A Cronfa

Swansea University's Research Repository

Numerically-informed neural networks for
degree adaptive unsteady incompressible flow

simulations

Swansea University
Prifysgol Abertawe

Agustina Felipe

College of Engineering

Swansea University

This dissertation is submitted for the degree of

Doctor of Philosophy

January 2025

Copyright: The Author, Valeria Agustina Felipe Ramudo, 2025.

A.A.ZASHEVA
New Stamp

Declaration

Statement 1

No part of this work has previously been submitted for any degree and is not being

concurrently submitted in candidature for any degree at this or any other university.

Date: 24/01/2025

Digitally signed by Agustina

Signature: ... _ (Candidate)

Statement 2

This thesis is the result of my own investigations, references to the work of others have

been clearly acknowledged. A bibliography is appended.

Date: 24/01/2025

Signature: ... _ (Candidate)

Statement 3

I hereby give consent for my thesis, if accepted, to be available for electronic sharing

after expiry of a bar on access approved by the Swansea University.

Date: 24/01,/2025

Digitally signed by Agustina

Signature: ... _ (Candidate)

Statement 4

The University’s ethical procedures have been followed and, where appropriate, that

ethical approval has been granted.

Date: 24/01/2025

Diaitallv sianed bv Aqustina

Signature: ... _ (Candidate)

Abstract

The need for transient incompressible flow simulations in science and engineering has
driven the demand for high-order methods over conventional low-order finite element
and finite volume approaches. High-order methods offer greater accuracy and efficiency
in capturing the complex, time-dependent behaviour of fluid systems because of the
lower dissipation and dispersion of high-order approximations. Traditional low-order
methods often require highly refined meshes to achieve comparable accuracy, leading

to higher computational costs.

This thesis focuses on problems where flow features such as vortices or gust pertur-
bations need to be propagated over long distances. These flow features can be more
accurately propagated using high-order methods, but their localised nature suggests
that incorporating degree adaptive schemes can lead to significantly more efficient sim-
ulations by only employing high-order approximations where needed. Discontinuous
Galerkin methods have gained significant popularity and provide an easy-to-implement
framework for degree adaptivity. In particular, the hybridisable discontinuous Galerkin

is adopted in this work and implemented in Fortran 90.

This thesis provides two original scientific contributions. First, a conservative projec-
tion scheme has been developed and implemented to enable efficient degree adaptive
simulations for transient incompressible flows. The proposed scheme is found to remove
all the numerical artefacts shown by a standard adaptive process due to the violation of
the free-divergence condition when projecting a solution from a space of polynomials
of a given degree to a space of polynomials with a lower degree. Second, a novel degree
adaptive procedure is designed by using a trained artificial neural network to predict the
solution at a future time from the solution at the current time. The procedure is shown
to perform the degree adaptivity in places where flow features will travel in the future
and prevents the traditional requirement to perform degree adaptivity cycles within a

time step.

Keywords: transient incompressible flow, high-order methods, hybridisable discontin-

uous Galerkin, degree adaptivity, artificial neural network

i

Acknowledgements

I would like to express my sincere gratitude to my supervisors, Rubén and Oubay, for
their invaluable guidance, unwavering support, and profound expertise throughout this

research journey.

My heartfelt appreciation extends to my family: my parents, whose endless love and
encouragement have been my foundation; my siblings Santiago, Cecilia and Federico,
who have always believed in me; and my nephew Valentino, whose joy brings light to

my life.

Finally, I wish to thank all my friends who have supported me throughout this endeavour.

Your friendship has been an invaluable source of strength and motivation.

il

Nomenclature

Latin Symbols
b Aggressiveness parameter (base for logarithm in degree adaptation)
BX Set of buckets for input variable X
BY Set of buckets for output variable Y
d Stencil distance
E Error indicator
h Characteristic element size
k Polynomial degree of approximation
L Exact velocity gradient tensor
L Approximate velocity gradient tensor
n Outward unit normal vector
Nadaptivity Number of iterations of the adaptive process
Npuckets Number of buckets for data reduction
Neases Number of training cases
Ny Number of elements
Nep Number of element nodes
Nepochs Number of training epochs
Ney Number of face nodes
Nparam Number of flow parameters
Ngg Number of spatial dimensions

v

Ngtencil Number of points in stencil

Mgy Number of components in symmetric tensor (3 in 2D, 6 in 3D)
P Exact pressure field
Dh Approximate pressure field
s Volumetric source term
t Time
T Final time
t Prescribed traction on Neumann boundary
u Exact velocity field
u Approximate velocity field
a Trace of approximate velocity field on mesh skeleton
T Spatial coordinates
X Input data matrix
Y Output data matrix
Greek Symbols
r Domain boundary
I'p Dirichlet boundary
'y Neumann boundary
€ Target error tolerance
A Lagrange multiplier
v Kinematic viscosity (= 1/Re)
Q Computational domain
Q. Element domain
p Mean pressure on element boundaries
T Tangential direction vector
Ta Convective stabilization parameter
Td Diffusive stabilization parameter

Dimensionless Numbers

Re

Spaces

Gn

Vi

P

M,

Wi,

L2(Q)
HY(Q)
H(div: Q)

Reynolds number

Space of polynomial functions for velocity gradient tensor
Space of polynomial functions for velocity field

Space of polynomial functions for pressure

Space of polynomial functions for trace velocity

Space of constant functions on element boundaries

Space of square-integrable functions

Space of functions with square-integrable gradients

Space of vector functions with square-integrable divergence

Operators and Notation

Inner product over computational domain
Inner product over mesh skeleton

Jump operator across interior faces
Gradient operator

Divergence operator

Symmetric gradient operator

Subscripts and Superscripts

(-)n
(')e

Discrete/approximate quantity

Elemental quantity

vi

Post-processed quantity
‘)b Related to Dirichlet boundary
N Related to Neumann boundary

Quantity defined on mesh skeleton

Note: All variables are presented in their non-dimensional form following appropriate

scaling of the governing equations.

vii

viii

Table of contents

Declaration
Abstract
Acknowledgements

1 Introduction

1.1 Motivation o

1.2 Objectives e e

1.3 Outlineofthethesis

2 The HDG method for transient incompressible flows

2.1 Introduction e

2.2 The transient incompressible Navier-Stokes equations

23 HDGstrongforms L

24 HDG weak formulation

2.5 Temporal discretisation

2.5.1 BDF discretisation of the Navier-Stokes equations

2.5.2 ESDIRK discretisation of the Navier Stokes equations

2.6 Spatial discretisation

2.7 Newton-Raphson linearisation

2.8 Verificationexamples Lo

2.8.1 KovasznayFlow

2.8.2 Ethier-Steinmann flow

2.8.3 Manufactured transient solution

3 A conservative degree adaptive HDG method

iX

ii

iii

10
10
12
14
18
21
22
23
26
30
33
33
36
39

43

TABLE OF CONTENTS

3.1 Introduction 43
3.2 Super-convergent postprocess of the velocity 46
3.2.1 \Verificationexample 48
3.3 Error indicator based on the postprocessed velocity 49
3.4 Degree adaptive strategy 50
34.1 Steady state solutions 53
3.4.2 Conservative projection for transient problems 54
3.5 Numericalexamples 58
351 Wangflow. 58
3.5.2 Flow around two circular cylinders 61
Neural network-driven degree adaptivity 74
4.1 Introduction 74
4.2 Artificial neural networks oo oL 76
42.1 ANNarchitectureo 77
422 Forward propagation, 78
423 ANNtraining 80
4.2.4 Performance Evaluation. 81
4.3 Stencil-based ANN architecture, 82
4.3.1 Stencil distance computation 83
432 Dataacquisition 85
43.3 Datapreparation oo e 88
4.3.4 Degree adaptive HDG strategy using prediction 91
4.4 Verificationexample L L oL 91
4.4.1 Problemdescription. 93
442 Dataacquisition 95
4.4.3 Datapreparationo e e 97
444 ANNtraining 101

4.4.5 ANN-driven degree adaptivity 103

S Numerical Examples

5.1 Gust impinging on a NACAO0012 aerofoil

5.2 Parametric gustin a free-stream flow

5.2.1 Data acquisition and preparation

5.2.2 Influence of thedataset

5.2.3 Influence of the stencil distance

5.2.4 Influence of using several time steps as inputs of the ANN

5.2.5 [Influence of the stencil geometry

5.2.6 ANN-driven degree adaptivity

6 Conclusion

6.1 Summary of thesis achievements

6.2 Future work

Bibliography

xi

108
109
116
118
123
128
129
131
133

140
140
142

144

xii

List of Tables

3.1

3.2

3.3

3.4
3.5

4.1

5.1

52

5.3

54
5.5

Steady flow around a cylinder at e = 30: Lift values and correspond-
ing errors for different meshes. oL 67
Steady flow around a cylinder at Re = 30: Drag values and corre-
sponding errors for different meshes. 67
Flow around two circular cylinders: maximum error in lift and drag for
the two cylinders using the standard adaptivity and the adaptivity with
the proposed conservative projection. 69
Details of the computational infrastructure used. 72
Flow around two circular cylinders: Computational costs for simulation

uptoT=200. 73

Flow around two circular cylinders: maximum error in lift and drag for
the two cylinders using the standard adaptivity and the adaptivity with

the proposed prediction. oL L. 107

Gust impinging on a NACAO0012 aerofoil: Computational costs. . . . 116
Gust in a free-stream flow: minimum and maximum values for the
pressure on the point 2 and for the velocity on the central point of the
stencil, for simulations 9and 28.o 119
Gust in a free-stream flow: number of cases for training, testing, and
validation utilising 10, 20, and 30 simulations for training. 123
Computational time breakdown for the selected artificial neural network. 126
Gust in a free-stream flow: number of resultant training cases (nr.)
when varying the number of buckets used for the reduction procedure

(nbuckets). 127

5.6 Gustin a free-stream flow: maximum relative errors for different stencil

GEOMELIIES. v v v v i e e e e e e

Xiv

List of Figures

2.1

2.2

2.3

24

25

2.6

2.7

2.8

2.9

2.10

High-order triangular elements: (a) Linear element with vertex nodes,
(b) Quadratic element with additional edge nodes (blue), (c) Cubic
element with edge nodes. Additional nodes enable higher-order poly-
nomial approximations. 27
Cubic triangular element with curved boundary. Edge nodes (blue) and
additional nodes on the curved edge (red) enable accurate geometric
rEPresentation. e e 27
Kovasznay Flow: Pressure and velocity fields for Re = 100 in the
domain Q = [0, 1% 34
Kovasznay Flow: Convergence of the NR method, relative increment,
and relative residual versus the iteration number on the velocity 34
Triangular meshes of the domain © = [0, 1] used to test the optimal
convergence properties of the HDG method. 35
Kovasznay Flow: L5(2) norm of the error for the velocity, pressure
and mixed variable as a function of the characteristic element size h,
for different degrees of approximation. 35
Ethier-Steinmann flow: velocity field fora = 7 and d = 7 attime ¢t = 0. 37
Tetrahedral meshes of the domain 2 = [0, 1] used to test the optimal
convergence properties of the HDG method. 37
Ethier-Steinmann Flow: £4(2) norm of the error for the velocity, pres-

sure and mixed variable as a function of the characteristic element size

h, for different degrees of approximation. 38
Triangular mesh of the domain 2 = [0, 1] used to test the optimal
temporal convergence properties of the HDG method. 39

XV

XVi LIST OF FIGURES

2.11 Manufactured transient solution: L£4(2) norm of the error for the ve-

locity, pressure and mixed variable as a function of the time step At,
for different time integration BDF schemes. 40

2.12 Manufactured transient solution: L£(£2) norm of the error for the ve-

locity, pressure and mixed variable as a function of the time step At,
for different time integration ESDIRK schemes. 41

3.1 Kovasznay Flow: £5(€2) norm of the error for the velocity, and post-

processed velocity as a function of the characteristic element size h, for
different degrees of approximation. 49
3.2 Wang flow: problemsetup. 59
3.3 Wang flow: Initial computation with linear approximation in all elements. 59
3.4 Wang flow: First iteration of the degree adaptive process. 59
3.5 Wang flow: Second iteration of the degree adaptive process. 60
3.6 Wang flow: Third iteration of the degree adaptive process. 61

3.7 Flow around two circular cylinders: Unstructured triangular mesh of
the wholedomain.o 62

3.8 Flow around two circular cylinders: detail of the unstructured triangular
mesh near the circular cylinders. 62

3.9 Flow around two circular cylinders: lift and drag over the first cylinder
using uniform degree across the domain. 62

3.10 Flow around two circular cylinders: lift and drag over the second
cylinder using uniform degree across the domain. 63

3.11 Flow around two circular cylinders: Pressure and magnitude of the
velocity fields at ¢ = 200 with a uniform degree of approximation k = 6. 63

3.12 Flow around two circular cylinders: Pressure and magnitude of the
velocity fields at ¢ = 200 with a uniform degree of approximation £ = 1. 64

3.13 Flow around two circular cylinders: Pressure and magnitude of the
velocity fields at ¢ = 200 with degree adaptivity. 65

LIST OF FIGURES XVvil

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

Flow around two circular cylinders: lift and drag over the first cylinder

using degree adaptivity compared to the reference solution. 65

Flow around two circular cylinders: lift and drag over the second

cylinder using degree adaptivity compared to the reference solution. . 66

Flow around a circular cylinder: Sequence of refined triangular meshes

used to test the convergence of lift and drag force calculations. 66

Flow around two circular cylinders: Pressure and magnitude of the
velocity fields at ¢ = 200 with degree adaptivity and the conservative

PrOJECHION. o o i e e e e 68

Flow around two circular cylinders: lift and drag over the first cylinder
using degree adaptivity and the proposed correction compared to the

reference solution. 68

Flow around two circular cylinders: lift and drag over the second
cylinder using degree adaptivity and the proposed correction compared

to the reference solution. 69

Flow around two circular cylinders: Drag on the two cylinders using
degree adaptivity and not allowing the degree to be decreased during

the adaptive process.o 70

Flow around two circular cylinders: Drag on the two cylinders using
degree adaptivity and not allowing the degree to be decreased during

the adaptive process withe = 1073, 70

Flow around two circular cylinders: Degree of approximation at ¢t =

200 not allowing the degree to be decreased during the adaptive process. 71

Flow around two circular cylinders: Number of degrees of freedom of
the global problem for two different adaptive approaches and for two

different values of the desired error. 71

XViil

LIST OF FIGURES

3.24 Flow around two circular cylinders: Drag on the two cylinders using

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

degree adaptivity, not allowing the degree to decrease during the adap-
tive process with ¢ = 1073 and performing the adaptivity only once per

ME StEP. . . o o e e e e e e

Schematic representation of a multi-layer perceptron neural network. .

The differences among four popular types of activation functions used

in an ANN and their respective derivatives.

Schematic representation of the inputs and outputs for the proposed
ANN architecture. Stencil with a central mesh node and eight neigh-
bouring points. Input: consisting of p", and u™ and Output: consisting

of u"*! at the central meshnode.

Schematic representation computation of the stencil distance for a node

Flow around two circular cylinders: lift and drag over the first cylinder

using degree adaptivity compared to the reference solution.

Flow around two circular cylinders: lift and drag over the second
cylinder using degree adaptivity and the proposed correction compared

to the reference solution.

Flow around two circular cylinders: Histogram illustrating the distribu-
tion of the cases in 10 buckets for the data collected from a simulation

and before any preparation.

Flow around two circular cylinders: Histogram illustrating the distribu-
tion of the cases in 20 buckets for the data collected from a simulation

and before any preparation. L.

Flow around two circular cylinders: Histogram illustrating the distribu-
tion of the cases in 40 buckets for the data collected from a simulation

and before any preparation. L.

94

96

96

97

LIST OF FIGURES X1X

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

Flow around two circular cylinders: Histogram illustrating the distri-
bution of cases in 10 buckets for the data collected from a simulation

after the application of the data reduction algorithm. 98

Flow around two circular cylinders: Histogram illustrating the distri-
bution of cases in 20 buckets for the data collected from a simulation

after the application of the data reduction algorithm. 98

Flow around two circular cylinders: Histogram illustrating the distri-
bution of cases in 40 buckets for the data collected from a simulation

after the application of the data reduction algorithm. 99

Flow around two circular cylinders: Logarithmic histogram illustrating
the distribution of cases in 20 buckets for the pressure field at the central

point of the stencil before and after data reduction. 99

Flow around two circular cylinders: Logarithmic histogram illustrating
the distribution of cases in 20 buckets for the horizontal velocity at the

central point of the stencil before and after data reduction. 100

Flow around two circular cylinders: Logarithmic histogram illustrating
the distribution of cases in 20 buckets for the vertical velocity at the

central point of the stencil before and after data reduction. 101

Flow around two circular cylinders: Maximum percentage error of the

trained ANN, different number of neurons and hidden layers. 101

Flow around two circular cylinders: Mean number of epochs required
for training convergence (Nepocns) and mean total training time (T;oa1)

in seconds for different number of neurons and number of hidden layers. 102

Flow around two circular cylinders: Predicted velocity fields at ¢ = 200
and absolute error maps in logarithmic scale of the velocity in x-
direction (|e,|) and the the velocity in y-direction (|e,|) with degree

adaptivity. 104

XX

LIST OF FIGURES

4.19

4.20

4.21

4.22

4.23

5.1

5.2

5.3

54

5.5

5.6

5.7

Flow around two circular cylinders: Degree of approximation at ¢t =
199 with degree adaptivity and with degree adaptivity including the
predicted velocity fieldsat¢ =200. 105
Flow around two circular cylinders: lift and drag over the first cylin-
der using degree adaptivity enhanced with prediction compared to the
reference solution. Lo 105
Flow around two circular cylinders: lift and drag over the second
cylinder using degree adaptivity enhanced with prediction compared to
the reference solution. Lo 106
Flow around two circular cylinders: error on the lift and drag for the
first cylinder as a function of the non-dimensional time. 106
Flow around two circular cylinders: error on the lift and drag for the

second cylinder as a function of the non-dimensional time. 106

Gustimpinging on a NACAO0012 aerofoil: Unstructured triangular mesh
of the whole domain. 110
Gust impinging on a NACAO012 aerofoil: detail of the unstructured
triangular mesh near the aerofoil. 110
Gust impinging on a NACAO0012 aerofoil: Magnitude of the velocity
fields at different instants with a uniform degree of approximation k = 6.111
Gust impinging on a NACAO0012 aerofoil: lift and drag using degree
adaptivity compared to the reference solution. 112
Gust impinging on a NACA0012 aerofoil: lift and drag using degree
adaptivity and the proposed correction compared to the reference solution. 113
Gust impinging on a NACAOQO012 aerofoil: Magnitude of the velocity
fields (left) and map of the degree of approximation (right) at different
instants with the proposed degree adaptive approach. 114
Gust impinging on a NACAO0012 aerofoil: Map of the degree of ap-
proximation at ¢ = 64 with an adaptive process not allowing the degree

tobelowered. 114

LIST OF FIGURES XX1
5.8 Gust impinging on a NACAO0O012 aerofoil: Number of degrees of free-
dom of the global problem for two different adaptive approaches. . . . 115

59

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

[ustration of the problem setup for the simulation of a gust in a free-

stream flow. A sinusoidal gust is generated within the region enclosed

by the box of width a and height b, the centre of the box located at (z., y.).117

Parametric gust in a free-stream flow: velocity field at ¢ = 1.6 for

different values of the intensity and width.

Parametric gust in a free-stream flow: unstructured triangular mesh to

generate the trainingdata.

Gustin a free-stream flow: The parametric space and the three generated
datasets, including data for training (in red), validation (in green), and

test(inblue). e
Gust in a free-stream flow: Simulations9and 28.

Gust in a free-stream flow: Histogram for simulation 9 illustrating the
distribution of cases in 20 buckets before and after the application of

the data reduction algorithm.

Gust in a free-stream flow: Histogram for simulation 28 illustrating the
distribution of cases in 20 buckets before and after the application of

the data reduction algorithm.

Gust in a free-stream flow: Logarithmic histogram for simulation 9
illustrating the distribution of cases in 20 buckets for the vertical velocity

at the central point of the stencil before and after data reduction.

Gust in a free-stream flow: Logarithmic histogram for simulation 28
illustrating the distribution of cases in 20 buckets for the vertical velocity

at the central point of the stencil before and after data reduction

Gust in a free-stream flow: Maximum percentage error of the trained
ANN for the horizontal velocity (u), different number of neurons and

hidden layers.

117

120

120

121

122

XX1i

LIST OF FIGURES

5.19

5.20

5.21

5.22

5.23

5.24

5.25

5.26

5.27

5.28

5.29

Gust in a free-stream flow: Maximum percentage error of the trained
ANN for the vertical velocity (v), different number of neurons and

hidden layers.

Gustin a free-stream flow: Mean number of epochs required for training

convergence (Nepocns), different number of neurons and hidden layers. .

Gust in a free-stream flow: Mean total training time (Tiora) in minutes,
different number of neurons and hidden layers.

Gust in a free-stream flow: maximum error as a function of the number

sim

of simulations used to collect data for training the network (ng;

Gust in a free-stream flow: maximum relative error as a function of the

number of buckets (npycrets) chosen in the reduction process.

Gust in a free-stream flow: maximum error as a function of the stencil

distance (d).

Schematic representation of the inputs and outputs for an alternative
ANN architecture. The input stencil includes the velocity in two time

1 n

steps u™~!, w", and pressure p”. Output consisting of u"™! at the

centralmeshnode.

Schematic representation of the inputs and outputs for an alternative
ANN architecture. The input stencil includes the velocity in three time

n+1

steps w2, w1, u", and pressure p". Output consisting of u"** at

the central meshnode.
Relative error of the predicted velocity as a function of the stencil

distance (d) for the stencils that uses the velocity at time ¢t (Case 1), at

times t” and ¢"~! (Case 2) and at times ", "~ and t"~2 (Case 3).

Gust in a free-stream flow: schematic representation of the four stencils

used to assess the influence of the geometry of the stencil.

Parametric gust in a free-stream flow: unstructured triangular mesh to

use for adaptivity.

125

127

129

131

5.30 Gustin a free-stream flow: vertical velocity field (v) at different instants
with a uniform degree of approximation k =5. 135
5.31 Gust in a free-stream flow: vertical velocity field (v) and degree of
approximation at different instants with degree adaptivity. 136
5.32 Gust in a free-stream flow: vertical velocity field (v) and degree of
approximation at different instants with ANN-driven degree adaptivity. 138
5.33 Gust in a free-stream flow: error of the velocity as a function of the
non-dimensional time for the standard degree adaptivity and the ANN-

drivenapproach. o 139

xxiii

XX1V

List of Algorithms

1 Degree adaptive HDG Method for steady Navier-Stokes Equations . .
2 Degree adaptive HDG Method for unsteady Navier-Stokes Equations .
3 Data acquisition and filtering
4 Datareduction. o

5 Degree adaptive HDG Method for unsteady Navier-Stokes Equations .

XXV

54

89
92

XXVi

Chapter 1

Introduction

1.1 Motivation

The simulation of incompressible transient flows, where transient refers to time-
dependent or unsteady phenomena that vary with time, plays a key role in both engi-
neering and research, helping to understand and predict a wide variety of natural and
industrial events in areas such as aerodynamics, weather forecasting, cardiovascular

circulation, and industrial blending.

Incompressible transient flow simulations present several challenges, both mathemati-
cally and numerically. One of the primary difficulties arises from the incompressibility
condition, which requires that the divergence of the velocity field remains zero at all
times. This introduces a strong coupling between the pressure and velocity fields,
making their resolution difficult. Additionally, because information in an incompress-
ible medium theoretically propagates at infinite speed, it places stringent demands on
numerical methods to avoid unphysical results. This can lead to issues with stability
and accuracy, particularly in time-dependent simulations, where the temporal evolution
of the flow must be accurately captured. Ensuring incompressibility at each time step
often requires special techniques such as projection methods or pressure correction

schemes, which can add computational complexity (Donea and Huerta, 2003).

2 Chapter 1. Introduction

The vast majority of industrial, commercial, and academic flow solvers adopt low-order
approaches based on finite differences, finite element, or finite volume methods (Deng
et al., 1996; Franca and Frey, 1992; Li et al., 2022; Whiting and Jansen, 2001). Finite
difference methods in Cartesian grids are known to be extremely efficient but are
unable to handle complex geometries without the time-consuming human intervention
required to perform a block subdivision of the geometric model (Ali et al., 2017). Finite
element and finite volume methods enable the use of unstructured meshes that provide
the preferred framework to simulate problems involving complex geometries without
the need of human intervention to generate meshes and enabling local mesh refinement.
These methods have proven to be extremely robust and competitive for the simulation

of steady flows (Morgan et al., 1991; Gerhold, 2005; Biedron et al., 2016).

The simulation of transient flows using low order schemes poses significant challenges,
mainly due to the high dissipation and dispersion errors associated with low order
approximations (Ainsworth et al., 2006). The need to use extremely refined meshes
to capture the transient flow features that propagate over long distances seems to
suggest that high order methods, where high-order refers to numerical methods that use
polynomial approximations of degree greater than one to represent the solution within
each element, offering potentially higher accuracy per degree of freedom compared to
traditional linear approximations, are better suited for applications involving unsteady

phenomena.

In the last two decades, there has been significant interest in developing high-order
finite volume and finite element schemes (Nogueira et al., 2010; Campagne et al.,
2010; Chalot and Normand, 2010; Sevilla et al., 2013; Chalot et al., 2015). Traditional
high-order finite volume methods require the definition of a stencil to perform the high-
order approximation. This introduces difficulties when using unstructured meshes and
requires some special treatment near boundaries. High-order finite element methods
have shown benefits when compared to low order elements, but the definition of the
stabilisation, especially for highly stretched elements, seems to be the major difficulty

that prevents the adoption of such schemes.

1.1. Motivation 3

Another class of high-order methods that have gained substantial interest from the re-
search community is discontinuous Galerkin (DG) methods (Cockburn, 2017). Initially
developed to solve neutron transport equations, DG methods gained popularity due to
the work of Shu and Cockburn published in a series of five articles (Cockburn and Shu,

1991, 1989; Cockburn et al., 1989, 1990; Cockburn and Shu, 1998b).

The first extension of DG methods to convection-diffusion problems was proposed
in (Arnold, 1982), where the interior penalty method was introduced using discontin-
uous elements. The method showed optimal convergence, but only when using a mesh

dependent penalty parameter.

The extension of DG methods to handle the elliptic operator (e.g. second order deriva-
tives), required to extend the initial work on hyperbolic systems to solve problems
governed by the Navier-Stokes equations, was object of intensive research during the
late 1990s (Cockburn and Shu, 1998a; Baumann and Oden, 1999). The local DG
method, introduced in (Cockburn and Shu, 1998a), was widely adopted for the solution
of convection-diffusion problems and further improved to reduce its stencil, leading to

the compact DG method (Peraire and Persson, 2008).

DG methods offer greater flexibility compared to continuous finite elements in handling
non-conforming meshes and non-uniform polynomial approximations. While contin-
uous Galerkin methods can also accommodate non-uniform polynomial orders, they
require additional constraints and continuity enforcement at element interfaces that
increase implementation complexity. The definition of stabilisation for convection-
dominated problems is generally more straightforward within a DG framework. Fur-
thermore, in the context of incompressible flows, DG methods enable the use of identical
polynomial spaces for velocity and pressure approximations. This is not the case for
continuous Galerkin approaches that usually require a lower dimensional space for the
pressure compared to the velocity in order to guarantee the Ladyzhenskaya-Babuska-
Brezzi (LBB) condition (Donea and Huerta, 2003). The higher-order pressure ap-

proximation allows for more accurate representation of pressure gradients, which is

4 Chapter 1. Introduction

particularly important in problems involving boundary layers or rapid pressure vari-
ations. The ability to handle discontinuities at element interfaces through numerical
fluxes, combined with intrinsic stabilisation, makes DG methods particularly robust
for convection-dominated flows without requiring additional stabilisation parameters

or shock-capturing terms that are typically needed in continuous formulations.

The attractive properties of the DG methods led to application to the solution of
incompressible viscous flows using the local DG method (Cockburn et al., 2005)
and the development of methods to employ solenoidal basis (Montlaur et al., 2010)
and DG methods that employed the same order of approximation for velocity and

pressure (Cockburn et al., 2009b).

Despite the advantages of DG schemes, the main criticism received by these methods
has traditionally been the increased computational cost due to the use of discontinuous
approximation spaces, meaning that degrees of freedoms on the inter-element faces
are duplicated. The hybridisable DG (HDG) method was introduced by Cockburn and

co-workers to alleviate this problem (Cockburn et al., 2009a).

As other DG methods, the HDG method uses a mixed formulation where the primal
variable (velocity field for incompressible flows) and its gradient are considered as
independent unknowns. The most distinctive feature of the HDG method is the in-
troduction of the so-called hybrid variable on the faces of the elements (edges in two
dimensions), corresponding to the trace of the velocity on the mesh skeleton. Using the
hybridisation process, which is equivalent to the static condensation commonly used
in continuous Galerkin approaches (Guyan, 1965), the hybridisation leads to a reduced
system of equations where only the degrees of freedom associated to the element faces
are globally coupled. An important property of HDG methods, contrary to other DG
methods, is the possibility to build a super-convergent approximation of the primal
variable. The ability to work with the spaces of polynomials with the same degree for
both the primal and mixed variable and the ability to deliver optimal rates of conver-

gence (k + 1 in the £?(2) norm when employing an approximation with polynomials

1.2. Objectives 5

of degree k) enables the possibility of building a super-convergent, or postprocessed,

solution (with a rate of convergence k + 2).

HDG methods for incompressible flows were developed during the 2010s, primarily
focussing on the development of HDG schemes for Stokes flows (Cockburn et al.,
2010; Nguyen et al., 2010; Cockburn et al., 2011; Cockburn and Shi, 2013, 2014). The
extension to incompressible viscous flows governed by the Navier-Stokes equations was
first presented in (Nguyen et al., 2011). Early work on these methods (Nguyen et al.,
2010) showed that mixed formulations based on the Cauchy stress tensor exhibited a
suboptimal rate of convergence of the mixed variable, which in turn led to a loss of the
superconvergent properties of the postprocessed velocity. This phenomenon had also
previously been reported for the solution of linear elasticity problems with the HDG
method (Soon et al., 2009). In (Sevilla et al., 2018) and (Giacomini et al., 2018), the
authors linked this phenomenon to the weak imposition of the symmetry of the stress
tensor, for elasticity and Stokes flows, respectively. The authors proposed the use of
the so-called Voigt notation, which has been traditionally used by the solid mechanics
community and that can be seen as a strong imposition of the symmetry of the stress

tensor.

The ability of HDG methods to build a super-convergent approximation of the primal
variable (the velocity in incompressible flow problems) was identified in (Giorgiani
et al.,, 2013) as a route to devise a cheap error indicator, based on the difference
between the primal and superconvergent solutions. This strategy has been employed
in the context of Stokes and Navier-Stokes flows (Giorgiani et al., 2014; Sevilla and

Huerta, 2018).

1.2 Objectives

The problems of interest in this work involve the propagation of local flow features such

as vortices or gust perturbations over long distances. In a low-order context, efficient

6 Chapter 1. Introduction

simulations that involve the propagation of local flow features require the use of mesh
adaptivity. However, in a high-order context, the possibility to locally adapt the degree
of approximation without changing the mesh topology is an attractive alternative. The
use of DG methods in general enables an easy framework to handle different degrees
of approximation in different elements. Furthermore, the HDG method enables us to

devise a cheap error indicator to drive the adaptive process.

The main challenge is the ability to design efficient robust and efficient degree adaptive
approaches for simulating transient viscous incompressible flows. To this end, this the-
sis aims at solving two issues that are often encountered when applying degree adaptive

schemes to the solution of the unsteady incompressible Navier-Stokes equations.

Degree adaptive schemes often assume that the degree of approximation is not lowered
during a simulation. The main issue of lowering the degree of approximation when
simulating incompressible flows is the potential violation of the free-divergence condi-
tion. This issue is obviously not relevant when performing steady simulations because
the result of one simulation is only used as an initial guess of the iterative method
employed to solve the resulting non-linear system of equations after discretising the
problem in space and time. However, in the context of transient flows, lowering the
degree of approximation leads to a velocity field that is not divergent free and it is used
to advance the solution to the next time step. As aresult, the accuracy and robustness of
the method can be lost. The problem does not appear when the degree of approximation
is increased because the space of polynomials of a certain degree is contained in the
space of polynomials of a higher degree. Therefore, the projection of the solution from
a space of polynomials of a given degree into a space of higher order polynomials do

not modify the approximation.

Despite degree adaptive approaches that do not allow lowering the degree of approx-
imation are robust, they are not efficient. Especially when local flow features travel
over long distances, these approaches can lead to an unnecessary high computational

cost. Many elements of the mesh might be using high order approximations long after

1.3. Outline of the thesis 7

a particular flow feature passed through that element, even if this accuracy is no longer

required.

The first objective is to develop an easy-to-implement and efficient strategy to enable
lowering the degree of approximation in a transient degree adaptive process. The key
idea is to develop a projection from a space of polynomials to another space of polyno-

mials with a lower degree that guarantees that the projected velocity is divergence-free.

To deliver high accuracy and efficiency, high-order spatial discretisation schemes need
to be implemented with high-order time integrators. In this work, high order explicit
singly diagonal implicit Runge-Kutta (ESDIRK) integration methods are considered.
With these methods, large time steps can be employed, allowing flow features to travel
distances larger than the element size during a single time step. In this context,
traditional adaptive approaches require repetition of the adaptive process within a time
step to ensure that the elements have enough resolution to accurately represent high

solution gradients in the next time step.

The second objective is to accelerate a degree adaptive process by using a trained
artificial neural network to predict the solution at a future time from the solution at the
current time. The aim is to eliminate the need to repeat the adaptive process during a

time step, substantially accelerating the simulation without loss of accuracy.

1.3 Outline of the thesis

The remaining of the thesis is organised as follows.

Chapter 2 briefly recalls the transient incompressible Navier-Stokes equations and
describes the fundamentals of the HDG method. Details about the weak formulation,
the spatial discretisation with high-order isoparametric elements and the temporal
discretisation with backward differentiation formulae (BDF) and explicit first stage,

singly diagonally implicit Runge-Kutta (ESDIRK) methods are presented. Details

8 Chapter 1. Introduction

about the linearisation procedure using the Newton-Raphson method are given and
some numerical examples are introduced to verify the implemented Fortran 90 code in

two and three dimensions.

Chapter 3 presents the first original contribution of the thesis, which involves a novel
conservative projection for the simulation of transient incompressible flows using de-
gree adaptivity. The strategy to build a super-convergent approximation of the velocity
in an HDG context is presented, and its use to devise a cheap error indicator to drive a
degree adaptive process is detailed. The proposed conservative projection is described,
and a discussion is presented about the need of this strategy in transient problems
where the degree of approximation is to be lowered in regions of the domain to main-
tain efficiency. A numerical example is used to verify the implementation of the degree
adaptive process for steady state problems. Finally, a more challenging transient prob-
lem is considered to assess the performance and accuracy of the proposed conservative
projection. The results are compared to the results obtained with traditional adaptive
processes, and also compared to approaches where the degree of approximation is not

allowed to be lowered.

Chapter 4 presents the second original contribution of the thesis, which is the devel-
opment of a novel neural network-driven degree adaptive strategy. After providing a
brief review of artifical neural networks, the proposed strategy is described. The main
idea is to train a network to predict the solution at a given mesh node at time ¢"*!
from the solution at the same node and at a number of surrounding points at time ¢".
The network architecture is detailed, and crucial details are given to perform the data
acquisition and preparation before the network is trained. A verification example is
introduced in this chapter to illustrate all the steps involved, from data collection, data

preparation, training of the network, and deployment within a degree adaptive process.

Chapter 5 focusses on the application of developed technology for the simulation of
problems involving the propagation of gust perturbation over long distances. Two ex-

amples are presented to illustrate the benefits of the two original contributions described

1.3. Outline of the thesis 9

in Chapters 3 and 4. The first example involves the simulation of a gust impinging on
a NACAOO12 aerofoil, and the advantages of using the conservative projection within
a degree adaptive process are analysed. The second example involves the propagation
of a parametric gust in a free-stream flow, and the benefits of using a degree adaptive
process driven by a trained neural network are demonstrated. This example also pro-
vides a series of numerical experiments to study the performance of different neural
network architectures, as well as the influence of the numerical parameters introduced

in this approach.

Finally, chapter 6 summarises the conclusions of the work presented and describes

some potential avenues for future research.

Chapter 2

The HDG method for transient

incompressible flows

2.1 Introduction

The numerical simulation of incompressible and unsteady flows governed by the
Navier-Stokes equations remains a fundamental challenge in computational fluid dy-
namics (CFD). These equations, which describe the motion of viscous fluid substances,
are of crucial importance in a wide range of scientific and engineering applications,
from weather prediction to aerodynamics (Temam, 2001). However, their inherent
non-linearity and the need to satisfy the incompressibility constraint pose significant
computational difficulties, particularly for high Reynolds number flows and complex

geometries (Quarteroni, 2017).

In recent years, the hybridisable discontinuous Galerkin (HDG) method has emerged
as a promising approach to the numerical solution of partial differential equations,
including incompressible flows. Cockburn and co-workers devised and analysed var-
ious HDG formulations for Stokes flows (Cockburn et al., 2010, 2011; Nguyen et al.,
2010). In (Nguyen et al., 2010) the authors observed a sub-optimal convergence of

the mixed variable for low-order approximations and consequently a loss of optimal

10

2.1. Introduction 11

convergence of the postprocessed velocity. Giacomini et al. (2018) proposed a simple
remedy by strongly imposing the symmetry of the stress tensor, in practice using the
so-called Voigt notation. An alternative formulation to guarantee optimal convergence
of the mixed variable when employing low order approximations, using the so-called

M -decompositions, was proposed in (Cockburn and Fu, 2017).

The development of HDG methods for the incompressible Navier-Stokes equations was
first presented in (Nguyen et al., 2011) and the mathematical analysis was presented
in (Cesmelioglu et al., 2017). The ability to build a super-convergent velocity field
was exploited in (Giorgiani et al., 2014) to devise a cheap error indicator to drive a
degree adaptive process. For a more comprehensive literature review on HDG methods,
including the application to the incompressible Navier-Stokes equations, the reader is

referred to the tutorial presented in (Giacomini et al., 2020).

The application of HDG to the incompressible Navier-Stokes equations offers several

potential benefits:

* Optimal convergence rates for velocity, pressure, and velocity gradients

* Element-by-element postprocessing yielding superconvergent velocity fields

» Exact satisfaction of the incompressibility constraint at the discrete level

* Reduced number of globally coupled degrees of freedom compared to standard

DG methods

Flexible and robust treatment of boundary conditions

This chapter summarises the HDG formulation of the incompressible unsteady Navier-
Stokes equations. Spatial discretisation is based on the HDG framework introduced by
Nguyen et al. (2011); Giacomini et al. (2020), whilst temporal discretisation employs
two families of implicit methods: backward differentiation formulae (BDF) (Curtiss

and Hirschfelder, 1952) and explicit first stage, singly diagonally implicit Runge-Kutta

12 Chapter 2. The HDG method for transient incompressible flows

(ESDIRK) methods (Kennedy and Carpenter, 2003). These temporal discretisation
schemes are chosen for their stability properties and ability to handle stiff problems

efficiently.

The remainder of this chapter is organised as follows. Sections 2.3 to 2.6 present the
mathematical formulation of the HDG method for the unsteady incompressible Navier-
Stokes equations, including spatial and temporal discretisations. Section 2.7 discusses
the details of the Newton-Raphson linearisation strategy and the hybridisation process.
Section 2.8 provides a set of numerical examples to verify the optimal spatial and

temporal convergence properties of the implemented numerical scheme.

The numerical methods and algorithms presented in this work have been implemented
from scratch in Fortran 90, enabling complete control over all aspects of the imple-
mentation. Whilst building on established theoretical foundations, the code base was
developed independently to optimise performance and maintain flexibility for future
extensions. This ground-up implementation approach allows for detailed verification
of the properties of the method and facilitates modifications to explore novel numer-
ical techniques. The custom implementation provides full access to all intermediate
quantities needed for analysis and ensures reproducibility of the results presented in

subsequent chapters.

2.2 The transient incompressible Navier-Stokes equa-

tions

The transient incompressible Navier-Stokes problem in the open bounded computa-

tional domain €2 € R with boundaries Jf2 and ng4 denoting the number of spatial

2.2. The transient incompressible Navier-Stokes equations 13

dimensions is expressed as

(%—?—J-V- (u®@u)— V- (2vV3u —pl,,)=s in Q x (0,7 (2.1a)
Vou=0 inQx (0,7] (2.1b)

U =up onI'p x (0,7] (2.1¢c)

n-(2vViu—pl,, —u®u) =1 onI'y x (0,7] (2.1d)

L u = U in Q x {0} (2.1e)

Equation (2.1a) represents the momentum equation, where V*® := (V + VT) /2is the
symmetric gradient operator, u denotes the velocity field, p is the pressure, v is the

kinematic viscosity, I,,_, is the identity tensor of dimensions ngq, Ju /0t is the temporal

Nsd

derivative of the velocity field, 7" is the final time and s represents the body force. The

Reynolds number is given by Re = 1/v.

Equation (2.1b) is the continuity equation, also known as the incompressibility condi-

tion, which enforces a divergence-free velocity field.

The boundary 0f2 is partitioned into two disjoint parts: the Dirichlet portion I, and
the Neumann portion I'y, such that 9 = I'p UT'y and I'p N T'y = (). Equation (2.1c¢)
imposes a Dirichlet boundary condition, specifying the velocity wp on I'p. Equation
(2.1d) prescribes a Neumann boundary condition for the momentum equation, where ¢

is the traction specified on I", and m is the normal outward unit vector.

The term Ou /0t accounts for the unsteadiness of the flow, indicating that velocity and
pressure evolve with time, and (2.1e) represents the initial condition. Consequently,
the solution of these equations requires the application of time integration methods in

the time interval (0, 7).

It is important to note that the incompressibility condition (2.1b) imposes a compati-

bility constraint on the velocity field. Applying the divergence theorem to the integral

14 Chapter 2. The HDG method for transient incompressible flows

of (2.1b) leads to

/V-udQ:/ u-ndl’ =0. (2.2)
Q o0

Using the Dirichlet boundary condition, the compatibility constraint can be written as

/uD-ndF+/ uw-ndl'=0. (2.3)
I'p 'y

In addition, when exclusively Dirichlet boundary conditions are prescribed (i.e. ['p =
0f)), the pressure is only determined up to a constant. Imposing only Dirichlet boundary
conditions is equivalent to prescribing only Neumann boundary conditions on the
numerical flux, which leads to an ill-posed problem that requires an additional constraint
on the velocity field. Therefore, an additional constraint on the pressure field must be
imposed to eliminate its indeterminacy. For hybrid formulations, it is common practice
to enforce a zero mean pressure condition on the boundary (see, for example, Cockburn
et al. (2009a), Cockburn et al. (2010), Cockburn and Shi (2014)). This condition is

expressed as

/ pdll = 0. (2.4)
15)9)

2.3 HDG strong forms

The computational domain {2 is partitioned into a set of non-overlapping subdomains,

or elements, namely

Q=|JQ, suchthat QNQ;=0 for i#j. (2.5)

e=1

The boundaries 0f2. of these subdomains define an internal interface, also called mesh

skeleton, defined as

\ 99 (2.6)

I':.= [Ejl 082,

2.3. HDG strong forms 15

Finally, the scalar products (-, -)p and (-, -) g are introduced, denoting, respectively, the
L? scalar product in any domain D C 2 and the £? scalar product of the traces over

B C 09.

Following (Sevilla and Huerta, 2016; Giacomini et al., 2020), we introduce the discrete
functional spaces

V) = {v € Lo(Q) : v]g, € P"(Qe) ¥, e=1,....,na}, 0

VI(S) := {b € Lo(S) : 0|y, € PH(Iy) VI, C S CT U,
where P* (€2,) and P* (T';) denote the spaces of polynomial functions of complete

degree at most £ in €2, and on I';, respectively.

As commonly done in DG methods, the original system of partial differential equations
is written on the so-called broken computational domain by imposing the continuity of

the velocity and the fluxes on the mesh skeleton, namely

(%—?Jrv-(u Ru)—V-2vViu—pl,,)=s in Q. x (0,7 (2.8a)
V-u=0 in Q. x (0,7] (2.8b)

wu=up on (9 NTp)x (0,T] (2.8¢c)

n-(2uVeu —pl,, —u®u) =t on (09, NTy) x (0,7] (2.8d)

u = u in Q. x {0} (2.8¢)

[uen]=0 onT x (0,7 (2.8f)

[(VvL —pl,,,) — (w®w) - n[=0 onT x (0,7] (2.8g)

\

where, following the definition of Montlaur et al. (2008), the jump operator [-] is
introduced. Along each portion of the interface I', it sums the values of the elements

on the left and right, denoted (2; and (2,., such that

[O] =&+ 6. (2.9)

16 Chapter 2. The HDG method for transient incompressible flows

It is important to note that this definition of the jump operator always involves the
outward unit normal to a surface, denoted as [©n]. At the interface between elements
2, and €Q,., this implies [©n] = ®;n; + ®,n,, where n; and n,. are the outward unit
normals to 0€2; and 0f2,., respectively. Furthermore, it should be noted that n; = —n,

along their interface.

As other DG methods, the HDG method utilises a mixed formulation of the incom-
pressible Navier-Stokes. The system of partial differential equations (2.8) is written as

a system of first-order partial differential equations by introducing a new variable L,

namely
(L+V2uVeu =0 in Q. x (0,7 (2.10a)
)
8—1;+V-(\/21/L+pInsd)+V-(u Qu) = s in Q, x (0,7] (2.10b)
Vou=0 in Q. x (0,7T] (2.10¢)

u=1up on (0Q.NT'p) x (0,7] (2.10d)

(V2vL —pI,,)) — (u®u))-n=—t on(9QNTy) x (0,7] (2.10e)

U = ug in Q. x {0} (2.10f)

[u®@n] =0 onT x (0,7T] (2.10g)

\ [((V2vL - pl,) — (u®@u)) -n] =0 onT x (0,T]. (2.10h)
The mixed variable L := —+/2vV3u is introduced as an additional unknown, defined

as the scaled strain-rate or second-order velocity deformation tensor. By introducing L
as an independent variable, the second-order partial differential equation is decomposed
into a system of first-order equations. This decoupling facilitates more flexible numer-
ical discretisation strategies and enables the method to achieve enhanced numerical

stability.

The HDG method solves the problem (2.10) in two stages. First, a local problem is

considered in each element to express the velocity, pressure and mixed variable in

2.3. HDG strong forms 17

terms of a new independent variable, w, which is the trace of the velocity in the mesh

skeleton. The local problems can be written as

(L+V2uViu =0 in Q. x (0,7] (2.11a)
%—?—FV-(@L—FpInsd)—f—V-(u ®u) = s in Q. x (0,7] (2.11b)
V-u=0 in Q. x (0,7] (2.11¢)

wu=up on(d%NTp) x (0,T] (2.11d)

u=1u on (0Q\I'p) x (0,7] (2.11e)

L U = U in 2, x {0}, (2.11f)

and features a pure Dirichlet problem, which means that an extra condition on the

pressure needs to be introduced to remove its indeterminacy, for instance

(Pes 1) g, = Pes e=1,...,nq (2.12)

where p,. represents the scaled mean pressure on the boundary of element (2..

The second stage of the HDG formulation involves a global problem, encompassing
the transmission conditions and the Neumann boundary conditions. The local problem

is

[u®@n]=0 onI' x (0,7] (2.13a)
[(V2vL —pl,,) — (u®u)) -n] =0 onT x (0,7] (2.13b)
(V2oL = pI,,) — (u®@u)) -n = —t onTy x (0,T]. (2.13¢)

Given the Dirichlet boundary condition imposed in the local problems (2.11) and the
unique definition of the hybrid velocity on each interior face, the continuity of the

velocity, imposed by (2.13a), is automatically satisfied. Therefore the global problem

18 Chapter 2. The HDG method for transient incompressible flows

is simply
[(V2vL - pL,,) — (u®@u)) -n] =0 onT x (0,7] (2.14a)
(V2wL — pI,,)) — (u®@u)) -n = —t on[y x (0,7]. (2.14b)

Finally, the global problem is completed with the compatibility condition, induced by
the free-divergence condition, which is written now in terms of the hybrid velocity,
namely

(@-n, 1>aﬂe\FD + (up - m, 1>aQemrD =0. (2.15)

2.4 HDG weak formulation

For each element (2., where e = 1, ..., n.;, the weak formulation of the local problem
can be expressed as follows: given up on I'p and w on I' U 'y, find (L., u., p.) €

[H (div; Q) ;S| x [HE (Q2)]™ x H* () that satisfies

(

—(G,L)g, + (V- (V20G),u) |

‘ (2.16a)
- <Gn, @uD>aQemrD + <Gn, 2Vﬁ>8§25\FD
<w, %—?)Q + (w, A\ (@L))Qe + (w, Vp)g,
+ <'w, (W) n — (@L +pInsd> n>8Q (2.16b)

- (Vw,u®u), + <’w, (@) n>69 = (w, s)o,

e

(Vq, U)Qe = (¢, up - n>aQeﬂFD + (g, @ - n>8Qe\FD (2.16¢)

(0, 1) gq, = Pes (2.16d)

\

for all (G, w,q) € [H (div;Q);S] x [H! (Q)]™ x H' (). Here, [H (div; Q) ;S]
denotes the space of square-integrable symmetric tensors S of order ngy on (2. with

square-integrable row-wise divergence.

It is worth noting that integration by parts is done twice in the the momentum equation,

2.4. HDG weak formulation 19

leading to the difference between physical and numerical fluxes in (2.16b).

The numerical trace of the diffusive and convective fluxes is defined in (Cockburn et al.,

2009a) and (Giacomini et al., 2020) as

(V2vL + pL,)n + 7%(u —up) ondQ. NTp
(V2vL + pl,_)n = (2.17)

(V2L + pL,)n + 7%(u —) elsewhere

and

(up @up)n +7*(uw —up) ondQ. NTp
(u®@u)n = (2.18)

(u®@u)n, + 7(u —u) elsewhere,

respectively.

The diffusive and convective stabilisation parameters, 7¢ and 7%, respectively, play a

crucial role in the stability, accuracy, and convergence properties of the HDG method.

The diffusive stabilisation parameter 7 is typically defined as

T = — (2.19)

where ¢ denotes a characteristic length scale of the problem domain and x > 0 is a
numerical scaling factor. Extensive numerical experiments have been performed to
study the effect of the choice of the diffusive stabilisation; see, for instance, (Giacomini

et al., 2020) and references therein.
For the convective term, the stabilisation parameter 7 is often chosen based on a
characteristic velocity of the fluid flow, namely

78 = fllully or 7%= fllul, (2.20)

where u represents the convective velocity field, and 5 > 0 is a numerical parameter
independent of the Reynolds number. The norms || - || and || - || can be evaluated

locally on individual elements 2, or globally on the entire domain 2, depending on the

20 Chapter 2. The HDG method for transient incompressible flows

specific implementation.

In this work, the diffusive stabilisation parameter is selected as x = 10, given the
extra accuracy reported in (Giacomini et al., 2020). For the numerical parameter of
the convective stabilisation a value of 3 = 1 is chosen to ensure that the admissibility
condition, introduced in (Cockburn et al., 2009a) to guarantee stability and well-
posedness,

3 d a __ 2. > .
;&1&{7 +7r0—a -ng >y>0 (2.21)

is satisfied, for some constant . Finally, the || - || norm is used across the computational
domain to define the convective stabilisation. In summary, the specific choice of the

diffusive stabilisation in this work is

‘= . 2.22
;o 70 = max|lufl; (222)

Introducing the definitions of the numerical traces from (2.17) and (2.18) into the
momentum equation yields the weak form of the local problem: fore = 1,... n.,

find (L, e, pe) € [H (div; Q) ;S| x [H! (2)]™* x H' (2, such that

/

— (G, L)y + (V- (V2vG), u)
= <Gn, @uD>

Qe (2.232)
+ <Gn, 21/1l>

9Q.NT p 99\I'p

(w, %—?)Q + ('w, V- (@L))Q + (w, Vp)g,
—(Vw,u®u), + (w,7u),, = (w,s)q, (2.23b)
+(w, (T —@-n)up)yg,r, + (W, (T —%-n)U)yo 1,
(Vag,u)g, = (¢, up - M)yg,qr, T (68 M)so 1), (2.23¢)
(2 Daq, = Pe; (2.23d)

for all (G, w,q) € [H (div;Qe);S] x [H' (Q)]™ x H! (), where the stabilisation
parameter is defined as 7 = 7¢ 4 7% The local problem provides (L., u.,p.) for

e =1,...,nq, in terms of the global unknowns w and p = (p, . .. ,pnel)T.

2.5. Temporal discretisation 21

Analogously, substituting the numerical traces defined in (2.17) and (2.18) into the
transmission equations, the variational form of the global problem is obtained. Specif-

ically, find © € [7—[% (rur N)rsd and p € R® such that holds:

(De1

Z {<1ﬁ, (\/EL + pInsd) n> . + (w, Tu>aﬂe\FD

e=1

—(®, T)o.cr — (W, (T — @ n)) yg r, | (2.24a)

DNel

== Z@E t)oo.nry
e=1

\ (u-n, 1>8Qe\FD =—(up-n,1)yq p, fore=1,...,nq, (2.24b)

forall w € [Lo (T UTy)]™.

2.5 Temporal discretisation

This section presents the temporal discretisation using backward differentiation formu-
lae (BDF) (Curtiss and Hirschfelder, 1952) and explicit first stage, singly diagonally

implicit Runge-Kutta (ESDIRK) methods (Kennedy and Carpenter, 2003).

To simplify the presentation, it is assumed that the temporal domain [0, 7] is partitioned
into equally spaced intervals, and the time step is denoted by At. To denote the
evaluation of a certain field, for instance, the velocity field w(x, t) at an instant ¢", the

notation u" is used throughout the whole document.

To present the general form of the methods considered in this work, a general scalar

ordinary differential equation is considered, namely

dv
pri f(t,v). (2.25)

22 Chapter 2. The HDG method for transient incompressible flows

2.5.1 BDF discretisation of the Navier-Stokes equations

The general form of an s-step BDF method can be expressed as

> "t = AR o (2.26)
j=0
where «; and 3 are coefficients specific to each BDF method. In the current implemen-

tation first, second and third order BDF methods have been considered. The coefficients

for the first-order method (BDF1) are
a=1 o =-1, p=1. (2.27)
For the second-order method (BDF2) the coeflicients are
ap = g, ar=—2, ag= %, b =1 (2.28)

Finally, for the third-order method (BDF3) the coefficients are

11 3 1
Qo = 6 ap=-3, ay= b% a3 = 3 (2.29)

When solving steady problems, the BDF1 is often considered as a relaxation procedure,
to facilitate the convergence to the steady state. However, when transient problems are of
interest only higher order methods are considered to guarantee time accuracy. Higher-
order BDF methods (BDF2 and BDF3) generally offer improved accuracy compared
to BDF1, but require additional storage of previous time steps. BDF3, while more
accurate, may exhibit slightly reduced stability compared to BDF2 for certain problems

(Hundsdorfer and Verwer, 2013).

Applying this general BDF to the weak form of the local problems (2.23) leads to the

2.5. Temporal discretisation 23

semi-discrete local problems

— (G, L), + (V- (V@) wt)

¢ (2.30a)
<Gn No ”+1> + <G’n, 2Vu"+1>

90T p 90\

(w, i; aju”Hj) + Atﬁ[(w, V. (@L”H))Q
i= Q

e

e

+ (w, V), = (Vo w @ w4 (w w0 |G a0
[s" o, + <w7 (Tn —a"t n) n+l>aﬂ ACp
+(w, (7" =" - n) an+1>8QS\FD]

(Vq,u”“) = (g, up™ n>8QeﬂFD + (g, u"" n>898\FD (2.30c)

[P g, = (2.30d)

It should be noted that in this work the stabilisation parameter is chosen to be evaluated

at t" to simplify the linearisation process.

Similarly, the semi-discrete form of the global problem is

(Dol
5 {(@ (v) n>me\FD R
—(@, 7@ oa.ar — <w (i n) an+1>a§zemm} (231a)
Z Yoy
< 1"t on, 1>6QE\FD —(up - m, 1>896mFD fore=1,...,n4. (2.31b)

2.5.2 ESDIRK discretisation of the Navier Stokes equations

The general form of an s-stage ESDIRK method is defined as

=" ALY bz, (2.32)
=1

24 Chapter 2. The HDG method for transient incompressible flows

where

% :f(t"—l—ciAt,v"—i-AtZaijzj), i=1,...,s, (2.33)

j=1
and the coefficients ¢;, a;;, and b; define the specific ESDIRK method. The coefficients

are typically represented in a Butcher tableau

C1 | 11
Co | Q21 Q22

C3 | a31 Aa32 33 (2.34)

Cs | Qg1 Qg2 Qg3 - -° Qgg

For an ESDIRK method, we have a;; = 0, a; = vy fori = 2,... s, where v is a

constant, ¢; = 0 and a;; = 0 for j > .

This generalised formulation facilitates the implementation of ESDIRK methods of
different order. The specific selection of coefficients ¢;, a;;, and b; determines the
order of the accuracy and stability properties of the method. In this work, five distinct
ESDIRK methods have been implemented: ESDIRK23, a second-order, three-stage
method (Jgrgensen et al., 2018); ESDIRK34 Kvarng, a third-order, four-stage method
developed by Kvaerng (Kvarng, 2004); ESDIRK46, a fourth-order, six-stage method
(Kennedy and Carpenter, 2016); ESDIRK68, a sixth-order, eight-stage method (Alamri
and Ketcheson, 2024); and ESDIRKS816, an eighth-order, sixteen-stage method (Alamri
and Ketcheson, 2024). The selection of these methods enables a comprehensive analysis
across various order and stage combinations, facilitating the evaluation of the trade-offs

between computational cost and solution accuracy.

It is worth mentioning that the implementation of very high-order schemes (6th order
and above) in three-dimensional problems warrants practical consideration, as the

number of degrees of freedom per element grows rapidly with polynomial order. The

2.5. Temporal discretisation 25

dimension of the HDG global system, while smaller than traditional DG methods, still
increases substantially with order, resulting in considerable memory requirements for
very high orders. The computational demands of large 3D problems may preclude the
use of correspondingly high-order time integration schemes, suggesting that such high

spatial orders may be excessive in practice.

Applying this general ESDIRK method to the weak form of the local problems (2.23)

leads to the semi-discrete local problems

(

— (G, L)y, + (V- (VG), ui>Q
‘ (2.35a)
= <Gn, v/ QVUD’i>8QeﬂFD + <Gn, v/ 21/ui>me\FD
(w, zi)q, + (w, V. (\/2VL¢>>Q + (w, Vpi)g,
— (Vw,u; @ u;), + (w,7"u;),
e o (2.35b)
= (w, 8;)o. + (w, (7" — 4; - n) uD7i>aQemFD
+(w, (7" — ;- m) ﬁi)aﬂe\rD
(Va,ui)o, = (@, up,i n)yo qr, + (€% Moo 1, (2.35¢)
L (pi; 1)395 = Pei- (2.35d)
and the semi-discrete global problem
21 {<w, (V 2vL; + piInsd) n> 99\ + (W, 7" i) o1,
— (@, 7Yoo, rr — (B, (7" — ;1) i) gy} (2.36a)
- - Z<@’ ti>8QeﬂFN
e=1
\ (u; - n, 1>aQE\FD =—(up; - n, 1>8QgﬂFD fore=1,...,n. (2.36b)

to be solved at each stage, forv =1,...s.

As mentioned earlier, in this work the stabilisation parameter is chosen to be evaluated

at t" to simplify the linearisation process.

26 Chapter 2. The HDG method for transient incompressible flows

The solution at time t"*! is then obtained using the values of each stage as

" =+ At Z b;zi, (2.37)

=1
where z; are computed as in equation (2.33).

The gradient of velocity L, pressure p, and the hybrid variable u are computed at each
stage of the ESDIRK method by solving the coupled system of equations derived from
the semi-discrete local and global problems (2.35) and (2.36). The final values at ¢"*!

are then obtained from the last stage

Ln+1 = Ls7 pn+1 - pS7 ,&/n"l‘l - ,a’S' (238)

2.6 Spatial discretisation

High-order methods utilise elements with additional nodes to achieve increased ac-
curacy in both solution and geometric approximation. The spatial discretisation is
performed using isoparametric elements. A mapping is established between a refer-
ence element and a face, () and T, respectively, and the physical elements and faces.

The elemental isoparametric mapping can be written as

p QCR™ — (), C R

Den (2.39)
£ (&) =) m;N;(€),
j=1

where n., is the number of element nodes, {x j } j=1,. are the nodal coordinates of €2,

--sllen

and {N;},—1,.n., are the polynomial shape functions of order & defined in the reference

element.

For elements adjacent to curved boundaries, standard straight-sided elements are insuf-
ficient. The isoparametric formulation allows curved elements to accurately represent

nonlinear geometries through appropriate node placement, as shown in Figure 2.2.

2.6. Spatial discretisation 27

JANRVANRVAN

(a) (©)

Figure 2.1: High-order triangular elements: (a) Linear element with vertex nodes,
(b) Quadratic element with additional edge nodes (blue), (c) Cubic element with edge
nodes. Additional nodes enable higher-order polynomial approximations.

Figure 2.2: Cubic triangular element with curved boundary. Edge nodes (blue) and
additional nodes on the curved edge (red) enable accurate geometric representation.

For non-linear mappings where £ > 1, the inverse mapping requires solving:

DNen

> @Ni§)—x=0 (2.40)
j=1

Using a Taylor series expansion and truncating after the first derivative yields:

OR
R, =R+

% A¢ (2.41)

&

where A§ = &y — & and R =) 7, @;N;(&) — @ is the residual at iteration .

Setting R;; = 0 and rearranging for &;,, gives:

—1
41 =& — <%—I; €l> R, (2.42)

Substituting the expression for R and simplifying the tangent matrix yields the Newton-

Raphson iteration:

&i=8&— (z;®VeN; (&) ' Ry (2.43)

28 Chapter 2. The HDG method for transient incompressible flows

The initial guess is taken as the mean of the nodal coordinates:

1
fo=—> % (2.44)
en j=1

For linear elements (k = 1), the mapping converges in one iteration as the residual is
linear and the tangent matrix is constant, since the shape functions are linear in §. For
high-order elements (k > 1), the shape functions can be non-linear in &, making the

tangent matrix £&-dependent and requiring multiple Newton-Raphson iterations.

Similarly, the isoparametric mapping for a face can be written as

W T CRM ! 5T, C R

(2.45)
n—p(n) =Y x;N;(n),

J=1

77777

=1,...,

With the link established between reference and physical elements/faces, the polynomial
functional approximation is defined on the reference element/face, using the same shape

functions introduced in the geometrical mappings, namely

DNen

w(g) = wi(§) = 3 wN;(€) € [{ve L2 vlo, e PHOY™ 2462)

DNen

p(&) ~ pu(€) = ijNj(ﬁ) € {g € L2(Q); qla, € P*(Q)} (2.46b)

Nen

L&) = Lu(§) = > LN(€) € [{v € L2 vl € O™ @2460)

Nfn

w(n) ~ n(n) = Zﬁjﬁj(n) € [{ve £2(T); v, e PHI)}™. (2.46d)

where u; , p s L; and 0, are the nodal values of the velocity, pressure, mixed variable

and hybrid velocity, respectively.

2.6. Spatial discretisation 29

Introducing the approximations of Equation (2.46) into the semi-discrete form of the
local problems of Equation (2.30) and selecting the space of weighting functions equal
to the space spanned by the shape functions, leads to the definition of the discrete

elemental local residuals

Ry, = (N, L)y — (V2r, VN @ wp™) 4+ (V2uN, up™ @ n)

e 991l p
+ (V2uN, a4y @ m) st (2.47a)
Ry = (Nz, ZO‘] n+l-— j) + AtB <Ni; \val <@Lz+1>)ﬂ (N“ Vpn+1)

Qe

(VN un-i—l ® un+1)Qe + <Ni; Tnun+1>age (Ni, sn-i-l)Q

e

= (Niy (7" =g n) wp) o = (N (P = AT m) gt
(2.47b)
Ry, = (VNoup ™) = (Noul™ n) g py = (No @ o n)yg) (2470)
R, = (1), — o0t (2.47d)

Analogously, introducing the approximations of Equation (2.46) into the semi-discrete
form of the global problem of Equation (2.31) leads to the definition of the discrete

global residuals

Nel

Ry,:= Z { <]v@, <@Lz+1 +p2+11nsd> n>aQe\rD <NZ’ T n+1>aQe\FD

e=1

— (No 7" @) paor — <Ai, (r" —aptt) a2+1>agemm
+ (Niy £)0, e } (2.48a)
<An+1 n, 1>BQ \[p + <un+1 -n, 1>8QEHFD] (2.48b)

The above residuals correspond to the temporal discretisation using BDF schemes, but
almost identical expressions are obtained for each stage of the ESDIRK method given

by the local and global problems of Equations (2.35) and (2.36).

30 Chapter 2. The HDG method for transient incompressible flows

2.7 Newton-Raphson linearisation

The Newton-Raphson method is used to linearise the residuals of local and global
problems given by Equations (2.47) and (2.48), respectively. By truncating the Taylor
series expansion to its first order, the resulting linear system that needs to be solved in

each iteration of the Newton-Raphson iteration, m, is given by

Ty Tunl |AU| Ry |
vu Tua _ U (2.49)
Trxv Taa AA R
where,
Ty, T O 0 Tra O
T, T, TI, 0 Tuo O
TUU = T) TUA -)
0 T, 0 t Ty, 0
0 0 t, O] 01
_TﬂL To Ty O Taa O
Ty = , Tan= , (2.50)
0 0 0 1 T, 0
(3\ 4 A
L R.
u ﬁ Ru Ru
U=) A= ; RU — 3 RA —
P P R, R,
(<) (R

In the above expressions, T, denotes the tangent matrix obtained by assembling the
contributions (Typ)c; := ORS,/0b and A@™™ = @™+ — @™ is the increment of

the solution from the Newton-Raphson iteration m to m + 1.

Given the element-by-element structure of the block Ty the hybridisation process is

applied to reduce this system to one involving only the degree of freedom of the hybrid

2.7. Newton-Raphson linearisation 31

velocity and the mean value of the pressure in each element, AA,

K™ AN = F™ (2.51)

where
K™ = Ty — Thy (T) T Thy (2.52)
Fm = —RX”” + TX’S”‘(TZ’?)”R’[}””. (2.53)

The global linear system of equation (2.51) is solved using high-performance numerical
libraries. For systems with fewer than one million degrees of freedom, the direct
solver PARDISO from the Intel Math Kernel Library (MKL) is employed (Schenk and
Girtner, 2004). This solver is chosen for its robustness and efficiency in handling sparse,
unsymmetric matrices. For larger systems, the multi-core PETSc (Portable, Extensible
Toolkit for Scientific Computation) implementation is utilised (Balay et al., 2019),
specifically employing the MUMPS (MUltifrontal Massively Parallel sparse direct
Solver) package (Amestoy et al., 2001). This combination leverages the advantages
of distributed memory parallelism and the efficiency of multifrontal algorithms for
large-scale sparse linear systems. The tolerance for convergence of the linear system

residual is set to 10~'2 in all examples presented in this work.

After solving the global problem to obtain AA™™, the increment AU™" which involves

the velocity, pressure and mixed variable in each element can be computed as

TUEAU™™ = “RE™ — THI AN, (2.54)

It is worth emphasising that the solution of the local problems of Equation (2.54) can
be done element by element and in parallel, without communication required, as the

problems are independent.

The convergence of the Newton-Raphson method is determined by examining both the

32 Chapter 2. The HDG method for transient incompressible flows

relative increments of the solution variables and the relative residuals.

Convergence of the relative increments involves checking that

max{Rr, Ry, Rp,Ra, Ry} < emn (2.55)

where

Ln,m—i—l — Lmm ~
RL = H || Ru =

mac[L7 o, Can} max ([o}
[P~ p o L

Ry = Ra = (2.56)

max{|[p™" oo, €en}t’ U max{[[an o, €gen

| pmHt — ™|

max{|[p"™ ||, €den} ’

Hun,m—i-l _ un,mHOO

R, =

and €4, 1S a regularisation parameter introduced to prevent division by zero and, in all

examples, it is taken as ege, = 1077,

Similarly, convergence of the residuals involves checking that

RL Ru Rp Rﬂ Rﬂ

where the normalisation term Ry := max{||Rq||sc, €en } is computed from the known
contributions of the corresponding residual, f{D, namely Dirichlet, Neumann and

source term contributions.

The Newton-Raphson method is considered to have converged when both conditions
for the relative increment and the relative residual criteria are satisfied, as given by
Equations (2.55) and (2.57). In all numerical examples, the tolerance to stop the

Newton-Raphson iterations is taken as eyg = 0.5 x 10710,

2.8. Verification examples 33

2.8 Verification examples

This section presents a series of numerical tests to verify the correct implementation of
the Fortran 90 code to solve the incompressible Navier-Stokes equations using the HDG
formulation described in this chapter. To this end, steady and transient examples with a
known analytical solution are considered. The optimal convergence of the £2(€2) norm
of the error for velocity, pressure, and the mixed variable, when the mesh is refined or

the time step decreased.

2.8.1 Kovasznay Flow

The first numerical test considers the Kovasznay flow (Kovasznay, 1948), a well-
known analytical solution to the incompressible Navier-Stokes equations. This problem
provides an excellent benchmark for assessing the accuracy and convergence properties
of numerical methods. The computational domain is a unit square, 2 = [0, 1]?, and the
analytical solution is given by

1-— 2\ 2
u(x) = xp(2A7) cos(2my) . plx) = —% exp(4Az) + C, (2.58)

2 exp(2Az) sin(27y)

Re Re? 1 { 1
- [2 S (1
where \ 5 1 + 472 and C S 1+ exp(4\) N (1 —exp(4N))].

The Reynolds number is taken as Re = 100 and the analytical solution is shown in

Figure 2.3.

A Neumann boundary condition, corresponding to the exact solution, is imposed on
the bottom part of the boundary, I'y = {(z,y) € Q | y = 0}, while Dirichlet boundary

conditions, corresponding to the exact velocity, are imposed on I'p, = 9 \ 'y.

Four uniform meshes are considered, with 16, 64, 256, and 1,024 triangular elements,

respectively, as shown in Figure 2.5.

34 Chapter 2. The HDG method for transient incompressible flows

0.2 0.5
0.4
0.1 0.3
0.2
0 0.1
0
-0.1 -0.1
-0.2
-0.2 -0.3
-0.4
-0.3 -0.5

(a) Pressure (b) Velocity magnitude

Figure 2.3: Kovasznay Flow: Pressure and velocity fields for Re = 100 in the domain
Q=10,1)%

0 0
= -5 4.5
& RIS
0 -10 b% -10
- 2
-15 > -15
1 2 3 4 5 6 7 1 2 3 4 5 6 7
Iteration number Iteration number
(a) Relative increment (b) Relative residual

Figure 2.4: Kovasznay Flow: Convergence of the NR method, relative increment, and
relative residual versus the iteration number on the velocity

Figure 2.4 illustrates the convergence behaviour of the Newton-Raphson. The plot
shows the logarithm of the relative increment and relative residual for the velocity
computed from Equations (2.55) and (2.57) versus the iteration number of the Newton-
Raphson method for the Mesh 1 of 16 elements. The Figure 2.4 demonstrates the
rapid convergence of the Newton-Raphson (NR) method. Both the relative increment
(a) and the relative residual (b) decrease exponentially, reaching approximately 10~
after only 7 iterations. This indicates quadratic convergence, characteristic of the NR
method. The smooth curves suggest stable convergence throughout the process. The
similar shapes of both plots imply a strong correlation between the reduction in solution

updates and the minimisation of the residual.

Figure 2.6 shows the £*(2) norm of the error of the velocity, pressure and mixed
variable as a function of the characteristic element size h for a degree of approximation

ranging from £ = 1 up to k = 4. The expected k + 1 convergence rate can be observed

2.8. Verification examples 35

1.00 1.00 1.00 1.00
0.50 0.50 0.50 0.50
0.00 0.00 0.00 0.00
0.00 0.50 1.00 0.00 0.50 1.00 0.00 0.50 1.00 0.00 0.50 1.00
(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure 2.5: Triangular meshes of the domain 2 = [0,1]? used to test the optimal
convergence properties of the HDG method.

0r[—o—u 0
L~ L 1
—8—p 1.
9 4 ol
g = 3
53 537
S Q-4
=5 =5
20 20
< -6 S 6l
7 Tr
8 81
14 -12 -1 -08 -06 -04 -02 14 12 -1 08 -0.6 -04 -0.2
10g10(h) logm(h)
@k=1 b)k=2
(U r-—y 1 (U -y
1L—o-L i 1oL
—8—p —8—p
— 2 1 —~ -2
s s
= 29
St Q4
=5 =5
0 4.0 o0
< -6 T S 6l
7 STr
8 -8t
14 -12 -1 -08 -06 -04 -02 14 -12 4 08 -06 -04 -02
logm(h) logm(h)
k=3 (k=14

Figure 2.6: Kovasznay Flow: L£5(€2) norm of the error for the velocity, pressure and
mixed variable as a function of the characteristic element size h, for different degrees
of approximation.

for all the variables and degree of approximation. The results show not only the same
rate of convergence for all the variables, but also a similar error for all the variables in
a fixed mesh. For sufficiently regular solutions, this optimal convergence behaviour is
consistently observed across different mesh sizes and polynomial degrees..Comparing
the results for low and high order approximations provide evidence of the potential of

high order approximations. For example, the solution obtained in the coarsest mesh

36 Chapter 2. The HDG method for transient incompressible flows

using £ = 4, with only 16 elements, is more accurate than the solution obtained in
the finest mesh using k£ = 1, with 1,024 elements. As the dominant cost of the HDG
method is driven by the solution of the global problem, it is instructive to consider the
size of the global problem as a measure of the cost to compare low and high order
approximations. The solution of the problem with £ = 1 on a mesh of 1,024 elements
requires the solution of global problems of 4,128 degrees of freedom, whereas the
solution of the problem with £ = 4 on a mesh of 16 elements requires the solution of

global problems of 146 degrees of freedom.

2.8.2 Ethier-Steinmann flow

The second numerical test considers the Ethier-Steinman flow (Ethier and Steinman,
1994) in Q = [0, 1]?, which involves a known time-dependent analytical solution for

the incompressible Navier-Stokes equations. The solution is given by

e sin(ay — dz) + €% cos(ax — dy)

u(x) = —a§ e¥sin(az — dr) + e cos(ay — dz) et (2.59a)
e**sin(ax — dy) 4 e cos(az — dx)
plx) = _a; €29 4 2 4 2 4 9sin(ax — dy) cos(az — da)e? V)
+ 2sin(ay — dz) cos(ax — dy)e* T (2.59b)

+ 2sin(az — dx) cos(ay — dz)ea(“y)] e 2

7 and d = 7. The final time is Tepq = 0.05 and the time step At =

where a =
0.01, which is selected so the temporal error does not affect the spatial convergence.
As in the previous example, to test the correct implementation of the Neumann and
Dirichlet boundary conditions, a Neumann boundary condition, corresponding to the
exact solution, is imposed on the bottom part of the boundary, I'y = {(z,y,2) € Q |

z = 0}, while Dirichlet boundary conditions, corresponding to the exact velocity, are

imposed on I'p = 02\ I'y.

2.8. Verification examples 37

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

Figure 2.8: Tetrahedral meshes of the domain Q = [0, 1] used to test the optimal
convergence properties of the HDG method.

Figure 2.7 shows the velocity field at t = 0.

Three uniform tetrahedral meshes with 24, 192, and 1,536 tetrahedral elements are
considered to test the rate of convergence in three dimensions under mesh refinement.

The meshes are shown in Figure 2.8.

Figure 2.9 shows the £2(2) norm of the error of the velocity, pressure, and mixed
variable as a function of the characteristic element size h for a degree of approximation
ranging from £ = 1 up to £ = 4. To ensure that the error due to the temporal
discretisation is lower than the spatial discretisation error, a small enough time step is

selected in all the simulations.

As in the two dimensional example, the expected k+ 1 convergence rate can be observed

for all the variables and degree of approximation. Compared to the two dimensional

38 Chapter 2. The HDG method for transient incompressible flows

2 : : : : 2 :
—-o—u —o—u
L L
0f|—a—p Or|—ap
B B
=2 —21 =2y
=R 1 =
\§ 41 \é -4 = 3.2
20 o0 1
< S
-6 -6 -
-8 \ ‘ ‘ ‘ 8 ‘ | | ‘
-0.6 -0.4 -0.2 0 -0.6 -0.4 -0.2 0
loglo(h) IOglg(h)
(@k=1 (b) k=2
2 ‘ : : 2 : :
—-—u —o—u
L L
0f|—a—p Or|—ap
B B
3 2+ 3 21
= =l
\§ -4t \5 -4t
g g
- 4]4-1 -
-6 F 1 i 6t
4‘5'0
1
-8 \ ‘ ‘ ‘ 8 ‘ | | ‘
-0.6 -0.4 -0.2 0 -0.6 -0.4 -0.2 0
loglo(h) IOglg(h)
k=3 dDk=14

Figure 2.9: Ethier-Steinmann Flow: £5(£2) norm of the error for the velocity, pressure
and mixed variable as a function of the characteristic element size h, for different
degrees of approximation.

test, it can be observed that the error in the mixed variable is slightly higher than the
error of the velocity and pressure. This is mainly due to the higher complexity of the

gradient of the velocity in this example.

Similar to the two dimensional example, comparing the results for low and high order
approximations provide evidence of the potential of high order approximations. For
instance, the solution obtained in the coarsest mesh using k£ = 4, with only 24 elements,
is more accurate than the solution obtained in the finest mesh using £ = 1, with 1,536
elements. Similar to the two dimensional example, it is instructive to consider the
size of the global problem as a measure of the cost to compare low and high order
approximations. The solution of the problem with £ = 1 on a mesh of 1,536 elements

requires the solution of global problems of 11,136 degrees of freedom, whereas the

2.8. Verification examples 39

1.00

0.50

0.00
0.00 0.50 1.00

Figure 2.10: Triangular mesh of the domain Q = [0, 1]? used to test the optimal
temporal convergence properties of the HDG method.

solution of the problem with £ = 4 on a mesh of 16 elements requires the solution of

global problems of 864 degrees of freedom.

2.8.3 Manufactured transient solution

The last example, considered to verify the correct implementation of BDF and ESDIRK
time integrators, considers the manufactured solution
sin(x 4 wt) sin(y + wt)

w(®@) = , (2.60a)
cos(z + wt) cos(y + wt)

p(x) = sin(x — y + wt), (2.60Db)

where the parameter w is used to adjust rate of change of the velocity and pressure
in time. The final time used in these examples is T, = 0.25. The mesh used in this
example ensures that there is no spatial error that affects the solution, only temporal.
The computational domain shown in Figure 2.10 is a square unit Q = [0, 1]* and has
64 triangular elements. The degree of approximation is constant in the whole domain

and equal to 4.

To test the implementation of the different time integrators considered in this work a
fine mesh with a high degree of approximation is considered, so that the error due to
the spatial discretisation is negligible when compared to the error due to the temporal

discretisation.

40 Chapter 2. The HDG method for transient incompressible flows

1 -1
2l @% 1 2
—~-3 == 1.0] ~ -3t
=] =]
E 4 é 4+
= =
=5 =5
&0 &0
L2 -6t : S 6+ :
——u ——u
7 L e Ll
—8—p —8—p
-8 L L L L L -8 L L L L !
-2.4 -2.2 -2 -1.8 -1.6 -1.4 -1.2 -2.4 -2.2 -2 -1.8 -1.6 -1.4 -1.2
logio(At) logio(At)
(a) BE (b) BDF2
-1
20
=3¢
Sl
=l
<5 3.0
g6
30 ”
7l 2.9 ° Ll
—8—p

-24 -2.2 -2 -1.8 -1.6 -14 -1.2
1Og1(](At)

(c) BDF3

Figure 2.11: Manufactured transient solution: £5(£2) norm of the error for the velocity,
pressure and mixed variable as a function of the time step At, for different time
integration BDF schemes.

Figure 2.11 show the £2(Q2) norm of the error for the velocity, pressure and mixed
variable as a function of the time step At for the BDF1, BDF2 and BDF3 time integration

schemes.

The results show the first, second and third order expected accuracy in all the variables

for the BDF1, BDF2 and BDF3 time integration schemes, respectively.

Similar to the superior behaviour of high order approximations in space, the results
show the benefit of using high order time integrator. The results with the BDF3 scheme
using the coarse time discretisation are more than one order of magnitude more accurate
than the results with BDF1 using the finest time discretisation. This means that the
results with the BDF3 scheme are more than ten times more accurate than the results

with the BDF1 scheme and only using eight time steps.

2.8. Verification examples 41

logo (|| Bl ()
L
u\
~D

—o—u
6 Ll
—8—p
Tos 21 2 19 18 17 16 T2 21 2 19 18 17 16
loglO(At) 10g10(At)
(a) ESDIRK?23 (b) ESDIRK34 Kvarng
0;
1k
—~ -2 43'5
z 1
=3t
5
=4 >
g -5r /
‘ 3.9 —o-u
_6 Ll
1 —8—p
_7 L L L L L

-2.2 -2.1 -2 -1.9 -1.8 -1.7 -1.6
logl[)(At)

(c) ESDIRK46

Figure 2.12: Manufactured transient solution: £,(€2) norm of the error for the velocity,
pressure and mixed variable as a function of the time step At, for different time
integration ESDIRK schemes.

To test the implementation of the ESDIRK schemes, the value of w in the analytical
solution is increased to 10 to define a much faster variation of the solution in time. This
is because for the low value of w = 1 the highest order ESDIRK methods considered
here provide almost machine accuracy and, therefore, do not allow to provide evidence

of the optimal convergence rate.

Figure 2.12 presents results for three ESDIRK methods, namely the second-order
ESDIRK?23 method by (Jgrgensen et al., 2018), the third-order ESDIRK34 by (Kvarng,
2004) and the fourth-order ESDIRK46 by (Kennedy and Carpenter, 2016).

The observed convergence rates generally align with the theoretical order of accuracy
for each ESDIRK method, despite the fact that some slight loss of accuracy is observed

at the pressure, which could be associated with the so-called order reduction of implicit

42 Chapter 2. The HDG method for transient incompressible flows

RK methods (Sanz-Serna et al., 1986) often observed when inhomogeneous boundary

conditions are considered.

Chapter 3

A conservative degree adaptive HDG

method

3.1 Introduction

The accurate simulation of transient incompressible fluid flows is a central challenge
in many CFD applications, including areas such as civil, aerospace, chemical, and
biomedical engineering. From a numerical point of view, several difficulties arise when
solving the incompressible Navier-Stokes equations due to their non-linear nature and
the intricate coupling between velocity and pressure fields (Quartapelle, 2013). When
unsteady phenomena are of interest, an extra difficulty is to accurately propagate vortices

over long distances.

High-order methods are attractive for the simulation of transient flows due to the lower
dissipation and dispersion errors, when compared to low order methods (Ekaterinaris,
2005; Ainsworth et al., 2006; Wang et al., 2013). Continuous and discontinuous
Galerkin (DG) methods have their own advantages and disadvantages and have both
been successfully applied to a variety of problems in CFD (Chalot and Normand,
2010; Chalot et al., 2015; Gross et al., 2015; Sevilla et al., 2013; Bassi et al., 2007;
Liu and Shu, 2000; Montlaur et al., 2010; Ferrer and Willden, 2011; Lehrenfeld and

43

44 Chapter 3. A conservative degree adaptive HDG method

Schoberl, 2016). Two properties that make DG a preferred option in some cases are
the ability to easily handle a variable degree of approximation and the easier definition
of the required stabilisation for convection dominated flows (Kompenhans et al., 2016;
Ekelschot et al., 2017; Paipuri et al., 2018). The main disadvantage of DG methods
is commonly attributed to the duplication of degrees of freedom (Kirby et al., 2012;
Yakovlev et al., 2015), a property that facilitates the implementation of variable degree
of approximation. Furthermore, as demonstrated by Kirby et al. (2012); Yakovlev
et al. (2015), the computational cost of DG methods compared to statically condensed
continuous Galerkin methods increases significantly, particularly in three-dimensional

problems.

The hybridisable discontinuous Galerkin (HDG) method, originally proposed by Cock-
burn and co-workers (Cockburn and Gopalakrishnan, 2005, 2009) employs hybridisa-
tion to reduce the number of coupled degrees of freedom and has become popular for
CFD applications. With HDG, it is possible to use approximations of equal order for
both velocity and pressure, circumventing the Ladyzhenskaya-Babuska-Brezzi (LBB)
condition. From a computational perspective, the size of the global problem only
involves the mean value of the pressure in each element even for high-order approxi-
mations, reducing even further the size of the global system of equations to be solved.
Furthermore, an important advantage of HDG is the ability to build a super-convergent
velocity field (Cockburn and Shi, 2013). The development and application of HDG
methods to incompressible flows include the solution of Stokes flows (Cockburn et al.,
2010; Nguyen et al., 2010; Cockburn and Shi, 2014, 2013; Giacomini et al., 2018)
and the incompressible Navier-Stokes equations (Nguyen et al., 2011; Giorgiani et al.,

2014; Rhebergen and Wells, 2018; Giirkan et al., 2019).

To accurately and efficiently capture transient flow phenomena, mesh adaptation tech-
niques are traditionally employed in a low order context. For high-order methods, the
use of degree adaptivity offers a new alternative to provide the required accuracy only
in the regions of the domain where it is needed, minimising the computational overhead

of high-order approximations and circumventing the need to modify the mesh topology.

3.1. Introduction 45

In the context of HDG, the use of mesh and degree adaptivity has been considered for
a variety of problems, including incompressible flows (Giorgiani et al., 2014; Leng,
2021). In HDG methods, the ability to build a super-convergent solution can be used to
devise a cheap error indicator to drive the adaptivity. This strategy was first exploited

in (Giorgiani et al., 2013) for wave propagation problems.

This chapter first revisits the ability of HDG methods to build a super-convergent
velocity field in the context of incompressible flows. Following (Giorgiani et al., 2013,
2014) the super-convergent solution is then used to build a cheap error indicator to
drive a degree adaptive process. The implementation of this strategy is demonstrated
for a steady problem with known analytical solution. Then, the application of the
degree adaptive process is considered for transient problems. First, it is shown that a
degree adaptive process can lead to unphysical oscillations in aerodynamic quantities of
interest, especially the drag, if the adaptive process reduces the degree of approximation
during the time marching process. This phenomenon is related to the violation of
the free-divergence condition during the projection of the solution from a space of
polynomials of degree r to a space of polynomials of degree s, with s < r. Second,
this work proposes a conservative projection to guarantee mass conservation during
the projection stage. The proposed projection does not introduce significant overhead
because it induces the solution of an element-by-element problem and only for those
elements where the adaptive process lowers the degree of approximation. Numerical
examples are used to illustrate the benefits of the proposed conservative projection

using two dimensional examples.

The remainder of this chapter is organised as follows. Section 3.2 presents the strategy
to build a super-convergent velocity field. The error indicator that takes advantage of
the ability of the HDG method to build a super-convergent velocity is introduced in
Section 3.3 and in Section 3.4 the degree adaptation strategy is described. The novel
projection scheme to ensure conservation during transient simulations is presented
in Section 3.4.2. Section 3.5 presents numerical examples to illustrate the effect of

using a standard adaptive process that violates the free-divergence condition during the

46 Chapter 3. A conservative degree adaptive HDG method

projection stage and the benefits of the proposed conservative projection.

3.2 Super-convergent postprocess of the velocity

One of the key advantages of the HDG method is the ability to obtain a super-convergent
solution through local postprocessing. This postprocessing technique allows us to
compute a new approximation of the velocity field that converges at a higher rate than
the original HDG solution, while maintaining important physical properties such as
local conservation and H(div)-conformity. H(div)-conformity refers to the property
that the normal component of the velocity is continuous across element interfaces. The
postprocessing technique is later leveraged to drive an adaptive procedure that locally

defines the polynomial degree on each element.

The HDG post-processing procedure requires the solution of a local problem in each
element (), to compute an super-convergent velocity approximation w*. Following the

formulation in Giacomini et al. (2020), the postprocessing problem is defined as

V. (Vrviut) =-V. L, in Q,,
(@Vsu*) n=—-L.mn, on 082,

3.1
(U’*v 1)96 = (u7 1)957

(V X ’U/*, 1)9(; = <uD " T, 1>8QEOFD + <ﬁ’ T, 1>8QG\FD7
where 7 is the tangential direction to the boundary 0f)..

The first equation in (3.1) is obtained after applying the divergence operator to the equa-
tion that defines the mixed variable, and the boundary condition imposes equilibrated
fluxes on the boundary of each element. The two last equations in (3.1) are introduced

to remove the indeterminacy associated with the translational and rotational modes.

The weak form of the postprocessing problem is: for e = 1,...,n., find u* €

3.2. Super-convergent postprocess of the velocity 47

[VE(Q,)]?= such that

(

—(Vev*, 2vViu*)q, = (V°v*, L)q,,

(’l.l,*, 1)Qe = (’U,, 1)Qev (32)

(V xu 1)g, = (up -7, 1)ag.arp, + (8- T, L)oo r,

for all v* € [V!(Q.)]*=, where: V*(Q) := {v € Ly(Q) : v|q, € P*1(Q)VQ, e =
1,...,ne } and P**1(Q,) denotes the space of polynomial functions of complete degree

at most k + 11in €2,.

It should be noted that the boundary condition is included in the first equation of (3.2)

after the integration by parts.

This postprocessing procedure yields a velocity approximation w that is exactly
divergence-free, H (div) conforming, and the error converges at a rate of £k + 2 in
the £2(92) norm for & > 1, where k is the degree of polynomial used in the original

HDG discretisation (Cockburn and Shi, 2013; Giacomini et al., 2020).

Spatial discretisation is performed using isoparametric elements, as done for the other
variables and described in Section 2.6. For the postprocessed velocity, polynomials of
degree k + 1 are employed, leading to an element-by-element problem that involves the

solution of the linear system of equations.

First, the postprocessed velocity w* is approximated using the polynomial shape func-

tions of degree k + 1, namely
u'(§) = Y uiN;(€) (3.3)

where u’ are the nodal values of the postprocessed velocity.

Introducing the approximation of Equation (3.3) into the weak form (3.2) and selecting

the space of test functions equations to the space of approximation functions, the

48 Chapter 3. A conservative degree adaptive HDG method

resulting system of equations can be written as

A bl bl |u f
b1 0 0)\1 = | (34)
b2 0 0)\2 Co

where
Ay = — / 20V N; - VN,|J|dQ (3.5)
Q
f; :Z/VNi-Lij]ﬂdQ (3.6)
j=1"¢
)i = [Nj3ja (3.7)
Q
Q

=) </ Nj\J\dQ> u; (3.9)
j=1 7%

¢ = Z (/F Nj||3\|df) (wp-7);+ 3 (/F Nj\|j||df> (@-7); (.10

A1 and A, are Lagrange multipliers used to impose the constraints of Equation (3.2),
N; and Nj are the polynomial shape functions for the element and face, respectively,

and J and J are the Jacobians for the element and face, respectively.

3.2.1 Verification example

To verify the implementation of the super-convergent postprocess, the Kovasznay flow,
previously considered in subsection 2.8.1 is used. The four uniform meshes as shown
in Figure 2.5 are considered and the postprocessed velocity is computed for each mesh

and for a degree of approximation from £ = 1 up to k£ = 4.

Figure 3.1 shows the £2(£2) norm of the error of the velocity and the postprocessed
velocity as a function of the characteristic element size. h, for a degree of approximation

ranging from k = lup to k = 4.

3.3. Error indicator based on the postprocessed velocity 49

0 : . ! ! ;
L [e-u
ll-e-w =
2t —==—129
— =% 1
g3t e-"!
=i
=
=57
g0
7l
8t 8l
9 ‘ ‘ ‘ ‘ ‘ 9 ‘ ‘ ‘ ‘ ‘
-14 -1.2 -1 -0.8 -0.6 -0.4 -0.2 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2
logio(h) logio(h)
@k=1 b) k=2
0 : . . . T 0 !
L [e-u =
- ’_e_u*] - ’_e_ux
-2 -2
=4 =yl
) <3
Z -5 Z -5
g o
-7 =T
-8 -8+
9 ‘ ‘ ‘ ‘ ‘ 9 ‘ ‘ ‘ ‘ ‘
1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2
IOgl[)(h) 10g1(](h)
(k=3 k=4

Figure 3.1: Kovasznay Flow: L£5(€2) norm of the error for the velocity, and postpro-
cessed velocity as a function of the characteristic element size h, for different degrees
of approximation.

For all polynomial degrees, u* consistently shows a higher convergence rate than u, and
the difference in convergence rates between them is approximately one for all values
k. These results indicate that the method achieves optimal convergence for the primary

solution and superconvergence for the post-processed solution.

3.3 Error indicator based on the postprocessed velocity

The superconvergent properties of the HDG method allow the construction of an ef-
ficient and reliable error indicator based on the post-processed solution. This error
indicator, proposed in (Giorgiani et al., 2013) and further used in the context of incom-

pressible flows (Giorgiani et al., 2014; Sevilla and Huerta, 2016), plays a crucial role

50 Chapter 3. A conservative degree adaptive HDG method

in driving adaptive procedures.

Given the HDG solution u and the postprocessed solution u*, we can define an element

wise error indicator E, as

1 1/2
ol /s (u—u") - (u—u*)dQ (3.11)

E= |

where |(2.| denotes the measure of the element €2, this normalisation becomes crucial

when meshes with different element sizes are considered (Diez and Huerta, 1999).

E. possesses several desirable properties that make it particularly suitable for adaptive
procedures in HDG methods. Firstly, it exhibits asymptotic exactness, which means that
for smooth solutions, as the mesh size h approaches zero, the error indicator converges
to the true error at a higher rate than the HDG solution itself (Giorgiani et al., 2014).
This property ensures an increase in the accuracy of the error estimation as the mesh
is refined. Secondly, F. is computationally efficient, as its calculation only involves
element-local operations, thus adding minimal overhead to the overall computational
cost. Lastly, the error indicator shows high reliability, providing a good estimate of

local error in the HDG solution (Nguyen et al., 2010).

3.4 Degree adaptive strategy

Using the error indicator provided in (3.11), this section introduces an automatic

degree-adaptive process.

Given a tolerance ¢ for the velocity error within a region of interest (2, C (2, the
adaptive process aims to generate a map of elemental degrees {kq, }oc, such that the

error of the velocity field in each element, F., is below the required tolerance, namely

E. <e VQ. C Qine. (3.12)

3.4. Degree adaptive strategy 51

Assuming that the exact solution of the problem is smooth in the sense of having
sufficient regularity for the HDG approximation, the error of the velocity field within

an element, £, behaves asymptotically as
E, ~ Choke), (3.13)

where C' is a constant, h, is the characteristic size of element ()., and « is a constant
that depends only on the degree of approximation (k), which depends upon the norm

considered.

To achieve a desired error € in a given element, the asymptotic expression of the error

can be used, with a different degree of approximation, namely
€~ Cholke)tAke (3.14)

where Ak, is the required change in the degree of approximation to guarantee the

desired error.

Taking the logarithm of the ratio of the expressions of € and E, of equations (3.14) and

(3.13) leads to
log, (Ei) ~ Ak, log,(he), (3.15)

which provides the required expression for Ak,, given by

Ak~ o8/ E)

log(,) (3.16)

In the above expressions, the base b acts as an aggressiveness parameter proposed
in (Fidkowski and Darmofal, 2007). A lower value of b results in more aggressive
refinement, which could lead to larger degree increases but possibly overshooting the
optimal degree. In contrast, a larger value of b leads to more conservative refinement,
with smaller degree increases, but potentially requiring more adaptive iterations to

reach the desired accuracy.

52 Chapter 3. A conservative degree adaptive HDG method

The final expression for the change in the degree of approximation that is used in the

current implementation is

Ak, = {logb (;—ﬂ , (3.17)

where the value of the tolerance is allowed to be different in each element, €., therefore
embedding the effect of having elements with very different element sizes. Furthermore,

the ceiling function is used to ensure that the resulting value is an integer.

It is important to note that while this method provides a reasonable estimate for degree
adaptation, it relies on heuristic principles and may not be optimal in all cases. The
effectiveness of this adaptive strategy depends on the accuracy of the error indicator E,
and the appropriate choice of the aggressiveness parameter b and the desired accuracy
¢.. These factors should be carefully considered in the context of the specific prob-
lem and the desired balance between computational efficiency and solution accuracy.
Additionally, the assumption of solution smoothness is crucial, for problems with sin-
gularities or sharp gradients, the actual convergence behaviour may deviate from these

asymptotic estimates, potentially requiring alternative adaptation strategies.

Furthermore, upper and lower bounds on the polynomial degree are typically set, namely
kmin < ko, < Emax. The lower bound £, is essential to ensure a proper geometric
representation using isoparametric elements, while the upper bound k,,x, which caps

the maximum polynomial degree in the mesh, is imposed for practical reasons.

The strategy used to select these parameters is as follows:

* For the aggressiveness parameter b:

— Use b = 10 for problems with strong local features requiring rapid degree

adaptation

— Use b = 100 for smoother problems to avoid oscillatory degree distributions
* For the target accuracy e:

— Set based on the problem physics and required engineering precision

3.4. Degree adaptive strategy 53

— Typical values range from 1073 to 108

— Consider computational cost constraints
* For polynomial degree bounds:

— Set knin > 1 to maintain geometric accuracy

— Set knax based on available computational resources

The adaptive procedure is applicable to both steady and unsteady problems. In both
cases, the process begins with a uniform degree mesh where ko, = ki, for e =

1,...,ne1.

3.4.1 Steady state solutions

For steady state solutions, each iteration of the adaptive process involves computing
the steady-state solution to equations (2.51) and (2.53) (neglecting time derivatives),
the error (3.11) is evaluated, the degree map is updated using equation (3.17) within
the bounds knin < ko, < Emax. The iterative adaptation continues until the prescribed

precision ¢ is achieved throughout the domain of interest, according to Equation (3.12).

A solution derived from a given degree map can serve to enhance the initial guess
within the Newton-Raphson scheme through interpolation of the solution at the new
nodal distribution within each element. Assume that the solution within an element
has been computed using a polynomial approximation of degree r, and the subsequent

degree to be used in the element is s. The solution is approximated as

w(E) =Y W), (3.18)
j=1

where n] | denotes the number of element nodes, u; are the nodal values of the solution

and N are the polynomial shape functions of degree r defined, on a reference element,

54 Chapter 3. A conservative degree adaptive HDG method

Algorithm 1 Degree adaptive HDG Method for steady Navier-Stokes Equations

1: Initialise polynomial degree map {kc}e—1.. . n,
2: Set base b for logarithm and tolerance ¢
3: while true do
4: for iy < 1 to nyg do
5 Solve global problem of Equation (2.51) (neglecting time derivatives)
6 Solve local problem of Equation (2.53) (neglecting time derivatives)
7: end for
8 for is; + 1 to n.; do
9: Compute super-convergent velocity using Equation (3.2)
10: Compute error indicator using Equation (3.11)

11: Update the degree using Equation (3.17)
12: end for

13: ifmax{F.:e=1,...,na} < ¢ then

14: break

15: end if

16: end while

from the set of nodes {& T}izl,...,ngn- The interpolation onto the novel nodal configuration

corresponding to a degree s, {£°}, can be written as
u'(€) =) wiN;(€), (3.19)
j=1

where u$ = u'(&5).

3.4.2 Conservative projection for transient problems

An essential distinction of a degree-adaptive procedure for transient problems, in
contrast to the steady-state case, is that the projection of the solution at time " onto
the desired degree map is required to calculate the solution at time ¢"*, rather than
merely serving as an initial guess in the Newton-Raphson scheme. Consider a scenario
in which the solution in a given element at time ¢" is determined with a degree r,
and the degree adaptive process subsequently adjusts the required degree within that
element to s. The projection methodology, as delineated in (16), generally does not
ensure that the projected velocity field at time ¢” remains divergence-free. Specifically,

if s > r, that is, if the adaptive process either escalates or maintains the degree of

3.4. Degree adaptive strategy 55

approximation within an element, the projection does not alter the velocity field at time
t", given that the polynomial space of degree r is contained within the polynomial
space of degree s. Conversely, if s < r, that is, if the adaptive process reduces the
degree of approximation in the element, the projection modifies the velocity field at

time t", thus generally breaking the incompressibility constraint.

To avoid this problem, this work proposes a new projection based on the constrained
minimisation problem. The objective is to minimise the difference between the initial
velocity field (u") and the corrected velocity field (1), subject to the mass conservation

constraint:

mings E:= [, (u®—u")- (u®—u")dQ
! ‘ (3.20)

s.t. fme u®-ndl = 0.

The velocity and the corrected velocity fields are discretised using basis functions of

degree r and s respectively
Nen ey
u’ ~ Z Niuj, u" ~ Z N/uj. (3.21)
i=1 i=1

Inserting the polynomial approximation of u® and w” into the error function to be

minimised, leads to
B | (ZN f—iN{uf) - (ZN f—ijzu:) CRCES
Qe \ j=1 i=1 i=1 i=1

To find the nodal values of the projected solution, u;, that minimise £ the derivative is

imposed to vanish, namely

aE S T
s = 2 /Q N; <Z Nyu$ — Z Niui> Q=0 (3.23)

56 Chapter 3. A conservative degree adaptive HDG method

The discrete version of the constraint in Equation (3.20) is

s
nen

u’® - ndl ~

)

Nin, dF> ‘ud =0 (3.24)

Combining the optimality conditions and the constraint using a Lagrange multiplier),
the resulting system of linear equations to be solved in an element where the adaptive

process decreases the degree of approximation can be written as

M 0 D |Us F,
0 M D,|{Usp=<T, (3.25)
DY DI o | | A 0

in two dimensions, where U; is the vector containing the nodal values of the a-th

component of the projected free-divergence velocity field, A is the Lagrange multiplier,

Mij Z:/Q NZN]CZQ, (Da)i = o Nmadl—‘, (Fa)i = 5 NZUZdQ (326)

and u], is the a-th component of the original velocity field, approximated with polyno-

mials of degree 7.

From a computational point of view, the mass matrix M for elements with an affine
mapping linking them to the reference element (e.g. triangular elements with straight
edges) can be precomputed in the reference element and scaled using the Jacobian of
the isoparametric mapping. For curved elements, the matrix needs to be computed
separately for each element. Similarly, the matrices D; and D, can be precomputed
for edges with no variation of the normal (e.g. straight edges in 2D), whereas the

computation is performed separately for curved edges.

It is important to underscore that the minimisation problem, specifically the solution
of the linear system (3.26), is confined to those elements wherein the adaptive process
reduces the degree of approximation. The size of the linear system in two dimensions

is 2n., + 1, where ng, denotes the number of element nodes. Furthermore, since the

3.4. Degree adaptive strategy 57

problem is resolved independently for each element, it allows for trivial parallelisation,

thereby reducing computational overhead.

Algorithm 2 Degree adaptive HDG Method for unsteady Navier-Stokes Equations

1: Initialise polynomial degree map {kc}e—1,. n,

2: Set base b for logarithm, tolerance € and number of iterations nagaptivity-
3: for is <— 1 t0 Ngieps do

4: for i, <= 1 to Nugapriviey dO

5: for iy < 1 to ny do
6: Solve global problem of Equation (2.51)
7: Solve local problem of Equation (2.53)
8: end for
9: for i.; +— 1 to n. do
10: Compute super-convergent velocity using Equation (3.2)
11: Compute error indicator using Equation (3.11)
12: Update the degree using Equation (3.17)
13: if Ak, < 0 then
14: Compute conservative projection using Equation (3.25)
15: end if
16: end for
17: end for
18: end for

The algorithm 2 outlines the degree adaptive procedure and the conservative projection
proposed, designating ns:eps as the total time steps and nyg as the upper limit of iterations

in the Newton-Raphson method.

It should be noted that the methodology described in subsection 3.4.1 is especially
beneficial for steady-state problems, as it facilitates multiple iterations to achieve the
desired error threshold across the domain. In contrast, for unsteady solutions, the
implementation of such an iterative process at each time step like in Alauzet et al.
(2007) would be excessively costly. Attempting to achieve the desired error throughout
the entire domain at every time step would result in immense computational cost.
For time-dependent problems, a more practical approach commonly entails adjusting
the solution once before advancing to the next time step, rather than seeking optimal
accuracy at each time step. This study proposes a balance between these two methods
by iteratively applying the adaptive process for a predetermined number of iterations

Dadaptivity> typically set at 2 or 3.

58 Chapter 3. A conservative degree adaptive HDG method

3.5 Numerical examples

3.5.1 Wang flow

To assess the performance of the degree adaptive strategy implemented, the so-called
Wang flow (Wang, 1991) is first considered. This corresponds to a steady solution
of the incompressible Navier-Stokes equations and provides a suitable test because it

enables evaluating the accuracy of the error indicator.
The computational domain is defined as (2 = [—0.5,0.5] x [0, 1] and the exact solution
is given by

2ax9 — b exp(—Azy) cos(Ax
u(x) = ’ p(=Azy) cos(Am) , (3.27a)

bexp(—Azsy) sin(Axy)

1
p(x) = —5 exp(2A\z1) + C, (3.27b)

where a, b, and \ are parameters, selected as a = 1, b = 1, and A = 10, following
(Giorgiani et al., 2014) and C' is a constant chosen to ensure zero mean pressure in the
domain. The chosen parameters lead to a velocity field with strong gradients near the

bottom boundary, providing a suitable setting to test the degree adaptive procedure.

Dirichlet boundary conditions, corresponding to the exact velocity, are imposed on all
boundaries except the bottom part, where a Neumann condition, also corresponding to

the exact solution, is imposed.
The coarse uniform triangular mesh shown in Figure 3.2a is considered

To illustrate the adaptive process, a tolerance of ¢ = 10~% is used for all elements and

the aggressiveness parameter is selected as b = 100.

Figure 3.3 shows the initial degree map, which is taken as £ = 1 for all the elements

together with the error indicator and the exact error. Given the coarse mesh employed

3.5. Numerical examples 59

10.00
9.00
8.00
7.00
6.00
5.00
4.00
3.00
2.00
1.00
0.00

1.00

0.50

0.00
-0.50 0.00 0.50

(a) Unstructured triangular mesh (b) Analytical velocity field

Figure 3.2: Wang flow: problem setup.

7.50e-1
8 7.00e-1
6.50e-1

7 6.00e-1

| 5.50e-1

N 5.00e-1
4.50e-1
4.00e-1
3.506-1
3.00e-1

L 2.50e-1

2.00e-1
1.50e-1
1.00e-1
5.00e-2
0.00

(a) Degree map (b) Error indicator (c) Exact error

7.50e-1
7.00e-1
6.50e-1
6.00e-1

- 5.50e-1
5.00e-1
4.50e-1
4.00e-1
3.50e-1
3.00e-1
2.50e-1

2.00e-1
1.50e-1
1.00e-1
5.00e-2
0.00

Figure 3.3: Wang flow: Initial computation with linear approximation in all elements.

5.00e-5 5.00e-5
8

4.50e-5 4.50e-5
7 1.00e-5 4005

3.50e-5 3.50e-5

3.00e-5 3.00e-5

2.50e-5 2.50e-5

2.00e-5 2.00e-5
3 1.50e-5 1.50e-5
3
2 1.00e-5 1.00e-5
] : . I 5.00e-6 I 5.00e-6
™ 0.00 0.00
(a) Degree map (b) Error indicator (c) Exact error

Figure 3.4: Wang flow: First iteration of the degree adaptive process.

and the low order approximation the error is obviously high, but, more importantly the
error indicator maps resembles the exact error, providing evidence of the suitability of

the error indicator to drive a degree adaptive process.

Using the error indicator obtained from the first computation, the degree map, shown in
Figure 3.4, is obtained following the strategy presented in section 3.4. Figure 3.4 also
shows the error indicator and the exact error. The results show a sudden increase of
the order of approximation, resulting in elements near the bottom boundary with k£ = 5

and k = 4 for the rest of the domain. The maximum elemental error is approximately

60 Chapter 3. A conservative degree adaptive HDG method

2.00e-8
1.80e-8
1.60e-8

— 1.40e-8

2.00e-8
1.80e-8
1.60e-8
- 1.40e-8

1.20e-8 1.20e-8

1.00¢-8 1.00e-8

A A 8.00e-9 - 8.000-9
6.00e-9 6.00e-9
4.00e-9 4.00e-9

2.00e-9 2.00e-9

AA 4 4 I
b 4 v

0.00 0.00

(a) Degree map (b) Error indicator (c) Exact error

Figure 3.5: Wang flow: Second iteration of the degree adaptive process.

5 x 1075, which is four orders of magnitude lower than in the initial computation. Some
localised regions with high errors persist, meaning that more iterations are required to

guarantee that the error is below the desired tolerance.

Figures 3.5 and 3.6 show the next two iterations of the degree adaptive process. The
results show not only the ability of high order approximations to provide extremely low
errors, i.e. of the order of 10~%, but, more importantly, the quality of the error indicator
is demonstrated by its efficiency index 7, defined as the ratio between the estimated and

exact errors minus one. Mathematically, this is expressed as:

Ee

- exact
E e

n 1 (3.28)

where E, is the error indicator and ES*“' is the exact error computed using the analytical
solution. The error indicator demonstrates excellent performance, with efficiency
values varying between —0.035 and —0.005, indicating that the error indicator very
closely approximates the true error. This high efficiency is achieved because of the
superconvergent properties of the HDG method and enables reliable error indicator for

adaptive procedures.

In the final iterationFigure 3.6 presented, the £ map (a) shows a sophisticated distribution
of polynomial degrees, with the highest orders concentrated near the bottom and in
specific regions throughout the domain. Both error maps (b, ¢) demonstrate a more

uniform and significantly reduced error distribution across the entire domain.

3.5. Numerical examples 61

1.00e-8
9.00e-9
8.00e-9

- 7.00e-9

1.00e-8

9.00e-9

8.00e-9

T.00e-9

6.00e-9 6.00e-9

5.00e-9

D 0000000

3.00e-9

M oo »»Imm
o

5.00e-9

4.00e-9

3.00e-9
2.00e-9
1.00e-9
0.00

1.00e-9

0.00

(a) Degree map (b) Error indicator (c) Exact error

Figure 3.6: Wang flow: Third iteration of the degree adaptive process.

3.5.2 Flow around two circular cylinders

The second example considers laminar flow, at Re = 100, around two circular cylinders
in tandem. This example is used to study the importance of the proposed projection

when performing a degree adaptive computation of transient flows.

The far field is made of a circle of diameter 100 centred at the origin, whereas the two

circular cylinders have diameter 1 and are centred at (—20, 0) and (10, 0), respectively.

An unstructured mesh of 2,712 triangles is used for this example shown in Figure 3.7.
Curved elements are generated near the cylinder using the elastic analogy presented
in (Xie et al., 2013). Given the low Reynolds number considered, the size of the
elements in the normal direction to the wall is relatively large, and only the first two
layers of elements around the cylinders are curved. More precisely, the size of the
first element around the circular cylinders is 0.01 and the growth factor in the normal
direction is 1.4. Two point sources are introduced to prescribe a mesh size of 0.2
near the cylinders, whereas a line source with size 0.75 is placed in the path of the
von Karman vortex street. A detailed view of the mesh near the cylinders is shown in

Figure 3.8.

The ESDIRK46 time marching algorithm (Kennedy and Carpenter, 2016) is used with

a time step At = 0.2 and the solution is advanced until the final time 7" = 200.

Since an analytical solution for this problem is not available, a reference solution is

Chapter 3. A conservative degree adaptive HDG method

62

o S
2 S
= =
o = .
= - o
S =] ™ <10 O b~
= = [T
amv = O o
3 | |7
M =
3 £
) = 7
= =)
g =
s g
= o -
1=
3 2 i
— N
m S
Q © g
5 1O
= =)
= <
2 Wavavay 15
) SRV B e e ol
Aﬁﬁg - ~ o © 0 Yo 0 4K1U
%) 2 %) X 88 95 o
DARESHK 7
5 enlK 8 Coma
..m bﬂﬂﬂ«»ﬂdmhh = d
2 B
5) Q e WIHV, 5
— ™M <10 © b~ o
Mlm S [I
= = 2R
2 2 2
.«h o p— n\u. ‘_ _ ‘w
S > }
o 3 —
E 2z &
- = >
= g5 2
5 =R
2 g = &
: 53 i
> 2 .5
2 _ = o 2
m .5 2 s
.. m 5 o
£ = g z
« S o S — 3
0 o o S 2 ¥ 9o o
= =2 == c =< SIS
53 =)
5 % Yl
o= L =

Non dimensional time
(b) Drag

(a) Lift

Non dimensional time
shows the lift and drag for the second cylinder. The results show that employing a

Figure 3.9: Flow around two circular cylinders: lift and drag over the first cylinder
a function of time and for different degrees of approximation. Similarly, Figure 3.10

using uniform degree across the domain.
tion, from k£ = 3 to k = 7. Figure 3.9 shows the lift and drag for the first cylinder as

established through a convergence test by increasing the uniform degree of approxima-

3.5. Numerical examples 63

2) 1.9
k=3 —k=3
k=4 1.8} k=
k= 5(‘ k=
k = 6]] 1.7 k=6l
k=17 —k = 7\
& [Z 16 -V
S| | a
1.5+ g
1.4+
-1.5 1.3
150 160 170 180 190 200 150 160 170 180 190 200
Non dimensional time Non dimensional time
(a) Lift (b) Drag

Figure 3.10: Flow around two circular cylinders: lift and drag over the second cylinder
using uniform degree across the domain.

(b) Velocity

Figure 3.11: Flow around two circular cylinders: Pressure and magnitude of the velocity
fields at t = 200 with a uniform degree of approximation k = 6.

uniform degree of approximation £ = 6 is enough to obtained a converged solution,
and this is considered as the reference solution in all the experiments reported here.

Figure 3.11 shows the reference pressure and magnitude of the velocity at ¢ = 200.

In this problem, a high-order spatial approximation is essential to accurately depict the
von Karman vortex street produced by the first cylinder and its effect on the second
cylinder. When using a first-order (k = 1) approximation on the same mesh, the
vortex intensity is missed, as demonstrated in Figure 3.12, clearly showcasing the low-
dissipation characteristics of a high-order approximation scheme. The low order results
also display a larger dispersion when compared to the high order approximation as the

vortices appear in different positions.

64 Chapter 3. A conservative degree adaptive HDG method

1.5

0.5

(b) Velocity

Figure 3.12: Flow around two circular cylinders: Pressure and magnitude of the velocity
fields at ¢ = 200 with a uniform degree of approximation k = 1.

The results illustrated in Figure 3.11 indicate that a consistent degree of approximation
is unnecessary and that adopting a degree-adaptive strategy is beneficial to improve
resolution where necessary. Subsequent experiments evaluate various degree-adaptive
methodologies, with a target error of ¢ = 10~ as specified in Section (3.3), unless
otherwise noted. Due to the large time step used, the adaptive procedure is executed
twice per time step to accurately capture flow characteristics as the solution advances.

This example also demonstrates the effects of not repeating the adaptive process.

A typical degree-adaptive method is initially examined, omitting the suggested cor-
rection. For each time step, the solution within each element is projected using the
target degree of approximation map based on the error indicator supplied by the HDG
method. Figure 3.13 illustrates the results at ¢ = 200, along with the degree used for
each element. The velocity field aligns well with the reference solution, with only a
slight reduction in vortex intensity behind the circular cylinders. However, the pressure
field reveals significant numerical artefacts compared to the reference solution. These
artefacts arise from violating the incompressibility constraint when transferring the ve-
locity field between different degree maps, particularly when the approximation degree
is lowered, as detailed in Section 3.4.2. To evaluate the precision of the simulations,
the quantities of interest are the lift and drag. Figure 3.14 presents the lift and drag in

the first cylinder using a standard degree adaptive approach, without the application of

65

3.5. Numerical examples

4!-’!!!.]11“
COTAET 7
PR/
u)4 440’“0'
AV, S, 8
Y T
Aﬂhmﬁ»ﬂ»»« Pv() 7\J

NAAN
AT

et STAVAS
Va Vavay SN/
L g
Vavi
KON | 4

A ViV vavh
VAM»%N%»»»)%NWA
4““" A‘"

Vi 5‘
AVAVTA S >

]
\ AV Sy ey

\/
7 aravavava AV

NS

AV, Yan
NAZR S 6 d
vy P 4

(a) Degree map

(b) Pressure

(c) Velocity

Pressure and magnitude of the velocity

Figure 3.13: Flow around two circular cylinders:

fields at ¢ = 200 with degree adaptivity.

Adaptivity
A Reference

2.72

170 180 190

160

2.64
2.62

Adaptivity
A Reference

190

180

Non dimensional time

170

Wl

200

150

200

160

150

Non dimensional time

(b) Drag

(a) Lift

and the results are juxtaposed with the reference solution.

2

Figure 3.14: Flow around two circular cylinders: lift and drag over the first cylinder

using degree adaptivity compared to the reference solution.
cylinder are illustrated in Figure 3.15. To examine the observed greater accuracy in

lift measurements, a mesh convergence study was performed for steady flow around

The outcomes distinctly reveal non-physical oscillations in the drag, while the lift is
computed precisely. Comparable results for the relevant quantities related to the second

the proposed correction

illustrated in

30. Four different meshes,

a cylinder at a Reynolds number Re

Chapter 3. A conservative degree adaptive HDG method

66

Adaptivity |-
A Reference

180

170
Non dimensional time

1.65 t

Adaptivity
A Reference ||

190

180

170
Non dimensional time

160

1.5¢

200

190

160

150

200

150

(b) Drag

(a) Lift

Figure 3.15: Flow around two circular cylinders: lift and drag over the second cylinder

using degree adaptivity compared to the reference solution.

02

WARER

P

ey

\/

AT I

(b) Mesh 2

(a) Mesh 1

(d) Mesh 4

(c) Mesh 3

Figure 3.16: Flow around a circular cylinder: Sequence of refined triangular meshes

used to test the convergence of lift and drag force calculations.

and 2922 triangular elements,

1148, 1506,

, were used, containing 1058,

Figure 3.16

The data reveal that as mesh refinement increases, both lift and drag values for the
evaluating the error in total lift and drag, a discrepancy appears. The total drag exhibits

respectively. The study examined lift and drag forces on the upper and lower sections
of the cylinder separately. Table 3.1 and Table 3.2 present the results of this analysis.

upper and lower cylinder sections converge toward reference values. However, when
the expected error reduction with mesh refinement, whereas the total lift demonstrates
remarkably small errors even on coarser meshes. This phenomenon can be attributed to
error cancellation and the symmetry of the lift force about a zero mean value. The lift

leading to a

’

forces on the upper and lower sections of the cylinder have opposite signs

significant reduction in error when summed to calculate the total lift. In contrast, drag
forces act in the same direction in both sections, preventing such error cancellation.

3.5. Numerical examples

67

Upper half Bottom half Total
Mesh
Value Error Value Error Value :*311(')1'_051]'
1 -2.4893949 0.0143736 2.4896956 0.0140012 0.0005007 2.76
2 -2.4989936 0.0048749 2.4993277 0.0049691 0.0004341 9.42
3 -2.5036432 0.0001253 2.5042879 0.0000089 0.0006447 11.64
4 -2.5037685 - 2.5042968 - 0.0005283 -

Table 3.1: Steady flow around a cylinder at Re = 30: Lift values and corresponding
errors for different meshes.

Upper half Bottom half Total
Mesh
Value Error Value Error Value ﬁgr(;,l].
1 1.7486673 0.0063593 1.7479117 0.0063767 3.4967790 12.736
2 1.7452090 0.0027010 1.7441625 0.0026275 3.4893715 5.3285
3 1.7422329 0.0002751 1.7414490 0.0000860 3.4836819 0.3611
4 1.7425080 - 1.7415350 - 3.4840430 -

Table 3.2: Steady flow around a cylinder at Re = 30: Drag values and corresponding
errors for different meshes.

The degree-adaptive method is further improved by incorporating the correction pro-
posed in Section 3.4.2. To demonstrate the advantages of this refined approach, Fig-
ure 3.17 depicts the degree map, the pressure distribution, and the velocity magnitude
at t = 200. The lack of artefacts in the pressure field is remarkable, and there is

significant agreement with the reference solution.

To more accurately measure the precision of the simulation using the suggested conser-
vative projection, Figure 3.18 presents the lift and drag forces on the first cylinder. The
results demonstrate that the suggested correction effectively removes the non-physical
oscillations seen in previous simulations and produces lift and drag measurements
closely matching the reference solution. Figure 3.19 shows the results for the second
cylinder, again verifying the absence of oscillations and the strong agreement with the

reference solution.

To better demonstrate the advantage of the suggested conservative projection, Table 3.3

presents the maximum error in the lift and drag forces for both cylinders. The results

Chapter 3. A conservative degree adaptive HDG method

68

AT C i Y
PSS ivaiviVAVA

L
\APEAANN
4%»4»«»14%9474

P wwhﬁmV

7
A

| 5
Fﬁvﬂ»«b@ﬂh?a

AA SBOSXENN

NA%AVava

A<>><><AV

VAVAVAT S

AY AV
Yavaysy

Vavavavay s, \
SN \AOOY\ 4
S
(47
/\
sy,
d

(a) Degree map

(b) Pressure

(c) Velocity

Figure 3.17: Flow around two circular cylinders: Pressure and magnitude of the velocity

fields at ¢ = 200 with degree adaptivity and the conservative projection.

Adaptivity - Conservative projection

A Reference

170 180 190 200

160

2.72

2.7t

2.62
150

—— Adaptivity - Conservative projection

o]
S
=N
)
-
5
~ &
<

200

190

170 180

160

Wr'T

150

Non dimensional time

Non dimensional time

(b) Drag

(a) Lift

Figure 3.18: Flow around two circular cylinders: lift and drag over the first cylinder
using degree adaptivity and the proposed correction compared to the reference solution.

clearly demonstrate the enhanced accuracy delivered by the conservative projection.

Specifically, the error in the lift force is reduced by an order of magnitude, while the

error in the drag force is reduced by nearly 40 times when the conservative projection

is employed.

To conclude, additional numerical experiments are conducted to demonstrate that con-

necessary only when the degree of approximation is

servative projection becomes

3.5. Numerical examples 69

—— Adaptivity - Conservative projection 1.65 ||—— Adaptivity - Conservative projection |-

L5 A Reference 16 A Reference
N .
1.55 ¢
g 09 g 15
= A

150 160 170 180 190 200 150 160 170 180 190 200

Non dimensional time Non dimensional time
(a) Lift (b) Drag

Figure 3.19: Flow around two circular cylinders: lift and drag over the second cylinder
using degree adaptivity and the proposed correction compared to the reference solution.

Cylinder 1 Cylinder 2
Standard Conservative Standard Conservative
adaptivity projection adaptivity projection
Lift error 8.1x 1072 6.8 x 1073 1.8 x 107t 1.5 x 1072
Drag error 3.7 x 1072 1.0 x 1073 1.8 x 1071 4.6 x 1073

Table 3.3: Flow around two circular cylinders: maximum error in lift and drag for
the two cylinders using the standard adaptivity and the adaptivity with the proposed
conservative projection.

allowed to decrease during the adaptive process. Moreover, the influence of the target

error on the degree-adaptive process is exemplified.

Figure 3.20 shows the drag on the first and second cylinders using a standard degree
adaptivity where the degree of approximation is not allowed to decrease. The reference
solution aligns closely without exhibiting the oscillatory behavior seen when the degree
was reduced during the adaptive process. However, a significant disadvantage of this
method is its increased computational cost. If an element achieves a high degree of
approximation at one time step, it retains this degree for the duration of the simulation,
even when it is unnecessary for feature capture in that region going forward. In this
scenario, due to the impulsive start and the stringent error requirement per element
e = 107, every mesh element demands, at some point, an approximation degree
k = 6. Thus, this method matches the reference solution, but with the added expense

of computing the error indicator and projecting the solution at each time step. Using

70 Chapter 3. A conservative degree adaptive HDG method

2.72 . . : . ; . . :
—— Adaptivity not lowering degree 1.65 - —— Adaptivity not lowering degree|
4 Reference 4 Reference
2.7+ 1 1.6
1.55 ¢+
o0 I]
= £ 15
A A
145+

1.35
2.62 : : : : : : : :
150 160 170 180 190 200 150 160 170 180 190 200
Non dimensional time Non dimensional time
(a) Lift (b) Drag

Figure 3.20: Flow around two circular cylinders: Drag on the two cylinders using
degree adaptivity and not allowing the degree to be decreased during the adaptive
process.

2.72

—— Adaptivity not lowering degree 1.65 - —— Adaptivity not lowering degree|
A Reference | A Reference

Drag
Drag

2.62 : : : : : : : : :
150 160 170 180 190 200 150 160 170 180 190 200
Non dimensional time Non dimensional time
(a) Lift (b) Drag

Figure 3.21: Flow around two circular cylinders: Drag on the two cylinders using
degree adaptivity and not allowing the degree to be decreased during the adaptive
process with e = 1073,

a more relaxed tolerance in the adaptive process, specifically e = 1073, yields the
quantities of interest without oscillations, as demonstrated in Figure 3.21, suggesting
that the root cause of drag oscillations is the breach of the incompressibility condition
during the projection of the solution to a lower degree. Some discrepancies in the drag

of the second cylinder are visually observed due to the use of a less restrictive tolerance.

The degree map at ¢ = 200 when the adaptive process is implemented without allowing
the degree of approximation to be decreased and with ¢ = 1073 is shown in Figure 3.22.
Comparing the degree map of the adaptivity process with the suggested correction, as

illustrated in Figure 3.17, it is evident that most elements in the wake of the two cylinders

71

Figure 3.22: Flow around two circular cylinders: Degree of approximation at ¢ = 200

not allowing the degree to be decreased during the adaptive process.

3.5. Numerical examples

(e
: : =)
T 7 N
= =}
— ey ™
s Il s
[
w ™ w 13
gl —
=] =]
S w o w
e
g888
= H ==
o W O o 4 00
I S I) —
2T AT
o o
greR
bk -
9] 9]
LELDE 1=
S v o —
%1S1
S 2 g v
© ©o O ©°
OZ0OZ
o
_ 18
i
<t
o
i
o
X . . . X =
© 0 1w . e Mmoo
0 <t [3e] [\

warqoid 1eqol8 s, 10J

Non dimensional time
the simulation with a uniform degree of approximation of

Figure 3.23: Flow around two circular cylinders: Number of degrees of freedom of the
twice as fast as

global problem for two different adaptive approaches and for two different values of the
desired error.

are maintained at a higher degree when the adaptivity process is restricted from lowering
the degree. Furthermore, it can be observed that when degree reduction is prohibited,
several elements in the wake of the two cylinders continue to use an approximation
degree of k = 6. In contrast, if the adaptivity process allows degree reduction, this high
how the adaptive process decreases the degree of freedom by allowing a reduction in
the degree of approximation. The findings clearly highlight the benefits of employing
k = 6. Furthermore, the simulation using the conservative projection is more than

Regarding computational cost, the simulation with the proposed conservative projection
three times faster than the simulation without degree reduction. In fact, simulations

degree of approximation is unnecessary at the final stage. Figure 3.23 demonstrates
the proposed projection for adjusting the degree during the time stepping process.
Importantly, the lower the target error, the more beneficial it is to allow a reduction in

degree.
is nearly

72 Chapter 3. A conservative degree adaptive HDG method

Type of core CPU

Number of cores 1

CPU Model Intel® Xeon® Gold 6252
Memory available 96GB-192GB

Platform Local server
Geographical location United Kingdom

Real CPU usage factor 1.0

Power usage efficiency (PUE) 1.4

Table 3.4: Details of the computational infrastructure used.

without reducing the degree are more costly than computing the reference solution
because most elements end up with the maximum degree of approximation, and the
expense of computing the error indicator and projecting the solution twice per time
step becomes significant. This shows that reducing the degrees of freedom leads to a

substantial decrease in computational time.

All numerical experiments were performed using a single core on a local server
equipped with an Intel® Xeon® Gold 6252 processor and 96-192GB of available mem-
ory. The linear systems arising from the HDG discretization were solved using the
parallel direct solver PARDISO from the Intel MKL library. Table 3.4 provides details

of the computational infrastructure used.

To assess the computational efficiency of the proposed methodology, Table 3.5 presents
adetailed comparison of the computational costs for different solution strategies applied
to the flow around two circular cylinders. The results demonstrate that the conserva-
tive projection approach achieves significant computational savings compared to both

uniform approximation and standard adaptivity, while maintaining solution accuracy.

Lastly, a numerical experiment illustrates the necessity of performing the adaptive
process twice per time step. The simulation depicted in Figure 3.21 is repeated, but
with degree adaptivity performed only once per time step. Due to the large time step
used with a high-order time integrator, the computed drag shows a notable loss in

accuracy, as shown in Figure 3.24.

3.5. Numerical examples 73

Method Total Error Projection # DOFs
walltime (h) indicator (%) time (%) (avg)
Uniform (k=6) 19.42 - - 60,196
Standard adaptivity 5.68 8.3 5.2 39,450
Conservative projection 10.58 8.5 6.8 29,750
No degree reduction 25.42 8.1 5.5 57,200

Table 3.5: Flow around two circular cylinders: Computational costs for simulation up
to T=200.

2.72

—— Adaptivity not lowering degree|

—— Adaptivity not lowering degree 1.65 -
A Reference

A Reference

Drag
Drag

33
2.62 : : : : : : :
150 160 170 180 190 200 150 160 170 180 190 200
Non dimensional time Non dimensional time
(a) Lift (b) Drag

Figure 3.24: Flow around two circular cylinders: Drag on the two cylinders using
degree adaptivity, not allowing the degree to decrease during the adaptive process with
e = 1072 and performing the adaptivity only once per time step.

Chapter 4

Neural network-driven degree

adaptivity

4.1 Introduction

The use of Artificial Neural Networks (ANNs) in CFD applications has attracted great
attention in recent years due to the possibility to improve the efficiency and accuracy
of numerical simulations (Brunton et al., 2020). This chapter introduces an innovative
methodology that employs ANNs to predict flow solutions at a future time and its
application to drive a degree process in transient incompressible viscous flow simula-
tions. The objective is to accelerate parametric analysis, where simulations need to be
repeated multiple times for varying parameters that involve different flow conditions.
The application example to be used in the next chapter involves the simulation of gust
where the same simulation is to be repeated multiple times for different gust conditions

such as amplitude, width or angle of the gust.

Traditional adaptive methods typically solve the governing equations at a given time
instant before moving on to the next instant (Kompenhans et al., 2016; Giorgiani et al.,
2013, 2014; Ekelschot et al., 2017). As shown in the numerical examples, flow features

might be lost due to the fact that the adaptation is performed before advancing the

74

4.1. Introduction 75

solution in time. An obvious solution consists of repeating each time step to ensure
that the mesh has enough resolution where is needed. However, this approach is
computationally expensive, as it basically doubles the cost of a single CFD simulation.
The proposed neural network-driven method aims to predict the solution before the
time step is performed, allowing for adaptation to take place in areas where it will be

needed, ultimately providing a more efficient use of computational resources.

The main idea is to train an ANN from available simulations to learn the complex
relationship between the solution at a given time step and the solution at the next time
step. To use a simple multilayer perceptron, which is usually easy to train compared to
other types of networks, it is necessary to define an architecture with a fixed number
of inputs and outputs. Given that the meshes considered in CFD are commonly
unstructured, using the connectivity of the mesh is not a feasible option and a novel
approach to overimpose a stencil, with a fixed number of points, on the unstructured
mesh is proposed. The network is designed to learn the relation between the solution at
the stencil points at a given time step and the solution at the centre of the stencil and the
next time step. Once trained, the network can be deployed in a degree adaptive process
to predict the solution at the next time step before adapting the degree, thus preventing

the loss of information in time and the need to repeat the time step to guarantee accuracy.

This chapter provides a brief overview of the ANN used in this work, including the
activation functions considered and the optimisation algorithm used to train the net-
work. Details about the normalisation of the data employed and the evaluation of the
performance are also provided. Particular attention is given to the sampling of the
parametric space using quasirandom Halton distributions and the treatment of the data
before training the neural network. This treatment involves novel algorithms designed
to reduce the amount of redundant information (e.g., corresponding to areas with free-
stream flow), which not only helps decrease the amount of data used and the training
time, but also removes potential bias in the trained network. Details are also given on
the integration of the trained network within a CFD solver for real-time prediction and

adaptivity.

76 Chapter 4. Neural network-driven degree adaptivity

Using machine learning techniques to predict flow behaviour, the aim is to demonstrate
a significant improvement in degree adaptive simulation strategies, leading to more
accurate and computationally efficient results. This predictive methodology represents
a paradigm shift in the degree adaptive methods, utilising available data to speed up
adaptive processes. Despite the current work focusing on degree adaptivity, it is worth

mentioning that these ideas could also be exploited is mesh adaptivity strategies.

It is worth noting that the use of machine learning to aid in a mesh adaptive process
has recently been considered in (Dzanic et al., 2024), where the authors use reinforced
learning to predict local refinement policies. The idea is to predict the error in the
solution and refine the path that the solution will follow in time and remesh in advance
to avoid constant remeshing. In contrast to this work, the approach presented here
focuses on degree adaptivity in a high-order context. Given the use of very high-order
time integrators, it is crucial to ensure that the adaptivity is performed regularly to
ensure accurate propagation of flow features. Furthermore, predicting the path of the
solution to increase the degree in a large area would result in a large computational cost.
Recent work on degree adaptation for high-order discontinuous Galerkin compressible
simulations has also been considered in (Huergo et al., 2024), where the authors use
reinforced learning to automate a degree adaptive process. This work considers a
training process in 1D and its use in 2D and 3D problems to perform anisotropic
degree adaptation. The main drawback is the use of tensor-product elements, given that
nowadays it is still not possible to obtain unstructured meshes of hexahedral elements for
complex geometries, and meshing complex models with structured hexahedral meshes

requires a significant level of human intervention.

4.2 Artificial neural networks

ANNs are computational models inspired by biological neural networks of the human

brain (Haykin, 2009). They consist of interconnected nodes or “neurons” organised in

4.2. Artificial neural networks 77

layers that can learn complex non-linear relationships between inputs and outputs. The
basic structure includes an input layer, one or more hidden layers, and an output layer.
Each connection between neurons has an associated weight that is adjusted during the

training process.

Neural networks have shown remarkable success in various domains, including com-
puter vision, natural language processing, and scientific computing (LeCun et al.,
2015). Their ability to approximate complex functions makes them a suitable choice

for predicting the time evolution of flow features.

4.2.1 ANN architecture

Figure 4.1 illustrates a schematic representation of a multi-layer perceptron, a prevalent
type of ANN. This architecture comprises three primary components: the input layer,

the hidden layers, and the output layer.

Inputs Hidden Layers Outputs

Figure 4.1: Schematic representation of a multi-layer perceptron neural network.

The input layer, depicted on the left side of Figure 4.1, consists of N input nodes
(1,9, ...,xy) and a bias node (+1). These nodes represent the features or variables
of the input data. The bias node, which always outputs a value of 1, allows the network

to learn and represent patterns that do not necessarily pass through the origin.

The central portion of Figure 4.1 illustrates the hidden layers. An ANN may contain

78 Chapter 4. Neural network-driven degree adaptivity

multiple hidden layers, each comprising a different number of neurons. In this particular

representation, we observe Ny neurons (27, 23, . . ., 2y,) in the first hidden layer and N,
neurons (zfv b zév Lo, z%’) in the final hidden layer. Each hidden layer also incorporates

a bias node (+1).

The hidden layers are crucial for the ability of the ANN to model complex, non-linear
relationships. Each successive layer allows the network to extract and combine features
from the previous layer in increasingly abstract ways, thereby enabling the modelling

of intricate patterns between inputs and outputs.

The right side of Figure 4.1 shows the output layer, comprising M output nodes
(y1,Y2,---,yn). The number of output nodes is determined by the specific problem
being addressed; for example, a binary classification task would typically have a single
output node, while a multiclass classification problem would have multiple output

nodes.

A key feature of ANNSs is that the nodes in the adjacent layers are fully connected. A
weight, denoted by 0 in Figure 4.1, is associated to each connection. For example, 0¢,
represents the weight of the connection between the a-th node of the c-th layer and the

b-th connection of the subsequent layer.

4.2.2 Forward propagation

Information in an ANN flows from left to right, during the so-called forward propa-
gation. The input values are propagated through the network by calculating the value
associated to each neuron using a weighted sum of its inputs. Mathematically, for a

neuron j in layer [/, this computation can be expressed as

Ny
A= > 0 (4.1)
=1

4.2. Artificial neural networks 79

1 1 ,
—L()
S(x)
0.8
0.5 T(x)
a / gpl7oR@
2 0 ' &
= =
— o 041
0.5 S() |
---R(z)
-1 0 =<
-5 2.5 0 2.5 5 -5 2.5 0 2.5 5
(a) Activation function (b) Derivative of activation function

Figure 4.2: The differences among four popular types of activation functions used in
an ANN and their respective derivatives.

where f! is the activation function of the [-th layer, 05-1- is the weight connecting neuron
i in layer [— 1 to neuron j in layer [, 2! is the output of neuron i in layer /, and b; is the

bias unit.

The activation functions are used to introduce the required non-linearities to ensure
that the network can approximate complex relationships between inputs and outputs.

Some of the most popular activation functions are:

Linear: L(z)==x
1
Logistic Sigmoid: S(z) =
ogistic S1gmol (x) e
Hyperbolic Tangent Sigmoid: T(x) = c-°
Rectified Linear Unit (ReLU): R(x) = max(0, z)

and are represented in Figure 4.2 together with their derivatives.

The choice of activation function can significantly affect network performance and
training dynamics. It is common to use different activation functions in different layers

of the network, tailored to the specific requirements of the task at hand.

Linear activation is typically used in the output layer for regression tasks. Sigmoid

functions (logistic and hyperbolic tangent) are historically popular for their bounded

80 Chapter 4. Neural network-driven degree adaptivity

output and smooth gradients but can suffer from vanishing-gradient problems in deep
networks. Finally, ReLU has become very popular in recent years, especially in deep
learning, due to its computational efficiency and ability to mitigate the vanishing
gradient problem. However, it is not differentiable at x = 0 and can lead to “dying

ReLU” problems.

4.2.3 ANN training

The process of training an ANN involves adjusting the weights and biases to minimise
the difference between the outputs predicted by the ANN and the true outputs, which

are usually known for a few number of cases.

The so-called loss function, defined as

1 nrr

nr. M
Tr k

C(6) = [yE(a*) — nk(9)]” (4.2)

=11

is introduced to measure the difference between true and predicted outputs, where nr,
is the number of training examples, M is the number of outputs, y* represents the true
output for the i-th neuron and k-th training example, and 1% (6) denotes the prediction
of the network. The vector 8 encompasses all trainable parameters (weights and biases)

of the network.

To minimise the loss function, i.e., to train the ANN, conjugate gradient-based ap-
proaches are commonly employed. Conjugate gradient methods are second-order
optimisation techniques that aim to minimise a function by generating a sequence of
search directions that are conjugate with respect to the Hessian matrix of the objective

function.

Traditional conjugate gradient methods, such as the Fletcher-Reeves algorithm, require
a line search procedure to determine the optimal step size in each iteration, which

can be computationally expensive. The Scaled Conjugate Gradient (SCG) algorithm,

4.2. Artificial neural networks 81

introduced by (Mgller, 1993) and adopted in this work, eliminates the need for a
user-specified line search by using a scaled step size. It combines the model-trust
region approach from the Levenberg-Marquardt algorithm with the conjugate gradient
approach, resulting in an efficient and robust optimisation method. The SCG algorithm

has been shown to be particularly advantageous for training large-scale networks.

The SCG algorithm updates the weights at iteration r 4 1 using the expression
lr+1 _ plyr r lr
05 =05 +a'p;, 4.3)

where o is the step size determined by a model-trust region approach within the SCG

method, and pé’jr is the conjugate direction, computed as
b ==VeC(0") + Bpi; ", (4.4)

with 3" given by

g — VoC(0")" [VoC(07) — VoC (6" 1)]
Py [VeC(07) — VoC(071))]

4.5)

It can be observed that the SCG algorithm updates the weights using both first and
second order derivatives of the cost function, resulting in faster convergence compared

to first-order methods.

4.2.4 Performance Evaluation

To assess the performance of the trained network, a relative error metric, defined as

Relative Error = max([Vies — Ypredicta)

max (Vi) (+0)

is introduced.

82 Chapter 4. Neural network-driven degree adaptivity

Figure 4.3: Schematic representation of the inputs and outputs for the proposed ANN
architecture. Stencil with a central mesh node and eight neighbouring points. Input:
consisting of p", and u" and Output: consisting of ™! at the central mesh node.

This metric quantifies the maximum relative difference between the predicted and
actual values for all test cases. It provides a non-dimensional measure of the worst case
scenario and it will be used in the numerical examples to assess the accuracy of the

trained ANNSs.

4.3 Stencil-based ANN architecture

The proposed approach of using an ANN to predict the solution at time ¢"** from the

solution at time ¢" requires an architecture with a fixed number of inputs and outputs.

An obvious option is to consider all the nodes in the mesh and build a network that
takes the solution at the current time step as input and predicts the solution at the
future time step for all the nodes of the mesh. This architecture is expected to require
a significant amount of data and training time due to the potentially large number of
inputs and outputs. Furthermore, this strategy would not allow for training in one mesh
and using the network in other meshes or even in the same mesh with different orders
of approximation. Therefore, it is considered not a suitable option to couple with a

degree adaptive approach.

The strategy considered consists of associating to each mesh node a set of surrounding

points at a certain distance d, as shown in Figure 4.3. The plot shows a mesh node

4.3. Stencil-based ANN architecture 83

(labelled ‘1”) and eight surrounding points (labelled ‘2’ to ‘8’) at a certain distance d,
the total number of points of the stencil is defined as ngienci1- The assumption here is
that the solution at the central mesh node at t"*! can be predicted from the solution
at the surrounding points at t”. More precisely, it is assumed that the velocity at the
central mesh node can be predicted from the velocity at the same mesh node and at
the surrounding points together with the pressure at the surrounding points only. This
is schematically represented in Figure 4.3 and, in two dimensions, leads to an ANN
architecture with N = 26 + nparan inputs, where np..an is the number of parameters

characterising the flow and M = 2 outputs.

The main reason for not considering the pressure at the central mesh node as an input is
because the incompressible Navier-Stokes equations only contain first order derivatives
of the pressure. Itis worth noting that it is only necessary to predict the velocity because
the objective is to predict the degree of approximation, and the error indicator used in
this work builds this error indicator only using the velocity field (and the postprocessed

velocity).

This idea is inspired from numerical schemes such as the finite difference method
where a stencil is typically built around each node of the Cartesian grid, so the set of
points surrounding a node will be referred to as a the stencil of a mesh node. Different
stencils have been considered, and numerical examples will present the performance

of different strategies.

4.3.1 Stencil distance computation

The definition of the distance d used to locate the points on the stencil is based on
physical considerations, mainly based on the hypothetical trajectory of a fluid particle

over a single time step.

For each mesh node, let us consider the current position of a particle, x;, the velocity

vector at that node, u;, and the time step, At . These parameters enable a simple

84 Chapter 4. Neural network-driven degree adaptivity

Figure 4.4: Schematic representation computation of the stencil distance for a node ;.

estimation of the displacement vector of a particle, defined as

For each mesh node x;, a region of influence is defined using the magnitude of the
displacement vector, |[U;||2, representing the region from which information could

potentially affect the solution at node x; in the next time step.

In addition, the displacement vector for any mesh node x; connected to node x; is

projected over the edge connecting nodes x; and x;, namely

L{ji = ;.’Eﬂ, (48)

where x;; := x; — x;, as illustrated in Figure 4.4.

The distance associated to node x; is then defined as
d; = min {24, mind 25112} } (4.9)
JEA;

where A; denotes the set of nodes connected to node x;.

This approach ensures the application of the most restrictive condition, particularly in
regions exhibiting high velocity gradients. This distance computation methodology

is closely aligned with semi-Lagrangian numerical schemes. In these schemes, the

4.3. Stencil-based ANN architecture 85

solution at a point is computed by tracing the characteristics backward in time. The dis-
tances computed in our algorithm effectively estimate the length of these characteristic

lines, adapting the numerical stencil to the local flow behaviour.

The distance d; defined in Equation (4.9) could be added to the list of inputs of the ANN
to be trained. However, to avoid adding extra parameters and minimise the amount of
data required and training time, a unique value defined as the minimum for all mesh
nodes, that is

d:= min {d;}, (4.10)

t=1,...,0nodes

is considered in this work.

4.3.2 Data acquisition

The generation of suitable data to train an ANN requires sampling the space of the
parameters. Typical methods to perform this task are the Latin hypercube sampling

(LHS) (Shields and Zhang, 2016) and the Halton sequences (Halton, 1960).

The Halton sequence is a deterministic sequence of points that provides a uniform
distribution over the unit hypercube [0, 1], where N is the dimension of the space.
Halton sequences are considered in this work because they offer better uniformity and
coverage of the sample space compared to pseudo-random generators, especially in
lower dimensions (Kocis and Whiten, 1997), and contrary to random methods such
as LHS the Halton sequencing enables repeatability. The last aspect is considered
important when performing studies to analyse the influence of the number of training

cases on the accuracy of the ANN predictions.

For a given base b, the one-dimensional Halton sequence is generated as

Hy(m) =Y ai(m)b= 0+ (4.11)

1=0

where m is the index of the sequence (starting from 0), and a;(m) are the digits of m

86 Chapter 4. Neural network-driven degree adaptivity

when expressed in base b, but in reverse order.

To generate a /N-dimensional Halton sequence, we use N different prime numbers,

typically the first NV prime numbers, as bases for each dimension.

The data acquisition process for the proposed ANN comprises two main steps. The first
one is the the execution of a series simulations for some varying parameters, typically
corresponding to different flow conditions. The pressure (p) and velocity (u) fields are
stored in an four dimensional array X of dimension nyeges X Ngteps X (neg + 1) X nrp,
where npqqes i the number of mesh nodes, ngeps 1S the number of time steps and nr,

denotes the number of training cases.

Each component of the array X, ., contains the c-th component of the velocity for
¢ =1,...,ng and the pressure for ¢ = ngq + 1 at the a-th mesh node and the b-th time

step and for the set of flow parameters corresponding to the d-th training case.

The second step consists of transforming the data stored in X into two two-dimensional
arrays X and Y to be used as input and output of the ANN. The input array X is of

dimension NyggesNstepshrr X NV, With each row storing the following information

X, = {pia(p), pis(w), - pio(w), ui(p), uip(p), uis(p), .., uig(p),. ..
U?(H’)? UZ2(H’)7 UZZS(H’)? SR U;fﬁ)(l*"% l’l‘}7
(4.12)
for a given mesh node x; and instant ¢", where p := {1, ..., fin,,.,} denotes the

parameters encoding the flow conditions, nyayay i the number of parameters and L7,
denotes the interpolation of [J at the a-th point of stencil centred at a; at time ¢t". The

row number r is given by

r= (iTr - 1)nnodc-zsnstep::‘. + (TL - 1)nnodes +1 (413)

where i1, denotes the ¢-th training case.

4.3. Stencil-based ANN architecture 87

Similarly, the output array Y is of dimension npgesNsteps X M, with each row storing
the following information

Y, = {utt, ot (4.14)

The methodology is illustrated in Algorithm 3. For each node x; of the computational
mesh and for each instant " the solution is interpolated at the points of the stencil
corresponding to x;. The interpolation requires finding the parent element of the
mesh that contains the point of the stencil, computing the local coordinates in the
reference element for this point at the identified parent element and interpolating the
solution using the corresponding high-order shape functions. The interpolated values,
together with the associated parameters, form the row of the input array as described
in Equation (4.12). For the output array, the values are simply the components of the

velocity at the next instant t"*! as detailed in Equation (4.14).

For nodes on the boundary or close to the boundary, it is possible to have stencil points
outside of the computational domain. These nodes are discarded and are not used to
build a stencil. This implies that the proposed approach assumes that the mesh and the
degree of approximation near the boundary are appropriate. This assumption is well-
founded, as practitioners have developed robust mesh generation expertise for steady-
state simulations over several decades. Experience has demonstrated that targeted
refinement near boundaries effectively captures critical flow features like boundary
layers and separation points. This is especially relevant for external aerodynamics and
internal flows where the most significant gradients develop near solid boundaries. While
adaptive refinement remains valuable, starting with appropriately refined boundary
meshes based on established engineering practice has proven reliable. The objective of
the proposed approach is to perform degree adaptive to capture flow features travelling

long distances within the domain.

The interpolation process when a point of the stencil lies within an element that is
affine to the reference element is trivial, as inverting the isoparametric mapping is

trivial. However, when a point of the stencil lies within an element that is not affine

88 Chapter 4. Neural network-driven degree adaptivity

to the reference element (e.g. a high-order curved triangle in two dimensions) the
inversion of the isoparametric mapping requires the solution of a small non-linear

problem to find the local coordinates of the point as explained in Section 2.6

4.3.3 Data preparation

Data normalisation is a crucial preprocessing step in training ANNSs. It helps to ensure
that all input and outputs are on a similar scale, which can significantly improve the
performance and convergence of the training process. One common technique for nor-
malisation is the Min-Max normalisation, also known as feature scaling, which involves
scaling all values to a fixed range, typically between 0 and 1. This transformation is

particularly useful when the features have different scales or units.

For a given quantity 2, the min-max normalisation is defined as:

Z — Zmin
Znormalised — (415)

Zmax — “min

where 2y, and 2z, are the minimum and maximum values of the quantity z in the

dataset, respectively.

When applying the Min-Max Normalisation to the inputs of an ANN, it is crucial to
ensure that the minimum and maximum values for each input are computed using only
the training data. Then, the normalisation is applied to training, validation and test sets
using Equation (4.15). This procedure ensures that the training process does not see

any information from validation or test sets.

Another crucial aspect of the data preparation process, which is specific to the appli-
cation of interest, involves discarding regions that do not exhibit any relevant transient
phenomena, that is, regions where the flow is almost uniform. This process not only
reduces the amount of data stored and used for training but also ensures that the training

is not biased towards those cases corresponding to uniform flow inputs and outputs. To

4.3. Stencil-based ANN architecture 89

this end, a filter tolerance, denoted ey is introduced and nodes where the gradient of
the pressure and velocity are both below the tolerance are discarded from the training

dataset.

Formally, we discard a point x; at time ¢" if

max {[|Vp(@, 1*)[ly , [|Vu(@:, "), [Vo(@:, *)[ly} < ev, (4.16)

where || - ||2 denote the Euclidean norm.

The data acquisition and filtering process is detailed in Algorithm 3. The first loop

Algorithm 3 Data acquisition and filtering

1: Input; X € [RBaodes XDsteps X (Nsa+1) XnTr

2: Olltpllt: X. E RncasesXN’ Y 6 RncasesXM
3: Deases = 0 {Initialise case counter}

4: for igip < 1 to ngi, do

5: forn <1 to ngeps — 1 do

6: for i < 1 to npyqes do

7 i max {|Vp(e,), [Vu(a,)], | Vol 7)],} > e then
8: S« {z; s i {Coordinates for the stencil points centered at a; }
9: if S C (2 then

10: for s < 2 to Ngienci1 do

11: Interpolate solution at stencil point x;

12: end for

13: Ncases < Ncases T 1

14: Set r according to Equation 4.13

15: Set X, according to Equation 4.12

16: Set Y, according to Equation 4.14

17: X+~ XUX,

18: Y~YUY,

19: end if

20: end if

21: end for

22: end for

23: end for

24: return X € RocesesXN Y ¢ [Rocases XM

considers all the parametric cases available. For each parametric case a loop on time
steps and mesh nodes is performed. For each mesh node the gradients of the gradients of
the pressure and velocity are checked to ensure that only relevant cases are considered.

For relevant cases the stencil points are computed and, if the whole stencil lies within

90 Chapter 4. Neural network-driven degree adaptivity

the computational domain, the solution is interpolated at each stencil point. With this

information, the matrices of inputs and outputs are populated.

Once all data have been collected, it is essential to ensure that there are no duplicate
input cases. The presence of repeated data can introduce significant redundancy into
the dataset, potentially skewing the training process and leading to a biased neural
network model that overfits to these repetitive patterns. This step is crucial to maintain

the diversity and representativeness of the dataset.

An algorithm has been developed and implemented to reduce the data set by eliminating
redundant cases. A case is considered redundant if, at a given mesh point, the variables
at each node of the stencil are sufficiently close to the corresponding values at another

mesh point.

In the current implementation, the range of each input variable is calculated at each node
within the stencil and subsequently divided into a predetermined number of intervals.
More precisely, for each input the minimum and maximum values found for all cases
are defined as

of = min {X,;}, BF:= max {X,}. (4.17)

=1 ! =1
a=1,...,Ncases a=1,...,Ncases

Each interval [ozlx, ZX} is divided into nyycrers €qually-spaced intervals that are referred
to as buckets and denoted by

BX={bX,.... 05, L (4.18)

i717 ’ Z-7nbulckets

In a similar fashion, for each output the minimum and maximum values found for all
cases are defined as
of = min {Y.}, BY = max {Y.}. (4.19)

(]
a=1,...,Ncases a=1,...,ncases

4.4. Verification example 91

Each interval [oY, 3] is divided into the same number of buckets, denoted by

BY ={b, .. b - (4.20)

7 71, Nbuckets

Each variable at a node is then categorised into one of these buckets. A specific case is
identified by the unique combination of buckets occupied by the variables at the nodes
of the stencil. Consequently, a case is considered redundant if the same combination of
buckets has already been encountered in the data set. This method ensures the removal
of repeated cases, thus improving the efficiency of the data set and improving the overall

quality of the ANN training process. This procedure is detailed in Algorithm 4.

4.3.4 Degree adaptive HDG strategy using prediction

Algorithm 5 presents a degree-adaptive method incorporating an Artificial Neural Net-
work (ANN). The primary enhancements to the standard adaptive strategy, highlighted
in green, involve the use of predictive techniques. These modifications enable predic-
tion of the velocity and superconvergent velocity for the subsequent time step, thereby
enabling the computation of an error indicator for the predicted solution. The polyno-
mial degree is subsequently updated by considering the maximum of both the computed
and predicted error indicators. This approach potentially enhances the efficiency and
accuracy of the method for unsteady problems by adapting the polynomial degree based

on both current and anticipated future solution behaviour.

4.4 Verification example

As discussed in Chapter 3, adaptivity constitutes a significant challenge in the context of
transient flows. The numerical example in Section 3.5.2 demonstrated that when using
high order time integrators and large time steps for maximum efficiency, an adaptive

process fails to capture accurately the propagation of vortices, and this is reflected in

92 Chapter 4. Neural network-driven degree adaptivity

Algorithm 4 Data reduction

1. X e RncasesXN’ Y & RbucasesxM
2: Output: X4 ¢ RereaxVN yred o RureaxM
3: nyeq = 0 {Initialise reduced case counter}
4: Define buckets for inputs and outputs according to Equations (4.18) and (4.20)
5: Initialise alternating digital tree (ADT): T < ()
6: for i, < 1 to ngyces do
7. forig. <1 to M do
8: Find j such that b, < Y;_s,,. <b%)
9: end for
10: if i. > 1 then
11: Z—{zeT:00,<z2<b5 i =1,...,M}
12: {The ADT returns the output cases in which all the outputs lie on the same
bucket as case i.}
13: r+<0
14: for - € Z do
15: for i;, + 1to N do
16: Find [such that b < X;_s,, < b5,
17: Find [, such that b5 < X_;, < b5
18: if [# [, then
19: r<—r+1
20: break
21: end if
22: end for
23: end for
24: if » = 0 then
25: T+ TU{i.}
26: Xred « Xred U X; o
27: Yred YUY, ,
28: Nyeqg = Nyea + 1
29: end if
30: else
31: T« TU{ic}
32: Xred « Xred U X,
33: Y™~ YUY, .
34: Nred = Nreq 1+ 1
35: end if
36: end for

37: return X*¢d € RereaxN yTed o RoreaxM

4.4. Verification example 93

Algorithm 5 Degree adaptive HDG Method for unsteady Navier-Stokes Equations

1: Initialise polynomial degree map {ke}e—1. . n,

2: Set base b for logarithm, tolerance ¢ and number of iterations Nagaptivity-
3: forig <— 1 t0 Ngieps do

4: fori, < 1 to Naugaprivity do

5: for iy +— 1 to nyr do
6: Solve global problem of Equation (2.51)
7: Solve local problem of Equation (2.53)
8: end for
o: for is; + 1 to n.; do
10: Compute super-convergent velocity using Equation (3.2)
11: Compute error indicator using Equation (3.11)
12: Predict velocity and super-convergent velocity at time 5 + 1 using ANN
13: Compute error indicator for predicted solution using Equation (3.11)
14: Update the degree using Equation (3.17), taking maximum of computed
and predicted
15: if Ak. < 0 then
16: Compute conservative projection using Equation (3.25)
17: end if
18: end for
19: end for
20: end for

a substantial loss of accuracy in aerodynamic quantities of interest such as the drag.
This example also showed that, to ensure accurate computation, the adaptive process
required the repetition of each time step. This was shown to be enough to ensure that the
degree of approximation was adapted in regions where flow features were not present

at the time ¢" but will be present at the next instant ",

4.4.1 Problem description

As a verification of the proposed use of ANN to aid in a degree adaptive process, this
section considers the same example, i.e., the flow at Re = 100 around two cylinders in
tandem, where the ANN is used to predict the solution at time t"*! from the solution at
time ¢". The mesh considered is the same as the previous example, shown in Figure 3.8

and the ESDIRK46 time marching is used with a time step At = 0.2

No flow parameters are considered here as the objective is simply to illustrate the

potential benefits of having an ANN trained to accurately predict the solution at the

94 Chapter 4. Neural network-driven degree adaptivity

1 . . 2.7
Adaptivity
A Reference
T P | A A 2 A
0.5] 2085200000822 802 RR2
N A A AN N o A KR A4 AL
A 3 LA A A) h it A L Th
h AT h h IR 4T 4
&= A o0 T | A | 4) hAD
= £ 2.66 M1 1 R 24T 3
3 ol \ 1M
% 4 v
d

i 2.64
-0.54 Adaptivity
A Reference
: : : : 2.62 ‘ ‘ : :
150 160 170 180 190 200 150 160 170 180 190 200
Non dimensional time Non dimensional time
(a) Lift (b) Drag

Figure 4.5: Flow around two circular cylinders: lift and drag over the first cylinder
using degree adaptivity compared to the reference solution.

next time step. Therefore, the data acquisition is performed using the simulation
corresponding to the reference solution, which involves using a constant degree of
approximation k£ = 6 in all elements. Despite this is purely an academic exercise to
verify the correct coupling of the trained ANN within the degree adaptive loop, it is
worth mentioning that this does not imply that the ANN is deployed to predict only
cases that were seen during training. This is because the ANN is trained using data
from a simulation with £ = 6 in all elements, whereas the degree adaptive simulation
involves degree adaptivity. Therefore, different values of the inputs corresponding to
the flow field at a point and its corresponding stencil, when compared to the training

cases, will be used to perform the predictions.

To test the proposed methodology, a standard degree adaptive process is first utilised
with a target error of ¢ = 0.5 x 10~*. By standard, we refer to the application of
the adaptivity without repeating the time step or involving the ANN prediction, but
employing the conservative projection proposed in Section 3.4.2. The corresponding
lift and drag for the first cylinder are illustrated in Figure 4.5, while those for the second

cylinder are depicted in Figure 4.6.

The results clearly show an important loss of accuracy in the drag force for the first
cylinder and, even more pronounced, for the second cylinder. As discussed in Section

3.5.2 the accurate results obtained for the lift are only due to the cancellation of errors

4.4. Verification example 95

Lift
o

— Adaptivity| |
A Reference

15 ‘ ‘ : : 1.3 : : ‘
150 160 170 180 190 200 150 160 170 180 190 200
Non dimensional time Non dimensional time
(a) Lift (b) Drag

Figure 4.6: Flow around two circular cylinders: lift and drag over the second cylinder
using degree adaptivity and the proposed correction compared to the reference solution.

that results from the lift being centred at zero.

4.4.2 Data acquisition

To illustrate the potential of the proposed use of an ANN, the data acquisition is
performed from the ngpops = 250 time steps of the reference solution, corresponding
to t € (150, 200), following the procedure described in Section 4.3.2 and Algorithm 3.
The stencil distance is computed following the procedure described in Section 4.3.1,

leading to a value of d = 0.0375.

Given that flow parameters are not considered in this example, the ANN architecture

comprises N = 26 inputs and M = 2 outputs, as detailed in Section 4.3.

The data acquisition process leads to a total of n.,s.s = 20, 532, 381 cases, mainly due
to the use of a high-order reference solution with £ = 6 in all elements. To reduce this
large dataset and eliminate redundant information that can lead to a biased ANN, the
data preparation procedure described in Section 4.3.3 is applied with nyycers = 10, 20

and 40 buckets.

Figures 4.7, 4.8, and 4.9 show the data collected from the reference solution. In the
horizontal axis the bucket number is displayed, whereas the vertical axis shows the

cumulative number of cases. Each colour represents one of the inputs of the ANN and

96 Chapter 4. Neural network-driven degree adaptivity

A R N R R SO G INN N EAIEAS REVERES

x10%

2.5

cases
—_
ot
T
I

i

-1

b
2
—

T

I

==

Buckets (b)

Figure 4.7: Flow around two circular cylinders: Histogram illustrating the distribution
of the cases in 10 buckets for the data collected from a simulation and before any
preparation.

NN B A D DVNVDIIPAOAD DR b padapdad

—
>

_
[\
T

—_
o
T

cases
oo
T

i

b
Do n
D
:
[T T T T T

1 2 4 6 8 10 12 14 16 18 20
Buckets (b)

Figure 4.8: Flow around two circular cylinders: Histogram illustrating the distribution
of the cases in 20 buckets for the data collected from a simulation and before any
preparation.

the definition of each input is as described in Equation (4.12). The distribution among
the buckets is clearly uneven, and the central buckets contain the highest number of

cases, approaching 10® cases. In contrast, the buckets at the lower and higher ends of

4.4. Verification example 97

NY D NG 6 A DY DAL AP D P PP PP

%107

Th

=1 Deases
Lo ot
T

Zb
i
w
[[[T T Tl

Buckets (b)

Figure 4.9: Flow around two circular cylinders: Histogram illustrating the distribution
of the cases in 40 buckets for the data collected from a simulation and before any
preparation.

the spectrum show significantly fewer cases, often below 10°.

4.4.3 Data preparation

Given the large number of cases obtained from a single simulation, training directly
with the data gathered is not desirable. On one hand, the training process is expected to
take significant time and, on the other hand, the trained ANN is expected to be biased
given the data distribution shown in Figure 4.8. To mitigate this problem, the data

reduction process described in Section 4.3.3 is considered next.

Figures 4.10, 4.11, and 4.12 depict the distribution of the data after the data reduction
process. The distribution among the buckets is significantly more uniform, with most
of the buckets containing thousands of cases. It is also important to note the even
distribution of colours (inputs) in each bucket, illustrating the performance of the data
reduction algorithm proposed in Section 4.3.3. For this example, the total number of
cases after reduction is: for 10 buckets is 535, for 20 buckets is 4,535, and for 40 buckets

1s 32646. This significant reduction in the dataset is expected to have a major impact

98 Chapter 4. Neural network-driven degree adaptivity

N YD N oA D DIPPOADDPA AP padapaP

T T T T T T T T

2500

2000 - ,

1500 |-

*’Nmoof II .

=1 Deases

(3

500 -

1 2 3 4 5 6 7 8 9 10
Buckets (b)

Figure 4.10: Flow around two circular cylinders: Histogram illustrating the distribution
of cases in 10 buckets for the data collected from a simulation after the application of
the data reduction algorithm.

12000

10000

8000

i
cases

1

6000

b
i

S

4000

2000

Figure 4.11: Flow around two circular cylinders: Histogram illustrating the distribution
of cases in 20 buckets for the data collected from a simulation after the application of
the data reduction algorithm.

on the training time of the ANN as well as the reduction of bias in the trained ANN.

Subsequent analyses will be performed using the data produced using 20 buckets.

To further analyse the performance of the reduction algorithm, Figure 4.13 compares

4.4. Verification example 99

S R N R R S A GG NN R RS ROV RE S

x10%

12 6 10 14 18 22 26 30 34 3840
Buckets (b)

Figure 4.12: Flow around two circular cylinders: Histogram illustrating the distribution
of cases in 40 buckets for the data collected from a simulation after the application of
the data reduction algorithm.

106 L
& 104t
=]
" JIIIIIIIIIIII.I.-”
1 4 8 12 16 20 1 4 8 12 16 20
Buckets (b) Buckets (b)
(a) Before data reduction (b) After data reduction

Figure 4.13: Flow around two circular cylinders: Logarithmic histogram illustrating
the distribution of cases in 20 buckets for the pressure field at the central point of the
stencil before and after data reduction.

the distribution of the data corresponding to the pressure field at the central point of
the stencil before and after the reduction process is applied. The results, presented in
logarithmic scale clearly show that the raw data contains a significant number of cases
on buckets 10 to 12, with more than a million cases on each of these buckets. After
reduction, the distribution of the data is more uniform, with all buckets containing

between 10 and 1,000 cases.

100 Chapter 4. Neural network-driven degree adaptivity

10° T . 10°
g 10 £ 10t}
a a
e
1 4 8 12 16 20 1 4 8 12 16 20
Buckets (b) Buckets (b)
(a) Before data reduction (b) After data reduction

Figure 4.14: Flow around two circular cylinders: Logarithmic histogram illustrating
the distribution of cases in 20 buckets for the horizontal velocity at the central point of
the stencil before and after data reduction.

Similarly, Figure 4.14 compares the distribution of the data corresponding to the hori-
zontal velocity at the central point of the stencil before and after the reduction process
is applied. The results show that the raw data contains a significant number of cases
on buckets 12 to 17, with more than a million cases on each of these buckets. After
reduction, the distribution of the data is more uniform, with all buckets containing
between 10 and 1,000 cases, which is of the same order of cases when compared to the

pressure field.

Finally, Figure 4.15 compares the distribution of the data corresponding to the vertical
velocity at the central point of the stencil before and after the reduction process is

applied.

It is worth noting that the raw data is always skewed but in different buckets, due to the
different nature of the quantity being considered and the proposed algorithm produces a
reduced dataset where all the variables show a significant reduction and a more uniform

representation of the dataset.

4.4. Verification example 101

[
[e=)
=)
—_
(=)
=)

Ncases
—

o
Ncases
=
(=]

i
a a
I |

1 4 8 12 16 20 1 4 8 12 16 20
Buckets (b) Buckets (b)
(a) Before data reduction (b) After data reduction

Figure 4.15: Flow around two circular cylinders: Logarithmic histogram illustrating
the distribution of cases in 20 buckets for the vertical velocity at the central point of the
stencil before and after data reduction.

10 10
8 8
6 6
4 4
2 2
0
50 100 150 200 50 100 150 200
nneurans nneurons
(a) Output 1: u (b) Output 2: v

Figure 4.16: Flow around two circular cylinders: Maximum percentage error of the
trained ANN, different number of neurons and hidden layers.

4.4.4 ANN training

To analyse the effect of the hyperparameters of the ANN, training was carried out for
different numbers of hidden layers, from 1 to 5, and for different number of neurons in
each layer, from 10 to 200 in steps of 10. The error of the ANN, measured as described
in Equation (4.6), is shown for both outputs in Figure 4.16. The results show that
with four hidden layers and 100 neurons the minimum error, below 2%, is obtained for
both outputs. It is worth noting the similar pattern in the error maps for both outputs.
Despite a relatively deep network, with four hidden layers, and the relatively large

number of neurons, 100, that provide the minimum error, it is important to note that

102 Chapter 4. Neural network-driven degree adaptivity

900
. 4 150
4 800
700
3 100
600
2f \ 500 2 50
400
1 300 1

50 100 150 200 50 100 150 200

[y]

I]-layers
w
nlayers

=

nneurcns nneurons
(a) Iiepochs (b) Ttotal

Figure 4.17: Flow around two circular cylinders: Mean number of epochs required
for training convergence (Nepocns) and mean total training time (7iota1) in seconds for
different number of neurons and number of hidden layers.

much shallower networks with fewer neurons provide low errors. For instance, with a
single hidden layer and 20 or 30 neurons, the trained ANN provides accurate results,

with errors below 4%.

The heat maps in Figure 4.17 reveal the relationship between the architecture of the
ANN and the efficiency of training. Each network configuration was trained five
times to mitigate the impact of random weight initialisation, with the best performing
instance selected. This approach ensures more robust and representative results. Figure
(a) depicts the mean number of epochs required for convergence, while Figure (b)
illustrates the mean total training time. Both metrics exhibit complex, non-monotonic
dependencies on the number of neurons and layers. The architecture selected based
on maximum error, consisting of 4 hidden layers and 100 neurons, is situated within
a region characterized by a relatively low number of epochs (approximately 500-
600) and moderate total training time (around 60-70 seconds). Interestingly, the total
training time does not strictly correlate with the number of epochs, indicating that the
computational cost per epoch varies significantly across different architectures. This
discrepancy is particularly evident for networks with a large number of neurons, where,

despite fewer epochs, the total training time increases substantially.

4.4. Verification example 103

4.4.5 ANN-driven degree adaptivity

The trained ANN, with four hidden layers and 100 neurons in each layer, is now
incorporated within the degree adaptivity process. To this end, at each time step, the
error indicator is computed using the current solution at time ¢ and using the ANN
predicted solution at time ¢"**. To compute the error indicator at time t"*1, not only
the velocity field is predicted, but also the super-convergent velocity. One of the key
aspects of the prediction strategy proposed here is that the same ANN is used to predict

both the velocity and the super-convergent velocity.

Figure 4.18 presents the predicted flow field around two circular cylinders in ¢ = 200
from ¢ = 199, together with associated error maps. The error maps were calculated
by taking the absolute error between the predicted solution and the reference solution,
presented in Figure 3.11b. The errors are generally low across the domain, exhibiting
errors of the order of 1073 to 10~* across the entire domain, indicating a good overall
accuracy of the prediction. The error maps focus on the region near the cylinders to
highlight the detailed flow features, while the farfield region, though not visible in these
plots, exhibits correct and low error levels consistent with the expected behaviour. The
error patterns in both x and y components are similar, suggesting that the performance

of the model is consistent between different velocity components.

Figure 4.19 illustrates the spatial distribution of of polynomial degrees when using
adaptivity, comparing cases with and without the prediction step.In the standard degree
adaptivity approach (a), the degree distribution ranges from 1 to 6, reflecting the varying
complexity of the local flow features. Higher degree approximations are concentrated
near the cylinders and in the near wake regions, where flow features are most intricate.
The far wake region shows intermediate degrees, capturing ongoing vortex interactions,
while lower degrees are used in the free-stream regions with relatively uniform flow. In
contrast, the degree adaptivity with prediction (b) shows a marked increase in higher-

degree elements throughout the domain, especially in the wake regions. The transition

104 Chapter 4. Neural network-driven degree adaptivity

1.30

1.00
— 0.80
-~ 0.60
0.40
0.20
0.00

(a) Predicted velocity

5.0e-2
I— 1.0e-2
1.0e-3

1.0e-4

5.0e-6

(b) |eu’

7.0e-2
1.0e-2

-~ 1.0e-3

1.0e-4

7.0e-6

(©) lev]

Figure 4.18: Flow around two circular cylinders: Predicted velocity fields at ¢ = 200
and absolute error maps in logarithmic scale of the velocity in x-direction (Je,|) and
the the velocity in y-direction (|e,|) with degree adaptivity.

between degree levels is more gradual, with larger contiguous regions of a similar
degree. In particular, higher degrees are applied predictively in areas where complex
flow structures are anticipated to develop. Comparing the two approaches reveals that
the predictive method results in a more forward-looking degree distribution, increasing
approximation orders in regions where the flow is expected to become complex. This
strategy is particularly beneficial for unsteady flows, as it increases the polynomial
degree before the solution complexity appears in those regions. The standard adaptivity,
on the other hand, closely follows the current flow structure, which may be inefficient
for rapidly evolving unsteady flows. The differences are most pronounced in the far
wake and in areas adjacent to the main vortex street, where the predictive approach

anticipates the propagation and development of complex flow structures.

The predictive degree adaptivity demonstrates a significant advantage for unsteady flow
simulations. It potentially allows for larger time steps without loss of accuracy, as the
solution space is preemptively enriched, and mitigates the accumulation of errors that

can occur when the approximation order lags behind the developing flow complexity.

4.4. Verification example 105

=N W o oo

=N W R oo

(b) Degree Adaptivity with Prediction

Figure 4.19: Flow around two circular cylinders: Degree of approximation at { = 199
with degree adaptivity and with degree adaptivity including the predicted velocity fields
at t = 200.

—— Adaptivity with prediction
4 Reference

—— Adaptivity with prediction
4 Reference

: : : : 2.62 ! : ! !
150 160 170 180 190 200 150 160 170 180 190 200
Non dimensional time Non dimensional time

(a) Lift (b) Drag

Figure 4.20: Flow around two circular cylinders: lift and drag over the first cylinder
using degree adaptivity enhanced with prediction compared to the reference solution.

To assess the extra accuracy of the ANN-driven degree adaptive process, Figures 4.20
and 4.21 show the computed lift and drag for the first and second cylinders, respectively.
The improvement on the computed drag is clear, with the computed values matching

the reference solution for both cylinders.

To quantify the extra accuracy provided by the ANN-driven degree adaptive process,
Figures 4.22 and 4.23 display the error of the lift and drag on the first and second
cylinders, respectively, as a function of non-dimensional time for the standard degree
adaptive strategy and the proposed degree adaptivity aided by the trained ANN. The
results show the substantial improvement in accuracy introduced by the prediction of

the solution at time ¢"*! using the trained ANN.

106 Chapter 4. Neural network-driven degree adaptivity

—— Adaptivity with prediction
H & Reference

Lift
=

—— Adaptivity with prediction||
A Reference

-1.5 : : : : 1.3 : : : ;
150 160 170 180 190 200 150 160 170 180 190 200
Non dimensional time Non dimensional time
(a) Lift (b) Drag

Figure 4.21: Flow around two circular cylinders: lift and drag over the second cylinder
using degree adaptivity enhanced with prediction compared to the reference solution.

0.025 . . . 0.012 . .
—— Adaptivity —— Adaptivity
0.02 —— Adaptivity with prediction\ 0.01 —— Adaptivity with prediction
N & 0.008
S 0.015 2
H (3]
; 0 0.006
= 0.01t
= A 0.004
0.005 /‘ 0.002
0 ‘ ‘ ‘ ‘ 0 Prin WM NI AL I A
150 160 170 180 190 200 150 160 170 180 190 200
Non dimensional time Non dimensional time
(a) Lift (b) Drag

Figure 4.22: Flow around two circular cylinders: error on the lift and drag for the first
cylinder as a function of the non-dimensional time.

0.1 ! ! 0.05 ; ;
—— Adaptivity —— Adaptivity
0.081 —— Adaptivity with prediction| | 0.04 1 —— Adaptivity with prediction| |
5 g
© 0.06 £ 0.03 ¢
$ 3]
o0
=004, £ 0.02
= A
0.02 + 0.01+
0 : ‘) et ‘
150 160 170 180 190 200 150 160 170 180 190 200
Non dimensional time Non dimensional time
(a) Lift (b) Drag

Figure 4.23: Flow around two circular cylinders: error on the lift and drag for the
second cylinder as a function of the non-dimensional time.

To further quantify the accuracy of the proposed ANN-driven degree adaptive scheme,

Table 4.1 presents the maximum error in the lift and drag forces for both cylinders. The

4.4. Verification example 107

Cylinder 1 Cylinder 2
Standard ANN-driven Standard ANN-driven
adaptivity projection adaptivity projection
Lift error 2.3 x 1072 6.8 x 1073 8.4 x 1072 8.9 x 1073
Drag error 1.0 x 1072 1.0 x 1073 4.1 x 1072 2.5 x 1073

Table 4.1: Flow around two circular cylinders: maximum error in lift and drag for
the two cylinders using the standard adaptivity and the adaptivity with the proposed
prediction.

results clearly demonstrate the enhanced accuracy provided by the ANN-driven degree
adaptive process. Specifically, the error in the drag force is an order of magnitude more

accurate with the proposed method.

Chapter 5

Numerical Examples

This chapter considers the application of the two novel contributions developed in this

thesis to problems involving the propagation of gust perturbations over long distances.

Following (Golubev et al., 2009), the gust is modelled using a harmonic perturbation
of the velocity field, which is introduced through a source term that influences the
momentum equation. This perturbation is designed to create a two-dimensional gust
downstream of the source region. Despite there are other alternatives to model the gust
(e.g. via the introduction of a boundary condition), the use of a source term is normally
preferred to decrease the computational cost, as it avoids refining the path from the far

field to the region of interest.

The components of the source term are defined as

B K g(x) My) cos (w,t — By — ax,.) ‘ o
ift [Tlnl Tend]

gust’ ~ gust

s(z,y,t) = K ¢'(z) My) sin (w,t — By — ax,) (5.1)

otherwise

where (z., y.) represents the centre of a rectangular region of dimensions a X b, within
which the gust is generated. The parameters o« = w, /v, and § = « tan @ are the wave

numbers corresponding to the sinusoidal gust in the horizontal and vertical directions,

108

5.1. Gust impinging on a NACAOO12 aerofoil 109

respectively, with 6 denoting the angle of propagation of the gust front relative to the

T axis, ue the magnitude of the free-stream velocity, and T, and Tord, denote the

initial and final non-dimensional time where the source term is active. The constant

K, which scales the perturbation, is given by

2 (2 22
K. auz, (o —a®)
g . [wem)’
a? \/a? + (B2 sin -
Usoll

[e.9]

(5.2)

where ¢, represents the gust intensity relative to the mean flow, and & defines the
width of the rectangular region where the gust is generated, such that a = 27 /a. The
functions g(x) and A\(y) are chosen to control the spatial distribution of the gust in the

x and y directions, respectively, and are defined as

%(1—%005{&(1:—%)}), |x—xc|§%
g(r) = (5.3)
0, |l — x| > i,
a
1
My) = 5 {tanh 3 (y +y.)] — tanh 3 (y —)]} (5.4)

Here, the function A(y) is selected to ensure a smooth transition in the y direction,

creating a compact region with a uniform gust distribution.

5.1 Gust impinging on a NACA0012 aerofoil

The first example, inspired by (Komala-Sheshachala et al., 2020), considers the sim-
ulation of a gust impinging on a NACAO0012 aerofoil immersed in an incompressible
flow at Re = 1, 000 and aims to demonstrate the benefits of the conservative projection

presented in Chapter 3 for a more challenging problem.

The parameters that define the gust are taken as a = 1, b = 4, z. = 1.52, y. = 0,

110 Chapter 5. Numerical Examples

Figure 5.1: Gust impinging on a NACAO0012 aerofoil: Unstructured triangular mesh of
the whole domain.

Figure 5.2: Gust impinging on a NACAOO12 aerofoil: detail of the unstructured
triangular mesh near the aerofoil.

a=4mand g = 0.

An unstructured mesh of 2,784 triangles is used for this example shown in Figure 5.1.
Curved elements are generated near the aerofoil using the elastic analogy presented
in (Xie et al., 2013). The size in the normal direction of the first element around the
aerofoil is 0.01, and the growth factor in the normal direction is 1.2. Two point sources
are introduced to prescribe a mesh size of 0.1 near the leading and trailing edges of the
aerofoil, another point source is placed at the centre of the aerofoil to prescribe a size
of 0.1 in the vicinity of the aerofoil, whereas a line source with size 0.4 is placed in the

path of the gust. A detailed view of the mesh near the aerofoil is shown in Figure 5.2.

Given the complex flow dynamics of this problem, a time step At = 0.1 and the
solution is advanced using the ESDIRK46 method until the final time 7" = 64. As
commonly done when simulating gust around aerodynamic obstacles (Golubev et al.,
2009; Komala-Sheshachala et al., 2020) the initial condition is taken as the steady state

solution of the flow around the aerofoil, in this case for Re = 1,000. The gust is then

5.1. Gust impinging on a NACAOO12 aerofoil 111

(g)t =62 (h)t =64

Figure 5.3: Gust impinging on a NACAO0O012 aerofoil: Magnitude of the velocity fields
at different instants with a uniform degree of approximation k = 6.

introduced via the source term and advanced until the final time, selected so that the

gust effect in the aerodynamic forces on the aerofoil disappears.

As in the example involving two cylinders shown in Chapter 3, a reference solution
is calculated by using a uniform degree of approximation £ = 6. The degree of
approximation k = 6 is selected after performing a convergence study on the fixed
mesh of Figure 5.2. The magnitude of the velocity at some selected instants is shown
in Figure 5.3, showing the initial steady state solution, the perturbation of the velocity
arriving and impinging on the aerofoil, the complex transient effects induced by the

gust and the recovery of the steady state solution after the gust effects disappear.

The need for adaptivity in this example is even more obvious than in the previous
example because the perturbation of the velocity is very localised and using a high-
order approximation in the whole domain is clearly unnecessary. Next, the standard

adaptive process and the adaptivity enhanced with the proposed conservative projection

112 Chapter 5. Numerical Examples

0.3

—— Adaptivity —— Adaptivity
1t i A Reference | 0.28 A Reference |7

1 | 0.26

o0 0.244
<
—
A 0.22 1

0.2+

0.18 +

L 0.16 L
050 52 54 56 58 60 62 64 50 52 54 56 58 60 62 64
Non dimensional time Non dimensional time

(a) Lift (b) Drag

Figure 5.4: Gust impinging on a NACAOO12 aerofoil: lift and drag using degree
adaptivity compared to the reference solution.

are considered. To remove the effect of the gust generation, when the source term that
generates the gust is active, i.e., for t < 10, a constant degree of approximation k = 6 is
used in both cases. After that time, the corresponding adaptive calculation is activated.
This ensures that the differences in the adaptive process are not caused by a different
representation of the gust. In this example, the desired error of ¢ = 1073 is used during

the adaptive process.

Figure 5.4 shows the lift and drag on the aerofoil using a standard degree adaptivity,
and the results are compared to the reference solution. As in the previous example, the
results show non-physical oscillations. The oscillations are more pronounced on the
drag but can also be observed on the lift in this example due to the lack of symmetry
introduced by the gust. During the transient simulation, a maximum error of 2.3 x 10~!
and 3.8 x 1072 is observed in the lift and drag, respectively, clearly not providing the
accuracy required for this simulation. It is worth noting that from ¢ = 50 to ¢ = 51
a constant degree of approximation, £ = 6, is used and as soon as the adaptivity is

activated, a strong overshoot in the drag is observed.

When the proposed correction is introduced, an excellent agreement is again observed
between the computed lift and drag and the reference solution, as shown in Figure 5.5.
For this example, the maximum error in the lift and drag during the whole transient

process is 5.4 x 1072 and 6.2 x 1073, respectively, showing the extra accuracy provided

5.1. Gust impinging on a NACAOO12 aerofoil 113

0.3 : : ;

b |—— Conservative projection Conservative projection
A Reference 1 0.28 - A Reference 1

0.26 -

o0 0.244
@

Lift

—
A 0.22}

0.2+
0.18+

L 0.16 L
50 52 54 56 58 60 62 64 50 52 54 56 58 60 62 64
Non dimensional time Non dimensional time

(a) Lift (b) Drag

Figure 5.5: Gust impinging on a NACAOQOO12 aerofoil: lift and drag using degree
adaptivity and the proposed correction compared to the reference solution.

by the conservative projection of the solution during the adaptive process.

To further quantify the extra accuracy provided by the proposed projection, the £5([51, 64])
norm of the relative lift and drag error is computed for both adaptive approaches. With-
out the proposed correction, the errors in lift and drag are 6.3 x 1072 and 1.4 x 1073
respectively, whereas when conservative projection is used the errors in lift and drag

are more than 40 times lower, namely 1.5 x 1073 and 2.9 x 1075.

To illustrate the ability of the degree adaptive process to accurately capture the complex
flow features of this problem, lowering the degree of the elements where accuracy is no
longer required, Figure 5.6 shows the magnitude of the velocity and the degree map at
some selected instants. Comparing the results with the reference solution of Figure 5.3,
it can be observed that the adaptive process captures all the flow features. The degree
map clearly reflects the regions where the complexity of the solution requires a higher

degree of approximation to provide the desired accuracy.

In this example, the ability to lower the degree of approximation is critical to gain the
benefits of a degree adaptive process, without compromising the accuracy. As the gust
introduces a localised perturbation of the velocity, without lowering the degree the final
degree map shows that a high order polynomial approximation is used in many areas
where the flow does not show any feature. The degree map for such an approach is

shown in Figure 5.7. To quantify the benefit of the proposed conservative projection,

114 Chapter 5. Numerical Examples

(i) Velocity, t = 60 (j) Degree map, t = 60

Figure 5.6: Gust impinging on a NACAQ0012 aerofoil: Magnitude of the velocity fields
(left) and map of the degree of approximation (right) at different instants with the
proposed degree adaptive approach.

Figure 5.7: Gust impinging on a NACAO0012 aerofoil: Map of the degree of approxi-
mation at t = 64 with an adaptive process not allowing the degree to be lowered.

Figure 5.8 show the number of degrees of freedom of the global problem as a function
of the non-dimensional time for the proposed approach and an adaptive process where
the degree is not allowed to be decreased during the time marching process. With the

proposed projection the number of degrees of freedom at ¢ = 64 is 23,518 whereas

5.1. Gust impinging on a NACAOO12 aerofoil 115

X 104

=~
38

S

—— Conservative projection
Adaptivity not lowering degree

MWW

52 54 56 58 60 62 64
Non dimensional time

DOFs global problem
w o

o
o

Figure 5.8: Gust impinging on a NACAOO012 aerofoil: Number of degrees of freedom
of the global problem for two different adaptive approaches.

for the approach not lowering the degree of approximation the number of degrees of
freedom at ¢ = 64 reaches 45,908. The results with conservative projection show that
the most complex dynamics happen at around ¢ = 54, which, according to Figure 5.6, is
precisely when the gust impinges on the aerofoil. At this point, the number of degrees
of freedom of the global problem reaches a maximum and then decreases because the
degree of approximation can be lowered in many elements in the vicinity of the aerofoil

where the transient effects are no longer relevant.

In terms of computational cost, the simulation with the proposed conservative pro-
jection is more than three times faster than the simulation with a uniform degree of
approximation k = 6. The extra performance compared to the previous example is due
to the localised effect of the gust. In this example, the degree adaptive clearly offers a

major advantage by introducing high order approximation only where needed.

Table 5.1 provides a detailed analysis of computational costs across different solution
strategies. The results demonstrate even more pronounced computational economies
compared to the two-cylinder case, with the conservative projection methodology
reducing wall-clock time by approximately 69% relative to uniform approximation
whilst maintaining solution accuracy. This marked improvement in performance may

be attributed to the spatially confined characteristics of the gust phenomenon, enabling

116 Chapter 5. Numerical Examples

Method Total Error Projection # DOFs
walltime (h) indicator (%) time (%) (avg)

Uniform k=6 29.50 - - 61,864

Conservative projection 9.18 8.5 6.8 25,000

Table 5.1: Gust impinging on a NACAO0012 aerofoil: Computational costs.

the adaptive strategy to concentrate high-order approximations solely in the needed
regions, as evidenced by the substantial reduction in the mean number of degrees of

freedom.

The conservative projection approach achieves these computational savings through
two main mechanisms: first, by reducing the total number of degrees of freedom by
approximately 44% compared to uniform refinement, and second, by allowing efficient
degree reduction in regions where high-order approximation is no longer needed as
the gust propagates through the domain. The overhead cost of error estimation and
projection operations (approximately 15% of total runtime) is more than compensated

by these savings.

5.2 Parametric gust in a free-stream flow

This example considers a parametric analysis in which different sinusoidal gusts are to
be propagated in a free-stream flow. The example is used to assess the proposed ANN-
driven degree adaptivity for a problem that involves flow parameters. More precisely,
the gust is parametrised using the intensity £, and width a. The range of the parameters
is taken as ¢, € [0.2,1] and a € [1, 3|, whereas the other parameters that characterise
the gust are fixed to z. = 1.6 and y. = 0 for the centre of the gust. The angles 5 and «
are set to 0 and 4, respectively. The initial time of aplication of the gust is T, = 0

and the end time is 7, ;;‘ft = 1.6, the time step is set to At = (0.8 and the solution is

advanced using the ESDIRK816 method until a final time 7" = 20

The computational domain is 2 = [0,20] x [—4,4] and the setup of the problem is

5.2. Parametric gust in a free-stream flow 117

a

Figure 5.9: Illustration of the problem setup for the simulation of a gust in a free-stream
flow. A sinusoidal gust is generated within the region enclosed by the box of width a
and height b, the centre of the box located at (z, y.).

1.40 1.40
l 1.30 I 1.30
1.20 1.20
' 1.10 \ 1.10
5 1.00 .‘ 1.00
‘ 0.90 0.90
| 0.80 I 0.80
0.70 0.70
@e;=02d=3 byey=1,a=1

Figure 5.10: Parametric gust in a free-stream flow: velocity field at ¢ = 1.6 for different
values of the intensity and width.

Figure 5.11: Parametric gust in a free-stream flow: unstructured triangular mesh to
generate the training data.

illustrated in Figure 5.9.

To illustrate the effect of the parameters, Figure 5.10 shows the velocity field after the
gust is introduced for two different choices of the parameters. Withe, = 0.2anda = 3
the gust is relatively wide in the z direction and the intensity is low, when compared to
the case with ¢, = 1 and a = 1 where a higher intensity and lower width produces a

more challenging case due to the higher gradients of the velocity field.

An unstructured mesh of 346 triangles, shown in Figure 5.11, is used to generate
training data for this example. A uniform element size is chosen to demonstrate the
ability of the degree adaptivity to increase the accuracy where required, without any
prior mesh adaptation based on the physics of the problem. It is important to emphasise

that this mesh is only used to generate the training data and the trained ANN will be

118 Chapter 5. Numerical Examples

1.00 1.00 1.00

0.80] | t 0.80 i 080 - r
S0.600 $0.60° S0.60]° -

0.40 0.40 0401 *

¥ + ; + + . . i + g
0.20 . 0.200—" . 0.20 = R
1.00 150 2.00 250 3.00 1.00 1.50 2.00 2.50 3.00 100 150 2.00 250 3.00
a a a
(a) nim = 10 (b) ngim = 20 (c) n&im = 30

Figure 5.12: Gust in a free-stream flow: The parametric space and the three generated
datasets, including data for training (in red), validation (in green), and test (in blue).

deployed on a simulation performed on a different, much finer mesh.

5.2.1 Data acquisition and preparation

To generate a good dataset (i.e. a set that provides good coverage of the paramet-
ric space), Halton sequencing, as described in Section 4.3.2, is used to sample the

parametric space.

One of the objectives of this example is to study the influence of the number of simu-
lations required to gather the data on the accuracy of the ANN predictions. Therefore,
a total of 44 sampling points are considered, which means that 44 accurate gust sim-
ulations need to be available. The number of simulations is defined by n**®, and the
subindex indicates which set of the data it belongs to, training, validating, or testing.
Then three data sets are generated from the available simulations involving n3™ = 10,
ns" = 20 and 5™ = 30 simulation cases, respectively, to generate training data. Seven
of the remaining 14 simulations are used to generate validation data, and similarly, the
last seven cases are used to generate test data unseen by the network during training.

The three datasets are shown in Figure 5.12.

After running the 44 simulations, the data acquisition is performed following the
procedure described in Section 4.3.2. For this example, the distance of the stencil,

computed as described in Section 4.3.1, is d &~ u,, x At.

With the data arranged in input and output arrays, the data preparation process described

5.2. Parametric gust in a free-stream flow 119

1.00
5
\}
0.80 |
$0.60
0.40 |
9
L]
0.20 t

1.00 150 200 250 3.00
&

Figure 5.13: Gust in a free-stream flow: Simulations 9 and 28.

Simulation P2 v v
min max min max min max
9 0.9225 1.0098 0.8612 1.1337 -0.4669 0.3626
28 0.8635 1.0369 0.7639 1.1880 -0.7126 0.4521

Table 5.2: Gust in a free-stream flow: minimum and maximum values for the pressure
on the point 2 and for the velocity on the central point of the stencil, for simulations 9
and 28.

in Section 4.3.3 is followed to remove redundant information and minimise the potential
bias in the trained ANN. To illustrate this procedure, two simulations are chosen, shown
in Figure 5.13. Simulations 9 and 28 are selected for their representation of extreme
cases within the parametric space. Simulation 9 is characterised by £, = 0.25 and
a = 2.7777, while simulation 28 is characterised by ¢, = 0.875 and a width of

a = 1.0493.

Table 5.2 presents the results of the two simulations (9 and 28), showing minimum and
maximum values for pressure (ps) and velocity components (v and v) at specific points
on the input stencil. Simulation 28 exhibits wider ranges for all variables compared
to simulation 9. The pressure range is relatively narrow in both simulations, with

simulation 28 showing a slightly wider range.

Figure 5.14 and Figure 5.15 show the histograms of the collected data, arranged in
Dhuckers = 20 buckets before and after the reduction process for simulation 9 and

simulation 28 respectively.

120 Chapter 5. Numerical Examples

SN OO~ DNO—HAN N TFLO©O O—=HANMFOO~00NO—HANMN FLOO
AN OO~ A A A A A A A A A AN NN NN AN FIOO~0ODN A A A A A A A AN NN NN AN
[N M | UM
3
5 4
x 10 x10
8 = 2.5 &=

10 12 14 16 18 20
Buckets (b) Buckets (b)

(a) Before reduction algorithm (b) After reduction algorithm

Figure 5.14: Gust in a free-stream flow: Histogram for simulation 9 illustrating the
distribution of cases in 20 buckets before and after the application of the data reduction
algorithm.

10

—ANM<FLOOP~00DHO
AN FIOO~0ODN A A A A = —
R

[B
x10*

i
—1Dcases

b
3

>

12 4 6 8 10 12 14 16 18 20
Buckets (b) Buckets (b)

(a) Before reduction algorithm (b) After reduction algorithm

Figure 5.15: Gust in a free-stream flow: Histogram for simulation 28 illustrating the
distribution of cases in 20 buckets before and after the application of the data reduction
algorithm.

The histograms for Simulations 9 and 28 illustrate the significant impact of the data
reduction algorithm on the distribution of cases across 20 buckets. In both simulations,
the pre-reduction data show a stark concentration in buckets 11-13, with simulation 9
peaking at approximately 7 x 10° cases in bucket 12, and simulation 28 showing a similar
peak of about 6.5 x 10° cases. Post-reduction, the distributions become markedly more
uniform. The peak in bucket 12 for simulation 9 reduces to about 2.2 x 10 cases,
while for simulation 28 it decreases to approximately 1.8 x 10* cases. In particular, the

algorithm increases the relative representation in previously under-represented buckets,

5.2. Parametric gust in a free-stream flow 121

ncases
ncases

12 4 6 8 10 12 14 16 18 20 12 4 6 8 10 12 14 16 18 20
Buckets (b) Buckets (b)
(a) Before reduction algorithm (b) After reduction algorithm

Figure 5.16: Gust in a free-stream flow: Logarithmic histogram for simulation 9
illustrating the distribution of cases in 20 buckets for the vertical velocity at the central
point of the stencil before and after data reduction.

especially in the lower and upper ranges. This redistribution effectively “flattens” the
distribution while preserving the general shape and key features of the original data.
The reduction in the scale on the vertical axis, from 10° to 10, in both simulations
underscores the substantial decrease in the cumulative number of cases. For simulation
9 the total number of cases is reduced from 99, 095 to 6, 458 and, for simulation 28, the

total number of cases is reduced from 88, 587 to 3, 928.

The analysis of the impact of the data reduction algorithm on simulations 9 and 28
reveals significant changes in the distribution of cases across various parameters. How-
ever, to provide a more focused and insightful examination of the effects of the algo-
rithm, it is highly appropriate to focus on the vertical velocity component (v). This
variable exhibits the most pronounced changes in the simulations, making it an ideal
candidate for a detailed examination. Figure 5.16 and Figure 5.17 compare the distri-
bution of the data corresponding to the vertical velocity component (v) at the central

point of the stencil before and after the reduction process is applied.

The logarithmic histograms for simulations 9 and 28 illustrate the effectiveness of the
data reduction algorithm in preserving the overall distribution of vertical velocity cases
while significantly reducing the dataset size. In both simulations, the pre-reduction

data show a pronounced peak around bucket 12, with simulation 9 reaching nearly 103

122 Chapter 5. Numerical Examples

ncases
ncases

12 4 6 8 10 12 14 16 18 20 12 4 6 8 10 12 14 16 18 20
Buckets (b) Buckets (b)
(a) Before reduction algorithm (b) After reduction algorithm

Figure 5.17: Gust in a free-stream flow: Logarithmic histogram for simulation 28
illustrating the distribution of cases in 20 buckets for the vertical velocity at the central
point of the stencil before and after data reduction

cases and simulation 28 exceeding 10° cases at this peak. Post-reduction, the general
shape of the distributions is maintained, but with a notable flattening effect. The peak
in bucket 12 for both simulations is reduced to approximately 10® cases, indicating
a substantial reduction in data while preserving the central tendency. Importantly,
the algorithm maintains representation across all buckets, including the tails of the
distributions, which is crucial for capturing extreme events in gust simulations. The
reduction process appears to be more aggressive in the high-frequency buckets while
being more conservative in the low-frequency ones, effectively balancing data reduction

with the preservation of rare events.

Analysis of histograms for simulations 9 and 28 reveals the significant impact of the
data reduction algorithm on the distribution of cases in 20 buckets. However, it is
crucial to note that the intervals for these simulations differ substantially. To address
this disparity, each simulation undergoes an individual reduction process. This tailored
reduction preserves the unique features of each dataset while significantly decreasing
the total number of cases. Following the individual reduction of each simulation, the
data are combined for training the ANN by combining the data points and adding the
two parameters at the end of each case. By including these parameters, the combined

dataset retains essential information about the specific characteristics of each original

5.2. Parametric gust in a free-stream flow 123

sim

n Nrr Nya1 Nrest

10 49,029 37,789 34,563
20 98,492 37,789 34,563
30 148,046 37,7789 34,563

Table 5.3: Gust in a free-stream flow: number of cases for training, testing, and
validation utilising 10, 20, and 30 simulations for training.

simulation. This approach ensures that, despite the reduction in data volume, the
fundamental differences between simulations are preserved and can be accounted for

in subsequent analyses.

Finally, the number of cases for training, testing and validating is shown in Table 5.3.
It is worth noting that, following common practice, the number of validation and test

cases is fixed and it is independent on the amount of training cases.

Next, a series of numerical studies are presented to assess the influence of the amount of
data and the reduction process on the accuracy of the ANN. These studies also explore
the influence of the distance used in the stencil and the use of other types of stencil that

lead to different ANN architectures.

5.2.2 Influence of the dataset

Using the three datasets shown in Figure 5.12, ANNs are trained. The process follows
the same rationale as described in Section 4.4.4, that is, hyperparameter tuning is
performed using a simple grid search, by trying different number of hidden layers and

different number of neurons.

Figure 5.18 and Figure 5.19 present the percentage error in the predicted horizontal
velocity (u) and vertical velocity (v) with varying architectures. The results are dis-
played as 2D contour plots for different numbers of training simulations nsi™ = 10,
ns™ = 20 and n3!™ = 30. The horizontal axis represents the number of neurons per

hidden layer, while the vertical axis represents the number of hidden layers in the ANN.

As the number of training simulations increases from 10 to 30, the overall error tends

124 Chapter 5. Numerical Examples

5 3 5 3% 5 35
30 30 30
4 25 4 25 4 25
20 20 20
3 3 3
15 15 15
9 0, 0, 10
5 5 5
1 0 1 . \ 0 1 I 0
50 100 150 200 50 100 150 200

50 100 150 200

nneurons nneurons nIlEUI‘OIlS

(a) nSim = 10 (b) nSim = 20 (c) n$im = 30

nlayers
Nlayers
nlayers

Figure 5.18: Gust in a free-stream flow: Maximum percentage error of the trained
ANN for the horizontal velocity (u), different number of neurons and hidden layers.

5 3 5 35 5 35
30 A 30 30
4 25 4 25 4 4 25
20 20 # 20
s 15 33 . ‘ 15 5 3 J 15
9 0 4 0, 10
5 5 5
1. 0 1 0 1 \ 0
50 100 150 200 50 100 150 200 50 100 150 00

nneurcms nneurons nneu:rons
(a) n$i® = 10 (b) n$i® =20 (c) n$im = 30

Figure 5.19: Gust in a free-stream flow: Maximum percentage error of the trained

ANN for the vertical velocity (v), different number of neurons and hidden layers.

nlayers
Niayers

2

to decrease, as evidenced by the expansion of blue regions and the reduction of red
regions from plot (a) to (c). Itis particularly remarkable that ANNs with a single layer
and a very low number of neurons can provide accurate results, whereas introducing
more non-linearity in the ANN (i.e. increasing the number of layers) and increasing

the number of neurons tend to provide less accurate ANN.

The observation that increasing ANN complexity through additional layers and neurons
may lead to reduced accuracy presents an intriguing paradox in machine learning. While
it might seem logical that greater network capacity should enhance representational
capabilities, empirical evidence indicates that more complex architectures often result
in degraded performance. This phenomenon can be attributed to several factors: the
increased difficulty in optimising larger parameter spaces, enhanced susceptibility to
overfitting, and challenges in gradient propagation through deeper networks. These
challenges manifest in the training phase, where more complex networks may struggle

to converge to optimal solutions. Moreover, the computational overhead and increased

5.2. Parametric gust in a free-stream flow 125

5 5 50 5 500
A 400 w 400
; 1300 1300 1300
73 3
E 200 200 200
2 100 w0 2 100
1 0 0 1 0
50 100 150 200 50 100 150 200 50 100 150 200

nneurons nneurons nDELlI‘DIlS

(a) nSim = 10 (b) nin = 20 (c) nSim = 30

Niayers

Figure 5.20: Gust in a free-stream flow: Mean number of epochs required for training
convergence (Nepocns), different number of neurons and hidden layers.

5 60 5 r 60 5 60
50 50 50
4 4 4 4
. 40 40, 140
3 3 8
5»3 . 130 §3 130 §3 130
| 20 F 20 F 20
2 2 2
10 10 10
1 0 1 0 1 0
50 100 150 200 50 100 150 200 50 100 150 200
nneurons nneurons nneu:mns
(a) n%i’“ =10 (b) n%_.irm =20 (©) n%_.if’“ =30

Figure 5.21: Gust in a free-stream flow: Mean total training time (T}.¢.1) in minutes,
different number of neurons and hidden layers.

training time associated with more complex architectures may not justify the marginal
improvements—or indeed decrements—in performance. This suggests that simpler
neural network architectures may actually be more effective for many applications, as
evidenced by this example where simpler architectures consistently achieve lower error

rates.

Figure 5.20 shows the mean number of epochs required for the convergence of the

training, while Figure 5.21 displays the mean total training time in minutes.

Both figures present results for different network architectures (varying numbers of
neurons and hidden layers) and training dataset sizes (10, 20, and 30 simulations). As
the number of simulations increases, larger networks (more neurons and layers) tend
to require more epochs to converge, as indicated by the increasing red areas in the
upper right corners. Simpler networks (fewer neurons and layers) maintain relatively
consistent convergence epochs across different dataset sizes. Training time generally

increases with network complexity and dataset size, as expected. However, it is worth

126 Chapter 5. Numerical Examples

Process Time
Training simulations 20 minutes
Data preparation 3.5 minutes
Neural network training 6 minutes
Total time 29.5 minutes

Table 5.4: Computational time breakdown for the selected artificial neural network.

noting that the time for training the ANN is very low, especially for those ANN that

provide lower errors.

As illustrated in Figure 5.21, the training process requires only a few minutes. However,
the total computational cost must account for the simulation times of the training cases.
Each training simulation requires less than 20 minutes of computational time, with all
cases executed simultaneously. This parallel implementation provides efficient gener-
ation of the training dataset, whilst maintaining modest computational requirements

compared to traditional full-domain simulations.

To provide a comprehensive overview of the computational requirements, Table 5.4
presents the breakdown of processing times for the selected neural network configura-

tion.

For each dataset, the ANN that provides the best performance is selected and Figure 5.22
shows the maximum error, in percentage, of the two components of the velocity field
as a function of the number of simulations used to collect data for network training.
The results show that even with only 10 simulations the error is approximately 10% for
both components. Increasing the size of the dataset provides a reduction of the error
for both components, reaching an error of 7% and 3% for the horizontal and vertical

components of the velocity, respectively, when using the 30 available simulations.

A numerical parameter introduced in the data preparation stage is the number of buckets
used for the data reduction process. This parameter controls the amount of data selected
to train the ANN and the amount of redundant data present in the dataset. To quantify

the effect of the number of buckets in the size of the dataset, Table 5.5 reports the

5.2. Parametric gust in a free-stream flow 127

15 ‘
—e—Relative error in u
. —¢Relative error in v
X
5 10>
5
€3
o
2
= Of
5]
[ast
0 ‘
10 20 30

Figure 5.22: Gust in a free-stream flow: maximum error as a function of the number
of simulations used to collect data for training the network (n3™).

Dpuckets Nrr
5 11,112
10 52,517
20 148,046
40 314,731
80 535,586

160 766,299

Table 5.5: Gust in a free-stream flow: number of resultant training cases (nr.) when
varying the number of buckets used for the reduction procedure (npycyets)-

resulting number of training cases for a different number of buckets.

To analyse the effect of the data reduction algorithm proposed in Section 4.3.3, Fig-
ure 5.23 shows the maximum error as a function of the number of buckets used for the
reduction. Figure 5.23 reveals that, in this example, the optimal number of buckets is
20, which yields to the lowest error rates for the horizontal (u) and vertical (v) velocity
components. The increase in error rates beyond 20 buckets, despite the larger training
datasets, suggests that data quality and representation are more crucial than quantity
alone. This behaviour may indicate overfitting with larger datasets, where the model
learns specific patterns that do not generalise well. This experiment indicates that
simply increasing the data set by increasing the number of buckets does not necessarily
improve the predictive capability of the ANN. This is attributed to the fact that adding
more data in this example produces a bias that results in a higher error in the ANN

predictions. Specifically, exceeding the optimal number of buckets introduces redun-

128 Chapter 5. Numerical Examples

15 ; ;
—e—Relative error in u
——Relative error in v
X
— 10+ J
—
3 .
=
=
)
2
=
S 5
@)
~
0 | | | |
5 10 20 40 80 160

Dpuckets

Figure 5.23: Gust in a free-stream flow: maximum relative error as a function of the
number of buckets (nyycress) chosen in the reduction process.

dant sampling points that add noise rather than new information, thereby degrading the

ability of the ANN to capture the underlying flow physics.

5.2.3 Influence of the stencil distance

As mentioned in Section 4.3.1, the definition of the distance used to define the stencil

employed to gather the data from a simulation is purely based on physical considerations.

To study the effect of varying the distance, Figure 5.24 shows the relative error in
predicting the velocity components as a function of the stencil distance d. The time

step for these simulations is set to At = 0.80, and the free-stream velocity is u, = 1.

As the stencil distance increases, the error generally decreases for both velocity com-
ponents, indicating improved prediction accuracy. In particular, the optimal stencil
distance aligns with the product of the time step and the free-stream velocity, that is,
d = 0.80 for this example. However, further increasing the stencil distance to 2u., x At
results in a sharp increase in error for both components. This outcome is expected in
the context of a gust propagating in a free-stream flow, where the velocity field changes
are best captured when the stencil distance corresponds to the distance a fluid particle

travels during one time step. The results emphasise the crucial importance of choosing

5.2. Parametric gust in a free-stream flow 129

25 ‘

3 —e—Relative error in u
—%¢—Relative error in v

Uno X AL Uno X AL Uso X Al Uso X At Qoo X At
2
Stencil Distance (d)

Figure 5.24: Gust in a free-stream flow: maximum error as a function of the stencil
distance (d).

an appropriate stencil distance relative to the time step and the characteristic velocity

of the flow.

5.2.4 Influence of using several time steps as inputs of the ANN

All the experiments done so far consider, as inputs of the ANN, the values of pres-
sure and velocity at the stencil points and at time ¢". Numerical experiments were
conducted to explore the possibility of enhancing the accuracy of the predictions by
using information from previous time steps at the stencil points and different stencil

distances.

Figures 5.25 and 5.26 represent two new stencil designs to compare with the original
one presented in Figure 4.3 and used in all previous examples. It is worth noting
that the number and position of the points with respect to the central mesh node do not
change with respect to the original stencil used previously. The difference lies in the
information stored at the stencil points. The original stencil considered the velocity at
the stencil nodes at time ¢", while the stencil in Figure 5.25 considers the velocity at
times ¢" and t"~!. Similarly, the stencil of Figure 5.27 considers the velocity at the
stencil nodes at times ", t*~1 and t" 2. In all cases, pressure is only considered at time

t", mainly motivated by the fact that the time derivative of the velocity appears in the

130 Chapter 5. Numerical Examples

Figure 5.25: Schematic representation of the inputs and outputs for an alternative ANN
architecture. The input stencil includes the velocity in two time steps w" !, u"”, and

pressure p™. Output consisting of " at the central mesh node.

Figure 5.26: Schematic representation of the inputs and outputs for an alternative ANN
architecture. The input stencil includes the velocity in three time steps u™ 2, u" !, u",
and pressure p”. Output consisting of u"*! at the central mesh node.

Navier-Stokes equations, but not the time derivative of the pressure.

Accounting for extra information in the stencil points obviously leads to ANN with
an increased number of inputs. The stencil in Figure 5.25 results in an ANN with
44 + nparan inputs, whereas the stencil in Figure 5.26 results in an ANN with 62 +nparan

inputs, compared to the original stencil which had 26 + nparay inputs.

To evaluate the performance of the ANN created from the different stencils, the relative
error in the predicted velocity is compared in Figure 5.27 for each stencil and for

different values of the stencil distance.

The results show that the inclusion of additional historical time steps did not produce
substantial improvements in accuracy that would justify increasing the size of the

input layer and consequently the training time. The error trends for the three cases

5.2. Parametric gust in a free-stream flow 131

30

;
—e—Relative error in u - Case 1
- o -Relative error in v - Case 1/ |
—»¢—Relative error in u - Case 2
- % -Relative error in v - Case 2

Relative error in u - Case 3|

Relative error in v - Case 3

[\
(SN
T

[\
(=]

Relative Error [%]
&

10+
5 -¢¢¢\\;
R
0 : ‘
Us X At Us X At Uss X At Uso X At

1 2

Stencil Distance (d)

Figure 5.27: Relative error of the predicted velocity as a function of the stencil distance
(d) for the stencils that uses the velocity at time ¢" (Case 1), at times ¢ and "~ ! (Case
2) and at times ", t"~! and t" 2 (Case 3).

exhibit broadly similar characteristics, with errors decreasing as the stencil distance
approaches the value defined using physical considerations, that is, d = u.At. The
lack of significant enhancement from incorporating more time history may be attributed
to the nature of the flow physics being modelled. For the problem under consideration,
it appears that spatial correlations exert a stronger influence on local flow evolution

compared to temporal correlations over the timescales examined.

5.2.5 Influence of the stencil geometry

The last numerical experiment involves a study to determine the potential benefit
of varying the geometry of the stencil considered. Four configurations, shown in

Figure 5.28, are considered for this study.

Following the notation previously introduced in Section 4.3 red dots denote pressure
sampling points, blue circles represent horizontal velocity sampling points, and green

crosses indicate vertical velocity sampling points.

The first stencil is the one originally introduced in Section 4.3, where eight nodes are
placed in an imaginary circle of radius d centred at a mesh node. The second stencil

maintains the number of stencil points of the original one, but changes the position,

132 Chapter 5. Numerical Examples

(a) Type 1 (c) Type 3

T e p"

) O u”

Figure 5.28: Gust in a free-stream flow: schematic representation of the four stencils
used to assess the influence of the geometry of the stencil.

leading to the arrangement of a Cartesian grid. The third option is inspired by a finite
difference stencil and involves only four points around the central mesh node. The last
option is inspired by the stencil that is used in the semi-implicit method for pressure
linked equations (SIMPLE) algorithm (Patankar and Spalding, 1983), traditionally

employed by incompressible finite volume solvers.

The first two stencils lead to an ANN architecture with 26 + nparan inputs, whereas
the second and third involve 14 + nyaran and 38 + nparan inputs. Therefore, this study
enables us to assess how maintaining the number of inputs but varying the geometry of
the stencil influences the accuracy and also how increasing or decreasing the number

of inputs influences the predictive capability of the ANN.

Table 5.6 presents a comparative analysis of the maximum relative errors for different
stencil types in predicting velocity components during gust propagation in a free stream

flow.

5.2. Parametric gust in a free-stream flow 133

Relative error [%]

Stencil type u v
1 6.8 34
2 59 4.1
3 9.2 7.5
4 6.6 4.3

Table 5.6: Gust in a free-stream flow: maximum relative errors for different stencil
geometries.

Given the results of the previous study, all simulations were performed with a stencil

distance d = u At.

Comparing the accuracy of the first two stencils, it seems that, for a given number
of inputs, there is no clear advantage on a particular geometric configuration. Both
provide a similar accuracy for both horizontal and vertical velocity components. The
third stencil, which involves the minimum number of inputs, leads to an ANN that
exhibits the highest error in the predictions, with a maximum error of 9.2% in the
horizontal velocity predictions. Finally, the last stencil, which involves the maximum
number of inputs, provides a similar accuracy compared to the first two stencils, showing

that the addition of extra information does not involve better predictions.

The last two stencils are not considered suitable due to the larger errors or extra
complexity and data required, respectively. The first two stencils seem to offer the
right balance between computational complexity and accuracy, and only the first one is

considered next to demonstrate its use in a degree adaptive process.

5.2.6 ANN-driven degree adaptivity

To conclude this example, the trained ANN is incorporated into the degree adaptive
process to simulate the propagation of gust in a free-stream flow. Using the knowledge
acquired in the previous numerical experiments, the stencil of Figure 5.28(a) is consid-
ered, with a distance d = u,,At and only using the velocity and pressure at time t" as

inputs.

134 Chapter 5. Numerical Examples

R R R R R :

Figure 5.29: Parametric gust in a free-stream flow: unstructured triangular mesh to use
for adaptivity.

The ANN is trained with the data gathered from 30 simulations, and the data reduction
is performed using 20 buckets. The chosen architecture, based on the results seen in
Figure 5.18c and Figure 5.19c, is 5 hidden layers and 40 neurons. This leads to a

maximum error in u of 6.80% and in v of 3.40%.

The adaptivity will be evaluated in a significantly larger domain than the one used
during training. The computational domain is 2 = [0,80] x [—8,8]. This decision
was taken to examine adaptivity across an expanded temporal range and to ascertain
whether an ANN, initially trained in one domain, can be effectively generalised to
another. An unstructured mesh of 2,858 triangles, shown in Figure 5.29, is used for
this example. A uniform element size is chosen to demonstrate the ability of the degree
adaptivity to increase the accuracy where required, without any prior mesh adaptation

based on the physics of the problem.

An unseen scenario for the ANN is considered, corresponding to ¢, = 0.75 and
a = 1.10. The reference solution, computed in the new domain using a uniform degree
of approximation k£ = 5, is displayed in Figure 5.30 for several times. The results
illustrate the challenge of propagating a localised perturbation over long distances,
where the use of high-order elements is particularly attractive due to the low dissipation

and dispersion properties of these schemes.

The different snapshots also clearly suggest that a degree adaptive process is crucial
to ensure an efficient use of the computational resources as the velocity field is almost
constant in the majority of the domain, with large gradients localised in small regions

and travelling across the domain.

5.2. Parametric gust in a free-stream flow 135

(at=1.6

‘ 0,02
. _ . 0,04
L L 0,06

(b)t=16

I 20,03
-0.05

()t =32
I 0.02

0.01
0.01
0.00
-0.01
I -0.01

-0.02
d)t =64

Figure 5.30: Gust in a free-stream flow: vertical velocity field (v) at different instants
with a uniform degree of approximation k£ = 5.

Next, the degree adaptive process enhanced with the conservative projection proposed
in Chapter 3 but without using an ANN to predict the solution at the next time step is

considered.

Figure 5.31 shows the vertical velocity field at different instants and the corresponding
degree map. The results show that the degree adaptive process targets the required
error using the snapshot of the velocity at t". However, it can be clearly observed that
ahead of the gust a linear approximation is used in all elements because there is no flow
feature that requires a higher order. As the solution propagates, the mesh is therefore

not adapted to properly capture the gust disturbance that arrives at a future time step.

136 Chapter 5. Numerical Examples

0.05

0.02
0.00

\ 0,02
20,04

o 0,06
I 20,08

0.12

(a) Vertical velocity field (v) att = 16

=N W s Ot

(b) Degree of approximation at ¢ = 16
I 0.04
0.02
0.01
0.00
-0.01
I -0.03
-0.05
(c) Vertical velocity field (v) at t = 32

=N W ks Gt

(d) Degree of approximation at ¢t = 32
I 0.02

0.01

0.01
0.00

L] | o0l

-0.02

=N W ks Ot

(f) Degree of approximation at ¢t = 64

Figure 5.31: Gust in a free-stream flow: vertical velocity field (v) and degree of
approximation at different instants with degree adaptivity.

This effect leads to dissipation and dispersion of the solution, as typically seen in

simulations with low order elements, which is already visually observed at ¢ = 32.

5.2. Parametric gust in a free-stream flow 137

The issue is exacerbated as the solution evolves in time because the more dissipated
the solution, the lower the degree of approximation that the adaptivity process requires.
The final snapshot corresponding to ¢ = 64 clearly shows that the adaptive process has
not been able to capture the solution because the velocity perturbations have lost the

symmetric pattern exhibited by the reference solution and the intensity is much lower.

Next, the simulation is repeated with the ANN utilised in the adaptive process to predict
the solution at t" and use this information to perform the degree adaptation. Figure 5.32
shows the vertical velocity field at different instants and the corresponding degree map

with the proposed ANN-driven degree adaptive process.

A visual comparison of the velocity snapshots with the results previously shown for
a standard degree adaptivity and with the reference solution provides initial evidence
of the substantial benefit of using an ANN to predict the solution at the next time and
use this information in a degree adaptive process. The velocity fields at the shown
times are in an excellent agreement with the reference solution and do not show the
dissipation and dispersion effects that are present if the adaptivity does not account for
the future time step. The degree of approximation maps in Figure 5.32 illustrate the

changes introduced by using the solution at the next time step to perform the adaptivity.

The predictive approach offers several advantages by adapting the degree before the

arrival of the gust perturbation.

To quantify the benefits of the proposed ANN-driven degree adaptive process, Fig-
ure 5.33 show the maximum error of the velocity as a function of the non-dimensional

time.

The results clearly show that around ¢ = 10 the error associated with the standard
adaptivity approach starts to grow and accumulates over time, reaching values higher
than 40% around ¢t = 58. The application of adaptivity based on the solution at time ¢"
only is clearly insufficient to ensure that the mesh has enough resolution where the gust

will travel in the future time step. In contrast, the approach where the degree adaptivity

138 Chapter 5. Numerical Examples

0.05

0.02
0.00
-0.02
-0.04
-0.06
I -0.08

-0.12

(a) Vertical velocity field (v) att = 16

=N W s Ot

(b) Degree of approximation at ¢t = 16

-0.01
3 002

(c) Vertical velocity field (v) at t = 32

=N W s Ot

(d) Degree of approximation at ¢ = 32
I 0.02

' 0.01
. 0.01
0.00

’ 0oL

(e) Vertical velocity field (v) att = 64

=N W ks Gt

(f) Degree of approximation at ¢t = 64

Figure 5.32: Gust in a free-stream flow: vertical velocity field (v) and degree of
approximation at different instants with ANN-driven degree adaptivity.

process is driven by the trained ANN shows a significant improvement and is capable

of maintaining the error below 5% during the whole simulation.

5.2. Parametric gust in a free-stream flow 139

N W W
o O Ot
T T T

[\
[en)
T

—— Adaptivity
Adaptivity with Prediction |]

—_
ot

Relative Error [%]

—
o

0 L T L L
0.00 20.00 40.00 60.00 80.00 100.00
Time

Figure 5.33: Gust in a free-stream flow: error of the velocity as a function of the non-
dimensional time for the standard degree adaptivity and the ANN-driven approach.

Chapter 6

Conclusion

6.1 Summary of thesis achievements

This thesis focused on the accurate simulation of transient incompressible flows by
employing the high-order HDG method, degree adaptivity, and high-order explicit
first stage, singly diagonally implicit Runge-Kutta (ESDIRK) methods. The method
was implemented in a Fortran 90 code and verified in two and three dimensions by
performing tests to assess optimal convergence in space and time. The degree adaptive

process was also tested using steady and transient problems.
In this thesis, two original contributions have been proposed.

First, a conservative projection has been proposed to enable the degree adaptive process
to lower the degree of elements in time without introducing non-physical numerical arte-
facts. Without this projection, a standard degree adaptive process leads to non-physical
oscillations in the aerodynamic quantities of interest when the degree of approxima-
tion is lowered during the time marching process. These oscillations are linked to
the violation of the incompressibility condition when the degree of approximation is
lowered, leading to oscillations in the pressure field. To provide further evidence about

the nature of these oscillations, an adaptive process has been implemented in which

140

6.1. Summary of thesis achievements 141

the degree of approximation is not allowed to be lowered during the time marching,
leading to correct solutions. However, the extra cost of this approach makes the adap-
tivity not an efficient choice, especially in problems where localised transient effects
travel along the domain. The proposed conservative projection completely removes
the non-physical oscillations in the aerodynamic quantities of interest and enables the
degree to be lowered in regions where accuracy is no longer required, leading to a
more efficient use of high order approximations, only where needed. Two examples
have been used to illustrate the benefits of the proposed approach and to quantify the
extra accuracy and the lower computational requirements compared to a standard de-
gree adaptive approach and an adaptive strategy where the degree is not allowed to be
lowered. The first example involved the computation of the flow around two circular
cylinders in tandem, whereas the second example involved a more challenging problem

where a gust perturbation impinges into a NACAO0012 aerofoil.

Second, a strategy to incorporate a trained ANN, that predicts the solution at the future
time step, into a degree adaptive process has been proposed. The strategy enables
us to predict where flow features will travel and ensure that the degree is adapted in
advance. The strategy offers significant advantages when parametric analysis is to be
performed, i.e. when the simulations are to be repeated by changing some inputs of
the simulation. In this context, the cost of generating the data and training and tuning
an ANN is justified, and the predicted capability enables efficient simulations for other
combinations of the input parameters not seen during the training. The strategy for
training the ANN involves using accurate data for a few simulations. A novel strategy
to gather the data from a simulation and produce input and output matrices with a fixed
small number of inputs and outputs is developed using a stencil of imaginary points
around a mesh node. Numerical examples were performed to study the influence of
the geometry and distance of the stencil on the accuracy of the predictions. Given the
large amount of data gathered from a single simulation and the potential bias present
in these datasets, a novel algorithm was developed to reduce the amount of data and

minimise the bias that is normally associated with areas of the domain with constant

142 Chapter 6. Conclusion

velocity and pressure fields. Numerical experiments were also presented to illustrate
the effect of this process. Finally, the application to a parametric problem involving
the propagation of a gust perturbation in a free-stream flow was used to illustrate and

quantify the benefits of the proposed approach.

6.2 Future work

The findings detailed in this thesis have revealed multiple promising directions for

future research. Some of them are:

* Real-time learning for ANNs. The current implementation involves training
an ANN from available data and, later, deploying the trained ANN in a degree
adaptive procedure. A more advanced implementation would involve launching
the degree adaptive process, gather data during the simulation, train an ANN
when enough data is gathered and deploy the trained ANN in real time. During
the first stages of the simulation it is anticipated that multiple adaptivity loops
would be required to ensure that flow features are not lost but at some point, once
the ANN is deployed, this repetition would no longer be needed, as demonstrated
in this work. This more advanced strategy would require monitoring the inputs to
ensure that they lie within the limits of the data used to train the ANN and, when
they are outside the ANN could be retrained using data continuously gathered
from the current simulation. It is anticipated that retraining the ANN would not
require a major cost because the weights of a previously trained ANN could be

use to initialise the training.

* Cross-scenario prediction: The examples considered in this work involve para-
metric problems and the training data and the predictions are performed using the
same parameters. Investigating the ability of ANN trained on specific scenarios
(e.g., particular geometries or flow conditions) to predict outcomes in different

scenarios would be beneficial. As an example, it would be worth investigating

6.2. Future work 143

the accuracy of the predictions of an ANN trained using data gathered from
a simulation of the flow around a circular cylinder to predict the flow around
an aerofoil. If the required accuracy is not obtained directly, transfer learning
techniques could be used to accelerate the training of an ANN for new problem
configurations, potentially reducing the computational cost of simulating new

scenarios.

* Extension to three-dimensions. The HDG solver implemented has been applied
and tested for two and three dimensional problems. However, the numerical ex-
amples that involve training an ANN have been restricted to two dimensions to
avoid performing expensive three dimensional simulations to gather data for the
training. Given the benefits shown in the examples, it would be worth inves-
tigating the extension to three dimensions, which would only require adapting
the stencil to three dimensions. In this context, it would be interesting to assess
the increase in computational time required to train the ANN and also the archi-
tecture of the ANN that is capable of providing the required accuracy in three

dimensions.

» Applications. This work has focused on the solution of transient incompressible
laminar viscous flows. The strategy developed is general and could be applied
to other flow problems such as transient compressible viscous flow and turbulent
compressible and incompressible flow. The extension to compressible flows
would require a careful choice of the outputs of the ANN to ensure that an error
indicator can be built using the super-convergent postprocess of the solution. In
addition, for large Reynolds number it is anticipated that the super-convergent

properties might be lost and other a-posteriori error indicators might be needed.

Extending the adaptive HDG-ANN framework to incorporate additional physical
phenomena would greatly enhance its applicability to real-world engineering

challenges. This could include:

— Coupling with convection-diffusion equations to simulate heat transfer or

144 Chapter 6. Conclusion

species transport in fluids.

— Integration with structural mechanics for fluid-structure interaction prob-

lems.

— Incorporation of acoustic models for aeroacoustic simulations.

These extensions would require careful consideration of the interplay between
fluid dynamics and the additional physical processes, as well as the development
of efficient numerical strategies to handle the increased complexity of the coupled

systems.

Bibliography

Ainsworth, M., Monk, P., and Muniz, W. (2006). Dispersive and dissipative properties
of discontinuous Galerkin finite element methods for the second-order wave equation.

Journal of Scientific Computing, 27:5-40.

Alamri, Y. and Ketcheson, D. (2024). Very high-order A-stable stiffly accurate di-

agonally implicit Runge-Kutta methods with error estimators. Journal of Scientific

Computing, 100.

Alauzet, F., Frey, P.J., George, P.-L., and Mohammadi, B. (2007). Transient fixed point-

based unstructured mesh adaptation. International Journal for Numerical Methods

in Fluids, 54(6-8):789-810.

Ali, Z., Dhanasekaran, P. C., Tucker, P. G., Watson, R., and Shahpar, S. (2017). Optimal

multi-block mesh generation for CFD. International Journal of Computational Fluid

Dynamics, 31(4-5):195-213.

Amestoy, P. R., Duff, I. S., L’Excellent, J.-Y., and Koster, J. (2001). MUMPS: a general

purpose distributed memory sparse solver. International Conference on Applied

Parallel Computing, pages 121-130.

Arnold, D. N. (1982). An interior penalty finite element method with discontinuous

elements. STAM journal on numerical analysis, 19(4):742-760.

Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Dalcin,
L., Dener, A., Eijkhout, V., Gropp, W. D., et al. (2019). PETSc users manual.

Argonne National Lab.(ANL), Argonne, IL (United States).

145

146 BIBLIOGRAPHY

Bassi, F., Crivellini, A., Di Pietro, D. A., and Rebay, S. (2007). An implicit high-
order discontinuous Galerkin method for steady and unsteady incompressible flows.

Computers & Fluids, 36(10):1529-1546.

Baumann, C. E. and Oden, J. T. (1999). A discontinuous hp finite element method

for convection—diffusion problems. Computer Methods in Applied Mechanics and

Engineering, 175(3-4):311-341.

Biedron, R. T., Carlson, J.-R., Derlaga, J. M., Gnoffo, P. A., Hammond, D. P., Jones,
W.T., Kleb, B., Lee-Rausch, E. M., Nielsen, E. J., Park, M. A., et al. (2016). FUN3D
Manual: 12.9. Technical Report TM-2016-219012, NASA.

Brunton, S. L., Noack, B. R., and Koumoutsakos, P. (2020). Machine learning for fluid

mechanics. Annual Review of Fluid Mechanics, 52:477-508.

Campagne, G., Hassan, O., Morgan, K., and Sgrensen, K. (2010). Higher—order aero-
dynamic computations using an edge based finite volume scheme. In ADIGMA-A

European Initiative on the Development of Adaptive Higher-Order Variational

Methods for Aerospace Applications, pages 309-325. Springer.

Cesmelioglu, A., Cockburn, B., and Qiu, W. (2017). Analysis of a hybridizable
discontinuous Galerkin method for the steady-state incompressible Navier-Stokes

equations. Mathematics of Computation, 86(306):1643—-1670.

Chalot, F., Dagrau, F., Mallet, M., Normand, P., and Yser, P. (2015). Higher-
order RANS and DES in an industrial stabilized finite element code. IDIHOM:

Industrialization of High-Order Methods-A Top-Down Approach: Results of a

Collaborative Research Project Funded by the European Union, 2010-2014, pages

489-519.

Chalot, F. and Normand, P.-E. (2010). Higher-order stabilized finite elements in an
industrial Navier-Stokes code. In Kroll, N., Bieler, H., Deconinck, H., Couaillier,

V., van der Ven, H., and Sgrensen, K., editors, ADIGMA - A European Initiative

BIBLIOGRAPHY 147

on the Development of Adaptive Higher-Order Variational Methods for Aerospace

Applications, pages 145-165, Berlin, Heidelberg. Springer Berlin Heidelberg.

Cockburn, B. (2017). Discontinuous Galerkin methods for computational fluid dynam-

ics. Encyclopedia of Computational Mechanics Second Edition, pages 1-63.

Cockburn, B. and Fu, G. (2017). Devising superconvergent HDG methods with sym-
metric approximate stresses for linear elasticity by M-decompositions. IMA Journal

of Numerical Analysis, 38(2):566—-604.

Cockburn, B. and Gopalakrishnan, J. (2005). Incompressible finite elements via

hybridization. I. The Stokes system in two space dimensions. SIAM Journal on

Numerical Analysis, 43(4):1627-1650.

Cockburn, B. and Gopalakrishnan, J. (2009). The derivation of hybridizable discon-

tinuous Galerkin methods for Stokes flow. SIAM Journal on Numerical Analysis,

47(2):1092-1125.

Cockburn, B., Gopalakrishnan, J., and Lazarov, R. (2009a). Unified Hybridization
of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second

Order Elliptic Problems. SIAM Journal on Numerical Analysis, 47(2):1319-1365.

Cockburn, B., Gopalakrishnan, J., Nguyen, N. C., Peraire, J., and Sayas, F.-J.

(2011). Analysis of HDG methods for Stokes flow. Mathematics of Computation,

80(274):723-760.

Cockburn, B., Hou, S., and Shu, C.-W. (1990). The Runge-Kutta local projection
discontinuous Galerkin finite element method for conservation laws. IV. The multi-

dimensional case. Mathematics of Computation, 54(190):545-581.

Cockburn, B., Kanschat, G., and Schotzau, D. (2005). A locally conservative

LDG method for the incompressible Navier-Stokes equations. Mathematics of

computation, 74(251):1067-1095.

148 BIBLIOGRAPHY

Cockburn, B., Kanschat, G., and Schotzau, D. (2009b). An equal-order dg method

for the incompressible navier-stokes equations. Journal of Scientific Computing,

40(1):188-210.

Cockburn, B., Lin, S.-Y., and Shu, C.-W. (1989). TVB Runge-Kutta local projec-
tion discontinuous Galerkin finite element method for conservation laws III: one-

dimensional systems. Journal of computational Physics, 84(1):90-113.

Cockburn, B., Nguyen, N. C., and Peraire, J. (2010). A comparison of HDG methods

for Stokes flow. Journal of Scientific Computing, 45(1-3):215-237.

Cockburn, B. and Shi, K. (2013). Conditions for superconvergence of HDG methods
for Stokes flow. Mathematics of Computation, 82(282):651-671.

Cockburn, B. and Shi, K. (2014). Devising HDG methods for Stokes flow: An overview.

Computers & Fluids, 98:221-229.

Cockburn, B. and Shu, C. (1991). The Runge—Kautta local projection P!-discontinuous

Galerkin method for scalar conservation laws. Rairo Math. Model. Numer. Anal.

Model. Math. et Anal. Numer, 25.

Cockburn, B. and Shu, C.-W. (1989). TVB Runge-Kutta local projection discontinu-
ous Galerkin finite element method for conservation laws. II. General framework.

Mathematics of computation, 52(186):411-435.

Cockburn, B. and Shu, C.-W. (1998a). The local discontinuous Galerkin method for

time-dependent convection-diffusion systems. SIAM journal on numerical analysis,

35(6):2440-2463.

Cockburn, B. and Shu, C.-W. (1998b). The Runge—Kutta discontinuous Galerkin

method for conservation laws V: multidimensional systems. Journal of computational

physics, 141(2):199-224.

Curtiss, C. F. and Hirschfelder, J. O. (1952). Integration of stiff equations. Proceedings

of the National Academy of Sciences of the United States of America, 38(3):235.

BIBLIOGRAPHY 149

Deng, G., Pique, J., Queutey, P., and Visonneau, M. (1996). Navier-Stokes equations
for incompressible flows: Finite-difference and finite-volume methods. In Handbook

of Computational Fluid Mechanics, pages 25-97. Elsevier.

Donea, J. and Huerta, A. (2003). Finite element methods for flow problems. John

Wiley & Sons.

Dzanic, T., Mittal, K., Kim, D., Yang, J., Petrides, S., Keith, B., and Anderson, R.
(2024). DynAMO: Multi-agent reinforcement learning for dynamic anticipatory
mesh optimization with applications to hyperbolic conservation laws. Journal of

Computational Physics, 506:112924.

Diez, P. and Huerta, A. (1999). A unified approach to remeshing strategies for finite

element h-adaptivity. Computer Methods in Applied Mechanics and Engineering,

176(1):215-229.

Ekaterinaris, J. A. (2005). High-order accurate, low numerical diffusion methods for

aerodynamics. Progress in Aerospace Sciences, 41(3-4):192-300.

Ekelschot, D., Moxey, D., Sherwin, S., and Peird6, J. (2017). A p-adaptation method
for compressible flow problems using a goal-based error indicator. Computers &

Structures, 181:55-69.

Ethier, C. R. and Steinman, D. A. (1994). Exact fully 3D Navier—Stokes solutions for

benchmarking. International Journal for Numerical Methods in Fluids, 19(5):369—

375.

Ferrer, E. and Willden, R. (2011). A high order discontinuous Galerkin finite ele-

ment solver for the incompressible Navier—Stokes equations. Computers & Fluids,

46(1):224-230.

Fidkowski, K. J. and Darmofal, D. L. (2007). A triangular cut-cell adaptive method for
high-order discretizations of the compressible Navier—Stokes equations. Journal of

Computational Physics, 225(2):1653-1672.

150 BIBLIOGRAPHY

Franca, L. P. and Frey, S. L. (1992). Stabilized finite element methods: II. The

incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics

and Engineering, 99(2-3):209-233.

Gerhold, T. (2005). Overview of the hybrid RANS code TAU. In

MEGAFLOW-Numerical Flow Simulation for Aircraft Design, pages 81-92.

Springer.

Giacomini, M., Karkoulias, A., Sevilla, R., and Huerta, A. (2018). A superconvergent
HDG method for Stokes flow with strongly enforced symmetry of the stress tensor.

Journal of Scientific Computing, 77(3):1679-1702.

Giacomini, M., Sevilla, R., and Huerta, A. (2020). Tutorial on hybridizable

discontinuous Galerkin (HDG) formulation for incompressible flow problems, pages

163-201. Springer International Publishing, Cham.

Giorgiani, G., Ferndndez-Méndez, S., and Huerta, A. (2013). Hybridizable discontin-

uous Galerkin p-adaptivity for wave propagation problems. International Journal for

Numerical Methods in Fluids, 72(12):1244-1262.

Giorgiani, G., Fernandez-Méndez, S., and Huerta, A. (2014). Hybridizable discontinu-
ous Galerkin with degree adaptivity for the incompressible Navier—Stokes equations.

Computers & Fluids, 98:196-208.

Golubeyv, V., Dreyer, B., Hollenshade, T., and Visbal, M. (2009). High-accuracy
viscous simulation of gust-airfoil nonlinear aeroelastic interaction. In 39th AIAA

fluid dynamics conference, page 4200.

Gross, R., Chalot, F., Courty, J.-C., Mallet, M., Tran, D., Arnal, D., and Vermeersch, O.
(2015). Automatic transition prediction in an industrial Navier-Stokes solver using

higher-order finite elements. In 45th AIAA Fluid Dynamics Conference, page 2621.

Giirkan, C., Kronbichler, M., and Fernandez-Méndez, S. (2019). eXtended hybridizable

discontinuous Galerkin for incompressible flow problems with unfitted meshes and

BIBLIOGRAPHY 151

interfaces. International Journal for Numerical Methods in Engineering, 117(7):756—

T77.

Guyan, R. (1965). Reduction of stiffness and mass matrices. AIAA Journal, 3(2):380—
380.

Halton, J. H. (1960). On the efficiency of certain quasi-random sequences of points in

evaluating multi-dimensional integrals. Numerische Mathematik, 2(1):84-90.

Haykin, S. (2009). Neural Networks and Learning Machines. Pearson, New York, 3

edition.

Huergo, D., de Frutos, M., Jané, E., Marino, O. A., Rubio, G., and Ferrer, E. (2024).
Reinforcement learning for anisotropic p-adaptation and error estimation in high-

order solvers. arXiv preprint arXiv:2407.19000.

Hundsdorfer, W. and Verwer, J. G. (2013). Numerical solution of time-dependent

advection-diffusion-reaction equations, volume 33. Springer Science & Business

Media.

Jgrgensen, J. B., Kristensen, M. R., and Thomsen, P. G. (2018). A family of ESDIRK

integration methods. arXiv preprint arXiv:1803.01613.

Kennedy, C. and Carpenter, M. (2016). Diagonally implicit Runge-Kutta methods

for ordinary differential equations. A review. Technical Report TM-2016-219173,

NASA.

Kennedy, C. A. and Carpenter, M. H. (2003). Additive Runge—Kutta schemes for

convection—diffusion-reaction equations. Applied Numerical Mathematics, 44(1-

2):139-181.

Kirby, R. M., Sherwin, S. J., and Cockburn, B. (2012). To CG or to HDG: a comparative

study. Journal of Scientific Computing, 51:183-212.

Kocis, L. and Whiten, W. J. (1997). Computational investigations of low-discrepancy

sequences. ACM Transactions on Mathematical Software (TOMS), 23(2):266-294.

152 BIBLIOGRAPHY

Komala-Sheshachala, S., Sevilla, R., and Hassan, O. (2020). A coupled HDG-FV
scheme for the simulation of transient inviscid compressible flows. Computers &

Fluids, 202:104495.

Kompenhans, M., Rubio, G., Ferrer, E., and Valero, E. (2016). Comparisons of p-
adaptation strategies based on truncation-and discretisation-errors for high order

discontinuous Galerkin methods. Computers & Fluids, 139:36—46.

Kovasznay, L. I. G. (1948). Laminar flow behind a two-dimensional grid. Mathematical

Proceedings of the Cambridge Philosophical Society, 44(1):58-62.

Kvarng, A. (2004). Singly diagonally implicit Runge—Kutta methods with an explicit

first stage. BIT Numerical Mathematics, 44:489-502.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436—

444.

Lehrenfeld, C. and Schoberl, J. (2016). High order exactly divergence-free hybrid dis-

continuous Galerkin methods for unsteady incompressible flows. Computer Methods

in Applied Mechanics and Engineering, 307:339-361.

Leng, H. (2021). Adaptive HDG methods for the steady-state incompressible Navier—

Stokes equations. Journal of Scientific Computing, 87(1):37.

Li, J., Lin, X., and Chen, Z. (2022). Finite volume methods for the incompressible

Navier-stokes equations, volume 2022. Springer.

Liu, J.-G. and Shu, C.-W. (2000). A high-order discontinuous Galerkin method for 2D

incompressible flows. Journal of Computational Physics, 160(2):577-596.

Mgller, M. F. (1993). A scaled conjugate gradient algorithm for fast supervised learning.
Neural networks, 6(4):525-533.

Montlaur, A., Fernandez-Mendez, S., and Huerta, A. (2008). Discontinuous Galerkin
methods for the Stokes equations using divergence-free approximations. International

Journal for Numerical Methods in Fluids, 57(9):1071-1092.

BIBLIOGRAPHY 153

Montlaur, A., Fernandez-Mendez, S., Peraire, J., and Huerta, A. (2010). Discontinuous
Galerkin methods for the Navier—Stokes equations using solenoidal approximations.

International journal for numerical methods in fluids, 64(5):549-564.

Morgan, K., Peraire, J., Peiro, J., and Hassan, O. (1991). The computation of

three-dimensional flows using unstructured grids. Computer Methods in Applied

Mechanics and Engineering, 87(2-3):335-352.

Nguyen, N. C., Peraire, J., and Cockburn, B. (2010). A hybridizable discontinuous

Galerkin method for Stokes flow. Computer Methods in Applied Mechanics and

Engineering, 199(9-12):582-597.

Nguyen, N. C., Peraire, J., and Cockburn, B. (2011). An implicit high-order hybridiz-
able discontinuous Galerkin method for the incompressible Navier—Stokes equations.

Journal of Computational Physics, 230(4):1147-1170.

Nogueira, X., Colominas, I., Cueto-Felgueroso, L., and Khelladi, S. (2010). On the
simulation of wave propagation with a higher-order finite volume scheme based

on reproducing kernel methods. Computer Methods in Applied Mechanics and

Engineering, 199(23-24):1471-1490.

Paipuri, M., Ferndndez-Méndez, S., and Tiago, C. (2018). Comparison of high-order
continuous and hybridizable discontinuous Galerkin methods for incompressible

fluid flow problems. Mathematics and computers in simulation, 153:35-58.

Patankar, S. V. and Spalding, D. B. (1983). A calculation procedure for heat, mass and

momentum transfer in three-dimensional parabolic flows. In Numerical prediction

of flow, heat transfer, turbulence and combustion, pages 54—73. Elsevier.

Peraire, J. and Persson, P.-O. (2008). The compact discontinuous Galerkin (CDG)

method for elliptic problems. SIAM Journal on Scientific Computing, 30(4):1806—

1824.

Quartapelle, L. (2013). Numerical solution of the incompressible Navier-Stokes

equations, volume 113. Birkhauser.

154 BIBLIOGRAPHY

Quarteroni, A. (2017). Numerical models for differential problems. Springer.

Rhebergen, S. and Wells, G. N. (2018). A hybridizable discontinuous Galerkin method

for the Navier—Stokes equations with pointwise divergence-free velocity field. Journal

of Scientific Computing, 76(3):1484—-1501.

Sanz-Serna, J. M., Verwer, J. G., and Hundsdorfer, W. (1986). Convergence and
order reduction of Runge-Kutta schemes applied to evolutionary problems in partial

differential equations. Numerische Mathematik, 50:405-418.

Schenk, O. and Girtner, K. (2004). Solving unsymmetric sparse systems of linear

equations with PARDISO. Future Generation Computer Systems, 20(3):475-487.

Sevilla, R., Giacomini, M., Karkoulias, A., and Huerta, A. (2018). A superconver-
gent hybridisable discontinuous Galerkin method for linear elasticity. International

Journal for Numerical Methods in Engineering, 116(2):91-116.

Sevilla, R., Hassan, O., and Morgan, K. (2013). An analysis of the performance
of a high-order stabilised finite element method for simulating compressible flows.

Computer Methods in Applied Mechanics and Engineering, 253:15-27.

Sevilla, R. and Huerta, A. (2016). Tutorial on Hybridizable Discontinuous

Galerkin (HDG) for Second-Order Elliptic Problems, pages 105-129. Springer In-

ternational Publishing, Cham.

Sevilla, R. and Huerta, A. (2018). HDG-NEFEM with degree adaptivity for Stokes
flows. Journal of Scientific Computing, 77(3):1953-1980.

Shields, M. D. and Zhang, J. (2016). The generalization of Latin hypercube sampling.
Reliability Engineering & System Safety, 148:96-108.

Soon, S.-C., Cockburn, B., and Stolarski, H. K. (2009). A hybridizable discontinuous

Galerkin method for linear elasticity. International journal for numerical methods in

engineering, 80(8):1058-1092.

BIBLIOGRAPHY 155

Temam, R. (2001). Navier-Stokes equations: theory and numerical analysis. American

Mathematical Soc.

Wang, C. Y. (1991). Exact solutions of the steady-state Navier-Stokes equations. Annual

Review of Fluid Mechanics, 23(1):159-177.

Wang, 7. J., Fidkowski, K., Abgrall, R., Bassi, F., Caraeni, D., Cary, A., Deconinck, H.,
Hartmann, R., Hillewaert, K., Huynh, H. T., et al. (2013). High-order CFD methods:

current status and perspective. International Journal for Numerical Methods in

Fluids, 72(8):811-845.

Whiting, C. H. and Jansen, K. E. (2001). A stabilized finite element method for the
incompressible Navier—Stokes equations using a hierarchical basis. International

Journal for Numerical Methods in Fluids, 35(1):93-116.

Xie, Z. Q., Sevilla, R., Hassan, O., and Morgan, K. (2013). The generation of arbitrary

order curved meshes for 3D finite element analysis. Computational Mechanics,

51:361-374.

Yakovlev, S., Moxey, D., Kirby, R. M., and Sherwin, S. J. (2015). To CG or to HDG:

A comparative study in 3D. Journal of Scientific Computing, pages 1-29.

