
On the interplay between entailments among
obligations and their violations

Livio Robaldo1, Davide Liga2

1 School of Law, Swansea University, UK
livio.robaldo@swansea.ac.uk

2 Department of Computer Science, University of Luxembourg
davide.liga@uni.lu

Abstract. In Standard Deontic Logic (SDL), it is established that if a
statement p is obligatory, then any other statement q entailed by p is
also obligatory. This principle is commonly referred to as OB-RM. How-
ever, the appropriateness of OB-RM in deontic and normative reasoning
has been widely criticized, leading to the proposal of various (restricted)
versions of the rule. This paper argues that OB-RM is also unsuitable when
considering the violations associated with obligations, particularly the
penalties that must be imposed when these violations occur. To address
this issue, the paper introduces an extension of the RDF-based frame-
work recently proposed in [20], which integrates violations, penalties, and
entailments among obligations. The extended framework is available at
https://github.com/liviorobaldo/jurisin2025.

Keywords: Deontic Logic · RDF & SPARQL · Violations & Penalties

1 Introduction

The starting point of this paper is the hypothesis that, in normative reasoning,
obligations are always associated with penalties that must be applied in cases
where the obligations are violated. If the law states specific obligations but then
no penalty is applied to those who violate them, the law is clearly ineffective.

Often, the law precisely states the penalty associated with one or more obli-
gations. For example, section 110(5) of the UK Equality Act 20103, reported in
(1), states that those who violate any obligation from the same section will have
to pay a monetary fine that depends on UK standard scale.

(1) A person guilty of an offence under subsection (4) is liable on summary
conviction to a fine not exceeding level 5 on the standard scale.

Legislation does not always specify the penalty for violating a given obligation.
In such cases, judges in courts or other designated authorities must determine an
appropriate penalty for the violators. Moreover, penalties are not always mon-
etary fines. Serious crimes are often punished with imprisonment. Conversely,
3 https://www.legislation.gov.uk/ukpga/2010/15/section/110#section-110-5

minor offenses may result in non-monetary penalties; for example, if John is ob-
ligated to pay the rent for his apartment but fails to do so, he may be required
to leave the apartment without necessarily incurring any financial penalty.

The association between obligations and penalties appears difficult to recon-
cile with the OB-RM rule from Standard Deontic Logic (SDL) [23]:

(2) If ⊢ p→q , then ⊢ OBp→OBq (OB-RM)

The question is: if legislation specifies a penalty for the violation of OBp, what
penalty applies to the violation of the more general obligation OBq? In fact,
no penalty seems to be associated with OBq. Thus, OB-RM seems inadequate for
normative reasoning, at least under the assumption stated at the beginning of
the Introduction, i.e., that every obligation is always linked to a penalty.

On the other hand, OB-RM appears to be perfectly reasonable when consid-
ering the truth-conditional meaning of the propositions involved. This is likely
why the rule was originally accepted in Standard Deontic Logic. To illustrate
this, let us associate p and q with the natural language sentences in (3.a-b):

(3) a. p: John pays £100 in cash.
b. q: John pays £100.
c. OBp: John is obliged to pay £100 in cash.
d. OBq: John is obliged to pay £100.

If it is true that John pays £100 in cash, then it is also true that John pays £100.
Then, OB-RM states that (3.c) entails (3.d): if it is true that John is obliged to
pay £100 in cash, then it is also true that John is obliged to pay £100. While
this is correct, it pertains to the truth-conditional meaning conveyed by material
implication: if the antecedent is true, then the consequent must also be true.

Nevertheless, this truth-conditional perspective is orthogonal to the perspec-
tive considered here, where the obligations are viewed as a “list of tasks to be
complied with by their bearers”, who will incur penalties if they fail to do so.

This is not the first paper that proposes reasoning about obligations from a
perspective different from standard truth-conditional semantics. In fact, the idea
was originally introduced in [11], it is known as “the Jørgensen dilemma”, and
has been widely discussed in the deontic logic literature. The Jørgensen dilemma
raises the question of how we can logically reason about norms, given that norms
do not have truth values in the same way as descriptive statements. This paper
argues that reasoning with norms involves reasoning about the violations and
penalties associated with obligations, under the assumption that the normative
system does not include obligations without penalties. If such obligations do
exist, they are considered vacuous or ineffective, meaning that we can reason
about them truth-conditionally, but not “deontically”.

If these premises are accepted, lot of research in deontic logic still needs
to be done. With the exception of Defeasible Deontic Logic (DDL) [6], most
deontic logics proposed in the literature fail to properly formalize violations and
penalties. Instead, they primarily introduce restricted variants of the OB-RM rule
to mitigate its undesired effects.

This paper will extend the framework from [20] by incorporating constructs
to link obligations with their penalties, along with rules to infer the latter from
violations of the former. The objective is to accurately model the interaction
between obligations, their entailments, and the penalties associated with their
violations. The paper also compares the proposed approach with Defeasible De-
ontic Logic (DDL) and other deontic logics in the literature.

2 Related works

As explained in the Introduction above, to the best of our knowledge, all modern
deontic logics but Defeasible Deontic Logic (DDL) [6] [5] do not represent/infer
penalties associated with violations of obligations.

DDL achieves so by introducing the binary operator “⊗” to relate two state-
ments p and q. The assertion p⊗q indicates4 that p is obligatory, i.e., that OBp
holds, and that if this obligation is violated (i.e., if ¬p also holds), then q is in-
ferred as obligatory, i.e., OBq is inferred. In this way, OBq represents the penalty
for violating OBp, and is therefore modeled in DDL as another obligation.

For example, OBq could represent the obligation for the agent to pay a fine,
or, as in the earlier example of John’s rent mentioned in the Introduction, the
obligation to vacate the apartment. Alternatively, OBq might be unspecified,
meaning that it is left to a judge or another competent authority to determine
the specific penalty for violators of OBp. In such cases, it may be useful to assume
that an obligation p for which the law does not specify a penalty is associated
with a “functional” proposition tbd(p), where tbd stands for “to be decided” (by
a judge or other competent authority). The tbd function can be easily formalized
as a Skolem function that returns the penalty associated with the violation of its
input proposition, which will be resolved contextually later (e.g., during a trial).
For such cases, the DDL formula would then be expressed as p⊗tbd(p).

Thanks to the operator “⊗”, DDL enables a direct modeling of penalties. As
noted earlier, to the best of our knowledge, DDL is unique in this regard: no
other modern deontic logic offers such a clear representation of penalties.

Still, DDL seems problematic in light of the considerations above, as it uses
a weaker version of OB-RM known as “rule conversion”, formalized as follows [7]:

(4) If ⊢ a1, a2, ..., an →C b , then ⊢ OBa1, OBa2, ..., OBan→ OBb

In (4), “→C” is a restricted version of the standard implication operator “→” from
classical logic: “→C” only allows for implications denoted by the constitutive rules
occurring in the modelled normative code.
4 The meaning of the operator ⊗ is actually more nuanced than this. For this reason,

we use the verb “indicate” rather than the phrase “is equivalent to” in the main text.
OBq represents a compensatory obligation, meaning that fulfilling OBq compensates for
the violation of OBp. In other words, p⊗q is not equivalent to (OBp∧¬p)→OBq. While
both expressions capture the penalty aspect, p⊗q also accounts for compensation.
However, since compensations fall outside the scope of this paper, we assume for
simplicity that the two expressions are equivalent.

The distinction between regulative rules and constitutive rules is well-known
in the literature on normative reasoning. Regulative rules specify what is oblig-
atory or permitted based on certain abstract concepts known as “institutional
facts”, whereas constitutive rules define what counts as institutional facts in the
specific state of affairs where regulative rules are applied.

An archetypal example of constitutive rule, from the seminal work in [8], is
whether “bicycles count as vehicles”. Assuming they do, DDL’s rule conversion
stipulates that if John is obliged to buy a bicycle, he is also obliged to buy a ve-
hicle. This seems incorrect from the perspective outlined here, as the question of
what penalty John incurs for failing to buy a vehicle remains unanswered. More-
over, it is unclear whether and how DDL’s rule conversion links the obligation
derived through “⊗” to a penalty (and, once again, which penalty?).

In contrast, we believe constitutive rules should not be used to expand the
“list of tasks to be complied with by their bearers”, as we called it earlier. In-
stead, they should be used to assess whether these tasks have been fulfilled. For
example, if John is obliged to buy a vehicle and he buys a bicycle, his obligation
is considered fulfilled in contexts where bicycles are counted as vehicles.

While DDL is the only modern deontic logic that offers a simple representa-
tion of penalties, other deontic logics incorporate restricted versions of OB-RM.

One such logic is the Input/Output (I/O) logic axiomatized in [16]. The
original axiomatization of I/O logic, from [15], does include a derivation rule
called “Weakening the output” (WO), which parallels OB-RM. [16] discusses how
WO, like OB-RM, leads to undesirable inferences when dealing with certain deontic
paradoxes [9] or conflicts between obligations [2]. In light of this, [16] proposes
replacing WO with other derivation rules, one of which is the EQ rule. This rule
infers an obligation OBq from another obligation OBp only when q and p are
equivalent, i.e., only when p↔q holds in the state of affairs.

A similar solution is proposed in [2], which introduces a deontic logic called
“Basic Deontic Logic (BDL)”. BDL is based on possible-world semantics, like
SDL, but unlike SDL, it allows for conflicts between obligations5. In BDL, OB-RM
is replaced by a stricter rule, called RBE:

(5) If ⊢ p↔A q , then ⊢ OBp↔OBq (RBE)

↔A” is a restricted version of the standard bi-implication ↔”. The restriction
is made to avoid the so-called “deontic explosion”, which involves inferring that
everything is obligatory from a conflict of obligations (see [2] for formal details).

However, neither I/O logic nor BDL includes an operator that parallels DDL’s
“⊗”. In other words, neither logic allows for the explicit representation and in-
ference of the penalties associated with the violations of obligations.

Considering only propositions logically equivalent to the obligatory ones may
be acceptable from the perspective of applying penalties, but only under the
(reasonable) assumptions that:
5 A conflict among obligations occurs when two or more obligations hold, but com-

plying with one entails violating the others. SDL’s axioms lead to an inconsistency
in the face of conflicting obligations, while BDL’s do not.

(6) a. Whenever obligations are either complied with or violated, then also all
their equivalent obligations are.

b. The penalty for a set of equivalent obligations is applied only once, and
not multiple times for each obligation in the set.

This paper proposes an extension of the RDF-based framework in [20] that aligns
with these assumptions. Thus, the proposed solution lies somewhat between the
approaches in I/O logic or BDL and that of DDL: like the former, it accepts only
equivalent obligations; like the latter, it includes explicit constructs to represent
penalties and rules to derive them from violations of the asserted obligations.

3 The RDF-based framework in [20]

The framework in [20] is a recent deontic logic implemented in RDF and SPARQL.
As is well known, RDF is the W3C standard for representing data in the Seman-
tic Web, while SPARQL is the W3C standard for querying and making inferences
with RDF data. Given the rapid growth of Big Data on the World Wide Web,
RDF is perhaps the most widely used format for knowledge representation. [20]
aims at providing a logical framework for checking compliance on RDF data.

The proposal in [20] builds upon “reified Input/Output logic” [17], an exten-
sion of standard I/O logic designed to handle Natural Language Semantics. It has
been demonstrated in [21] that norm-based semantics, such as the one adopted
in (reified) I/O logic, is more computationally efficient than other deontic logics
based on possible-world semantics. As a result, providing solutions that are fully
interoperable with RDF is crucial, as the cost of converting RDF-encoded Big
Data into the input format for other logical reasoners (e.g., SPINdle [13], the
automated reasoner for DDL) would be prohibitively high. We refer the reader
to [18] and [19] for an empirical comparison of the performance achieved by some
of the main contemporary legal reasoners, including SPINdle, on RDF data.

Besides the practical advantages brought by RDF and SPARQL, [20] features
several theoretical advantages over past proposals in deontic logic. It is a conflict-
tolerant deontic logic, like DDL and the BDL logic mentioned earlier, meaning
that it represents conflicts among obligations as consistent formulae. However, it
encompasses a wider range of conflicts and better models the interplay between
obligations and constraints holding in the state of affairs. The intuitions behind
[20], inspired by the work of H. Kelsen [12] [22], stem from the alternative analysis
that this paper is also employing: the meaning of obligations is investigated from
the perspective of how obligations are either complied with or violated.

Last but not least, thanks to RDF reification6, the framework in [20] is
also capable of explicitly representing violations and other abnormal situations,
namely to associate these with specific RDF individuals. Reification is also what
will be used in this paper to link violations with the corresponding penalties,
thus enabling the framework to infer the latter when the former occur.
6 https://www.w3.org/TR/rdf11-mt/#reification

Let’s now see some examples. Sentences (3.a) and (3.d) are respectively for-
malized, in Turtle format7, as in (7.a-b). This paper assumes that the reader
already has some basic knowledge of RDF and SPARQL formats.

(7) a. soa:epj a :Rexist, soa:Pay; soa:has-agent soa:John;
soa:has-object soa:100pounds; soa:has-instrument soa:cash.

b. soa:epoj a :Obligatory, soa:Pay; soa:has-agent soa:John;
soa:has-object soa:100pounds.

In (7.a-b), “soa:” is the RDF prefix associated with the resources in the state of
affairs that we want to model, while the empty prefix “:” is the one for the RDF
resources in [20]’s framework. Therefore, the state of affairs includes the action
“Pay” (RDF class soa:Pay), its thematic roles “agent”, “object”, and “instrument”
(properties soa:has-agent, soa:has-object, and soa:has-instrument), and
the individuals John”, £100”, and cash” (individuals soa:John, soa:100pounds,
and soa:cash). Finally, the individuals soa:epj and soa:epoj are called even-
tualities”, from [3], and refer to the two actions of paying.

:Rexist and :Obligatory are two modalities defined in [20]. :Rexist stands
for “really exist” and marks the eventualities that truly take place in the state
of affairs. :Obligatory, on the other hand, marks the eventualities that are
obligatory in the state of affairs (though they do not necessarily take place).

Thus, in (7.a), John does really pay £100 in cash while in (7.b) (7.b) John
is obliged to pay £100, because the individual soa:epoj belongs to the class
:Obligatory. On the other hand, in (7.b) it is unknown whether John also pays
the £100, i.e., whether the eventuality also belongs to the class :Rexist.

In [20], RDF assertions can also be negated; however, the RDF triples that
are negated are typically those where the object is one of the modalities, such
as :Rexist and :Obligatory. Since RDF vocabulary does not include standard
logical negation (usually represented by the symbol “¬”), [20] introduces two
special RDF classes, :false and :hold, and reifies the triples as individuals of
these classes. In RDF, a triple can be reified by creating a new individual in the
class rdf:Statement, of which :false and :hold are subclasses, and linking
this new individual to the three elements of the triple via the RDF properties
rdf:subject, rdf:predicate, and rdf:object, respectively.

Therefore, John does not pay £100” is represented as in (8), where [...]”
refers to an anonymous RDF individual, also known as a blank node8. In (8),
soa:epoj is the same eventuality defined in (7.b), which denotes the fact that
John pays £100. (8) is the reification of the triple “soa:epoj a :Rexist”, which
is not part of the knowledge graph representing the state of affairs; in fact,
(8) precisely states the opposite: this triple is false in the state of affairs. (8)
corresponds to the standard first-order logic literal “¬:Rexist(soa:epoj)”.

(8) [a :false,:hold; rdf:subject soa:epoj;
rdf:predicate rdf:type; rdf:object :Rexist].

7 https://www.w3.org/TR/turtle
8 https://www.w3.org/TR/2014/REC-rdf11-mt-20140225/#blank-nodes

3.1 Abstract eventualities and their instantiations

Eventualities may feature different levels of abstraction, which is given by the
set of specified versus non-specified thematic roles.

For example, in (7) the eventuality soa:epoj is more abstract than soa:epj.
soa:epoj denotes the general/abstract fact “John pays £100”; however, John
can do so in cash, by card, or with another instrument. Conversely, soa:epj
denotes the fact “John pays £100 in cash”, i.e., with that particular instrument.

In cases where an eventuality specifies a set of thematic roles that is a superset
of the set of thematic roles of another eventuality, and the shared thematic roles
have the same values, it is said that the former instantiates the latter.

The framework in [20] stipulates that an obligatory eventuality is complied
with by any really existing eventuality that instantiates the obligatory one. Thus,
in the example in (7), the fact that John is obliged to pay £100, i.e., soa:epoj,
is complied with by the fact that John pays £100 in cash, i.e., soa:epj, but also
by the fact that he pays them by card or with any other instrument: if any of
these instantiations of soa:epoj really exists, then soa:epoj is complied with.
This is enforced by the following SPARQL rule:

(9) CONSTRUCT{[a :true,:hold; rdf:subject ?eo; rdf:predicate rdf:type;
rdf:object :Obligatory] :is-complied-with-by [a :true,:hold;
rdf:subject ?e;rdf:predicate rdf:type;rdf:object :Rexist]}

WHERE{?eo a :Obligatory, ?c. ?e a :Rexist, ?c. ?c a :Eventuality.
NOT EXISTS{?tr a :ThematicRole.?eo ?tr ?vo. NOT EXISTS{?e ?tr ?ve}}
NOT EXISTS{?tr a :ThematicRole.?eo ?tr ?vo. ?e ?tr ?ve.

FILTER(?vo!=?ve)}
NOT EXISTS{[a :true,:hold; rdf:subject ?eo; rdf:predicate rdf:type;

rdf:object :Obligatory] :is-complied-with-by [a :true,:hold;
rdf:subject ?e;rdf:predicate rdf:type;rdf:object :Rexist]}}

The WHERE clause in (10) contains three NOT EXISTS sub-clauses. The first two
ensure that the really existing eventuality ?e indeed instantiates the obligatory
eventuality ?eo, as defined above, i.e., that the thematic roles in the former
are a superset of those in the latter, and the shared roles have identical values.
Specifically, these two sub-clauses verify that no thematic role is specified in ?eo
but missing in ?e, and that no thematic role is specified in both ?eo and ?e with
differing values (?vo!=?ve).

The third NOT EXISTS sub-clause is only included to prevent infinite loops,
as detailed in [20], §2.1. In other words, this sub-clause serves purely technical
purposes unrelated to the research presented in this paper. For space constraints,
similar sub-clauses are omitted from the rest of the paper; readers can find the
full version of the rules in the GitHub repository associated with this paper.

For each pair of eventualities (?eo, ?e) for which the WHERE clause in (10)
is true, the SPARQL rule constructs new RDF triples in the knowledge graph.
Specifically, it asserts that the obligatory eventuality ?eo is complied with by
the really existing eventuality ?e that instantiates ?eo. The special RDF prop-
erty is-complied-with-by explicitly connects obligations with their complying

facts. Since RDF properties only apply to RDF resources and not to RDF triples,
the two triples “?eo a :Obligatory” and “?e a :Rexist” must be again rei-
fied. Thus, the content of the CONSTRUCT clause in (10) reads: “the fact that ?eo
is obligatory is complied with by the fact that ?e really exists”.

4 Representing violations and associated penalties

[20] defines a rule to infer when obligations are complied with, shown in (10).
Conversely, it does not define rules to deduct when they are violated. [20] simply
assumes that obligations are violated when they are not complied with.

The definition of specific inference rules needed to deductively infer violations
of obligations is instead part of the original research presented in this paper.

In light of the distinction between abstract eventualities and their instanti-
ations explained in the previous section, this paper stipulates that obligations
are violated when (and only when) all their instantiations do not really exist.
Thus, John violated his obligation of paying £100 only if it can be demonstrated
that he did not pay them in any way, i.e., that he did not pay them in cash, nor
by card, etc. Note that, given that RDF semantics follows the Open World As-
sumption, if the knowledge graph does not include the triple “epj a :Rexist”,
we cannot deduct that John did not pay £100: this is simply unknown.

In reality, it could be quite challenging to demonstrate whether certain (un-
known) facts actually occurred. For instance, suppose that, in the example under
consideration, the police needs to determine whether John made the payment.
The police would have to show that he did not make any payment in cash, nor
by card, nor through any other possible instrument with which John could have
made the payment. Of course, this would be highly resource-intensive. For this
reason, the bearers of obligations are often required to provide evidence of com-
pliance. In the example at hand, John might also be obliged to request and keep
an invoice for his payment, to present upon request. See related discussion in
[4], where a similar solution has been proposed and formalized in DDL.

Still, it is sometimes possible to demonstrate, with a single inference, that
the abstract eventuality did not really exist, by simultaneously proving the non-
existence of all its instantiations. For example, in the scenario under considera-
tion, if it is established that John does not own any money, it can be inferred
that he did not make any payment (whether £100, £200, or any other amount).
This inference can be implemented within the framework of [20] using the fol-
lowing SPARQL rule, which specifies that if an individual does not own money,
then s/he do not make a payment:

(10) CONSTRUCT{[a :false,:hold;
rdf:subject [a soa:Pay; soa:has-agent ?a];
rdf:predicate rdf:type; rdf:object :Rexist]}

WHERE{?ro a :false,:hold; rdf:subject ?eo; rdf:predicate
rdf:type; rdf:object :Rexist. ?eo a soa:Own;
soa:has-agent ?a; soa:has-object soa:money}

Note that (10) creates two anonymous individuals. The first one represents the
abstract eventuality corresponding to the act of paying performed by the agent
?a, e.g., John, who does not own any money. The second one represents the
reification of this abstract eventuality; this reification is necessary to assert that
the abstract eventuality does not really exist.

Therefore, if the triples in (11.a) are asserted, those in (11.b) are inferred
through (10): the (abstract) act of John’s paying does not really exist.

(11) a. soa:r a :false,:hold; rdf:subject soa:eojm; rdf:predicate
rdf:type; rdf:object :Rexist. soa:eojm a soa:Own;
soa:has-agent soa:John; soa:has-object soa:money.

b. [a :false,:hold; rdf:subject [a soa:Pay; soa:has-agent
soa:John]; rdf:predicate rdf:type; rdf:object :Rexist].

Since it does not really exist that John makes a payment (of any amount, with
any instrument, etc.), as John does not own any money, the obligation in (7.b)
cannot be complied with, i.e., it can be deductively inferred that it is violated.

This inference can be made using the SPARQL rule in (12), which is the dual
of (10): while (10) searches for eventualities that really exist and instantiate the
obligatory eventuality, (12) searches for eventualities that do not really exist and
of which the obligatory one is an instantiation.

(12) CONSTRUCT{[a :true,:hold; rdf:subject ?eo; rdf:predicate rdf:type;
rdf:object :Obligatory] :is-violated-by ?r}

WHERE{?eo a :Obligatory, ?c. ?e a ?c. ?c a :Eventuality.
?r a :false,:hold; rdf:subject ?e; rdf:predicate rdf:type;

rdf:object :Rexist.
NOT EXISTS{?tr a :ThematicRole.?e ?tr ?vo. NOT EXISTS{?eo ?tr ?ve}}
NOT EXISTS{?tr a :ThematicRole.?e ?tr ?vo. ?eo ?tr ?ve.

FILTER(?vo!=?ve)}}

From (7.b) and (11.b), (12) infers the triples in (13): the fact that John is obliged
to pay £100 is violated by the fact that John does not make any payment.

(13) [a :true,:hold; rdf:subject soa:epoj; rdf:predicate rdf:type;
rdf:object :Obligatory] :is-violated-by [a :false,:hold;
rdf:subject [a soa:Pay; soa:has-agent soa:John];
rdf:predicate rdf:type; rdf:object :Rexist]

4.1 Representing penalties

After extending [20] to infer violations of obligations, this subsection further
expands it to represent and infer the penalties associated with those violations.

As explained at the end of Section 2, this paper follows the approach in
[6], which represents penalties as new obligations added to the knowledge graph
whenever the corresponding violations are inferred.

In our running example, let us assume that, in (7.b), epoj denotes John’s
obligation to pay the rent to Bill. This can be encoded by adding appropri-
ate RDF triples, such as “soa:epoj soa:has-recipient soa:Bill”, which are
omitted here for space reasons. Additionally, assume that if John fails to pay the
rent, he is obliged to vacate Bill’s apartment. This is encoded as follows:

(14) soa:epoj :has-penalty soa:pepoj.

soa:pepoj a soa:Leave; soa:has-agent soa:John;
soa:has-object soa:BillApt.

[a :true; rdf:subject soa:pepoj; rdf:predicate rdf:type;
rdf:object :Obligatory].

In (14), soa:pepoj represents the penalty associated with soa:epoj, which is
John’s obligation to pay Bill’s rent. The RDF property has-penalty corresponds
to DDL’s operator “⊗”. soa:pepoj denotes the act of leaving Bill’s apartment,
performed by John. Finally, the anonymous individual at the bottom of (14)
represents the truth of the triple “soa:pepoj a :Obligatory”. However, and
this is crucial to understand, soa:pepoj does not hold in the state of affairs. For
this reason, the anonymous individual at the bottom of (14) has been asserted
only as an instance of the class :true, but not as an instance of the class :hold.

Therefore, John is not currently obliged to leave the apartment. He will only
be required to do so if he violates the obligation soa:epoj. To enforce this, the
SPARQL rule in (15) is added. For every violated obligation, this rule infers that
the fact of its corresponding penalty being true holds in the state of affairs:

(15) CONSTRUCT{?r2 a :hold}
WHERE{?r1 :is-violated-by ?e; a :true,:hold; rdf:subject ?eo;

rdf:predicate rdf:type; rdf:object :Obligatory.
?eo :has-penalty ?p. ?r2 a :true; rdf:subject ?p;
rdf:predicate rdf:type; rdf:object :Obligatory}

From (13) and (14), (15) infers the triples in (16.a). These are, in turn, inferred
to be equivalent to the triple in (16.b) by one of the rules in [20]9, which we
omit.

(16) a. [a :true, :hold; rdf:subject soa:pepoj;
rdf:predicate rdf:type; rdf:object :Obligatory].

b. soa:pepoj a :Obligatory

As already discussed in the Introduction, legislation does not always associate
obligations with specific penalties. Furthermore, since penalties are modeled as
obligations, they might also be violated and must, therefore, be associated with
another penalty in turn. For example, what happens if John is obliged to leave
Bill’s house because he did not pay the rent, but he does not?
9 Specifically, by the SPARQL rule (28) in [20], §3.3.1.

In existing legislation, for norms not explicitly associated with penalties, it is
implicitly assumed that a judge or another appointed authority will determine
the appropriate penalty during a trial or alternative legal procedure. For exam-
ple, in the John-Bill scenario, Bill might eventually call the police, who would
force John to leave the house and possibly impose an additional penalty, such
as a fine to cover the police’s expenses.

To account for unspecified penalties, this paper introduces an additional RDF
class “TBD”, which stands for “to be decided” and parallels the function “tbd”
introduced for DDL above in Section 2. Obligations with unknown penalties are
linked to anonymous individuals in this class. These anonymous individuals can
be regarded as Skolemizations of unspecified penalties, which are expected to be
resolved at a later stage by an appointed authority.

Thus, the penalty soa:pepoj in (14) is associated with the “penalty on the
penalty” [a :TBD] in (17). This represents what John will be obliged to do if
he violates soa:pepoj. Therefore, in situations where soa:pepoj is obligatory
but John does not leave Bill’s house, the SPARQL rule in (15) will infer that
the anonymous individual [a :TBD] becomes obligatory. Further examples are
available in the GitHub repository associated with this paper.

(17) soa:pepoj :has-penalty soa:ppepoj.

soa:ppepoj rdf:type :TBD.

[a :true; rdf:subject soa:ppepoj; rdf:predicate rdf:type;
rdf:object :Obligatory].

In the proposed solution, every obligation that is not associated with an explicit
penalty is by default associated with an (unspecified) individual of the class TBD.

5 Entailments among obligations

Having incorporated in [20] an account of violations and associated penalties,
this section addresses the initial research question: whether, and to what extent,
entailments among obligations can be formalized.

Section 2 above provided arguments suggesting that the OB-RM rule of SDL
does not align with the approach of associating every obligation with a penalty,
which is instead endorsed in this paper. Specifically, it is unclear which penalties
should be associated with the obligations entailed by OB-RM, which are truth-
conditionally more general than those in the antecedent. It cannot be straight-
forwardly claimed that these penalties are merely unspecified, at least not in
the sense used in the previous section. Instead, it appears that no appropriate
penalty can be associated with these inferred obligations, which may justify the
conclusion that such obligations should not be inferred at all.

Conversely, equivalent obligations seem to be acceptable from this perspec-
tive, at least under the two assumptions in (6) above: (1) if an obligation is either
complied with or violated, then all its equivalent obligations are; (2) the penalty
is applied only once for all obligations within a set of equivalent obligations.

In light of this, the solution proposed in this paper parallels the EQ derivation
rule in I/O logic [16] or the RBE axiom10 in BDL [2].

For instance, in the running example of this paper, let’s assume that Bill also
accepts euros as payment, possibly because he rents his apartment in the UK
but lives in France, and thus finds it convenient to use euros in his daily life.

Given that £100 is equivalent to e118 (based on today’s currency exchange
rate), it can be assumed that the act of John paying £100, formalized as in (7.b),
is equivalent to the act of John paying e118, formalized as in (18). The latter
includes a new RDF property, is-equivalent-to, which explicitly encodes the
equivalence between the two eventualities.

(18) soa:epoj2 a soa:Pay; soa:has-agent soa:John;
soa:has-object soa:118euros; :is-equivalent-to soa:epoj.

Note that the equivalence between soa:epoj2 and soa:epoj holds in the present
state of affairs, where Bill has agreed to also accept euros from John, but it does
not necessarily hold in general. In other words, it cannot always be asserted that,
in any state of affairs, paying £100 is equivalent to paying e118.

Thanks to the new RDF property is-equivalent-to, it is straightforward
to implement SPARQL rules that parallel the rule EQ in [16] and the axiom RBE
in [2], while also incorporating the assumptions in (6.a-b). These SPARQL rules
are shown in (19) and (20).

Since in [20] every class that denotes a modality, e.g., Rexist and Obligatory,
is asserted as an individual of the top class Modality, the SPARQL rule in (19)
infers that the modality holding on an eventuality also holds on all eventualities
reachable from the former through a chain of is-equivalent-to properties.

(19) CONSTRUCT{?e2 a ?m}
WHERE{?m rdf:type/rdfs:subClassOf* :Modality. ?e1 a ?m.

?e1 (:is-equivalent-to|^:is-equivalent-to)+ ?e2}

On the other hand, the SPARQL rule in (20) infers that if the reification of
an obligation is either complied with or violated by the reification of another
eventuality, then the reifications of all equivalent obligations are.

(20) CONSTRUCT{[a :true,:hold; rdf:subject ?e2;
rdf:predicate rdf:type; rdf:object :Obligatory] ?cv ?r2}

WHERE{?r1 ?cv ?r2. ?r1 a :true,:hold; rdf:subject ?e1;
rdf:predicate rdf:type; rdf:object :Obligatory.
FILTER((?cv=:is-complied-with-by)||(?cv=:is-violated-by))
?e1 (:is-equivalent-to|^:is-equivalent-to)+ ?e2}

Therefore, on the one hand, if a really existing action complies with an obliga-
tion, the SPARQL rule in (20) infers that the same action complies with all its
10 Contrary to BDL, this paper does not use a restricted meaning of bi-implication

(e.g., from ↔ to the ↔A operator used in RBE), because [20] already blocks deontic
explosion by rejecting the rule of Disjunctive Introduction (see [20] for details).

equivalent obligations. On the other hand, the same rule allows the SPARQL
rule in (15) to still infer the penalties associated with obligations, even in cases
where one of its equivalent obligation is violated.

For example, if John pays e118 to Bill, the rule shown above in (10) infers
that soa:epo2j in (18) is complied with by this payment; subsequently, the rule
in (20) infers that soa:epoj is also complied with.

Note that penalties are not duplicated for each equivalent obligation. Instead,
it is the compliance/violation of the obligations that is propagated to all equiva-
lent obligations. Indeed, if penalties were duplicated or propagated, the SPARQL
rule in (15) would infer multiple penalties, one for each equivalent obligation,
thereby contradicting what has been stipulated in (6.b).

6 Conclusions and Future Works

This paper extends the RDF-based framework recently proposed in [20] with
RDF resources and SPARQL rules that parallel DDL’s operator “⊗”, in order to
represent and infer violations of obligations and their corresponding penalties.

Nevertheless, contrary to DDL, this paper does not consider DDL’s rule con-
version as a valid inference rule, nor the more general rule OB-RM from SDL. The
reason is that, in our view, these implications only concern the truth-conditional
meaning of the natural language sentences conveying the obligations, whereas
they should not add further obligations to the “list of tasks that must be complied
with”, as we informally referred to it in the Introduction.

On the other hand, this paper enables the representation of equivalent obliga-
tions, as it is done in the I/O logic proposed in [16] or the BDL logic proposed in
[2], provided that: (1) whenever obligations are either complied with or violated,
all their equivalent obligations are; and (2) the penalty for a set of equivalent
obligations is applied only once, not multiple times for each obligation in the
set. The RDF resources and SPARQL rules introduced in this paper represent
and enable inferences on violations of obligations and corresponding penalties,
while achieving (1) and (2).

In principle, solutions that parallel the RDF resources and SPARQL rules
proposed here, or the operator “⊗” proposed in DDL, could also be implemented
in I/O logic or BDL. However, implementing them in I/O logic or BDL seems
more formally complex, as it would require representing and enabling inferences
on meta-assertions about the obligations, which could be implemented by label-
ing the obligations and introducing additional rules that act on these labels.

Conversely, the high degree of expressivity offered by RDF, particularly
through its reification mechanism, provides a more flexible formal account. Obli-
gations can be reified into, i.e., associated with, individuals in the same format,
thus integrating the meta-level within the same underlying level.

RDF is a highly expressive yet relatively easy-to-use knowledge representa-
tion format, while the alternative logical formats considered in past deontic logic
literature do not seem to offer an equivalent expressivity-to-usability ratio.

Another key difference between the approach proposed here and the three
approaches from the literature discussed in the “Related Works” section above
is that the approach here stipulates that every obligation is always associated
with a penalty (unless it is asserted as equivalent to another obligation already
associated with that penalty). Furthermore, it could be the case that this penalty
is “currently unknown”, meaning it will need to be decided by a judge or another
appointed authority during a trial or similar legal procedures.

In the approach proposed here, currently unknown penalties are represented
as individuals of a special RDF class TBD, which stands for “to be decided”. These
individuals are Skolem constants that represent unspecified penalties and that
may be later “resolved” into concrete penalties that violators will be obliged to
fulfill. In this context, it could be highly beneficial, for risk assessment purposes,
to develop a LegalTech application that associates individuals in the class TBD
with estimates of the penalties they could represent, based on penalties assigned
to violators of similar obligations in past case law. The solution proposed in this
paper could therefore serve as the underlying framework for such an application,
which might be considered as a potential direction for future work.

More generally, in our future work we aim to explore how the RDF repre-
sentations presented here can be automatically extracted from legislative texts
using Natural Language Processing (NLP) techniques [1] [10] [14]. The goal is
to develop methods that allow for the automatic parsing of legal documents and
the generation of RDF representations that capture the structure and semantics
of the obligations and penalties described in the legislation. This would signifi-
cantly streamline the process of creating structured legal data, reducing manual
effort and increasing the efficiency of legal analysis. By integrating NLP with the
RDF framework, we hope to make it easier to work with large volumes of leg-
islation, enabling automated reasoning and more accurate predictions regarding
the enforcement of legal obligations and penalties.

Acknowledgments

We are deeply grateful to Guido Governatori for our discussions on the prelimi-
nary formalizations shown in this paper, which greatly enriched the research pre-
sented. This research was supported by Innovate UK project 10106412: “Odyssey
- Opening the National Archive’s Legal Data to AI for Access to Justice (A2J)”.

References

1. Boella, G., Di Caro, L., Rispoli, D., Robaldo, L.: A system for classifying multi-
label text into eurovoc. In: Francesconi, E., Verheij, B. (eds.) Proc. of International
Conference on Artificial Intelligence and Law, ICAIL. ACM (2013)

2. Goble, L.: Prima facie norms, normative conflicts, and dilemmas. In: Gabbay, D.,
Horty, J., Parent, X., van der Meyden, R., van der Torre, L. (eds.) Handbook of
Deontic Logic and Normative Systems. College Publications (2013)

3. Gordon, A., Hobbs, J.: A formal theory of commonsense psychology - how people
think people think. Cambridge University Press (2017)

4. Governatori, G.: Burden of compliance and burden of violation. In: Proc. of 28th
Annual Conference in Legal Knowledge and Information Systems (JURIX 2015).
Frontiers in Artificial Intelligence and Applications, vol. 279. IOS Press (2015)

5. Governatori, G.: An ASP implementation of defeasible deontic logic. Künstliche
Intelligenz 38(1) (2024)

6. Governatori, G., Olivieri, F., Rotolo, A., Scannapieco, S.: Computing strong and
weak permissions in defeasible logic. Journal of Philosophical Logic 6(42) (2013)

7. Governatori, G., Rotolo, A.: Deontic ambiguities in legal reasoning. In: Grabmair,
M., Andrade, F., Novais, P. (eds.) Proc. of the 19th International Conference on
Artificial Intelligence and Law, ICAIL. ACM (2023)

8. Grossi, D., Meyer, J., Dignum, F.: The many faces of counts-as: A formal analysis
of constitutive rules. Journal of Applied Logic 6(2) (2008)

9. Hansen, J.: Imperative logic and its problems. In: Gabbay, D., Horty, J., Parent,
X., van der Meyden, R., van der Torre, L. (eds.) Handbook of Deontic Logic and
Normative Systems. College Publications (2013)

10. Humphreys, L., Boella, G., van der Torre, L., Robaldo, L., Di Caro, L., Ghanavati,
S., Muthuri, R.: Populating legal ontologies using semantic role labeling. Artificial
Intelligence and Law 29(2) (2021)

11. Jörgensen, J.: Imperatives and logic. Erkenntnis 7(1) (1937)
12. Kelsen, H.: Conflicts of Norms. In: General Theory of Norms. Oxford University

Press (1991)
13. Lam, H., Governatori, G.: The making of spindle. In: Governatori, G., Hall, J.,

Paschke, A. (eds.) Proc. of Rule Interchange and Applications (RuleML 2009).
Lecture Notes in Computer Science, vol. 5858. Springer (2009)

14. Liga, D., Robaldo, L.: Fine-tuning GPT-3 for legal rule classification. Computer
Law & Security Review 51, 105864 (2023)

15. Makinson, D., van der Torre, L.W.N.: Input/output logics. Journal of Philosophical
Logic 29(4), 383–408 (2000)

16. Parent, X., van der Torre, L.: “sing and dance!” - input/output logics without
weakening. In: Proc. of Deontic Logic and Normative Systems - 12th International
Conference, DEON 2014 (2014)

17. Robaldo, L., Bartolini, C., Palmirani, M., Rossi, A., Martoni, M., Lenzini, G.:
Formalizing gdpr provisions in reified i/o logic: the dapreco knowledge base. The
Journal of Logic, Language, and Information 29 (2020)

18. Robaldo, L., Batsakis, S., Calegari, R., Calimeri, F., Fujita, M., Governatori,
G., Morelli, M., Pacenza, F., Pisano, G., Satoh, K., Tachmazidis, I., Zangari, J.:
Compliance checking on first-order knowledge with conflicting and compensatory
norms: a comparison among currently available technologies. Artificial Intelligence
and Law 32(2) (2024)

19. Robaldo, L., Pacenza, F., Zangari, J., Calegari, R., Calimeri, F., Siragusa, G.:
Efficient compliance checking of RDF data. Journal of Logic and Computation
33(8) (2023)

20. Robaldo, L., Pozzato, G.: Handling irresolvable conflicts in the Semantic Web:
an RDF-based conflict-tolerant version of the Deontic Traditional Scheme. https:
//arxiv.org/abs/2411.19918 (2024)

21. Sun, X., Robaldo, L.: On the complexity of input/output logic. The Journal of
Applied Logic 25 (2017)

22. Vranes, E.: The Definition of ‘Norm Conflict’ in International Law and Legal The-
ory. European Journal of International Law 17(2) (2006)

23. von Wright, G.: Deontic logic. Mind 60 (1951)

