the particular experiment. Note, however, that this rotation does not affect the
isotropic (200) couplings, which retain their form in the SUN frame.

These SUN frame couplings are then subject to a Lorentz transformation with ve-
locity vg of O(107%) corresponding to the Earth’s rotation around the Sun, resulting in
small periodic variations with the Earth’s orbit. In SUN frame coordinates (T, X, Y, Z),

13For an explicit example, the hyperfine-Zeeman states in Para-H,™ with N = 2 and the associated
energy curves as a function of B interpolating between pure hyperfine and large-B Zeeman states, see
sections C, D and Fig. 2 of the Supplementary Material of [12] and Paper 2 [18].
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the orbital velocity is
Vg = Vg (sinQ@TeX —cos QT (cosney + sinnez)> : (7.14)

where (g is the orbital frequency and 1 = 23.4° is the tilt angle between the Earth’s
equator and the orbital plane. The isotropic SME couplings in the rovibrational energy
levels are simply f CQNO% = 3;1 (SCTT + CKK) = 65 crr and — aIQ\IORO = arrr + arKK.
Applying a Lorentz transformation with vg then gives the perlodlc variation of the
combinations of isotropic SME couplings appearing in the rovibrational energies (7.1)
as,

1 NR NR) __ - 5
o Oa (6200 a200) = Vg sin Q@T<3—chT — baxrr — aXKK>

— Vg COS Q@T<cosn (%CYT — Sayrr — aYKK)
—i—Sinn(SichT—E)aZTT—aZKK)) . (715)
Similar results for the non-isotropic combination (cj¢ — abys) depend in detail on the
orientation of the EXP frame for a specific experiment. Note that the variations intro-
duce a dependence on different components of the SME couplings from those appear-
ing in the rovibrational energies themselves. Detection of such annual variations of the

ultra-precise rovibrational transition frequencies would be a clear signal of Lorentz, and
potentially CPT, violation.
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A Solution of the electron Schrodinger equation

In this appendix, we give some details of the solution of the electron Schrédinger
equation in the absence of Lorentz and CPT violation. In particular, we determine the
energy eigenvalue E.(R), which carries through to the nucleon Schrédinger equation in
the Born-Oppenheimer analysis as the inter-nucleon potential Vj;(R). We also calculate
the R-dependence of the momentum expectation values (p?p®), which are needed as
input in determining the potential V§x(R) in (3.6).

From the main text, the Schrodinger equation for the electron wavefunction ¢ (r; R)
is

<_2],;ALV3 + Vmol(Ry T167T28>) ¢(7“7R) - Ee(R>¢(r7R> ) (Al)

with the binding potential V,,,0;( R, 71, 72¢) given in (2.2). The basic idea of the solution
is to make an ansatz for the electron wavefunction in the 1so, state comprising a sum
of hydrogen-like 1s wave functions, wviz.

1
¢<T7R) = 2(1 T Io(R)) (wH(T167R> + wH(TQ&R)) ) (AZ)
where
Vp(rR) = 77(23 e Brfdo (A.3)

and the “overlap function” Iy(R) is required to normalise the wavefunction. Explicitly,

W) = [ Erintn vntm) (A4)

The necessity of including the scaling factor y(R) of the effective Bohr radius
in (A.3) is seen by considering the limits of large and small nucleon separation. As
R — o0, one of ry or 1y, in (A.3) becomes large and so the total wavefunction reduces
to a single 1s hydrogen state. The molecule has dissociated leaving a hydrogen atom
and an isolated proton. In this limit, therefore, we require v(R) — 1, recovering the
original Bohr radius. At the other extreme, as R — 0 the two nucleons coalesce and
the wavefunction should reduce to that of a hydrogen-like atom with Z = 2. In this
case the dependence on the Bohr radius implies v(R) — 2. We see below how this is
realised in the explicit numerical solutions for the energies and momenta.

In (A.3), we have introduced the notation ay = 1/« for the “reduced Bohr radius”
appropriate to the reduced electron mass fi in section 2. Together with the correspond-
ing “reduced Rydberg constant” Ry = 3o’ = 1/(2a3 iv), this defines the units of
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length and energy used from now on. Rescaling to these “atomic units”, the electron
Schrodinger equation is simply

(-+2(p -4 D)) umm - Emunn, (A9

R Tie T2e
where all quantities are now dimensionless.
To calculate the energy eigenvalues E.(R), we need a number of elementary inte-

grals, all of which can be evaluated analytically for (R) = 1 [21]. Defining the kinetic
and potential energies as K (R) and U(R) respectively, we have

K(R) = —(¢| V7 [¥) UR) =20l — —— — — ). (A.6)
le T2e
First, for the overlap function we need
1 1
Iy = = / dPreee™ = (1+R+ gR2)e—R . (A7)
T
Then, for the potential energy,
1 1
I = —/d%—e‘”e e = 1, (A.8)
™ T1le
1 1 1 1
[ = — 3 7 T2e ,7T2e — - _ = 1 —2R A
s= s e e - F+ R (19)
1 1
Iy = —/d?"r—e”e e = (1+R)e ™, (A.10)
™ e
so that in total, with y(R) set to 1,
UW(R) = 2 — 2 (I 4+ 1, +2L) (A11)
1 TR0+l 1+ 12 3) - :

Here, and below, we use the suffix 1 to indicate that the associated quantity is evaluated
with v(R) — 1. For the kinetic energy, a similar calculation gives

2
Ki(R) = -1+ ———(L + 1) . A12
\(R) T lUEEd (A12)
Separating out the hydrogen 1s energy in reduced Rydberg units, By, = —1, we may
write the total energy eigenvalue as

Ea(R) = Ki(R) + Uy(R)
2

T
TR (141

(I + 1I3) . (A.13)
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This shows the typical Morse function form, with a minimum at Ry = 2.493.

To find the Lorentz and CPT violating contributions V& g(R), we also need the
expectation values of the components of the momenta, specifically

o 0
“py=—-[d& ; —(r; R) . Al4
') = = [ EroiR) 5o (i) (A1)

The required integrals in this case include

1 3 —Tle 82 —Tle 1
le—;/dre '@6 = g, (A15)

1 s . 0F . 1
JQZ—;/dT’B 2 @6 2 = g, (A16)

— 1 3 —Tle 82 —T2e — 1 —-R

Cylindrical symmetry in the MOL frame ensures identical results with derivatives
9?/0y?, while for 9?/9z* we find J3 — (1 + R — R*)e” " with J; and J, unchanged. It

is also apparent from the evaluation that the mixed terms, (p®p®) with a # b, vanish.

Collecting these results we find, again with v(R) set to 1,

(p'p"h = (p'p'h = %(14210) (14+(1+R)e "), (A.18)
and .
(p°p* )1 = 30T 1) (1+(1+R—-RYe "), (A.19)

and as an immediate consistency check we verify K; = (p*p*)1 + (p¥p¥)1 + (p°p*)1.

Now introduce the rescaling factor y(R) into the electron wavefunctions. By in-
spection, we see that the kinetic and potential energies and the momentum expectation
values now become

K(R) = 7(R)’K:(v(R)R) U(R) = 7(R)Ui(v(R)R) , (A.20)

and
(p"p")(R) = ¥(R)*(p"p" )1 (7(R)R) . (A.21)

The aim here is to find a function v(R) which minimises the energy F.(R), where

Ec(R) = 4(R)*Ki(y(R)R) + 7(R) Ui(y(R)R) . (A.22)
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We use a numerical method'*, the idea being to choose a discrete set of values R = R,
and for each n find the value of 7y(R,,) for which the energy E.(R,,) is minimised. We
then construct an interpolating function y(R) to fit this set of values. The result is the
function (R) shown in Fig. 3. Notice that this does indeed satisfy the requirement
that v(0) = 2 and y(R) — 1 for large R, though this is not imposed as a constraint.

Y(R)
2.0

Yim(R)

0.4}

Yoo -
| I ! ! | R
1.0 A5 2.0 2.5 3:0

Figure 3. The interpolating function v(R) giving the appropriate scaling of the electron
wave function as the inter-nucleon distance R is varied. The right hand figure shows its first
four derivatives (in order cyan, brown, orange, blue dashed) in the vicinity of the minimum
of the potential at Ry = 2.003.

Given y(R), the energy and momentum expectation values are found from (A.22)
and (A.21). These are shown in Figs. 4 and 5, A few comments are worth making
here. Note that the energy E.(R) has a deeper minimum with the improved ansatz
with the interpolating function v(R), and it occurs at the smaller value Ry = 2.003.
This gives a much improved agreement with the measured dissociation energy for Hj
though still not sufficiently deep. However, the value for the fundamental vibration
frequency wy = /V,;(Ro)/p = 0.020 Ry, in good agreement with the measured value.

As expected, for large R where the molecule has effectively separated, E.(R) tends
to the atomic 1s level £ = —1. Moreover, we numerically confirm the analytic results
K(R) = 1 and U(R) — —2 as R — o0, in agreement with the virial theorem for a

14What follows is our interpretation of the method applied in [11], and we may compare our numer-
ical results with the table of values for E.(Ry), v(Ro), (p*p”)(Ro) and their derivatives at Ry quoted
there.
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VM(R) VM (R)

~0.85¢
~0.85F
~0.9"
~0.9F
—095"-
0.95 _0.95-
T — R
2 4 6 R
Z1.05- ~ ~1.05

-1.1F 1.1+

~1.15¢ ~1.15¢

Figure 4. The nucleon potential Vj;(R) = E.(R) as the inter-nucleon distance, or bond
length, R is varied. The minimum is at Ry = 2.003. The left hand figure shows a comparison
with the equivalent with the scaling factor v(R) left fixed equal to 1 (orange, dashed). The
right hand figure shows the comparison with a Morse potential (black, dashed) with its two
free parameters set to match the potential minimum Vs (Rg and curvature Vy, (Rp).

Coulomb interaction.!> On the other hand, for R — 0, if we set aside the divergent
nucleon-nucleon interaction term 2/R in the potential, we find with v(0) = 2 that
K(0) — 4 and U(0) — —8, again satisfying the virial theorem and confirmed numeri-
cally in Fig. 4. A comparison of Vj;(R) with the phenomenological Morse potential'®

is also shown in Fig. 4.

15The virial theorem for a power-law potential V (x) states

av

2AK) = (2

so for the Coulomb potential in A.5, and neglecting the inter-nucleon repulsion which tends to zero
for large R, this implies 2(K) = —(U).
16The Morse potential is a two-parameter function,

VMorse(R) - De(]- - eiaw)Q - De

where x = R— Ry. To make the comparison, we fit the parameters D, and a to the value of Vj;(R) and
its second derivative at Rg, viz. D, = —Vy(Rp) and a? = f%V,(//[ (Ro)/(14+Vp(Rp)), so D = 0.173 and
a = 0.735 in atomic units. The vibrational energy levels in the Morse potential are exact, truncating
at O(v+ 1),

wo
4D,
where the fundamental frequency is wg = ay/2D./p = 0.020. The sign of the coefficient wy/4D, =
0.029 ensures that the spacing between vibrational energy levels reduces as v increases, unlike a SHO.

This parameter is equivalent to the g = 0.033 of (6.3) calculated from purely anharmonic terms in the
full numerical potential Vjs(R). This shows excellent agreement and gives further confidence that our

E, = (v+ 3w —

(’U+ %)20‘)0 )

analysis is providing a good characterisation of the rovibrational spectrum at the required precision
for computing SME corrections.
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We can also check the asymptotic behaviour of the momentum expectation values
analytically. For both large and small R, where the molecule becomes effectively an
atom, spherical symmetry is restored so all the expectation values in (A.18) and (A.19)
are equal, with (p?p®) = (p?)/3 = K/3. This is confirmed numerically in Fig. 5 where
we observe all the (p*p®) becoming equal and tending to 1/3 for R — oo and 4/3 for
R —0.

. . . - R [
0 2 4 6 8 0 2 4 6 8R

Figure 5. The momentum expectation values from (A.18), (A.19) and (A.21) as a function
of the bond length R. The left hand figure shows (p” p®) evaluated with y(R) and (dashed
curve) fixed equal to 1. The right hand figure is the same for (p® p?).

Finally, for the analysis of the rovibrational levels in sections 5 and 6, we need
explicit values for the first few derivatives of the energy and momentum expectation
values at the minimum R, of the improved potential Vj;(R) = E.(R). These are
evaluated numerically from the functions plotted above, and the required values are
shown in Table 1, which may be compared with [11]. Recall that cylindrical symmetry
ensures that (p®p®) = (p¥pY). We also include here the combinations tr (p?p®) =
(p® p®) + (p¥ p¥) + (p? p*) and try (p® p®) = (p* p®) + (p¥ p¥) — 2(p* p*) which appear as
coefficients in the SME potential Vgyp.
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Derivative 0 1 2 3 4

Var -1.173 0 0.187  -0.492  1.237
(p® p®) 0451  -0.146  0.146  -0.162  0.229
(p* p*) 0271  -0.083 0133  -0.188  0.349

5 1238 -0.203  0.148  -0.113  0.102
tr (p? pb) 1173 -0.375 0424  -0.512  0.808
try (p® p?) 0.360  -0.126  0.026 0.052  -0.239

Table 1. The values and first few derivatives of the inter-nucleon potential Vis(R), the
momentum expectation values (p* p®) and (p® p*), and the interpolating function ~v(R) used
in their construction, all evaluated at the minimum Ry = 2.003 of Vj;(R). All numbers are
expressed in atomic units, with energies in terms of the reduced Rydberg constant Ry and
lengths in terms of the reduced Bohr radius ay.

B Rovibrational energy levels - perturbation method

In this appendix, we present a systematic perurbative method to evaluate the rovi-
brational energy levels incorporating the Lorentz and CPT violating corrections. This
provides an important consistency check on the results obtained in section 4.

The idea is to expand all the contributions to the potential in the nucleon Schrédinger
equation (3.6) about the minimum Ry of the inter-nucleon potential Vj/(R), then eval-
uate the energy corrections as perturbations about the leading SHO approximation.
As we see, this turns out to give a systematic perturbative expansion in the small
parameter A = 1/puwoR2 identified previously. We therefore write,

Vu(R) + Vn(R) + Viye(R)
1
= VM<R0) + VN(RO) + ‘/SeME(Ro) + 5/]&1[2)1'2 + 5VM(£L') + (SVN<£IZ') + (SVSGME(.I') ,
(B.1)

where here z = R — Ry and Vy(R) = N(N +1)/2uR?, so Vy(Ry) = 3 AwoN(N + 1).
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Then,

_ " 1 (4) 4
5VM_6VM o Vit
3/ x\2 T \3
SV = AwON(N+1)<—R—O + 2 (RO) - 2(§0) + )
WVaue = ‘/SMEm + VSMEx + VSI\//ﬁEx + . (B.2)

6

We start from the SHO with potential $Vy;2? = 1pw3 2? and construct the usual
0= (v+ $wo. We will need
the expressions for the energy levels up to 3rd order in perturbation theory, viz.

states labelled by integers |v) with energy eigenvalues ES

E,=E9 + EW + E® + EB® (B.3)
with, for a perturbation 0V in the potential,
EY = (][ 6V o),

1
EP =3 —a——m WV Ik) (K[8V |v) .
i (B = E)
1
3)
B =33 oy g gy V1V K VIO {8V i)
k#v {#£v Ey v ¢

1
- Z— [(v] 6V [K)]* (v[ OV |v) . (B.4)
0 0
The states here are all understood to be the unperturbed SHO states; clearly the nota-
tion with states carrying a label |v)(®) throughout is too cumbersome. The perturbation

0V in our case is the sum of the anharmonic potential, angular momentum and SME
terms in (2.2), 6V = 0Viy + 6Vy + 0Vyg-

Now at first order, only even powers of x contribute to the expectation values, so
we have,

1

3 ]. 6//
BY = (Shwo NN+ D/RS + 5 Vi ) (2 lo) + 5

4 e(4
Vi’ + Vauw) (ol o) -
(B.5)
The expectation values here and throughout this section are evaluated using elementary

methods, expanding the powers of x in terms of raising and lowering operators using,

1

ﬁox = \/g (a+a")  with af|v) = Vo+1|v+1), ajv) = Vo |lv—1). (B.6)
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Then, evaluating

1

R—%@\xz vy = (’U—I—%))\, and

arlvlat ) = 5@+ 32 + 1), @)

and dropping the constant term, which adds negligibly to Vi (Ro), V§ur(Ro) and the
dissociation energy, we find

3 1 1 "
BY = S+ ) NN+ DMy + 50+ 3) 7 Vg @o
1 1 e
+ 0+ SRV + ValR) A (B8)
16 Vi

We identify these as contributions to the coefficients o, 05,5 and xo, gy respectively
in section 5.

Next, consider the perturbations at 2nd order. Organising by the total number of
factors of z occurring (recalling that each power of x carries an associated v/)), we
first find contributions in (B.4) where both factors of 6V are proportional to z; then
where both §V ~ 22, together with a mixed term with one factor of 6V ~ z and the
other 8V ~ z3; and finally, terms with §V ~ z, 6V ~ 2%, 6V ~ 22, 6V ~ 2* and both
OV ~ 23, the latter three contributing leading O(\) terms to xo and zgy.

Taking these in turn, we first evaluate the contribution to EY from taking the
perturbation 0V = ( —AwyN(N +1) + Ry VSel\;[E> x/Ry. The required expectation
value is

1 1 1 1
——— — (v|z|k) (K[z]) = —= =, (B.9)
; (B — B R 2 (R2Vy)

with the sum over £k = v41. Notice that this is independent of the vibrational quantum
number v. The corresponding contribution to E® is therefore

1 ,
EX = =S MW (N(N+1)?wo + ANV +1) 7~ Vg wo (B.10)
which we identify with terms in Dy and B§, respectively.
A similar calculation shows
1 1 3 1
—o o 71 le k) (B2’ o) = S A (vt 5) (B.11)
2 ) T M
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and identifying the relevant perturbations §V from (B.2) we find

1 V/” ’ 1 R V///
@ N e , X V!
Eyng = D) (v+3) WVSME wo + 5)\ (v+35)N(N+1) wr

Wo

1 RO "

+ A2 (4 L NN +1) (57 Ve + 6 VSER’AE> wo . (B.12)
M

(Ro Var)
These are contributions to 0§y, oo and agyy respectively.

The next contribution at 2nd order comes from terms where both §V ~ 22, so here
we need to calculate

1 1 1 1
—— — (| 2® k) (k|2® o) = —= A= (0 + 1), (B.13)
giving the energy
3 1 1
B,y = =S 0+ NN +1) — Vi w (B.14)
312 4 Vu

which adds to agys. We have discarded the A* (v + 1) (N(NV + 1))2w0 term here as it
is not of the type for which we have kept the coefficients in (5.8).

Moving on to the 2nd order contributions with a total of 6 powers of z, we find
they involve factors of (v + 3)2, so we are only concerned here with their effect on g
and gy In turn, these are:

1 1 3 3 15 112 7 1
Y o w7 la? k) (k[ o) = = Awo [(0+3)° + &) R
kv (Eéo) - El(cO)) it 4 (R% VM)
(B.15)
from which,
5 1 " m 6//l
E1(1;2€3,3] VT Awo [(v+3)* + g WR?) ((Var)* + 2Viy Vi) (B.16)
M
contributing to xy and x§yp;
1 1 2 4 3 12 1 1
Y — o 55 2P k) (k2" [v) = =S Ao [(v+3)7 + 4] 2+ (BA7)
kv (Eéo) - El(cO)) R 2 (R% VM)
giving
1 1 o
E1(12E2 4 = 15 Ao [<U + 5)2 + ﬂ N2 R(Z) VJ\(/?) Vaume (B.18)
16 (Var)
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which contributes only to x§ys; and

—1 1 5 15 132 1 1
Z 6 <U‘ z |k> <k’|$ ”U> - __)\UJO [(U+§) + Z] o N2 (B19)
7 (B - BY) 4 (R2 V)
giving
2 _
E’u; [175} - _E )\ Wo [( + ;)2 + %j| (VM) RO V ‘/SME s (BZO)

which again only contributes to zgyg. Comparing with (5.9) and (5.19), we see that
we have now reproduced exactly all the terms found in the effective potential method
up to 2nd order in the perturbations.

So far, in (B.7) and (B.15), (B.17), (B.19), we have just discussed the O(v + 1)?
contributions, keeping only the terms independent of the angular momentum since we
dropthese at O((v + 3)2N(N + 1)). However, the constant factors do contribute to
By, B$g and Dy, though not Dg,,y since this only receives contributions at 3rd order
(see below). Inspecting these terms, we see that they give sub-leading contributions,
of O(N\?) in By and B& and O(N°) in Dy, picking up all the terms of 2nd order, but
only 2nd order, in the perturbations. This confirms that in (5.9), By = 1A + O(A?) is
a power series in A\? with leading term of O()), with an analogous result for B& and
Dy.

Evidently we can continue straightforwardly to as many orders as desired, though
of course evaluating the products of expectation values becomes increasingly laborious.
It is interesting however to display just one term at 3rd order, which gives the leading
term to the coefficient Dgp. In this case we need two factors of V' ~ x and one
§V ~ 2 and from (B.4) the required calculation is

S T g g LR E 0 @

(0
k#v {#v U EK )

+ 2(v| @ k) (k[ |€) (€] 2* v)

-3 Gy R el el

k;év k )
1 1 1\2 5 1\2 3 1\2
= Zm [(2(@—{—5) +§)+2((U+§) +Z) —4(U—|—§)
1
e (B.21)
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Remarkably, the terms of O(v + %)2 cancel, leaving a residual v-independent term, as
required to contribute to the D§, coefficient. Then, since we can select terms with
both 6V§p ~ 22, 6Vy ~ x, 6Vy ~ x and 6V ~ , dVy ~ x, §Vy ~ 22, we identify
the required contribution to Ez(,?’):

11
2V,

1" ]_ !
Vivm — 3——~ Vg o B.22
SME (Ro V}(}) SME | Wo ( )

This is to be compared with (5.18) calculated with the effective potential method.

E® = X ((N(N +1))*

A careful comparison of these results with those derived by the effective potential
method in section 5 shows that apart from (B.22) we have yet to identify the terms in
(5.9) and (5.18),(5.19) involving more than two perturbative factors, frequently involv-
ing higher derivatives of the potential Vj;(R). To compare the origin of these terms in
the effective potential and perturbation theory methods, and to verify that the terms
quoted in section 5 for the rovibrational energies are complete at the quoted order
in A\, we need to analyse more closely the systematics of the expansion in A in this
expectation value approach.

First, notice that in the perturbation series in (B.4), each power of x in the per-
turbations 6V brings a factor of v/ from its expression (B.6) in raising and lowering
operators. Then from the energy denominators, each further order in 6V brings with
it an extra factor of 1/wy = 1/(R2 Vy; \).

We can therefore count the relevant orders by inspection. For example, consider
the Dy coefficient. This arises first at 2nd order from (2.9) with both dVx ~ z, so the
expectation value itself is O(\/wy and since §Vy itself is of O(Awp, the corresponding
energy is O(A3wp). Remembering to extract a factor wy to leave the coefficient Dy
dimensionless, we deduce immediately that Dy ~ A3, as given in (2.9.

The next contribution would come from including the O(2?) term in the expansion
of one of the §Vy factors. But then the expectation value would be O(\?/wy and the
contribution to Dy would be O(M\. We see therefore that as already indicated, the
coefficient Dy quoted in (2.9) is the leading term in a perturbative series in the small
parameter A\. The same is true of all the rovibrational energy coefficients.

We can now use this power counting to understand the origin of the factors involving
higher derivatives of Vj;(R) and why they must be included. A good example is ay.
As we have seen above, this arises already in 1st order with dVy ~ Mwoz?. The
expectation value (z?( is O(\), so we find the ESY contribution is O(Nwy, giving
ap ~ A% However, from (2.9) we know that this is not the complete result for oy which
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has another contribution of the same O(\?) but with a factor depending on V;;. This

arises at 2nd order, with perturbations 0Vy ~ Awpx and 0Vj; ~ V]\IZ 2. Following the

power counting rules, this E contribution is O(NwoVy;

O()\?) result for ap found in (2.9).17

/Vi;), giving the complete

What this example shows us is that in general we can find another contribution
to a particular rovibrational coefficient which is of the same order in A by going to
a higher order in the SHO perturbation series (B.4) and including a correspondingly
higher derivative term in the expansion of §Vj; if (and only if) at the same time we
can reduce the power of x from the expansion of the perturbation 6V or dVgyg which
specifies that coefficient. This process can obviously not be iterated indefinitely and
this is why the number of terms in a rovibrational coefficient at a given order in A is
limited.

These considerations allow us to identify the perturbative origin of all the terms
in the rovibrational coefficients quoted in section 5 and to verify that they are indeed

8 Notice also that the effective potential method, where we analyse the

complete.!
anharmonic oscillator around the minimum of the potential including the perturbations,
is in some ways more efficient in identifying terms that otherwise require high orders

in the systematic perturbation method.

1"Tn keeping track of these orders, we always express the energies with a single overall factor of wy,
with all other occurrences of wy being traded for derivatives V,; using the relation wy = RZV;;A. This
isolates the correct order in A leaving residual factors involving ratios of derivatives of Vi as in (2.9)
for ap; numerically, we have found that these ratios are of O(1). So this method of arranging the series
correctly groups contributions of the same magnitude.

18To verify this on the most complicated example, consider the expression for agyp in (5.18). Label
the terms in the order given there as (1) to (7). By inspection, their origin is as follows. At 2nd order,
(1) VN ~ x, V&g ~ 2% 5 (2) VN ~ 22, 6VEp ~ 2% 5 (4) VN ~ 23, VE g ~ 2. Then at 3rd
order, we find the terms involving the expansion of §Vy: (3) 6Vy ~ x, §V&p ~ 2%, 6V ~ 23
(5) VN ~ 2%, V&g ~ @, Vg ~ 23 5 (7) VN ~ z, §V&g ~ @, Vi ~ z*. Finally, there is one
possible further term at 4th order: (6) dVy ~ x, Vg ~ @, 6Var ~ 23, §Viy ~ x3. At this point we
cannot iterate further by introducing more orders in §V; because we cannot reduce the powers of x
in 6V and 6V any more. Any further terms are of higher order in A. We have therefore found the
complete set of terms in a§y at its leading order in A, i.e. O()\?). A similar exercise readily identifies
the origin of all the terms in the expression (5.19) for &g-
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