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ABSTRACT

Quantum dot solar cells are solution-processable, lightweight, and low-cost, and their long-term stability makes them attractive to explore for
aerospace applications. In this work, we have studied lead sulfide (PbS) colloidal quantum dot solar cells (CQDSCs) using three different
types of hole transport layer combinations, such as PbS-MPA/PbS-MPA (PbS-MPA), P3HT/PTAA (P3HT), and PBDB-T/MoO5(PBDB-T),
under mimic working environmental conditions for high altitude platform satellites (HAPS). It includes ultraviolet rich solar irradiation
(AMO), low temperature conditions (410 to —20°C), and low pressure. The thermal cycling (considering change in temperature at day-
night) measurements were also conducted. The device performance under a broad range of temperatures from +80 to —100°C was also
included. The devices delivered power conversion efficiency (PCE) of 9.46 (8.41), 9.68 (7.86), and 11.77 (10.75)% for PbS-MPA, P3HT, and
PBDB-T devices under AM1.5G(AMO), respectively. PbS-MPA devices maintain the PCE and slightly improve their performance under low
temperatures (from 0 down to —100 °C). Meanwhile, the P3HT and PBDB-T-based CQDSCs devices started to decline in PCE significantly
from —40 and 410 °C, respectively. Furthermore, PbS-MPA devices show excellent thermal cycling stability, making them attractive for fur-
ther exploration for aerospace applications.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0278791
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Quantum dots, a nanometer-sized diameter materials, have been
used as an active element in a wide range of applications such as
field effect transistor, solar cells, photodetectors, and light-emitting
diodes.' © Lead sulfide (PbS) quantum dot’s absorption in visible and
near-infrared, bandgap tunability, and solution processability make
them attractive for solar cells applications.” '” Recent developments in
device structure and passivation of interfaces in PbS colloidal quantum
dots solar cells (CQDSCs) delivered the record high power conversion
efficiency (PCE) up to 15.45% under AM1.5G." Furthermore, the low
cost and compatibility with flexible substrate made them a potential
candidate for aerospace applications. High altitude platform satellites
(HAPS) (also known as high altitude pseudo-satellite or high altitude
platform station) are a place between 20 and 25km (from earth sur-
face) in stratosphere and could be used for flying unmanned aerial

vehicles (UAV) and high-altitude balloons (HAB) for different pur-
poses including defense, natural disaster relief and monitoring, and
disaster recovery communication.'*'> With the help of solar cells, the
UAV and HAB can operate for the longer period of time without wor-
rying about power supply and CQDSCs could be applied under HAPS
regions. The environment under HAPS includes AMO (136.6 mW/
cm?) irradiation, variation in temperature (410 to —20°C in daytime
and could go up to —85°C in night), and low pressure (1-250
mbar).'® Due to high cost and low specific power of inorganic solar
cells, researchers are exploring other options and CQDSCs could be an
alternative. Tavakoli et al. demonstrated flexible substrate based PbS
quantum dots solar cells and delivered PCE of 7.1%; remarkably, the
device showed specific power (power-per-weight) of 12.3W/g.
Furthermore, PbS CQDSCs using silver nanowire-based electrode on a
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flexible substrate have delivered specific power up to 152W/g
(expected to improve near future), which is much higher than the
existing inorganic solar cells (Si—0.38 W/g and multijunction—
3.8 W/g)."”"” Speirs et al. explored the temperature dependent behav-
ior of PbS quantum dots solar cells in the range of 295 to 180 K and
received maximum PCE at 230 K, which suggested the working ability
of PbS quantum dots solar cells under low temperatures.”’ High spe-
cific power and high low temperature performance motive us to study
CQDSCs for HAPS applications. In this work, we have included PbS
colloidal quantum dots based on three types (changing different hole
transport layer combinations) of CQDSCs, studied them under a
HAPS environment, and included thermal cycling stability.

The material details and device fabrication procedures are sum-
marized in the supplementary material (Sec. S1). For the simplicity,
the device structure in Figs. 1(a)-1(c) is named as PbS-MPA [PbS
functionalized with 3-mercaptopropionic acid (MPA)], P3HT, and
PBDB-T, respectively, throughout the manuscript, based on using the
combination of hole transport layers. The current density-voltage
(J-V) measurement was conducted under AM1.5G and AMO using the
Newport solar simulator (model no. 94023A). External quantum effi-
ciency (EQE) measurement has been completed using inhouse EQE
setup at 71 Hz chopping frequency. A Linkam Scientific system is used
to mimic HAPS environment, and the liquid nitrogen was used to get
low temperature. The chamber pressure was maintained at 10 mbar.

The photovoltaic performance of PbS-MPA, P3HT, and PBDB-T
CQDSCs devices was examined under AM1.5G (100 mW/cm?) testing
conditions using a class AAA solar simulator, and the light intensity
was calibrated by a standard silicon cell. For the AMO (136.6 mW/cm?)
irradiation, the AM1.5G filter was replaced with an AMO filter and the
light intensity was calibrated using the integrated current density (Jgqr)
values, calculated for CQDSCs devices using the AMO spectrum.
Figures 2(a)-2(c) show the J-V characteristics measured under
AMI1.5G and AMO at room temperature. The PbS-MPA, P3HT, and
PBDB-T CQDSCs devices showed PCE under AM 1.5G of 9.46%,
9.68%, and 11.77%, respectively. Meanwhile, the corresponding PCE
under AMO was 8.41%, 7.86%, and 10.75%, respectively. The main
changes can be seen in short-circuit current density (Jsc), whereas
open-circuit voltage (Voc) and fill factor (FF) were similar under
AM1.5G and AMO. Jsc under AM1.5G (AMO0) was 27.92 (34.90),

pubs.aip.org/aip/apl

27.05(30.01), and 26.71 (33.01) mA/cm?® of PbS-MPA, P3HT, and
PBDB-T CQDSCs devices, respectively. The difference between Jsc
and Jpqr was under 5% for both AM1.5G and AMO irradiations, as the
EQE graphs are shown in Figs. 2(d)-2(f). The drop in PCE under
AMO is due to a change in the light spectrum. Table I summarizes the
photovoltaic parameters of the PbS-MPA, P3HT, and PBDB-T
CQDSCs. The PbS-MPA and PBDB-T CQDSCs devices PCE under
AMO were ~0.90 of AMI1.5G, which is higher than P3HT’s PCE
(~0.81xAM1.5G). It is due to high EQE [Fig. 1(d)] in the AMO irradia-
tion region for PbS-MPA and PBDB-T CQDSCs. P3HT devices show
a bit of hysteresis while measuring them in forward and revers scan
(Fig. S1 in the supplementary material) compared to PbS-MPA and
PBDB-T CQDSCs under AM 1.5G and AMO irradiation.

The temperature range for the CQDSCs devices measurement
was considered as per the HAPS environment, varying from +10 to
—20°C in the daytime. In addition, a broad range of temperatures,
from +80 to —100 °C, has also been included to explore the possibility
of CQDSCs devices beyond HAPS applications. The J-V characteristics
of devices measured at different temperatures are shown in Fig. S2
(supplementary material). Figure 3 shows the normalized device
parameters measured under different temperatures for PbS-MPA,
P3HT, and PBDB-T CQDSCs devices, and their individual devices
normalized parameters are shown in Fig. S3 (supplementary material).
Voc [Fig. 3(a)] improved as the temperature went down from +20 to
—100°C, and the improvement was similar for PbS-MPA and P3HT
devices, whereas V¢ improvement in the PBDB-T device was more
pronounced. Vo of PbS-MPA devices had a higher decline at high
temperatures (80 °C) compared to P3HT and PBDB-T devices. Figure
3(b) shows the change in Jsc under different temperature ranges; for
PbS-MPA devices, there was no decline in Jgc over low and high tem-
peratures. At the same time, Jsc of P3HT devices declined slightly after
—90°C, while decline was more pronounced at high temperatures
(+60 and +80°C). The PBDB-T devices showed a decline in J5c even
below 0°C and dropped up to 25% at —100 °C. Figure 3(c) shows the
change in FF, and PbS-MPA devices retained 100% values down to
—50°C and only 10% (compared to the value measured at +20°C)
declined at —100°C. However, for P3HT and PBDB-T, the decline in
FF even started at —40 and 0 °C, respectively. At —100°C, P3HT and
PBDB-T CQDSCs devices FF dropped up to 20% and 35%,
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FIG. 1. Device structures of (a) PbS-MPA, (b) P3HT, and (c) PBDB-T based CQDSCs. (d) EQE (of PbS-MPA, P3HT, and PBDB-T devices) and solar spectrum of AM1.5G and

AMO irradiation.
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FIG. 2. J-V characteristics measured (forward scan) under AM1.5G and AMO of (a) PbS-MPA, (b) P3HT, and (c) PBDB-T CQDSCs devices. EQE spectra’s (including calcu-
lated integrated current density) of (d) PbS-MPA, (e) P3HT, and (f) PBDB-T CQDSCs devices.

TABLE I. The PbS-MPA, P3HT, and PBDB-T CQDSCs devices summary, measured under AM1.5G and AMO irradiation.

Devices Irradiation Scan Voc (V) Jsc(mA/cm?) Jeqe (mA/cm?) FF (%) PCE (%)
PbS-MPA AM1.5G Forward 0.595 27.92 27.83 57.05 9.46
Reverse 0.586 27.68 55.52 9.00
AMO Forward 0.583 34.90 34.25 56.55 8.41
Reverse 0.573 34.86 55.22 8.07
P3HT AM1.5G Forward 0.611 27.05 26.94 58.50 9.68
Reverse 0.605 26.32 54.21 8.64
AMO Forward 0.626 30.01 29.16 57.25 7.86
Reverse 0.618 30.19 54.71 7.46
PBDB-T AM1.5G Forward 0.696 26.73 26.66 63.33 11.7
Reverse 0.691 26.59 62.15 11.4
AMO Forward 0.707 33.01 32.53 62.97 10.7
Reverse 0.697 32.78 62.83 10.5

respectively, compared to FF values at +-20°C. Figure 3(d) shows the
PCE; remarkably, the PbS-MPA device’s PCE improved under low
temperatures, even down to —100°C, due to a low decline in FF and
improvement in Voc. The change in PbS-MPA CQDSCs device under
low temperatures is similar to reported by Speirs et al.”’ The PCE of
P3HT, and PBDB-T devices dropped up to 18% and 65% at —100 °C,
respectively. Under high temperatures, PBDB-T devices performed
better than PbS-MPA and P3HT, dropped only 5% at 80 °C. However,
PbS-MPA devices show a drop in PCE at high temperatures and
declined up to 22% at +80 °C. PBDB-T is an organic semiconductor;

its low crystallinity in nature impacts the charge carrier transport phe-
nomenon, and it is dominated by thermally activated hopping.”’
PBDB-T crystallinity gradually increases under high temperature,
which results in improving FF [Fig. 3(c)]. P3HT shows stability even
up to 150 °C; the decline in performance is due to PTAA as it starts
degrading under high temperatures [Fig. 3(d)].”>** PbS QDs have
shown stable performance under low temperatures.””*” Overall, PbS-
MPA and P3HT devices maintain their PCE than PBDB-T devices
under HAPS environment. Moreover, PbS-MPA devices can be attrac-
tive for operation at low temperatures.
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FIG. 3. Normalized (a) Voc, (b) Jsc, (c) FF, and (d) PCE of PbS-MPA, P3HT, and PBDB-T CQDSCs devices measured at different temperatures varied from +-80 to —100 °C.
The black line is drawn at the y axis to guide the reader to follow the normalized value at 1.

Figure 4 shows normalized thermal cycling stability data for
PbS-MPA, P3HT, and PBDB-T CQDSCs. The study was conducted
by cycling temperature at the rate of 30 °C/min from 420 °C and
down to —85°C, considering the temperature variation in the
HAPS environment over a day-night. In total, 16 cycles were
recorded, and the devices were measured under AMO irradiation
after the temperature reached at +20°C. V¢ was stable for PbS-
MPA, and there was a bit decline in V¢ for P3HT and PBDB-T,
as shown in Fig. 4(a). However, Jsc [Fig. 4(b)] was stable for PbS-
MPA and P3HT devices, whereas PBDB-T device’s Jsc
started declining after the eighth cycle and dropped by 10% at the
end of 16th cycle. FF [Fig. 4(c)] also shows a similar impact,
stable for PbS-MPA and P3HT and dropped for PBDB-T devices
with increasing cycles. For the PCE, the PbS-MPA device has no
drop in the performance [Fig. 4(d)] over all 16 cycles. P3HT device
shows a slight drop in PCE, whereas PBDB-T devices showed
~20% drop in PCE at the 16th cycle. PbS-MPA devices are entirely
inorganic and may not suffer from the degradation pathways that
affect organic semiconductors (P3HT and PBDB-T) under thermal
cycling.z(),26,27

In this work, the PbS-MPA colloidal quantum dots-based solar
cells were explored under the HAPS environment. Three devices were
included using three different types of hole transport layer combina-
tions named PbS-MPA, P3HT, and PBDB-T. The study included low-
temperature and thermal cycling stability measurements under AMO
irradiation. The devices delivered PCE (at 20°C, under AMO) of
8.41%, 7.86%, and 10.77% for PbS-MPA, P3HT, and PBDB-T devices,
respectively. Under HAPS operating temperature (+10 to —20°C),
PCE was improved for PbS-MPA and P3HT devices, whereas it
decreased for PBDB-T devices. Interestingly, at —100 °C, the PCE of
the PbS-MPA devices enhanced 3.5%. Meanwhile, for P3HT and
PBDB-T devices, PCE dropped by 15% and 42 %, respectively, under
similar conditions. PCE of PbS-MPA devices improved at low temper-
atures, which shows its ability for applications beyond HAPS environ-
ments. PbS-MPA devices also show excellent thermal cycling stability
and maintain 100% of PCE even after completing 16 cycles. In sum-
mary, this study indicates the role of hole transport layer selection and
shows that the PbS-MPA CQDSCs can be feasible for HAPS applica-
tion. Furthermore, PbS-MPA devices have attractive potential for
working beyond the HAPS region.
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See the supplementary material for the device fabrication proce-
dure, supporting data tables, and J-V characteristics measured using
both scans (forward and reverse), including JV characteristics mea-
sured at different temperatures and thermal cycling.
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