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ABSTRACT

This work presents a hybrid pressure face-centred finite volume (FCFV) solver to simulate steady-state incompressible
Navier-Stokes flows. The method leverages the robustness, in the incompressible limit, of the hybridisable discontinuous Galerkin
paradigm for compressible and weakly compressible flows to derive the formulation of a novel, low-order face-based discretiza-
tion. The incompressibility constraint is enforced in a weak sense by introducing an inter-cell mass flux, defined in terms of a
new, hybrid variable that represents the pressure at the cell faces. This results in a new hybridization strategy where cell vari-
ables (velocity, pressure, and deviatoric strain rate tensor) are expressed as a function of velocity and pressure at the barycentre
of the cell faces. The hybrid pressure formulation provides first-order convergence of all variables, including the stress, without
the need for gradient reconstruction, thus being less sensitive to cell type, stretching, distortion, and skewness than traditional
low-order finite volume solvers. Numerical benchmarks of Navier-Stokes flows at low and moderate Reynolds numbers, in two
and three dimensions, are presented to evaluate the accuracy and robustness of the method. In particular, the hybrid pressure
formulation outperforms the FCFV method when convective effects are relevant, achieving accurate predictions on significantly

coarser meshes.

1 | Introduction

Despite the increasing interest towards high-order methods
for the simulation of incompressible flows [1-3], low-order
approaches such as finite volume (FV) methods [4, 5] still rep-
resent the majority of available computational fluid dynamics
(CFD) technologies for industrial applications.

Most existing FV codes can be classified into two groups, namely,
vertex-centred (VCFV) and cell-centred (CCFV) schemes. Whilst

these approaches differ in the positioning of the degrees of free-
dom (respectively, at mesh nodes and at cell barycentres) and in
the definition of the control volume (respectively, using a dual
mesh and exploiting existing mesh cells), they share common
drawbacks and limitations. In particular, both techniques rely
on a reconstruction of the gradient of the unknown velocity to
achieve first-order convergence of the stress, and such a recon-
struction is prone to experience a significant loss of accuracy in
the presence of distorted or stretched cells [6, 7].
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To circumvent this issue, a new FV paradigm [8] was pro-
posed. The face-centred finite volume (FCFV) method relies on a
mixed formulation of the governing equations in each cell (which
acts as a control volume), localizing the degrees of freedom at
the barycentre of the cell faces. The resulting method achieves
first-order convergence of all the physical variables involved in
the formulation, including the stress tensor, without the need
to perform gradient reconstruction, thus being less sensitive
to cell stretching and distortion with respect to traditional FV
approaches.

Besides Poisson and Stokes equations [8], FCFV solvers have been
successfully developed for linear elasticity [9], high-contrast and
variable viscosity Stokes flows [10, 11], viscous laminar and invis-
cid compressible flows [12, 13], and viscous laminar and turbu-
lent incompressible flows [14, 15]. Second-order versions of the
FCFV method enriched by automatic mesh adaptation strategies
were also presented for linear elliptic problems [16, 17].

Itis worth recalling that second-order CCFV schemes can be seen
as the lowest order version of a discontinuous Galerkin (DG)
method, whereas second-order VCFV methods on simplicial
meshes can be interpreted as the piecewise linear approximation
of a continuous Galerkin (CG) formulation on a dual mesh. In a
similar fashion, the FCFV paradigm can be seen as a hybridisable
discontinuous Galerkin (HDG) method [18-21] with piecewise
constant approximation in each mesh cell and on each mesh face.
Indeed, existing FCFV formulations for Stokes and incompress-
ible Navier-Stokes equations were derived leveraging the knowl-
edge on HDG for incompressible flows [22-25]. Hence, the FCFV
scheme inherits from HDG its properties, including the suitabil-
ity to handle different cell types, the robustness to cell stretching
and distortion, as well as the stability for perfectly incompressible
flows, circumventing the Ladyzhenskaya-Babuska-Brezzi (LBB)
condition [26], without the need for pressure correction algo-
rithms. In addition, FCFV mimics the hybridization procedure
of HDG to express the cell unknowns (i.e., velocity, pressure, and
gradient of velocity) as functions of the face velocities and the
average pressure in the cell via the solution of a set of indepen-
dent problems, solved cell-by-cell.

Previous works on FCFV for incompressible flows highlighted
that although the method achieves first-order convergence for
velocity, pressure, and gradient of velocity, the approximation
of pressure is prone to experience the largest values of the error
[8, 10, 11, 14]. On the contrary, HDG methods devised for
compressible and weakly compressible flows [27-29] were
shown to be robust, accurate, and stable in the incompressible
limit [30], also when using low-order polynomials. Stemming
from these observations, this work presents a novel formulation
of a face-based FV solver to simulate laminar incompressible
Navier-Stokes flows. The method relies on a new hybridization
procedure such that (i) a new face variable is introduced to repre-
sent the trace of pressure on the cell faces, (ii) mass conservation
is enforced weakly (instead of strongly cell-by-cell), leading to an
extra integral equation in each cell, and (iii) a suitable definition
of the inter-cell mass flux in terms of the newly introduced hybrid
pressure is provided.

The three points mentioned above mark the difference between
the hybrid pressure formulation and the FCFV method for

laminar incompressible Navier-Stokes proposed by Vieira
et al. [14], where pressure is defined exclusively inside each
cell and incompressibility is enforced strongly. On the contrary,
to introduce the new hybrid pressure, mass conservation can
only be imposed weakly. Nonetheless, it is worth noticing that
upon mesh refinement, the pressure defined in each cell con-
verges to the hybrid pressure, thus guaranteeing that the flow
is perfectly incompressible and mass conservation is verified
up to machine precision. The resulting hybrid pressure formu-
lation thus outperforms the FCFV method, achieving superior
accuracy for pressure and aerodynamic forces using coarser
meshes, especially when convection phenomena are involved.
The proposed method is also closely related to the high-order
HDG formulations that first introduced face unknowns for
pressure [31-33]. The novelties of the presented approach with
respect to these works are the use of a mixed formulation with a
symmetric mixed variable, the discretization of all variables with
the same degree of approximation (i.e., constant functions in the
cells and on the faces), and the inclusion of Riemann solvers in
the definition of the stabilization strategy for convection.

The remainder of this article is organized as follows. Section 2
recalls the governing equations for a viscous laminar incom-
pressible flow. Section 3 introduces the new hybridization pro-
cedure and derives the integral form of the hybrid pressure
FCFV method for the incompressible Navier-Stokes equations.
The discrete problem and the corresponding nonlinear solver are
described in Section 4, whereas Section 5 provides some consid-
erations on the computational aspects and the numerical proper-
ties of the method. Numerical examples, including academic test
cases, as well as two- and three-dimensional benchmark prob-
lems for Navier-Stokes flows at low and moderate Reynolds num-
bers, are presented in Section 6. Finally, Section 7 summarizes the
results of this work, whereas technical implementation aspects
and the hybrid pressure formulation for the Stokes equations are
presented in Appendices A and B, respectively.

2 | Governing Equations for Viscous Laminar
Incompressible Flows

Let Q Cc R"a be an open, bounded computational domain
in n_4 spatial dimensions, with boundary 0Q =T, U’y UT'g
such that I'j, T'y, and I'g are disjoint by pairs. Denoting by
(u, p) the velocity-pressure pair, the steady-state incompressible
Navier-Stokes equations are given by

-V-6+V-W®u) =s inQ,
V-u=0 inQ, €Y
B, u,p) =0 on oQ

where s is the body force, B denotes an operator enforcing the
boundary conditions, and o is the Cauchy stress tensor. For a
Newtonian fluid under Stokes’ hypothesis, the stress tensor is
written as ¢ = —pl,,_ + 0, where I, is the identity matrix of
dimensionn 4 X ng4, 6¢ = ve? is the deviatoric stress tensor, and

el 1=2V°u— %(V ‘Wl )
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is the deviatoric strain rate tensor, V¢ := (V + V7)/2 being the
symmetric part of the gradient operator. Finally, v represents the
kinematic viscosity of the fluid. Under the assumption of unitary
characteristic length and unitary characteristic velocity, the vis-
cosity is set equal to the inverse of the Reynolds number Re, i.e.,
v=1/Re.

Remark 1. Equation (2) is usually simplified by imposing that
the velocity is pointwise divergence-free, thus neglecting the last
term in the definition of €¢. Nonetheless, the numerical for-
mulation presented in this work enforces the incompressibility
equation only in a weak sense, and the term proportionalto V - u
is thus preserved in Equation (2) and the following derivation.

The governing Equation (1) are finally closed by means of a set of
boundary conditions, see Equation (3), setting the value u, of the
velocity on the Dirichlet boundary I',, the traction g on the Neu-
mann portion I'y, whereas a perfectly slip and a non-penetration
conditions are imposed on the symmetry contour I', i.e.,

u—up onl'p,
B u,p) =4 Pt vein—g onTy, 3)
tk~vedn
won onlg, fork=1,...,n4—-1

where the outward unit normal vector n and the unit tangen-
tial vectors ¢,,k =1, ...,n,4 — 1 form an orthonormal system
of vectors. In this work, outflow boundaries are modeled using
homogeneous Neumann conditions. For further details, Giaco-
mini et al. [30] present a numerical study of different conditions
suitable for outlet boundaries.

Finally, recall that the compatibility condition

/uD'ndF+/ u-ndl'=0 4)
r 0Q\T")

D

stems from the divergence-free condition on the velocity field in
Q. Moreover, if 'y, = #, an additional constraint, e.g.,

/deQzO (5)

needs to be introduced to eliminate the indeterminacy of the pres-
sure field [34].

3 | Foundations of the FCFV Method With
Hybrid Pressure

The domain Q is subdivided into a set of n_; non-overlapping
cellsQ,,e =1, ...,n,,. The boundary 0, of each cell consists of
asetofn{  facesT’, ;,j=1,...,nf , withnf varying depending
on the type of cell Q,. Moreover, the collection of all the faces,
excluding the ones on the boundary of the domain, defines the

internal interface (also known as internal mesh skeleton)
r:=(JoQ,1\ 0 (6)
e=1

Remark 2. Note that previous works [8, 17] showed the ability
of the FCFV framework to seamlessly handle meshes of triangles,

quadrilaterals, tetrahedra, hexahedra, prisms, and pyramids, as
well as hybrid meshes consisting of different cell types. For the
sake of brevity, in this work, meshes of quadrilaterals and trian-
gles will be employed in 2D, whereas only tetrahedral cells will
be considered in 3D.

Similarly to the FCFV method introduced by Sevilla et al. [8] and
successively studied for different physical problems [9-14], the
FCFV formulation with hybrid pressure is constructed starting
from a series of ingredients:

 a mixed, hybrid formulation of the equations;

« a piecewise constant approximation of the unknowns in the
cells and on the faces;

« adefinition of the numerical fluxes to handle inter-cell com-
munication;

« a hybridization (or static condensation) step to eliminate cell
unknowns, expressing them in terms of face unknowns.

At the same time, several novelties are introduced by the hybrid
pressure FCFV method. First, whilst most of the above cited
references rely on a velocity-pressure formulation of the Stokes
and Navier-Stokes equations, the present work derives the mixed
problem starting from a Cauchy formulation of the momentum
equation and imposes the symmetry of the mixed variable point-
wise [25, 30, 35]. Second, besides the piecewise constant approxi-
mation of velocity, pressure, and deviatoric strain rate tensor in
each cell, and the piecewise constant approximation of veloc-
ity on the cell faces, the proposed approach introduces a new,
additional hybrid variable representing the trace of the pressure,
also defined on the cell faces. A schematic representation of the
degrees of freedom of the hybrid pressure formulation and FCFV
method is displayed in Figure 1.

Moreover, the mass conservation equation is imposed in a weak
sense, entailing the need to appropriately define an inter-cell
mass flux, which is expressed in terms of the newly introduced
hybrid pressure variable. Finally, a new hybridization strategy is
proposed to express the cell unknowns as functions of the hybrid
variables (i.e., face velocity and face pressure) via the solution
of a set of independent problems, solved cell-by-cell. The follow-
ing subsections detail the building blocks of the hybrid pressure
formulation.

3.1 | Mixed Hybrid Formulation

Stemming from the rationale of HDG proposed by Cockburn and
co-workers [18, 19, 23, 36, 37], the FCFV method with hybrid
pressure employs a mixed formulation of the problem via the
introduction of L = —¢“ as a mixed variable.

Remark 3. By construction, the mixed variable L is symmetric.
For convenience, Voigt notation is employed to enforce pointwise
symmetry at the discrete level, storing only the non-redundant
components of the tensor. An overview of the technical details is
provided in Appendix A, whereas a more extensive discussion on
the topic was presented by Giacomini et al. [30].

Upon introducing the new, hybrid variables@onT" Uy, UT ¢ and
pon I' U 0Q, respectively representing the trace of velocity and

30of 25



(a)

FIGURE1 |

2@

(b)

Degrees of freedom of (a) hybrid pressure and (b) FCFV methods for cell Q,. u: Cell velocity, p: Cell pressure, £: Cell deviatoric strain

rate tensor, Vu: Cell velocity gradient tensor, #: Face velocity, and p: Face pressure.

pressure at the cell faces, problem (1) can be rewritten in each
cellQ,, fore=1,...,n,,,as

L+2Veu-— %(V ‘WL, =0  inQ,
VWD +V-(L,_ +u®u=s inQ,
1 Vou=0 ingQ, @
u=up onoQ, NIy,
u=u onoQ,\TI,

while imposing the boundary conditions on I'y UT'g and the
inter-cell continuity of momentum flux on the interior faces I',

B(—L,u,p)=0 onoQ\TIp, (
8)
[[(vL+pInsd+u®u)n]]=0 onT

as well as the inter-cell continuity of velocity on T, i.e.,

[u®n]=0 onT’ 9)
Note that, in Equations (8) and (9), the jump operator is defined
as [@] := O, + ©, by summing the contributions ®, and ®,. of
the cells Q, and Q_ sharing the interface I', including the outward
normal vectors n, and n_, respectively [38]. It is straightforward
to verify that this notation allows us to rewrite (9) on each face
inT as

0=[u®nl=u,®n, +u, Q@n,. =, —u,)@n, (10)

where the last equality holds because n, = —n,, thus enforcing
the expected inter-cell continuity of the velocity field on any arbi-
trarily oriented mesh face.

To have a unique solution, problem (7) requires, for each cell,
compatible velocities along its faces and an additional condition
to handle the indeterminacy of pressure. Both restrictions are
imposed weakly by means of (8) and (9), as will be detailed in
the upcoming subsections. Consequently, for every cell Q,, it

is assumed that the hybrid velocity is compatible with the cell
velocity via the boundary conditions in Equation (7), and that the
hybrid pressure, employed to weakly enforce cell-by-cell incom-
pressibility, is such that p = p on 0Q, removing the indeterminacy
of the cell pressure.

Moreover, it is worth noticing that Equation (9) can be rewritten
in terms of the orthonormal system of vectors {n,t,, ..., tnsd—l}
representing the normal and tangential directions to the inter-
nal mesh edges (n 4 = 2) or faces (n,4 = 3). More specifically, the
inter-cell continuity of the velocity is equivalent to

{ [u-n] =0 onT, an
(uy 1

—u)-t, =0 onTl, fork=1,...,n4—

The first equation in Equation (11) enforces the continuity of the
normal component of the velocity of two neighboring cells across
the interface I (i.e., mass conservation), whereas the remaining
n. — 1 equations enforce continuity of the tangential compo-
nents of the velocity, i.e., absence of shear effects on internal mesh
faces.

Given the uniqueness of & on the faces of the internal mesh skele-
ton and the condition imposed on u at the cell boundaries in
Equation (7), the continuity of the tangential component of the
velocity is automatically fulfilled. On the contrary, the continu-
ity of the mass flux across I', represented by the first equation in
Equation (11), does not follow straightforwardly as in traditional
formulations of hybrid methods [8, 30]. Indeed, the relaxation of
the incompressibility constraint (see Remark 1) is responsible for
the velocity to not fulfill strongly such an equation and for the
normal component of u to violate the condition prescribed at the
cell boundaries in problem (7). Hence, the hybrid pressure FCFV
method needs to explicitly enforce the continuity of the mass flux
on I' and the appropriate value of the normal component of the
velocity on 09, i.e., Equation (8) is to be complemented with

u-n=up-n ondQnlpy,
on dQ\ T, (12)

onI’

u-n=1u-n
[u-n] =0
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Following the FCFV rationale, the solution strategy for the
hybrid pressure formulation relies on two steps: First, the
so-called local Equation (7) is solved cell-by-cell to express the
cell unknowns as a function of the face unknowns, i.e., # and
p (hybridization step); then, the face variables are determined
solving the so-called global problem to enforce Equations (8)
and (12) (equilibration step).

3.2 | Integral Form of the Local Problem
The hybridization step is obtained by applying the divergence
theorem to (7), yielding the integral form of the local problem

Jo LdQ+ [ (uD ®n+n®@up—2up- n)Insd>d1"
+froary (@®@n+n@a-2@ 0, )dr =0,
Joo,(VER—VLR) dT + [, pndT+ [0 @@wn dl = [, s dQ,

Jyg, @ dl'=0

13)
where the hybrid variables % and p represent the traces of veloc-
ity and pressure on the cell faces. Moreover, ® denotes the trace,
defined on the mesh skeleton, of the numerical flux of quantity
®, and it will be detailed in Section 3.4.

Note that, in Equation (13), the divergence theorem is applied
twice to the viscous flux in the momentum equation and once to
the gradient of pressure and the convective fluxes in the momen-
tum equation and to the mass flux in the continuity equation.
This choice yields the appearance of the difference between the
numerical and the physical fluxes when the divergence theorem
is applied twice, allowing for a significant simplification of the
hybridization step by decoupling the computation of the three
variables involved in the local problem (see Section 4.1). A
detailed discussion on the double application of the divergence
theorem to the viscous part of the momentum equation was pre-
sented for the FCFV method by Sevilla and Duretz [11].

As mentioned in the previous section, although problem (7) fea-
tures only Dirichlet conditions on the boundary of the cell, pres-
sure is not underdetermined in €, using this formulation, under
the assumption that the face pressure p matches the cell pres-
sure p on 0L,. This requirement arises from the compatibility
condition enforcing incompressibility at the cell level, i.e., the
third equation in Equation (13). It is worth noticing that the weak
imposition of mass conservation in such an equation needs to be
complemented by an appropriate definition of the inter-cell mass
flux @ - n, as detailed in Section 3.4.

Hence, the solution of the local problem (13) provides the cell
variables (L, u, p) in terms of the velocity & and pressure p defined
on the mesh faces, which are then determined by solving the
global problem described in the following subsection.

3.3 | Integral Form of the Global Problem

The equilibration step determines the hybrid velocity-pressure
pair (@, p) on the mesh faces by solving Equations (8) and (12).
More precisely, the global problem enforces the boundary condi-
tions and the inter-cell continuity of momentum flux, as in tradi-
tional hybrid methods,

Ney

Z{ / vLn dT + /
=1 UJoag,\oa 0Q,\0Q

+/ @@ un dT + / B(L,u, @, p) dF} =0
0Q,\0Q 0Q,n0Q\T"
(14a)

pn dI’

together with the inter-cell continuity of mass flux and the nor-
mal component of the velocity on the external boundary, i.e.,

ey

Z{/ u’-\ndl"+/ @ i —up - n)dl
0Q,\0Q QN

e=1

+/' (mm-ammr}=o
99,000\,

The last term in Equation (14a) represents the hybrid version of
the boundary operator B defined in Equation (3), and it will be
detailed in the following subsection. Indeed, to fully characterise
the local and global problems presented above, appropriate defi-
nitions of all traces of the numerical fluxes are to be introduced.

(14b)

3.4 | Numerical Fluxes and Convection
Stabilization Inspired by Riemann Solvers

The numerical traces of the viscous and convective fluxes [12-14]
are defined as

— Ln+79u—- onoQ, NI,
VIn:=dVmTT (u f") e’ Db (152)
vLn + 1%(u — ) elsewhere
@ Qun = (,lfD ®iuD)n + r“(uA— up) onoQ,NIlp,
UQu)n+1°(u—u) elsewhere
(15b)

with 7¢ and t“ being appropriately defined stabilization coef-
ficients. Moreover, since the incompressibility equation is only
enforced in a weak sense in the present formulation, the numer-
ical trace of the mass flux needs to be introduced

on 0, NI"p, (150)

u-n+7P(p—p) elsewhere

— {mfn+ﬂ@—m
u-n:=
where 7” is a newly introduced stabilization coefficient defined
to control the compressibility effect due to the relaxation of the
continuity equation. A numerical study of its influence will be
presented in Section 6.1.1.

Itis worth recalling that the choice of the stabilization coefficients
7 and 7¢ is known to have a significant role in guaranteeing the
well-posedness and optimal convergence of the method, as exten-
sively studied in the HDG [19, 22, 25, 28, 30, 35, 39] and FCFV [8,
9, 12, 16, 17] literature. In this work, the stabilization of the vis-
cous flux is defined as

= pVI,, (16)
where f is a scalar parameter ranging between 5 and 10 in all

the examples presented in Section 6. The effect of the choice of
this coefficient on the robustness of the FCFV method has been
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extensively investigated in the literature by means of numerical
experiments [8, 12, 14, 16, 17].

For the convective term, FCFV stabilizations inspired by clas-
sic Riemann solvers have been derived for compressible [12]
and incompressible [14] flows, building on the seminal work by
Toro [40] and on the unified approach devised for HDG [28]. In
this work, Lax-Friedrichs (LF) and Harten-Lax-van Leer (HLL)
convective stabilizations are considered, employing the defini-
tions [14]

a

(. :=max{2|ﬁ-n|,§}lnsd

(17a)

¢ :=max{2®@ - n), 13} (17b)

a
HLL

where & = 5 x 1072 is a scalar cut-off parameter.

Similarly, the trace of the boundary operator B needs to account
for the conditions on the Neumann and symmetry boundaries,
namely,

B(L,u,q, p)

pn+vin+tiu-d)+g on Ty,
t,-|[vLn+t?(u—1
Ak [ ( )] on I,
i-n

fork=1,....,n4—1

(18)

3.5 | Integral Forms of the Hybrid Pressure
FCFV Method

The integral forms of the FCFV method with hybrid pressure are
obtained after inserting the numerical fluxes (15) into the local,
see (13), and global, see (14), problems. It follows that (L, u, p) are
first determined in each cell Q, as a function of (@, p) by solving
the following set of n_, independent local problems

~Jo, LA = [0 (uD ®n+n@up— (- n)Insd>dF
+/’39€\FD (ﬁ Q@n+nQ@u-— %(ii . n)Insd)dF,
fog, 7 dl = [o sdQ+ [o v (r—(up-mI, )up dT
+ /BQE\FD(T —(@-mI, )adl - /age pn dr,

—f(,ge p dl" = /ogenro up-ndl+ /aﬂa\ru U-ndl - /093 p dT’
(19a)
where 7 = ¢ + 7¢. Similarly, the global problem to determine the
velocity @ and pressure p on the mesh faces is given by

zj:l{ Jraron VER AT+ [ oo Tu dT
~ fronoa T B AT+ [ oo BUL.u.@.p) dF} =0,
325 { fog, 770 AT = [ w5 dT} =0
(19b)
where the cell-by-cell expressions of L, u, and p are determined
from Equation (19a). The corresponding local and global prob-
lems for the Stokes equations are reported in Appendix B.

Remark 4. Two observations are important to derive the first
equation of (19b). As in standard HDG and FCFV methods

[14, 30], the uniqueness of % on the faces of the internal skele-
ton I yields the cancellation of the convective part of the physical
flux, hence

el el

Z/ (t—@@-nl, )ﬁdr:Z/ Tadl  (20a)
= Joa, o 3 =1 Joa, o0

Following a similar reasoning, also the second term in
Equation (14a) vanishes due to the uniqueness of the hybrid
pressureonT,i.e.,

/ pndl =0 (20b)
92,\00

4 | Hybrid Pressure FCFV Discretization

Let A, :={1,...,n{_} denote the set of indices for all faces

of cell Q,. The sets 7, :={j €A, |T,;ndQ =0} and &, :=
{jeA, |T,;noQ# @} represent the set of indices for the
cell faces interior to the domain and on the boundary, respec-
tively. In addition, D, :={j € A, | I,; nT'p # @}, N, :={j€
A T, ;nTy #0},and S, :={j € A, | T,;nTg # @} denote
the sets of indices for the cell faces on the Dirichlet, Neumann,
and symmetry boundaries. To simplify the presentation, the sets
B, :=A,\D,and C, := &, \ D, are also introduced to identify
the sets of indices for all cell faces not on a Dirichlet boundary
and for all cell faces on any portion of the external boundary,
excluding the Dirichlet one. Moreover, recall the definition of the
indicator function of a generic set Z as

22(0) = {1 ifieZ, @1)

0 otherwise

The discrete form of the FCFV method with hybrid pressure is
obtained by describing the cell variables (L, u, p) using a piece-
wise constant approximation in each cell and the hybrid variables
(@, p) with a constant approximation on each cell face. The cor-
responding values of the cell variables in Q, are denoted by L,,
u,, and p,, whereas the hybrid variables on the j-th face I', ; are
denoted by @1; and p;. In addition, u, ; and g, represent the dis-
cretizations of the Dirichlet and Neumann data u, and g, respec-
tively, at the barycentre of face I, i whereas s, is the discretiza-
tion of the body force s at the centroid of €,. Similarly, n; and
t, ; denote the normal vector n, and the tangent vector #, at the
barycentre of face I, ;. Finally, integrals in the cells and on the
faces are performed using one quadrature point.

Upon discretization, the residuals of the local problem for each
cellQ,, e=1,...,n,, are given by

. 2
R, =10+ T Il (uD,jan +njul ~ g(anuD,,)Insd)
JED,
AT AT 2, Tn
+ 2 10 (“jnj +n,8; -3, uI)Insd)’
JEB,
R, = X I, ltu, - |Qls,— X IT,,| (rj -(anuD.j)Insd)uD_j
jeA, jeD,
e X )
-2 e, (Tj —(nj uj)InSd)uj + X I, ;1pm;,
jGBe jEAg
Re.p =y |Fe,jlrj"]pe + 2 |Fe,j|n;-ruD.j + X |Fe,j|n;»rﬁ,'
JjeA, jeD, Jj€B,

Pa
__Z |re,j|7jpj
JEA,

(22a)
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where |Q,| is the area (in 2D) or volume (in 3D) of cell , and
[T, ;| is the length (respectively, area) of the edge (respectively,
face) I',; in 2D (respectively, 3D). Moreover, the stabilization
coefficients r; and r;’ are all evaluated at the barycentre of the
corresponding faces.

The residuals of the global problem are to be computed on the
mesh faces T, ;, assembling the contributions of cell Q,, namely,

e,i?

R, ;= [T, { (VL + tu, — 7, 0;) x; () + By (D}, foralli € B,
{Rew =T, |7 (p, — P)s foralli e A,,
(22b)
where the expression of the discrete boundary operator for the
hybrid pressure formulation on face I, ; is

B, :=B,L,.u,.0,p, 79

pm, +vLn, +7i(u, —0)+g, forie N,

3 t{J [VLn, + 7¢(u, — )]
= Ta

i 1

} forieS,, and
n

fork=1,...,n4-1
(23)

The resulting FCFV discrete problem with hybrid pressure
involves the solution of the nonlinear system of equations

RL,u,p,0,p)=0 (29

obtained by assembling the contributions

R, (L. @)
R, (u,.0,p)
ei 1= R,,(p.. 0. D) > (25)
R, ;2L . 0, D)y (i)

R, ; (P, P

fore=1,...,n,, andfori € A,.

Remark 5. From a practical viewpoint, the first equation in
Equation (22a) is vectorized by means of Voigt notation to impose
the symmetry of the mixed variable pointwise. Similarly, Voigt
notation is employed to rewrite the terms of the first equation
in Equation (22b) involving L, to efficiently compute the con-
traction of the deviatoric strain rate tensor with the normal and
tangent vectors by means of standard matrix-vector products.
A description of the corresponding implementation details is
reported in Appendix A.

41 | Newton-Raphson Method for the
Incompressible Navier-Stokes Equations

To solve the nonlinear problem (24), the Newton-Raphson
method is employed. It is worth noticing that the stabilization
tensor 7¢ depends upon the unknown hybrid velocity, see (17).
To simplify the linearization of the residuals, at each iteration
m of the nonlinear solver, the stabilization tensors are evaluated
at iteration m — 1. While this noticeably simplifies the imple-
mentation of the algorithm, numerical experiments not reported
here for brevity have shown that it does not affect the stability

and convergence of the method. Indeed, since the residuals at
iteration m are evaluated using the stabilization with the last
computed approximation, the Jacobian matrix obtained by fixing
T¢ at iteration m — 1 is consistent, and quadratic convergence is
observed in all cases. This behavior confirms the results previ-
ously observed for the closely related FCFV method for laminar
incompressible Navier-Stokes equations [14]. It is worth noticing
that the solution of a pseudo-transient problem, performed in
the aforementioned reference to guarantee convergence of the
Newton-Raphson algorithm for turbulent flows, is not required
in the present work. Nonetheless, pseudo-time marching is
expected to accelerate convergence also for the hybrid pres-
sure formulation in the presence of stronger nonlinearities, for
instance, in the turbulent regime, but this lies beyond the scope
of this contribution.

At each iteration m of the Newton-Raphson algorithm, the linear
system to be solved is

Tyy Tya AU - _ Ry (26)
Tyy Tpa AA R,

where the residuals of the local and global problems, respec-

tively, are
R
L R,
Ry :=4R, ¢ R, := (27a)
RP
Rp
the block matrices are defined as
T,, 0 0 T, 0
Tyy = 0 T, 0| Typ =Ty Ty
0 0T, T Ty
T,, T, 0 T, T,.
T,y = aL “ou , Ty :=| ™ " (27b)
0 0 T, 0 T,

with T, being the tangent matrix obtained from the contribution
(T,p).; :=0R,; ,/0b, whereas the solution increments from iter-
ation m to iteration m + 1 are denoted by A@™" = @"*! — ®", with

(27¢)

The structure of the resulting system (26) allows for the cell
unknowns in U to be eliminated by computing the Schur com-
plement of the problem, thus leading to a smaller global system
involving only the face unknowns A, namely,

K"AA™ = F™ (28)

with K :=T,, — Ty Ty, Tya and F :=-R, + T, T, Ry.
Note that the inverse of matrix Ty, can be easily computed
analytically. Indeed, stemming from the choice of applying the
divergence theorem as discussed in Section 3.2, Ty, features a
block-diagonal structure.

Remark 6. Contrary to the FCFV formulation [8, 14], the
matrix K in Equation (28) does not feature a saddle point
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structure. This follows from the introduction of the hybrid pres-
sure unknown in the formulation and, consequently, from the
presence of a non-zero block Tj; in the matrix T, . Section 5 fur-
ther discusses the structure and the properties of the resulting
matrix K, whereas its detailed expression for the linear case (see
Equation (B5)) and the derivation of the hybrid pressure formu-
lation for the Stokes equations are reported in Appendix B.

Upon solving (28), the cell unknowns U can be retrieved by com-
puting, independently in each cell,

T",AU" = —R!" —T!" AA" (29)
It is worth noticing that, given the block-diagonal structure of
Ty, the local variables L, u, and p are decoupled from one
another, and the computation of Equation (29) is computation-

ally inexpensive.

Remark 7. The computation of the reduced matrix K and vec-
tor F in Equation (28) corresponds to the hybridization step
described in Section 3.2 and is the algebraic counterpart of the
solution of the local problem (19a). This strategy is equivalent
to the well-known static condensation and hybridization proce-
dures commonly performed for high-order finite element approx-
imations [20, 21, 41, 42].

5 | Computational Aspects

The implementation of the hybrid pressure FCFV solver features
three stages: (i) constructing matrix KK and vector [ at each itera-
tion of the Newton-Raphson algorithm; (ii) solving Equation (28)
to determine the face variables; (iii) retrieving the cell variables by
means of (29). As discussed in Section 4.1, the first and last steps
are computationally inexpensive since (i) can be performed ana-
lytically and (iii) exploits the block-diagonal structure of matrix
Ty to decouple the computation. Hence, the main cost of the
hybrid pressure FCFV method lies in the solution of the global
problem (28) in step (ii). The simulations of the Navier-Stokes
cases in Section 6 are obtained with a Fortran 90 implementation
of the method, relying on PETSc [43] for direct linear solvers.

In this context, the introduction of the face unknowns for pres-
sure represents a major difference with respect to the FCFV

512

1024

method [8, 14], resulting in larger systems to be solved. Table 1
presents an estimate of the expected number of degrees of free-
dom of the hybrid pressure formulation with respect to the FCFV
approach [8], neglecting the boundary unknowns. On the one
hand, the hybrid pressure formulation accounts for one degree
of freedom for each component of the velocity and an additional
one for pressure on each face, yielding a total of (n.q + 1)ng,
unknowns, n;, being the number of mesh faces. On the other
hand, the FCFV approach also features one face unknown per
component of velocity, whereas pressure is discretized in each
of the n_, cells, leading to a system of dimension n_yn;, +n.;.
Hence, using simplicial meshes, less than 15% extra degrees of
freedom are required to construct the hybrid pressure system
with respect to the FCFV one.

The introduction of the face unknowns for pressure is also
responsible for a significant change in the definition of the matrix
of the global problem. Figure 2 reports the sparsity pattern of the
global system obtained using the hybrid pressure formulation and
the FCFV method. For the sake of simplicity, a linear case is con-
sidered by neglecting the convection term in the Navier-Stokes
equations. The resulting problem under analysis is a two-
dimensional Stokes flow in a unit square domain, discretized by
means of a structured mesh consisting of 16 x 16 quadrilateral
cells. The sparsity pattern is presented without any renumbering
of the degrees of freedom to showcase the block structure of the
problem. Of course, before solving the system, a reordering pro-
cedure should be applied to reduce the bandwidth of the matrix.

TABLE1 | Comparison ofthe expected number of degrees of freedom

for the hybrid pressure formulation and the FCFV method using meshes

of different cell types.

Hybrid pressure FCFV
Cell type Vertices Cells Faces Nyoe Nyor
Quadrilaterals n n 2n 6n 5n
Triangles n 2n 3n 9n 8n
Tetrahedra n 5n 10n 40n 35n
Hexahedra n n 3n 12n 10n
Prisms n 2n Sn 20n 17n
Pyramids n 8n/5  4n 16n 68n/5
0

512

1024

1536 i N SN 1536 - . . ]
0 512 1024 1536 0 512 1024 1536
(@) (b)
FIGURE2 | Sparsity pattern of the matrix of the global system of a Stokes flow computed using (a) hybrid pressure formulation and (b) FCFV
method.
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FIGURE3 |
Regular meshes, (c) Distorted meshes, and (d) Distorted meshes.

Several aspects of the structure of the hybrid pressure matrix are
worth commenting on. Whilst the matrix blocks associated with
the face velocities (top left) are comparable in the two approaches,
both the off-diagonal terms and the pressure block present signif-
icant differences.

The off-diagonal blocks feature a more complex structure than
the FCFV ones, as visible in Figure 2a. Indeed, the dependence
of both cell unknowns u and p on the face unknowns # and
P, see (19a), is responsible for introducing a stronger coupling
between velocity and pressure in the hybrid pressure formula-
tion, instead of u depending exclusively on # (see equation 34b
of the FCFV formulation [8]) and the cell pressure being used
to enforce incompressibility cell-by-cell (see equation 37b of the
FCFV formulation [8]). Moreover, the employment of a point-
wise symmetric mixed variable (i.e., L in Equation (7) instead
of the scaled gradient of velocity in equation 25 of the FCFV for-
mulation [8]) also introduces additional coupling between hybrid
velocity and hybrid pressure via the inter-cell continuity of the
momentum flux in Equation (19b).

This additional richness of information is also testified by the
larger number of non-zero entries in the resulting system for
the hybrid pressure formulation: Whilst the 1, 536 X 1, 536 matrix
in Figure 2a features 30,448 non-zero entries, the FCFV matrix
depicted in Figure 2b has 10,728 non-null terms over a total of
1,248 x 1, 248 entries, whereas the number of degrees of freedom
of pressure only increased from 256 to 544.

Moreover, it is worth remarking that the hybrid pressure formu-
lation no longer features the saddle point structure present in the
FCFV matrix, as commented in Section 4.1. This is a direct conse-
quence of introducing the new variable p, which yields the matrix
block T;; in T,, (27b) and the non-zero bottom-right block visi-
ble in Figure 2a.

A numerical study of the properties of the spectrum of the global
matrix is now presented using the discretization of a Stokes flow
defined on a unit square domain. Four meshes are considered,
two featuring quadrilateral cells and two consisting of triangles:
The quadrilateral meshes consist of 16 x 16 cells, whereas the
meshes of triangular cells are composed of 16 X 16 X 2 triangles.
Each set of meshes accounts for regular meshes with uniform cell
size (Figure 3a,b) and distorted meshes in which the coordinates

(©) d)

Computational meshes of quadrilateral and triangular cells used to study the spectrum of the global matrix. (a) Regular meshes, (b)

of the internal mesh nodes have been perturbed by means of a
random value at most equal to the 30% of the shortest edge ema-
nating from such a node (Figure 3c,d).

Table 2 reports the minimum and maximum eigenvalues of the
matrix of the global problem obtained from the hybrid pressure
and FCFV discretizations.

Contrary to the FCFV matrix, whose eigenvalues are all real num-
bers, the results show that the hybrid pressure matrix exhibits a
certain number of complex eigenvalues. It is worth noticing that,
in all analyzed cases, these eigenvalues represent less than 7% of
the total number of eigenvalues. Moreover, the magnitude of the
corresponding imaginary parts always ranges between 107 and
1074, thus significantly below the accuracy of the mesh under
analysis, the corresponding cell size being 0.62 x 107, In addi-
tion, whilst the FCFV matrix features a saddle point structure,
thus having both positive and negative eigenvalues, the matrix
arising from the hybrid pressure formulation only presents neg-
ative eigenvalues. Note also that the maximum eigenvalue for
the hybrid pressure approach always remains bounded below
zero, being almost insensitive to cell type and cell distortion.
Hence, the performed numerical studies suggest that the matrix
obtained from the hybrid pressure discretization is negative def-
inite, but further theoretical analyses are required to confirm
this conclusion. Nonethless, these observations give promising
insights on the possibility to develop efficient iterative schemes
and preconditioners for the hybrid pressure FCFV method, which
lie outside the scope of the present work.

6 | Numerical Results

Four examples are presented in this section to numerically
evaluate the properties of the hybrid pressure formulation. First,
in Section 6.1, it is shown that the method can be successfully
employed to approximate the linear case of Stokes equations,
achieving optimal convergence of order one for velocity, pressure,
and deviatoric stress tensor, independently of cell type (quadrilat-
erals/triangles) and cell distortion. Moreover, the capability of the
method to guarantee mass conservation, although incompress-
ibility is only enforced in a weak sense, is verified numerically.
Then, the method is used to simulate a suite of steady-state
incompressible Navier-Stokes flows. The Couette flow
(Section 6.2) is employed to assess the convergence properties of
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TABLE 2 | Minimum and maximum eigenvalues of the global matrix for a Stokes flow using hybrid pressure formulation and FCFV method.
Re(Amin) Re(Amax) Im(Agin) Im(Agay)
Mesh type Hybrid pressure
Regular -11.7 -0.16 x 1073 —0.34 x 1073 0.34x 1073
quadrilaterals
Distorted -13.9 —-0.16 x 1073 —0.11 x 1073 0.11x 1073
quadrilaterals
Regular triangles -18.9 -0.17x 1073 —0.65x 1076 0.65 x 1076
Distorted triangles -30.0 -0.17x 1073 —-0.24x 1074 0.24x 1074
FCFV
Regular -7.7 0.40 x 1072 0.00 0.00
quadrilaterals
Distorted -10.9 0.49 X 1072 0.00 0.00
quadrilaterals
Regular triangles -13.5 0.32x 1072 0.00 0.00
Distorted triangles —22.7 0.50 x 1072 0.00 0.00
0 0 0
0.5 0.5 . 0.5
= ) 2 =
= = =
:3;-1.5— :%-1.5 5-1,5—
=] =} Q
= ou - op -
21 o u ) o p | ol o ot
——Regular ——Regular ——Regular
— — Distorted — — Distorted — — Distorted
2.5 5 -2.5
25 225 2 -175 -15 -125 -1 25 225 2 -1.75 15 125 -1 25 225 -2 -175 -15 -125 -1
logio(h) logio(h) logio(h)
(a) (b) (©)
FIGURE4 | Synthetic Stokes flow—Mesh convergence of the error of (a) velocity and hybrid velocity, (b) pressure and hybrid pressure, and (c)

deviatoric stress tensor, measured in the £, norm as a function of the cell size 47 on meshes of regular and distorted quadrilateral cells.

the method. The lid-driven cavity flow is simulated for different
Reynolds numbers in Section 6.3, demonstrating the capability
of the method to accurately approximate convection-dominated
flows, using different Riemann solvers. Finally, the three-
dimensional flow past a sphere confirms the robustness and
the accuracy of the approach, also with unstructured meshes
of tetrahedra (Section 6.4). Specific attention is devoted to the
comparison of the results with reference solutions, when avail-
able in the literature, and with the previously published FCFV
method [14], showcasing the superior performance of the hybrid
pressure formulation in the presence of convective effects.

6.1 | A Synthetic Stokes Flow

In this section, the optimal convergence properties of the
method are numerically verified for the Stokes equations using
a two-dimensional synthetic problem with viscosity v = 1. The
computational domain is Q = [0,1]*> and the boundary 0Q is
composed of two disjoint portions, I'y := {(x;,x,) € R? | x, =
0} and I'j, :=0Q \ I'y. Starting from an analytical solution of
the flow equations [44], velocity u = (u,,u,)" and pressure are
defined as

—sin(2zx;)(1 — cos(2wx,))

u(xy, x,) = { (1 — cos(27x,)) sin(27x,) }

p(xq,x,) = cos(rx;) + cos(zx,) (30)

and they are used to determine the analytical expressions of body
force s, Dirichlet datum u ), and Neumann condition g.

Five structured meshes of quadrilateral cells are employed to esti-
mate the convergence rate of the method. The meshes are uni-
formly refined and the i-th mesh consists of (8 x 2) x (8 x 2)
quadrilateral cells. In addition, the effect of cell distortion on the
accuracy of the computations is assessed by displacing the posi-
tion of each internal mesh node by a random perturbation of up
to 30% of the length of the shortest edge sharing the node [8].
The meshes previously displayed in Figure 3a,c, respectively,
represent the first level of refinement for regular and distorted
meshes of quadrilateral cells.

Setting 7” = 107!, Figure 4 displays the relative error, measured
in the £, norm as a function of the characteristic cell size h, for
cell and face velocity (left), cell and face pressure (centre), and
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FIGURES5 | Synthetic Stokes flow—Mesh convergence of the error of (a) velocity and hybrid velocity, (b) pressure and hybrid pressure, and (c)

deviatoric stress tensor, measured in the £, norm as a function of the cell size 4 on meshes of regular and distorted triangular cells.

deviatoric stress tensor (right). The results show that, upon mesh
refinement, the FCFV method with hybrid pressure achieves
the optimal convergence rate of order one for velocity, pressure,
and stress tensor. As already observed for the FCFV method
[8, 12-14], the convergence rates are preserved even in the
presence of distorted cells. Moreover, the error levels achieved
on regular and distorted meshes remain practically identical for
all variables, showing that the hybrid pressure formulation is
less sensitive to cell distortion than traditional CCFV and VCFV
methods [6, 7].

The test is repeated using a set of meshes with triangular cells,
obtained by splitting each quadrilateral in the above meshes by
means of one diagonal. The resulting i-th mesh consists of (8 x
27) x (8 x 27) x 2 triangles. The first level of refinement of these
computational meshes has been presented in Figure 3b,d for reg-
ular and distorted cells. The corresponding convergence of the
error for cell and face velocity, cell and face pressure, and devia-
toric stress tensor is reported in Figure 5. The results confirm the
optimal convergence rate of order one and almost identical errors
for cell and face velocity and deviatoric stress tensor, on both
regular and distorted meshes. Cell and face pressure converge
optimally with order one on distorted meshes, whereas, in this
problem, they experience superconvergence on regular meshes,
achieving order 1.3.

6.1.1 | Influence of the Stabilization Parameter
on Mass Conservation

As previously mentioned (see Section 3.4), the hybrid pressure
formulation requires the introduction of a new stabilization coef-
ficient in the definition of the mass flux. A sensitivity study is
presented to showcase the robustness of the method to the choice
of this parameter. Figure 6 displays the £, norm of the error for
cell and face velocity (left), cell and face pressure (centre), and
deviatoric stress tensor (right) as a function of 7, for different
levels of refinement of the meshes of quadrilateral and triangular
cells employed in the previous convergence study.

The accuracy of the approximation of u, &, and ¢ appears to be
almost independent of the choice of 77, for both quadrilateral
and triangular cells, and for any mesh refinement considered. On
the contrary, the accuracy of the cell and face pressure is affected
by the choice of z”, but a common trend can be identified for

different meshes and cell types. Given the results in Figure 6,
all the simulations in the present work are performed using
7 =107

It is worth recalling that, according to the definition of the mass
flux (15c), z” has a direct influence on the fulfillment of the
incompressibility equation. In particular, z” can be interpreted as
a measure of the compressibility effect introduced by enforcing
mass conservation weakly. To assess the accuracy of the hybrid
pressure formulation to impose the incompressibility constraint,
let us introduce the cell mass flux

Je:=/ u-ndl +/ up-ndl (31)
90\ 90,0l

Figure 7 displays the maximum norm of the cell mass flux]J,, for
different levels of mesh refinement and cell types, when the value
of the stabilization coefficient z? is modified. Note that while the
exact value of J, is zero for each cell, this quantity serves as a mea-
sure of the error in the approximation of the cell’s mass flux. Of
course, as 77 — 0, the approximation of the velocity tends to be
perfectly divergence-free and J, — 0. On the contrary, for large
values of 77, the incompressibility constraint is not well enforced,
but the error decreases as the mesh is refined.

Nonetheless, the maximum mass flux error, reported in Table 3
for ¥ = 107! and different meshes of quadrilateral and triangu-
lar cells, is always at least one order of magnitude smaller than
the corresponding best approximation error of order A that can be
achieved by a given mesh. Hence, although the hybrid pressure
formulation only enforces incompressibility in a weak sense, the
error introduced in the mass conservation of a given cell is neg-
ligible with respect to the spatial discretization error. Moreover,
at the global level, upon summing the contributions J, of all cells
Q,, e=1,...,n.,, the mass flux error achieves values of order
1072 for all meshes, and the mass conservation equation is thus
verified at machine precision. Similar results, not reported here
for brevity, were obtained using distorted meshes, with maximum
cell mass flux errors ranging from 0.92 x 1072 t0 0.13 x 1074

e

Additional numerical tests have been performed for the Stokes
flow, including the two-dimensional cavity flow and the flow past
a sphere in 3D. The results confirmed the previously observed
optimal convergence properties of the hybrid pressure formu-
lation, its accuracy using different cell types (quadrilaterals,
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TABLE3 | Synthetic Stokes flow—maximum cell mass flux J, with 77 = 107" for different levels of refinement of the regular meshes.
Mesh 1 2 3 4 5
h 0.62x 107" 0.31x 107" 0.16 X 107" 0.78 X 107 0.39 1072
Quadrilaterals 0.80x 1073 0.12x 1073 0.14x107* 0.16 x 1073 0.21x 1076
Triangles 0.65x 1072 0.11x 1072 0.17x1073 0.23x107* 0.31x1073

triangles, and tetrahedra), and its robustness in the presence of
unstructured, distorted, and stretched meshes. It is worth notic-
ing that all results were comparable with the ones provided by the
previously published FCFV method [8], and they are not reported
here for brevity. In particular, it was observed that the advantages

of one approach over the other were mainly problem-dependent
when dealing with the Stokes equations. Hence, the remaining
of this work will focus on Navier-Stokes flows to showcase the
superiority of the hybrid pressure formulation in the presence of
convection phenomena.
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6.2 | Navier-Stokes Couette Flow

In this section, the numerical convergence analysis of the
hybrid pressure formulation is performed for a two-dimensional
incompressible Navier-Stokes flow with an analytical solution.
The test case under analysis is the co-axial Couette flow,
defined on the computational domain Q := {(x;,x,) € R* | R, <
r(xy,x,) < R,}, with r := (x? + x%)1/2. The setup of the problem
represents an annulus centred in (0, 0), with inner and outer radii
R, =1 and R, = 2, respectively, rotating with imposed angular
velocities w; = 0 and w, = 0.5, respectively.

The analytical velocity u = (u,, u¢)T and pressure, expressed in
polar coordinates, are given by

(r) 0 (r) c2’2+2cc1o() —C§+c
u(r) = , pr)=C{—= r)—
Cr+ G, 1 TSR T o0

(32)
with  C) :=(@,R2 —w,R?)/(R2-R?) and C, := (v, -w,)
R?R?/(R? — R?), whereas C denotes a constant selected to
guarantee that the pressure at R, is equal to 1. Note that the solu-
tion pair (u, p) does not depend upon viscosity, and v is set to 1.
Considering |R, — R;| as the characteristic length of the problem
and setting the magnitude of u at r = R, as the characteristic
velocity, the corresponding value of the Reynolds number is 1.

Setting & = 5x 1072 in the definition of the HLL convective sta-
bilization (17b), the Newton-Raphson solver is executed with a
tolerance of 107°. A mesh convergence study is performed using
structured meshes of regular and distorted, quadrilateral and tri-
angular cells. Figure 8 displays the first level of mesh refinement,
featuring 32 subdivisions in the tangential direction and 8 in the
radial one. In general, the i-th level of mesh refinement is char-
acterized by (8 x 2) x (8 x 2) cells [14]. Similarly to the exper-
iments presented in Section 6.1, the effect of cell distortion is
evaluated by introducing a random perturbation of the internal
mesh nodes.

Figures 9 and 10 display the optimal convergence of the error
for cell and face velocity (left), cell and face pressure (centre),
and deviatoric stress tensor (right), upon mesh refinement, for
quadrilateral and triangular cells. The behavior of the £, norm of
the relative error confirms the results previously observed in the
case of the Stokes flow, with all variables optimally converging

(@) (b)

Couette Navier-Stokes flow—First level of refinement of the meshes of quadrilateral and triangular cells. (a) Regular meshes, (b)

FIGURES |
Regular meshes, (c) Distorted meshes, and (d) Distorted meshes.

with order one, independently of cell type or distortion. It is worth
noticing that, given the extremely low value of the Reynolds num-
ber, the flow under analysis is similar to a Stokes flow, and no
significant accuracy gain is expected in this problem. Indeed, the
comparison of the hybrid pressure formulation with the FCFV
method [14] shows that the approximations of velocity and devi-
atoric stress tensor are almost superimposed. Concerning the dis-
cretization of p, the hybrid pressure formulation shows slightly
increased robustness, achieving approximately the same accu-
racy using regular and distorted meshes. On the contrary, the
FCFV method attains optimal convergence for pressure in both
types of grid, but it suffers a slight loss of accuracy due to the dis-
tortion of the cells (see Figure 9a,b).

Concerning mass conservation, Figure 11 reports the absolute
value of the cell mass flux in logarithmic scale, i.e., log;, |J,[.
The results show that the maximum error in the cell-by-cell mass
conservation ranges from 1073 to 0.4 x 1072 for the first mesh of
quadrilateral and triangular cells, respectively. Note that this is
significantly below the corresponding best approximation error
that can be achieved with these meshes, where h ~ 0.4 for both
quadrilaterals and triangles. Moreover, this error consistently
decreases when the mesh is refined, achieving values of the order
of 1075 on the fourth mesh, while the corresponding mesh size
is of order 0.2 x 107! for both meshes. It is worth noticing that
the distortion of the cells (bottom row of the figure) affects only
marginally the error in the cell-wise incompressibility, increas-
ing the maximum error by a moderate factor, always significantly
below the best approximation error of the mesh. Finally, the total
mass flux obtained by summing the contributions J, for all mesh
cells achieves machine precision independently of the level of
mesh refinement, thus confirming the ability of the hybrid pres-
sure formulation to globally preserve the mass in the domain.

6.3 | Navier-Stokes Flow in a Lid-Driven Cavity

The third example presents the flow in a lid-driven cavity at Re =
1,000 and Re = 3,200. Given the domain Q = [0, 1]?, a constant
horizontal velocity field uj, = [1,0]” is imposed on the top lid,
whereas no-slip conditions are enforced on the remaining por-
tions of the boundary. Given the height of the domain as charac-
teristic length and the magnitude of u;, as characteristic velocity,
the viscosity v is set to 1/ Re.

The goal of this test is to evaluate the influence of different
choices of convective stabilization on the hybrid pressure
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approximation and compare its performance with the FCFV
approach [14]. More precisely, Lax-Friedrichs (LF) and Harten-
Lax-van Leer (HLL) Riemann solvers, see (17), are employed.
The nonlinear problem is solved using the Newton-Raphson
algorithm, with a tolerance of 1071,

The outcome of the hybrid pressure formulation is compared
to the FCFV method [14], a Taylor-Hood (Q2Q1) finite element
result with streamline-upwind Petrov-Galerkin (SUPG) stabiliza-
tion [34] and the reference solution by Ghia and co-workers [45].
On the one hand, the computational meshes (see Figure 12) for
the hybrid pressure and FCFV formulations are characterized
by a local refinement near the boundaries, with the height of
the first layer of boundary cells being 1072 /i for the i-th level of
mesh refinement and the growth ratio ranging from 1.06 in the
coarse mesh to 1.003 in the finest mesh. The resulting i-th mesh
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Couette Navier-Stokes flow— Cell mass flux log,, |J,| for the first and fourth levels of mesh refinement using quadrilateral and trian-

(®)

Cavity flow—(a) First and (b) second level of mesh refinement.

features (24 x 2') x (24 x 2) x 2 triangular cells. On the other
hand, to compute the reference solution, a mesh of 700 x 700
quadrilateral cells is employed. This mesh sets the height of the
first cell to 0.96 x 10~* and features a local refinement near the
four physical walls.

The quantities of interest in this problem are the profiles of veloc-
ity and pressure at the centerlines of the domain. Velocity profiles
for Re = 1,000 are reported in Figure 13 for the third and fourth
level of mesh refinement using LF and HLL stabilizations. For
the sake of brevity, only meshes without distortion are presented.
Using the LF Riemann solver, the results of the hybrid pressure
and FCFV formulations are perfectly superposed, showing excel-
lent agreement with the Taylor-Hood and Ghia et al. references
(Figure 13a). As expected, the accuracy furtherly increases when
the mesh is refined (Figure 13c). Alternatively, a more accurate
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mann solvers on different meshes. Top row: Third mesh, Bottom row: Fourth mesh.

approximation can be achieved on the coarse mesh by employing
the HLL Riemann solver (Figure 13b), confirming the superior
performance of this stabilization, already observed for the FCFV
method [14]. In addition, it is worth noticing that the hybrid pres-
sure formulation with HLL stabilization also provides slightly
more accurate results with respect to the FCFV approximation
with HLL on both meshes.

Nonetheless, it is in the approximation of p that the hybrid pres-
sure formulation with HLL stabilization clearly shows its supe-
rior performance with respect to the FCFV scheme and the LF
stabilization. Figure 14 displays the profiles of pressure at the
centrelines for Re = 1,000. Whilst using LF Riemann solver the
hybrid pressure formulation provides results comparable to the
FCFV method and the fourth mesh is required to achieve an accu-
rate description of pressure (Figure 14c), the HLL stabilization
significantly improves the quality of the approximation, even on
the coarser mesh (Figure 14b). Moreover, the hybrid pressure for-
mulation clearly outperforms the FCFV method using the HLL
Riemann solver: Using the third mesh, the hybrid pressure for-
mulation with HLL stabilization provides results with accuracy
comparable to the ones achieved by the FCFV scheme with HLL
on the fourth level of mesh refinement, see Figure 14d, while
reducing the number of cells from 294,912 to 73,728.

It is worth noticing that the quantities of interest reported
in Figures 13 and 14 can be significantly influenced by local
modifications of the flow field. To evaluate the global accuracy

of the method, the errors of the hybrid pressure and FCFV for-
mulations with respect to the Taylor-Hood solution are reported
in Figure 15 as a function of the mesh size A. The results confirm
that whilst the errors achieved by the two methods are compa-
rable using the LF stabilization, the hybrid pressure clearly out-
performs the FCFV scheme in the approximation of all variables
when the HLL Riemann solver is employed.

Remark 8. The reference Taylor-Hood solution used to com-
pute the errors of the FCFV and hybrid pressure formulation
is obtained by simulating the so-called leaky cavity flow, given
the strong imposition of the incompatible Dirichlet bound-
ary conditions on the top left and top right corners. On the
contrary, the FCFV and hybrid pressure formulations impose
Dirichlet conditions at the barycentres of mesh faces, thus
practically circumventing the incompatibility of these boundary
conditions. It is worth noticing that the region affected by the
incompatible Dirichlet boundary conditions in the Taylor-Hood
solution features multiple cells and is reduced upon mesh refine-
ment. This also affects the size of the region where pressure is
non-zero, which shrinks tending to a pointwise singularity when
h — 0 [34]. To maintain a comparable reference Taylor-Hood
solution for all meshes under analysis and to avoid introducing
mesh-dependent artifacts in the error computation, the regions
[0,0.05] X [0.95,1] and [0.95,1] X [0.95, 1] are excluded from the
domain Q when computing the £,() norm of the error [14], as
reported in Figure 15.
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Finally, Figure 16 presents the approximation of the cavity flow
for Reynolds 3,200. Given the previously observed superiority of
HLL with respect to LF, results are reported only for the HLL Rie-
mann solver using the hybrid pressure formulation and the FCFV
method. The profiles of velocity and pressure computed on the
fourth mesh are displayed along the centrelines in Figure 16a,b,
respectively. Also in this case, the hybrid pressure formulation
outperforms the FCFV approach, achieving a slightly more accu-
rate approximation of velocity while significantly improving the
description of pressure.

The convergence of the relative £, error, reported in Figure 16¢
for all the variables, confirms the superiority of the hybrid
pressure formulation to construct an accurate face-based FV
paradigm to simulate viscous laminar incompressible flows.
Moreover, the accuracy appears to slightly increase at higher
values of the Reynolds number, when convective effects are more
relevant. Further studies, beyond the scope of the present work,
need to be performed to evaluate the behavior of the proposed
formulation in the turbulent regime. The closely related FCFV
method was recently shown to be suitable for simulating
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turbulent incompressible flows using Reynolds-averaged
Navier-Stokes equations with Spalart-Allmaras turbulence
model [14].

6.4 | Three-Dimensional Navier-Stokes Flow
Past a Sphere

The last example considers the steady-state incompressible
Navier-Stokes flow past a three-dimensional sphere of diame-
ter D =1 at Re = 20. The computational domain is defined as
Q = ([-10D,20D] x [-10D, 10D] x [-10D,10D]) \ By 5.

The case of Re = 20 is considered since this benchmark is well
documented in the literature [46-48] and the symmetry of the
flow with respect to the x;x, and x,x; planes is preserved for
low values of the Reynolds number. Exploiting this symmetry,
only one-fourth of the domain is simulated. A uniform horizontal
velocityup, = [1,0,0]” isseton the inlet plane "y at x; = —10D, a
homogeneous Neumann condition is imposed on the outlet plane
I'y at x; = 20D, whereas symmetry conditions are enforced on
the remaining lateral surfaces I'g. The viscosity is selected as
v = 1/Re, using D as characteristic length and the magnitude of
u, as characteristic velocity of the problem. It is worth recalling
that the convective effects in the Navier-Stokes flow are responsi-
ble for breaking the symmetry of the velocity and pressure fields
with respect to the x,x; plane. In particular, to accurately cap-
ture the flow features, an appropriate local refinement of the

mesh is required in the wake of the cylinder, as displayed in
Figure 17a for the fourth mesh. In addition, Figure 17 reports
the magnitude of the velocity, the streamlines, and the pres-
sure field computed using the hybrid pressure formulation with
HLL Riemann solver on the fourth level of mesh refinement
described below.

To perform a mesh convergence study of the drag coefficient, five
unstructured meshes of tetrahedral cells are constructed using
Gmsh [49]. Table 4 reports the specifics of the mesh construction,
including number of cells, n,,, number of faces, n;, = nfa +
n?a + nga (subdivided in the subset T, D, and C), as well as the
local cell size in the first layer near the wall, in the wake of the
cylinder, and the farfield.

The dimensions of the resulting systems are detailed in Table 5.

For the problem under analysis the number of unknowns for
. . . {0 _ I C

the hybrid velocity are given by n}_. = 3(n;, + nfa): whereas

the unknowns for hybrid pressure and pressure are n,_. =ng_,

and nf__ = n,,, respectively. Hence, the number of degrees of
freedom is ngo . +nf_. for the hybrid pressure formulation and

n_; +n’_, for the FCFV method.

The convergence of the drag coefficient C, is displayed
in Figure 18 using the hybrid pressure formulation with
HLL stabilization on the five meshes described above. The
Newton-Raphson algorithm is employed to solve the nonlinear
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problem, with a tolerance of 107°. The results show that, even
on the coarsest mesh, the prediction provided by the hybrid pres-
sure formulation lies within the range of values reported in the
literature [46-48], whereas the FCFV method requires the fourth
level of mesh refinement to achieve a precision in such an inter-
val. In addition, although the values of the pressure part, Cdp, and
the viscous part, C, , of the drag coefficient computed using the
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Flow past a sphere at Re = 20—(a,b) Mesh; (c,d) Velocity magnitude and streamlines; (e,f) Pressure. (a), (b) Zoom of 17 (a), (c), (d)

FCFV method on the first mesh are closer to the corresponding
expected values, the hybrid pressure formulation outperforms the
FCFV method by providing a faster and almost monotonic con-
vergence of both components. Table 6 reports the detailed evo-
lution of the drag coefficients and the reference values from the
literature, showing excellent agreement of the hybrid pressure
formulation.
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TABLE 4 | Flow past a sphere at Re = 20—specifics of the computational meshes.

Faces .

First wall Wake Farfield
Mesh N, nfa nzf)a nfa Negy cell height cell size cell size
1 16,108 30,305 230 3,592 34,127 0.32 1.2 1.2
2 32,550 62,136 280 5,648 68,064 0.16 0.8 1.2
3 110,567 214,870 516 12,012 227,398 0.08 0.4 1.2
4 473,710 931,437 1,446 30,520 963,403 0.04 0.2 1.2
5 2,204,960 4,364,550 5,100 85,636 4,455,286 0.02 0.1 1.2

TABLE5 | Flow pasta sphere at Re = 20— comparison of the number of degrees of freedom of the hybrid pressure and FCFV formulations.

Hybrid pressure FCFV
i p P

Mesh ngof Dot Dgos Dgos Dyor
1 101,691 34,127 135,818 16,108 117,799
2 203,352 68,064 271,416 32,550 235,902
3 680,646 227,398 908,044 110,567 791,213
4 2,885,871 963,403 3,849,274 473,710 3,359,581
5 13,350,558 4,455,286 17,805,844 2,204,959 15,555,517

3.1 T T 1.4 1.85

References o FCFV
3.0 Hybrid pressure 3l 175
4

T29 S 165

2.8 \¥é\ 1.55 ]

o FCFV
o Hybrid pressure
2.7 - . . 1.45
5 5.5 6 6.5 7 7.5 5 5.5 6 6.5 7 7.5 5 5.5 6 6.5 7 7.5
logio(ngot) logio(ngof) logio(ndof)
(2) (b) (©)

FIGURE 18 | Flow pastasphere at Re = 20— Convergence of (a) drag coefficient, (b) pressure part, and (c) viscous part of the drag coefficient as a
function of the number of degrees of freedom in the simulation. The shaded area identifies the range of reference values published in the literature for
this benchmark.

TABLE 6 | Flow pastasphere at Re = 20—mesh convergence of the drag coefficient C,, its pressure part Cdp and its viscous part C, .
C, Ca, Gy,
Mesh Hybrid pressure FCFV Hybrid pressure FCFV Hybrid pressure FCFV
1 2.878 2.967 1.392 1.213 1.486 1.754
2 2.837 3.028 1.171 1.195 1.666 1.833
3 2.808 2.931 1.061 1.124 1.747 1.807
4 2.805 2.864 1.030 1.078 1.775 1.785
5 2.788 2.810 1.023 1.057 1.764 1.754
Literature
[46] 2.790
[47] 2.724
[48] [2.719,2.882]
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TABLE7 | Flow pasta sphere at Re = 20—drag coefficient and estimated error for the total drag C,, its pressure part C, and its viscous part C; .

Hybrid pressure

Mesh Cy £4 Cdp €4, Cy, £q
1 2.878 0.032 1.392 0.361 1.486 0.158
2 2.837 0.018 1.171 0.145 1.666 0.056
3 2.808 0.007 1.061 0.037 1.747 0.010
4 2.805 0.006 1.030 0.007 1.775 0.006
5 2.788 — 1.023 — 1.764 —
Mesh Fery

Cy €4 Ca, €4, Ca, €4,
1 2.967 0.056 1.213 0.148 1.754 0.000
2 3.028 0.078 1.195 0.131 1.833 0.045
3 2.931 0.043 1.124 0.063 1.807 0.030
4 2.864 0.019 1.078 0.020 1.785 0.018
5 2.810 — 1.057 — 1.754 —

To verify the mesh-convergence of the computations, the error on
the total drag, as well as its pressure and viscous contribution, is
estimated using the last mesh as the reference result. More pre-
cisely the estimated error on the i-th mesh is measured as

i 5
. |C2>_C<>|

e = (33)
¢ IC3I

Table 7 displays the estimated error for the first four meshes.

As qualitatively observed in Figure 18, the hybrid pressure for-
mulation achieves convergence on the fourth mesh, assuming a
desired error of 1% for both the pressure and viscous components
of the drag. On the contrary, for the FCFV, the estimated error
on the fourth mesh is still above the desired error, showing that
further mesh refinement is required and confirming the superior-
ity of the hybrid pressure formulation in approximating pressure
in incompressible flows. It is worth noting that the same conclu-
sions are obtained if the error is measured on the total drag. How-
ever, it is preferred to use a more restrictive criterion based on
pressure and viscous components, because adding the pressure
and viscous component of the drag can lead to error cancellation
in the total drag.

Finally, a comparison of the computational cost of the hybrid
pressure formulation relative to the FCFV method is provided.
From Table 5, it is evident that, for a given mesh, the hybrid pres-
sure formulation has more degrees of freedom than the FCFV
approach.

For instance, consider the fourth level of mesh refinement—the
coarsest mesh for which the FCFV method provides a C, predic-
tion within the range of values reported in the literature. For this
mesh (Mesh 4), the global problem in the hybrid pressure formu-
lation involves 17,805,844 unknowns, compared to 15,555,517 in
the FCFV method. Consequently, for the same mesh, the hybrid
pressure formulation is computationally more expensive than the
FCFV approach.

Nonetheless, it is more reasonable to compare the methods based
on a fixed level of accuracy. For a similar accuracy, the hybrid
pressure formulation clearly outperforms the FCFV approach
[14] in terms of computing cost. Specifically, Figure 18a shows
that the hybrid pressure formulation can use Mesh 2 to achieve
a C, prediction comparable—if not slightly better —than that
provided by the FCFV method on the fourth mesh. Using one
computing node with 16 processors!, building and assembling
the global problem takes 2.1s for the hybrid pressure formula-
tion and 19.6s for the FCFV method. Moreover, as highlighted
in Section 5, the most computationally expensive task is solv-
ing the nonlinear global problem. The hybrid pressure and FCFV
methods, respectively, require 3.1 s and 128.4 s to solve the global
system in each Newton-Raphson iteration.

7 | Concluding Remarks

This work presented a new hybrid pressure face-centred finite
volume solver for viscous laminar incompressible flows. The
method relies on a mixed hybrid FV formulation in which the cell
variables (velocity, pressure, and deviatoric strain rate tensor) are
expressed in terms of the face velocity and the face pressure by
means of a hybridization procedure. To do so, incompressibility
isenforced weakly, and a new definition of the inter-cell mass flux
is proposed. The resulting method has been tested on a suite of 2D
and 3D benchmark problems for the steady-state incompressible
Navier-Stokes equations.

First, a linear problem (i.e., Stokes equations) with a synthetic
solution was used to verify the first-order convergence of velocity,
pressure, and deviatoric stress tensor on meshes of quadrilateral
and triangular cells. The effect of cell distortion and the sensitiv-
ity of the method to the choice of the stabilization coefficient were
also assessed.

Whilst for Stokes flows the hybrid pressure formulation pro-
vides results comparable to the FCFV method, its performance
is clearly superior in the presence of convection phenomena.
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Upon verifying, by means of a synthetic problem, that optimal
convergence of the discrete solution was also achieved in the
Navier-Stokes setting, the cavity flow was studied for Reynolds
numbers up to 3,200. These tests showcased the superiority of
the hybrid pressure formulation with respect to traditional FCFV
schemes when convective effects are relevant. The hybrid pres-
sure approach with HLL Riemann solver is indeed capable of
providing accurate predictions on meshes coarser than the ones
required by the FCFV method. Finally, the flow past a sphere
at Re = 20 was used to confirm the superior performance of the
hybrid pressure approach with respect to the FCFV scheme, also
in 3D. Numerical results showed the suitability of the method to
compute quantities of engineering interest (i.e., the drag coeffi-
cient), using unstructured tetrahedral meshes and achieving suf-
ficient accuracy, in excellent agreement with the reference values
published in the literature.

Some computational aspects of the method have also been dis-
cussed, numerically studying the properties of the spectrum of
the matrix for different cell types, for uniform and distorted
meshes. The experimental observations yielded the conjecture
that the matrix obtained from the global problem of the hybrid
pressure formulation is negative definite. Future work will focus
on a more thorough analysis of these properties, with the goal
of developing efficient iterative schemes and preconditioners tai-
lored to the presented hybrid pressure FCFV formulation.
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Appendix A

Implementation of the Pointwise Symmetry of the Mixed
Variable

The symmetry of the mixed variable and the deviatoric stress tensor
is imposed pointwise using Voigt notation [30, 50]. More precisely, to
treat the n 4 X n y matrix representing L, only m_, :=n_(ng, +1)/2
non-redundant components are stored in the vector

L. = {[Lll’ Ly, le]T
= T
! [Ln’ Ly, Las, Lyp, Lys, Lzs]

in 2D,

(A1)
in 3D

Similarly, to represent the normal direction to a surface, the matrix Ny, is

defined as
T
n; 0 n,
0 n, m
T

Ny :=9|n, 0 0 n, n; 0 (A2)
in 3D

in 2D,

0n, 0 n 0 ny
0 0 n; O n n,

with n, being the k-th component of the discrete outward unit normal
vector n.

It follows that the second-order tensor n’ + na’ — %(nTﬁ)Insd associ-
ated with the computation of the mixed variable can be rewritten at the
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discrete level using Voigt notation as DN @, where the matrix D, is

given by
2, -3 0
DV t= Rt 3" Nsa MegXNpy (A3)
n, X I

rXsq Ny

I, is the m X m identity matrix, J, the # X ¢ matrix with all components
equal to 1, and n,., :=ng4(n.q — 1)/2 denotes the number of rigid body
rotations as a function of the number of spatial dimensions n_4

Hence, the vectorized form of the first equation in Equation (22a) yields
the residual

R, = QL+ ) IT, /DNy up, + DT, DN, &, (Ada)

JED, JEB,

for the computation of the mixed variable, whereas the residual of the
global problem associated with the inter-cell continuity of the momentum
flux (see first equation in Equation (22b)) is given by

R, = IT., |{ (vN\T,JLW +ru, - T,ﬁi> 1) +B, )(Ck(i)}

d forallie B, (Adb)

The remaining residuals R, ,, R, ,, and R, ; ; maintain the definitions in
Equation (22). Finally, the discrete boundary operator (23) is rewritten
using Voigt notation as

pm; + VNI L, +7%u, -0)+g forieN,,
N t! (WNT L, + 7%, -1
B, = { kT’E vl + 77 (0 = 0] fori e S,
n’q,

andfork=1,...,n4—-1

(A5)

Appendix B
Hybrid Pressure FCFV Method for the Stokes Equations
For highly viscous flows, the convection term in Equation (1) is negligible
and the resulting Stokes equations can be written as
-V:-o =s inQ,
Viu =0 inQ, (B1)
B(e’,u,p) =0 onoQ
with v = 1, while maintaining the definitions of the Cauchy stress tensor
and the boundary conditions introduced in Section 2.

In this case, the local and global problems (19a) and (19b) respectively
reduce to

~fo LdQ = [y (uD ®n+n®@uy— 2y nl, | )dr
+frar, (B@n+n @@ 2@-nl, )dr.
fmg tludll = fg s dQ+ fdﬂml"p tluy dl

+/099\Fn 4 dl - fﬁﬂf pn dT,

‘/aﬂ(, pdl = /[)MD up-ndl+ /aszﬂ\rp i-ndl— /mﬂ p dT’
(B2a)
and

Z‘Ziﬁ{ Jraon VER AT+ [ oo Tu dT
- /ogc\oﬂ ! @ dl + /z)(lcm)ﬂ\l"u B(L.u.u, p) dF} =0,
2::1{ Jr, TP AT = [o, 7P dr} =

(B2b)

where the trace of the boundary operator is defined in Equation (18).

The discretization of Equation (B.7) following the strategy in Section 4
and exploiting Voigt notation for the mixed variable as described in
Appendix A yields the linear local problem

_l'QelLV.e ZvlrellD NV/uD/+ Z |Fe/|D NV/ j°
JjE
2 0 ledu, = Qs + Z Il"e,jlf,up,j
JEA,
+ z |FE] Z |Fej|pj o (B3a)
JEB, JEA,
__Z |Fe<j|Tfpe Z |Fe/|n uD/
JEA, J€D,
+ Z |F”|n7u - Z |F€j|r P,
JjEB, JjE
fore =1, ...,n.; and the linear global problem
Yotr, |{ (vN\Tuvae +7lu, - 7¢ ﬁ,)
21,0+ By (D0, foralli € B, (B3b)

Yol e (p, — P)) =0, foralli e A,

with the discrete boundary operator B, introduced in Equation (A5).

For the sake of readability, let us introduce the following quantities, exclu-
sively depending on geometric information and user-defined data:

= ) Ir,,I7 = Y Ir,,l7 (B4a)
JEA, JEA,

= Z |Fe,j|DVNV,juD,j’
Jj€D,

= Qs + Y IT,,17up,,

Jj€D,

= Y0, nlu,; (B4b)

Jj€D,

Replacing the expressions of the cell unknowns L, u, and p from
Equation (B3a) into (B3b), it follows the linear system

K K] (P f;
In order to compare the structure of system (B5) to equation 38 and 39 of
the FCFV formulation [8], assume I'g = @. Hence, the blocks composing

the matrix and the right-hand side are obtained by assembling the cell
contributions

(Kl = Il | (VIR 7'NE DNy, + 2 AT 27 )

— |Fe_,|r:’§ij foralli,j € B, (B6a)
[Kgplf, 1= =10 1T 17/ [ALT 'y + [T, 11,6, 1 ()
forallie B,and j € A, (B6b)
e .__ e1-1..T . .

(Kpalf; = =, 10, 12f [a)]"'n; foralli€ A, and j € B, (B6c)

(K10, =1, AT 177 [3] =T, 1276
foralli€ A, and j € Ae (B6d)

(£ 41; = T | (VIQUTNTE, - eIALTE, ) = 1T g2 ()

foralli € B, (B6e)
[f 510 := T, l7/ [a2]7'f° foralli € A, (B6f)
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fore=1,...,n_,, with §; ; being a Kronecher delta. Note that while K,
and K;; are symmetric, the global matrix in Equation (B5) is not, contrary
to the FCFV formulation [8]. Moreover, following the conjecture intro-
duced in Section 5, the matrix in Equation (B5) is expected to be negative
definite, whereas the matrix of the global problem in the FCFV formula-
tion [8] features a saddle point structure.

Finally, if a pure Dirichlet boundary value problem is considered, con-
straint (5) needs to be included in the above system. At the discrete level,
this yields the additional equation

Yllp, =0 (B7)
e=1

which is accounted for by introducing a Lagrange multiplier A. Hence,
the resulting system is

K Ky K ([0 f,
Ky K K Wb =1f; (B8)
K, K; 0|4 f,
with
(Kl 1=~ |re,j||ge|[a;]-1nf forall j € B, (B9a)
(K16 =10 19 @] 2! forall j € A, (B9b)
[f,1° =] las 7', (B9¢)
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