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Abstract

The need for transient incompressible flow simulations in science and engineering has

driven the demand for high-order methods over conventional low-order finite element

and finite volume approaches. High-order methods offer greater accuracy and efficiency

in capturing the complex, time-dependent behaviour of fluid systems because of the

lower dissipation and dispersion of high-order approximations. Traditional low-order

methods often require highly refined meshes to achieve comparable accuracy, leading

to higher computational costs.

This thesis focuses on problems where flow features such as vortices or gust pertur-

bations need to be propagated over long distances. These flow features can be more

accurately propagated using high-order methods, but their localised nature suggests

that incorporating degree adaptive schemes can lead to significantly more efficient sim-

ulations by only employing high-order approximations where needed. Discontinuous

Galerkin methods have gained significant popularity and provide an easy-to-implement

framework for degree adaptivity. In particular, the hybridisable discontinuous Galerkin

is adopted in this work and implemented in Fortran 90.

This thesis provides two original scientific contributions. First, a conservative projec-

tion scheme has been developed and implemented to enable efficient degree adaptive

simulations for transient incompressible flows. The proposed scheme is found to remove

all the numerical artefacts shown by a standard adaptive process due to the violation of

the free-divergence condition when projecting a solution from a space of polynomials

of a given degree to a space of polynomials with a lower degree. Second, a novel degree

adaptive procedure is designed by using a trained artificial neural network to predict the

solution at a future time from the solution at the current time. The procedure is shown

to perform the degree adaptivity in places where flow features will travel in the future

and prevents the traditional requirement to perform degree adaptivity cycles within a

time step.

Keywords: transient incompressible flow, high-order methods, hybridisable discontin-

uous Galerkin, degree adaptivity, artificial neural network
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Nomenclature

Latin Symbols

b Aggressiveness parameter (base for logarithm in degree adaptation)

BX Set of buckets for input variable X

BY Set of buckets for output variable Y

d Stencil distance

E Error indicator

h Characteristic element size

k Polynomial degree of approximation

L Exact velocity gradient tensor

L Approximate velocity gradient tensor

n Outward unit normal vector

nadaptivity Number of iterations of the adaptive process

nbuckets Number of buckets for data reduction

ncases Number of training cases

nel Number of elements

nen Number of element nodes

nepochs Number of training epochs

nfn Number of face nodes

nparam Number of flow parameters

nsd Number of spatial dimensions

iv



nstencil Number of points in stencil

msd Number of components in symmetric tensor (3 in 2D, 6 in 3D)

p Exact pressure field

ph Approximate pressure field

s Volumetric source term

t Time

T Final time

t Prescribed traction on Neumann boundary

u Exact velocity field

u Approximate velocity field

û Trace of approximate velocity field on mesh skeleton

x Spatial coordinates

X Input data matrix

Y Output data matrix

Greek Symbols

Γ Domain boundary

ΓD Dirichlet boundary

ΓN Neumann boundary

ε Target error tolerance

λ Lagrange multiplier

ν Kinematic viscosity (= 1/Re)

Ω Computational domain

Ωe Element domain

ρ Mean pressure on element boundaries

τ Tangential direction vector

τa Convective stabilization parameter

τd Diffusive stabilization parameter

v



Dimensionless Numbers

Re Reynolds number

Spaces

Gh Space of polynomial functions for velocity gradient tensor

Vh Space of polynomial functions for velocity field

Ph Space of polynomial functions for pressure

Mh Space of polynomial functions for trace velocity

Wh Space of constant functions on element boundaries

L2(Ω) Space of square-integrable functions

H1(Ω) Space of functions with square-integrable gradients

H(div; Ω) Space of vector functions with square-integrable divergence

Operators and Notation

(·, ·)Th Inner product over computational domain

⟨·, ·⟩∂Th Inner product over mesh skeleton

J·K Jump operator across interior faces

∇ Gradient operator

∇· Divergence operator

∇s Symmetric gradient operator

Subscripts and Superscripts

(·)h Discrete/approximate quantity

(·)e Elemental quantity

vi



(·)∗ Post-processed quantity

(·)D Related to Dirichlet boundary

(·)N Related to Neumann boundary

(̂·) Quantity defined on mesh skeleton

Note: All variables are presented in their non-dimensional form following appropriate

scaling of the governing equations.
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Chapter 1

Introduction

1.1 Motivation

The simulation of incompressible transient flows, where transient refers to time-

dependent or unsteady phenomena that vary with time, plays a key role in both engi-

neering and research, helping to understand and predict a wide variety of natural and

industrial events in areas such as aerodynamics, weather forecasting, cardiovascular

circulation, and industrial blending.

Incompressible transient flow simulations present several challenges, both mathemati-

cally and numerically. One of the primary difficulties arises from the incompressibility

condition, which requires that the divergence of the velocity field remains zero at all

times. This introduces a strong coupling between the pressure and velocity fields,

making their resolution difficult. Additionally, because information in an incompress-

ible medium theoretically propagates at infinite speed, it places stringent demands on

numerical methods to avoid unphysical results. This can lead to issues with stability

and accuracy, particularly in time-dependent simulations, where the temporal evolution

of the flow must be accurately captured. Ensuring incompressibility at each time step

often requires special techniques such as projection methods or pressure correction

schemes, which can add computational complexity (Donea and Huerta, 2003).

1
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The vast majority of industrial, commercial, and academic flow solvers adopt low-order

approaches based on finite differences, finite element, or finite volume methods (Deng

et al., 1996; Franca and Frey, 1992; Li et al., 2022; Whiting and Jansen, 2001). Finite

difference methods in Cartesian grids are known to be extremely efficient but are

unable to handle complex geometries without the time-consuming human intervention

required to perform a block subdivision of the geometric model (Ali et al., 2017). Finite

element and finite volume methods enable the use of unstructured meshes that provide

the preferred framework to simulate problems involving complex geometries without

the need of human intervention to generate meshes and enabling local mesh refinement.

These methods have proven to be extremely robust and competitive for the simulation

of steady flows (Morgan et al., 1991; Gerhold, 2005; Biedron et al., 2016).

The simulation of transient flows using low order schemes poses significant challenges,

mainly due to the high dissipation and dispersion errors associated with low order

approximations (Ainsworth et al., 2006). The need to use extremely refined meshes

to capture the transient flow features that propagate over long distances seems to

suggest that high order methods, where high-order refers to numerical methods that use

polynomial approximations of degree greater than one to represent the solution within

each element, offering potentially higher accuracy per degree of freedom compared to

traditional linear approximations, are better suited for applications involving unsteady

phenomena.

In the last two decades, there has been significant interest in developing high-order

finite volume and finite element schemes (Nogueira et al., 2010; Campagne et al.,

2010; Chalot and Normand, 2010; Sevilla et al., 2013; Chalot et al., 2015). Traditional

high-order finite volume methods require the definition of a stencil to perform the high-

order approximation. This introduces difficulties when using unstructured meshes and

requires some special treatment near boundaries. High-order finite element methods

have shown benefits when compared to low order elements, but the definition of the

stabilisation, especially for highly stretched elements, seems to be the major difficulty

that prevents the adoption of such schemes.
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Another class of high-order methods that have gained substantial interest from the re-

search community is discontinuous Galerkin (DG) methods (Cockburn, 2017). Initially

developed to solve neutron transport equations, DG methods gained popularity due to

the work of Shu and Cockburn published in a series of five articles (Cockburn and Shu,

1991, 1989; Cockburn et al., 1989, 1990; Cockburn and Shu, 1998b).

The first extension of DG methods to convection-diffusion problems was proposed

in (Arnold, 1982), where the interior penalty method was introduced using discontin-

uous elements. The method showed optimal convergence, but only when using a mesh

dependent penalty parameter.

The extension of DG methods to handle the elliptic operator (e.g. second order deriva-

tives), required to extend the initial work on hyperbolic systems to solve problems

governed by the Navier-Stokes equations, was object of intensive research during the

late 1990s (Cockburn and Shu, 1998a; Baumann and Oden, 1999). The local DG

method, introduced in (Cockburn and Shu, 1998a), was widely adopted for the solution

of convection-diffusion problems and further improved to reduce its stencil, leading to

the compact DG method (Peraire and Persson, 2008).

DG methods offer greater flexibility compared to continuous finite elements in handling

non-conforming meshes and non-uniform polynomial approximations. While contin-

uous Galerkin methods can also accommodate non-uniform polynomial orders, they

require additional constraints and continuity enforcement at element interfaces that

increase implementation complexity. The definition of stabilisation for convection-

dominated problems is generally more straightforward within a DG framework. Fur-

thermore, in the context of incompressible flows, DG methods enable the use of identical

polynomial spaces for velocity and pressure approximations. This is not the case for

continuous Galerkin approaches that usually require a lower dimensional space for the

pressure compared to the velocity in order to guarantee the Ladyzhenskaya-Babuška-

Brezzi (LBB) condition (Donea and Huerta, 2003). The higher-order pressure ap-

proximation allows for more accurate representation of pressure gradients, which is
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particularly important in problems involving boundary layers or rapid pressure vari-

ations. The ability to handle discontinuities at element interfaces through numerical

fluxes, combined with intrinsic stabilisation, makes DG methods particularly robust

for convection-dominated flows without requiring additional stabilisation parameters

or shock-capturing terms that are typically needed in continuous formulations.

The attractive properties of the DG methods led to application to the solution of

incompressible viscous flows using the local DG method (Cockburn et al., 2005)

and the development of methods to employ solenoidal basis (Montlaur et al., 2010)

and DG methods that employed the same order of approximation for velocity and

pressure (Cockburn et al., 2009b).

Despite the advantages of DG schemes, the main criticism received by these methods

has traditionally been the increased computational cost due to the use of discontinuous

approximation spaces, meaning that degrees of freedoms on the inter-element faces

are duplicated. The hybridisable DG (HDG) method was introduced by Cockburn and

co-workers to alleviate this problem (Cockburn et al., 2009a).

As other DG methods, the HDG method uses a mixed formulation where the primal

variable (velocity field for incompressible flows) and its gradient are considered as

independent unknowns. The most distinctive feature of the HDG method is the in-

troduction of the so-called hybrid variable on the faces of the elements (edges in two

dimensions), corresponding to the trace of the velocity on the mesh skeleton. Using the

hybridisation process, which is equivalent to the static condensation commonly used

in continuous Galerkin approaches (Guyan, 1965), the hybridisation leads to a reduced

system of equations where only the degrees of freedom associated to the element faces

are globally coupled. An important property of HDG methods, contrary to other DG

methods, is the possibility to build a super-convergent approximation of the primal

variable. The ability to work with the spaces of polynomials with the same degree for

both the primal and mixed variable and the ability to deliver optimal rates of conver-

gence (k + 1 in the L2(Ω) norm when employing an approximation with polynomials
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of degree k) enables the possibility of building a super-convergent, or postprocessed,

solution (with a rate of convergence k + 2).

HDG methods for incompressible flows were developed during the 2010s, primarily

focussing on the development of HDG schemes for Stokes flows (Cockburn et al.,

2010; Nguyen et al., 2010; Cockburn et al., 2011; Cockburn and Shi, 2013, 2014). The

extension to incompressible viscous flows governed by the Navier-Stokes equations was

first presented in (Nguyen et al., 2011). Early work on these methods (Nguyen et al.,

2010) showed that mixed formulations based on the Cauchy stress tensor exhibited a

suboptimal rate of convergence of the mixed variable, which in turn led to a loss of the

superconvergent properties of the postprocessed velocity. This phenomenon had also

previously been reported for the solution of linear elasticity problems with the HDG

method (Soon et al., 2009). In (Sevilla et al., 2018) and (Giacomini et al., 2018), the

authors linked this phenomenon to the weak imposition of the symmetry of the stress

tensor, for elasticity and Stokes flows, respectively. The authors proposed the use of

the so-called Voigt notation, which has been traditionally used by the solid mechanics

community and that can be seen as a strong imposition of the symmetry of the stress

tensor.

The ability of HDG methods to build a super-convergent approximation of the primal

variable (the velocity in incompressible flow problems) was identified in (Giorgiani

et al., 2013) as a route to devise a cheap error indicator, based on the difference

between the primal and superconvergent solutions. This strategy has been employed

in the context of Stokes and Navier-Stokes flows (Giorgiani et al., 2014; Sevilla and

Huerta, 2018).

1.2 Objectives

The problems of interest in this work involve the propagation of local flow features such

as vortices or gust perturbations over long distances. In a low-order context, efficient
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simulations that involve the propagation of local flow features require the use of mesh

adaptivity. However, in a high-order context, the possibility to locally adapt the degree

of approximation without changing the mesh topology is an attractive alternative. The

use of DG methods in general enables an easy framework to handle different degrees

of approximation in different elements. Furthermore, the HDG method enables us to

devise a cheap error indicator to drive the adaptive process.

The main challenge is the ability to design efficient robust and efficient degree adaptive

approaches for simulating transient viscous incompressible flows. To this end, this the-

sis aims at solving two issues that are often encountered when applying degree adaptive

schemes to the solution of the unsteady incompressible Navier-Stokes equations.

Degree adaptive schemes often assume that the degree of approximation is not lowered

during a simulation. The main issue of lowering the degree of approximation when

simulating incompressible flows is the potential violation of the free-divergence condi-

tion. This issue is obviously not relevant when performing steady simulations because

the result of one simulation is only used as an initial guess of the iterative method

employed to solve the resulting non-linear system of equations after discretising the

problem in space and time. However, in the context of transient flows, lowering the

degree of approximation leads to a velocity field that is not divergent free and it is used

to advance the solution to the next time step. As a result, the accuracy and robustness of

the method can be lost. The problem does not appear when the degree of approximation

is increased because the space of polynomials of a certain degree is contained in the

space of polynomials of a higher degree. Therefore, the projection of the solution from

a space of polynomials of a given degree into a space of higher order polynomials do

not modify the approximation.

Despite degree adaptive approaches that do not allow lowering the degree of approx-

imation are robust, they are not efficient. Especially when local flow features travel

over long distances, these approaches can lead to an unnecessary high computational

cost. Many elements of the mesh might be using high order approximations long after
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a particular flow feature passed through that element, even if this accuracy is no longer

required.

The first objective is to develop an easy-to-implement and efficient strategy to enable

lowering the degree of approximation in a transient degree adaptive process. The key

idea is to develop a projection from a space of polynomials to another space of polyno-

mials with a lower degree that guarantees that the projected velocity is divergence-free.

To deliver high accuracy and efficiency, high-order spatial discretisation schemes need

to be implemented with high-order time integrators. In this work, high order explicit

singly diagonal implicit Runge-Kutta (ESDIRK) integration methods are considered.

With these methods, large time steps can be employed, allowing flow features to travel

distances larger than the element size during a single time step. In this context,

traditional adaptive approaches require repetition of the adaptive process within a time

step to ensure that the elements have enough resolution to accurately represent high

solution gradients in the next time step.

The second objective is to accelerate a degree adaptive process by using a trained

artificial neural network to predict the solution at a future time from the solution at the

current time. The aim is to eliminate the need to repeat the adaptive process during a

time step, substantially accelerating the simulation without loss of accuracy.

1.3 Outline of the thesis

The remaining of the thesis is organised as follows.

Chapter 2 briefly recalls the transient incompressible Navier-Stokes equations and

describes the fundamentals of the HDG method. Details about the weak formulation,

the spatial discretisation with high-order isoparametric elements and the temporal

discretisation with backward differentiation formulae (BDF) and explicit first stage,

singly diagonally implicit Runge-Kutta (ESDIRK) methods are presented. Details
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about the linearisation procedure using the Newton-Raphson method are given and

some numerical examples are introduced to verify the implemented Fortran 90 code in

two and three dimensions.

Chapter 3 presents the first original contribution of the thesis, which involves a novel

conservative projection for the simulation of transient incompressible flows using de-

gree adaptivity. The strategy to build a super-convergent approximation of the velocity

in an HDG context is presented, and its use to devise a cheap error indicator to drive a

degree adaptive process is detailed. The proposed conservative projection is described,

and a discussion is presented about the need of this strategy in transient problems

where the degree of approximation is to be lowered in regions of the domain to main-

tain efficiency. A numerical example is used to verify the implementation of the degree

adaptive process for steady state problems. Finally, a more challenging transient prob-

lem is considered to assess the performance and accuracy of the proposed conservative

projection. The results are compared to the results obtained with traditional adaptive

processes, and also compared to approaches where the degree of approximation is not

allowed to be lowered.

Chapter 4 presents the second original contribution of the thesis, which is the devel-

opment of a novel neural network-driven degree adaptive strategy. After providing a

brief review of artifical neural networks, the proposed strategy is described. The main

idea is to train a network to predict the solution at a given mesh node at time tn+1

from the solution at the same node and at a number of surrounding points at time tn.

The network architecture is detailed, and crucial details are given to perform the data

acquisition and preparation before the network is trained. A verification example is

introduced in this chapter to illustrate all the steps involved, from data collection, data

preparation, training of the network, and deployment within a degree adaptive process.

Chapter 5 focusses on the application of developed technology for the simulation of

problems involving the propagation of gust perturbation over long distances. Two ex-

amples are presented to illustrate the benefits of the two original contributions described
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in Chapters 3 and 4. The first example involves the simulation of a gust impinging on

a NACA0012 aerofoil, and the advantages of using the conservative projection within

a degree adaptive process are analysed. The second example involves the propagation

of a parametric gust in a free-stream flow, and the benefits of using a degree adaptive

process driven by a trained neural network are demonstrated. This example also pro-

vides a series of numerical experiments to study the performance of different neural

network architectures, as well as the influence of the numerical parameters introduced

in this approach.

Finally, chapter 6 summarises the conclusions of the work presented and describes

some potential avenues for future research.



Chapter 2

The HDG method for transient

incompressible flows

2.1 Introduction

The numerical simulation of incompressible and unsteady flows governed by the

Navier-Stokes equations remains a fundamental challenge in computational fluid dy-

namics (CFD). These equations, which describe the motion of viscous fluid substances,

are of crucial importance in a wide range of scientific and engineering applications,

from weather prediction to aerodynamics (Temam, 2001). However, their inherent

non-linearity and the need to satisfy the incompressibility constraint pose significant

computational difficulties, particularly for high Reynolds number flows and complex

geometries (Quarteroni, 2017).

In recent years, the hybridisable discontinuous Galerkin (HDG) method has emerged

as a promising approach to the numerical solution of partial differential equations,

including incompressible flows. Cockburn and co-workers devised and analysed var-

ious HDG formulations for Stokes flows (Cockburn et al., 2010, 2011; Nguyen et al.,

2010). In (Nguyen et al., 2010) the authors observed a sub-optimal convergence of

the mixed variable for low-order approximations and consequently a loss of optimal

10
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convergence of the postprocessed velocity. Giacomini et al. (2018) proposed a simple

remedy by strongly imposing the symmetry of the stress tensor, in practice using the

so-called Voigt notation. An alternative formulation to guarantee optimal convergence

of the mixed variable when employing low order approximations, using the so-called

M -decompositions, was proposed in (Cockburn and Fu, 2017).

The development of HDG methods for the incompressible Navier-Stokes equations was

first presented in (Nguyen et al., 2011) and the mathematical analysis was presented

in (Cesmelioglu et al., 2017). The ability to build a super-convergent velocity field

was exploited in (Giorgiani et al., 2014) to devise a cheap error indicator to drive a

degree adaptive process. For a more comprehensive literature review on HDG methods,

including the application to the incompressible Navier-Stokes equations, the reader is

referred to the tutorial presented in (Giacomini et al., 2020).

The application of HDG to the incompressible Navier-Stokes equations offers several

potential benefits:

• Optimal convergence rates for velocity, pressure, and velocity gradients

• Element-by-element postprocessing yielding superconvergent velocity fields

• Exact satisfaction of the incompressibility constraint at the discrete level

• Reduced number of globally coupled degrees of freedom compared to standard

DG methods

• Flexible and robust treatment of boundary conditions

This chapter summarises the HDG formulation of the incompressible unsteady Navier-

Stokes equations. Spatial discretisation is based on the HDG framework introduced by

Nguyen et al. (2011); Giacomini et al. (2020), whilst temporal discretisation employs

two families of implicit methods: backward differentiation formulae (BDF) (Curtiss

and Hirschfelder, 1952) and explicit first stage, singly diagonally implicit Runge-Kutta
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(ESDIRK) methods (Kennedy and Carpenter, 2003). These temporal discretisation

schemes are chosen for their stability properties and ability to handle stiff problems

efficiently.

The remainder of this chapter is organised as follows. Sections 2.3 to 2.6 present the

mathematical formulation of the HDG method for the unsteady incompressible Navier-

Stokes equations, including spatial and temporal discretisations. Section 2.7 discusses

the details of the Newton-Raphson linearisation strategy and the hybridisation process.

Section 2.8 provides a set of numerical examples to verify the optimal spatial and

temporal convergence properties of the implemented numerical scheme.

The numerical methods and algorithms presented in this work have been implemented

from scratch in Fortran 90, enabling complete control over all aspects of the imple-

mentation. Whilst building on established theoretical foundations, the code base was

developed independently to optimise performance and maintain flexibility for future

extensions. This ground-up implementation approach allows for detailed verification

of the properties of the method and facilitates modifications to explore novel numer-

ical techniques. The custom implementation provides full access to all intermediate

quantities needed for analysis and ensures reproducibility of the results presented in

subsequent chapters.

2.2 The transient incompressible Navier-Stokes equa-

tions

The transient incompressible Navier-Stokes problem in the open bounded computa-

tional domain Ω ∈ Rnsd with boundaries ∂Ω and nsd denoting the number of spatial
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dimensions is expressed as



∂u

∂t
+∇ · (u⊗ u)−∇ · (2ν∇su− pInsd) = s in Ω× (0, T ]

∇ · u = 0 in Ω× (0, T ]

u = uD on ΓD × (0, T ]

n · (2ν∇su− pInsd − u⊗ u) = t on ΓN × (0, T ]

u = u0 in Ω× {0}

(2.1a)

(2.1b)

(2.1c)

(2.1d)

(2.1e)

Equation (2.1a) represents the momentum equation, where ∇s :=
(
∇+∇T

)
/2 is the

symmetric gradient operator, u denotes the velocity field, p is the pressure, ν is the

kinematic viscosity, Insd is the identity tensor of dimensions nsd, ∂u/∂t is the temporal

derivative of the velocity field, T is the final time and s represents the body force. The

Reynolds number is given by Re = 1/ν.

Equation (2.1b) is the continuity equation, also known as the incompressibility condi-

tion, which enforces a divergence-free velocity field.

The boundary ∂Ω is partitioned into two disjoint parts: the Dirichlet portion ΓD and

the Neumann portion ΓN , such that ∂Ω = ΓD ∪ΓN and ΓD ∩ΓN = ∅. Equation (2.1c)

imposes a Dirichlet boundary condition, specifying the velocity uD on ΓD. Equation

(2.1d) prescribes a Neumann boundary condition for the momentum equation, where t

is the traction specified on ΓN , and n is the normal outward unit vector.

The term ∂u/∂t accounts for the unsteadiness of the flow, indicating that velocity and

pressure evolve with time, and (2.1e) represents the initial condition. Consequently,

the solution of these equations requires the application of time integration methods in

the time interval (0, T ].

It is important to note that the incompressibility condition (2.1b) imposes a compati-

bility constraint on the velocity field. Applying the divergence theorem to the integral
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of (2.1b) leads to ∫
Ω

∇ · udΩ =

∫
∂Ω

u · n dΓ = 0. (2.2)

Using the Dirichlet boundary condition, the compatibility constraint can be written as

∫
ΓD

uD · n dΓ +

∫
ΓN

u · n dΓ = 0. (2.3)

In addition, when exclusively Dirichlet boundary conditions are prescribed (i.e. ΓD =

∂Ω), the pressure is only determined up to a constant. Imposing only Dirichlet boundary

conditions is equivalent to prescribing only Neumann boundary conditions on the

numerical flux, which leads to an ill-posed problem that requires an additional constraint

on the velocity field. Therefore, an additional constraint on the pressure field must be

imposed to eliminate its indeterminacy. For hybrid formulations, it is common practice

to enforce a zero mean pressure condition on the boundary (see, for example, Cockburn

et al. (2009a), Cockburn et al. (2010), Cockburn and Shi (2014)). This condition is

expressed as ∫
∂Ω

p dΓ = 0. (2.4)

2.3 HDG strong forms

The computational domain Ω is partitioned into a set of non-overlapping subdomains,

or elements, namely

Ω =
nel⋃
e=1

Ωe, such that Ωi ∩ Ωj = ∅ for i ̸= j. (2.5)

The boundaries ∂Ωe of these subdomains define an internal interface, also called mesh

skeleton, defined as

Γ :=

[
nel⋃
e=1

∂Ωe

]
\ ∂Ω. (2.6)
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Finally, the scalar products (·, ·)D and ⟨·, ·⟩B are introduced, denoting, respectively, the

L2 scalar product in any domain D ⊂ Ω and the L2 scalar product of the traces over

B ⊂ ∂Ω.

Following (Sevilla and Huerta, 2016; Giacomini et al., 2020), we introduce the discrete

functional spaces

Vh(Ω) :=
{
v ∈ L2(Ω) : v|Ωe

∈ Pk (Ωe) ∀Ωe, e = 1, . . . , nel
}
,

V̂h(S) :=
{
v̂ ∈ L2(S) : v̂|Γi

∈ Pk (Γi) ∀Γi ⊂ S ⊆ Γ ∪ ∂Ω
}
,

(2.7)

where Pk (Ωe) and Pk (Γi) denote the spaces of polynomial functions of complete

degree at most k in Ωe and on Γi, respectively.

As commonly done in DG methods, the original system of partial differential equations

is written on the so-called broken computational domain by imposing the continuity of

the velocity and the fluxes on the mesh skeleton, namely



∂u

∂t
+∇·(u⊗ u)−∇·(2ν∇su−pInsd) = s in Ωe × (0, T ]

∇ · u = 0 in Ωe × (0, T ]

u = uD on (∂Ωe ∩ ΓD)× (0, T ]

n · (2ν∇su− pInsd − u⊗ u) = t on (∂Ωe ∩ ΓN)× (0, T ]

u = u0 in Ωe × {0}

[[u⊗ n]] = 0 on Γ× (0, T ]

[[((
√
2νL− pInsd)− (u⊗ u)) · n]] = 0 on Γ× (0, T ]

(2.8a)

(2.8b)

(2.8c)

(2.8d)

(2.8e)

(2.8f)

(2.8g)

where, following the definition of Montlaur et al. (2008), the jump operator J·K is

introduced. Along each portion of the interface Γ, it sums the values of the elements

on the left and right, denoted Ωl and Ωr, such that

J⊙K = ⊙l +⊙r. (2.9)
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It is important to note that this definition of the jump operator always involves the

outward unit normal to a surface, denoted as J⊙nK. At the interface between elements

Ωl and Ωr, this implies J⊙nK = ⊙lnl + ⊙rnr, where nl and nr are the outward unit

normals to ∂Ωl and ∂Ωr, respectively. Furthermore, it should be noted that nl = −nr

along their interface.

As other DG methods, the HDG method utilises a mixed formulation of the incom-

pressible Navier-Stokes. The system of partial differential equations (2.8) is written as

a system of first-order partial differential equations by introducing a new variable L,

namely



L+
√
2ν∇su = 0 in Ωe × (0, T ]

∂u

∂t
+∇·(

√
2νL+pInsd)+∇·(u⊗ u) = s in Ωe × (0, T ]

∇ · u = 0 in Ωe × (0, T ]

u = uD on (∂Ωe ∩ ΓD)× (0, T ]

((
√
2νL− pInsd)− (u⊗ u)) · n = −t on (∂Ωe ∩ ΓN)× (0, T ]

u = u0 in Ωe × {0}

[[u⊗ n]] = 0 on Γ× (0, T ]

[[((
√
2νL− pInsd)− (u⊗ u)) · n]] = 0 on Γ× (0, T ].

(2.10a)

(2.10b)

(2.10c)

(2.10d)

(2.10e)

(2.10f)

(2.10g)

(2.10h)

The mixed variable L := −
√
2ν∇su is introduced as an additional unknown, defined

as the scaled strain-rate or second-order velocity deformation tensor. By introducing L

as an independent variable, the second-order partial differential equation is decomposed

into a system of first-order equations. This decoupling facilitates more flexible numer-

ical discretisation strategies and enables the method to achieve enhanced numerical

stability.

The HDG method solves the problem (2.10) in two stages. First, a local problem is

considered in each element to express the velocity, pressure and mixed variable in
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terms of a new independent variable, û, which is the trace of the velocity in the mesh

skeleton. The local problems can be written as



L+
√
2ν∇su = 0 in Ωe × (0, T ]

∂u

∂t
+∇·(

√
2νL+pInsd)+∇·(u⊗ u) = s in Ωe × (0, T ]

∇ · u = 0 in Ωe × (0, T ]

u = uD on (∂Ωe ∩ ΓD)× (0, T ]

u = û on (∂Ωe\ΓD)× (0, T ]

u = u0 in Ωe × {0},

(2.11a)

(2.11b)

(2.11c)

(2.11d)

(2.11e)

(2.11f)

and features a pure Dirichlet problem, which means that an extra condition on the

pressure needs to be introduced to remove its indeterminacy, for instance

⟨pe, 1⟩∂Ωe
= ρe, e = 1, . . . , nel (2.12)

where ρe represents the scaled mean pressure on the boundary of element Ωe.

The second stage of the HDG formulation involves a global problem, encompassing

the transmission conditions and the Neumann boundary conditions. The local problem

is


[[u⊗ n]] = 0 on Γ× (0, T ]

[[((
√
2νL− pInsd)− (u⊗ u)) · n]] = 0 on Γ× (0, T ]

((
√
2νL− pInsd)− (u⊗ u)) · n = −t on ΓN × (0, T ].

(2.13a)

(2.13b)

(2.13c)

Given the Dirichlet boundary condition imposed in the local problems (2.11) and the

unique definition of the hybrid velocity on each interior face, the continuity of the

velocity, imposed by (2.13a), is automatically satisfied. Therefore the global problem
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is simply

[[((
√
2νL− pInsd)− (u⊗ u)) · n]] = 0 on Γ× (0, T ]

((
√
2νL− pInsd)− (u⊗ u)) · n = −t on ΓN × (0, T ].

(2.14a)

(2.14b)

Finally, the global problem is completed with the compatibility condition, induced by

the free-divergence condition, which is written now in terms of the hybrid velocity,

namely

⟨û · n, 1⟩∂Ωe\ΓD
+ ⟨uD · n, 1⟩∂Ωe∩ΓD

= 0. (2.15)

2.4 HDG weak formulation

For each element Ωe, where e = 1, . . . , nel, the weak formulation of the local problem

can be expressed as follows: given uD on ΓD and û on Γ ∪ ΓN , find (Le,ue, pe) ∈

[H (div; Ωe) ;S]× [H1 (Ωe)]
nsd ×H1 (Ωe) that satisfies



− (G,L)Ωe
+
Ä
∇ · (

√
2νG),u

ä
Ωe

=
¨
Gn,

√
2νuD

∂
∂Ωe∩ΓD

+
¨
Gn,

√
2νû
∂
∂Ωe\ΓDÅ

w,
∂u

∂t

ã
Ωe

+
Ä
w,∇ ·

Ä√
2νL
ää

Ωe

+ (w,∇p)Ωe

+
〈
w,
(√

2νL+ pInsd

∧)
n−
Ä√

2νL+ pInsd
ä
n
〉
∂Ωe

− (∇w,u⊗ u)Ωe
+
¨
w,
Ä
û⊗ u

ä
n
∂
∂Ωe

= (w, s)Ωe

(∇q,u)Ωe
= ⟨q,uD · n⟩∂Ωe∩ΓD

+ ⟨q, û · n⟩∂Ωe\ΓD

⟨p, 1⟩∂Ωe
= ρe,

(2.16a)

(2.16b)

(2.16c)

(2.16d)

for all (G,w, q) ∈ [H (div; Ωe) ;S] × [H1 (Ωe)]
nsd × H1 (Ωe). Here, [H (div; Ωe) ;S]

denotes the space of square-integrable symmetric tensors S of order nsd on Ωe with

square-integrable row-wise divergence.

It is worth noting that integration by parts is done twice in the the momentum equation,
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leading to the difference between physical and numerical fluxes in (2.16b).

The numerical trace of the diffusive and convective fluxes is defined in (Cockburn et al.,

2009a) and (Giacomini et al., 2020) as

(
√
2νL+ pInsd

∧

)n :=


(
√
2νL+ pInsd)n+ τ d(u− uD) on ∂Ωe ∩ ΓD

(
√
2νL+ pInsd)n+ τ d(u− û) elsewhere

(2.17)

and

(u⊗ u)
∧

n :=


(uD ⊗ uD)n+ τa(u− uD) on ∂Ωe ∩ ΓD

(û⊗ û)ne + τa(u− û) elsewhere,
(2.18)

respectively.

The diffusive and convective stabilisation parameters, τ d and τa, respectively, play a

crucial role in the stability, accuracy, and convergence properties of the HDG method.

The diffusive stabilisation parameter τ d is typically defined as

τ d =
κν

ℓ
, (2.19)

where ℓ denotes a characteristic length scale of the problem domain and κ > 0 is a

numerical scaling factor. Extensive numerical experiments have been performed to

study the effect of the choice of the diffusive stabilisation; see, for instance, (Giacomini

et al., 2020) and references therein.

For the convective term, the stabilisation parameter τa is often chosen based on a

characteristic velocity of the fluid flow, namely

τa = β∥u∥2 or τa = β∥u∥∞, (2.20)

where u represents the convective velocity field, and β > 0 is a numerical parameter

independent of the Reynolds number. The norms ∥ · ∥2 and ∥ · ∥∞ can be evaluated

locally on individual elements Ωe or globally on the entire domain Ω, depending on the
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specific implementation.

In this work, the diffusive stabilisation parameter is selected as κ = 10, given the

extra accuracy reported in (Giacomini et al., 2020). For the numerical parameter of

the convective stabilisation a value of β = 1 is chosen to ensure that the admissibility

condition, introduced in (Cockburn et al., 2009a) to guarantee stability and well-

posedness,

min
x∈∂Ωe

{
τ d + τa − û · ne

}
≥ γ > 0 (2.21)

is satisfied, for some constant γ. Finally, the ∥·∥2 norm is used across the computational

domain to define the convective stabilisation. In summary, the specific choice of the

diffusive stabilisation in this work is

τ d =
10ν

ℓ
, τa = max

x∈Ω
∥u∥2. (2.22)

Introducing the definitions of the numerical traces from (2.17) and (2.18) into the

momentum equation yields the weak form of the local problem: for e = 1, . . . , nel,

find (Le,ue, pe) ∈ [H (div; Ωe) ;S]× [H1 (Ωe)]
nsd ×H1 (Ωe) such that



− (G,L)Ωe
+
Ä
∇ · (

√
2νG),u

ä
Ωe

=
¨
Gn,

√
2νuD

∂
∂Ωe∩ΓD

+
¨
Gn,

√
2νû
∂
∂Ωe\ΓDÅ

w,
∂u

∂t

ã
Ωe

+
Ä
w,∇ ·

Ä√
2νL
ää

Ωe

+ (w,∇p)Ωe

− (∇w,u⊗ u)Ωe
+ ⟨w, τu⟩∂Ωe

= (w, s)Ωe

+ ⟨w, (τ − û · n)uD⟩∂Ωe∩ΓD
+ ⟨w, (τ − û · n) û⟩∂Ωe\ΓD

(∇q,u)Ωe
= ⟨q,uD · n⟩∂Ωe∩ΓD

+ ⟨q, û · n⟩∂Ωe\ΓD

⟨p, 1⟩∂Ωe
= ρe,

(2.23a)

(2.23b)

(2.23c)

(2.23d)

for all (G,w, q) ∈ [H (div; Ωe) ;S] × [H1 (Ωe)]
nsd ×H1 (Ωe), where the stabilisation

parameter is defined as τ = τ d + τa. The local problem provides (Le,ue, pe) for

e = 1, . . . , nel, in terms of the global unknowns û and ρ = (ρ1, . . . , ρnel)
T .
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Analogously, substituting the numerical traces defined in (2.17) and (2.18) into the

transmission equations, the variational form of the global problem is obtained. Specif-

ically, find û ∈
î
H 1

2 (Γ ∪ ΓN)
ónsd

and ρ ∈ Rnel such that holds:



nel∑
e=1

{¨
ŵ,
Ä√

2νL+ pInsd
ä
n
∂
∂Ωe\ΓD

+ ⟨ŵ, τu⟩∂Ωe\ΓD

−⟨ŵ, τ û⟩∂Ωe∩Γ − ⟨ŵ, (τ − û · n) û⟩∂Ωe∩ΓN

©
= −

nel∑
e=1

⟨ŵ, t⟩∂Ωe∩ΓN

⟨û · n, 1⟩∂Ωe\ΓD
= −⟨uD · n, 1⟩∂Ωe∩ΓD

for e = 1, . . . , nel,

(2.24a)

(2.24b)

for all ŵ ∈ [L2 (Γ ∪ ΓN)]
nsd .

2.5 Temporal discretisation

This section presents the temporal discretisation using backward differentiation formu-

lae (BDF) (Curtiss and Hirschfelder, 1952) and explicit first stage, singly diagonally

implicit Runge-Kutta (ESDIRK) methods (Kennedy and Carpenter, 2003).

To simplify the presentation, it is assumed that the temporal domain [0, T ] is partitioned

into equally spaced intervals, and the time step is denoted by ∆t. To denote the

evaluation of a certain field, for instance, the velocity field u(x, t) at an instant tn, the

notation un is used throughout the whole document.

To present the general form of the methods considered in this work, a general scalar

ordinary differential equation is considered, namely

dv

dt
= f(t, v). (2.25)
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2.5.1 BDF discretisation of the Navier-Stokes equations

The general form of an s-step BDF method can be expressed as

s∑
j=0

αjv
n+1−j = ∆tβf(tn+1, vn+1) (2.26)

where αj and β are coefficients specific to each BDF method. In the current implemen-

tation first, second and third order BDF methods have been considered. The coefficients

for the first-order method (BDF1) are

α0 = 1, α1 = −1, β = 1. (2.27)

For the second-order method (BDF2) the coefficients are

α0 =
3

2
, α1 = −2, α2 =

1

2
, β = 1. (2.28)

Finally, for the third-order method (BDF3) the coefficients are

α0 =
11

6
, α1 = −3, α2 =

3

2
, α3 = −

1

3
. (2.29)

When solving steady problems, the BDF1 is often considered as a relaxation procedure,

to facilitate the convergence to the steady state. However, when transient problems are of

interest only higher order methods are considered to guarantee time accuracy. Higher-

order BDF methods (BDF2 and BDF3) generally offer improved accuracy compared

to BDF1, but require additional storage of previous time steps. BDF3, while more

accurate, may exhibit slightly reduced stability compared to BDF2 for certain problems

(Hundsdorfer and Verwer, 2013).

Applying this general BDF to the weak form of the local problems (2.23) leads to the
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semi-discrete local problems



−
(
G,Ln+1

)
Ωe

+
Ä
∇ · (

√
2νG),un+1

ä
Ωe

=
¨
Gn,

√
2νun+1

D

∂
∂Ωe∩ΓD

+
¨
Gn,

√
2νûn+1

∂
∂Ωe\ΓD(

w,
s∑

j=0

αju
n+1−j

)
Ωe

+∆tβ
[ Ä
w,∇ ·

Ä√
2νLn+1

ää
Ωe

+
(
w,∇pn+1

)
Ωe
−
(
∇w,un+1 ⊗ un+1

)
Ωe

+
〈
w, τnun+1

〉
∂Ωe

]
= ∆tβ

[
(w, sn+1)Ωe +

〈
w,
(
τn − ûn+1 · n

)
un+1

D

〉
∂Ωe∩ΓD

+
〈
w,
(
τn − ûn+1 · n

)
ûn+1

〉
∂Ωe\ΓD

]
(
∇q,un+1

)
Ωe

=
〈
q,un+1

D · n
〉
∂Ωe∩ΓD

+
〈
q, ûn+1 · n

〉
∂Ωe\ΓD〈

pn+1, 1
〉
∂Ωe

= ρn+1
e .

(2.30a)

(2.30b)

(2.30c)

(2.30d)

It should be noted that in this work the stabilisation parameter is chosen to be evaluated

at tn to simplify the linearisation process.

Similarly, the semi-discrete form of the global problem is



nel∑
e=1

{¨
ŵ,
Ä√

2νLn+1 + pn+1Insd
ä
n
∂
∂Ωe\ΓD

+
〈
ŵ, τnun+1

〉
∂Ωe\ΓD

−⟨ŵ, τnûn+1⟩∂Ωe∩Γ −
〈
ŵ,
(
τn − ûn+1 · n

)
ûn+1

〉
∂Ωe∩ΓN

©
= −

nel∑
e=1

⟨ŵ, tn+1⟩∂Ωe∩ΓN

〈
ûn+1 · n, 1

〉
∂Ωe\ΓD

= −
〈
un+1

D · n, 1
〉
∂Ωe∩ΓD

for e = 1, . . . , nel.

(2.31a)

(2.31b)

2.5.2 ESDIRK discretisation of the Navier Stokes equations

The general form of an s-stage ESDIRK method is defined as

vn+1 = vn +∆t

s∑
i=1

bizi, (2.32)
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where

zi = f(tn + ci∆t, vn +∆t
i∑

j=1

aijzj), i = 1, . . . , s, (2.33)

and the coefficients ci, aij , and bi define the specific ESDIRK method. The coefficients

are typically represented in a Butcher tableau

c1 a11

c2 a21 a22

c3 a31 a32 a33
...

...
...

... . . .

cs as1 as2 as3 · · · ass

b1 b2 b3 · · · bs

(2.34)

For an ESDIRK method, we have a11 = 0, aii = γ for i = 2, . . . , s, where γ is a

constant, c1 = 0 and aij = 0 for j > i.

This generalised formulation facilitates the implementation of ESDIRK methods of

different order. The specific selection of coefficients ci, aij , and bi determines the

order of the accuracy and stability properties of the method. In this work, five distinct

ESDIRK methods have been implemented: ESDIRK23, a second-order, three-stage

method (Jørgensen et al., 2018); ESDIRK34 Kværnø, a third-order, four-stage method

developed by Kværnø (Kværnø, 2004); ESDIRK46, a fourth-order, six-stage method

(Kennedy and Carpenter, 2016); ESDIRK68, a sixth-order, eight-stage method (Alamri

and Ketcheson, 2024); and ESDIRK816, an eighth-order, sixteen-stage method (Alamri

and Ketcheson, 2024). The selection of these methods enables a comprehensive analysis

across various order and stage combinations, facilitating the evaluation of the trade-offs

between computational cost and solution accuracy.

It is worth mentioning that the implementation of very high-order schemes (6th order

and above) in three-dimensional problems warrants practical consideration, as the

number of degrees of freedom per element grows rapidly with polynomial order. The
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dimension of the HDG global system, while smaller than traditional DG methods, still

increases substantially with order, resulting in considerable memory requirements for

very high orders. The computational demands of large 3D problems may preclude the

use of correspondingly high-order time integration schemes, suggesting that such high

spatial orders may be excessive in practice.

Applying this general ESDIRK method to the weak form of the local problems (2.23)

leads to the semi-discrete local problems



− (G,Li)Ωe
+
Ä
∇ · (

√
2νG),ui

ä
Ωe

=
¨
Gn,

√
2νuD,i

∂
∂Ωe∩ΓD

+
¨
Gn,

√
2νûi

∂
∂Ωe\ΓD

(w, zi)Ωe
+
Ä
w,∇ ·

Ä√
2νLi

ää
Ωe

+ (w,∇pi)Ωe

− (∇w,ui ⊗ ui)Ωe
+ ⟨w, τnui⟩∂Ωe

= (w, si)Ωe + ⟨w, (τn − ûi · n)uD,i⟩∂Ωe∩ΓD

+ ⟨w, (τn − ûi · n) ûi⟩∂Ωe\ΓD

(∇q,ui)Ωe
= ⟨q,uD,i · n⟩∂Ωe∩ΓD

+ ⟨q, ûi · n⟩∂Ωe\ΓD

⟨pi, 1⟩∂Ωe
= ρe,i.

(2.35a)

(2.35b)

(2.35c)

(2.35d)

and the semi-discrete global problem



nel∑
e=1

{¨
ŵ,
Ä√

2νLi + piInsd
ä
n
∂
∂Ωe\ΓD

+ ⟨ŵ, τnui⟩∂Ωe\ΓD

−⟨ŵ, τnûi⟩∂Ωe∩Γ − ⟨ŵ, (τn − ûi · n) ûi⟩∂Ωe∩ΓN

©
= −

nel∑
e=1

⟨ŵ, ti⟩∂Ωe∩ΓN

⟨ûi · n, 1⟩∂Ωe\ΓD
= −⟨uD,i · n, 1⟩∂Ωe∩ΓD

for e = 1, . . . , nel.

(2.36a)

(2.36b)

to be solved at each stage, for i = 1, . . . , s.

As mentioned earlier, in this work the stabilisation parameter is chosen to be evaluated

at tn to simplify the linearisation process.
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The solution at time tn+1 is then obtained using the values of each stage as

un+1 = un +∆t
s∑

i=1

bizi, (2.37)

where zi are computed as in equation (2.33).

The gradient of velocity L, pressure p, and the hybrid variable û are computed at each

stage of the ESDIRK method by solving the coupled system of equations derived from

the semi-discrete local and global problems (2.35) and (2.36). The final values at tn+1

are then obtained from the last stage

Ln+1 = Ls, pn+1 = ps, ûn+1 = ûs. (2.38)

2.6 Spatial discretisation

High-order methods utilise elements with additional nodes to achieve increased ac-

curacy in both solution and geometric approximation. The spatial discretisation is

performed using isoparametric elements. A mapping is established between a refer-

ence element and a face, Ω̃ and Γ̃, respectively, and the physical elements and faces.

The elemental isoparametric mapping can be written as

φ : Ω̃ ⊂ Rnsd −→ Ωe ⊂ Rnsd

ξ 7−→ φ(ξ) :=
nen∑
j=1

xjNj(ξ),
(2.39)

where nen is the number of element nodes, {xj}j=1,...,nen are the nodal coordinates of Ωe

and {Nj}j=1,...,nen are the polynomial shape functions of order k defined in the reference

element.

For elements adjacent to curved boundaries, standard straight-sided elements are insuf-

ficient. The isoparametric formulation allows curved elements to accurately represent

nonlinear geometries through appropriate node placement, as shown in Figure 2.2.
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(a) (b) (c)

Figure 2.1: High-order triangular elements: (a) Linear element with vertex nodes,
(b) Quadratic element with additional edge nodes (blue), (c) Cubic element with edge
nodes. Additional nodes enable higher-order polynomial approximations.

Figure 2.2: Cubic triangular element with curved boundary. Edge nodes (blue) and
additional nodes on the curved edge (red) enable accurate geometric representation.

For non-linear mappings where k > 1, the inverse mapping requires solving:

nen∑
j=1

xjNj(ξ)− x = 0 (2.40)

Using a Taylor series expansion and truncating after the first derivative yields:

Rl+1 = Rl +
∂R

∂ξ

∣∣∣∣
ξl

∆ξ (2.41)

where ∆ξ = ξl+1 − ξl andRl =
∑nen

j=1 xjNj(ξl)− x is the residual at iteration l.

SettingRl+1 = 0 and rearranging for ξl+1 gives:

ξl+1 = ξl −
Ç

∂R

∂ξ

∣∣∣∣
ξl

å−1

Rl (2.42)

Substituting the expression forR and simplifying the tangent matrix yields the Newton-

Raphson iteration:

ξl+1 = ξl − (xj ⊗∇ξNj(ξl))
−1Rl (2.43)
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The initial guess is taken as the mean of the nodal coordinates:

ξ0 =
1

nen

nen∑
j=1

ξj (2.44)

For linear elements (k = 1), the mapping converges in one iteration as the residual is

linear and the tangent matrix is constant, since the shape functions are linear in ξ. For

high-order elements (k > 1), the shape functions can be non-linear in ξ, making the

tangent matrix ξ-dependent and requiring multiple Newton-Raphson iterations.

Similarly, the isoparametric mapping for a face can be written as

ψ : Γ̃ ⊂ Rnsd−1 −→ Γe ⊂ Rnsd

η 7−→ ψ(η) :=
nfn∑
j=1

xjN̂j(η),
(2.45)

where nfn is the number of face nodes, {xj}j=1,...,nen are the nodal coordinates of Ωe and

{N̂j}j=1,...,nen are the polynomial shape functions of order k defined on the reference

face.

With the link established between reference and physical elements/faces, the polynomial

functional approximation is defined on the reference element/face, using the same shape

functions introduced in the geometrical mappings, namely

u(ξ) ≃ uh(ξ) =
nen∑
j=1

ujNj(ξ) ∈
[
{v ∈ L2(Ω); v|Ωe ∈ Pk(Ω̃)}

]nsd (2.46a)

p(ξ) ≃ ph(ξ) =
nen∑
j=1

pjNj(ξ) ∈ {q ∈ L2(Ω); q|Ωe ∈ Pk(Ω̃)} (2.46b)

L(ξ) ≃ Lh(ξ) =
nen∑
j=1

LjNj(ξ) ∈
[
{v ∈ L2(Ω); v|Ωe ∈ Pk(Ω̃)}

]nsd×nsd (2.46c)

û(η) ≃ ûh(η) =
nfn∑
j=1

ûjN̂j(η) ∈
[
{v ∈ L2(Γ); v|Γe ∈ P k̂(Γ̃)}

]nsd
. (2.46d)

where uj , pj , Lj and ûj are the nodal values of the velocity, pressure, mixed variable

and hybrid velocity, respectively.



2.6. Spatial discretisation 29

Introducing the approximations of Equation (2.46) into the semi-discrete form of the

local problems of Equation (2.30) and selecting the space of weighting functions equal

to the space spanned by the shape functions, leads to the definition of the discrete

elemental local residuals

Re
L,i : =

(
Ni,L

n+1
h

)
Ωe
−
Ä√

2ν,∇Ni ⊗ un+1
h

ä
Ωe

+
¨√

2νNi,u
n+1
D ⊗ n

∂
∂Ωe∩ΓD

+
¨√

2νNi, û
n+1
h ⊗ n

∂
∂Ωe\ΓD

(2.47a)

Re
u,i : =

(
Ni,

s∑
j=0

αju
n+1−j
h

)
Ωe

+∆tβ

[ Ä
Ni,∇ ·

Ä√
2νLn+1

h

ää
Ωe

+
(
Ni,∇pn+1

h

)
Ωe

−
(
∇Ni,u

n+1
h ⊗ un+1

h

)
Ωe

+
〈
Ni, τ

nun+1
h

〉
∂Ωe
− (Ni, s

n+1)Ωe

−
〈
Ni,
(
τn − ûn+1

h · n
)
un+1

D

〉
∂Ωe∩ΓD

−
〈
Ni,
(
τn − ûn+1

h · n
)
ûn+1

h

〉
∂Ωe\ΓD

]
(2.47b)

Re
p,i : =

(
∇Ni,u

n+1
h

)
Ωe
−
〈
Ni,u

n+1
D · n

〉
∂Ωe∩ΓD

−
〈
Ni, û

n+1
h · n

〉
∂Ωe\ΓD

(2.47c)

Re
ζ,i : =

〈
pn+1
h , 1

〉
∂Ωe
− ρn+1

e . (2.47d)

Analogously, introducing the approximations of Equation (2.46) into the semi-discrete

form of the global problem of Equation (2.31) leads to the definition of the discrete

global residuals

Rû,i : =
nel∑
e=1

{ ¨
N̂i,
Ä√

2νLn+1
h + pn+1

h Insd
ä
n
∂
∂Ωe\ΓD

+
¨
N̂i, τ

nun+1
h

∂
∂Ωe\ΓD

− ⟨N̂i, τ
nûn+1

h ⟩∂Ωe∩Γ −
¨
N̂i,
(
τn − ûn+1

h · n
)
ûn+1

h

∂
∂Ωe∩ΓN

+ ⟨N̂i, t
n+1⟩∂Ωe∩ΓN

}
(2.48a)

Re
ρ,i : =

〈
ûn+1

h · n, 1
〉
∂Ωe\ΓD

+
〈
un+1

D · n, 1
〉
∂Ωe∩ΓD

. (2.48b)

The above residuals correspond to the temporal discretisation using BDF schemes, but

almost identical expressions are obtained for each stage of the ESDIRK method given

by the local and global problems of Equations (2.35) and (2.36).
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2.7 Newton-Raphson linearisation

The Newton-Raphson method is used to linearise the residuals of local and global

problems given by Equations (2.47) and (2.48), respectively. By truncating the Taylor

series expansion to its first order, the resulting linear system that needs to be solved in

each iteration of the Newton-Raphson iteration, m, is given by

TUU TUΛ

TΛU TΛΛ

n,m
∆U

∆Λ


n,m

= −

RU

RΛ


n,m

(2.49)

where,

TUU =


TLL TLu 0 0

TT
Lu Tuu TT

pu 0

0 Tpu 0 tTρp

0 0 tρp 0

 , TUΛ =


TLû 0

Tuû 0

Tpû 0

0 1

 ,

TΛU =

TûL Tûu Tûp 0

0 0 0 1

 , TΛΛ =

 Tûû 0

Tpû 0

 ,

U =



L

u

p

ζ


, Λ =

û

ρ

 , RU =



RL

Ru

Rp

Rζ


, RΛ =

Rû

Rρ

 .

(2.50)

In the above expressions, Tab denotes the tangent matrix obtained by assembling the

contributions (Tab)e,i := ∂Re
i,a/∂b and ∆⊚n,m = ⊚n,m+1 − ⊚n,m is the increment of

the solution from the Newton-Raphson iteration m to m+ 1.

Given the element-by-element structure of the block TUU the hybridisation process is

applied to reduce this system to one involving only the degree of freedom of the hybrid
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velocity and the mean value of the pressure in each element, ∆Λ,

Kn,m∆Λn,m = Fn,m (2.51)

where

Kn,m = Tn,m
ΛΛ −Tn,m

ΛU (Tn,m
UU )−1Tn,m

UΛ (2.52)

Fn,m = −Rn,m
Λ +Tn,m

ΛU (Tn,m
UU )−1Rn,m

U . (2.53)

The global linear system of equation (2.51) is solved using high-performance numerical

libraries. For systems with fewer than one million degrees of freedom, the direct

solver PARDISO from the Intel Math Kernel Library (MKL) is employed (Schenk and

Gärtner, 2004). This solver is chosen for its robustness and efficiency in handling sparse,

unsymmetric matrices. For larger systems, the multi-core PETSc (Portable, Extensible

Toolkit for Scientific Computation) implementation is utilised (Balay et al., 2019),

specifically employing the MUMPS (MUltifrontal Massively Parallel sparse direct

Solver) package (Amestoy et al., 2001). This combination leverages the advantages

of distributed memory parallelism and the efficiency of multifrontal algorithms for

large-scale sparse linear systems. The tolerance for convergence of the linear system

residual is set to 10−12 in all examples presented in this work.

After solving the global problem to obtain∆Λn,m, the increment∆Un,m which involves

the velocity, pressure and mixed variable in each element can be computed as

Tn,m
UU ∆Un,m = −Rn,m

U −Tn,m
UΛ ∆Λn,m. (2.54)

It is worth emphasising that the solution of the local problems of Equation (2.54) can

be done element by element and in parallel, without communication required, as the

problems are independent.

The convergence of the Newton-Raphson method is determined by examining both the
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relative increments of the solution variables and the relative residuals.

Convergence of the relative increments involves checking that

max{RL,Ru,Rp,Rû,Rρ} < εNR (2.55)

where

RL :=
∥Ln,m+1 − Ln,m∥∞

max{∥Ln,m+1∥∞, ϵden}
, Ru :=

∥un,m+1 − un,m∥∞
max{∥un,m+1∥∞, ϵden}

,

Rp :=
∥pn,m+1 − pn,m∥∞

max{∥pn,m+1∥∞, ϵden}
, Rû :=

∥ûn,m+1 − ûn,m∥∞
max{∥ûn,m+1∥∞, ϵden}

,

Rρ :=
∥ρn,m+1 − ρn,m∥∞

max{∥ρn,m+1∥∞, ϵden}
,

(2.56)

and ϵden is a regularisation parameter introduced to prevent division by zero and, in all

examples, it is taken as ϵden = 10−7.

Similarly, convergence of the residuals involves checking that

max

®
∥RL∥∞
R̃L

,
∥Ru∥∞
R̃u

,
∥Rp∥∞
R̃p

,
∥Rû∥∞
R̃û

,
∥Rρ∥∞
R̃ρ

´
< εNR (2.57)

where the normalisation term R̃□ := max{∥R̃□∥∞, ϵden} is computed from the known

contributions of the corresponding residual, R̃□, namely Dirichlet, Neumann and

source term contributions.

The Newton-Raphson method is considered to have converged when both conditions

for the relative increment and the relative residual criteria are satisfied, as given by

Equations (2.55) and (2.57). In all numerical examples, the tolerance to stop the

Newton-Raphson iterations is taken as εNR = 0.5× 10−10.
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2.8 Verification examples

This section presents a series of numerical tests to verify the correct implementation of

the Fortran 90 code to solve the incompressible Navier-Stokes equations using the HDG

formulation described in this chapter. To this end, steady and transient examples with a

known analytical solution are considered. The optimal convergence of the L2(Ω) norm

of the error for velocity, pressure, and the mixed variable, when the mesh is refined or

the time step decreased.

2.8.1 Kovasznay Flow

The first numerical test considers the Kovasznay flow (Kovasznay, 1948), a well-

known analytical solution to the incompressible Navier-Stokes equations. This problem

provides an excellent benchmark for assessing the accuracy and convergence properties

of numerical methods. The computational domain is a unit square, Ω = [0, 1]2, and the

analytical solution is given by

u(x) =

1− exp(2λx) cos(2πy)

λ
2π

exp(2λx) sin(2πy)

 , p(x) = −1

2
exp(4λx) + C, (2.58)

where λ =
Re

2
−

 
Re2

4
+ 4π2 and C =

1

8

ï
1 + exp(4λ)− 1

2λ
(1− exp(4λ))

ò
.

The Reynolds number is taken as Re = 100 and the analytical solution is shown in

Figure 2.3.

A Neumann boundary condition, corresponding to the exact solution, is imposed on

the bottom part of the boundary, ΓN = {(x, y) ∈ Ω | y = 0}, while Dirichlet boundary

conditions, corresponding to the exact velocity, are imposed on ΓD = ∂Ω \ ΓN .

Four uniform meshes are considered, with 16, 64, 256, and 1,024 triangular elements,

respectively, as shown in Figure 2.5.
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(a) Pressure (b) Velocity magnitude

Figure 2.3: Kovasznay Flow: Pressure and velocity fields for Re = 100 in the domain
Ω = [0, 1]2.

(a) Relative increment (b) Relative residual

Figure 2.4: Kovasznay Flow: Convergence of the NR method, relative increment, and
relative residual versus the iteration number on the velocity

Figure 2.4 illustrates the convergence behaviour of the Newton-Raphson. The plot

shows the logarithm of the relative increment and relative residual for the velocity

computed from Equations (2.55) and (2.57) versus the iteration number of the Newton-

Raphson method for the Mesh 1 of 16 elements. The Figure 2.4 demonstrates the

rapid convergence of the Newton-Raphson (NR) method. Both the relative increment

(a) and the relative residual (b) decrease exponentially, reaching approximately 10−15

after only 7 iterations. This indicates quadratic convergence, characteristic of the NR

method. The smooth curves suggest stable convergence throughout the process. The

similar shapes of both plots imply a strong correlation between the reduction in solution

updates and the minimisation of the residual.

Figure 2.6 shows the L2(Ω) norm of the error of the velocity, pressure and mixed

variable as a function of the characteristic element size h for a degree of approximation

ranging from k = 1 up to k = 4. The expected k+1 convergence rate can be observed
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure 2.5: Triangular meshes of the domain Ω = [0, 1]2 used to test the optimal
convergence properties of the HDG method.

(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure 2.6: Kovasznay Flow: L2(Ω) norm of the error for the velocity, pressure and
mixed variable as a function of the characteristic element size h, for different degrees
of approximation.

for all the variables and degree of approximation. The results show not only the same

rate of convergence for all the variables, but also a similar error for all the variables in

a fixed mesh. For sufficiently regular solutions, this optimal convergence behaviour is

consistently observed across different mesh sizes and polynomial degrees..Comparing

the results for low and high order approximations provide evidence of the potential of

high order approximations. For example, the solution obtained in the coarsest mesh
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using k = 4, with only 16 elements, is more accurate than the solution obtained in

the finest mesh using k = 1, with 1,024 elements. As the dominant cost of the HDG

method is driven by the solution of the global problem, it is instructive to consider the

size of the global problem as a measure of the cost to compare low and high order

approximations. The solution of the problem with k = 1 on a mesh of 1,024 elements

requires the solution of global problems of 4,128 degrees of freedom, whereas the

solution of the problem with k = 4 on a mesh of 16 elements requires the solution of

global problems of 146 degrees of freedom.

2.8.2 Ethier-Steinmann flow

The second numerical test considers the Ethier-Steinman flow (Ethier and Steinman,

1994) in Ω = [0, 1]3, which involves a known time-dependent analytical solution for

the incompressible Navier-Stokes equations. The solution is given by

u(x) = −a


eax sin(ay − dz) + eaz cos(ax− dy)

eay sin(az − dx) + eax cos(ay − dz)

eaz sin(ax− dy) + eay cos(az − dx)

 e−d2t (2.59a)

p(x) = −a2

2

[
e2ax + e2ay + e2az + 2 sin(ax− dy) cos(az − dx)ea(y+z)

+ 2 sin(ay − dz) cos(ax− dy)ea(z+x)

+ 2 sin(az − dx) cos(ay − dz)ea(x+y)
]
e−2d2t

(2.59b)

where a = π
4

and d = π
2
. The final time is Tend = 0.05 and the time step ∆t =

0.01, which is selected so the temporal error does not affect the spatial convergence.

As in the previous example, to test the correct implementation of the Neumann and

Dirichlet boundary conditions, a Neumann boundary condition, corresponding to the

exact solution, is imposed on the bottom part of the boundary, ΓN = {(x, y, z) ∈ Ω |

z = 0}, while Dirichlet boundary conditions, corresponding to the exact velocity, are

imposed on ΓD = ∂Ω \ ΓN .



2.8. Verification examples 37

Figure 2.7: Ethier-Steinmann flow: velocity field for a = π
4

and d = π
2

at time t = 0.

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

Figure 2.8: Tetrahedral meshes of the domain Ω = [0, 1]3 used to test the optimal
convergence properties of the HDG method.

Figure 2.7 shows the velocity field at t = 0.

Three uniform tetrahedral meshes with 24, 192, and 1,536 tetrahedral elements are

considered to test the rate of convergence in three dimensions under mesh refinement.

The meshes are shown in Figure 2.8.

Figure 2.9 shows the L2(Ω) norm of the error of the velocity, pressure, and mixed

variable as a function of the characteristic element size h for a degree of approximation

ranging from k = 1 up to k = 4. To ensure that the error due to the temporal

discretisation is lower than the spatial discretisation error, a small enough time step is

selected in all the simulations.

As in the two dimensional example, the expected k+1 convergence rate can be observed

for all the variables and degree of approximation. Compared to the two dimensional
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(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure 2.9: Ethier-Steinmann Flow: L2(Ω) norm of the error for the velocity, pressure
and mixed variable as a function of the characteristic element size h, for different
degrees of approximation.

test, it can be observed that the error in the mixed variable is slightly higher than the

error of the velocity and pressure. This is mainly due to the higher complexity of the

gradient of the velocity in this example.

Similar to the two dimensional example, comparing the results for low and high order

approximations provide evidence of the potential of high order approximations. For

instance, the solution obtained in the coarsest mesh using k = 4, with only 24 elements,

is more accurate than the solution obtained in the finest mesh using k = 1, with 1,536

elements. Similar to the two dimensional example, it is instructive to consider the

size of the global problem as a measure of the cost to compare low and high order

approximations. The solution of the problem with k = 1 on a mesh of 1,536 elements

requires the solution of global problems of 11,136 degrees of freedom, whereas the
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Figure 2.10: Triangular mesh of the domain Ω = [0, 1]2 used to test the optimal
temporal convergence properties of the HDG method.

solution of the problem with k = 4 on a mesh of 16 elements requires the solution of

global problems of 864 degrees of freedom.

2.8.3 Manufactured transient solution

The last example, considered to verify the correct implementation of BDF and ESDIRK

time integrators, considers the manufactured solution

u(x) =

Ö
sin(x+ ωt) sin(y + ωt)

cos(x+ ωt) cos(y + ωt)

è
, (2.60a)

p(x) = sin(x− y + ωt), (2.60b)

where the parameter ω is used to adjust rate of change of the velocity and pressure

in time. The final time used in these examples is Tend = 0.25. The mesh used in this

example ensures that there is no spatial error that affects the solution, only temporal.

The computational domain shown in Figure 2.10 is a square unit Ω = [0, 1]2 and has

64 triangular elements. The degree of approximation is constant in the whole domain

and equal to 4.

To test the implementation of the different time integrators considered in this work a

fine mesh with a high degree of approximation is considered, so that the error due to

the spatial discretisation is negligible when compared to the error due to the temporal

discretisation.
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(a) BE (b) BDF2

(c) BDF3

Figure 2.11: Manufactured transient solution: L2(Ω) norm of the error for the velocity,
pressure and mixed variable as a function of the time step ∆t, for different time
integration BDF schemes.

Figure 2.11 show the L2(Ω) norm of the error for the velocity, pressure and mixed

variable as a function of the time step∆t for the BDF1, BDF2 and BDF3 time integration

schemes.

The results show the first, second and third order expected accuracy in all the variables

for the BDF1, BDF2 and BDF3 time integration schemes, respectively.

Similar to the superior behaviour of high order approximations in space, the results

show the benefit of using high order time integrator. The results with the BDF3 scheme

using the coarse time discretisation are more than one order of magnitude more accurate

than the results with BDF1 using the finest time discretisation. This means that the

results with the BDF3 scheme are more than ten times more accurate than the results

with the BDF1 scheme and only using eight time steps.
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(a) ESDIRK23 (b) ESDIRK34 Kværnø

(c) ESDIRK46

Figure 2.12: Manufactured transient solution: L2(Ω) norm of the error for the velocity,
pressure and mixed variable as a function of the time step ∆t, for different time
integration ESDIRK schemes.

To test the implementation of the ESDIRK schemes, the value of ω in the analytical

solution is increased to 10 to define a much faster variation of the solution in time. This

is because for the low value of ω = 1 the highest order ESDIRK methods considered

here provide almost machine accuracy and, therefore, do not allow to provide evidence

of the optimal convergence rate.

Figure 2.12 presents results for three ESDIRK methods, namely the second-order

ESDIRK23 method by (Jørgensen et al., 2018), the third-order ESDIRK34 by (Kværnø,

2004) and the fourth-order ESDIRK46 by (Kennedy and Carpenter, 2016).

The observed convergence rates generally align with the theoretical order of accuracy

for each ESDIRK method, despite the fact that some slight loss of accuracy is observed

at the pressure, which could be associated with the so-called order reduction of implicit
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RK methods (Sanz-Serna et al., 1986) often observed when inhomogeneous boundary

conditions are considered.



Chapter 3

A conservative degree adaptive HDG

method

3.1 Introduction

The accurate simulation of transient incompressible fluid flows is a central challenge

in many CFD applications, including areas such as civil, aerospace, chemical, and

biomedical engineering. From a numerical point of view, several difficulties arise when

solving the incompressible Navier-Stokes equations due to their non-linear nature and

the intricate coupling between velocity and pressure fields (Quartapelle, 2013). When

unsteady phenomena are of interest, an extra difficulty is to accurately propagate vortices

over long distances.

High-order methods are attractive for the simulation of transient flows due to the lower

dissipation and dispersion errors, when compared to low order methods (Ekaterinaris,

2005; Ainsworth et al., 2006; Wang et al., 2013). Continuous and discontinuous

Galerkin (DG) methods have their own advantages and disadvantages and have both

been successfully applied to a variety of problems in CFD (Chalot and Normand,

2010; Chalot et al., 2015; Gross et al., 2015; Sevilla et al., 2013; Bassi et al., 2007;

Liu and Shu, 2000; Montlaur et al., 2010; Ferrer and Willden, 2011; Lehrenfeld and

43
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Schöberl, 2016). Two properties that make DG a preferred option in some cases are

the ability to easily handle a variable degree of approximation and the easier definition

of the required stabilisation for convection dominated flows (Kompenhans et al., 2016;

Ekelschot et al., 2017; Paipuri et al., 2018). The main disadvantage of DG methods

is commonly attributed to the duplication of degrees of freedom (Kirby et al., 2012;

Yakovlev et al., 2015), a property that facilitates the implementation of variable degree

of approximation. Furthermore, as demonstrated by Kirby et al. (2012); Yakovlev

et al. (2015), the computational cost of DG methods compared to statically condensed

continuous Galerkin methods increases significantly, particularly in three-dimensional

problems.

The hybridisable discontinuous Galerkin (HDG) method, originally proposed by Cock-

burn and co-workers (Cockburn and Gopalakrishnan, 2005, 2009) employs hybridisa-

tion to reduce the number of coupled degrees of freedom and has become popular for

CFD applications. With HDG, it is possible to use approximations of equal order for

both velocity and pressure, circumventing the Ladyzhenskaya-Babuška-Brezzi (LBB)

condition. From a computational perspective, the size of the global problem only

involves the mean value of the pressure in each element even for high-order approxi-

mations, reducing even further the size of the global system of equations to be solved.

Furthermore, an important advantage of HDG is the ability to build a super-convergent

velocity field (Cockburn and Shi, 2013). The development and application of HDG

methods to incompressible flows include the solution of Stokes flows (Cockburn et al.,

2010; Nguyen et al., 2010; Cockburn and Shi, 2014, 2013; Giacomini et al., 2018)

and the incompressible Navier-Stokes equations (Nguyen et al., 2011; Giorgiani et al.,

2014; Rhebergen and Wells, 2018; Gürkan et al., 2019).

To accurately and efficiently capture transient flow phenomena, mesh adaptation tech-

niques are traditionally employed in a low order context. For high-order methods, the

use of degree adaptivity offers a new alternative to provide the required accuracy only

in the regions of the domain where it is needed, minimising the computational overhead

of high-order approximations and circumventing the need to modify the mesh topology.
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In the context of HDG, the use of mesh and degree adaptivity has been considered for

a variety of problems, including incompressible flows (Giorgiani et al., 2014; Leng,

2021). In HDG methods, the ability to build a super-convergent solution can be used to

devise a cheap error indicator to drive the adaptivity. This strategy was first exploited

in (Giorgiani et al., 2013) for wave propagation problems.

This chapter first revisits the ability of HDG methods to build a super-convergent

velocity field in the context of incompressible flows. Following (Giorgiani et al., 2013,

2014) the super-convergent solution is then used to build a cheap error indicator to

drive a degree adaptive process. The implementation of this strategy is demonstrated

for a steady problem with known analytical solution. Then, the application of the

degree adaptive process is considered for transient problems. First, it is shown that a

degree adaptive process can lead to unphysical oscillations in aerodynamic quantities of

interest, especially the drag, if the adaptive process reduces the degree of approximation

during the time marching process. This phenomenon is related to the violation of

the free-divergence condition during the projection of the solution from a space of

polynomials of degree r to a space of polynomials of degree s, with s < r. Second,

this work proposes a conservative projection to guarantee mass conservation during

the projection stage. The proposed projection does not introduce significant overhead

because it induces the solution of an element-by-element problem and only for those

elements where the adaptive process lowers the degree of approximation. Numerical

examples are used to illustrate the benefits of the proposed conservative projection

using two dimensional examples.

The remainder of this chapter is organised as follows. Section 3.2 presents the strategy

to build a super-convergent velocity field. The error indicator that takes advantage of

the ability of the HDG method to build a super-convergent velocity is introduced in

Section 3.3 and in Section 3.4 the degree adaptation strategy is described. The novel

projection scheme to ensure conservation during transient simulations is presented

in Section 3.4.2. Section 3.5 presents numerical examples to illustrate the effect of

using a standard adaptive process that violates the free-divergence condition during the
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projection stage and the benefits of the proposed conservative projection.

3.2 Super-convergent postprocess of the velocity

One of the key advantages of the HDG method is the ability to obtain a super-convergent

solution through local postprocessing. This postprocessing technique allows us to

compute a new approximation of the velocity field that converges at a higher rate than

the original HDG solution, while maintaining important physical properties such as

local conservation and H(div)-conformity. H(div)-conformity refers to the property

that the normal component of the velocity is continuous across element interfaces. The

postprocessing technique is later leveraged to drive an adaptive procedure that locally

defines the polynomial degree on each element.

The HDG post-processing procedure requires the solution of a local problem in each

element Ωe to compute an super-convergent velocity approximation u⋆. Following the

formulation in Giacomini et al. (2020), the postprocessing problem is defined as



∇ ·
Ä√

2ν∇su⋆
ä
= −∇ ·L, in Ωe,Ä√

2ν∇su⋆
ä
n = −Len, on ∂Ωe,

(u⋆, 1)Ωe
= (u, 1)Ωe ,

(∇× u⋆, 1)Ωe
= ⟨uD · τ , 1⟩∂Ωe∩ΓD

+ ⟨û · τ , 1⟩∂Ωe\ΓD
,

(3.1)

where τ is the tangential direction to the boundary ∂Ωe.

The first equation in (3.1) is obtained after applying the divergence operator to the equa-

tion that defines the mixed variable, and the boundary condition imposes equilibrated

fluxes on the boundary of each element. The two last equations in (3.1) are introduced

to remove the indeterminacy associated with the translational and rotational modes.

The weak form of the postprocessing problem is: for e = 1, . . . , nel, find u⋆ ∈
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[Vh
⋆ (Ωe)]

nsd such that


−(∇sv⋆, 2ν∇su⋆)Ωe = (∇sv⋆,L)Ωe ,

(u⋆, 1)Ωe = (u, 1)Ωe ,

(∇× u⋆, 1)Ωe = ⟨uD · τ , 1⟩∂Ωe∩ΓD
+ ⟨û · τ , 1⟩∂Ωe\ΓD

,

(3.2)

for all v⋆ ∈ [Vh
⋆ (Ωe)]

nsd , where: Vh
⋆ (Ω) := {v ∈ L2(Ω) : v|Ωe ∈ Pk+1(Ωe)∀Ωe, e =

1, . . . , nel} andPk+1(Ωe) denotes the space of polynomial functions of complete degree

at most k + 1 in Ωe.

It should be noted that the boundary condition is included in the first equation of (3.2)

after the integration by parts.

This postprocessing procedure yields a velocity approximation u⋆
e that is exactly

divergence-free, H (div) conforming, and the error converges at a rate of k + 2 in

the L2(Ω) norm for k ≥ 1, where k is the degree of polynomial used in the original

HDG discretisation (Cockburn and Shi, 2013; Giacomini et al., 2020).

Spatial discretisation is performed using isoparametric elements, as done for the other

variables and described in Section 2.6. For the postprocessed velocity, polynomials of

degree k+1 are employed, leading to an element-by-element problem that involves the

solution of the linear system of equations.

First, the postprocessed velocity u⋆ is approximated using the polynomial shape func-

tions of degree k + 1, namely

u⋆(ξ) ≈
nen∑
j=1

u⋆
jNj(ξ) (3.3)

where u⋆
j are the nodal values of the postprocessed velocity.

Introducing the approximation of Equation (3.3) into the weak form (3.2) and selecting

the space of test functions equations to the space of approximation functions, the
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resulting system of equations can be written as


A bT

1 bT
2

b1 0 0

b2 0 0



u⋆

λ1

λ2

 =


f

c1

c2

 (3.4)

where

Aij = −
∫
Ω

2ν∇Ni · ∇Nj|J|dΩ (3.5)

fi =
nen∑
j=1

∫
Ω

∇Ni · LjNj|J|dΩ (3.6)

(b1)i =

∫
Ω

Ni|J|dΩ (3.7)

(b2)i =

∫
Ω

∇×Ni|J|dΩ (3.8)

c1 =
nen∑
j=1

Å∫
Ω

Nj|J|dΩ
ã
uj (3.9)

c2 =
nfn∑
j=1

Å∫
Γ̃

Ñj∥J̃∥dΓ̃
ã
(uD · τ )j +

nfn∑
j=1

Å∫
Γ̃

Ñj∥J̃∥dΓ̃
ã
(û · τ )j (3.10)

λ1 and λ2 are Lagrange multipliers used to impose the constraints of Equation (3.2),

Ni and Ñj are the polynomial shape functions for the element and face, respectively,

and J and J̃ are the Jacobians for the element and face, respectively.

3.2.1 Verification example

To verify the implementation of the super-convergent postprocess, the Kovasznay flow,

previously considered in subsection 2.8.1 is used. The four uniform meshes as shown

in Figure 2.5 are considered and the postprocessed velocity is computed for each mesh

and for a degree of approximation from k = 1 up to k = 4.

Figure 3.1 shows the L2(Ω) norm of the error of the velocity and the postprocessed

velocity as a function of the characteristic element size. h, for a degree of approximation

ranging from k = 1 up to k = 4.
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(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure 3.1: Kovasznay Flow: L2(Ω) norm of the error for the velocity, and postpro-
cessed velocity as a function of the characteristic element size h, for different degrees
of approximation.

For all polynomial degrees,u⋆ consistently shows a higher convergence rate thanu, and

the difference in convergence rates between them is approximately one for all values

k. These results indicate that the method achieves optimal convergence for the primary

solution and superconvergence for the post-processed solution.

3.3 Error indicator based on the postprocessed velocity

The superconvergent properties of the HDG method allow the construction of an ef-

ficient and reliable error indicator based on the post-processed solution. This error

indicator, proposed in (Giorgiani et al., 2013) and further used in the context of incom-

pressible flows (Giorgiani et al., 2014; Sevilla and Huerta, 2016), plays a crucial role
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in driving adaptive procedures.

Given the HDG solutionu and the postprocessed solutionu⋆, we can define an element

wise error indicator Ee as

Ee =

ï
1

|Ωe|

∫
Ωe

(u− u⋆) · (u− u⋆) dΩ

ò1/2
(3.11)

where |Ωe| denotes the measure of the element Ωe, this normalisation becomes crucial

when meshes with different element sizes are considered (Dı́ez and Huerta, 1999).

Ee possesses several desirable properties that make it particularly suitable for adaptive

procedures in HDG methods. Firstly, it exhibits asymptotic exactness, which means that

for smooth solutions, as the mesh size h approaches zero, the error indicator converges

to the true error at a higher rate than the HDG solution itself (Giorgiani et al., 2014).

This property ensures an increase in the accuracy of the error estimation as the mesh

is refined. Secondly, Ee is computationally efficient, as its calculation only involves

element-local operations, thus adding minimal overhead to the overall computational

cost. Lastly, the error indicator shows high reliability, providing a good estimate of

local error in the HDG solution (Nguyen et al., 2010).

3.4 Degree adaptive strategy

Using the error indicator provided in (3.11), this section introduces an automatic

degree-adaptive process.

Given a tolerance ε for the velocity error within a region of interest Ωint ⊂ Ω, the

adaptive process aims to generate a map of elemental degrees {kΩe}
nel
e=1 such that the

error of the velocity field in each element, Ee, is below the required tolerance, namely

Ee ⩽ ε ∀Ωe ⊂ Ωint. (3.12)
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Assuming that the exact solution of the problem is smooth in the sense of having

sufficient regularity for the HDG approximation, the error of the velocity field within

an element, Ee, behaves asymptotically as

Ee ≈ Chα(ke)
e , (3.13)

where C is a constant, he is the characteristic size of element Ωe, and α is a constant

that depends only on the degree of approximation (k), which depends upon the norm

considered.

To achieve a desired error ϵ in a given element, the asymptotic expression of the error

can be used, with a different degree of approximation, namely

ϵ ≈ Chα(ke)+∆ke
e , (3.14)

where ∆ke is the required change in the degree of approximation to guarantee the

desired error.

Taking the logarithm of the ratio of the expressions of ϵ and Ee of equations (3.14) and

(3.13) leads to

logb

Å
ϵ

Ee

ã
≈ ∆ke logb(he), (3.15)

which provides the required expression for ∆ke, given by

∆ke ≈
logb(ϵ/Ee)

log(he)
. (3.16)

In the above expressions, the base b acts as an aggressiveness parameter proposed

in (Fidkowski and Darmofal, 2007). A lower value of b results in more aggressive

refinement, which could lead to larger degree increases but possibly overshooting the

optimal degree. In contrast, a larger value of b leads to more conservative refinement,

with smaller degree increases, but potentially requiring more adaptive iterations to

reach the desired accuracy.
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The final expression for the change in the degree of approximation that is used in the

current implementation is

∆ke =

°
logb

Å
ϵe
Ee

ã§
, (3.17)

where the value of the tolerance is allowed to be different in each element, ϵe, therefore

embedding the effect of having elements with very different element sizes. Furthermore,

the ceiling function is used to ensure that the resulting value is an integer.

It is important to note that while this method provides a reasonable estimate for degree

adaptation, it relies on heuristic principles and may not be optimal in all cases. The

effectiveness of this adaptive strategy depends on the accuracy of the error indicator Ee

and the appropriate choice of the aggressiveness parameter b and the desired accuracy

ϵe. These factors should be carefully considered in the context of the specific prob-

lem and the desired balance between computational efficiency and solution accuracy.

Additionally, the assumption of solution smoothness is crucial, for problems with sin-

gularities or sharp gradients, the actual convergence behaviour may deviate from these

asymptotic estimates, potentially requiring alternative adaptation strategies.

Furthermore, upper and lower bounds on the polynomial degree are typically set, namely

kmin ⩽ kΩi
⩽ kmax. The lower bound kmin is essential to ensure a proper geometric

representation using isoparametric elements, while the upper bound kmax, which caps

the maximum polynomial degree in the mesh, is imposed for practical reasons.

The strategy used to select these parameters is as follows:

• For the aggressiveness parameter b:

– Use b = 10 for problems with strong local features requiring rapid degree

adaptation

– Use b = 100 for smoother problems to avoid oscillatory degree distributions

• For the target accuracy ϵ:

– Set based on the problem physics and required engineering precision
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– Typical values range from 10−3 to 10−8

– Consider computational cost constraints

• For polynomial degree bounds:

– Set kmin ≥ 1 to maintain geometric accuracy

– Set kmax based on available computational resources

The adaptive procedure is applicable to both steady and unsteady problems. In both

cases, the process begins with a uniform degree mesh where kΩe = kmin for e =

1, . . . , nel.

3.4.1 Steady state solutions

For steady state solutions, each iteration of the adaptive process involves computing

the steady-state solution to equations (2.51) and (2.53) (neglecting time derivatives),

the error (3.11) is evaluated, the degree map is updated using equation (3.17) within

the bounds kmin ⩽ kΩi
⩽ kmax. The iterative adaptation continues until the prescribed

precision ε is achieved throughout the domain of interest, according to Equation (3.12).

A solution derived from a given degree map can serve to enhance the initial guess

within the Newton-Raphson scheme through interpolation of the solution at the new

nodal distribution within each element. Assume that the solution within an element

has been computed using a polynomial approximation of degree r, and the subsequent

degree to be used in the element is s. The solution is approximated as

ur(ξ) =

nren∑
j=1

ur
jN

r
j (ξ), (3.18)

where nren denotes the number of element nodes, uj are the nodal values of the solution

and N r
j are the polynomial shape functions of degree r defined, on a reference element,
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Algorithm 1 Degree adaptive HDG Method for steady Navier-Stokes Equations
1: Initialise polynomial degree map {ke}e=1,...,nel

2: Set base b for logarithm and tolerance ε
3: while true do
4: for iNR ← 1 to nNR do
5: Solve global problem of Equation (2.51) (neglecting time derivatives)
6: Solve local problem of Equation (2.53) (neglecting time derivatives)
7: end for
8: for iel ← 1 to nel do
9: Compute super-convergent velocity using Equation (3.2)

10: Compute error indicator using Equation (3.11)
11: Update the degree using Equation (3.17)
12: end for
13: if max{Ee : e = 1, . . . , nel} ≤ ε then
14: break
15: end if
16: end while

from the set of nodes {ξr}i=1,...,nren . The interpolation onto the novel nodal configuration

corresponding to a degree s, {ξs}, can be written as

us(ξ) =

nsen∑
j=1

us
jN

s
j (ξ), (3.19)

where us
j = u

r(ξsj).

3.4.2 Conservative projection for transient problems

An essential distinction of a degree-adaptive procedure for transient problems, in

contrast to the steady-state case, is that the projection of the solution at time tn onto

the desired degree map is required to calculate the solution at time tn+1, rather than

merely serving as an initial guess in the Newton-Raphson scheme. Consider a scenario

in which the solution in a given element at time tn is determined with a degree r,

and the degree adaptive process subsequently adjusts the required degree within that

element to s. The projection methodology, as delineated in (16), generally does not

ensure that the projected velocity field at time tn remains divergence-free. Specifically,

if s ≥ r, that is, if the adaptive process either escalates or maintains the degree of
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approximation within an element, the projection does not alter the velocity field at time

tn, given that the polynomial space of degree r is contained within the polynomial

space of degree s. Conversely, if s < r, that is, if the adaptive process reduces the

degree of approximation in the element, the projection modifies the velocity field at

time tn, thus generally breaking the incompressibility constraint.

To avoid this problem, this work proposes a new projection based on the constrained

minimisation problem. The objective is to minimise the difference between the initial

velocity field (ur) and the corrected velocity field (us), subject to the mass conservation

constraint: 
minus

j
E :=

∫
Ωe

(us − ur) · (us − ur) dΩ

s.t.
∫
∂Ωe
us · ndΓ = 0.

(3.20)

The velocity and the corrected velocity fields are discretised using basis functions of

degree r and s respectively

us ≃
nsen∑
i=1

N s
i u

s
i , ur ≃

nren∑
i=1

N r
i u

r
i . (3.21)

Inserting the polynomial approximation of us and ur into the error function to be

minimised, leads to

E ≃
∫
Ωe

(
nsen∑
i=1

N s
i u

s
i −

nren∑
i=1

N r
i u

r
i

)
·

(
nsen∑
i=1

N s
i u

s
i −

nren∑
i=1

N r
i u

r
i

)
dΩ (3.22)

To find the nodal values of the projected solution, us
i , that minimise E the derivative is

imposed to vanish, namely

∂E

∂us
j

≃ 2

∫
Ωe

Nj

(∑
i

Niu
s
i −

∑
i

Niu
r
i

)
dΩ = 0 (3.23)
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The discrete version of the constraint in Equation (3.20) is

∫
∂Ωe

us · ndΓ ≃
nsen∑
i=1

Å∫
∂Ωe

Nin, dΓ

ã
· us

i = 0 (3.24)

Combining the optimality conditions and the constraint using a Lagrange multiplier λ,

the resulting system of linear equations to be solved in an element where the adaptive

process decreases the degree of approximation can be written as


M 0 D1

0 M D2

DT
1 DT

2 0



Us

1

Us
2

λ

 =


F1

F2

0

 (3.25)

in two dimensions, where Us
a is the vector containing the nodal values of the a-th

component of the projected free-divergence velocity field, λ is the Lagrange multiplier,

Mij :=

∫
Ωe

NiNjdΩ, (Da)i :=

∫
∂Ωe

NinadΓ, (Fa)i :=

∫
Ωe

Niur
adΩ (3.26)

and ur
a is the a-th component of the original velocity field, approximated with polyno-

mials of degree r.

From a computational point of view, the mass matrix M for elements with an affine

mapping linking them to the reference element (e.g. triangular elements with straight

edges) can be precomputed in the reference element and scaled using the Jacobian of

the isoparametric mapping. For curved elements, the matrix needs to be computed

separately for each element. Similarly, the matrices D1 and D2 can be precomputed

for edges with no variation of the normal (e.g. straight edges in 2D), whereas the

computation is performed separately for curved edges.

It is important to underscore that the minimisation problem, specifically the solution

of the linear system (3.26), is confined to those elements wherein the adaptive process

reduces the degree of approximation. The size of the linear system in two dimensions

is 2nen + 1, where nen denotes the number of element nodes. Furthermore, since the
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problem is resolved independently for each element, it allows for trivial parallelisation,

thereby reducing computational overhead.

Algorithm 2 Degree adaptive HDG Method for unsteady Navier-Stokes Equations
1: Initialise polynomial degree map {ke}e=1,...,nel

2: Set base b for logarithm, tolerance ε and number of iterations nadaptivity.
3: for is ← 1 to nsteps do
4: for ia ← 1 to nadaptivity do
5: for iNR ← 1 to nNR do
6: Solve global problem of Equation (2.51)
7: Solve local problem of Equation (2.53)
8: end for
9: for iel ← 1 to nel do

10: Compute super-convergent velocity using Equation (3.2)
11: Compute error indicator using Equation (3.11)
12: Update the degree using Equation (3.17)
13: if ∆ke < 0 then
14: Compute conservative projection using Equation (3.25)
15: end if
16: end for
17: end for
18: end for

The algorithm 2 outlines the degree adaptive procedure and the conservative projection

proposed, designating nsteps as the total time steps andnNR as the upper limit of iterations

in the Newton-Raphson method.

It should be noted that the methodology described in subsection 3.4.1 is especially

beneficial for steady-state problems, as it facilitates multiple iterations to achieve the

desired error threshold across the domain. In contrast, for unsteady solutions, the

implementation of such an iterative process at each time step like in Alauzet et al.

(2007) would be excessively costly. Attempting to achieve the desired error throughout

the entire domain at every time step would result in immense computational cost.

For time-dependent problems, a more practical approach commonly entails adjusting

the solution once before advancing to the next time step, rather than seeking optimal

accuracy at each time step. This study proposes a balance between these two methods

by iteratively applying the adaptive process for a predetermined number of iterations

nadaptivity, typically set at 2 or 3.
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3.5 Numerical examples

3.5.1 Wang flow

To assess the performance of the degree adaptive strategy implemented, the so-called

Wang flow (Wang, 1991) is first considered. This corresponds to a steady solution

of the incompressible Navier-Stokes equations and provides a suitable test because it

enables evaluating the accuracy of the error indicator.

The computational domain is defined as Ω = [−0.5, 0.5]× [0, 1] and the exact solution

is given by

u(x) =

Ö
2ax2 − bλ exp(−λx2) cos(λx1)

b exp(−λx2) sin(λx1)

è
, (3.27a)

p(x) = −1

2
exp(2λx1) + C, (3.27b)

where a, b, and λ are parameters, selected as a = 1, b = 1, and λ = 10, following

(Giorgiani et al., 2014) and C is a constant chosen to ensure zero mean pressure in the

domain. The chosen parameters lead to a velocity field with strong gradients near the

bottom boundary, providing a suitable setting to test the degree adaptive procedure.

Dirichlet boundary conditions, corresponding to the exact velocity, are imposed on all

boundaries except the bottom part, where a Neumann condition, also corresponding to

the exact solution, is imposed.

The coarse uniform triangular mesh shown in Figure 3.2a is considered

To illustrate the adaptive process, a tolerance of ϵ = 10−8 is used for all elements and

the aggressiveness parameter is selected as b = 100.

Figure 3.3 shows the initial degree map, which is taken as k = 1 for all the elements

together with the error indicator and the exact error. Given the coarse mesh employed
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(a) Unstructured triangular mesh

0.00
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(b) Analytical velocity field

Figure 3.2: Wang flow: problem setup.

(a) Degree map (b) Error indicator (c) Exact error

Figure 3.3: Wang flow: Initial computation with linear approximation in all elements.

(a) Degree map (b) Error indicator (c) Exact error

Figure 3.4: Wang flow: First iteration of the degree adaptive process.

and the low order approximation the error is obviously high, but, more importantly the

error indicator maps resembles the exact error, providing evidence of the suitability of

the error indicator to drive a degree adaptive process.

Using the error indicator obtained from the first computation, the degree map, shown in

Figure 3.4, is obtained following the strategy presented in section 3.4. Figure 3.4 also

shows the error indicator and the exact error. The results show a sudden increase of

the order of approximation, resulting in elements near the bottom boundary with k = 5

and k = 4 for the rest of the domain. The maximum elemental error is approximately
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(a) Degree map (b) Error indicator (c) Exact error

Figure 3.5: Wang flow: Second iteration of the degree adaptive process.

5×10−5, which is four orders of magnitude lower than in the initial computation. Some

localised regions with high errors persist, meaning that more iterations are required to

guarantee that the error is below the desired tolerance.

Figures 3.5 and 3.6 show the next two iterations of the degree adaptive process. The

results show not only the ability of high order approximations to provide extremely low

errors, i.e. of the order of 10−8, but, more importantly, the quality of the error indicator

is demonstrated by its efficiency index η, defined as the ratio between the estimated and

exact errors minus one. Mathematically, this is expressed as:

η =
Ee

Eexact
e

− 1 (3.28)

whereEe is the error indicator andEexact
e is the exact error computed using the analytical

solution. The error indicator demonstrates excellent performance, with efficiency

values varying between −0.035 and −0.005, indicating that the error indicator very

closely approximates the true error. This high efficiency is achieved because of the

superconvergent properties of the HDG method and enables reliable error indicator for

adaptive procedures.

In the final iterationFigure 3.6 presented, thekmap (a) shows a sophisticated distribution

of polynomial degrees, with the highest orders concentrated near the bottom and in

specific regions throughout the domain. Both error maps (b, c) demonstrate a more

uniform and significantly reduced error distribution across the entire domain.
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(a) Degree map (b) Error indicator (c) Exact error

Figure 3.6: Wang flow: Third iteration of the degree adaptive process.

3.5.2 Flow around two circular cylinders

The second example considers laminar flow, atRe = 100, around two circular cylinders

in tandem. This example is used to study the importance of the proposed projection

when performing a degree adaptive computation of transient flows.

The far field is made of a circle of diameter 100 centred at the origin, whereas the two

circular cylinders have diameter 1 and are centred at (−20, 0) and (10, 0), respectively.

An unstructured mesh of 2,712 triangles is used for this example shown in Figure 3.7.

Curved elements are generated near the cylinder using the elastic analogy presented

in (Xie et al., 2013). Given the low Reynolds number considered, the size of the

elements in the normal direction to the wall is relatively large, and only the first two

layers of elements around the cylinders are curved. More precisely, the size of the

first element around the circular cylinders is 0.01 and the growth factor in the normal

direction is 1.4. Two point sources are introduced to prescribe a mesh size of 0.2

near the cylinders, whereas a line source with size 0.75 is placed in the path of the

von Karman vortex street. A detailed view of the mesh near the cylinders is shown in

Figure 3.8.

The ESDIRK46 time marching algorithm (Kennedy and Carpenter, 2016) is used with

a time step ∆t = 0.2 and the solution is advanced until the final time T = 200.

Since an analytical solution for this problem is not available, a reference solution is
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Figure 3.7: Flow around two circular cylinders: Unstructured triangular mesh of the
whole domain.

Figure 3.8: Flow around two circular cylinders: detail of the unstructured triangular
mesh near the circular cylinders.

(a) Lift (b) Drag

Figure 3.9: Flow around two circular cylinders: lift and drag over the first cylinder
using uniform degree across the domain.

established through a convergence test by increasing the uniform degree of approxima-

tion, from k = 3 to k = 7. Figure 3.9 shows the lift and drag for the first cylinder as

a function of time and for different degrees of approximation. Similarly, Figure 3.10

shows the lift and drag for the second cylinder. The results show that employing a
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(a) Lift (b) Drag

Figure 3.10: Flow around two circular cylinders: lift and drag over the second cylinder
using uniform degree across the domain.

(a) Pressure

(b) Velocity

Figure 3.11: Flow around two circular cylinders: Pressure and magnitude of the velocity
fields at t = 200 with a uniform degree of approximation k = 6.

uniform degree of approximation k = 6 is enough to obtained a converged solution,

and this is considered as the reference solution in all the experiments reported here.

Figure 3.11 shows the reference pressure and magnitude of the velocity at t = 200.

In this problem, a high-order spatial approximation is essential to accurately depict the

von Karman vortex street produced by the first cylinder and its effect on the second

cylinder. When using a first-order (k = 1) approximation on the same mesh, the

vortex intensity is missed, as demonstrated in Figure 3.12, clearly showcasing the low-

dissipation characteristics of a high-order approximation scheme. The low order results

also display a larger dispersion when compared to the high order approximation as the

vortices appear in different positions.
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(a) Pressure

(b) Velocity

Figure 3.12: Flow around two circular cylinders: Pressure and magnitude of the velocity
fields at t = 200 with a uniform degree of approximation k = 1.

The results illustrated in Figure 3.11 indicate that a consistent degree of approximation

is unnecessary and that adopting a degree-adaptive strategy is beneficial to improve

resolution where necessary. Subsequent experiments evaluate various degree-adaptive

methodologies, with a target error of ε = 10−4 as specified in Section (3.3), unless

otherwise noted. Due to the large time step used, the adaptive procedure is executed

twice per time step to accurately capture flow characteristics as the solution advances.

This example also demonstrates the effects of not repeating the adaptive process.

A typical degree-adaptive method is initially examined, omitting the suggested cor-

rection. For each time step, the solution within each element is projected using the

target degree of approximation map based on the error indicator supplied by the HDG

method. Figure 3.13 illustrates the results at t = 200, along with the degree used for

each element. The velocity field aligns well with the reference solution, with only a

slight reduction in vortex intensity behind the circular cylinders. However, the pressure

field reveals significant numerical artefacts compared to the reference solution. These

artefacts arise from violating the incompressibility constraint when transferring the ve-

locity field between different degree maps, particularly when the approximation degree

is lowered, as detailed in Section 3.4.2. To evaluate the precision of the simulations,

the quantities of interest are the lift and drag. Figure 3.14 presents the lift and drag in

the first cylinder using a standard degree adaptive approach, without the application of
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(a) Degree map

(b) Pressure

(c) Velocity

Figure 3.13: Flow around two circular cylinders: Pressure and magnitude of the velocity
fields at t = 200 with degree adaptivity.

(a) Lift (b) Drag

Figure 3.14: Flow around two circular cylinders: lift and drag over the first cylinder
using degree adaptivity compared to the reference solution.

the proposed correction, and the results are juxtaposed with the reference solution.

The outcomes distinctly reveal non-physical oscillations in the drag, while the lift is

computed precisely. Comparable results for the relevant quantities related to the second

cylinder are illustrated in Figure 3.15. To examine the observed greater accuracy in

lift measurements, a mesh convergence study was performed for steady flow around

a cylinder at a Reynolds number Re = 30. Four different meshes, illustrated in
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(a) Lift (b) Drag

Figure 3.15: Flow around two circular cylinders: lift and drag over the second cylinder
using degree adaptivity compared to the reference solution.

(a) Mesh 1 (b) Mesh 2

(c) Mesh 3 (d) Mesh 4

Figure 3.16: Flow around a circular cylinder: Sequence of refined triangular meshes
used to test the convergence of lift and drag force calculations.

Figure 3.16, were used, containing 1058, 1148, 1506, and 2922 triangular elements,

respectively. The study examined lift and drag forces on the upper and lower sections

of the cylinder separately. Table 3.1 and Table 3.2 present the results of this analysis.

The data reveal that as mesh refinement increases, both lift and drag values for the

upper and lower cylinder sections converge toward reference values. However, when

evaluating the error in total lift and drag, a discrepancy appears. The total drag exhibits

the expected error reduction with mesh refinement, whereas the total lift demonstrates

remarkably small errors even on coarser meshes. This phenomenon can be attributed to

error cancellation and the symmetry of the lift force about a zero mean value. The lift

forces on the upper and lower sections of the cylinder have opposite signs, leading to a

significant reduction in error when summed to calculate the total lift. In contrast, drag

forces act in the same direction in both sections, preventing such error cancellation.
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Mesh
Upper half Bottom half Total

Value Error Value Error Value Error
[10−5]

1 -2.4893949 0.0143736 2.4896956 0.0140012 0.0005007 2.76
2 -2.4989936 0.0048749 2.4993277 0.0049691 0.0004341 9.42
3 -2.5036432 0.0001253 2.5042879 0.0000089 0.0006447 11.64
4 -2.5037685 - 2.5042968 - 0.0005283 -

Table 3.1: Steady flow around a cylinder at Re = 30: Lift values and corresponding
errors for different meshes.

Mesh
Upper half Bottom half Total

Value Error Value Error Value Error
[10−3]

1 1.7486673 0.0063593 1.7479117 0.0063767 3.4967790 12.736
2 1.7452090 0.0027010 1.7441625 0.0026275 3.4893715 5.3285
3 1.7422329 0.0002751 1.7414490 0.0000860 3.4836819 0.3611
4 1.7425080 - 1.7415350 - 3.4840430 -

Table 3.2: Steady flow around a cylinder at Re = 30: Drag values and corresponding
errors for different meshes.

The degree-adaptive method is further improved by incorporating the correction pro-

posed in Section 3.4.2. To demonstrate the advantages of this refined approach, Fig-

ure 3.17 depicts the degree map, the pressure distribution, and the velocity magnitude

at t = 200. The lack of artefacts in the pressure field is remarkable, and there is

significant agreement with the reference solution.

To more accurately measure the precision of the simulation using the suggested conser-

vative projection, Figure 3.18 presents the lift and drag forces on the first cylinder. The

results demonstrate that the suggested correction effectively removes the non-physical

oscillations seen in previous simulations and produces lift and drag measurements

closely matching the reference solution. Figure 3.19 shows the results for the second

cylinder, again verifying the absence of oscillations and the strong agreement with the

reference solution.

To better demonstrate the advantage of the suggested conservative projection, Table 3.3

presents the maximum error in the lift and drag forces for both cylinders. The results
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(a) Degree map

(b) Pressure

(c) Velocity

Figure 3.17: Flow around two circular cylinders: Pressure and magnitude of the velocity
fields at t = 200 with degree adaptivity and the conservative projection.

(a) Lift (b) Drag

Figure 3.18: Flow around two circular cylinders: lift and drag over the first cylinder
using degree adaptivity and the proposed correction compared to the reference solution.

clearly demonstrate the enhanced accuracy delivered by the conservative projection.

Specifically, the error in the lift force is reduced by an order of magnitude, while the

error in the drag force is reduced by nearly 40 times when the conservative projection

is employed.

To conclude, additional numerical experiments are conducted to demonstrate that con-

servative projection becomes necessary only when the degree of approximation is
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(a) Lift (b) Drag

Figure 3.19: Flow around two circular cylinders: lift and drag over the second cylinder
using degree adaptivity and the proposed correction compared to the reference solution.

Cylinder 1 Cylinder 2

Standard Conservative Standard Conservative
adaptivity projection adaptivity projection

Lift error 8.1× 10−2 6.8× 10−3 1.8× 10−1 1.5× 10−2

Drag error 3.7× 10−2 1.0× 10−3 1.8× 10−1 4.6× 10−3

Table 3.3: Flow around two circular cylinders: maximum error in lift and drag for
the two cylinders using the standard adaptivity and the adaptivity with the proposed
conservative projection.

allowed to decrease during the adaptive process. Moreover, the influence of the target

error on the degree-adaptive process is exemplified.

Figure 3.20 shows the drag on the first and second cylinders using a standard degree

adaptivity where the degree of approximation is not allowed to decrease. The reference

solution aligns closely without exhibiting the oscillatory behavior seen when the degree

was reduced during the adaptive process. However, a significant disadvantage of this

method is its increased computational cost. If an element achieves a high degree of

approximation at one time step, it retains this degree for the duration of the simulation,

even when it is unnecessary for feature capture in that region going forward. In this

scenario, due to the impulsive start and the stringent error requirement per element

ε = 10−4, every mesh element demands, at some point, an approximation degree

k = 6. Thus, this method matches the reference solution, but with the added expense

of computing the error indicator and projecting the solution at each time step. Using
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(a) Lift (b) Drag

Figure 3.20: Flow around two circular cylinders: Drag on the two cylinders using
degree adaptivity and not allowing the degree to be decreased during the adaptive
process.

(a) Lift (b) Drag

Figure 3.21: Flow around two circular cylinders: Drag on the two cylinders using
degree adaptivity and not allowing the degree to be decreased during the adaptive
process with ε = 10−3.

a more relaxed tolerance in the adaptive process, specifically ε = 10−3, yields the

quantities of interest without oscillations, as demonstrated in Figure 3.21, suggesting

that the root cause of drag oscillations is the breach of the incompressibility condition

during the projection of the solution to a lower degree. Some discrepancies in the drag

of the second cylinder are visually observed due to the use of a less restrictive tolerance.

The degree map at t = 200 when the adaptive process is implemented without allowing

the degree of approximation to be decreased and with ε = 10−3 is shown in Figure 3.22.

Comparing the degree map of the adaptivity process with the suggested correction, as

illustrated in Figure 3.17, it is evident that most elements in the wake of the two cylinders
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Figure 3.22: Flow around two circular cylinders: Degree of approximation at t = 200
not allowing the degree to be decreased during the adaptive process.

Figure 3.23: Flow around two circular cylinders: Number of degrees of freedom of the
global problem for two different adaptive approaches and for two different values of the
desired error.

are maintained at a higher degree when the adaptivity process is restricted from lowering

the degree. Furthermore, it can be observed that when degree reduction is prohibited,

several elements in the wake of the two cylinders continue to use an approximation

degree of k = 6. In contrast, if the adaptivity process allows degree reduction, this high

degree of approximation is unnecessary at the final stage. Figure 3.23 demonstrates

how the adaptive process decreases the degree of freedom by allowing a reduction in

the degree of approximation. The findings clearly highlight the benefits of employing

the proposed projection for adjusting the degree during the time stepping process.

Importantly, the lower the target error, the more beneficial it is to allow a reduction in

degree.

Regarding computational cost, the simulation with the proposed conservative projection

is nearly twice as fast as the simulation with a uniform degree of approximation of

k = 6. Furthermore, the simulation using the conservative projection is more than

three times faster than the simulation without degree reduction. In fact, simulations
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Type of core CPU
Number of cores 1
CPU Model Intel® Xeon® Gold 6252
Memory available 96GB-192GB
Platform Local server
Geographical location United Kingdom
Real CPU usage factor 1.0
Power usage efficiency (PUE) 1.4

Table 3.4: Details of the computational infrastructure used.

without reducing the degree are more costly than computing the reference solution

because most elements end up with the maximum degree of approximation, and the

expense of computing the error indicator and projecting the solution twice per time

step becomes significant. This shows that reducing the degrees of freedom leads to a

substantial decrease in computational time.

All numerical experiments were performed using a single core on a local server

equipped with an Intel® Xeon® Gold 6252 processor and 96-192GB of available mem-

ory. The linear systems arising from the HDG discretization were solved using the

parallel direct solver PARDISO from the Intel MKL library. Table 3.4 provides details

of the computational infrastructure used.

To assess the computational efficiency of the proposed methodology, Table 3.5 presents

a detailed comparison of the computational costs for different solution strategies applied

to the flow around two circular cylinders. The results demonstrate that the conserva-

tive projection approach achieves significant computational savings compared to both

uniform approximation and standard adaptivity, while maintaining solution accuracy.

Lastly, a numerical experiment illustrates the necessity of performing the adaptive

process twice per time step. The simulation depicted in Figure 3.21 is repeated, but

with degree adaptivity performed only once per time step. Due to the large time step

used with a high-order time integrator, the computed drag shows a notable loss in

accuracy, as shown in Figure 3.24.
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Method Total Error Projection # DOFs
walltime (h) indicator (%) time (%) (avg)

Uniform (k=6) 19.42 - - 60,196
Standard adaptivity 5.68 8.3 5.2 39,450
Conservative projection 10.58 8.5 6.8 29,750
No degree reduction 25.42 8.1 5.5 57,200

Table 3.5: Flow around two circular cylinders: Computational costs for simulation up
to T=200.

(a) Lift (b) Drag

Figure 3.24: Flow around two circular cylinders: Drag on the two cylinders using
degree adaptivity, not allowing the degree to decrease during the adaptive process with
ε = 10−3 and performing the adaptivity only once per time step.



Chapter 4

Neural network-driven degree

adaptivity

4.1 Introduction

The use of Artificial Neural Networks (ANNs) in CFD applications has attracted great

attention in recent years due to the possibility to improve the efficiency and accuracy

of numerical simulations (Brunton et al., 2020). This chapter introduces an innovative

methodology that employs ANNs to predict flow solutions at a future time and its

application to drive a degree process in transient incompressible viscous flow simula-

tions. The objective is to accelerate parametric analysis, where simulations need to be

repeated multiple times for varying parameters that involve different flow conditions.

The application example to be used in the next chapter involves the simulation of gust

where the same simulation is to be repeated multiple times for different gust conditions

such as amplitude, width or angle of the gust.

Traditional adaptive methods typically solve the governing equations at a given time

instant before moving on to the next instant (Kompenhans et al., 2016; Giorgiani et al.,

2013, 2014; Ekelschot et al., 2017). As shown in the numerical examples, flow features

might be lost due to the fact that the adaptation is performed before advancing the

74
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solution in time. An obvious solution consists of repeating each time step to ensure

that the mesh has enough resolution where is needed. However, this approach is

computationally expensive, as it basically doubles the cost of a single CFD simulation.

The proposed neural network-driven method aims to predict the solution before the

time step is performed, allowing for adaptation to take place in areas where it will be

needed, ultimately providing a more efficient use of computational resources.

The main idea is to train an ANN from available simulations to learn the complex

relationship between the solution at a given time step and the solution at the next time

step. To use a simple multilayer perceptron, which is usually easy to train compared to

other types of networks, it is necessary to define an architecture with a fixed number

of inputs and outputs. Given that the meshes considered in CFD are commonly

unstructured, using the connectivity of the mesh is not a feasible option and a novel

approach to overimpose a stencil, with a fixed number of points, on the unstructured

mesh is proposed. The network is designed to learn the relation between the solution at

the stencil points at a given time step and the solution at the centre of the stencil and the

next time step. Once trained, the network can be deployed in a degree adaptive process

to predict the solution at the next time step before adapting the degree, thus preventing

the loss of information in time and the need to repeat the time step to guarantee accuracy.

This chapter provides a brief overview of the ANN used in this work, including the

activation functions considered and the optimisation algorithm used to train the net-

work. Details about the normalisation of the data employed and the evaluation of the

performance are also provided. Particular attention is given to the sampling of the

parametric space using quasirandom Halton distributions and the treatment of the data

before training the neural network. This treatment involves novel algorithms designed

to reduce the amount of redundant information (e.g., corresponding to areas with free-

stream flow), which not only helps decrease the amount of data used and the training

time, but also removes potential bias in the trained network. Details are also given on

the integration of the trained network within a CFD solver for real-time prediction and

adaptivity.
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Using machine learning techniques to predict flow behaviour, the aim is to demonstrate

a significant improvement in degree adaptive simulation strategies, leading to more

accurate and computationally efficient results. This predictive methodology represents

a paradigm shift in the degree adaptive methods, utilising available data to speed up

adaptive processes. Despite the current work focusing on degree adaptivity, it is worth

mentioning that these ideas could also be exploited is mesh adaptivity strategies.

It is worth noting that the use of machine learning to aid in a mesh adaptive process

has recently been considered in (Dzanic et al., 2024), where the authors use reinforced

learning to predict local refinement policies. The idea is to predict the error in the

solution and refine the path that the solution will follow in time and remesh in advance

to avoid constant remeshing. In contrast to this work, the approach presented here

focuses on degree adaptivity in a high-order context. Given the use of very high-order

time integrators, it is crucial to ensure that the adaptivity is performed regularly to

ensure accurate propagation of flow features. Furthermore, predicting the path of the

solution to increase the degree in a large area would result in a large computational cost.

Recent work on degree adaptation for high-order discontinuous Galerkin compressible

simulations has also been considered in (Huergo et al., 2024), where the authors use

reinforced learning to automate a degree adaptive process. This work considers a

training process in 1D and its use in 2D and 3D problems to perform anisotropic

degree adaptation. The main drawback is the use of tensor-product elements, given that

nowadays it is still not possible to obtain unstructured meshes of hexahedral elements for

complex geometries, and meshing complex models with structured hexahedral meshes

requires a significant level of human intervention.

4.2 Artificial neural networks

ANNs are computational models inspired by biological neural networks of the human

brain (Haykin, 2009). They consist of interconnected nodes or “neurons” organised in
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layers that can learn complex non-linear relationships between inputs and outputs. The

basic structure includes an input layer, one or more hidden layers, and an output layer.

Each connection between neurons has an associated weight that is adjusted during the

training process.

Neural networks have shown remarkable success in various domains, including com-

puter vision, natural language processing, and scientific computing (LeCun et al.,

2015). Their ability to approximate complex functions makes them a suitable choice

for predicting the time evolution of flow features.

4.2.1 ANN architecture

Figure 4.1 illustrates a schematic representation of a multi-layer perceptron, a prevalent

type of ANN. This architecture comprises three primary components: the input layer,

the hidden layers, and the output layer.

Inputs Hidden Layers Outputs

Figure 4.1: Schematic representation of a multi-layer perceptron neural network.

The input layer, depicted on the left side of Figure 4.1, consists of N input nodes

(x1, x2, . . . , xN) and a bias node (+1). These nodes represent the features or variables

of the input data. The bias node, which always outputs a value of 1, allows the network

to learn and represent patterns that do not necessarily pass through the origin.

The central portion of Figure 4.1 illustrates the hidden layers. An ANN may contain
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multiple hidden layers, each comprising a different number of neurons. In this particular

representation, we observe N1 neurons (z11 , z12 , . . . , z1N1
) in the first hidden layer and Nl

neurons (zNl
1 , zNl

2 , . . . , zNl
Nl
) in the final hidden layer. Each hidden layer also incorporates

a bias node (+1).

The hidden layers are crucial for the ability of the ANN to model complex, non-linear

relationships. Each successive layer allows the network to extract and combine features

from the previous layer in increasingly abstract ways, thereby enabling the modelling

of intricate patterns between inputs and outputs.

The right side of Figure 4.1 shows the output layer, comprising M output nodes

(y1, y2, . . . , yM). The number of output nodes is determined by the specific problem

being addressed; for example, a binary classification task would typically have a single

output node, while a multiclass classification problem would have multiple output

nodes.

A key feature of ANNs is that the nodes in the adjacent layers are fully connected. A

weight, denoted by θ in Figure 4.1, is associated to each connection. For example, θcab

represents the weight of the connection between the a-th node of the c-th layer and the

b-th connection of the subsequent layer.

4.2.2 Forward propagation

Information in an ANN flows from left to right, during the so-called forward propa-

gation. The input values are propagated through the network by calculating the value

associated to each neuron using a weighted sum of its inputs. Mathematically, for a

neuron j in layer l, this computation can be expressed as

zl+1
j = f l

Ñ
N l

n∑
i=1

θljiz
l
i + blj

é
(4.1)
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(a) Activation function (b) Derivative of activation function

Figure 4.2: The differences among four popular types of activation functions used in
an ANN and their respective derivatives.

where f l is the activation function of the l-th layer, θlji is the weight connecting neuron

i in layer l− 1 to neuron j in layer l, zli is the output of neuron i in layer l, and blj is the

bias unit.

The activation functions are used to introduce the required non-linearities to ensure

that the network can approximate complex relationships between inputs and outputs.

Some of the most popular activation functions are:

Linear: L(x) = x

Logistic Sigmoid: S(x) =
1

1 + e−x

Hyperbolic Tangent Sigmoid: T (x) =
ex − e−x

ex + e−x

Rectified Linear Unit (ReLU): R(x) = max(0, x)

and are represented in Figure 4.2 together with their derivatives.

The choice of activation function can significantly affect network performance and

training dynamics. It is common to use different activation functions in different layers

of the network, tailored to the specific requirements of the task at hand.

Linear activation is typically used in the output layer for regression tasks. Sigmoid

functions (logistic and hyperbolic tangent) are historically popular for their bounded
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output and smooth gradients but can suffer from vanishing-gradient problems in deep

networks. Finally, ReLU has become very popular in recent years, especially in deep

learning, due to its computational efficiency and ability to mitigate the vanishing

gradient problem. However, it is not differentiable at x = 0 and can lead to “dying

ReLU” problems.

4.2.3 ANN training

The process of training an ANN involves adjusting the weights and biases to minimise

the difference between the outputs predicted by the ANN and the true outputs, which

are usually known for a few number of cases.

The so-called loss function, defined as

C(θ) =
1

nTrM

nTr∑
k=1

M∑
i=1

[
yki (x

k)− hk
i (θ)

]2 (4.2)

is introduced to measure the difference between true and predicted outputs, where nTr

is the number of training examples, M is the number of outputs, yki represents the true

output for the i-th neuron and k-th training example, and hk
i (θ) denotes the prediction

of the network. The vector θ encompasses all trainable parameters (weights and biases)

of the network.

To minimise the loss function, i.e., to train the ANN, conjugate gradient-based ap-

proaches are commonly employed. Conjugate gradient methods are second-order

optimisation techniques that aim to minimise a function by generating a sequence of

search directions that are conjugate with respect to the Hessian matrix of the objective

function.

Traditional conjugate gradient methods, such as the Fletcher-Reeves algorithm, require

a line search procedure to determine the optimal step size in each iteration, which

can be computationally expensive. The Scaled Conjugate Gradient (SCG) algorithm,
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introduced by (Møller, 1993) and adopted in this work, eliminates the need for a

user-specified line search by using a scaled step size. It combines the model-trust

region approach from the Levenberg-Marquardt algorithm with the conjugate gradient

approach, resulting in an efficient and robust optimisation method. The SCG algorithm

has been shown to be particularly advantageous for training large-scale networks.

The SCG algorithm updates the weights at iteration r + 1 using the expression

θl,r+1
ij = θl,rij + αrpl,rij , (4.3)

where αr is the step size determined by a model-trust region approach within the SCG

method, and pl,rij is the conjugate direction, computed as

pl,rij = −∇θC(θr) + βrpl,r−1
ij , (4.4)

with βr given by

βr =
∇θC(θr)T [∇θC(θr)−∇θC(θr−1)]

pl,r−1
ij [∇θC(θr)−∇θC(θr−1)]

(4.5)

It can be observed that the SCG algorithm updates the weights using both first and

second order derivatives of the cost function, resulting in faster convergence compared

to first-order methods.

4.2.4 Performance Evaluation

To assess the performance of the trained network, a relative error metric, defined as

Relative Error =
max(|Ytest − Ypredicted|)

max(|Ytest|)
(4.6)

is introduced.
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Figure 4.3: Schematic representation of the inputs and outputs for the proposed ANN
architecture. Stencil with a central mesh node and eight neighbouring points. Input:
consisting of pn, and un and Output: consisting of un+1 at the central mesh node.

This metric quantifies the maximum relative difference between the predicted and

actual values for all test cases. It provides a non-dimensional measure of the worst case

scenario and it will be used in the numerical examples to assess the accuracy of the

trained ANNs.

4.3 Stencil-based ANN architecture

The proposed approach of using an ANN to predict the solution at time tn+1 from the

solution at time tn requires an architecture with a fixed number of inputs and outputs.

An obvious option is to consider all the nodes in the mesh and build a network that

takes the solution at the current time step as input and predicts the solution at the

future time step for all the nodes of the mesh. This architecture is expected to require

a significant amount of data and training time due to the potentially large number of

inputs and outputs. Furthermore, this strategy would not allow for training in one mesh

and using the network in other meshes or even in the same mesh with different orders

of approximation. Therefore, it is considered not a suitable option to couple with a

degree adaptive approach.

The strategy considered consists of associating to each mesh node a set of surrounding

points at a certain distance d, as shown in Figure 4.3. The plot shows a mesh node
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(labelled ‘1’) and eight surrounding points (labelled ‘2’ to ‘8’) at a certain distance d,

the total number of points of the stencil is defined as nstencil. The assumption here is

that the solution at the central mesh node at tn+1 can be predicted from the solution

at the surrounding points at tn. More precisely, it is assumed that the velocity at the

central mesh node can be predicted from the velocity at the same mesh node and at

the surrounding points together with the pressure at the surrounding points only. This

is schematically represented in Figure 4.3 and, in two dimensions, leads to an ANN

architecture with N = 26 + nparam inputs, where nparam is the number of parameters

characterising the flow and M = 2 outputs.

The main reason for not considering the pressure at the central mesh node as an input is

because the incompressible Navier-Stokes equations only contain first order derivatives

of the pressure. It is worth noting that it is only necessary to predict the velocity because

the objective is to predict the degree of approximation, and the error indicator used in

this work builds this error indicator only using the velocity field (and the postprocessed

velocity).

This idea is inspired from numerical schemes such as the finite difference method

where a stencil is typically built around each node of the Cartesian grid, so the set of

points surrounding a node will be referred to as a the stencil of a mesh node. Different

stencils have been considered, and numerical examples will present the performance

of different strategies.

4.3.1 Stencil distance computation

The definition of the distance d used to locate the points on the stencil is based on

physical considerations, mainly based on the hypothetical trajectory of a fluid particle

over a single time step.

For each mesh node, let us consider the current position of a particle, xi, the velocity

vector at that node, ui, and the time step, ∆t . These parameters enable a simple
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Figure 4.4: Schematic representation computation of the stencil distance for a node xi.

estimation of the displacement vector of a particle, defined as

U i := ui∆t. (4.7)

For each mesh node xi, a region of influence is defined using the magnitude of the

displacement vector, ∥U i∥2, representing the region from which information could

potentially affect the solution at node xi in the next time step.

In addition, the displacement vector for any mesh node xj connected to node xi is

projected over the edge connecting nodes xi and xj , namely

U ji :=
U j · xji

∥xji∥2
xji, (4.8)

where xji := xj − xi, as illustrated in Figure 4.4.

The distance associated to node xi is then defined as

di := min
{
∥U i∥2,min

j∈Λi

{∥U ji∥2}
}

(4.9)

where Λi denotes the set of nodes connected to node xi.

This approach ensures the application of the most restrictive condition, particularly in

regions exhibiting high velocity gradients. This distance computation methodology

is closely aligned with semi-Lagrangian numerical schemes. In these schemes, the
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solution at a point is computed by tracing the characteristics backward in time. The dis-

tances computed in our algorithm effectively estimate the length of these characteristic

lines, adapting the numerical stencil to the local flow behaviour.

The distance di defined in Equation (4.9) could be added to the list of inputs of the ANN

to be trained. However, to avoid adding extra parameters and minimise the amount of

data required and training time, a unique value defined as the minimum for all mesh

nodes, that is

d := min
i=1,...,nnodes

{di}, (4.10)

is considered in this work.

4.3.2 Data acquisition

The generation of suitable data to train an ANN requires sampling the space of the

parameters. Typical methods to perform this task are the Latin hypercube sampling

(LHS) (Shields and Zhang, 2016) and the Halton sequences (Halton, 1960).

The Halton sequence is a deterministic sequence of points that provides a uniform

distribution over the unit hypercube [0, 1]N , where N is the dimension of the space.

Halton sequences are considered in this work because they offer better uniformity and

coverage of the sample space compared to pseudo-random generators, especially in

lower dimensions (Kocis and Whiten, 1997), and contrary to random methods such

as LHS the Halton sequencing enables repeatability. The last aspect is considered

important when performing studies to analyse the influence of the number of training

cases on the accuracy of the ANN predictions.

For a given base b, the one-dimensional Halton sequence is generated as

Hb(m) =
∞∑
i=0

ai(m)b−(i+1) (4.11)

where m is the index of the sequence (starting from 0), and ai(m) are the digits of m
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when expressed in base b, but in reverse order.

To generate a N -dimensional Halton sequence, we use N different prime numbers,

typically the first N prime numbers, as bases for each dimension.

The data acquisition process for the proposed ANN comprises two main steps. The first

one is the the execution of a series simulations for some varying parameters, typically

corresponding to different flow conditions. The pressure (p) and velocity (u) fields are

stored in an four dimensional array X of dimension nnodes × nsteps × (nsd + 1)× nTr,

where nnodes is the number of mesh nodes, nsteps is the number of time steps and nTr

denotes the number of training cases.

Each component of the array Xa,b,c,d contains the c-th component of the velocity for

c = 1, . . . , nsd and the pressure for c = nsd + 1 at the a-th mesh node and the b-th time

step and for the set of flow parameters corresponding to the d-th training case.

The second step consists of transforming the data stored in X into two two-dimensional

arrays X and Y to be used as input and output of the ANN. The input array X is of

dimension nnodesnstepsnTr ×N , with each row storing the following information

Xr =
{
pni,2(µ), p

n
i,3(µ), . . . , p

n
i,9(µ), u

n
i (µ), u

n
i,2(µ), u

n
i,3(µ), . . . , u

n
i,9(µ), . . .

vni (µ), v
n
i,2(µ), v

n
i,3(µ), . . . , v

n
i,9(µ), µ

}
,

(4.12)

for a given mesh node xi and instant tn, where µ := {µ1, . . . , µnparam} denotes the

parameters encoding the flow conditions, nparam is the number of parameters and □n
i,a

denotes the interpolation of □ at the a-th point of stencil centred at xi at time tn. The

row number r is given by

r = (iTr − 1)nnodesnsteps + (n− 1)nnodes + i (4.13)

where iTr denotes the i-th training case.
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Similarly, the output array Y is of dimension nnodesnsteps ×M , with each row storing

the following information

Yr =
{
un+1
i , vn+1

i

}
. (4.14)

The methodology is illustrated in Algorithm 3. For each node xi of the computational

mesh and for each instant tn the solution is interpolated at the points of the stencil

corresponding to xi. The interpolation requires finding the parent element of the

mesh that contains the point of the stencil, computing the local coordinates in the

reference element for this point at the identified parent element and interpolating the

solution using the corresponding high-order shape functions. The interpolated values,

together with the associated parameters, form the row of the input array as described

in Equation (4.12). For the output array, the values are simply the components of the

velocity at the next instant tn+1 as detailed in Equation (4.14).

For nodes on the boundary or close to the boundary, it is possible to have stencil points

outside of the computational domain. These nodes are discarded and are not used to

build a stencil. This implies that the proposed approach assumes that the mesh and the

degree of approximation near the boundary are appropriate. This assumption is well-

founded, as practitioners have developed robust mesh generation expertise for steady-

state simulations over several decades. Experience has demonstrated that targeted

refinement near boundaries effectively captures critical flow features like boundary

layers and separation points. This is especially relevant for external aerodynamics and

internal flows where the most significant gradients develop near solid boundaries. While

adaptive refinement remains valuable, starting with appropriately refined boundary

meshes based on established engineering practice has proven reliable. The objective of

the proposed approach is to perform degree adaptive to capture flow features travelling

long distances within the domain.

The interpolation process when a point of the stencil lies within an element that is

affine to the reference element is trivial, as inverting the isoparametric mapping is

trivial. However, when a point of the stencil lies within an element that is not affine
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to the reference element (e.g. a high-order curved triangle in two dimensions) the

inversion of the isoparametric mapping requires the solution of a small non-linear

problem to find the local coordinates of the point as explained in Section 2.6

4.3.3 Data preparation

Data normalisation is a crucial preprocessing step in training ANNs. It helps to ensure

that all input and outputs are on a similar scale, which can significantly improve the

performance and convergence of the training process. One common technique for nor-

malisation is the Min-Max normalisation, also known as feature scaling, which involves

scaling all values to a fixed range, typically between 0 and 1. This transformation is

particularly useful when the features have different scales or units.

For a given quantity z, the min-max normalisation is defined as:

znormalised =
z − zmin

zmax − zmin
(4.15)

where zmin and zmax are the minimum and maximum values of the quantity z in the

dataset, respectively.

When applying the Min-Max Normalisation to the inputs of an ANN, it is crucial to

ensure that the minimum and maximum values for each input are computed using only

the training data. Then, the normalisation is applied to training, validation and test sets

using Equation (4.15). This procedure ensures that the training process does not see

any information from validation or test sets.

Another crucial aspect of the data preparation process, which is specific to the appli-

cation of interest, involves discarding regions that do not exhibit any relevant transient

phenomena, that is, regions where the flow is almost uniform. This process not only

reduces the amount of data stored and used for training but also ensures that the training

is not biased towards those cases corresponding to uniform flow inputs and outputs. To
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this end, a filter tolerance, denoted ε∇ is introduced and nodes where the gradient of

the pressure and velocity are both below the tolerance are discarded from the training

dataset.

Formally, we discard a point xi at time tn if

max {∥∇p(xi, t
n)∥2 , ∥∇u(xi, t

n)∥2 , ∥∇v(xi, t
n)∥2} ≤ ε∇, (4.16)

where ∥ · ∥2 denote the Euclidean norm.

The data acquisition and filtering process is detailed in Algorithm 3. The first loop

Algorithm 3 Data acquisition and filtering
1: Input: X ∈ Rnnodes×nsteps×(nsd+1)×nTr

2: Output: X ∈ Rncases×N , Y ∈ Rncases×M

3: ncases = 0 {Initialise case counter}
4: for isim ← 1 to nsim do
5: for n← 1 to nsteps − 1 do
6: for i← 1 to nnodes do
7: if max {∥∇p(xi, t

n)∥2 , ∥∇u(xi, t
n)∥2 , ∥∇v(xi, t

n)∥2} > ε∇ then
8: S ← {xi,s}nstencils=2 {Coordinates for the stencil points centered at xi}
9: if S ⊂ Ω then

10: for s← 2 to nstencil do
11: Interpolate solution at stencil point xi,s

12: end for
13: ncases ← ncases + 1
14: Set r according to Equation 4.13
15: Set Xr according to Equation 4.12
16: Set Yr according to Equation 4.14
17: X← X ∪Xr

18: Y ← Y ∪Yr

19: end if
20: end if
21: end for
22: end for
23: end for
24: return X ∈ Rncases×N , Y ∈ Rncases×M

considers all the parametric cases available. For each parametric case a loop on time

steps and mesh nodes is performed. For each mesh node the gradients of the gradients of

the pressure and velocity are checked to ensure that only relevant cases are considered.

For relevant cases the stencil points are computed and, if the whole stencil lies within
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the computational domain, the solution is interpolated at each stencil point. With this

information, the matrices of inputs and outputs are populated.

Once all data have been collected, it is essential to ensure that there are no duplicate

input cases. The presence of repeated data can introduce significant redundancy into

the dataset, potentially skewing the training process and leading to a biased neural

network model that overfits to these repetitive patterns. This step is crucial to maintain

the diversity and representativeness of the dataset.

An algorithm has been developed and implemented to reduce the data set by eliminating

redundant cases. A case is considered redundant if, at a given mesh point, the variables

at each node of the stencil are sufficiently close to the corresponding values at another

mesh point.

In the current implementation, the range of each input variable is calculated at each node

within the stencil and subsequently divided into a predetermined number of intervals.

More precisely, for each input the minimum and maximum values found for all cases

are defined as

αX
i := min

a=1,...,ncases
{Xa,i}, βX

i := max
a=1,...,ncases

{Xa,i}. (4.17)

Each interval
[
αX
i , β

X
i

]
is divided into nbuckets equally-spaced intervals that are referred

to as buckets and denoted by

BX
i = {bXi,1, . . . , bXi,nbuckets}. (4.18)

In a similar fashion, for each output the minimum and maximum values found for all

cases are defined as

αY
i := min

a=1,...,ncases
{Ya,i}, βY

i := max
a=1,...,ncases

{Ya,i}. (4.19)
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Each interval
[
αY
i , β

Y
i

]
is divided into the same number of buckets, denoted by

BY
i = {bYi,1, . . . , bYi,nbuckets}. (4.20)

Each variable at a node is then categorised into one of these buckets. A specific case is

identified by the unique combination of buckets occupied by the variables at the nodes

of the stencil. Consequently, a case is considered redundant if the same combination of

buckets has already been encountered in the data set. This method ensures the removal

of repeated cases, thus improving the efficiency of the data set and improving the overall

quality of the ANN training process. This procedure is detailed in Algorithm 4.

4.3.4 Degree adaptive HDG strategy using prediction

Algorithm 5 presents a degree-adaptive method incorporating an Artificial Neural Net-

work (ANN). The primary enhancements to the standard adaptive strategy, highlighted

in green, involve the use of predictive techniques. These modifications enable predic-

tion of the velocity and superconvergent velocity for the subsequent time step, thereby

enabling the computation of an error indicator for the predicted solution. The polyno-

mial degree is subsequently updated by considering the maximum of both the computed

and predicted error indicators. This approach potentially enhances the efficiency and

accuracy of the method for unsteady problems by adapting the polynomial degree based

on both current and anticipated future solution behaviour.

4.4 Verification example

As discussed in Chapter 3, adaptivity constitutes a significant challenge in the context of

transient flows. The numerical example in Section 3.5.2 demonstrated that when using

high order time integrators and large time steps for maximum efficiency, an adaptive

process fails to capture accurately the propagation of vortices, and this is reflected in
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Algorithm 4 Data reduction
1: X ∈ Rncases×N , Y ∈ Rncases×M

2: Output: Xred ∈ Rnred×N , Yred ∈ Rnred×M

3: nred = 0 {Initialise reduced case counter}
4: Define buckets for inputs and outputs according to Equations (4.18) and (4.20)
5: Initialise alternating digital tree (ADT): T ← ∅
6: for ic ← 1 to ncases do
7: for iout ← 1 to M do
8: Find j such that bYi,j ≤ Yic,iout ≤ bYi,j+1

9: end for
10: if ic > 1 then
11: Z← {z ∈ T : bYi,j ≤ z ≤ bYi,j+1, iout = 1, . . . ,M}
12: {The ADT returns the output cases in which all the outputs lie on the same

bucket as case ic}
13: r ← 0
14: for z ∈ Z do
15: for iin ← 1 to N do
16: Find l such that bXi,l ≤ Xic,iin ≤ bXi,l+1

17: Find lz such that bXi,lz ≤ Xz,iin ≤ bXi,lz+1

18: if l ̸= lz then
19: r ← r + 1
20: break
21: end if
22: end for
23: end for
24: if r = 0 then
25: T ← T ∪ {ic}
26: Xred ← Xred ∪Xic,⋆

27: Yred ← Yred ∪Yic,⋆

28: nred = nred + 1
29: end if
30: else
31: T ← T ∪ {ic}
32: Xred ← Xred ∪Xic,⋆

33: Yred ← Yred ∪Yic,⋆

34: nred = nred + 1
35: end if
36: end for
37: return Xred ∈ Rnred×N , Yred ∈ Rnred×M
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Algorithm 5 Degree adaptive HDG Method for unsteady Navier-Stokes Equations
1: Initialise polynomial degree map {ke}e=1,...,nel

2: Set base b for logarithm, tolerance ε and number of iterations nadaptivity.
3: for is ← 1 to nsteps do
4: for ia ← 1 to nadaptivity do
5: for iNR ← 1 to nNR do
6: Solve global problem of Equation (2.51)
7: Solve local problem of Equation (2.53)
8: end for
9: for iel ← 1 to nel do

10: Compute super-convergent velocity using Equation (3.2)
11: Compute error indicator using Equation (3.11)
12: Predict velocity and super-convergent velocity at time is + 1 using ANN
13: Compute error indicator for predicted solution using Equation (3.11)
14: Update the degree using Equation (3.17), taking maximum of computed

and predicted
15: if ∆ke < 0 then
16: Compute conservative projection using Equation (3.25)
17: end if
18: end for
19: end for
20: end for

a substantial loss of accuracy in aerodynamic quantities of interest such as the drag.

This example also showed that, to ensure accurate computation, the adaptive process

required the repetition of each time step. This was shown to be enough to ensure that the

degree of approximation was adapted in regions where flow features were not present

at the time tn but will be present at the next instant tn+1.

4.4.1 Problem description

As a verification of the proposed use of ANN to aid in a degree adaptive process, this

section considers the same example, i.e., the flow at Re = 100 around two cylinders in

tandem, where the ANN is used to predict the solution at time tn+1 from the solution at

time tn. The mesh considered is the same as the previous example, shown in Figure 3.8

and the ESDIRK46 time marching is used with a time step ∆t = 0.2

No flow parameters are considered here as the objective is simply to illustrate the

potential benefits of having an ANN trained to accurately predict the solution at the
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(a) Lift (b) Drag

Figure 4.5: Flow around two circular cylinders: lift and drag over the first cylinder
using degree adaptivity compared to the reference solution.

next time step. Therefore, the data acquisition is performed using the simulation

corresponding to the reference solution, which involves using a constant degree of

approximation k = 6 in all elements. Despite this is purely an academic exercise to

verify the correct coupling of the trained ANN within the degree adaptive loop, it is

worth mentioning that this does not imply that the ANN is deployed to predict only

cases that were seen during training. This is because the ANN is trained using data

from a simulation with k = 6 in all elements, whereas the degree adaptive simulation

involves degree adaptivity. Therefore, different values of the inputs corresponding to

the flow field at a point and its corresponding stencil, when compared to the training

cases, will be used to perform the predictions.

To test the proposed methodology, a standard degree adaptive process is first utilised

with a target error of ε = 0.5 × 10−4. By standard, we refer to the application of

the adaptivity without repeating the time step or involving the ANN prediction, but

employing the conservative projection proposed in Section 3.4.2. The corresponding

lift and drag for the first cylinder are illustrated in Figure 4.5, while those for the second

cylinder are depicted in Figure 4.6.

The results clearly show an important loss of accuracy in the drag force for the first

cylinder and, even more pronounced, for the second cylinder. As discussed in Section

3.5.2 the accurate results obtained for the lift are only due to the cancellation of errors
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(a) Lift (b) Drag

Figure 4.6: Flow around two circular cylinders: lift and drag over the second cylinder
using degree adaptivity and the proposed correction compared to the reference solution.

that results from the lift being centred at zero.

4.4.2 Data acquisition

To illustrate the potential of the proposed use of an ANN, the data acquisition is

performed from the nsteps = 250 time steps of the reference solution, corresponding

to t ∈ (150, 200), following the procedure described in Section 4.3.2 and Algorithm 3.

The stencil distance is computed following the procedure described in Section 4.3.1,

leading to a value of d = 0.0375.

Given that flow parameters are not considered in this example, the ANN architecture

comprises N = 26 inputs and M = 2 outputs, as detailed in Section 4.3.

The data acquisition process leads to a total of ncases = 20, 532, 381 cases, mainly due

to the use of a high-order reference solution with k = 6 in all elements. To reduce this

large dataset and eliminate redundant information that can lead to a biased ANN, the

data preparation procedure described in Section 4.3.3 is applied with nbuckets = 10, 20

and 40 buckets.

Figures 4.7, 4.8, and 4.9 show the data collected from the reference solution. In the

horizontal axis the bucket number is displayed, whereas the vertical axis shows the

cumulative number of cases. Each colour represents one of the inputs of the ANN and
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Figure 4.7: Flow around two circular cylinders: Histogram illustrating the distribution
of the cases in 10 buckets for the data collected from a simulation and before any
preparation.

Figure 4.8: Flow around two circular cylinders: Histogram illustrating the distribution
of the cases in 20 buckets for the data collected from a simulation and before any
preparation.

the definition of each input is as described in Equation (4.12). The distribution among

the buckets is clearly uneven, and the central buckets contain the highest number of

cases, approaching 108 cases. In contrast, the buckets at the lower and higher ends of
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Figure 4.9: Flow around two circular cylinders: Histogram illustrating the distribution
of the cases in 40 buckets for the data collected from a simulation and before any
preparation.

the spectrum show significantly fewer cases, often below 106.

4.4.3 Data preparation

Given the large number of cases obtained from a single simulation, training directly

with the data gathered is not desirable. On one hand, the training process is expected to

take significant time and, on the other hand, the trained ANN is expected to be biased

given the data distribution shown in Figure 4.8. To mitigate this problem, the data

reduction process described in Section 4.3.3 is considered next.

Figures 4.10, 4.11, and 4.12 depict the distribution of the data after the data reduction

process. The distribution among the buckets is significantly more uniform, with most

of the buckets containing thousands of cases. It is also important to note the even

distribution of colours (inputs) in each bucket, illustrating the performance of the data

reduction algorithm proposed in Section 4.3.3. For this example, the total number of

cases after reduction is: for 10 buckets is 535, for 20 buckets is 4,535, and for 40 buckets

is 32646. This significant reduction in the dataset is expected to have a major impact
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Figure 4.10: Flow around two circular cylinders: Histogram illustrating the distribution
of cases in 10 buckets for the data collected from a simulation after the application of
the data reduction algorithm.

Figure 4.11: Flow around two circular cylinders: Histogram illustrating the distribution
of cases in 20 buckets for the data collected from a simulation after the application of
the data reduction algorithm.

on the training time of the ANN as well as the reduction of bias in the trained ANN.

Subsequent analyses will be performed using the data produced using 20 buckets.

To further analyse the performance of the reduction algorithm, Figure 4.13 compares
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Figure 4.12: Flow around two circular cylinders: Histogram illustrating the distribution
of cases in 40 buckets for the data collected from a simulation after the application of
the data reduction algorithm.

(a) Before data reduction (b) After data reduction

Figure 4.13: Flow around two circular cylinders: Logarithmic histogram illustrating
the distribution of cases in 20 buckets for the pressure field at the central point of the
stencil before and after data reduction.

the distribution of the data corresponding to the pressure field at the central point of

the stencil before and after the reduction process is applied. The results, presented in

logarithmic scale clearly show that the raw data contains a significant number of cases

on buckets 10 to 12, with more than a million cases on each of these buckets. After

reduction, the distribution of the data is more uniform, with all buckets containing

between 10 and 1,000 cases.
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(a) Before data reduction (b) After data reduction

Figure 4.14: Flow around two circular cylinders: Logarithmic histogram illustrating
the distribution of cases in 20 buckets for the horizontal velocity at the central point of
the stencil before and after data reduction.

Similarly, Figure 4.14 compares the distribution of the data corresponding to the hori-

zontal velocity at the central point of the stencil before and after the reduction process

is applied. The results show that the raw data contains a significant number of cases

on buckets 12 to 17, with more than a million cases on each of these buckets. After

reduction, the distribution of the data is more uniform, with all buckets containing

between 10 and 1,000 cases, which is of the same order of cases when compared to the

pressure field.

Finally, Figure 4.15 compares the distribution of the data corresponding to the vertical

velocity at the central point of the stencil before and after the reduction process is

applied.

It is worth noting that the raw data is always skewed but in different buckets, due to the

different nature of the quantity being considered and the proposed algorithm produces a

reduced dataset where all the variables show a significant reduction and a more uniform

representation of the dataset.
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(a) Before data reduction (b) After data reduction

Figure 4.15: Flow around two circular cylinders: Logarithmic histogram illustrating
the distribution of cases in 20 buckets for the vertical velocity at the central point of the
stencil before and after data reduction.

(a) Output 1: u (b) Output 2: v

Figure 4.16: Flow around two circular cylinders: Maximum percentage error of the
trained ANN, different number of neurons and hidden layers.

4.4.4 ANN training

To analyse the effect of the hyperparameters of the ANN, training was carried out for

different numbers of hidden layers, from 1 to 5, and for different number of neurons in

each layer, from 10 to 200 in steps of 10. The error of the ANN, measured as described

in Equation (4.6), is shown for both outputs in Figure 4.16. The results show that

with four hidden layers and 100 neurons the minimum error, below 2%, is obtained for

both outputs. It is worth noting the similar pattern in the error maps for both outputs.

Despite a relatively deep network, with four hidden layers, and the relatively large

number of neurons, 100, that provide the minimum error, it is important to note that
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(a) n̄epochs (b) T̄total

Figure 4.17: Flow around two circular cylinders: Mean number of epochs required
for training convergence (nepochs) and mean total training time (Ttotal) in seconds for
different number of neurons and number of hidden layers.

much shallower networks with fewer neurons provide low errors. For instance, with a

single hidden layer and 20 or 30 neurons, the trained ANN provides accurate results,

with errors below 4%.

The heat maps in Figure 4.17 reveal the relationship between the architecture of the

ANN and the efficiency of training. Each network configuration was trained five

times to mitigate the impact of random weight initialisation, with the best performing

instance selected. This approach ensures more robust and representative results. Figure

(a) depicts the mean number of epochs required for convergence, while Figure (b)

illustrates the mean total training time. Both metrics exhibit complex, non-monotonic

dependencies on the number of neurons and layers. The architecture selected based

on maximum error, consisting of 4 hidden layers and 100 neurons, is situated within

a region characterized by a relatively low number of epochs (approximately 500-

600) and moderate total training time (around 60-70 seconds). Interestingly, the total

training time does not strictly correlate with the number of epochs, indicating that the

computational cost per epoch varies significantly across different architectures. This

discrepancy is particularly evident for networks with a large number of neurons, where,

despite fewer epochs, the total training time increases substantially.
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4.4.5 ANN-driven degree adaptivity

The trained ANN, with four hidden layers and 100 neurons in each layer, is now

incorporated within the degree adaptivity process. To this end, at each time step, the

error indicator is computed using the current solution at time tn and using the ANN

predicted solution at time tn+1. To compute the error indicator at time tn+1, not only

the velocity field is predicted, but also the super-convergent velocity. One of the key

aspects of the prediction strategy proposed here is that the same ANN is used to predict

both the velocity and the super-convergent velocity.

Figure 4.18 presents the predicted flow field around two circular cylinders in t = 200

from t = 199, together with associated error maps. The error maps were calculated

by taking the absolute error between the predicted solution and the reference solution,

presented in Figure 3.11b. The errors are generally low across the domain, exhibiting

errors of the order of 10−3 to 10−4 across the entire domain, indicating a good overall

accuracy of the prediction. The error maps focus on the region near the cylinders to

highlight the detailed flow features, while the farfield region, though not visible in these

plots, exhibits correct and low error levels consistent with the expected behaviour. The

error patterns in both x and y components are similar, suggesting that the performance

of the model is consistent between different velocity components.

Figure 4.19 illustrates the spatial distribution of of polynomial degrees when using

adaptivity, comparing cases with and without the prediction step.In the standard degree

adaptivity approach (a), the degree distribution ranges from 1 to 6, reflecting the varying

complexity of the local flow features. Higher degree approximations are concentrated

near the cylinders and in the near wake regions, where flow features are most intricate.

The far wake region shows intermediate degrees, capturing ongoing vortex interactions,

while lower degrees are used in the free-stream regions with relatively uniform flow. In

contrast, the degree adaptivity with prediction (b) shows a marked increase in higher-

degree elements throughout the domain, especially in the wake regions. The transition
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(a) Predicted velocity

(b) |eu|

(c) |ev|

Figure 4.18: Flow around two circular cylinders: Predicted velocity fields at t = 200
and absolute error maps in logarithmic scale of the velocity in x-direction (|eu|) and
the the velocity in y-direction (|ev|) with degree adaptivity.

between degree levels is more gradual, with larger contiguous regions of a similar

degree. In particular, higher degrees are applied predictively in areas where complex

flow structures are anticipated to develop. Comparing the two approaches reveals that

the predictive method results in a more forward-looking degree distribution, increasing

approximation orders in regions where the flow is expected to become complex. This

strategy is particularly beneficial for unsteady flows, as it increases the polynomial

degree before the solution complexity appears in those regions. The standard adaptivity,

on the other hand, closely follows the current flow structure, which may be inefficient

for rapidly evolving unsteady flows. The differences are most pronounced in the far

wake and in areas adjacent to the main vortex street, where the predictive approach

anticipates the propagation and development of complex flow structures.

The predictive degree adaptivity demonstrates a significant advantage for unsteady flow

simulations. It potentially allows for larger time steps without loss of accuracy, as the

solution space is preemptively enriched, and mitigates the accumulation of errors that

can occur when the approximation order lags behind the developing flow complexity.
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(a) Degree Adaptivity

(b) Degree Adaptivity with Prediction

Figure 4.19: Flow around two circular cylinders: Degree of approximation at t = 199
with degree adaptivity and with degree adaptivity including the predicted velocity fields
at t = 200.

(a) Lift (b) Drag

Figure 4.20: Flow around two circular cylinders: lift and drag over the first cylinder
using degree adaptivity enhanced with prediction compared to the reference solution.

To assess the extra accuracy of the ANN-driven degree adaptive process, Figures 4.20

and 4.21 show the computed lift and drag for the first and second cylinders, respectively.

The improvement on the computed drag is clear, with the computed values matching

the reference solution for both cylinders.

To quantify the extra accuracy provided by the ANN-driven degree adaptive process,

Figures 4.22 and 4.23 display the error of the lift and drag on the first and second

cylinders, respectively, as a function of non-dimensional time for the standard degree

adaptive strategy and the proposed degree adaptivity aided by the trained ANN. The

results show the substantial improvement in accuracy introduced by the prediction of

the solution at time tn+1 using the trained ANN.
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(a) Lift (b) Drag

Figure 4.21: Flow around two circular cylinders: lift and drag over the second cylinder
using degree adaptivity enhanced with prediction compared to the reference solution.

(a) Lift (b) Drag

Figure 4.22: Flow around two circular cylinders: error on the lift and drag for the first
cylinder as a function of the non-dimensional time.

(a) Lift (b) Drag

Figure 4.23: Flow around two circular cylinders: error on the lift and drag for the
second cylinder as a function of the non-dimensional time.

To further quantify the accuracy of the proposed ANN-driven degree adaptive scheme,

Table 4.1 presents the maximum error in the lift and drag forces for both cylinders. The
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Cylinder 1 Cylinder 2

Standard ANN-driven Standard ANN-driven
adaptivity projection adaptivity projection

Lift error 2.3× 10−2 6.8× 10−3 8.4× 10−2 8.9× 10−3

Drag error 1.0× 10−2 1.0× 10−3 4.1× 10−2 2.5× 10−3

Table 4.1: Flow around two circular cylinders: maximum error in lift and drag for
the two cylinders using the standard adaptivity and the adaptivity with the proposed
prediction.

results clearly demonstrate the enhanced accuracy provided by the ANN-driven degree

adaptive process. Specifically, the error in the drag force is an order of magnitude more

accurate with the proposed method.



Chapter 5

Numerical Examples

This chapter considers the application of the two novel contributions developed in this

thesis to problems involving the propagation of gust perturbations over long distances.

Following (Golubev et al., 2009), the gust is modelled using a harmonic perturbation

of the velocity field, which is introduced through a source term that influences the

momentum equation. This perturbation is designed to create a two-dimensional gust

downstream of the source region. Despite there are other alternatives to model the gust

(e.g. via the introduction of a boundary condition), the use of a source term is normally

preferred to decrease the computational cost, as it avoids refining the path from the far

field to the region of interest.

The components of the source term are defined as

s(x, y, t) =




β K g(x) λ(y) cos (ωgt− βy − αxc)

K g′(x) λ(y) sin (ωgt− βy − αxc)

 if t ∈ [T inigust, T
end
gust]

0 otherwise

(5.1)

where (xc, yc) represents the centre of a rectangular region of dimensions a× b, within

which the gust is generated. The parameters α = ωg/v∞ and β = α tan θ are the wave

numbers corresponding to the sinusoidal gust in the horizontal and vertical directions,

108
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respectively, with θ denoting the angle of propagation of the gust front relative to the

x axis, u∞ the magnitude of the free-stream velocity, and T inigust and T endgust denote the

initial and final non-dimensional time where the source term is active. The constant

K, which scales the perturbation, is given by

K = εg
α u2

∞ (α2 − â2)

â2
√
α2 + β2 sin

Å
ωgπ

u∞â

ã , (5.2)

where εg represents the gust intensity relative to the mean flow, and â defines the

width of the rectangular region where the gust is generated, such that a = 2π/â. The

functions g(x) and λ(y) are chosen to control the spatial distribution of the gust in the

x and y directions, respectively, and are defined as

g(x) =


1

2
(1 + cos {â (x− xc)}) , |x− xc| ≤

π

â

0, |x− xc| >
π

â
,

(5.3)

λ(y) =
1

2
{tanh [3 (y + yc)]− tanh [3 (y − yc)]} . (5.4)

Here, the function λ(y) is selected to ensure a smooth transition in the y direction,

creating a compact region with a uniform gust distribution.

5.1 Gust impinging on a NACA0012 aerofoil

The first example, inspired by (Komala-Sheshachala et al., 2020), considers the sim-

ulation of a gust impinging on a NACA0012 aerofoil immersed in an incompressible

flow at Re = 1, 000 and aims to demonstrate the benefits of the conservative projection

presented in Chapter 3 for a more challenging problem.

The parameters that define the gust are taken as a = 1, b = 4, xc = 1.52, yc = 0,
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Figure 5.1: Gust impinging on a NACA0012 aerofoil: Unstructured triangular mesh of
the whole domain.

Figure 5.2: Gust impinging on a NACA0012 aerofoil: detail of the unstructured
triangular mesh near the aerofoil.

α = 4π and β = 0.

An unstructured mesh of 2,784 triangles is used for this example shown in Figure 5.1.

Curved elements are generated near the aerofoil using the elastic analogy presented

in (Xie et al., 2013). The size in the normal direction of the first element around the

aerofoil is 0.01, and the growth factor in the normal direction is 1.2. Two point sources

are introduced to prescribe a mesh size of 0.1 near the leading and trailing edges of the

aerofoil, another point source is placed at the centre of the aerofoil to prescribe a size

of 0.1 in the vicinity of the aerofoil, whereas a line source with size 0.4 is placed in the

path of the gust. A detailed view of the mesh near the aerofoil is shown in Figure 5.2.

Given the complex flow dynamics of this problem, a time step ∆t = 0.1 and the

solution is advanced using the ESDIRK46 method until the final time T = 64. As

commonly done when simulating gust around aerodynamic obstacles (Golubev et al.,

2009; Komala-Sheshachala et al., 2020) the initial condition is taken as the steady state

solution of the flow around the aerofoil, in this case for Re = 1, 000. The gust is then



5.1. Gust impinging on a NACA0012 aerofoil 111

(a) t = 50 (b) t = 52

(c) t = 54 (d) t = 56

(e) t = 58 (f) t = 60

(g) t = 62 (h) t = 64

Figure 5.3: Gust impinging on a NACA0012 aerofoil: Magnitude of the velocity fields
at different instants with a uniform degree of approximation k = 6.

introduced via the source term and advanced until the final time, selected so that the

gust effect in the aerodynamic forces on the aerofoil disappears.

As in the example involving two cylinders shown in Chapter 3, a reference solution

is calculated by using a uniform degree of approximation k = 6. The degree of

approximation k = 6 is selected after performing a convergence study on the fixed

mesh of Figure 5.2. The magnitude of the velocity at some selected instants is shown

in Figure 5.3, showing the initial steady state solution, the perturbation of the velocity

arriving and impinging on the aerofoil, the complex transient effects induced by the

gust and the recovery of the steady state solution after the gust effects disappear.

The need for adaptivity in this example is even more obvious than in the previous

example because the perturbation of the velocity is very localised and using a high-

order approximation in the whole domain is clearly unnecessary. Next, the standard

adaptive process and the adaptivity enhanced with the proposed conservative projection
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(a) Lift (b) Drag

Figure 5.4: Gust impinging on a NACA0012 aerofoil: lift and drag using degree
adaptivity compared to the reference solution.

are considered. To remove the effect of the gust generation, when the source term that

generates the gust is active, i.e., for t ≤ 10, a constant degree of approximation k = 6 is

used in both cases. After that time, the corresponding adaptive calculation is activated.

This ensures that the differences in the adaptive process are not caused by a different

representation of the gust. In this example, the desired error of ε = 10−3 is used during

the adaptive process.

Figure 5.4 shows the lift and drag on the aerofoil using a standard degree adaptivity,

and the results are compared to the reference solution. As in the previous example, the

results show non-physical oscillations. The oscillations are more pronounced on the

drag but can also be observed on the lift in this example due to the lack of symmetry

introduced by the gust. During the transient simulation, a maximum error of 2.3×10−1

and 3.8 × 10−2 is observed in the lift and drag, respectively, clearly not providing the

accuracy required for this simulation. It is worth noting that from t = 50 to t = 51

a constant degree of approximation, k = 6, is used and as soon as the adaptivity is

activated, a strong overshoot in the drag is observed.

When the proposed correction is introduced, an excellent agreement is again observed

between the computed lift and drag and the reference solution, as shown in Figure 5.5.

For this example, the maximum error in the lift and drag during the whole transient

process is 5.4×10−2 and 6.2×10−3, respectively, showing the extra accuracy provided
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(a) Lift (b) Drag

Figure 5.5: Gust impinging on a NACA0012 aerofoil: lift and drag using degree
adaptivity and the proposed correction compared to the reference solution.

by the conservative projection of the solution during the adaptive process.

To further quantify the extra accuracy provided by the proposed projection, theL2([51, 64])

norm of the relative lift and drag error is computed for both adaptive approaches. With-

out the proposed correction, the errors in lift and drag are 6.3 × 10−2 and 1.4 × 10−3

respectively, whereas when conservative projection is used the errors in lift and drag

are more than 40 times lower, namely 1.5× 10−3 and 2.9× 10−5.

To illustrate the ability of the degree adaptive process to accurately capture the complex

flow features of this problem, lowering the degree of the elements where accuracy is no

longer required, Figure 5.6 shows the magnitude of the velocity and the degree map at

some selected instants. Comparing the results with the reference solution of Figure 5.3,

it can be observed that the adaptive process captures all the flow features. The degree

map clearly reflects the regions where the complexity of the solution requires a higher

degree of approximation to provide the desired accuracy.

In this example, the ability to lower the degree of approximation is critical to gain the

benefits of a degree adaptive process, without compromising the accuracy. As the gust

introduces a localised perturbation of the velocity, without lowering the degree the final

degree map shows that a high order polynomial approximation is used in many areas

where the flow does not show any feature. The degree map for such an approach is

shown in Figure 5.7. To quantify the benefit of the proposed conservative projection,
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(a) Velocity, t = 52 (b) Degree map, t = 52

(c) Velocity, t = 54 (d) Degree map, t = 54

(e) Velocity, t = 56 (f) Degree map, t = 56

(g) Velocity, t = 58 (h) Degree map, t = 58

(i) Velocity, t = 60 (j) Degree map, t = 60

Figure 5.6: Gust impinging on a NACA0012 aerofoil: Magnitude of the velocity fields
(left) and map of the degree of approximation (right) at different instants with the
proposed degree adaptive approach.

Figure 5.7: Gust impinging on a NACA0012 aerofoil: Map of the degree of approxi-
mation at t = 64 with an adaptive process not allowing the degree to be lowered.

Figure 5.8 show the number of degrees of freedom of the global problem as a function

of the non-dimensional time for the proposed approach and an adaptive process where

the degree is not allowed to be decreased during the time marching process. With the

proposed projection the number of degrees of freedom at t = 64 is 23,518 whereas
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Figure 5.8: Gust impinging on a NACA0012 aerofoil: Number of degrees of freedom
of the global problem for two different adaptive approaches.

for the approach not lowering the degree of approximation the number of degrees of

freedom at t = 64 reaches 45,908. The results with conservative projection show that

the most complex dynamics happen at around t = 54, which, according to Figure 5.6, is

precisely when the gust impinges on the aerofoil. At this point, the number of degrees

of freedom of the global problem reaches a maximum and then decreases because the

degree of approximation can be lowered in many elements in the vicinity of the aerofoil

where the transient effects are no longer relevant.

In terms of computational cost, the simulation with the proposed conservative pro-

jection is more than three times faster than the simulation with a uniform degree of

approximation k = 6. The extra performance compared to the previous example is due

to the localised effect of the gust. In this example, the degree adaptive clearly offers a

major advantage by introducing high order approximation only where needed.

Table 5.1 provides a detailed analysis of computational costs across different solution

strategies. The results demonstrate even more pronounced computational economies

compared to the two-cylinder case, with the conservative projection methodology

reducing wall-clock time by approximately 69% relative to uniform approximation

whilst maintaining solution accuracy. This marked improvement in performance may

be attributed to the spatially confined characteristics of the gust phenomenon, enabling
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Method Total Error Projection # DOFs
walltime (h) indicator (%) time (%) (avg)

Uniform k=6 29.50 - - 61,864
Conservative projection 9.18 8.5 6.8 25,000

Table 5.1: Gust impinging on a NACA0012 aerofoil: Computational costs.

the adaptive strategy to concentrate high-order approximations solely in the needed

regions, as evidenced by the substantial reduction in the mean number of degrees of

freedom.

The conservative projection approach achieves these computational savings through

two main mechanisms: first, by reducing the total number of degrees of freedom by

approximately 44% compared to uniform refinement, and second, by allowing efficient

degree reduction in regions where high-order approximation is no longer needed as

the gust propagates through the domain. The overhead cost of error estimation and

projection operations (approximately 15% of total runtime) is more than compensated

by these savings.

5.2 Parametric gust in a free-stream flow

This example considers a parametric analysis in which different sinusoidal gusts are to

be propagated in a free-stream flow. The example is used to assess the proposed ANN-

driven degree adaptivity for a problem that involves flow parameters. More precisely,

the gust is parametrised using the intensity εg and width â. The range of the parameters

is taken as εg ∈ [0.2, 1] and â ∈ [1, 3], whereas the other parameters that characterise

the gust are fixed to xc = 1.6 and yc = 0 for the centre of the gust. The angles β and α

are set to 0 and 4π, respectively. The initial time of aplication of the gust is T inigust = 0

and the end time is T endgust = 1.6, the time step is set to ∆t = 0.8 and the solution is

advanced using the ESDIRK816 method until a final time T = 20

The computational domain is Ω = [0, 20] × [−4, 4] and the setup of the problem is
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yc

xc

b

a

Figure 5.9: Illustration of the problem setup for the simulation of a gust in a free-stream
flow. A sinusoidal gust is generated within the region enclosed by the box of width a
and height b, the centre of the box located at (xc, yc).

(a) εg = 0.2, â = 3 (b) εg = 1, â = 1

Figure 5.10: Parametric gust in a free-stream flow: velocity field at t = 1.6 for different
values of the intensity and width.

Figure 5.11: Parametric gust in a free-stream flow: unstructured triangular mesh to
generate the training data.

illustrated in Figure 5.9.

To illustrate the effect of the parameters, Figure 5.10 shows the velocity field after the

gust is introduced for two different choices of the parameters. With εg = 0.2 and â = 3

the gust is relatively wide in the x direction and the intensity is low, when compared to

the case with εg = 1 and â = 1 where a higher intensity and lower width produces a

more challenging case due to the higher gradients of the velocity field.

An unstructured mesh of 346 triangles, shown in Figure 5.11, is used to generate

training data for this example. A uniform element size is chosen to demonstrate the

ability of the degree adaptivity to increase the accuracy where required, without any

prior mesh adaptation based on the physics of the problem. It is important to emphasise

that this mesh is only used to generate the training data and the trained ANN will be
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(a) nsimTr = 10 (b) nsimTr = 20 (c) nsimTr = 30

Figure 5.12: Gust in a free-stream flow: The parametric space and the three generated
datasets, including data for training (in red), validation (in green), and test (in blue).

deployed on a simulation performed on a different, much finer mesh.

5.2.1 Data acquisition and preparation

To generate a good dataset (i.e. a set that provides good coverage of the paramet-

ric space), Halton sequencing, as described in Section 4.3.2, is used to sample the

parametric space.

One of the objectives of this example is to study the influence of the number of simu-

lations required to gather the data on the accuracy of the ANN predictions. Therefore,

a total of 44 sampling points are considered, which means that 44 accurate gust sim-

ulations need to be available. The number of simulations is defined by nsim, and the

subindex indicates which set of the data it belongs to, training, validating, or testing.

Then three data sets are generated from the available simulations involving nsimTr = 10,

nsimTr = 20 and nsimTr = 30 simulation cases, respectively, to generate training data. Seven

of the remaining 14 simulations are used to generate validation data, and similarly, the

last seven cases are used to generate test data unseen by the network during training.

The three datasets are shown in Figure 5.12.

After running the 44 simulations, the data acquisition is performed following the

procedure described in Section 4.3.2. For this example, the distance of the stencil,

computed as described in Section 4.3.1, is d ≈ u∞ ×∆t.

With the data arranged in input and output arrays, the data preparation process described
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Figure 5.13: Gust in a free-stream flow: Simulations 9 and 28.

Simulation p2 u v

min max min max min max

9 0.9225 1.0098 0.8612 1.1337 -0.4669 0.3626
28 0.8635 1.0369 0.7639 1.1880 -0.7126 0.4521

Table 5.2: Gust in a free-stream flow: minimum and maximum values for the pressure
on the point 2 and for the velocity on the central point of the stencil, for simulations 9
and 28.

in Section 4.3.3 is followed to remove redundant information and minimise the potential

bias in the trained ANN. To illustrate this procedure, two simulations are chosen, shown

in Figure 5.13. Simulations 9 and 28 are selected for their representation of extreme

cases within the parametric space. Simulation 9 is characterised by εg = 0.25 and

â = 2.7777, while simulation 28 is characterised by εg = 0.875 and a width of

â = 1.0493.

Table 5.2 presents the results of the two simulations (9 and 28), showing minimum and

maximum values for pressure (p2) and velocity components (u and v) at specific points

on the input stencil. Simulation 28 exhibits wider ranges for all variables compared

to simulation 9. The pressure range is relatively narrow in both simulations, with

simulation 28 showing a slightly wider range.

Figure 5.14 and Figure 5.15 show the histograms of the collected data, arranged in

nbuckets = 20 buckets before and after the reduction process for simulation 9 and

simulation 28 respectively.
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(a) Before reduction algorithm (b) After reduction algorithm

Figure 5.14: Gust in a free-stream flow: Histogram for simulation 9 illustrating the
distribution of cases in 20 buckets before and after the application of the data reduction
algorithm.

(a) Before reduction algorithm (b) After reduction algorithm

Figure 5.15: Gust in a free-stream flow: Histogram for simulation 28 illustrating the
distribution of cases in 20 buckets before and after the application of the data reduction
algorithm.

The histograms for Simulations 9 and 28 illustrate the significant impact of the data

reduction algorithm on the distribution of cases across 20 buckets. In both simulations,

the pre-reduction data show a stark concentration in buckets 11-13, with simulation 9

peaking at approximately 7×105 cases in bucket 12, and simulation 28 showing a similar

peak of about 6.5×105 cases. Post-reduction, the distributions become markedly more

uniform. The peak in bucket 12 for simulation 9 reduces to about 2.2 × 104 cases,

while for simulation 28 it decreases to approximately 1.8× 104 cases. In particular, the

algorithm increases the relative representation in previously under-represented buckets,
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(a) Before reduction algorithm (b) After reduction algorithm

Figure 5.16: Gust in a free-stream flow: Logarithmic histogram for simulation 9
illustrating the distribution of cases in 20 buckets for the vertical velocity at the central
point of the stencil before and after data reduction.

especially in the lower and upper ranges. This redistribution effectively ”flattens” the

distribution while preserving the general shape and key features of the original data.

The reduction in the scale on the vertical axis, from 105 to 104, in both simulations

underscores the substantial decrease in the cumulative number of cases. For simulation

9 the total number of cases is reduced from 99, 095 to 6, 458 and, for simulation 28, the

total number of cases is reduced from 88, 587 to 3, 928.

The analysis of the impact of the data reduction algorithm on simulations 9 and 28

reveals significant changes in the distribution of cases across various parameters. How-

ever, to provide a more focused and insightful examination of the effects of the algo-

rithm, it is highly appropriate to focus on the vertical velocity component (v). This

variable exhibits the most pronounced changes in the simulations, making it an ideal

candidate for a detailed examination. Figure 5.16 and Figure 5.17 compare the distri-

bution of the data corresponding to the vertical velocity component (v) at the central

point of the stencil before and after the reduction process is applied.

The logarithmic histograms for simulations 9 and 28 illustrate the effectiveness of the

data reduction algorithm in preserving the overall distribution of vertical velocity cases

while significantly reducing the dataset size. In both simulations, the pre-reduction

data show a pronounced peak around bucket 12, with simulation 9 reaching nearly 105
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(a) Before reduction algorithm (b) After reduction algorithm

Figure 5.17: Gust in a free-stream flow: Logarithmic histogram for simulation 28
illustrating the distribution of cases in 20 buckets for the vertical velocity at the central
point of the stencil before and after data reduction

cases and simulation 28 exceeding 105 cases at this peak. Post-reduction, the general

shape of the distributions is maintained, but with a notable flattening effect. The peak

in bucket 12 for both simulations is reduced to approximately 103 cases, indicating

a substantial reduction in data while preserving the central tendency. Importantly,

the algorithm maintains representation across all buckets, including the tails of the

distributions, which is crucial for capturing extreme events in gust simulations. The

reduction process appears to be more aggressive in the high-frequency buckets while

being more conservative in the low-frequency ones, effectively balancing data reduction

with the preservation of rare events.

Analysis of histograms for simulations 9 and 28 reveals the significant impact of the

data reduction algorithm on the distribution of cases in 20 buckets. However, it is

crucial to note that the intervals for these simulations differ substantially. To address

this disparity, each simulation undergoes an individual reduction process. This tailored

reduction preserves the unique features of each dataset while significantly decreasing

the total number of cases. Following the individual reduction of each simulation, the

data are combined for training the ANN by combining the data points and adding the

two parameters at the end of each case. By including these parameters, the combined

dataset retains essential information about the specific characteristics of each original
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nsim nTr nVal nTest

10 49,029 37,789 34,563
20 98,492 37,789 34,563
30 148,046 37,789 34,563

Table 5.3: Gust in a free-stream flow: number of cases for training, testing, and
validation utilising 10, 20, and 30 simulations for training.

simulation. This approach ensures that, despite the reduction in data volume, the

fundamental differences between simulations are preserved and can be accounted for

in subsequent analyses.

Finally, the number of cases for training, testing and validating is shown in Table 5.3.

It is worth noting that, following common practice, the number of validation and test

cases is fixed and it is independent on the amount of training cases.

Next, a series of numerical studies are presented to assess the influence of the amount of

data and the reduction process on the accuracy of the ANN. These studies also explore

the influence of the distance used in the stencil and the use of other types of stencil that

lead to different ANN architectures.

5.2.2 Influence of the dataset

Using the three datasets shown in Figure 5.12, ANNs are trained. The process follows

the same rationale as described in Section 4.4.4, that is, hyperparameter tuning is

performed using a simple grid search, by trying different number of hidden layers and

different number of neurons.

Figure 5.18 and Figure 5.19 present the percentage error in the predicted horizontal

velocity (u) and vertical velocity (v) with varying architectures. The results are dis-

played as 2D contour plots for different numbers of training simulations nsimTr = 10,

nsimTr = 20 and nsimTr = 30. The horizontal axis represents the number of neurons per

hidden layer, while the vertical axis represents the number of hidden layers in the ANN.

As the number of training simulations increases from 10 to 30, the overall error tends
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(a) nsimTr = 10 (b) nsimTr = 20 (c) nsimTr = 30

Figure 5.18: Gust in a free-stream flow: Maximum percentage error of the trained
ANN for the horizontal velocity (u), different number of neurons and hidden layers.

(a) nsimTr = 10 (b) nsimTr = 20 (c) nsimTr = 30

Figure 5.19: Gust in a free-stream flow: Maximum percentage error of the trained
ANN for the vertical velocity (v), different number of neurons and hidden layers.

to decrease, as evidenced by the expansion of blue regions and the reduction of red

regions from plot (a) to (c). It is particularly remarkable that ANNs with a single layer

and a very low number of neurons can provide accurate results, whereas introducing

more non-linearity in the ANN (i.e. increasing the number of layers) and increasing

the number of neurons tend to provide less accurate ANN.

The observation that increasing ANN complexity through additional layers and neurons

may lead to reduced accuracy presents an intriguing paradox in machine learning. While

it might seem logical that greater network capacity should enhance representational

capabilities, empirical evidence indicates that more complex architectures often result

in degraded performance. This phenomenon can be attributed to several factors: the

increased difficulty in optimising larger parameter spaces, enhanced susceptibility to

overfitting, and challenges in gradient propagation through deeper networks. These

challenges manifest in the training phase, where more complex networks may struggle

to converge to optimal solutions. Moreover, the computational overhead and increased
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(a) nsimTr = 10 (b) nsimTr = 20 (c) nsimTr = 30

Figure 5.20: Gust in a free-stream flow: Mean number of epochs required for training
convergence (n̄epochs), different number of neurons and hidden layers.

(a) nsimTr = 10 (b) nsimTr = 20 (c) nsimTr = 30

Figure 5.21: Gust in a free-stream flow: Mean total training time (T̄total) in minutes,
different number of neurons and hidden layers.

training time associated with more complex architectures may not justify the marginal

improvements—or indeed decrements—in performance. This suggests that simpler

neural network architectures may actually be more effective for many applications, as

evidenced by this example where simpler architectures consistently achieve lower error

rates.

Figure 5.20 shows the mean number of epochs required for the convergence of the

training, while Figure 5.21 displays the mean total training time in minutes.

Both figures present results for different network architectures (varying numbers of

neurons and hidden layers) and training dataset sizes (10, 20, and 30 simulations). As

the number of simulations increases, larger networks (more neurons and layers) tend

to require more epochs to converge, as indicated by the increasing red areas in the

upper right corners. Simpler networks (fewer neurons and layers) maintain relatively

consistent convergence epochs across different dataset sizes. Training time generally

increases with network complexity and dataset size, as expected. However, it is worth



126 Chapter 5. Numerical Examples

Process Time

Training simulations 20 minutes
Data preparation 3.5 minutes
Neural network training 6 minutes
Total time 29.5 minutes

Table 5.4: Computational time breakdown for the selected artificial neural network.

noting that the time for training the ANN is very low, especially for those ANN that

provide lower errors.

As illustrated in Figure 5.21, the training process requires only a few minutes. However,

the total computational cost must account for the simulation times of the training cases.

Each training simulation requires less than 20 minutes of computational time, with all

cases executed simultaneously. This parallel implementation provides efficient gener-

ation of the training dataset, whilst maintaining modest computational requirements

compared to traditional full-domain simulations.

To provide a comprehensive overview of the computational requirements, Table 5.4

presents the breakdown of processing times for the selected neural network configura-

tion.

For each dataset, the ANN that provides the best performance is selected and Figure 5.22

shows the maximum error, in percentage, of the two components of the velocity field

as a function of the number of simulations used to collect data for network training.

The results show that even with only 10 simulations the error is approximately 10% for

both components. Increasing the size of the dataset provides a reduction of the error

for both components, reaching an error of 7% and 3% for the horizontal and vertical

components of the velocity, respectively, when using the 30 available simulations.

A numerical parameter introduced in the data preparation stage is the number of buckets

used for the data reduction process. This parameter controls the amount of data selected

to train the ANN and the amount of redundant data present in the dataset. To quantify

the effect of the number of buckets in the size of the dataset, Table 5.5 reports the
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Figure 5.22: Gust in a free-stream flow: maximum error as a function of the number
of simulations used to collect data for training the network (nsimTr ).

nbuckets nTr

5 11,112
10 52,517
20 148,046
40 314,731
80 535,586

160 766,299

Table 5.5: Gust in a free-stream flow: number of resultant training cases (nTr) when
varying the number of buckets used for the reduction procedure (nbuckets).

resulting number of training cases for a different number of buckets.

To analyse the effect of the data reduction algorithm proposed in Section 4.3.3, Fig-

ure 5.23 shows the maximum error as a function of the number of buckets used for the

reduction. Figure 5.23 reveals that, in this example, the optimal number of buckets is

20, which yields to the lowest error rates for the horizontal (u) and vertical (v) velocity

components. The increase in error rates beyond 20 buckets, despite the larger training

datasets, suggests that data quality and representation are more crucial than quantity

alone. This behaviour may indicate overfitting with larger datasets, where the model

learns specific patterns that do not generalise well. This experiment indicates that

simply increasing the data set by increasing the number of buckets does not necessarily

improve the predictive capability of the ANN. This is attributed to the fact that adding

more data in this example produces a bias that results in a higher error in the ANN

predictions. Specifically, exceeding the optimal number of buckets introduces redun-
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Figure 5.23: Gust in a free-stream flow: maximum relative error as a function of the
number of buckets (nbuckets) chosen in the reduction process.

dant sampling points that add noise rather than new information, thereby degrading the

ability of the ANN to capture the underlying flow physics.

5.2.3 Influence of the stencil distance

As mentioned in Section 4.3.1, the definition of the distance used to define the stencil

employed to gather the data from a simulation is purely based on physical considerations.

To study the effect of varying the distance, Figure 5.24 shows the relative error in

predicting the velocity components as a function of the stencil distance d. The time

step for these simulations is set to ∆t = 0.80, and the free-stream velocity is u∞ = 1.

As the stencil distance increases, the error generally decreases for both velocity com-

ponents, indicating improved prediction accuracy. In particular, the optimal stencil

distance aligns with the product of the time step and the free-stream velocity, that is,

d = 0.80 for this example. However, further increasing the stencil distance to 2u∞×∆t

results in a sharp increase in error for both components. This outcome is expected in

the context of a gust propagating in a free-stream flow, where the velocity field changes

are best captured when the stencil distance corresponds to the distance a fluid particle

travels during one time step. The results emphasise the crucial importance of choosing
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Figure 5.24: Gust in a free-stream flow: maximum error as a function of the stencil
distance (d).

an appropriate stencil distance relative to the time step and the characteristic velocity

of the flow.

5.2.4 Influence of using several time steps as inputs of the ANN

All the experiments done so far consider, as inputs of the ANN, the values of pres-

sure and velocity at the stencil points and at time tn. Numerical experiments were

conducted to explore the possibility of enhancing the accuracy of the predictions by

using information from previous time steps at the stencil points and different stencil

distances.

Figures 5.25 and 5.26 represent two new stencil designs to compare with the original

one presented in Figure 4.3 and used in all previous examples. It is worth noting

that the number and position of the points with respect to the central mesh node do not

change with respect to the original stencil used previously. The difference lies in the

information stored at the stencil points. The original stencil considered the velocity at

the stencil nodes at time tn, while the stencil in Figure 5.25 considers the velocity at

times tn and tn−1. Similarly, the stencil of Figure 5.27 considers the velocity at the

stencil nodes at times tn, tn−1 and tn−2. In all cases, pressure is only considered at time

tn, mainly motivated by the fact that the time derivative of the velocity appears in the
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Figure 5.25: Schematic representation of the inputs and outputs for an alternative ANN
architecture. The input stencil includes the velocity in two time steps un−1, un, and
pressure pn. Output consisting of un+1 at the central mesh node.
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Figure 5.26: Schematic representation of the inputs and outputs for an alternative ANN
architecture. The input stencil includes the velocity in three time steps un−2,un−1, un,
and pressure pn. Output consisting of un+1 at the central mesh node.

Navier-Stokes equations, but not the time derivative of the pressure.

Accounting for extra information in the stencil points obviously leads to ANN with

an increased number of inputs. The stencil in Figure 5.25 results in an ANN with

44+nparam inputs, whereas the stencil in Figure 5.26 results in an ANN with 62+nparam

inputs, compared to the original stencil which had 26 + nparam inputs.

To evaluate the performance of the ANN created from the different stencils, the relative

error in the predicted velocity is compared in Figure 5.27 for each stencil and for

different values of the stencil distance.

The results show that the inclusion of additional historical time steps did not produce

substantial improvements in accuracy that would justify increasing the size of the

input layer and consequently the training time. The error trends for the three cases
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d

Figure 5.27: Relative error of the predicted velocity as a function of the stencil distance
(d) for the stencils that uses the velocity at time tn (Case 1), at times tn and tn−1 (Case
2) and at times tn, tn−1 and tn−2 (Case 3).

exhibit broadly similar characteristics, with errors decreasing as the stencil distance

approaches the value defined using physical considerations, that is, d = u∞∆t. The

lack of significant enhancement from incorporating more time history may be attributed

to the nature of the flow physics being modelled. For the problem under consideration,

it appears that spatial correlations exert a stronger influence on local flow evolution

compared to temporal correlations over the timescales examined.

5.2.5 Influence of the stencil geometry

The last numerical experiment involves a study to determine the potential benefit

of varying the geometry of the stencil considered. Four configurations, shown in

Figure 5.28, are considered for this study.

Following the notation previously introduced in Section 4.3 red dots denote pressure

sampling points, blue circles represent horizontal velocity sampling points, and green

crosses indicate vertical velocity sampling points.

The first stencil is the one originally introduced in Section 4.3, where eight nodes are

placed in an imaginary circle of radius d centred at a mesh node. The second stencil

maintains the number of stencil points of the original one, but changes the position,
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(d) Type 4

Figure 5.28: Gust in a free-stream flow: schematic representation of the four stencils
used to assess the influence of the geometry of the stencil.

leading to the arrangement of a Cartesian grid. The third option is inspired by a finite

difference stencil and involves only four points around the central mesh node. The last

option is inspired by the stencil that is used in the semi-implicit method for pressure

linked equations (SIMPLE) algorithm (Patankar and Spalding, 1983), traditionally

employed by incompressible finite volume solvers.

The first two stencils lead to an ANN architecture with 26 + nparam inputs, whereas

the second and third involve 14 + nparam and 38 + nparam inputs. Therefore, this study

enables us to assess how maintaining the number of inputs but varying the geometry of

the stencil influences the accuracy and also how increasing or decreasing the number

of inputs influences the predictive capability of the ANN.

Table 5.6 presents a comparative analysis of the maximum relative errors for different

stencil types in predicting velocity components during gust propagation in a free stream

flow.
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Relative error [%]

Stencil type u v

1 6.8 3.4
2 5.9 4.1
3 9.2 7.5
4 6.6 4.3

Table 5.6: Gust in a free-stream flow: maximum relative errors for different stencil
geometries.

Given the results of the previous study, all simulations were performed with a stencil

distance d = u∞∆t.

Comparing the accuracy of the first two stencils, it seems that, for a given number

of inputs, there is no clear advantage on a particular geometric configuration. Both

provide a similar accuracy for both horizontal and vertical velocity components. The

third stencil, which involves the minimum number of inputs, leads to an ANN that

exhibits the highest error in the predictions, with a maximum error of 9.2% in the

horizontal velocity predictions. Finally, the last stencil, which involves the maximum

number of inputs, provides a similar accuracy compared to the first two stencils, showing

that the addition of extra information does not involve better predictions.

The last two stencils are not considered suitable due to the larger errors or extra

complexity and data required, respectively. The first two stencils seem to offer the

right balance between computational complexity and accuracy, and only the first one is

considered next to demonstrate its use in a degree adaptive process.

5.2.6 ANN-driven degree adaptivity

To conclude this example, the trained ANN is incorporated into the degree adaptive

process to simulate the propagation of gust in a free-stream flow. Using the knowledge

acquired in the previous numerical experiments, the stencil of Figure 5.28(a) is consid-

ered, with a distance d = u∞∆t and only using the velocity and pressure at time tn as

inputs.
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Figure 5.29: Parametric gust in a free-stream flow: unstructured triangular mesh to use
for adaptivity.

The ANN is trained with the data gathered from 30 simulations, and the data reduction

is performed using 20 buckets. The chosen architecture, based on the results seen in

Figure 5.18c and Figure 5.19c, is 5 hidden layers and 40 neurons. This leads to a

maximum error in u of 6.80% and in v of 3.40%.

The adaptivity will be evaluated in a significantly larger domain than the one used

during training. The computational domain is Ω = [0, 80] × [−8, 8]. This decision

was taken to examine adaptivity across an expanded temporal range and to ascertain

whether an ANN, initially trained in one domain, can be effectively generalised to

another. An unstructured mesh of 2,858 triangles, shown in Figure 5.29, is used for

this example. A uniform element size is chosen to demonstrate the ability of the degree

adaptivity to increase the accuracy where required, without any prior mesh adaptation

based on the physics of the problem.

An unseen scenario for the ANN is considered, corresponding to εg = 0.75 and

â = 1.10. The reference solution, computed in the new domain using a uniform degree

of approximation k = 5, is displayed in Figure 5.30 for several times. The results

illustrate the challenge of propagating a localised perturbation over long distances,

where the use of high-order elements is particularly attractive due to the low dissipation

and dispersion properties of these schemes.

The different snapshots also clearly suggest that a degree adaptive process is crucial

to ensure an efficient use of the computational resources as the velocity field is almost

constant in the majority of the domain, with large gradients localised in small regions

and travelling across the domain.
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(a) t = 1.6

(b) t = 16

(c) t = 32

(d) t = 64

Figure 5.30: Gust in a free-stream flow: vertical velocity field (v) at different instants
with a uniform degree of approximation k = 5.

Next, the degree adaptive process enhanced with the conservative projection proposed

in Chapter 3 but without using an ANN to predict the solution at the next time step is

considered.

Figure 5.31 shows the vertical velocity field at different instants and the corresponding

degree map. The results show that the degree adaptive process targets the required

error using the snapshot of the velocity at tn. However, it can be clearly observed that

ahead of the gust a linear approximation is used in all elements because there is no flow

feature that requires a higher order. As the solution propagates, the mesh is therefore

not adapted to properly capture the gust disturbance that arrives at a future time step.
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(a) Vertical velocity field (v) at t = 16

(b) Degree of approximation at t = 16

(c) Vertical velocity field (v) at t = 32

(d) Degree of approximation at t = 32

(e) Vertical velocity field (v) at t = 64

(f) Degree of approximation at t = 64

Figure 5.31: Gust in a free-stream flow: vertical velocity field (v) and degree of
approximation at different instants with degree adaptivity.

This effect leads to dissipation and dispersion of the solution, as typically seen in

simulations with low order elements, which is already visually observed at t = 32.
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The issue is exacerbated as the solution evolves in time because the more dissipated

the solution, the lower the degree of approximation that the adaptivity process requires.

The final snapshot corresponding to t = 64 clearly shows that the adaptive process has

not been able to capture the solution because the velocity perturbations have lost the

symmetric pattern exhibited by the reference solution and the intensity is much lower.

Next, the simulation is repeated with the ANN utilised in the adaptive process to predict

the solution at tn and use this information to perform the degree adaptation. Figure 5.32

shows the vertical velocity field at different instants and the corresponding degree map

with the proposed ANN-driven degree adaptive process.

A visual comparison of the velocity snapshots with the results previously shown for

a standard degree adaptivity and with the reference solution provides initial evidence

of the substantial benefit of using an ANN to predict the solution at the next time and

use this information in a degree adaptive process. The velocity fields at the shown

times are in an excellent agreement with the reference solution and do not show the

dissipation and dispersion effects that are present if the adaptivity does not account for

the future time step. The degree of approximation maps in Figure 5.32 illustrate the

changes introduced by using the solution at the next time step to perform the adaptivity.

The predictive approach offers several advantages by adapting the degree before the

arrival of the gust perturbation.

To quantify the benefits of the proposed ANN-driven degree adaptive process, Fig-

ure 5.33 show the maximum error of the velocity as a function of the non-dimensional

time.

The results clearly show that around t = 10 the error associated with the standard

adaptivity approach starts to grow and accumulates over time, reaching values higher

than 40% around t = 58. The application of adaptivity based on the solution at time tn

only is clearly insufficient to ensure that the mesh has enough resolution where the gust

will travel in the future time step. In contrast, the approach where the degree adaptivity
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(a) Vertical velocity field (v) at t = 16

(b) Degree of approximation at t = 16

(c) Vertical velocity field (v) at t = 32

(d) Degree of approximation at t = 32

(e) Vertical velocity field (v) at t = 64

(f) Degree of approximation at t = 64

Figure 5.32: Gust in a free-stream flow: vertical velocity field (v) and degree of
approximation at different instants with ANN-driven degree adaptivity.

process is driven by the trained ANN shows a significant improvement and is capable

of maintaining the error below 5% during the whole simulation.
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Figure 5.33: Gust in a free-stream flow: error of the velocity as a function of the non-
dimensional time for the standard degree adaptivity and the ANN-driven approach.



Chapter 6

Conclusion

6.1 Summary of thesis achievements

This thesis focused on the accurate simulation of transient incompressible flows by

employing the high-order HDG method, degree adaptivity, and high-order explicit

first stage, singly diagonally implicit Runge-Kutta (ESDIRK) methods. The method

was implemented in a Fortran 90 code and verified in two and three dimensions by

performing tests to assess optimal convergence in space and time. The degree adaptive

process was also tested using steady and transient problems.

In this thesis, two original contributions have been proposed.

First, a conservative projection has been proposed to enable the degree adaptive process

to lower the degree of elements in time without introducing non-physical numerical arte-

facts. Without this projection, a standard degree adaptive process leads to non-physical

oscillations in the aerodynamic quantities of interest when the degree of approxima-

tion is lowered during the time marching process. These oscillations are linked to

the violation of the incompressibility condition when the degree of approximation is

lowered, leading to oscillations in the pressure field. To provide further evidence about

the nature of these oscillations, an adaptive process has been implemented in which

140
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the degree of approximation is not allowed to be lowered during the time marching,

leading to correct solutions. However, the extra cost of this approach makes the adap-

tivity not an efficient choice, especially in problems where localised transient effects

travel along the domain. The proposed conservative projection completely removes

the non-physical oscillations in the aerodynamic quantities of interest and enables the

degree to be lowered in regions where accuracy is no longer required, leading to a

more efficient use of high order approximations, only where needed. Two examples

have been used to illustrate the benefits of the proposed approach and to quantify the

extra accuracy and the lower computational requirements compared to a standard de-

gree adaptive approach and an adaptive strategy where the degree is not allowed to be

lowered. The first example involved the computation of the flow around two circular

cylinders in tandem, whereas the second example involved a more challenging problem

where a gust perturbation impinges into a NACA0012 aerofoil.

Second, a strategy to incorporate a trained ANN, that predicts the solution at the future

time step, into a degree adaptive process has been proposed. The strategy enables

us to predict where flow features will travel and ensure that the degree is adapted in

advance. The strategy offers significant advantages when parametric analysis is to be

performed, i.e. when the simulations are to be repeated by changing some inputs of

the simulation. In this context, the cost of generating the data and training and tuning

an ANN is justified, and the predicted capability enables efficient simulations for other

combinations of the input parameters not seen during the training. The strategy for

training the ANN involves using accurate data for a few simulations. A novel strategy

to gather the data from a simulation and produce input and output matrices with a fixed

small number of inputs and outputs is developed using a stencil of imaginary points

around a mesh node. Numerical examples were performed to study the influence of

the geometry and distance of the stencil on the accuracy of the predictions. Given the

large amount of data gathered from a single simulation and the potential bias present

in these datasets, a novel algorithm was developed to reduce the amount of data and

minimise the bias that is normally associated with areas of the domain with constant
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velocity and pressure fields. Numerical experiments were also presented to illustrate

the effect of this process. Finally, the application to a parametric problem involving

the propagation of a gust perturbation in a free-stream flow was used to illustrate and

quantify the benefits of the proposed approach.

6.2 Future work

The findings detailed in this thesis have revealed multiple promising directions for

future research. Some of them are:

• Real-time learning for ANNs. The current implementation involves training

an ANN from available data and, later, deploying the trained ANN in a degree

adaptive procedure. A more advanced implementation would involve launching

the degree adaptive process, gather data during the simulation, train an ANN

when enough data is gathered and deploy the trained ANN in real time. During

the first stages of the simulation it is anticipated that multiple adaptivity loops

would be required to ensure that flow features are not lost but at some point, once

the ANN is deployed, this repetition would no longer be needed, as demonstrated

in this work. This more advanced strategy would require monitoring the inputs to

ensure that they lie within the limits of the data used to train the ANN and, when

they are outside the ANN could be retrained using data continuously gathered

from the current simulation. It is anticipated that retraining the ANN would not

require a major cost because the weights of a previously trained ANN could be

use to initialise the training.

• Cross-scenario prediction: The examples considered in this work involve para-

metric problems and the training data and the predictions are performed using the

same parameters. Investigating the ability of ANN trained on specific scenarios

(e.g., particular geometries or flow conditions) to predict outcomes in different

scenarios would be beneficial. As an example, it would be worth investigating
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the accuracy of the predictions of an ANN trained using data gathered from

a simulation of the flow around a circular cylinder to predict the flow around

an aerofoil. If the required accuracy is not obtained directly, transfer learning

techniques could be used to accelerate the training of an ANN for new problem

configurations, potentially reducing the computational cost of simulating new

scenarios.

• Extension to three-dimensions. The HDG solver implemented has been applied

and tested for two and three dimensional problems. However, the numerical ex-

amples that involve training an ANN have been restricted to two dimensions to

avoid performing expensive three dimensional simulations to gather data for the

training. Given the benefits shown in the examples, it would be worth inves-

tigating the extension to three dimensions, which would only require adapting

the stencil to three dimensions. In this context, it would be interesting to assess

the increase in computational time required to train the ANN and also the archi-

tecture of the ANN that is capable of providing the required accuracy in three

dimensions.

• Applications. This work has focused on the solution of transient incompressible

laminar viscous flows. The strategy developed is general and could be applied

to other flow problems such as transient compressible viscous flow and turbulent

compressible and incompressible flow. The extension to compressible flows

would require a careful choice of the outputs of the ANN to ensure that an error

indicator can be built using the super-convergent postprocess of the solution. In

addition, for large Reynolds number it is anticipated that the super-convergent

properties might be lost and other a-posteriori error indicators might be needed.

Extending the adaptive HDG-ANN framework to incorporate additional physical

phenomena would greatly enhance its applicability to real-world engineering

challenges. This could include:

– Coupling with convection-diffusion equations to simulate heat transfer or
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species transport in fluids.

– Integration with structural mechanics for fluid-structure interaction prob-

lems.

– Incorporation of acoustic models for aeroacoustic simulations.

These extensions would require careful consideration of the interplay between

fluid dynamics and the additional physical processes, as well as the development

of efficient numerical strategies to handle the increased complexity of the coupled

systems.
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for compressible flow problems using a goal-based error indicator. Computers &

Structures, 181:55–69.

Ethier, C. R. and Steinman, D. A. (1994). Exact fully 3D Navier–Stokes solutions for

benchmarking. International Journal for Numerical Methods in Fluids, 19(5):369–

375.

Ferrer, E. and Willden, R. (2011). A high order discontinuous Galerkin finite ele-

ment solver for the incompressible Navier–Stokes equations. Computers & Fluids,

46(1):224–230.

Fidkowski, K. J. and Darmofal, D. L. (2007). A triangular cut-cell adaptive method for

high-order discretizations of the compressible Navier–Stokes equations. Journal of

Computational Physics, 225(2):1653–1672.



150 BIBLIOGRAPHY

Franca, L. P. and Frey, S. L. (1992). Stabilized finite element methods: II. The

incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics

and Engineering, 99(2-3):209–233.

Gerhold, T. (2005). Overview of the hybrid RANS code TAU. In

MEGAFLOW-Numerical Flow Simulation for Aircraft Design, pages 81–92.

Springer.

Giacomini, M., Karkoulias, A., Sevilla, R., and Huerta, A. (2018). A superconvergent

HDG method for Stokes flow with strongly enforced symmetry of the stress tensor.

Journal of Scientific Computing, 77(3):1679–1702.

Giacomini, M., Sevilla, R., and Huerta, A. (2020). Tutorial on hybridizable

discontinuous Galerkin (HDG) formulation for incompressible flow problems, pages

163–201. Springer International Publishing, Cham.

Giorgiani, G., Fernández-Méndez, S., and Huerta, A. (2013). Hybridizable discontin-

uous Galerkin p-adaptivity for wave propagation problems. International Journal for

Numerical Methods in Fluids, 72(12):1244–1262.

Giorgiani, G., Fernández-Méndez, S., and Huerta, A. (2014). Hybridizable discontinu-

ous Galerkin with degree adaptivity for the incompressible Navier–Stokes equations.

Computers & Fluids, 98:196–208.

Golubev, V., Dreyer, B., Hollenshade, T., and Visbal, M. (2009). High-accuracy

viscous simulation of gust-airfoil nonlinear aeroelastic interaction. In 39th AIAA

fluid dynamics conference, page 4200.

Gross, R., Chalot, F., Courty, J.-C., Mallet, M., Tran, D., Arnal, D., and Vermeersch, O.

(2015). Automatic transition prediction in an industrial Navier-Stokes solver using

higher-order finite elements. In 45th AIAA Fluid Dynamics Conference, page 2621.

Gürkan, C., Kronbichler, M., and Fernández-Méndez, S. (2019). eXtended hybridizable

discontinuous Galerkin for incompressible flow problems with unfitted meshes and



BIBLIOGRAPHY 151

interfaces. International Journal for Numerical Methods in Engineering, 117(7):756–

777.

Guyan, R. (1965). Reduction of stiffness and mass matrices. AIAA Journal, 3(2):380–

380.

Halton, J. H. (1960). On the efficiency of certain quasi-random sequences of points in

evaluating multi-dimensional integrals. Numerische Mathematik, 2(1):84–90.

Haykin, S. (2009). Neural Networks and Learning Machines. Pearson, New York, 3

edition.
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