
Application of Computer Vision Techniques

for Monitoring Steel Manufacturing

Processes

Callum O’Donovan

November 2024

Swansea University

Faculty of Science and Engineering

This thesis has been submitted in fulfilment of the requirements for the degree of Doctor

of Engineering

© The author, Callum O’Donovan, 2024

Distributed under the terms of a Creative Commons Attribution 4.0 License (CC BY 4.0)

r.t.lloyd
Cronfa banner



Abstract

Computer vision (CV) is a branch of artificial intelligence (AI) that enables machines to un-

derstand visual input. The recent rise of deep learning (DL) has empowered CV significantly,

leading to well-established applications such as autonomous vehicles, medical diagnosis and

facial recognition. These new capabilities extend to the manufacturing sector, however they

have not been widely adopted to monitor processes in the steel industry due to challenges re-

lated to harsh environmental conditions such as poor lighting, heat distortion, dust particles

and vibrations. As a result, existing datasets are limited and advances have predominantly

been evaluated within research settings but not real-world settings. Therefore, this project

investigates the application of CV for monitoring steel production processes and how inte-

gration impacts state-of-the-art technology. This work aims to produce CV systems capable

of monitoring different processes and utilise them to draw valuable real-world insights for

industry. Also, it aims to investigate how these systems, and CV as a whole, can enhance the

efficiency, quality and sustainability of steel manufacturing. This research involves the devel-

opment of CV models tailored to three processes: ladle pouring, galvanising and gas stirring.

In each case study, DL and traditional methods are used to monitor real or simulated produc-

tion environments and extract useful information. Primary outcomes of this research include

a foundation for monitoring ladle pouring to reduce emissions, a deployed system for quanti-

fying zinc splatter occurring during galvanisation in real-time, and a tool for comparing the

wear rate and stirring efficiency of different gas stirring approaches. Outcomes of this work

highlight the revolutionary benefits of applying CV in production environments for process

monitoring and control. By developing CV models for monitoring processes, overcoming

harsh conditions typical in production environments, and drawing valuable insights from

CV application, this work establishes a strong foundation for real-world implementation of

CV in manufacturing.
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Chapter 1: Introduction

1.1 Background

Artificial intelligence (AI) is a rapidly evolving area of computer science concerned with

incorporating human-like behavior and intelligence into machines or systems [1]. There are

various subfields of AI which include, but are not limited to, natural language processing

(NLP), automated speech recognition (ASR) and computer vision (CV) [1]. Whilst NLP and

ASR are closely related and focus on text and sound-based understanding, CV focuses on

using visual data to enable computational models and systems to acquire an understanding

of different environments [1].

Traditionally, computer vision has aimed to mimic the visual capabilities of humans

through tasks such as object recognition, image segmentation and motion detection [2].

This has relied heavily on explicit programming and simple pattern recognition techniques,

and has therefore been greatly limited in terms of handling the complexity and variability

inherently present in visual data [2]. However, in recent years, computer vision has been

revolutionised through advances in machine learning (ML), particularly the type of ML

referred to as deep learning (DL) [2]. Whilst ML a subfield of AI that is based on building

analytical models that can learn from historical data [1], DL is a subfield of ML that is

centred around the use of multi-layered neural networks for pattern recognition [1]. In broad

terms, neural networks are algorithms that have been modelled based on the architecture of

the human brain [2]. They are comprised of layers of neurons through which data is passed,

typically in series, so that each layer can extract useful features from the data [2].

With the dramatic improvement of computational capabilities over the last two decades,

DL has been greatly empowered due to increased data storage capacity as well as neural

network training resource availability [2]. Big Data, characterised by high volume, high

velocity or high variety, is the major driving force that empowers deep learning models

to learn complex patterns [3]. Consequentially, the state of DL-based CV has made leaps

and bounds in terms of recognising complex patterns and making intelligent decisions with

a level of precision that was previously unattainable. These enhanced capabilities have

opened the door to a vast number of breakthroughs in tasks such as image classification,

object detection and object segmentation [2]. The integration of CV, DL and Big Data has

laid the foundation for generations of innovative applications across various sectors including

healthcare, agriculture and particularly manufacturing.
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Through insights gained from visual data, steel manufacturers can optimise the opera-

tional efficiency of their processes, improve product quality, ensure safer working conditions,

and much more. Areas of steel production that are already experiencing major advancements

due to CV include process monitoring and automation, quality control via defect detection

systems and microstructural analysis (see Section 2.7 of Chapter 2 for more examples of

applications) [4, 5, 6].

1.2 Research Objectives

The overall aim of this project is to enhance the efficiency and quality of steel production

through the application of advanced computer vision technologies. This is approached by

addressing several key challenges that expose novel opportunities in the steel industry. In

order to address some of the challenges and opportunities in steel production, this thesis

focuses on three primary research objectives:

1. Conduct a comprehensive literature review of modern advances in computer vision

techniques with emphasis on industrial and manufacturing scenarios. This includes

establishing a clear understanding of the state-of-the-art, critically analysing existing

literature, and identifying research gaps.

2. Design novel computer vision systems tailored for different processes within steel pro-

duction (hot metal ladle pouring, galvanisation, and gas stirring) to monitor and anal-

yse key process variables that give insights for enhancing operational efficiency and

product quality.

3. Investigate the deployment of computer vision technologies into steel production envi-

ronments as both post-processing and real-time monitoring applications. This includes

the consideration of robustness and scalability of systems to ensure they can withstand

the complexities and variations of deploying to real industrial settings.
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1.3 Thesis Structure

Chapter 2: Provides an extensive review of existing computer vision techniques and their

applications in manufacturing, highlights advances and identifies gaps in the literature.

This chapter sets the stage for the thesis firstly by establishing the significance of

computer vision in manufacturing, particularly in the steel industry. By identifying

gaps, it also highlights the need for innovative solutions and therefore justifies the

purpose of this research.

Chapter 3: Details common techniques and tools that were utilised across multiple case

studies. The fundamental principles of computer vision methods used in this research

are covered, as well as their configurations, justifications for their selection, and poten-

tial limitations. Additional resources that were critical to the success of this work such

as software, hardware and the Common Objects in Context (COCO) dataset are also

detailed. This ensures a clear methodological framework is defined from the outset.

Chapter 4: Presents Case Study 1, a novel method for tracking the motion of hot metal

ladles during the pouring process in harsh environmental conditions. The chapter

details the application of Contrast-Limited Adaptive Histogram Equalisation (CLAHE)

for contrast enhancement of poorly-lit footage, and Mask R-CNN (Mask Region-based

Convolutional Neural Network) for ladle segmentation. It demonstrates how these

techniques can be used to monitor ladle pouring height, rotation angle, and furnace

flame severity. The insights gained pave the way for enhancing ladle process monitoring

and control.

Chapter 5: Presents Case Study 2, an innovative approach for quantifying the severity

of zinc splatter during the galvanisation process in real-time. It describes the use of

Counting (CNT) background subtraction (BGS) for splatter segmentation and YOLOv5

(You Only Look Once) for air knife detection. The chapter also investigates the de-

ployment of the model onto hardware suitable for a production environment, proving

its robustness and practicality. The developed system can be implemented to reduce

equipment downtime and improve product quality.

Chapter 6: Presents Case Study 3, which focuses on the analysis of gaseous plume dy-

namics, refractory wear, and stirring efficiency in gas stirring processes within a basic-

oxygen furnace (BOF). The chapter introduces a novel approach using computer vision

to monitor various plume characteristics from experiments simulating gas stirring. It
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details the use YOLOv5 for plume detection, DeepSORT (Deep Simple Online and

Real-Time Tracking) for tracking, and CNT background subtraction for segmentation.

It demonstrates how application of these techniques was used to estimate the impact

of different stirring configurations on refractory wear and stirring efficiency.

Chapter 7: Provides a comparative analysis of the three case studies presented in Chap-

ters 4, 5 and 6 in terms of methodologies and results. This chapter also discusses the

common challenges encountered, such as dealing with harsh environmental conditions

and overcoming resource constraints with regards to data availability, computational

expense and time. By synthesising insights gained from each case study, this empha-

sises the broader impact of the solutions presented.

Chapter 8: Concludes the thesis with a summary of the key findings and significant con-

tributions to the field of computer vision in manufacturing. It reflects on the original

research objectives and how they were achieved, and also summarises key findings and

implications of this research on the state of manufacturing technology. Additionally,

this chapter summarises the main limitations experienced in this project, before offer-

ing recommendations for future research.

1.4 Key Research Outcomes

The research presented in this thesis has several significant outcomes that contribute to

both the academic body of knowledge and the practical applications in the steel production

industry. The key outcomes are listed below:

• Developed a computer vision model capable of estimating ladle pouring height, angle of

rotation and resulting flame severity in ladle pouring processes which sets a foundation

for future real-world applications.

• Developed and deployed a model for quantifying splatter severity on a galvanising

line on a NVIDIA Jetson Orin Nano which exhibits real-time capability over a Wi-Fi

network.

• Created a model for detecting, tracking, and segmenting gaseous plumes in furnace gas

stirring simulations to obtain stirring efficiency rating and wear rate factor values for

assessment of different stirring setups.
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These advancements highlight the potential of computer vision technologies to enhance

operational efficiency and process quality in steel manufacturing. Further details on each

case study are discussed in the subsequent chapters of this thesis.

1.5 Research Outputs

The outputs of this project are stated below:

• Publication of two journal papers (items 1 and 2 below), based on Case Study 1

(Chapter 4) and Case Study 2 (Chapter 5) respectively.

• Submission of one journal paper (item 3 below), based on Case Study 3 (Chapter 6).

This is currently under review.

• Publication of two conference papers (items 4 and 5 below), based on the wider impli-

cations of computer vision application in manufacturing with regards to sustainability

and Industry 4.0.

• Deployment of a real-time, Wi-Fi enabled, splatter severity quantification model on an

Internet of Things (IoT) device suitable for implementation into the galvanising line.

If process technologists at the galvanising site decided to implement this it would aid

in reducing equipment degradation and surface defects. This emphasises the practical

applicability of this research.

• Contribution of a model for gaseous plume analysis to a collaborative project, which

has been utilised by another researcher to gain understanding of gas dynamics in steel

production, and could be used to aid optimisation of the real furnace gas stirring

process to reduce equipment degradation and improve stirring efficiency.

Implications of these contributions for future research and industry application are pro-

vided in the conclusion chapter which finalises findings and proposes directions for future

work. The publications mentioned are listed below:

1. [7]: This article details the development and evaluation of a computer vision model

designed to estimate ladle pouring height, ladle rotation angle and flame severity during

the ladle pouring process.

2. [8]: This article focuses on the development, evaluation, and deployment of a model

designed to quantify zinc splatter severity occurring on the galvanising line.
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3. [9]: This article describes the development, evaluation and application of a model

designed to monitor gaseous plumes during gas stirring simulations and give insight on

the resulting refractory wear rate and stirring efficiency.

4. [10]: This conference paper, presented at the International Conference on Industry

4.0 and Smart Manufacturing in 2023, investigates the integration of computer vision

technology into steel factories to improve the sustainability of the industry.

5. [11]: This conference paper, presented at the International Conference on Manufac-

turing Research in 2023, investigates modern advances in computer vision applications

for steel production and their implications on the sustainability of the industry.
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Chapter 2: Literature Review

This chapter will give an overview of a typical computer vision (CV) project workflow fol-

lowed in industry, before presenting state-of-the-art (SOTA) methods shaping the field. Tech-

niques will be discussed and critically analysed in terms of suitability for application. Addi-

tionally, applications of traditional techniques (denoising, tracking and background subtrac-

tion), whilst more modern techniques utilising deep learning (object detection and instance

segmentation), will initially only focus on theoretical performance evaluations. Finally, ap-

plications that use deep learning-based techniques will be presented and critically analysed

in terms of their suitability for deployment. Through analysis of both SOTA methods and

specific manufacturing applications, gaps in the field will be identified. Some gaps will be

directly addressed throughout this project, and others will remain as potential avenues for

future research.

2.1 Introduction

Chapter 1 already provided an introduction that explains how CV is a branch of artificial

intelligence (AI) and has advanced significantly in recent years which has enabled the de-

velopment of intelligent systems that interpret visual data with precision. This literature

review will build upon the foundational understanding of CV that was laid out in Chapter 1

by presenting advancements in CV technology and applications relevant to the manufactur-

ing sector, with a particular focus on steel production where possible. The objective of this

review is to provide a comprehensive background of existing CV techniques and evaluate

their potential for real manufacturing applications.

The project workflow of CV is fundamental to understanding how models are integrated

into systems as real practical tools that enhance manufacturing processes. Typically, a CV

project begins with data collection and pre-processing which ensure datasets are sufficiently

large and a suitable format for model development. Denoising methods are considered a cru-

cial part of pre-processing. With the right datasets, model development is conducted which

involves training, validation and testing. All object detection and instance segmentation

networks discussed in this review undergo this process. For tracking methods, this varies

depending on whether deep learning is involved, and for background subtraction methods,

training is not required. Following development, models are normally deployed in a real-

world scenario on a suitable device which could be a conventional computer, a cloud server,
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a mobile device, or a single-board computer (SBC). The datasets introduced in this review,

with the exception of those related to surface defect detection, are summarised in Table 1.

In Section 2.7.4 where surface defect detection is discussed, a separate table is included.

Table 1: Object detection datasets discussed in this review

Dataset Images Classes Description Source

VOC 2007 9963 20 “Visual Object Classes” - Dataset of

common objects for benchmarking

object detection models.

[12]

VOC 2010 10103 20 Dataset of common objects for bench-

marking object detection models.

[12]

VOC 2012 11530 20 Dataset of common objects for bench-

marking object detection models.

[12]

COCO 2015 205000 80+ “Common Objects in Context” -

Dataset of common objects in natu-

ral environments for benchmarking

models on various CV tasks, primar-

ily object detection, segmentation and

image captioning.

[13]

COCO 2016 205000 80+ Extension of COCO 2015 with key-

points for human pose estimation.

[14]

COCO 2017 164000 80+ Updated train/val/test splits with

continued support for detection, seg-

mentation, captioning, and keypoints.

[13]

Roboflow-100 224714 829 Crowd-sourced dataset for bench-

marking models on object detection

tasks across a wider variety of do-

mains than VOC and COCO.

[15]
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2.2 Denoising Methods

The pre-processing stage of developing CV models can involve techniques with a variety of

functions, including but not limited to, data compression for computational efficiency, data

normalisation for consistent input formats, data augmentation for maximising the use of

limited datasets, and denoising for model accuracy. This section will give an overview of

denoising techniques relevant to this project, critical analysis of their application in real-

world settings and identification of research gaps.

2.2.1 Histogram Equalisation Methods

Histogram Equalisation (HE) is a commonly used contrast enhancement technique that lends

itself well to computer vision tasks [16]. HE works by using the intensity values of all pixels

within an image to produce a histogram, and then adjusting intensity values of pixels with

more frequent intensities to produce a more evenly distributed histogram [17]. This results

in areas of lower local contrast changing to a higher contrast, making them more visible [17].

In greyscale images “intensity” refers to how dark or light a pixel is. In HSV colour space

(hue-saturation-value), HE can be performed on value channels whereas in HSL colour space

(hue-saturation-luminance), HE can be performed on luminance values. In RGB images the

intensity or brightness is more complex [17]. Standard HE is prone to over-enhancing images

with highly variable contrast which is common in industrial environments such as steelworks.

In Figure 1 an example image with poor contrast is shown on the left, and its corresponding

histogram is shown on the right [18]. In Figure 2 the same image in Figure 1 after being

processed with HE is shown on the left, and its corresponding histogram is shown on the

right [18].

Adaptive Histogram Equalisation (AHE) is a variant of HE that takes local spatial infor-

mation into consideration by dividing images into tiles and performing HE on each tile [17].

This localised approach is more advantageous in images with more diverse lighting condi-

tions such as industrial environments. In [19], a variety of medical images including X-ray,

computed tomography (CT) and magnetic resonance imaging (MRI) scans, were used to

evaluate the method against HE and another, more applicable variant discussed next called

Contrast-Limited Adaptive Histogram Equalisation (CLAHE). The absolute mean bright-

ness error (AMBE) and peak signal-to-noise ratio (PSNR) metrics were used for evaluation.

AMBE measures the quality of brightness preservation after HE processing and a lower num-

ber indicates better performance [20], whereas PSNR refers to the extent of distortion and a
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Figure 1: Example of an image with poor contrast and its corresponding histogram

Figure 2: Example of an image processed by histogram equalisation and its corresponding

histogram
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higher number indicates better performance [21]. Despite the concept of AHE being sound,

using AHE in [19] resulted in AMBE being higher and PSNR being lower than when HE and

CLAHE were used. This suggests application in manufacturing environments is unsuitable

due to poor brightness preservation and image distortion [19].

CLAHE is a further modified variant of AHE that operates by clipping the contrast of

each equalised tile and redistributing clipped intensity over histogram bins [17]. This method

is more sophisticated than HE and AHE as it avoids overemphasis of any noise present and

prevents edge-shadowing [17]. When enhancing MRI images, CLAHE was reported in [19]

to achieve an average AMBE value of approximately 20% that of HE and 16% of AHE,

whilst achieving an average PSNR value of approximate double that of HE and two and a

half times that of AHE, demonstrating its effectiveness in real-world applications. This was

further demonstrated in [22] which evaluated CLAHE against HE, contrast stretching and

a newly proposed method developed by the authors at enhancing medical images (X-ray,

CT, MRI and mammogram images). For PSNR, CLAHE performed better on almost every

image, whilst for AMBE it outperformed HE in every case [22]. For PSNR, CLAHE was

very close to the performance of the proposed method and for AMBE it was the closest by

a significant amount [22]. The results of these studies highlight the capability of CLAHE to

enhance image contrast whilst preserving image quality, which is crucial in CV applications

for steel processes where lighting conditions may be harsh and high image quality will be

necessary for precision. However, it would be beneficial to evaluate the performance of

CLAHE on a wide range of steel production environments to identify the strengths and

weaknesses of the technique more specifically.

Brightness Preserving Bi-Histogram Equalisation (BPBHE) is another variant that uses

two sub-images which capture pixels at the lower and upper halves of the intensity distri-

bution [23]. Both sub-images are processed using HE and then combined by using the pixel

values from the dark sub-image for original pixel intensities below the mean intensity, and

the pixel values from the bright sub-image for original pixel intensities above the mean in-

tensity [23]. The success of this method has been demonstrated in various use-cases such

as with images containing a large amount of snow and clouds (high intensity images), dark

rooms (low intensity images) and poorly-lit objects [23]. In comparison to other HE variants,

it has shown success in applications such as emphasis of pathological features within brain

MRI and lung CT scans [20]. For the CT scans, BPBHE was combined with a Gaussian

probability function and resulted in the lowest AMBE for the focused area of the patholog-

ical material, as well as for the whole image [20]. Whilst this approach excels in a variety

11



of scenarios, including where there are extreme variations in contrast, the dual-image aspect

has the potential to impact computational expense which might be limiting in real-time ap-

plications.

The final HE variant that will be discussed is Brightness Preserving Dynamic Fuzzy

Histogram Equalisation (BPDFHE). This variant processes images in the fuzzy domain using

a fuzzy histogram rather than the standard histogram and Gaussian probability function

[24]. Fuzzy logic is a problem solving approach that allows for degrees of truth as opposed to

binary logic that only allows true or false, which is useful when dealing with approximations

which are typically necessary to deal with in real-world scenarios [25]. The effectiveness

of BPDFHE has been demonstrated in [26] where it performed better than CLAHE at

enhancing leaf images for disease detection for multiple metrics including mean squared

error (MSE) and PSNR, as well as in enhancing high-resolution aerial images in [27] where

it performed better than HE and BPBHE in terms of PSNR, UIQI (universal image quality

index - a quality retention metric) and AMBE. The leaves and aerial images contained more

detail than medical images previously discussed, suggesting BPDFHE can be particularly

effective at dealing with more complex images in comparison to other HE variants. However,

the fuzzy logic aspect could come with computational expense. In the cases of both BPBHE

and BPDFHE, the literature and following analyses suggest these two HE variants could be

useful for industrial application but only for highly specific scenarios.

2.2.2 Morphological Operations

Whilst HE variants are beneficial for improving the contrast of images, morphological op-

erations are beneficial for eliminating small, irrelevant entities which reduces noise and can

aid in improving the shape of desired structures. Morphological operations discussed in this

thesis are erosion and dilation. Erosion involves passing a kernel of a pre-defined size and

structure over each frame, computing the local minimum over the kernel area and replacing

the image pixel under the kernel anchor point with the minimum value [28]. This process

effectively removes the edges of contours so that they are smaller or non-existent and is

demonstrated in Figure 3 [29]. While this operation is similar to convolution in that it in-

volves moving a kernel across an image, it differs in that it computes a local minimum rather

than performing a weighted sum of the kernel and the pixel values. Oppositely, dilation

slides a kernel over images and calculates the local maximum which it uses to replace the

image pixel under the kernel anchor point, which effectively thickens contour edges so that

contours are larger [28]. This is demonstrated in Figure 4 [30]. In practice, erosion can be
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used to “shrink away” small noise contours which are unwanted features that may appear

in due to dust particles, heat distortion, moving machinery, or other sources of inaccuracies

such as generally poor image quality. A follow-up dilation operation ensures helpful contours

are reverted to their original state that existed before noise removal occurred.

(a) Before erosion (b) After erosion

Figure 3: Figure showing the effects of erosion

(a) Before dilation (b) After dilation

Figure 4: Figure showing the effects of dilation

This approach has been used in applications such as steel billet defect detection [31] where

an 87.5% detection rate was achieved which highlights the effectiveness of it in quality control

scenarios and shows efficacy when dealing with varying surface textures. Also, morphological

operations aided real-time defect detection of high-speed steel bar in coil [32] where a 96.7%

detection rate was achieved by the proposed model. This reinforces the applicability of this

approach in steel production environments since real-time capabilities were demonstrated.

Additionally, morphological operations were used for size distribution estimation of iron-ore

pellets [33] where the approach proposed in the study achieved over 90% accuracy in diameter

estimation. The fact that this is based on material handling rather than defect detection

emphasises the suitability of morphological approaches for a variety of steel production tasks.
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Despite promising outcomes in the literature, applying morphological operations still pose

challenges such as requiring optimal sensitivity settings to adequately remove noise without

reducing the quality of important features. Similarly to contrast enhancement, it could be

beneficial to evaluate the performance of morphological operations on a wide range of steel

production environments to build a better understanding of which scenarios could benefit

most from its use.

2.3 Object Detection Methods

Object detection is typically a core element of the model development process and encom-

passes a wide range of techniques that, fundamentally, perform the tasks of object localisation

(predicting an object’s location using a bounding box) and object classification (predicting

an object’s class) together. This section will provide an overview of some of the key detection

networks that constitute modern CV. This will include SOTA as well as some predecessors

of the SOTA to build a comprehensive picture of how the field has evolved rapidly year-on-

year. Model evaluation results based on standard evaluation datasets in the field will provide

some insight into conventional evaluation methods, as well as demonstrate the evolution of

CV since deep learning burgeoned. Additionally, there will be critical analysis of model

application to real-world settings and identification of research gaps.

2.3.1 R-CNN

R-CNN (Region-based Convolutional Neural Network) is a basic object detection model

that consists of three modules shown in Figure 5 [34]. The first module generates region

proposals that define all possible detections available to the detector, the second module is a

large convolutional neural network (CNN) that performs feature extraction on each region,

and the third module is a set of class-specific linear support vector machines (SVM) that

classify the objects within the regions [34].

The authors of the R-CNN paper evaluated the model on the Pattern Analysis, Statistical

Modeling and Computational Learning Visual Object Classes (PASCAL VOC) 2007 and 2010

datasets which are described quantitatively in Table 1 [12]. For the 2007 set, several R-CNN

variants were compared along with DPM (deformable part model) methods for benchmarking

[34, 35]. Results showed that for every category, R-CNN was superior and achieved a mean

average precision (mAP) of 0.585 [34]. mAP is the mean of the average precisions (APs)

achieved for each class. AP is the area under a plotted precision-recall curve and is a metric

commonly used to describe the accuracy of object detection algorithms (see Section 3.4.3 of
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Figure 5: Schematic representing R-CNN object detection

Chapter 3). For the 2010 set, R-CNN was benchmarked with a DPM model [35], Selective

Search [36], Regionlets [37] and SegDPM [34, 38]. Results showed that the R-CNN was again

superior in all categories with an mAP of 0.537 [34].

Despite success, R-CNN is relatively inefficient, resulting in high computational cost and

slow inference times, making it unsuitable for real-time applications [39]. This is because

R-CNN proposes each region individually using Selective Search which is an algorithm that

firstly generates a set of initial segments through segmentation, and then iteratively merges

them based on similarity metrics, such as color and texture, to create region proposals [36].

This process is time-consuming. Furthermore, R-CNN also has a modular pipeline (region

proposal generation, feature extraction, classification), that requires individual optimisation

for each module rather than end-to-end that could improve speed and accuracy [36, 39]. This

has led to the development of more efficient architectures such as Fast R-CNN and Faster

R-CNN.

2.3.2 Fast R-CNN

Fast R-CNN is a development from R-CNN that is advantageous due to its improved training

and testing speed, combined with its increased accuracy [39]. An overview is shown in

Figure 6 [39]. Fast R-CNN is a more streamlined than the modular build of R-CNN [39].

Unlike R-CNN, Fast R-CNN takes region proposals (from a method such as Selective Search)

as input and processes a single image at once rather than a single proposal, through use of

a pre-trained fully convolutional network (FCN) [39]. A region of interest (RoI) pooling

layer is used to extract vectors from the feature map for each proposal which are then used

to perform classification and localisation simultaneously [39]. Also, Fast R-CNN eliminates

the hundreds of gigabytes storage requirement of R-CNN as it does not cache features [39].

These changes make it much more suitable for speed-critical applications.
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Figure 6: Schematic representing Fast R-CNN object detection

Fast R-CNN was evaluated by the authors by using pre-trained ImageNet [40] models

named (in order of smallest to largest network size) CaffeNet (an implementation using Caffe)

[41] [34], VGG CNN M 1024 [42] and VGG16 (Visual Geometry Group) [43] for feature

extraction [39]. Using these networks, from smallest to largest, Fast R-CNN training speed

was benchmarked against R-CNN and SPPNet (Spatial Pyramid Pooling Network) [44]

and was 18.3, 14 and 8.8 times faster than R-CNN respectively, and significantly passed

SPPNet speed also [39]. SPPNet is a CNN that pools each feature map at multiple scales

and concatenates pooled feature maps into a single fixed-sized output, enabling multi-scale

feature extraction without resizing images or adding more network layers, both of which can

introduce inefficiencies [44].

Also, depending on the choice of feature extraction network, Fast R-CNN was 80 to 146

times faster at testing than R-CNN and SPPNet [39]. In terms of inference speed, 0.10, to

0.32 images per second was achieved depending on the choice of feature extractor [39]. The

significant reduction in training and testing times of Fast R-CNN are much more aligned

with industrial challenges that demand rapid model development and implementation. Using

CaffeNet and VGG CNN M 1024, Fast R-CNN achieved only slightly lower mAPs than R-

CNN which was impressive considering the huge increase in training and testing speeds [39].

The slight mAP reduction highlights the trade-off between speed and precision which is

crucial to consider when implementing object detection into a steel production environment.

When detail is critical, speed may have to be sacrificed and vice-versa. When using VGG16,

Fast R-CNN achieved the highest of all three algorithms with 0.669, whilst R-CNN and

SPPnet achieved mAPs of 0.660 and 0.631 respectively [39]. This suggests that Fast R-CNN

performance is dependent on the network size and therefore this is a factor that should also

be considered when implementing it into an industrial application.

Fast R-CNN precision was evaluated on the VOC 2007, VOC 2010, VOC 2012 and
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Microsoft Common Objects in Context (COCO) 2015 [45] datasets which are detailed in

Table 1 [39]. For the VOC 2007 dataset, variants of Fast R-CNN were compared to SPPNet

and R-CNN, both with bounding box regression [39]. The first variant of Fast R-CNN was

trained on VOC 2007, the second was the same except without difficult examples and the

third was trained on VOC 2007 and VOC 2012 [39]. Results showed that for 15 out of 20

object categories, the Fast R-CNN trained on two VOC datasets achieved the highest AP

(and therefore the highest mAP overall – 0.700) [39]. This demonstrates the robustness of

Fast R-CNN across diverse and complex data, which is promising for industry.

Fast R-CNN trained using the VOC 2012 dataset and Fast R-CNN trained using both

the VOC 2007 and VOC 2012 datasets, were compared to BabyLearning [46], R-CNN with

bounding box regression and SegDeepM [47] for detection performance on the VOC 2010

test set [39]. Results showed that the Fast R-CNN model trained on both datasets achieved

the highest AP for 15 of the 20 objects and an mAP of 0.688. The 15 categories Fast R-CNN

performed best in for VOC 2010 set were not the exact same as for the VOC 2007 set [39].

These results further emphasise the ability of Fast R-CNN to generalise well on new data

since different datasets reveal different strengths and weaknesses of the same model. This is

crucial in industrial applications where the environment may change significantly.

The same two Fast R-CNN variants were also evaluated on the VOC 2012 test set against

BabyLearning, NUS NIN c2000 (NUS referring to the National University of Singapore and

NIN referring to “Network-in-Network” architecture) [46] and R-CNN with bounding box

regression [39]. The Fast R-CNN variant trained on two datasets achieved the highest AP

in 18 of 20 categories and achieved an mAP of 0.684 [39]. Again, the consistently high

performance of Fast R-CNN across various datasets shows its effectiveness and adaptability

which is desirable in industry.

2.3.3 Faster R-CNN

Fast R-CNN was developed further into Faster R-CNN by adding a new module to the

beginning of the architecture [48]. An overview of Faster R-CNN is shown below in Figure 7

[48]. The new module is a deep FCN used as a Region Proposal Network (RPN), in contrast

to Selective Search discussed previously [48]. The RPN is trainable end-to-end and regresses

region bounds and objectness (probability of a region containing an object) scores at the

same time [48]. FCNs use convolutional layers followed by more convolutional layers instead

of the more common fully-connected layers. Faster R-CNN works by training the region

proposal network (RPN) and Fast R-CNN independently, whilst allowing them to share
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features through their shared convolutional layers using alternating training [48]. Sharing

features means the computational expense and time required to train and test the Faster

R-CNN network is greatly reduced in comparison to Fast R-CNN [48].

Figure 7: Schematic representing Faster R-CNN object detection

Faster R-CNN performance was evaluated on the PASCAL VOC 2007 and 2012 datasets

[48]. Two models were tested (Zeiler and Fergus (ZF) [49] and VGG-16) which used five

and 13 shared convolutional layers respectively [48]. Faster R-CNN using the ZF network

ran at 17fps [48], and using the VGG network ran at 5fps [48]. Fast R-CNN that used the

VGG network ran at 0.5fps [48]. These results show that Faster R-CNN can be ten to 34

times faster than Fast R-CNN depending on the CNN used [48]. Also, the introduction of

an RPN significantly improves speed, which is due to a reduction in the number of proposals

requiring processing. This is important when considering real-time industrial application

due to the high operating speeds found in production sites.

For the VOC 2007 test set, variants of Faster R-CNN were compared with variants of

Fast R-CNN [48]. Results showed that Faster R-CNN trained on the COCO 2015, VOC 2007

and VOC 2012 datasets achieved the highest mAP of 0.788, followed by the Faster R-CNN

trained on just the VOC datasets (0.732 mAP), followed by the Fast R-CNN trained on

just the VOC datasets (0.700 mAP) which was closely followed by Faster R-CNN trained
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on only the VOC 2007 dataset (0.699 mAP) [48]. Whilst a model trained on more data

performs better on unseen data, overall, Faster R-CNN is more accurate than Fast R-CNN

on this dataset. These results show the capability of Faster R-CNN to generalise well across

different datasets. This in particular shows robustness since COCO and VOC are unrelated

(as opposed to VOC variants which are), which is promising for real-world application where

unpredictable scenarios are common.

Regarding the VOC 2012 test set, Faster R-CNN trained on all three datasets achieved

the highest mAP again (0.759) and this was followed by Faster R-CNN trained on just the

VOC datasets (0.704 mAP) [48]. This trend continued as with the VOC 2007 evaluation

results [48]. Results also demonstrate that Faster R-CNN performed better than Fast R-

CNN (0.684 mAP) on the VOC 2012 test set [39, 48]. These results reinforce the real-world

applicability of Faster R-CNN and the benefits of the added RPN module. However, despite

the benefits, the complexity of configuring the RPN could be considered a limitation, since

it often requires fine-tuning which is balanced with the detector component for optimal per-

formance and efficient use of computational resources. This can be particularly challenging

for less experienced engineers and could be detrimental in resource-constrained scenarios.

2.3.4 YOLO

YOLO (“You Only Look Once”) is part of a family of networks that are an alternative

option to the R-CNN family. An overview of YOLO is shown in Figure 8 [50]. YOLO works

by treating object detection as a single regression problem, hence the name [50]. Unlike

multi-stage methods such as R-CNN and its derivatives, YOLO uses a CNN to predict object

bounding boxes and object class probabilities simultaneously, resulting in fast inferences [50].

It firstly divides an image into a grid and each grid cell predicts bounding boxes, confidence

scores for those boxes (indicating accuracy and object presence), and class probabilities on

those cells containing an object [50]. YOLO uses Darknet-19 as an image classifier, which is

a fast open source neural network that allows YOLO to process images at high speed [50].

Due to the good accuracy and high speed of YOLO, it is suitable for applications requiring

real-time processing [50].

When evaluated on the PASCAL VOC 2007 dataset, YOLO achieved a speed of 45fps

on a Titan X graphical processing unit (GPU) with no batch processing required (meaning

data can be streamed) [50]. An evolved version of YOLO named Fast-YOLO improves

this for a speed of 155fps at the cost of reduced accuracy [50]. YOLO and Fast-YOLO

achieved mAPs of 0.634 and 0.527 respectively [50]. These results suggest that YOLO is
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Figure 8: Schematic representing YOLO object detection

highly suitable for real-time applications but at the cost of precision. In deployment, the

trade-off between speed and precision must be carefully considered based on the demands of

the specific challenge.

2.3.5 YOLOv2

YOLOv2 is an evolution of the original YOLO model which addressed localisation errors

and lower recall compared to Fast R-CNN, whilst maintaining the high speed of the original

model [51]. Improvements included the addition of batch normalisation to all convolutional

layers which removed the need for other regularisation methods and dropout layers, training

the classifier on 448x448 images rather than 224x224 which improved precision, replacing

direct bounding box prediction of the fully-connected network with pre-defined anchor boxes

which enhanced recall, as well as using k-means clustering to optimise anchor box dimensions

which improved accuracy and stability [51]. A diagram representing this process is shown in

Figure 9. Other improvements included a passthrough layer that takes a higher resolution

feature map from an earlier layer to improve the detection of smaller objects, and a multi-

scale training strategy where the model dynamically adjusts input image size during training,

improving its ability to deal image size variations [51].

YOLOv2 was evaluated against a variety of models, SSD512 (Single-Shot Detector),

Fast R-CNN and Faster R-CNN most notably, on the VOC 2007, VOC 2012 and COCO

2015 datasets (shown in Table 1) [51]. On the VOC 2007 dataset, YOLOv2 was able to

achieve the highest mAP and the the highest frame rate [51]. On the VOC 2012 dataset,
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Figure 9: Schematic representing bounding box prediction with k pre-defined anchor boxes

YOLOv2 achieved a competitive mAP that was marginally surpassed by SSD512 [52] and

ResNet (Residual Neural Network) [53], but was over twice as fast [51]. Finally, on the

COCO 2015 dataset, YOLOv2 was competitive at the 0.50 IoU (intersection-over-union)

threshold, but using the COCO mAP metric it was surpassed by Faster R-CNN, SSD300

and SSD512 [51, 52]. IoU measures the overlap between the predicted and actual object

boundaries. It is calculated as the area of overlap divided by the area of union between

predicted and ground-truth bounding boxes. A prediction with a higher IoU means the

model is more accurate and the prediction is more likely to be considered a true positive

(depending on if the IoU surpasses the pre-defined threshold). The COCO mAP metric

accounts for multiple IoU thresholds and is therefore more informative than just using one.

More details on this are provided in Section 3.4.1. It is worth noting that whilst YOLOv2

was surpassed by a maximum of 0.052 mAP (∼20% increase), it made inferences at least

twice as fast as all other models evaluated [51]. Despite the inferior precision of YOLOv2,

the advantage it demonstrated with regards to speed was significant enough to make it a

strong choice for real-time applications. Similarly to the original YOLO model, YOLOv2 also

poses a trade-off between speed and precision which should be considered if implementing

it for industrial application. Whilst an R-CNN variant may be more suitable for precision-

critical applications such as crack detection, YOLOv2 may be more suitable for time-critical

applications such as monitoring high-speed production lines.
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2.3.6 YOLOv3

YOLOv3 is the successor of YOLOv2 and incorporates several improvements. Firstly, for

class prediction YOLOv2 uses a softmax layer which assumes that each box has one class

which is not always true (i.e. objects overlap), so YOLOv3 uses a multi-label approach in-

stead [54]. This allows the model to deal with overlapping objects which is highly beneficial

in industrial environments. Secondly, boxes are predicted across three different scales sim-

ilarly to feature pyramid networks (FPNs) which are discussed in the following subsection

in relation to RetinaNet [54, 55]. This is achieved through the new Darknet-53 in place of

Darknet-19, which enriches feature extraction with more convolutional layers (19 to 53) and

uses ResNet-type skip connections [54]. Skip connections allow training data to bypass cer-

tain layers to facilitate gradient flow during backpropagation to combat vanishing gradients,

a common problem in deep neural networks [53]. Darknet-19 and Darknet-53 architectures

are shown in Figure 10 [56]. Feature maps from different layers are then concatenated which

aids detection of smaller objects through a mixture of fine-grained and semantic information,

before the last layer predicts the bounding box, objectness and class predictions [54].
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Figure 10: The architectures of Darknet-19 (left) and Darknet-53 (right)
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YOLOv3 was evaluated using the COCO 2017 dataset (shown in Table 1) and the mAP-50

metric (mAP based on a 0.5 IoU threshold). YOLOv3-320, YOLOv3-416 and YOLOv3-608

achieved mAP-50 values of 0.515, 0.553 and 0.579 respectively, whilst achieving inference

times of 22ms, 29ms and 51ms respectively [54]. Compared to other object detection models

such as SSD and RetinaNet variants, YOLOv3 performed the best in terms of inference

time and competitively in terms of mAP, with YOLOv3-608 had the second highest mAP-50

[54]. These results highlight the improved balance between speed and precision compared

to YOLOv2 since speed is still superior whilst precision is more competitive. This makes

YOLOv3 more promising for diverse industrial application than YOLOv2, meaning it may

be suitable for both real-time applications and those which require more precision. However,

the precision is not sufficient for precision-critical applications. YOLOv3-608 was also eval-

uated using the COCO 2017 dataset with the COCO mAP metric, where it was marginally

surpassed by Faster R-CNN variants and SSD variants (which it greatly surpassed in speed)

[54]. There was a significant gap of 0.078 mAP between YOLOv3 and RetinaNet perfor-

mance, however RetinaNet was reported to take 3.8 times longer when making inferences [54].

These results show the trade-off between speed and precision in object detection tasks. If

precision is critical to an application, RetinaNet would be a better choice, whereas YOLOv3

would be superior for time-critical applications.

2.3.7 RetinaNet

Naturally, discussion now leads to RetinaNet before continuing with the most recent YOLO

models. RetinaNet is a one-stage object detection network that was released in 2017, be-

tween the release of YOLOv2 and YOLOv3 [55]. The model addresses the problem of class

imbalances using a specialised focal loss function that, during training, reduces the weight of

easy samples and increases the weight of difficult samples [55]. Similarly to YOLO models,

RetinaNet does not separate region proposal and classification into two stages [55]. These

two key characteristics of RetinaNet enable it to perform with fast inference times whilst

maintaining high accuracy [55]. The architecture is constituted by a CNN backbone net-

work for feature extraction which is typically a ResNet variant combined with an FPN to

aid detection at various scales [55]. A diagram of an FPN can be seen in Figure 11 [57].

FPNs combine high-level semantic features with low-level detailed features in order to cap-

ture information from multiple scales. This results in robust performance across different

scales using a single network.

The authors of the RetinaNet paper benchmarked it on the COCO 2017 dataset against
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Figure 11: Schematic representing the architecture of an FPN

Faster R-CNN variants, SSD variants and YOLOv2 using mAP [55]. The results showed

that RetinaNet achieved significantly higher mAP values (0.391 and 0.408 for two different

variants) than other models, with the next best mAP being from a Faster R-CNN variant

at 0.368 [55]. Another evaluation involving other RetinaNet variants, SSD variants and

YOLOv2, showed RetinaNet variants achieved the highest COCO mAP overall and made

inferences at a competitive speed, with different variants offering a different trade-off between

mAP and inference speed [55]. These results indicate the superior precision of RetinaNet

whilst being competitive with regards to speed. Similarly but opposite to YOLOv3, Reti-

naNet would be well-suited to precision-critical applications such as defect detection, and

may even be used at moderately high speeds such as intermittently checking alignment of

steel sheets, but not in applications where high speed is critical such as real-time monitoring

of conveyor belts.

2.3.8 YOLOv5

YOLOv5 is the fifth iteration of YOLO which features new improvements. Firstly, CSP-

Darknet-53 is used as the CNN backbone which incorporates a Cross Stage Partial Network

(CSPNet) which improves computational efficiency by dividing the base layer feature map

into two parts, and then re-combining them after one part has passed through subsequent

layers and one has skipped them [58]. Secondly, spatial pyramid pooling (via SPPNet)

enhances feature extraction at various scales and a Path Aggregation Network (PANet) [59]

refines feature aggregation, which together improve localisation accuracy. An overview of

YOLOv5 is provided in Figure 12 which shows how data flows from CSP blocks for feature

extraction, to SPP and PANet for multi-scale feature extraction and aggregation, before

reaching the output layers.

YOLOv5 is currently one of the most suitable choices for applications due to its speed,

flexibility, active open source community, user-friendly implementation and general ease of
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Figure 12: Schematic representing the architecture of YOLOv5

deployment. Whilst it is recognised that YOLOv7 [60], YOLOv8 [61], YOLO-NAS (YOLO

Neural Architecture Search) [62] and others are now available and suitable for application

with good support, they were not released by the time any case study presented in this

thesis had began. As well as this, YOLOv5 has more information built up by community

contributions over time. Despite all of these positive points, there is no official paper for

YOLOv5 and most available information on it is located at the Ultralytics Github repository,

managed by Glenn Jocher, the developer of YOLOv5 [63].

There is no official paper benchmarking the model, however a study exists evaluating

YOLOv5 performance [64], which reports YOLOv5 as superior to EfficientDet [65] in terms

of COCO mAP and inference speed on the COCO 2017 dataset, whilst the EfficientDet

paper [65] reports variants of its own that are superior to YOLOv3, RetinaNet and multiple

other competitive models in both speed and accuracy on the COCO 2017 dataset using

the COCO mAP metric. This is not a direct comparison made by one author, however it

is the best available to date and does show the effectiveness of the model since the same

dataset and same metric was used for comparison. It implies that YOLOv5 outperforms

older models in terms of speed and precision, which makes it a very promising choice for

a variety of steel production applications that are both time-critical and precision-critical.

However, the absence of a direct comparison in peer-reviewed literature means YOLOv5

should undergo rigorous performance evaluation if chosen for application, to ensure it meets

the requirements of the task at hand.
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2.3.9 YOLOv8

At the time of writing this thesis, there is currently no official paper released on YOLOv8,

similarly to YOLOv5. Some of the key improvements of YOLOv8 firstly include a C2f

module (cross stage partial bottleneck with two convolutions) to the CSP backbone which

combines high-level features with contextual information to improve detection accuracy [58,

61]. Secondly, YOLOv8 is anchor-free which reduces box predictions, speeding up non-

maximum suppression (NMS) and reducing computational expense [58, 61]. YOLOv8 can

also perform other tasks such as instance segmentation, pose estimation and classification

[61]. A full diagram of the YOLOv8 architecture is excluded from this review for conciseness,

however it can be found at [66].

YOLOv8 has been benchmarked against previous versions using the COCO 2017 dataset

and the COCO mAP [61]. Whilst YOLOv5n (n for “nano” - the smallest, fastest vari-

ant) achieved approximately 0.275 mAP at an inference time of approximately 1ms per im-

age, YOLOv8n achieved approximately 0.375 mAP with virtually the same inference speed

[61]. This is a significant improvement in precision without sacrificing speed, which makes

YOLOv8 even more diverse in terms of industrial application than YOLOv5. Moving across

from the smallest to largest variants, the performance gap between YOLOv8 and YOLOv7

became obvious only at the large and extra large network sizes, where YOLOv8l achieved ap-

proximately 0.02 more mAP than YOLOv7l at the cost of approximately 0.10ms per image,

and YOLOv8X achieved about 0.01 more mAP than YOLOv7X at the cost of approximately

0.25ms per image [61]. These results highlight the ongoing theme of a speed-precision trade-

off if the maximum performance for one of them is desired. However, it is clear that as YOLO

variants develop over time, the lower and upper bounds of speed and precision improve which

makes successive models more suitable for a wider range of industrial applications. One lim-

itation of the literature surrounding YOLOv8 is that there is a lack of it, particularly in

industrial application and even more specifically, for steel production processes. This gap

will close over time as more applications are developed.

2.3.10 YOLO-NAS

YOLO-NAS (YOLO Neural Architecture Search), developed by Deci, is one of the most

recent YOLO variants released [62]. It uses a technique called Neural Architecture Search

(NAS) to improve upon YOLOv8 in terms of speed, accuracy and efficiency [62]. Also, it is

quantised using a hybrid approach which balances between accuracy and latency [62]. Quan-

tisation is a technique that reduces computational costs for more rapid, efficient deployment
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by converting high-precision data types into lower precision data types [67]. Additionally,

it uses Deci’s proprietary Automated Neural Architecture Construction technology (Au-

toNAC) to fine-tune the model structure for optimal performance [62]. Finally, YOLO-NAS

uses methods such as Knowledge Distillation (KD) and Distribution Focal Loss (DFL) dur-

ing training to enhance its ability to classify and localise objects [62]. A full diagram of

the YOLO-NAS architecture is excluded from this review for conciseness, however it can be

found at [62].

Upon evaluation using the COCO 2017 dataset, YOLO-NAS variants outperformed all

other YOLO variants, from version five to eight, significantly on both mAP and inference

speed [62]. Upon evaluation using the the Roboflow-100 dataset which is in Table 1, both the

small and medium variants of YOLO-NAS outperformed YOLOv5, YOLOv7 and YOLOv8

on mAP (extrapolation suggests other YOLO-NAS variants also being superior) [62]. These

results emphasise the rapid advancements in object detection with each successive model.

This means that new models are becoming increasingly adaptable to a range of industrial

applications, but also it exposes a gap in the research for extensive evaluation of newly re-

leased models with regards to industrial, and in particular steel industry-based applications.

Whilst initial evaluations are useful and give a reliable indication to which models gener-

ally show superior performance in terms of speed and precision, there is a lack of datasets

and evaluation approaches that indicate how they perform in harsh industrial environments.

Similarly to YOLOv8, YOLO-NAS suffers from a lack of peer-reviewed publications that

report comparable performance metrics.

2.4 Tracking Methods

Object tracking is continuously identifying objects and following them as they move through

time and space. This requires precision and speed, but is most challenging when it requires

robustness to dynamic environments such as those found in steel industry. Some challenges

here include occlusions, similar looking objects, and objects moving in and out of the field

of view. Whilst challenging, object tracking adds an additional dimension to visual under-

standing on top of detection which can be highly beneficial. In this section, an overview of

traditional techniques such as Kalman filtering and the SORT (Simple Online and Real-Time

Tracking) algorithm is provided, as well as more modern approaches that utilise deep learn-

ing such as LSTM (long short-term memory) networks and the DeepSORT (Deep Simple

Online and Real-Time Tracking) algorithm. They will be critically analysed in terms of their

suitability for real application where appropriate, and research gaps will be identified.
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2.4.1 Kalman Filtering

A Kalman filter is an algorithm that uses an initial estimation, combined with measured

values over a series of timesteps, to predict the future state of a system [68]. Whilst the

initial estimation might not be precise due to limited information, the algorithm improves

its accuracy through a two-step process [68]. Firstly, it makes a prediction and secondly, it

updates that prediction based on the most recent measurements it is provided [68]. Using

this approach iteratively leads to precise tracking of a desired variable, such as the position of

an object [68]. A diagram representing the Kalman filtering process can be seen in Figure 13,

and specific equations used in Kalman filtering are presented in Section 4.2.4.

Figure 13: Schematic representing the Kalman filtering algorithm

Kalman filters have demonstrated their practical capabilities both as standalone tools and

in combination with machine learning (ML) techniques. One notable application involved

integrating Kalman filters with a fuzzy expert system for tracking tool tips for fastening

[69]. The Kalman filter aided estimation of tool orientation and center of mass location,

and the system reduced tool position error during an experiment where eight bolts were

fastened [69]. Whilst the operator approach gave a final position error of 93mm, the model

achieved 6mm which demonstrates a substantial improvement in operational precision [69].

Kalman filtering was also used in welding applications, where it was used to enhance the

robustness of weld position detection and seam tracking [70]. In this case, Kalman filtering

led to a significant reduction in weld position covariance error from 0.0084mm to 0.0010mm,

whilst the seam tracking error decreased from 0.33mm to 0.11mm [70]. Again, these results

show that Kalman filtering led to a significant reduction in error which demonstrates the

effectiveness of it in high-precision applications. Kalman filtering was also used in cutting
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of gamma-prime strengthened alloys, where it was used for tool flank wear estimation [71].

In one experiment, compared to manual measurements the root mean square error (RMSE)

was reduced by 41%, in a repeat experiment it increased error by 8%, and then reduced it

by 25% in a third experiment [71]. These results show how Kalman filters can be sensitive

to environmental changes which could be detrimental for application, depending on the

scenario.

Examples of applications using Kalman filter variants include [72] where an extended

Kalman Filter (EKF) was used to estimate flank wear area during wet turning of Inconel 718,

where it increased the accuracy of estimation by 60%. This suggests that Kalman filtering can

significantly improve operational efficiency and product quality by mitigating inaccuracies

that lead to defects. Damage detection in composite beams via tracking of the neutral axis

under different loading conditions was achieved using multi-rate Kalman filtering in [73]. The

traditional approach of directly estimating damage resulted in false negatives due to a high

standard deviation in performance, however using Kalman filtering, the standard deviation

was much smaller and therefore avoided false negatives [73]. This demonstrates the ability

of Kalman filtering to improve the reliability of structural health monitoring systems which

could transfer to steel production equipment health monitoring applications. Also, contact

force and torque sensing for robotic manipulators in manufacturing tasks was achieved using

adaptive Kalman filtering, where force estimation RMSE was between 0.78N and 1.35N,

whilst torque estimation RMSE was between 0.12Nm to 0.18Nm [74]. This application

emphasises the suitability of Kalman filtering for enhancing the precision of robotic systems,

which is becoming increasingly applicable to manufacturing production lines, and could also

transfer to processes involving other moving parts.

There are a range of examples of Kalman filters being combined with machine learning for

manufacturing applications. Chatter detection during milling was achieved using AlexNet (a

deep CNN) [75] with Kalman filtering in [76] with 98.9% accuracy. This high level of accuracy

demonstrates the potential of combining machine learning models with Kalman filtering for

dynamic process monitoring and suggests it could play a critical role in minimising defects

and equipment downtime. Steel sheet coils were tracked at 8fps during transport to the

uncoiler using a CNN with Kalman filtering, where a standard deviation of below 15 pixels

was achieved [77]. These results expose the high precision capabilities of Kalman filters, as

well as their real-time capabilities, which makes them a valuable asset in real-time monitoring

systems in manufacturing environments. Furthermore, an EKF was used in conjunction with

a vanilla artificial neural network (ANN) to monitor tool wear condition with a classification

30



accuracy of 89.2% [78]. This reinforces the suitability of Kalman filtering in maintenance

applications. Finally, deformation force monitoring of aero-engine casing during machining

was achieved by combining a deep autoregressive network with Kalman filtering, which

resulted in a monitoring success rate 30% higher than the traditional approach [79]. Again,

this result emphasises the benefits of using Kalman filtering with machine learning to improve

reliability of monitoring systems.

2.4.2 LSTMs

Long short-term memory networks (LSTMs) are a more sophisticated type of recurrent neural

network (RNN) that are designed to retain information over multiple timesteps, making them

useful when dealing with sequential data such as video frames [80]. Whilst traditional RNNs

can be effective at remembering information from recent timesteps using their hidden state,

LSTMs have a unique gating architecture shown in Figure 14 [81]. This includes an input

gate (middle σ and tanh operations), a forget gate (left-side σ operaton) and an output gate

(right-side σ and tanh operations) [80]. The input gate controls the flow of new information

into the cell state, the forget gate decides what information is discarded from the cell state,

and the output gate controls which data is output from the cell state to the hidden state

[80]. This means LSTMs can retain information over longer sequences and retain the most

relevant data, which is a key aspect of object tracking where the environment is dynamic

[80]. Whilst LSTMs are excellent at dealing with sequential data, CNNs are well-suited to

dealing with spatial data, making the combination of the two a powerful force for dealing

with spatio-temporal scenarios such as when tracking objects through videos [80].

In the context of manufacturing, LSTMs have been used to prevent cyber-physical attacks

compromising mechanical properties of additively manufactured products within 0.85ms,

with precision and recall values of 0.950 and 0.980 respectively [82]. This suggests LSTMs

can be used in applications where precision is critical, and also that they may be useful in

real-time applications. A bi-directional LSTM was also proposed for tracking and predicting

remaining useful life (RUL) of manufacturing machines with an RMSE of 15.42 cycles, which

was superior compared to a deep CNN, an RNN (recurrent neural network), an MLP (multi-

layer perceptron - a type of classic neural network) and an LSTM, which achieved RMSE

values ranging from roughly 18 to 21 cycles [83]. The superior performance highlights the

effectiveness of LSTMs at dealing with sequential data and in particular, equipment health

monitoring data, which is useful in steel production. LSTMs were also used as part of a

closed-loop system to track the trajectory of piezoelectric actuators and reduced the maxi-
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Figure 14: Schematic representing LSTM architecture

mum tracking error from 1.59µm to 0.15µm (90.4% reduction) [84]. This level of precision

reinforces the idea that LSTMs are suitable for high-precision engineering tasks. Further-

more, a bi-directional LSTM network was used in a smart manufacturing system involving

throwing and catching robots for enhanced part transportation, where the LSTM was used

for trajectory tracking and prediction of thrown objects and speeds of up to 10ms−1 over

distances of up to 3m were achieved, with a maximum error achieved of no more than 2mm

[85]. This shows that LSTMs are precise but also that they are appropriate for real-time

applications in manufacturing environments. However, since LSTMs are a type of neural

network, they typically require large datasets for training and can be computationally ex-

pensive to train, which could be limiting in resource-constrained environments.

CNN-LSTMs have been used for electro-mechanical equipment health condition recogni-

tion and prediction where 98.6% test accuracy was achieved [86], weld penetration monitoring

using dynamic weld pool images with 0.3mm mean square error (MSE) [87] and power data

pattern detection and tracking for manufacturing sites with a test loss of 0.1197 [88]. Note

that loss is a measure of the difference between predictions and real values. These applica-

tions demonstrate the robust model performance that can be achieved across a variety of

scenarios when integrating LSTMs with CNNs. This is because LSTMs exceed at dealing

with sequential data, whilst CNNs exceed at dealing with spatial data.

32



2.4.3 DeepSORT

DeepSORT (Deep Simple Online and Real-Time Tracking) is an advancement of the original

SORT (Simple Online and Real-Time Tracking) algorithm [89] and is a key player in many

object tracking tasks. SORT was developed as a straightforward approach for tracking ob-

jects in real-time using motion information, and uses Kalman filtering discussed in a previous

subsection [89]. Whilst SORT is fast and efficient, it has issues with handling occlusions and

creates too many “identity switches” when objects are blocked [90]. DeepSORT integrates

SORT with YOLO (version is optional) to enable sophisticated feature extraction of ob-

jects. This, as well as data association techniques, greatly improve Kalman filter tracking

performance across sequential frames, particularly in cases of occlusion and objects with

similar appearances [90]. This is further supported through a track management module

[90]. A diagram providing an overview of DeepSORT is shown in Figure 15 [91]. DeepSORT

allows for more robust object tracking, therefore lending itself well to various real-world ap-

plications such as tracking moving machinery, humans and goods [90, 92, 93]. Due to deep

learning integration, the computational demands of DeepSORT are increased compared to

SORT which may need to be considered in industrial application, depending on the available

resources and project goals.

Figure 15: Schematic representing the DeepSORT algorithm

DeepSORT was combined with YOLOv3 to track crane movement in a manufacturing

site as presented in [92] where no evaluation was performed, which highlights a gap in quanti-

tatively measuring tracking performance. This is because even though conventional metrics
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exist for object tracking such as multi-object tracking accuracy (MOTA), reports often lack

thorough evaluation using these metrics and typically focus more on evaluating detection

performance, since it is often the foundation of tracking and high performance detection

often leads to high performance tracking (see Section 3.4.5). Another article reported that

DeepSORT and ScaledYOLOv4 were combined for defect tracking for a real-time manufac-

turing system which reduced double counting of defects by over 50% which demonstrates the

real-time capabilities of DeepSORT as well as its suitability for quality control applications

[94]. Additionally, DeepSORT and YOLOv5 were combined to help distinguish humans

from goods in warehouse scenarios in [93] where, using the MOTA tracking metric, a per-

formance of 75.8% was achieved. The quantitative assessment using MOTA in [93], and the

lack of it in [92] suggests there is inconsistency in the literature with regards to measuring

tracking performance. MOTA is a widely used metric for evaluating the performance of

multi-object tracking algorithms and takes into account false positives, false negatives and

identity switches (see Section 3.4.5) [95].

2.5 Instance Segmentation Methods

Instance segmentation methods are an advancement upon object detection methods in that

they combine the tasks of detection and semantic segmentation [96]. In semantic segmen-

tation, all pixels within an image are classified into a category according to which object it

represents, resulting in full image segmentation into different regions. However, this does not

include differentiation between individual instances of the same class. In contrast, instance

segmentation distinguishes between instances of the same class, allowing for objects to be

identified as separate entities [97]. In an industrial context, distinguishing between multiple

objects of the same type is an incredibly useful ability. Instance segmentation is typically

performed using deep learning models that constitute of a combination of CNNs and other

techniques. Segmentation, and especially this type, offers insights into visual data that is

much more specific than object detection, since it not only localises and classified objects,

but also identifies the precise boundaries of them at pixel-level. This section will give an

overview of some of the most prominent approaches to this task to date, critically analyse

their suitability for real application where appropriate, and identify research gaps.

2.5.1 Mask R-CNN

Mask R-CNN (Mask Region-based Convolutional Neural Network) enhances Faster R-CNN

by enabling pixel-level segmentation capabilities [98]. After feature extraction is performed
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by the CNN backbone, an RoIAlign layer is used to refine feature maps, which is an im-

provement upon the RoIPool method used in previous models [98]. RoIPool divides RoIs

into quantised spatial bins which can lead to misalignment between the RoI and its features

[98]. RoIAlign however, uses bi-linear interpolation on each bin prior to aggregation which

ensures alignment and therefore more accurate segmentation [98]. Mask R-CNN then in-

corporates a segmentation mask generation branch parallel to the bounding box branch at

the end of the network [98]. An FCN generates pixel-level segmentation masks for each RoI

which results in greater accuracy and efficiency compared to the fully-connected layers used

in earlier R-CNN models [98]. Figure 16 shows the flow of data in Mask R-CNN from input

to RoIAlign to the final segmented output.

Figure 16: Schematic representing Mask R-CNN instance segmentation

Using a NVIDIA Tesla M40 GPU, the authors of the Mask R-CNN paper evaluated its

instance segmentation performance on the COCO 2017 dataset (which includes mask labels

as well as detection labels), and compared it to the COCO 2015 and COCO 2016 (shown

in Table 1) segmentation challenge winners, MNC (Multi-Task Network Cascade) and FCIS

(Fully Convolutional Instance-Aware Semantic Segmentation) respectively [98]. Mask R-

CNN outperformed both models with a mask AP of 0.371 (calculated the same way as for

object detection except mask IoU is used instead of bounding box IoU - see Section 3.4.1 of

Chapter 3), whilst MNC [99], FCIS [100] and FCIS+++ [100] achieved APs of 0.246, 0.292

and 0.336 respectively [98]. This suggests that at the time, Mask R-CNN was superior to

other instance segmentation models in terms of precision. Mask R-CNN processed images at

a frame rate of 5fps, which advanced the field at the time it was released. However, this may
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not suffice for real-time applications and as CV has progressed over the years, more modern

algorithms are capable of higher speeds. As discussed later in Section 3.4.6 of Chapter 3, the

meaning of “real-time” is ambiguous. One common definition of a real-time system is one

that processes frames fast enough for practical application [101], whereas another popular

definition is that a minimum frame rate of 25fps should be achieved [102]. Mask R-CNN is

unlikely to meet the stricter definition of real-time, which highlights a potential limitation

in terms of deployment in real-time scenarios [98].

2.5.2 YOLACT

YOLACT (“You Only Look At Coefficients”) is a one-stage instance segmentation network

that works by generating prototype masks and computing mask coefficients for every in-

stance and then combining them to produce instance masks [103]. Firstly, a deep backbone

network is used for feature extraction and features are refined through an FPN to enhance

multi-scale detection [103]. Deep backbone features enable more robust mask generation

and higher resolution prototypes improve mask quality, especially for smaller objects [103].

Next, prototype masks are generated using a branch named Protonet (a fully convolutional

network) whilst a YOLOv3 prediction head predicts class confidences, bounding boxes and

mask coefficients [103]. The final masks are produced by merging prototypes with coeffi-

cients which results in detailed segmentation of individual objects [103]. A diagram of the

YOLACT architecture can be seen in Figure 17 [103].

Figure 17: Schematic representing the architecture of YOLACT

YOLACT performance was evaluated on the COCO 2017 dataset against several models

including FCIS, Mask R-CNN and others. YOLACT achieved a mask AP of 0.298 which
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was slightly higher than FCIS and 0.059 below Mask R-CNN [103]. However, YOLACT ran

at 33.5fps as opposed to Mask R-CNN that ran at 8.6fps [103]. These results suggest that

at the cost of precision, YOLACT is much more adapted to handling real-time applications

than similar models. The speed-precision trade-off between YOLACT and Mask R-CNN is

comparable to that of R-CNN and YOLO object detecton variants, and must be considered

when attempting to implement these models into industrial systems. YOLACT was evalu-

ated using a Titan XP GPU [103].

2.5.3 YOLACT++

YOLACT++ is a more precise version of YOLACT whilst attempting to retain real-time

performance [104]. Key improvements include a fast mask re-scoring network which can be

seen in Figure 18 and re-ranks mask predictions according to their quality [104]. Also, the

backbone uses deformable convolutions which help align feature sampling with instances of

different scales, rotations and aspect ratios, resulting in better detections and more precise

prototype masks [104]. Furthermore, the prediction head was optimised by changing multi-

scale anchors per FPN level which improved the speed-accuracy trade-off [104].

Figure 18: Schematic representing the fast mask re-scoring network in YOLACT++

Upon evaluation of YOLACT++ on the COCO 2017 dataset, it achieved a mask AP of

0.341 at a speed of 33.5fps which matched the already superior speed of YOLACT, whilst

significantly improving the mAP closer towards the likes of Mask R-CNN [104]. This im-

provement demonstrates the effectiveness of the re-scoring and deformable convolutions. At

the time the YOLACT++ paper was authored, it was the first instance segmentation method

to achieve over 30fps and over 0.300 mAP on the COCO dataset, demonstrating its poten-
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tial effectiveness for real-world applications requiring real-time processing and high quality

instance segmentation [104]. YOLACT++ was evaluated using a Titan XP GPU [104].

2.5.4 SOLO

SOLO (“Segmenting Objects by Locations”) is a streamlined, single-shot method for seg-

mentation that simplifies the process of mask prediction by classifying each pixel within an

instance based on its location and size [105]. It does this by segmenting the image into a

grid of S x S cells which are used to predict classes of objects with center coordinates that

fall within a given cell [105]. Individual pixels are then classified based on the relative area

of the cell they reside in, which ensures accurate mask generation [105]. Additionally, SOLO

uses an FPN which utilises multi-level feature maps to differentiate objects of varying sizes

[105]. Figure 19 provides an overview of the the flow of data in SOLO [105].

Figure 19: Schematic representing SOLO instance segmentation

SOLO instance segmentation performance was evaluated on the COCO 2017 dataset

against MCN, FCIS, YOLACT, Mask R-CNN and others in [105], and achieved a mask AP

of 0.371 which matches what was reported for Mask R-CNN in [98]. SOLO ran at 10.4fps and

one variant even ran at 22.5fps at the cost of an AP reduction to 0.342 [105]. These results

suggest SOLO is competitive with other instance segmentation models in terms of both speed

and precision, and like other models such as YOLACT, has a trade-off between the two

metrics which should be considered if implemented in real-world applications. The results

indicate that SOLO balances speed and precision effectively, however it must be noted that

SOLO was evaluated using a Tesla V100 GPU which is significantly more resource-intensive

than the Tesla M40 used in Mask R-CNN evaluation and Titan XP used in YOLACT
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and YOLACT++ evaluation [105]. This difference can significantly affect performance and

should be considered when comparing models.

2.5.5 SOLOv2

SOLOv2 is the successor of SOLO and is enhanced with regards to efficiency and accuracy

[106]. SOLOv2 introduces a dynamic instance segmentation strategy which instead of using

a fixed grid, it dynamically predicts pixel categories on a pixel-by-pixel basis [106]. SOLOv2

decouples mask generation into dynamic mask kernel prediction with a kernel branch and

high-resolution mask feature learning with a feature branch to ensure different instances of

the same class are distinguished [106]. Additionally, the FPN is more sophisticated in a

variety of ways, including improved integration of multi-level features which aids computa-

tional efficiency and enhances feature extraction of objects of varying sizes [106]. Figure 20

provides an overview of the the flow of data in SOLOv2 [106].

Figure 20: Schematic representing SOLOv2 instance segmentation

SOLOv2 performance was evaluated on the COCO 2017 dataset against SOLO, Mask R-

CNN, YOLACT and others, and achieved the highest mask AP of 0.417, whilst a lightweight

variant achieved a mask AP of 0.371 with a speed of 31.3fps which is convincingly meets

real-time performance standards [106]. These results surpass similar models in terms of

speed and precision which suggests it is a strong choice for real-world instance segmenta-

tion applications. However, like SOLO, SOLOv2 was also evaluated using a Tesla V100 GPU

which potentially gives it a significant advantage with regards to performance metrics, at the
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cost of significant computational expense [106]. In industry, deployment is often resource-

constrained, particularly on production lines where real-time Internet of Things (IoT) appli-

cations are common. Therefore, whilst SOLOv2 shows promising results, it would need to

be evaluated on less powerful GPUs for realistic assessment of its practical applicability.

2.5.6 YOLOv5-seg and YOLOv8-seg

A Protonet module, similar to the one mentioned as part of YOLACT and YOLACT++, was

incorporated into the YOLOv5 (two years after its original release) and YOLOv8 (as part

of its release) architectures as an instance segmentation branch, in parallel to the original

detection head [107, 108]. This was a complimentary addition to both models and made

them more versatile in terms of application. Figure 21 shows the architecture of Protonet

[103].

Figure 21: Schematic representing the architecture of Protonet

When evaluated on the COCO 2017 test set, YOLOv5-seg variants ranged from 0.276

to 0.507 mAP and approximately 222fps to 833fps, where increasing model size resulted in

slower but more precise predictions [107]. Also, YOLOv8-seg variants ranged from 0.367 to

0.534 mAP whilst running at 240fps to 846fps [108]. In comparison to previously discussed

models, these results show that medium to extra large YOLO segmentation models generally

surpass previous instance segmentation networks in terms of mAP, whilst greatly surpassing

them in terms of inference speed. This makes them much more suitable for real-time appli-

cations in industry. The “seg” variants are relatively new (even YOLOv5-seg) and therefore

documented applications are limited, however they are likely to become key players in many

future industrial scenarios.

Both models were evaluated on a NVIDIA A100 GPU, which must be taken into account

since it is significantly more computationally intensive than previously mentioned GPUs

and therefore is likely to have provided a significant advantage during evaluation [107, 108].
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A more realistic assessment would need to be undertaken before deploying these models,

however even with the GPU advantage removed, these models are likely to retain a significant

portion of their speed.

2.5.7 FastSAM

FastSAM (Fast Segment Anything Model) is a cutting-edge segmentation model that is

different to all the models discussed so far, since it performs segmentation based on user

input prompts [109]. Whilst this may mean it will have different use-cases than some of

the previous models, it is difficult to predict how the forefront of CV will evolve in terms

of industry applications. FastSAM is a faster, more lightweight version of SAM (Segment

Anything Model) released by Meta mid-2023 that is currently at the forefront of CV [110].

SAM is a promptable visual transformer network trained on a dataset containing over 1

billion masks (SA-1B) within over 11 million images, making it highly adaptable [110]. It is

described as a zero-shot model, meaning it can classify objects that are not in its training set,

which is impressive [110]. FastSAM utilises previously discussed components such as a CNN

backbone and an FPN for multi-scale feature extraction, integrated with a Protonet module

for mask generation [109]. These are used in combination with user prompts which can be

point-based, box-based or text-based and guide the segmentation process [109]. Figure 22

shows the architecture of FastSAM [109].

FastSAM achieved 0.465 mask AP on the COCO 2017 dataset without being trained on

it [110]. However, SAM is reported to run very slowly, far more slowly than 1fps, meaning it

is currently unsuitable for many industrial applications [110]. FastSAM is a first attempt to

combat this by using a YOLOv8-seg backbone and only 2% of the original SA-1B dataset,

which allows it to make inferences 50x faster than the original SAM [109]. At the cost of a re-

duction to 0.379 mask AP on the COCO dataset, FastSAM can run at 25fps using a NVIDIA

GeForce RTX 3090 (and over 83fps when optimised using TensorRT - see Section 5.4.2 of

Chapter 5 for more details on TensorRT) [109]. This is much faster and more precise than

Mask R-CNN, and places it near YOLACT++ in terms of speed, which is very promising for

real-time future developments. However, it still requires high-end hardware and the prompt

requirement is generally undesirable for many production line applications which typically

work fully automatically in resource-constrained environments.

Current IoT hardware is typically not as powerful as an RTX 3090, however this is

becoming less true each year. Also, prompt-based applications in manufacturing could be

beneficial provided they are used where appropriate. For example, a fully automated system
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Figure 22: Schematic representing the architecture of FastSAM

42



would be better for steel surface defect detection, whereas a prompt-based system might

be better for adjusting inspection specifications on-the-fly for different customers. More

investigation into prompt-based computer vision applications in the steel industry would

certainly address a gap in the research.

2.6 Background Subtraction Methods

As mentioned, instance segmentation networks can be excellent at extracting and inter-

preting complex features, however they are resource-intensive in terms of time, data and

hardware. Alternatively, traditional background subtraction (BGS) algorithms, which are

often (but not always) based on Gaussian mixture models (GMMs), are less time-consuming,

less computationally intensive and easier to implement [111]. Figure 23 shows a simplistic

overview of how background subtraction algorithms typically operate [112]. The basis of

background subtraction methods is to segment moving foreground objects from static back-

ground pixels across a sequence of images using various thresholding techniques, as opposed

to instance segmentation networks that classify each pixel and create masks that distinguish

each object instance. This section will discuss examples in literature where BGS techniques

have been used for CV applications, including critical analysis of their suitability for appli-

cation in real-world settings and identification of research gaps.

GMMs in particular use a set of Gaussian distributions to represent parts of the back-

ground using Gaussian probability densities, which collectively, are able to represent the

entire background [113]. Both BGS and segmentation have their limitations. For example,

BGS approaches are less accurate when dealing with complex scenes, especially when they

involve dynamic backgrounds [114]. Meanwhile, instance segmentation typically requires

labelled datasets and time-consuming model training in comparison to BGS algorithms that

are capable of operating effectively almost instantly.

Whilst BGS techniques have shown potential in various areas, their value is yet to be

capitalised on in the steel industry. In [115], the “Mixture of Gaussians” (MOG) algorithm

is used in combination with a timed motion history image method (motion segmentation),

as well as Kalman filtering, to achieve real-time vehicle traffic tracking. Four-phase BGS

which combined MOG, Shi-Tomasi feature extraction [116], optical flow vehicle tracking

[117] and centroid estimation was applied for traffic surveillance and reported in [118], where

the model estimated the speed of three cars with below 0.5km per hour error [118]. These

studies demonstrate the capabilities of BGS algorithms to not only operate in real-time, but

also integrate with other techniques such as Kalman filtering and optical flow estimation,
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Figure 23: Schematic representing the background subtraction process

which is promising for real-time measurement systems in production lines such as monitoring

the flow of materials.

BGS algorithms available in OpenCV [119] were evaluated on ship detection on inland

waters, which found that the Google Summer of Code (GSOC) and Counting (CNT) algo-

rithms performed the best in terms of quality [120]. Meanwhile, BGS algorithms were eval-

uated on animal detection using near infrared spectrum images of moving wild mammals,

which included evaluation of Gaussian Mixture-based Background Foreground Segmenta-

tion (GMG), KNN (K-Nearest Neighbours), MOG and MOG2 [121]. The KNN algorithm

produced a mask most similar to the handcrafted labels used for validation, which was fol-

lowed by MOG2 [121]. However, MOG2 was faster, making it more suitable for real-time

application. These studies show how the effectiveness of different BGS algorithms can vary

depending on the specific environment they are being used in, as well as the objects they are

used to track. If used in any real-world application, it would be important to experiment

with a variety of BGS algorithms to ensure the best one is chosen.

Additional examples of applications include [122] where a GMM was combined with

KNN (in a different way to [121]) to recognise suspicious activity in a gated region with 97%

accuracy, [123] where MOG BGS was coupled with principal component analysis (PCA) for

fall detection of vulnerable people with a detection rate of 86.21%, and [124] where MOG

BGS was paired with Kalman appearance tracking to track patients with Parkinson’s disease

for fall detection and to inform caregivers of severity and evolution of the disease with average

precision and average recall values of 0.871 and 0.875 respectively. These studies show the
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high performance of BGS in terms of both precision and speed, as well as reinforcing their

compatibility with other techniques and practical applicability to a diverse range of scenarios.

However, with all of the applications discussed here, there is a clear gap in the research for

steel production-based applications using BGS which is important to address due to the low

resource-intensiveness yet high effectiveness of the approach. Furthermore, deep learning has

been combined with BGS in the past such as in [125, 126, 127], however existing literature

is by no means extensive. Using these two sets of techniques in combination is an exciting

area of future research that has potential to improve the current state of manufacturing

technology.

2.7 Computer Vision Applications for Manufacturing

CV opens the door to a multitude of potential benefits including efficiency, quality, and

safety. So far in this literature review, different types of CV techniques have been presented

and discussed in terms of their theoretical performance and potential suitability for appli-

cation. Traditional CV approaches have been described and their application in real-world

scenarios has been demonstrated, whilst modern approaches that utilise deep learning have

only been described and evaluated against each other on benchmark datasets such as the

COCO dataset. This was explained in the introduction of this chapter and is deliberate

in order to draw a clear line between the theoretical performance of DL models, and the

practical impact of them.

This section will focus on a wide range of CV applications, stretching from gas moni-

toring, to monitoring of blast furnaces and ladles, to surface defection inspection, and even

applications specific to health and safety. Each subsection will briefly provide some back-

ground knowledge on the topic before critically analysing recent advances driven by CV and

identifying research gaps where possible. Whilst focus is primarily on steel manufacturing,

in some cases other kinds of applications are discussed (where appropriate and still relevant

to steelmaking in some way), such as Section 2.7.8 which covers other subfields of manufac-

turing.

2.7.1 Gas Monitoring

Historically, the monitoring of gases relied on a variety of analytical methods that describe

chemical properties and compositions. These include gas chromatography (GC) [128, 129],

mass spectrometry (MS) [130, 131], infrared spectroscopy [132, 133], ultraviolet (UV) [134,

135] and differential absorption LiDAR (DIAL) [136, 137]. Before the advent of deep learning,
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traditional CV approaches such as Hough transforms, Canny edge detection and stereo vision

were also used for gas analysis [138, 139, 140].

With the rapid advancement in hardware and data processing capabilities, the field of

deep learning has experienced significant growth, leading to revolutionary changes in CV

techniques. This has notably enhanced gas monitoring systems which is evident in literature

such as [141] which presented BubCNN, a bubble detection network built upon Faster R-

CNN and a shape regression network. The model achieved an mAP ranging from 0.740 to

1.000 depending on the amount of space between bubbles [141]. The variability of model

performance depending on the space between bubbles highlights the challenging nature of

dealing with dynamic scenes in real-world applications where conditions such as lighting and

camera position can significantly affect results. Developing more standardised approaches

for managing these factors in steel industry has not been addressed and would be challenging

but highly beneficial for making model deployment for industrial applications more efficient.

In another study, U-Net and Mask R-CNN were utilised to detect and segment bubbles

during the boiling of water at different sub-atmospheric pressures to measure dynamic boiling

characteristics [142]. Mask R-CNN outperformed U-Net at counting bubbles despite inferior

segmentation accuracy, and under varying conditions deviated by less than 10% from the

real number of bubbles. However, this was achieved in a laboratory setting where the

environmental conditions were carefully controlled. For applicability of this approach to

large-scale industrial environments, such as across multiple steel production sites where

conditions are more variable, model performance may suffer significantly.

A smart gas stove system element that was capable of gas leak detection and prevention

was reported in [143]. The model combined Haar Cascading with a CNN for the task of gas

detection as well as age detection to restrict prevent usage by young children, however no

evaluation results were reported which raises concerns about the reliability and effectiveness

of the element [143].

Finally, flames and smoke detection using a CNN was achieved with 93% accuracy in

[144], where SSD [52] and Faster R-CNN [48] were also evaluated and achieved 85% and

89% accuracy respectively [144]. This demonstrates the potential of CV to enhance safety

systems. However, the variability in performance shown in both this study and previous

studies suggests rigorous testing would be required before deploying CV models in safety-

critical scenarios.
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2.7.2 Blast Furnace Process Monitoring

The blast furnace plays a crucial role in the steel production process, where raw materials

such as iron ore, coke, and limestone react under extremely high temperatures, resulting

in the production of pig iron, a raw material for steel products [145]. In this process,

these raw materials are added in precise quantities before being added to the furnace. Hot

air is then heated to a temperature range of 900 to 1300℃ and blown into the furnace,

leading to a reaction with the coke, which ultimately forms molten iron through various

chemical reactions [145]. At the same time, limestone reacts with ore impurities to create

molten slag which not only helps remove impurities from the iron, but also forms a layer that

protects against oxidation [145]. The heavier molten iron settles at the bottom of the furnace,

from where it is periodically extracted through a “tap hole” into a crucible. Additionally,

the floating slag is also intermittently skimmed off the top for disposal [146]. These steps

are crucial to maintain the high purity of the molten iron necessary for high quality steel

production.

A temperature measurement and compensation method using infrared imaging with deep

learning was presented in [147], where a series of steps were described to determine the tem-

perature of molten iron whilst compensating for measurement error caused by dust [147].

Canny edge detection was used in combination with morphological operations such as coars-

ening, skeletonisation and deburring to identify molten iron boundaries in captured thermal

images [147]. To compensate for measurement errors, dust features were extracted and used

as inputs to an ensemble network comprising of a vanilla ANN and support vector regression

[147]. This model enhanced measurement accuracy by predicting the measurement error

caused by dust [147]. The final model achieved an RMSE of 0.087◦C for temperature mea-

surement [147] which demonstrates the potential of CV both for refining measurements and

dealing with alternative forms of imaging data such as infrared.

In [148], a blast furnace chute wear characterisation method that was developed using a

CNN-RELM (Regularised Extreme Learning Machine) [149] to detect holes, metallic screws,

metal sheet, rusted metal and weld marks on six different chute images was proposed, which

achieved 80% accuracy [148]. This approach is innovative and the accuracy is fairly high,

however for actual industrial application, this approach would need to be tested on a much

wider variety of data samples which would likely expose the need for further development.

The underlying concept of this approach could be applied to a range of equipment typically

seen in steelworks.

Fast R-CNN and a variational mode decomposition algorithm were coupled to detect
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blast furnace bearing faults with a precision of 0.970 and a recall of 0.910 in [150]. These

performance values are impressive and indicate the effectiveness of CV in fault detection.

However, Fast R-CNN has been surpassed by other detection networks in terms of both speed

and precision, so this model could be improved with little effort. Upgrading to a superior

network such as Faster R-CNN or YOLOv8 would improve the likelihood of the approach

remaining robust to more variable environmental conditions during deployment and could

also provide real-time capabilities.

Also, YOLOv5 was applied to infrared images for blast furnace charging state recognition

with an accuracy of over 95.5% in [151], which emphasises the potential of CV models to be

used in a range of blast furnace-related applications.

Finally, a dynamic attention-wise deep network that used attention to self-learn relation-

ships between process parameters and prediction targets was proposed in [152]. The model

was reportedly used for molten iron quality indices and achieved RMSE values of 0.0644,

0.0026 and 0.0071 on silicon, sulphur and phosphorus percentages respectively. These re-

sults indicate the precision of CV techniques when predicting quality control factors in steel

manufacturing.

2.7.3 Slag Process Monitoring

Slag, the primary by-product in steel manufacturing, emerges from a variety of processes

and typically contains a mix of silicon, aluminum, calcium, and magnesium oxides [153, 154].

Traditionally, slag removal has been a manual task. The manual process of separating slag

from molten metal, known as de-slagging, poses significant risks of severe injury or even

fatality to workers. In addition, inadequate removal of slag can lead to a notable decrease in

the quality of the steel produced, resulting in the wastage of materials and energy [154, 155].

A CNNmodel was used to estimate a path to automate the de-slagging process from ladles

according to [153], and the proposed model achieved 91.96% accuracy. A similar study was

published using a slag distribution image (SDI) and a slag removal path estimation network

(SPRENet) [146]. SRPENet uses the SDI to train the network, then operates by estimating

removal path control points before estimating a goodness score of the points estimated [146].

The model was compared to the performance of a human operator and was reported as

being 19.83% more effective, whilst having real-time capabilities [146]. The results of these

studies indicate that CV approaches are promising for automating hazardous tasks which

is beneficial for both safety and efficiency. However, the robustness and scalability of these

approaches require further investigation before implementation.
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A convolutional recurrent neural network (CRNN) was utilised to determine whether or

not a slag dart had plugged the exit hole of a basic-oxygen furnace (BOF) or not during

tapping, according to [4]. The model presented was constituted by a CNN and an LSTM and

used real-time closed-circuit television (CCTV) as input [4] to achieve a reported accuracy

of 99.45%, which was 10% better than operator judgement, whilst reducing workload by

30% [4]. These results show a significant improvement over the traditional approach and

therefore emphasises the revolutionary potential of deep learning in the steel industry.

Slag dart input success during tapping was estimated to prevent slag carry-over by com-

bining pre-processing of slag-detection system (SDS) image data, followed by use of an LSTM

to deal with sequential frames in [154]. A classification accuracy of 99.61% was achieved when

the model was evaluated on the test set [154]. This reinforces the idea that CV models can

perform tasks that are traditionally performed manually, whilst also highlighting their ben-

efits in improving product quality. However, a common theme with these applications (both

slag-related and others), is that they require extensive testing, development and integration

with current systems before being production-ready.

2.7.4 Surface Defect Detection

Ensuring quality of steel products is crucial for steelmaking. Surface defects indicate im-

perfections that not only compromise structural integrity and overall performance, but also

ruin the aesthetic quality. Defects lead to wasted resources such as energy and materials.

Also, if defective steel reaches the customer it could harm manufacturer reputation and even

customer health. Historically, manual methods of steel defect detection were primarily used,

which resulted in a high false detection rate [156]. For the most experienced workers the

detection rate of defects has been reported as 80%, leaving one in five defects overlooked

[156]. The datasets introduced in this section are summarised in Table 2.

U-Net [164] was pre-trained on the ImageNet dataset before being utilised as the founda-

tion of a network called TLU-Net (Transfer Learning-based U-Net) [5]. An accuracy of 97%

was achieved on the Severstal steel surface defect dataset, which was promising for indus-

trial application and testing the model in a real-world environment with more defect types

would ensure deployment is practical [157]. Real-world environments introduce challenges

such as noise, lighting changes, distortion from heat and movement, as well as many others.

Ensuring that models can perform well whilst these challenges are present is a key difference

between proper deployment and simply developing and evaluating a model.

Various types of surface defect detection were performed using a variant of the Swin
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Table 2: Surface defect detection datasets discussed in this review

Dataset Images Classes Description Source

Severstal 18106 4 Steel surface defect dataset for object

detection, including pitted surface,

crazing, scratches and patches.

[157]

DAGM 16100 10 “Deutsche Arbeitsgemeinschaft für

Mustererkennung” - Synthetic dataset

for defect detection on textured sur-

faces.

[158]

KolektorSDD 399 2 “Kolektor Surface Defect Dataset” -

Real-world detection dataset of de-

fective and non-defective production

items collected by Kolektor Group.

[159, 160]

NEU-DET 1800 6 “Northeastern University Detec-

tion Dataset” - Real-world detection

dataset of six common surface defects

on hot-rolled steel strips, including

rolled-in scale, patches, crazing, pitted

surfaces, inclusions and scratches.

[161]

Magnetic-Tile 2688 6 Dataset of surface defects on mag-

netic tiles including blowholes, cracks,

breaks, fraying, unevenness and free.

[162, 163]

Transformer model (Cas-VSwin Transformer) according to [165], where detection was per-

formed on four surface defect datasets. The model achieved APs of 0.999, 0.997, 0.994

and 0.805 on the DAGM dataset which consists of synthetic textured surface defects [158],

the KolektorSDD dataset which contains production item defects [159], the Severstal Steel

dataset [157], and the NEU-DET datset which contains steel surface defects [161], respec-

tively [165]. These results are impressive however there is quite a significant decrease in

performance on the NEU-DET dataset compared to others, which is most similar to what is

expected in industry since it is steel-based and includes more defect types than the Severstal

dataset. Whilst promising, further investigation with more steel-based datasets would be
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required before attempting to deploy this model as part of a steel defect detection system.

In [166], YOLOv5 was modified by embedding the backbone with a Convolutional Block

Attention Module (CBAM) [167] to enhance feature extraction. Four defects from NEU-

DET were evaluated and the model achieved 0.854 mAP, which was marginally better than

a CBAM version of YOLOv4 and standard YOLOv4 [166]. Whilst the mAP highlights

the effectiveness of the model and potential applicability for industry, the evaluation is

questionable since YOLOv4-CBAM and YOLOv5-CBAM showed barely any difference in

performance and standard YOLOv5 was not included in the evaluation. However, there was

a significant enough increase in performance from YOLOv4 to YOLOv4-CBAM to imply

that the attention module was beneficial for defect detection. Also worth noting is that

only four defects from NEU-DET were used which means further investigation is required

to assess the ability of the model to deal with more diverse data.

All six defects of the NEU-DET dataset were used to evaluate a CNN classification

model with 93% accuracy in [168]. Whilst this is a good result, more extensive testing would

be required in real-world environments to confirm the practical applicability of this model.

Furthermore, the lack of localisation could be limiting in scenarios where multiple defects

are close together.

Also, in [169], a model named NSLNet (Neural Structured Learning Network) was re-

ported as achieving over 99% classification performance with limited training data. NSLNet

consisted of Neural Structured Learning, Histogram Equalisation and a vanilla classifier [169].

NSLNet was developed and evaluated using the NEU-DET dataset as well as an extended

version of NEU-DET that includes noise, blurring, lighting changes and other perturbations

that are more similar to what would be experienced in a real production line. Therefore,

this model could be a great foundation for developing a real surface defect detection system.

However, it purely classifies defects with no localisation, which like [168], could be limiting

if multiple defects occur close together.

CenterNet [170] was combined with a dilated feature enhancement model (DFEM) and

a prediction head to result in a model called DCC-CenterNet (meaning of “DCC” is not

stated), which was evaluated on the NEU-DET dataset, where it was report to achieve an

mAP of 0.794 and a speed of 71.37fps [171]. The mAP is high enough to consider this model

for further development and eventual deployment, however the result that is more unique to

this study is the speed. Some defect detecton studies do not report speed and those that do,

do not report speeds this high. For real-time surface defect detection at high strip speeds,

this model should be considered.
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Similarly, MSFT-YOLO (meaning of “MSFT” is not stated), is a model comprised of

YOLOv5, a transformer and a bi-directional FPN, and was tested on the NEU-DET dataset

where it achieved 0.757 mAP and 29.10fps [172]. The precision of this model comes close

to that of DCC-CenterNet whilst speed is less than half. However, both results are still

promising for industrial application in real-time systems and should therefore be investigated

more deeply in future work to see how they compare on more diverse data and computational

expense.

A segmentation network named TAS2-Net (Triple-Attention Semantic Segmentation Net-

work), comprised of GAN-based augmentation (where “GAN” is the abbreviation of “genera-

tive adversarial networks”) and various attention modules, was evaluated on the NEU-DET,

DAGM and Magnetic-Tile [162] datasets against SDM (Saliency Detection Model) [173],

RefineNet [174], U-Net and other models and performed the best in every metric on every

dataset, with precisions of 0.981, 0.972 and 0.963 on the DAGM, NEU-DET and Magnetic-

Tile datasets respectively [175]. On the NEU-DET dataset, TAS2-Net achieved 41fps also.

These results suggest the model is effective on a range of datasets in terms of both precision

and speed which indicates its potential for industrial application. However, there appears

to be no evaluation in terms of mAP which is typically the most common and informative

metric used for detection tasks and should therefore be included so that it can be more easily

compared to the likes of DCC-CenterNet and MSFT-YOLO. Additionally, this study implies

that use of GANs and attention networks could be highly beneficial to defect detection tasks,

but this may be at the cost of significantly increased computational expense.

2.7.5 Microstructural Analysis

Microstructural analysis is important for material property assessment both physically and

chemically. Historically, analysis has been performed manually which is labor-intensive and

allows for significant potential of human error due to the intricate nature of microstructures

[176]. However, technology is progressing due to the successful application of classification

and segmentation methods. Since segmentation is at pixel-level, it is particularly suitable

for microstructural analysis tasks due to the intricacies of the imaging involved.

Microstructural segmentation and analysis of ultra-high carbon steel was performed using

a PixelNet variant [6] as reported in [177]. The model was able to distinguish proeutectoid

cementite network, fields of spheroidite particles, ferritic matrix within the particle-free de-

nuded zone near the network, and Widmanstätten laths, with an impressive 92.6% accuracy

[177]. This segmentation built the foundation for describing cementite particle size and
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denuded zone width distributions [177]. This application is innovative and indicates great

potential for the approach used. However, the dataset only contained 24 samples. Whilst

this highlights how well the model performed with minimal training samples (six-fold cross-

validation was used so 20 training samples per experiment), it also highlights the lack of

evaluation on a wide range of diverse data samples to ensure robustness across different

alloys and environmental conditions [177].

A deep CNN was also used for classification of eight different types of steel microstructure

captured using light optical microscopy (LOM), on which it achieved 96.5% accuracy [178].

The accuracy is impressive and demonstrates the effectiveness of CNNs when dealing with

microstructural images. However, the test set of 20283 samples was pre-processed to remove

certain samples that were highly dissimilar to more typical examples, which likely made the

test set less challenging and the accuracy higher [178]. Practical application of this model

would require development using a dataset that is more representative of what is found in

real-world scenarios.

2.7.6 Health and Safety

Health and safety is a key component of any industry, but particularly in steel production.

Given the nature of the equipment involved such has heavy machinery carrying molten metal,

other hot materials and hazardous chemicals such as those involved in coating, it is vital

that practices remain closely aligned with health and safety regulations.

In regards to this, several existing CV studies have been conducted. Faster R-CNN was

trained on 4500 images labelled with and without helmets in order to develop a safety helmet

recognition system for steel factories, where a reported mAP of 0.712 was achieved [179].

Whilst the mAP is reasonably high, full implementation would require more development.

However, this study lays the foundation for a variety of safety compliance checking systems

which could be highly beneficial to hazardous industries such as steel. Safety helmet recogni-

tion is a relatively simple example, but with more research and development, future advances

could involve full safety gear checks involving gloves or high-visibility clothing. Addition-

ally, CV could be used to ensure that operational procedures are being followed prior to

equipment access. Overall, these types of applications could significantly lower the risk of

accidents.

Another study presented a model that used Mask R-CNN to validate the correct align-

ment of crane hooks and ladle trunnions to prevent accidents, which achieved a segmentation

accuracy of 92% and a safety judgement accuracy (whether the alignment is correct or not)
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of 96% [180]. Varying from [179], this study highlights the suitability of CV approaches

to increasing safety standards for tasks directly involving large, heavy, moving machinery.

Whilst the evaluation in [180] is not particularly extensive, the application is innovative and

lays a foundation for future applications involving other moving equipment such as furnace

doors or industrial presses. These could improve workplace safety, but also improve opera-

tional efficiency and equipment lifespan.

2.7.7 Identification Number Recognition

Automatic recognition of identification (ID) numbers printed on steel products facilitates

efficient manufacturing. Traditionally, this task is conducted using the vision and judgement

of workers, often whilst they are affected by performance influencing factors such as high-

temperatures, as well as dusty and dark environments, with ID characters being a fairly large

distance away. This is detrimental for operational efficiency and the reliability of workers

correctly reading the ID [181]. It also adds unnecessary responsibility on the workers and

could impact their productivity in other areas [181]. CV approaches to this task typically

involve pre-processing of samples to distinguish ID characters from the background, followed

by character detection. Automating this process with CV could lead to significant improve-

ments in operational efficiency, as well as improved reliability due to elimination of human

error.

An early attempt at this task used steel billets for experimentation and used a combi-

nation of image pre-processing, image segmentation (not using deep learning) and a back-

propagation neural network (this part is deep learning) for character recognition [181]. For

the characters from zero to nine, the model accuracy ranged from 95.29% to 97.53% with

inference times ranging from 55ms to 62ms [181]. The accuracy range reported is promis-

ing for applications based on character recognition which could be developed for a variety

of logistical scenarios involving any kind of resource or part that requires an identification

number. Furthermore, the inference times imply that this approach has potential for real-

time application which is desirable if many objects are being identified in quick succession

such as on a production line.

Another study applied a deep CNN (DCNN) with transfer learning to localise and classify

steel slab identification numbers (SINs) and for localisation, recall and precision values of

0.927 and 0.924 were achieved respectively, whilst 99.6% classification accuracy was achieved

[182]. This study used images collected from a real industrial site which meant challenges

such as changes in lighting conditions, heat distortion, camera distance and slab length were
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included in the dataset. Furthermore, both letters and numbers were included in the samples.

Therefore, this approach is very promising for real industrial application. Applying this

model to other ID recognition scenarios would be beneficial to the field in terms of research

and industrial advancement.

Automatic slab identification number recognition was also performed using ground-truth

data “weakly” annotated using a one-click system, to train variations of an FCN [183]. The

proposed method achieved a recall of 0.996 and a precision of 0.995, which indicates the

effectiveness of the models used even with low-detail annotations [183]. This approach is

highly efficient and results in high performance despite minimal annotation effort which ef-

fectively addresses a common bottleneck in deep learning projects. Additionally, the dataset

was collected from two different places of a real steelworks which implies there were environ-

mental challenges overcome such as lighting and noise. Whilst the annotation approach is

innovative and efficient, since the annotator only clicks the centroid of each character to label

it, there are certainly limitations to this approach. For example, this assumes all characters

can be annotated to a high standard by using the same size bounding boxes, which is only

realistic if the distance between the camera and slab remains constant. Also, in terms of

scalability, this may become problematic since slightly different slab setups would require

different pre-set bounding box sizes.

Finally, a more advanced task of recognising arched hot-rolled steel coil identification

numbers was achieved by combining image processing, followed by segmentation (without

deep learning), alignment to account for the arched labels, followed by character classification

using a CNN and a final post-processing stage [184]. The model achieved an accuracy of

98.49% with a speed of 0.37s per image [184]. This study highlights the extended capability

of CV to deal with arched text, whilst also demonstrating high accuracy and inference

speeds significantly faster than human speed. This uncovers more potential applications for

ID recognition than other studies, since it proves that text does not have to be linear for

successful recognition. Other variants could include recognition tasks where text is vertical

or circular. This added flexibility of ID recognition could be crucial for developing technology

that can recognise ID characters on every labelled part in an entire steelworks site.

2.7.8 Other Manufacturing Applications

CV techniques are widely applied across various manufacturing sectors, not just in steel

production. The rapid development of AI presents opportunities for applications in the

broader field of manufacturing such as automotive and additive manufacturing. This section
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will explore the integration of CV into such areas.

In the automotive industry, CV has been applied to the inspection of surface quality. A

notable example is a study that developed a system for assessing the quality of painted car

bodies [185]. This system comprised a two-step process, defect detection using TinyDefec-

tRNet (based on the previously released TinyDefectNet [186]), a model based on YOLOv3,

followed by an evaluation of appearance quality [185]. The system recall and precision varied

between approximately 0.919 to 0.953 and 0.882 to 0.907, respectively, depending on the car

body side under examination, with average analysis times ranging from 20.30s for the hood

to around 64.70s and 64.20s for the left and right sides respectively [185]. This application is

innovative and if deployed, could be beneficial to the automotive industry. However, the ap-

pearance of different vehicles can vary significantly and therefore, for this model to perform

consistently across different cars it would need to be thoroughly trained on a wide variety

of samples from every body side of many different car models. The diversity of the dataset

created for the study is unclear.

Additionally, YOLOv3 was used to localise and classify three types of solder joints on

automotive door panels (rectangle, semi-circle, and circle) [187], achieving an mAP of 0.852

and a detection time of 0.18s per panel image, which meets the real-time requirements of the

production line. The mAP is good but shows room for improvement which may be possible

through a simple change from YOLOv3 to a more recent model such as YOLOv8. This

would also improve the detection speed.

In electronics manufacturing, CV technology has shown significant benefits. For instance,

[188] describes automated surface inspection of copper clad laminate images for defect de-

tection using an efficient CNN architecture. This architecture included convolutional layers,

squeeze-and-excitation blocks, and squeeze-and-expand blocks [188]. The model achieved

precision and recall values of 0.991, outperforming other models such as MobileNet-v2 [189]

and ResNet-50 [53]. The proposed model also ran at 20ms per image, which was faster than

other models, except MobileNet-v2, which it was more accurate than [188]. These metrics

are impressive and suggests the model is suitable for integration into production lines, which

was achieved, as reported by the authors [188]. Also, according to the authors, there is room

to improve the computational efficiency of the model, which is a potential area for future

research [188].

Another study used an improved version of YOLOv3 for detecting electronic components

on printed circuit boards (PCBs) using both real and synthetic data [190]. The model

recognised 29 different component types such as resistors and capacitors and achieved an
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mAP of 0.931 [190]. This was highly successful and promising for real-world application,

especially considering the high number of different categories. However, it was noticed that

the AP of the resistor, capacitor and component instances were 0.480, 0.720, and 0.560

respectively, which was because resistors and capacitors were visually similar, and instances

within the component category varied significantly [190]. It is likely that if a more recent

version of YOLO such as YOLOv8 was used for this task, low-scoring category AP values

could be improved. Note that the “component” category included components that did not

fit neatly into any other category [190].

CV applications in additive manufacturing include process monitoring and defect detec-

tion. One research paper presented a hybrid CNN model for quality-level classification in

laser powder bed fusion (LPBF) processes [191]. When tested under overheating, normal,

irregularity and balling conditions, it achieved detection accuracy values of 0.995, 0.996,

0.998 and 0.996 respectively [191]. These high-performance results across a variety of de-

fects demonstrate the potential of CV technology to ensure high product quality in additive

manufacturing [191]. Further investigation using different additive manufacturing processes,

different machines and different materials would be valuable for advancing the field.

Another study in LPBF utilised a parallel model combining a CNN and a thresholding

neural network (TNN) to segment spatter signatures [192]. This model, tested across differ-

ent laser powers, achieved precision and recall values of 0.777 and 0.805, respectively [192].

This application is innovative and demonstrates reasonable effectiveness whilst suggesting

there is significant room for improvement. Spatter signatures have a complex and variable

appearance in terms of shape, intensity and image coverage. Therefore, this kind of segmen-

tation could be transferable to other applications involving “spatter-like” or “splatter-like”

attributes such as splattering liquid.

2.8 Conclusions

This literature review has investigated modern advancements of CV technology with partic-

ular focus on their integration into manufacturing industry and a deeper emphasis on steel

production. The review discussed several key groups of techniques that are believed to be

beneficial towards industry, detailing their relative performances and suitability for indus-

trial application. Additionally, discussion has included CV applications that have begun to

revolutionise the technological state of manufacturing. Current and potential future benefits

from this integration include, but are not limited to, improved operational efficiency, reduced

defects, process automation and increased workplace safety, which are all of high value to
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the industry. Through examination of relevant techniques, as well as promising applications,

this review has highlighted the applicability of CV to a diverse range of scenarios across

all areas of manufacturing, and especially steel production. Also, this review has identified

several research gaps and opportunities for future research and development.

The most significant research gaps identified include the need for real-time processing ca-

pabilities in edge-based CV systems without using large, powerful GPUs that lack portability

and low computational expense. Improving models to not just perform well on standard met-

rics, but to perform efficiently on edge devices at real-time speeds is invaluable to successful

implementation into high-pace, space-constrained scenarios such as those found on steel pro-

duction lines.

Additionally, there is a lack of diverse datasets that properly represent the full complexity

of industrial environments, which is critical for model development to ensure robustness to

harsh conditions such as those found in steel production. Dataset creation is a substantial

challenge separate from model development and deployment, and there are many different

steel production scenarios that models could be developed for. Therefore, developing datasets

that are large enough, diverse enough and also incorporate the visually harsh environments

in steel industry, is a considerable challenge. If a dataset was built to target key emerging

applications of CV in steel industry, such as a steel-based version of the COCO dataset, this

could be incredibly valuable for the industry.

The literature also highlights the lack of extensive real-world application, testing and

validation of these systems, since many models do not predict real-world characteristics

and are evaluated using highly controlled conditions that are optimal for producing high

performance results. Real-world application, testing and validation is essential for ensuring

suitability for real application, which includes reliability, robustness and scalability. This

does not simply mean adapting models to deal with harsh environmental conditions, but

also to ensure aspects such as computational efficiency, hardware compatibility and ease of

integration with existing industrial systems, are suitable for deployment. This ties in with the

fact that most of the literature focuses on achieving good scores in metrics such as accuracy

and mAP, whereas details on model deployment and the capability to perform accurate

real-world measurements would provide better insights into the real-world applicability of

research undertaken.

Furthermore, the integration of deep learning with traditional techniques such as back-

ground subtraction is an innovative research direction that requires further investigation,

particularly in terms of computational efficiency and deployment on resource-constrained
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devices. Use of background subtraction algorithms for steel production applications is a gap

in the research by itself, but incorporating the modern capabilities of deep learning opens

up many possibilities for what is relatively unexplored in the field.

Another significant gap is the need for more standardised evaluation approaches for fair

comparison of CV models in industrial environments. Whilst most studies use the same

metrics, they are not inclusive of aspects such as dataset size, diversity or difficulty. This

could be addressed by establishing metrics that account for the complexity of a given envi-

ronment such as the level of heat distortion, the abundance of dust or the quality of lighting.

This would help to distinguish between studies that use datasets that are easier to achieve

good performance values on, and datasets that are more representative of what is found in

industrial environments.

Analysis of the cost-effectiveness and potential return on investment of implementing

CV techniques in manufacturing settings would be highly beneficial to the field and is not

addressed in any reviewed literature. This would give more insight into which advances in

CV are most likely to translate to financially viable solutions, and therefore help stakeholders

in making more well-informed decisions in a field that is largely misunderstood by the wider

public.

Also closely related, is consideration of human factors to ensure human interaction with

CV systems is as easy and as effective as possible, which has not been addressed in literature.

By focusing on user interaction, implementation of CV is more likely to occur quickly with

less resistance from operators, and less technical issues. This includes aspects such as user-

friendly interfaces, operator training strategies and ergonomic design.

This thesis will address several of the research gaps identified. Firstly, by deploying a

model that not only performs well on typical CV metrics, but also operates efficiently in

real-time on the edge without the need for heavy-duty hardware, meaning it is suitable for

the high-pace and space-constrained environments of production lines.

Secondly, novel datasets will be developed for specific aspects of processes that CV tech-

nology is developed for. This contributes to reducing the data scarcity issue in the field.

These datasets will incorporate the harsh conditions of steel production environments such

as heat, dust, vibrations and poor lighting conditions, and will be used to develop CV sys-

tems that can be utilised in industry settings.

Thirdly, real-world application of CV models will be addressed by measuring real-world

characteristics in every case study. In most cases, these measurements will be validated by

data acquired through more traditional methods such as visual inspection and manual mea-
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surement. Robustness to environmental challenges is a key aspect of every case study, and

scalability is ensured in two of three case studies. Real-world testing and validation will also

be addressed through the development of a fully functioning real-time edge system function-

ing over a Wi-Fi network. Whilst this has not been physically integrated into the production

line, it has been extensively tested on specialised hardware and optimised thoroughly for de-

ployment, which has thrown up many of the challenges that would be experienced in the

implementation stages as opposed to just the model development stages.

Fourthly, this thesis will pursue the integration of deep learning with traditional CV

techniques and draw conclusions on both the current effectiveness and the future potential

of these kinds of approaches.

Lastly, whilst standardised approaches have not necessarily been developed here, models

have been evaluated against manually recorded data obtained from other researchers and

site operators. This promotes the importance of comparing model outputs to real-world

measurements, which gives a more industry-specific evaluation of model performances.

By addressing these gaps, this thesis aims to advance the field of computer vision within

the context of steel production through demonstration of practical solutions that are novel

and can be utilised by industry to enhance operational efficiency, sustainability and overall

technological capabilities. This thesis also aims to bridge the gap between theoretical research

and real-world application through consideration of model deployment, as well as model

development. Furthermore, completion of this research provides a baseline for future studies

involving CV technology that is not only technically sound but also aligned with the demands

of industry.
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Chapter 3: Methods and Materials

This chapter covers the primary methodologies and tools that form the basis of this research,

with focus on those which have been utilised in multiple case studies. Components such as

the Mask R-CNN (Mask Region-based Convolutional Neural Network) segmentation network

and DeepSORT (Deep Simple Online and Real-Time Tracking) network are unique to specific

case studies and are therefore excluded to streamline the thesis structure. Key aspects of

this research are presented including computer vision (CV) tasks, algorithms and evaluation

metrics, as well as the Microsoft Common Objects in Context (COCO) dataset which was the

only public dataset utilised in this research. Also provided, are the software and hardware

tools that were crucial for performing certain tasks.

3.1 Introduction

The integration of CV technology into industry has significantly advanced in recent years,

which is directly applicable to steel production. As discussed in Section 2.7 of Chapter 2,

these technologies have proven to be invaluable when addressing complex challenges such as

surface defect detection, microstructural analysis and slag monitoring [4, 5, 6]. This chapter

outlines the resources utilised for this body of work whilst highlighting their relevance and

value for current industry challenges.

The objective of this chapter is to clearly lay out the key resources used for this thesis to

ensure the reader can understand the core components used to achieve presented outcomes.

Furthermore, this chapter aims to aid future projects that are replicating or re-thinking this

work.

This chapter contributes to the field by detailing a set of valuable methodologies and tools

that are well-suited to projects involving the application of computer vision algorithms to

steel process monitoring. Algorithms such as YOLOv5 (You Only Look Once) and Counting

(CNT) background subtraction (BGS) are noted for their strengths in monitoring appli-

cations, whilst the COCO dataset is identified as a dataset beneficial when pre-training a

model for any computer vision application.
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3.2 Tasks

CV encompasses a variety of tasks that allow computers to gain an understanding of digital

images and videos. In the context of this project, the CV tasks performed are classification,

object detection, instance segmentation and multi-object tracking. Background subtraction

is also a CV task relevant to this work, but is traditional and does not use deep learning.

Therefore, it will be introduced as part of its own section (Section 3.3).

3.2.1 Classification

Classification refers to the task of identifying the class of an object. Typically, a set of class

labels are pre-defined and during inference, a label is assigned to either an image, or specific

objects within an image [193]. This is one of the most basic CV tasks and allows computers

to gain a basic understanding of visual data that is presented to it.

3.2.2 Object Detection

Object detection goes a step further than classification by identifying object class, whilst

also identifying object location (known as object localisation) [193]. Locations are indicated

by drawing bounding boxes around detected objects. Object detection networks can be

two-stage detectors which generate bounding box proposals, and then refine boxes whilst

classifying objects within them [193], or they can be one-stage detectors which simultaneously

perform full classification and localisation [193]. YOLOv5 (You Only Look Once) used in this

project is one-stage, hence the name. Mask R-CNN that is used in Case Study 1 (Chapter

4), is based on the Faster R-CNN detector which is two-stage [63, 98]. Typically, two-stage

detectors are more accurate and one-stage detectors are faster [193]. Detection is useful for

applications where the presence and position of objects is of interest.

3.2.3 Instance Segmentation

Instance segmentation advances further from the capabilities of object detection by predict-

ing precise pixel-level object boundaries whilst distinguishing between different instances of

the same class [194]. This task is useful for applications that require detailed analysis of

the exact shape, size, and location of objects, and enables CV applications to build a more

complex understanding of different scenes. The model used in Chapter 4, Mask R-CNN, is

an instance segmentation network.
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3.2.4 Multi-Object Tracking

Multi-object tracking (MOT) refers to the identification (ID) and tracking of multiple objects

as their position changes across a sequence of video frames [195]. Typically, tracking is

performed through a “tracking-by-detection” approach which starts with object detection

and then uses a re-identification model to associate object IDs across frames [195]. MOT

is useful for analysing scenes where understanding patterns in object movement over time

is of interest. MOT has been used in Case Study 3 (Chapter 6) to track multiple plumes

simultaneously.

3.3 Algorithms

In CV, algorithms are arguably the most important part of developing an application since

it is essentially them which allow computers to gain an understanding of visual data. In the

context of this project, common algorithms utilised include YOLOv5 for object detection,

and the Counting algorithm for background subtraction.

3.3.1 YOLOv5

YOLOv5 was a core component of Case Study 2 (Chapter 5) and Case Study 3. Whilst

an overview of YOLOv5 was provided in Chapter 2, this section will go into more depth

on application details both generally and in the context of this research, the rationale for

selecting this model over alternatives, as well as some known limitations of the model.

YOLOv5 has already been commended for being computationally efficient, fast and

adaptable in Section 2.3.8 of Chapter 2. Additionally, it has a wide variety of customis-

able options for optimal application. Firstly, there are several variants that differ in size,

offering different degrees of speed, precision and computational cost. Figure 24 shows the

variants that have been used in this research and their results when tested on the COCO

dataset [196].

In addition to model size, YOLOv5 has many different hyperparameters that can be ad-

justed depending on the scenario for optimal performance. Examples of key hyperparameters

include learning rate, which dictates how quickly the model adapts to data during training,

and weight decay, which is a regularisation technique that reduces overfitting by penalising

larger model weights to help maintain small weights, therefore improving resistance to noise

[197, 198]. To clarify, overfitting is when a neural network overly adapts to a set of training

data which results in poorer performance on unseen data. There is also the option to modify
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Figure 24: Variants of YOLOv5 differing by network size

thresholds for non-maximum suppression (NMS) and detection confidence which control the

number of false positives, and therefore offer a trade-off between precision and recall (intro-

duced in Section 3.4).

Finally, Ultralytics have incorporated a feature to export trained models in .onnx for-

mat for optimal deployment performance [199]. ONNX (Open Neural Network Exchange)

is different to the typical PyTorch format and enables portability of models across different

devices, which is particularly useful for real-world application of CV [200]. Additionally,

ONNX models can be optimised for high speed and high precision, solidifying their practi-

cality for real applications. This feature was used prior to converting the Chapter 5 model

into .engine format for TensorRT optimisation and inference, which is explained more in

Chapter 5 [201].

In Chapter 5, zinc splatter severity was quantified during the galvanising process in real-

time. YOLOv5 was used to dynamically adjust the splatter measurement region in response

to air knife movement for accurate monitoring. YOLOv5 was also used to ensure consistent

model performance across varying camera positions, by scaling severity boundaries based on

bounding box sizes. In Chapter 6, gaseous plumes formed during a gas stirring simulation

were monitored for design optimisation. YOLOv5 was used to classify plume state (jetting,

forming, collapsing) and bounding box dimensions were used to calculate plume geometries.

At the time of initiating the studies, YOLOv5 was the true state-of-the-art object detec-

tion network. More improved versions of YOLO have been released since then, but YOLOv5

still stands as a well-established, proven and effective technique with substantial community

support. Due to being released several years ago, it is arguable that YOLOv5 is still a more

appropriate choice of detection network for industry challenges that require robustness, than

64



a more evolved version such as YOLOv8. This is evident from the literature that has been

published exhibiting either direct applications of YOLOv5, or applications using models

that have been built using YOLOv5 as a foundation. Several examples of this are covered in

Chapter 2 [93, 151, 172], which show a range of successful cases such as blast furnace charging

state recognition and defect detection with high mean average precision (mAP) results and

over 29fps inference speed. In this research, YOLOv5 has been combined with background

subtraction to reap the benefits from both approaches. Through this novel combination of

techniques, it has been possible to monitor distinct steel production processes and extract

valuable insights. This has not been attempted in any existing literature.

Whilst YOLOv5 is an excellent tool for solving real-world problems with object detection,

it is also important to acknowledge some known limitations of the model that were considered

before utilising it. It is known that there is challenge in balancing a trade-off between speed

and accuracy, and therefore it was expected that this would have to be accounted for by

sacrificing one or the other for each case study depending on the aims. Inference speed was

critical in Chapter 5, and therefore it used YOLOv5s. In Chapter 6, precision was more

critical, (however YOLOv5s slightly outperformed YOLOv5l anyway due to overfitting).

Another limitation is that YOLOv5 is a 2D object detector and therefore, unless great

model developments are performed, the model is limited to learning and making predictions

from 2D features. In engineering scenarios such as those described in this thesis, lack of

a third dimension constrains model capabilities. It is acknowledged that there are ways to

overcome this, such as using multiple cameras, but it still remains a limitation.

3.3.2 CNT Background Subtraction

CNT (Counting) background subtraction which was also a key component of this project,

was utilised in all three case studies and successful in two. Whilst an overview of different

BGS algorithms was given in Section 2.6 of Chapter 2, this section will go more in-depth

on the CNT algorithm in particular, application details (both general and in the context of

this research), the rationale for selecting this model over alternatives, as well as some known

limitations of the model.

The CNT algorithm works by counting the number of frames each pixel value stays con-

stant for (called pixel stability) [202]. It uses pixel stability thresholds to dictate whether the

stability value of each pixel should class it as foreground or background [202]. The algorithm

is also based on colour similarity which uses a colour similarity threshold to define what

colour ranges are considered the “same” colour [202]. This algorithm is more procedural
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than based on statistical distribution models (like other BGS algorithms), so it is not repre-

sented by any formula. Therefore, Algorithm 1 presents the operation of the CNT algorithm.

Algorithm 1 CNT Algorithm

for each pixel in the frame do

if pixelColour == previousPixelColour then

pixelStability += 1

else

pixelStability -= 1

end if

if pixelStability ≥ minPixelStability then

classify pixel as background

else

classify pixel as foreground

end if

end for

In Chapter 5, the CNT algorithm was utilised for segmenting zinc splatter from the

background. The speed of the CNT algorithm was crucial for monitoring splatter in real-

time, and the ability to adapt to environmental changes ensured precise segmentation despite

the highly variable nature of the splatter. In Chapter 6, the CNT algorithm was used to

segment plumes from the background. The adaptability of CNT background subtraction to

the complex fluid dynamics of plumes was critical to the success of the model.

CNT background subtraction is highly effective at motion detection which makes it use-

ful for industrial applications, particularly those with static backgrounds [203]. The CNT

algorithm is faster than all other OpenCV BGS algorithms and literature has reported it as

the highest quality algorithm also [120, 203]. Furthermore, the literature (see Section 2.6 of

Chapter 2) shows that OpenCV BGS algorithms have been successfully applied in a variety of

cases such as ship detection, vehicle detection, suspicious activity recognition, fall detection,

wild mammal detection and Parkinson’s patient tracking [115, 118, 120, 121, 122, 123, 124].

Despite these examples, there are no known cases of these algorithms being successfully

applied to steel processes, which highlights the novelty and contribution of this thesis. Fur-

thermore, there are a few known cases of BGS being combined with deep learning which

are mentioned in Section 2.6 of Chapter 2, however they are again, not for steel production

processes and do not use an object detector as efficient for real-time application as YOLOv5

[125, 126, 127].
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Despite the strengths of background subtraction and particularly the CNT algorithm,

considering limitations is still important. The limitations of background subtraction have

already been discussed in Section 2.6 of Chapter 2, which mentioned that dynamic back-

grounds may significantly affect BGS performance [114]. Industrial environments such as

those related to this project, are typically harsh with multiple sources of noise and moving

objects. Whilst BGS can deal with noise effectively (provided it is applied correctly), mov-

ing objects that are not being tracked can be problematic and should therefore be overcome

using another approach, such as object detection. The air knife movement in Chapter 5

is a great example of this kind of scenario and exemplifies overcoming limitations of one

technique by capitalising on the benefits of another.

3.4 Metrics

In CV, metrics are essential for evaluating model performance against previous and future

iterations of development, as well as comparison against similar models performing the same

or similar tasks. Metrics utilised in this work include precision, recall, average precision

(AP), mean average precision (mAP) and inference speed. These are conventional metrics

as evidenced in evaluation reports throughout Chapter 2. Multi-object tracking accuracy

(MOTA) is also included here to be comprehensive, however is not used in the case studies

for reasons explained in Section 3.4.5.

3.4.1 Intersection-over-Union

Intersection-over-union (IoU) is a simple way to indicate the accuracy of an object detection

(or instance segmentation) network. Essentially, it is the amount of overlap (intersection)

between predicted bounding boxes or segmentation masks, and the ground-truth boxes or

masks, compared to the total area of the two boxes or masks (union) [204]. This is demon-

strated in Equation (1).

IoU =
Area of Overlap

Area of Union
(1)

When evaluating models, depending on the approach, one or more IoU thresholds are set to

distinguish between predictions considered accurate and predictions considered inaccurate.

Predictions with an IoU above the IoU threshold are considered true positives (TP), and
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predictions below the threshold are considered false positives (FP). Therefore, predictions

are categorised as:

• TP if IoU > threshold.

• FP if IoU < threshold.

3.4.2 Precision and Recall

The total numbers of true positives and true negatives can be used for deeper evaluation

insights by calculating precision and recall for a given experiment. These are calculated as

shown in Equation (2) and Equation (3) [205]. Precision indicates how many correct guesses

the model made out of all guesses made, and recall indicates how many ground-truth boxes

or masks were correctly predicted compared to the entire set. Note that in Equation (3)

false negatives (FN) are also used, which are ground-truth instances that were unsuccess-

fully predicted. In this context, the distinction between a false positive and a false negative

is that false positives are based on unsuccessful predictions that were made by the model,

whereas false negatives are based on unsuccessfully predicted ground-truth instances in the

data.

Precision =
TP

TP + FP
=

TP

#predictions
(2)

Recall =
TP

TP + FN
=

TP

#ground-truths
(3)

3.4.3 Average Precision

To gain even more insight on model performance, precision and recall can be used to plot

a precision-recall curve such as the yellow one shown in Figure 25 [206]. The values for all

TP predictions on all test images are ordered based on increasing recall, and then the curve

is smoothed by replacing the precision at every data point with the maximum precision

value with the same or higher recall value, resulting in the green line in Figure 25 [206].

Smoothing involves replacing each precision value with the maximum precision found at
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Figure 25: Example showing smoothing of a precision-recall curve

that recall level or higher. This is based on the principle that precision should not decrease

as recall increases, which is an optimistic approach that ensures anomalies do not distort the

calculation of average precision (AP), and is a standard approach in computer vision [207].

After smoothing the precision-recall curve, the AP is calculated using the area under the

curve (AUC) [207].

The COCO AP is a standard evaluation metric in computer vision and is a variant of

AP that is designed to be more comprehensive when measuring the performance of a model.

For COCO evaluation, AP is calculated by dividing the curve at 101 points along the recall

axis, summing the 101 corresponding precision values and then taking the mean average of

these values, APr [208]. This is shown in Equation (4) [206, 208].

AP =
1

101

∑
r∈(0.0,...,1.0)

APr

=
1

101

∑
r∈(0.0,...,1.0)

pinterp(r)
(4)

The pinterp(r) in Equation (4) is the interpolated precision at each selected recall point r̃,

which is the maximum precision at any given recall point, as shown in Equation (5) [206, 208].

pinterp(r) = max
r̃≥r

p(r̃) (5)
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3.4.4 Mean Average Precision

In multi-class problems, the AP is calculated for every class and the mean average of the AP

values is calculated to obtain an mAP value, which is a common indicator of the performance

of a model used in CV [207]. For the COCO mAP, which was designed to reduce any bias

towards certain IoU thresholds, the mAP is calculated for threshold values ranging from 0.5

to 0.95 in increments of 0.05. After calculating all mAP values, a mean average of them is

taken to give a final COCO mAP value. This is shown in Equation (6) [207].

mAPCOCO =
mAP0.50 +mAP0.55 + ...mAP0.95

10
(6)

It is worth noting that whilst the real definition of the COCO mAP has been demonstrated

here, the term “mAP” can be ambiguous due to the different approaches researchers use for

model evaluation. For example, some researchers do not clarify whether they use mAP at

a specific IoU threshold or the COCO mAP. Also, some researchers calculate it using an

11-point interpolation rather than a 101-point interpolation, and sometimes the way it is

averaged across a set of object instances or video frames can vary [209, 210, 211].

3.4.5 Multi-Object Tracking Accuracy

Multi-object tracking accuracy (MOTA) is used to evaluate the performance of multi-object

tracking algorithms. It is calculated using the number of instances in the ground-truth that

the algorithm did not detect (misses), the number of instances predicted by the algorithm

that were not in the ground-truth data (false positives) and the number of instances where

the identity of an object was changed incorrectly (identity switches) [95]. Equation (7) shows

the MOTA calculation [95].

MOTA = 1− (Misses + False Positives +Mismatches)

(Total Ground− Truth Objects)
(7)

Whilst MOTA is a strong indicator of tracking performance, researchers typically focus more

on detection and segmentation performance, since they are the foundation of high perfor-

mance tracking (as mentioned in Section 2.4 of Chapter 2 [195]. Additionally, it is difficult

to obtain tracking annotations since good detection and segmentation performance typically
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leads to good tracking performance, and the benefits of good detection and segmentation

are more obvious and immediate [212]. During this research, MOTA was not used due to

these reasons. However, as the field develops and more tracking datasets and annotation

methods become available, MOTA will give deeper insight into model performance. By us-

ing MOTA, a more holistic view of tracking algorithm performance will be available which

will be particularly useful in complex tracking scenarios where objects interact closely and

occlude each other, since in these scenarios, maintaining consistent identities will be crucial.

3.4.6 Inference Speed

Inference speed is a critical metric for many real-world applications of CV, particularly in

the case of industrial process monitoring. In all three case studies, it has been preferable for

models to operate at the fastest speed possible. However, the need for high speed performance

varied. In Chapter 4, if possible, the model would be more beneficial if it operated in real-

time, since this would enable it as a foundation for building a closed-loop control system.

The definition of “real-time” in CV is ambiguous. One common definition of a real-time

system is one that processes frames fast enough for practical application [101], whereas

another popular definition is that a minimum frame rate of 25fps should be achieved [102].

For this project, the former of these two definitions has been considered “real-time” since

this is what is needed for industry. In Chapter 5, the model was required to run in real-time

upon deployment, including the additional network overhead from the video source sending

frames and the inference device returning model results. In Chapter 6, more speed was

preferable, especially for any future developments, however it was not critical to the design

since the model was used as a post-processing tool after collecting footage of experiments. In

this thesis, “inference speed” has been used to describe the frame speed a model can run at

(measured in frames per second), whilst “inference time” refers to the time it takes a model

to make an inference (typically measured in seconds or milliseconds).

3.5 Datasets

Datasets are arguably the most important component when developing CV applications with

deep learning (DL). Each case study used unique datasets that were developed specifically

for this project, however, the COCO (Common Objects in Context) dataset was used to

pre-train Mask R-CNN in the first case study, and YOLOv5 in the second and third case

studies. This is common practice, as is use of the COCO dataset for benchmarking model

performances, as shown throughout Chapter 2.
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3.5.1 Microsoft COCO Dataset

The COCO dataset is a renowned resource in the field of CV that is used for tasks such

as image classification, object detection and instance segmentation [45]. The dataset was

initially released in two separate parts; the first in 2014 and the second in 2015, which

cumulatively contained 165482 training samples, 81208 validation samples and 81434 testing

samples [45]. When first released, COCO contained 91 object classes easily recognisable by a

four year old, within their natural everyday scenes. Examples include dogs, cats, aeroplanes,

boats, kites, plants and teddy bears. Overall there were 2.5 million labelled instances and

some examples are shown in Figure 26 [45, 213].

By presenting a diverse range of objects in their natural environments that exhibited

challenges such as varying scales, angles, lighting and overlapping, COCO helped in training

models to be robust to complex, realistic scenes. This was different to previous datasets

containing objects in unobstructed, centered and clear contexts which led them to being less

robust in other scenarios [45]. At the time of release, COCO was also unique as it focused

on providing detailed instance segmentation masks, as opposed to other datasets that only

focused on classification, detection and semantic segmentation [45]. This meant it could

be used for training models with more precise localisation and applications requiring more

detailed visual understanding [45].

Since the initial release in 2014, newer versions have been released with the latest com-

plete dataset to date being the COCO 2017 dataset, however other partial updates occurred

up until 2020, such as the inclusion of keypoint and panoptic annotations [214]. Since being

released, the COCO dataset has been at the core of the COCO challenge which was hosted

annually until 2020, whilst also becoming established as a highly popular benchmarking

dataset for state-of-the-art models performing tasks such as object detection and segmenta-

tion [214]. By providing a consistent format for evaluating algorithms, the COCO dataset

has become a fundamental resource for many advancements in the field.

For the purpose of this research, the COCO dataset was used as the foundation for pre-

training Mask R-CNN for the ladle study. It was also used to pre-train YOLOv5 in both

the splatter severity measurement and plume monitoring studies. Despite the fact that steel

production environments do not fall into “common” contexts, pre-training models on COCO

is still beneficial as it provides models with foundational knowledge on how to understand

general objects, before being trained to specialise in a more specific context.
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Figure 26: Annotated samples from the COCO dataset

3.6 Software and Hardware

Software and hardware were crucial to the success of this project since they provided the

capabilities to perform all tasks. Key resources include Python, VGG (Visual Geometry

Group) Image annotator (VIA), and graphical processing units (GPUs).

3.6.1 Python

Python served as the programming language for this research and was therefore crucial to the

success of it. Python was suitable for a variety of reasons including its versatility, simplicity,

well-established community and in particular its compatibility with deep learning projects.

It was used for pre-processing data, model development, model evaluation, data visualisation

and results analysis.

In terms of pre-processing data, Python libraries were used such as OpenCV for image

processing, NumPy for numerical computations and data manipulation, Pandas for creating

results tables which were typically exported in Microsoft Excel format, and JSON (Javascript

object notation) for inspecting, editing and loading annotations. These libraries provided

capabilities in data cleaning and data splitting into training, validation and testing sets, so

that they were suitable for processing by the models.

Model development was driven by Python due to its seamless integration with deep

learning frameworks which in this project, were TensorFlow and PyTorch. This was crucial

in order to analyse, break down, modify and optimise models such as Mask R-CNN and

YOLOv5 through actions such as custom layer addition, hyperparameter optimisation and

standardising evaluation metrics. Furthermore, OpenCV played a large part in developing

the elements of models that utilised more traditional CV techniques such as background

segmentation and image denoising. Model evaluations which were, at times quite complex,

were made possible through Python’s relative ease of implementation of metrics such as
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precision, recall and COCO mAP.

Data visualisation was a key aspect for gaining insight on model behaviour and model

performance, as well as actually presenting results to stakeholders. Using OpenCV, the

effects of different techniques, such as image segmentation and image denoising, were visible

along every stage of the overall process. Meanwhile, OpenCV was also used to produce video

output from the models in various formats such as trimmed versions of raw data, binary mask

videos, as well as original data with model predictions superimposed.

Finally, Python was not only used for visualising data but also analysing numerical

results, such as severity levels of different process variables. Through Python, actions such

as monitoring model performance, troubleshooting model issues and extracting insights from

model outputs were possible.

In addition to the all of the aforementioned capabilities provided by Python, Microsoft

Excel was also used for some aspects of data presentation and analysis. Due to being more

familiar with stakeholders, it was useful for efficient exchange and demonstration of results,

and therefore was used to compliment the primary workload conducted using Python.

3.6.2 VGG Image Annotator

VIA was the annotation tool of choice for every case study [215]. VIA is a simple open source

manual annotation tool that enables users to annotate images with box or mask annotations

and export them in multiple formats depending on their intended approach for using the

annotations [215]. In this research, annotations were exported in the JSON format. This

format is widely used and therefore relatively easy to integrate into model setups or convert

to appropriate formats. For YOLOv5 applications (splatter severity measurement and plume

monitoring studies), a conversion tool was used to convert the JSON annotations into .txt

format suitable for YOLOv5 processing [216]. In the case of Mask R-CNN, the JSON files

were suitable for processing with no conversion needed.

3.6.3 GPU

The NVIDIA GeForce RTX 2070 Super was the primary GPU used for this research. This

device is a graphic card developed by NVIDIA that has 8GB of GDDR6 (graphics double data

rate 6) memory and 2560 cores, meaning it has the ability to perform highly computationally

intensive tasks [217]. The 2070 Super is built to support demanding activities such as video

transcoding, physics simulation, ray tracing and more, making it well-suited for deep learning

applications [217].

74



In the context of this research, this GPU significantly improved training and inference

times, which was crucial not only for project efficiency, but also for model evaluation with

regards to suitability for industrial application. By using this hardware, it was possible

to perform tasks such as the hyperparameter optimisation in Chapter 4 within reasonable

timescales. Additionally, it made a significant difference to the speed of the final splatter

severity measurement model (pre-deployment), proving its ability to deal with real-time data

processing particularly in the context of CV where computational demand is high due to the

heavy-duty processing of large datasets containing high-resolution images. The compatibility

of the chosen GPU with frameworks such as TensorFlow and Pytorch made this research

much more streamlined, and was due to the CUDA (Compute Unified Device Architecture)

and CUDnn (CUDA Deep Neural Network) libraries developed by NVIDIA, which enable

optimised GPU-accelerated computations that are crucial for deep learning [218, 219].

3.7 Conclusion

This chapter has outlined the common computer vision tasks performed in this project, the

algorithms used to perform them, the dataset used for pre-training of algorithms, the metrics

used to evaluate algorithm performance, as well as the software and hardware resources used

to conduct research.

Throughout this chapter, it has been made evident that decisions surrounding algorithm

selection, evaluation metric selection and dataset selection are based on the literature re-

viewed in Chapter 2. This has ensured that techniques and resources used in this project

align with what is typical in the field of computer vision.

Moving forward, the aspects discussed in this chapter form the foundations of the case

studies in the following chapters. By establishing a robust methodological framework, this

research paves the way for future innovations and applications in the steel industry.
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Chapter 4: Hot Metal Ladle Pouring

Process Parameter and Process

Quality Estimation

In this chapter, a novel method is presented for tracking the motion of hot metal ladles

during pouring in harsh environmental conditions. By utilising Contrast-Limited Adaptive

Histogram Equalisation (CLAHE) for contrast enhancement, combined with Mask R-CNN

(Mask Region-based Convolutional Neural Network) for ladle segmentation, this work is an

innovative approach for monitoring ladle behaviour. As well as monitoring ladle pouring

height and rotation angle, flame severity is estimated as a process quality indicator.

4.1 Introduction

Pouring of hot metal into basic-oxygen furnace (BOF) vessels is a critical step of the steel-

making process. It is typically performed manually and is associated with challenges such as

harmful emissions in the form of flames, smoke and metallic dust due to reactions occurring

within the furnace, equipment degradation caused by reactions, and operational variability

due to inconsistent human performance. This drives the need for minimising emissions to

enhance workplace safety and extend the useful life of equipment, and standardising the

process through automation. A schematic of the pouring setup is shown in Figure 27.

One aim of this case study was to segment a hot metal ladle in each frame of a video with

a COCO (Common Objects in Context) mean average precision (mAP) of at least 0.5 (see

Section 3.4.4 of Chapter 3 for more details on this metric). This was chosen as the acceptable

minimum performance before attempting to monitor ladle behaviour, and was a pragmatic

estimate based on the various mAP results reported throughout Chapter 2, as well as the

highly challenging conditions of the task. Challenges included poor lighting conditions, the

presence of smoke and dust obscuring the ladle, and resource-constraints with regards to

time and primarily data availability since it was difficult to obtain. These constraints are

akin to conditions present in industry. Additionally, another aim was to quantify the severity

of emissions in the furnace based on what was observable in the footage. By monitoring ladle

behaviour and the emission severity resulting from it, this research finally aimed to look at

the relationship between the two types of measurements and provide insight on how pouring
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process parameters affect the quality of the pouring process.

This work demonstrates how computer vision (CV) can be used for monitoring and op-

timisation of the pouring process. Other potential benefits include full process automation

in a closed-loop control system and gaining deeper insights for root-cause analysis and pre-

dictive maintenance strategies. These lead to reduced human error, improved health and

safety, improved environmental impact and cost savings. This work was largely a learning

experience that began during the infantile stages of the overall project, however it has laid

a strong foundation in the field for ladle monitoring applications. Source code is available

on GitHub [220].

Figure 27: Schematic representing the ladle pouring setup

4.2 Methodology

The data for this case study was generated by another researcher recording different ladle

pouring events. An overview of the methodology is given in Figure 28, which shows there were

five main steps. The first step of the methodology involved data preparation, which included

labelling frames, denoising them and then splitting them into training and validation sets.

The data prepared in this case study addresses the gap in Chapter 2 regarding the lack of

diverse datasets available for developing CV applications for steel production processes. This

was followed by the initial training and testing of an instance segmentation network using

the prepared ladle data. Mask R-CNN was selected for its state-of-the-art performance at

the time this case study began, as shown in Section 2.5.1 of Chapter 2. Following training
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and testing, the hyperparameter optimisation was conducted which involved a large range of

configurations to maximise model performance. Afterwards, Kalman filtering was applied for

tracking of the predicted segmentation mask to improve model performance further. Finally,

the model was adapted to measure real-world characteristics in order to draw useful insights

for industry.

Figure 28: Overview of the methodology used for Case Study 1
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4.2.1 Data Preparation

The first step of data preparation is labelling. Video frames were extracted at a rate of

one frame per second using frame extraction code. This rate was chosen as a minimalistic

approach, considering the original videos ran at over 30fps. This decision was made to lessen

the computational demands and simplify the task whilst still providing a visually adequate

output for analysis. The frames were labelled using the VGG (Visual Geometry Group)

Image Annotator [215], involving the creation of a polygon (mask) around the ladle in each

frame, which was then copied, pasted onto subsequent frames, and adjusted until all frames

were labelled.

During the labelling process, there were frames where parts of the ladle were occluded

by a metal structure that belonged to the furnace. To address this, three strategies were

considered:

• Labelling the ladle as if there were no obstructions.

• Labelling only the prominently visible part of the ladle.

• Labelling all visible sections of the ladle, whether completely or partially visible.

Of the proposed approaches, the first was found to be the most practical choice. It

provided the consistency required by Mask R-CNN whereas the other two methods led to

significant variations in shape due to occlusions.

The second step of data preparation is frame denoising. Figure 29 illustrates that the

video had sub-optimal lighting conditions, leading to frames where the ladle appeared dis-

torted. This distortion negatively affected the performance of Mask R-CNN. To tackle this,

efforts were made to enhance the visual clarity by improving lighting conditions in the frames.

The approach to contrast enhancement involved initially converting the frames from RGB

to greyscale, before applying different methods of Histogram Equalisation (HE) to enhance

the lighting whilst preserving the overall quality of the frames. The specific variants of HE

that were used are detailed below.

HE requires initially transforming the frames into greyscale to acquire the intensity val-

ues for each pixel. These values range from 0 to 255, indicating the degree of darkness (0)

or lightness (255) of each pixel. Following this conversion, a histogram representing the

frequency of each intensity level was constructed. Figure 30 displays the histogram corre-

sponding to the greyscale image shown in Figure 29.
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Figure 29: Frame with poor lighting, noticeable mostly around the right-side edge of the

ladle

After generating a histogram like the one in Figure 30, it became feasible to improve the

image contrast through equalisation, which involves utilising a broader range of intensity

values more frequently. The first step in this process was calculating the probability mass

function (PMF), which represents the likelihood of each intensity value appearing in the

image. This calculation was achieved by dividing the frequency of each intensity value, as

indicated in the histogram, by the total pixel count in the frame. This approach is detailed in

Equation (8) where X generally represents any set of grey values in the image, p(xi) denotes

the probability of any specific greyscale value occurring, s is the frequency of occurrence of

that greyscale value, and S represents the total number of pixels in the frame [221].

p(xi) = P ({s ∈ S|X(s) = xi}) (8)

It was possible to calculate the cumulative distribution function (CDF) using the PMF, since

it is the cumulative sum of all PMF values. This is demonstrated in Equation (9) where

F (x) represents the CDF up to a specified intensity level x [221].

F (x) = P (X ≤ x), for any x ∈ R (9)

For each CDF value, which was determined by accumulating along the PMF values, a multi-
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Figure 30: Greyscale histogram of the image in Figure 29, showing greyscale values along

the x-axis and pixel frequency on the y-axis

plication was performed with the corresponding number of greyscale levels minus one. This

calculation was done to obtain new intensity values for the image [221].

Adaptive Histogram Equalisation (AHE), an advanced version of the standard HE tech-

nique, starts by partitioning the image into uniformly sized square sections. Standard HE

is then applied to each of these squares individually. This process results in a block-like

appearance in the image’s contrast, which is smoothed out using bilinear interpolation [222].

Due to the tendency of AHE to emphasise noise in areas where a square consists of pix-

els with mostly similar intensity values, contrast limiting can be applied before calculating

the CDF [223]. This involves establishing a threshold for pixel frequency and clipping the

histogram at this threshold before the CDF calculation, which helps prevent excessive en-

hancement of noise in uniform regions of the image. Contrast limiting is particularly effective

for images that exhibit a relatively uniform distribution of intensity values [224].

The third step of data preparation is splitting the dataset. For the initial aim of achieving

0.5 minimum mAP, 120 frames were used for training and 114 frames were used for testing.

These were essentially two different pouring videos. Whilst in many scenarios, it is typically

ideal to use a split of about 70% for training, 10% to 20% for validation and 10% to 20% for

testing, in this particular case the 120/114 split was a more logical approach. This was for

two reasons.

Firstly, the data available was limited. The maximum amount of ladle video frames were

594 and labelling a few hundred was highly time-consuming due to the complex ladle shape,

as well as the harsh environment the ladle existed in.

Secondly, rather than using random frames for training and testing, it was important that
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the model was trained on a full pour so that it was familiar with the whole process. Ideally,

the training and validation sets would have contained several full pouring videos, and there

would be a separate testing set for evaluating the model. To clarify, in this case study, the

validation set was used for both intra-epoch validation for model feedback during training, as

well as validation once it had been trained. This is not the same as using the same data for

training and testing, but still has the potential to result in some bias that eventually leads

to overfitting. This is fairly common practice in machine learning (ML) tasks where data is

limited, and bias can be mitigated through approaches such as hyperparameter optimisation.

Once the model was proven to work, the remaining 360 frames available were labelled

and added to the training set to improve performance for industrial application.

4.2.2 Model Training and Testing

Mask R-CNN was trained and tested using a NVIDIA GeForce RTX 2070 Super GPU

(graphical processing unit). Network weights were pre-trained on the COCO dataset before

being used for this case study. This reduced time and computational expense by ensuring

the model was somewhat familiar with general objects, their features and their contexts.

Steel production environments are different to the common objects in the COCO dataset,

however pre-training is still beneficial for providing the model foundational knowledge of

objects, boundaries, colours and other aspects of complex scenes. This is the first step

before fine-tuning the model on the specialised area of steelmaking. A dataset that is similar

to the COCO dataset but based on steelmaking environments would be highly valuable,

since it could be used to accelerate the state of steelmaking technology significantly.

4.2.3 Mask R-CNN Hyperparameter Optimisation

The first part of the hyperparameter optimisation consisted of several grid searches using

a variety of settings. These included the choice of backbone, the layers re-trained (after

the COCO pre-training), the image resizing, augmentation and mini-mask configurations,

as well as the weight decay. The second part of the hyperparameter optimisation consisted

of six “efficient grid search” (EGS) setups. The experimental design of these searches were

inspired by both grid search [225] and Taguchi’s orthogonal arrays [226]. This approach

used orthogonal arrays to dictate the style of grid searches by using levels and settings in the

same combinations as they would be used in Design of Experiments (DoE). This way, grid

searches could be performed on multiple hyperparameters simultaneously whilst minimising

the number of experiments. Since there were a large number of hyperparameters tested (24),
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it was important to organise the experimental design into multiple groups. In this case study,

EGS setups each contained anywhere from two to five hyperparameters. After each EGS,

the best model was taken forwards which was decided primarily based on mAP, however

at times, visual judgement did also come into the decision-making process. The order of

initial grid searches, as well as all EGS setups, was chosen strategically in order to maximise

benefits such as model performance and research findings. This was conducted by following

an order that in most cases, aligned with the order of interaction of each hyperparameter

during model training and testing. This was not the case for every single hyperparameter

as Mask R-CNN is complex and sometimes has functions running in parallel. Additionally,

since the case study was a learning process, some hyperparameters such as “pool size” were

incorrectly ordered. The hyperparameters and their settings can be seen in Table 3 in order

of experimentation.

Table 3: Hyperparameters and settings for optimisation where “CNN” is convolutional

neural network, “ResNet” is Residual Neural Network, “RPN” is region proposal network,

“Bbox” refers to “bounding box”, “MRCNN” is Mask R-CNN, “NMS” is non-maximum

suppression and “RoI” is region of interest

Hyperparameter Settings

CNN backbone ResNet50, ResNet101

Layers re-trained heads, 3+, 4+, 5+, all

Image resizing none, square1024, square2048, pad1024, pad2048

Augmentation off, on

Mini-mask off, on-56, on-112, on-224

Weight decay 0.01, 0.001, 0.0001

EGS 1

Steps per epoch 250, 500, 1000

Validation steps 10, 25, 50

EGS 2

Epochs 10, 20, 30

Learning rate 0.0001, 0.001, 0.02

Learning momentum 0.5, 0.9, 0.99

Gradient clip norm 2.5, 5, 10

Continued on next page
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Table 3 – continued from previous page

Hyperparameter Settings

EGS 3

RPN class loss 1, 2, 3

RPN bbox loss 1, 2, 3

MRCNN class loss 1, 2, 3

MRCNN bbox loss 1, 2, 3

MRCNN mask loss 1, 2, 3

EGS 4

RPN anchor scales (16, 32, 64, 128, 256), (32, 64, 128, 256, 512), (64, 128,

256, 512, 1024)

RPN anchor ratios (0.25, 0.5, 1), (0.5, 1, 2), (1, 2, 4)

RPN anchor stride 1, 2, 3

RPN NMS threshold 0.7, 0.8, 0.9

RPN train anchors per image 128, 256, 512

EGS 5

Pre-NMS limit 3000, 6000, 12000

Post-NMS training RoIs 1000, 2000, 4000

Post-NMS RoIs inference 500, 1000, 2000

Train RoIs per image 100, 200, 400

RoI positive ratio 0.25, 0.33, 0.5

EGS 6

Pool size 7, 14, 28

Mask pool size 14, 28, 56

Mask shape 28, 56, 112

4.2.3.1 CNN Backbone

The CNN backbone is a large network consisting of many layers, primarily convolutional

layers, hence the name. The backbone is a fundamental part of Mask R-CNN and is used

for feature extraction. ResNet50 and ResNet101 are typical choices due to having proven

high performance and reasonable computational efficiency in many other tasks [227].
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4.2.3.2 Layers Re-trained

The CNN backbone layers are divided up into stages. Since it is already pre-trained on the

COCO dataset, the number of layers re-trained using custom data is optional, so the user

dictates the depth of fine-tuning. Whilst “heads” only trains the top network layers, “3+”

trains Stage 3 and up, “4+” trains Stage 4 and up, “5+” trains Stage 5 and up and “all”

re-trains all layers [227].

4.2.3.3 Image Resizing

Image resizing mostly relates to processing efficiency and aspect ratio. Making images smaller

reduces computational load, making them square can improve or worsen performance often

depending on whether original image sizes are uniform or not, and pad64 ensures a certain

image size is obtained whilst preserving image quality through padding [227].

4.2.3.4 Augmentation

Augmentation can help to improve model robustness when the dataset is limited, by pro-

cessing data in various ways to increase the dataset diversity and number of samples. The

augmentation in Mask R-CNN was limited to horizontal flipping by default. It was possible

to perform custom augmentation however this was not attempted due to time constraints,

and was unlikely to be of any benefit due to the complexity of this particular scenario.

4.2.3.5 Mini-Mask

The normal mask of an object is based on the bounding box of an object and so has edges

that touch the bounding box. Alternatively, a mini-mask that wraps more tightly around the

object can be used [228]. Whilst it can affect model performance by missing small details, it

is more computationally efficient [228]. The default size was (56, 56) and since the ladle was

likely to be no smaller than this, other settings chosen were (112, 112) and (224, 224) [227].

4.2.3.6 Weight Decay

Weight decay is also known as L2 regularisation and essentially adds a term to the loss

function which is proportional to the sum of the squares of the weights [198]. It does this

to prevent overfitting by lessening the effect of large weights [198]. The default setting

chosen by the developers of Mask R-CNN was 0.0001 and generally the optimal value of this
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hyperparameter can vary largely between 0.1 and 0.00001 depending on how much overfitting

needs to be counteracted [227]. Therefore, values of 0.0001, 0.001 and 0.01 were used here.

4.2.3.7 Steps Per Epoch

This is the number of batches of samples processed at once by the model during training.

After each batch is processed, the model updates weights and biases for each neuron [227].

More steps per epoch takes longer but is less computationally intensive. The default was

1000 and this was time-consuming so it was halved once and twice for two more optimisation

settings.

4.2.3.8 Validation Steps

Validation steps is the amount of validation steps performed at the end of each epoch. A

higher number improves validation performance but slows down training [227]. The default

was 50 steps which was time-consuming and so this was halved to 25 and then reduced

further to ten since 12.5 steps were not possible.

4.2.3.9 Epochs

Epochs dictates the number of times the full training dataset is passed through the network

and largely influences overall model performance. More epochs give the model a chance to

learn more from the data, however too much of this can cause overfitting. The default was

20 epochs which was treated as a moderate setting so ten and 30 epochs were used in the

optimisation.

4.2.3.10 Learning Rate

Learning rate (LR) controls the size of the steps the SGD (stochastic gradient descent)

optimiser takes during training [227, 229]. A smaller learning rate allows for more granular

learning but is generally slower, whilst a larger learning rate speeds up learning but may

result in lower performance.

4.2.3.11 Learning Momentum

Learning momentum (LM) adds a fraction of the previous step’s vector to the current step,

which allows the optimiser to accelerate in directions where there is a consistent reduction
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in the loss function [230]. The default setting was 0.9 and typical ranges seemed to be from

0.5 to 0.99, and so these two extremities were used also for optimisation [227, 231, 232]

4.2.3.12 Gradient Clip Normalisation

Gradient clip normalisation (GCN) is a technique used to clip gradients to prevent the

exploding gradient problem where large gradients cause the model to destabilise during

training. The default value is five and a value of one has been known to work [233]. Not

much information could be found on this hyperparameter and so 2.5 was used as the smallest

experimental setting and ten was used as the largest, effectively halving and doubling the

default.

4.2.3.13 Loss Weights

All of the loss weights dictate how much the learning process is optimised for different

components of Mask R-CNN. By weighting one loss higher than other, the model will learn

to improve in the higher weighted component relative to the lower weighted component.

RPN class loss can be used to emphasise whether anchors contain objects or not, RPN bbox

loss can emphasise the bounding box coordinates for each anchor, Mask R-CNN class loss

can emphasise the accuracy of object categories during classification, Mask R-CNN bbox

loss can emphasise the precision of bounding box coordinates of detected objects and Mask

R-CNN mask loss can emphasise accuracy of pixel-level mask predictions [229]. The default

for all losses was one, and experimental settings of two and three were also used, as this

aligned with the number of settings in the orthogonal array without making any weights too

extreme [227].

4.2.3.14 RPN Anchor Scales, Ratios and Stride

Scales, ratios and stride dictate the size, aspect ratio and density of anchors used for region

proposal respectively [227]. Different values are appropriate depending on the scenario, and

so the default settings were used as a moderate level and were halved and doubled to give

the other experimental settings. Anchor stride was an exception to this since the default

was one, so in this case two and three were used [227].
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4.2.3.15 RPN NMS Threshold

This threshold controls the NMS process which effectively filters out overlapping bounding

boxes by keeping the best boxes and filtering out boxes which overlap with them [234]. The

threshold dictates how much overlap there has to be with a high confidence box for a lower

confidence box to be removed [234]. The higher the threshold, the more boxes are kept.

4.2.3.16 RPN Train Anchors Per Image

The number of anchors used in each image to train the RPN are decided using this hyper-

parameter [227]. The higher this number, the more likely detection performance is to be

improved, however it also increases computational load. The default was 256 and this was

treated as moderate, giving half and double this as the other two settings for experimenta-

tion.

4.2.3.17 Pre-NMS Limit

The pre-NMS limit is the maximum number of proposals possible to use before applying

NMS [227]. Depending on the objectness of proposals (likelihood to contain an object),

some may be filtered out to leave only top scoring proposals for further processing. This

helps improve computational load but if it is too small then it could affect performance.

Similarly to other hyperparameters, the default value of 6000 proposals, as well as half and

double this, were used for experimentation [227, 229].

4.2.3.18 Post-NMS Training and Inference RoIs

These hyperparameters are similar to the pre-NMS limit, except they are applied after NMS

to further reduce proposal redundancy [227, 229]. Whilst training regions of interest (RoIs)

are used during training, inference RoIs are used during inference [227, 229]. Both should be

selected to achieve a balance of performance and computational efficiency, and so the default

values, as well as half and double of them were used.

4.2.3.19 Train RoIs Per Image

This is the number of RoIs finally chosen for training on each image, similarly to post-NMS

training RoIs, except this hyperparameter makes the final decision [227, 229]. The default

was 200 and so this was halved and doubled.
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4.2.3.20 RoI Positive Ratio

This determines the ratio of proposals that are considered objects compared to background.

For example, a value of 0.25 assumes 25% of the sampled proposals are overlapping with the

ladle and should therefore be used to train the network [227, 229]. The default value was

0.33, whilst 0.25 was used to force the model to focus more on distinguishing the ladle from

the background, and 0.5 was used to give an equal balance to the ladle and the background

to see if learning from both equally was beneficial [227].

4.2.3.21 Pool Size

Pool size is the size of the feature map extracted from each RoI for classification and bounding

box regression [227, 229]. A larger pool size can contain more detailed information but carries

a heavier computational load. Again, finding the right balance is the aim, and the default

of seven was doubled once to 14, and twice to 28 since the ladle scenario was complex and

was likely to benefit from more information [227].

4.2.3.22 Mask Pool Size

The mask pool size is the size of the feature map extracted from each RoI for mask prediction

[227, 229]. It is similar to the pool size but is focused on generating masks for instance

segmentation, rather than classification or object detection [227, 229]. The default of 14 was

doubled to 28, and again to 56 since the ladle scenario was complex and was likely to benefit

from more information [227].

4.2.3.23 Mask Shape

The mask shape is the resolution of the binary output mask for each object and defines the

level of detail provided for final mask predictions [227, 229]. Again, the optimal size is a

trade-off between performance and computational load. The default was (28,28) and since

the mask pool size was doubled twice for experimentation, the mask shape was set to align

with this [227].

4.2.4 Kalman Filter Tracking

Following Mask R-CNN optimisation, efforts were made to enhance the model’s tracking

capabilities over sequential frames by integrating edge refinement and stabilisation through
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Kalman filtering. The Kalman filter is a computational method used for predicting the

future trajectory of an object, and was used to associate masks between sequential frames

to enhance the model’s understanding of the ladle shape as it moved throughout videos (as

opposed to individual frames). This is inspired by the likes of CNN-LSTM models (where

“LSTM” abbreviates “long short-term memory” and DeepSORT (Deep Simple Online and

Real-Time Tracking) reported in the literature and reviewed in Section 2.4 of Chapter 2

[86, 87, 88, 90]. Kalman filters utilise a set of five recursive equations to forecast unknown

variables of a system.

The algorithm firstly involves an initial estimation or prediction of the system state,

which is then refined based on feedback using data that may contain noise. The prediction

phase uses Equation (10) and Equation (11) to derive the current state and error covariance

estimates. This process results in what is known as the a priori estimate for the next time

step. In the update phase, covered by Equations (12)-(14), a new measurement is included in

this a priori estimate, leading to an updated, or a posteriori, estimate [68]. Further details

of this process are given below.

In Equation (10), the first predict step element, which is the a priori next state estima-

tion (x̂−
k+1), is calculated by adding the product of the state transition matrix (Ak), and the

a priori estimate for the current step (x̂k), to the product of the control input matrix and

the control vector (Buk) [68].

x̂−
k+1 = Akx̂k +Buk (10)

Next, as shown in Equation (11), the error covariance a priori estimate for the next step

(P−
k+1), is calculated by the adding the product of the transition matrix and the current error

covariance a posteriori estimation (Pk), to the transition matrix and process noise (Qk) [68].

P−
k+1 = AkPk + AT

k +Qk (11)

The first part of the update step is shown in Equation (12), where the optimal Kalman gain

(Kk), is calculated using the current error covariance a priori estimate (P−
k ), the Jacobian

matrix (Hk), and the measurement error covariance (Rk) [68].

Kk = P−
k HT

k (HkP
−
k HT

k +Rk)
−1 (12)
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The a posteriori state estimate (x̂k), is calculated in Equation (13) using the a priori state

estimate, the Kalman gain, and the actual measurement (zk) [68].

x̂k = x̂−
k +K(zk −Hkx̂

−
k ) (13)

The error covariance a posteriori estimate (Pk), is calculated in Equation (14) using an iden-

tity matrix (I), the Kalman gain, the Jacobian matrix, and the current step a priori error

covariance [68].

Pk = (I −KkHk)P
−
k (14)

The concept behind using Kalman filtering for this case study, was to assign a separate filter

to each point in a set of points, which were sampled from the edges of the mask initially

predicted by Mask R-CNN. The hypothesis was that each filter would process the pixel

coordinates of its corresponding edge point from successive frames as input. The expectation

was that the Kalman filter’s updated predictions would refine the initial predictions made

by Mask R-CNN. When these refined point predictions were used collectively, they were

anticipated to enhance the overall mAP whilst stabilising the mask over sequential frames

so that it became less erratic.

To implement this, edge pixels of the original Mask R-CNN mask were identified through

image processing using OpenCV, and their coordinates were stored in a list. A fixed number

of these points (32) were then sampled and input into the Kalman filters. Each filter was

responsible for tracking an individual point, leading to a sequence of multi-point predictions

that collectively comprised a refined mask.

To mitigate the jaggedness that naturally occurred from Kalman filter predictions, a con-

vex hull (see Figure 31) was constructed using the gift wrapping algorithm on the predicted

points [235]. The convex hull was designed to be the most efficient boundary that enclosed

all points whilst maintaining all interior angles below 180◦ [236]. To ensure the convex hull

was formed by a smooth set of points, K-Nearest Neighbours (KNN) was used to preserve

the points closer together (which typically sat along the ladle edge) whilst excluding the

surrounding points that were less accurate. The KNN background subtraction (BGS) algo-

rithm discussed later is based on K-Nearest Neighbours but to be clear, it is not the exact

same approach.

After establishing the convex hull, the state transition matrices of the Kalman filters were
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Figure 31: Example of a convex hull

refined through a series of experiments. The state transition matrix is a crucial component

in Kalman filtering that connects the current state of the system, with its state at the next

time step. It essentially guides the transition from one state to another [68].

In this particular application, the state transition matrix, with dimensions of 4x4, was

used to model the movement of points across frames. The fact that the problem was in 2D

meant that the matrix accounted for the x and y positions and velocities of the points, each

represented by a separate row in the matrix. The elements within each row of this matrix

correspond to variables in the 2D kinematic equations and so they can be adjusted based on

available information on the system [237]. The essence of kinematics is to predict the future

position and velocity of an object based on its current state and motion dynamics. In this

case, acceleration is assumed to be zero and velocity is assumed to be constant.

Initially, the optimal values for the state transitions were unknown. Therefore, experi-

mental adjustments were made, starting by incrementally altering the default value for xk−1

from one to ten, in attempt to align them with what was observable in the ladle footage.

After each increment, the impact on the mAP was assessed, and the value yielding the high-

est mAP was retained. This methodology was then replicated for yk−1, whilst keeping the

previously optimised value for xk−1. The same procedure was applied to the remaining two

variables to refine the transition matrix further.

The default state transition matrix Ak is present in Equation (10) and written in full

form in Equation (15) [237]. It is a matrix representation of the constant velocity model in

kinematics. Elements that are equal to one are multipliers for terms corresponding in the a

priori estimate for the current step also known as the state vector, x̂k (see Equation (16)).

Whilst elements in Ak carry over system information from one time step to the next, (in-
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cluding the ∆t elements which account for the effect of velocity on position over the given

time interval), the x̂k elements represent the x position, y position, x velocity and y velocity

in descending order of Equation (16). Therefore, the elements of Ak can be modified to align

with what is observed in the ladle footage, to fine-tune Kalman filter performance.

Ak =


1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1

 (15)

x̂k =


xk−1

yk−1

ẋk−1

ẏk−1

 (16)

4.3 Results and Discussion

This section presents and discusses results obtained from experimentation described in Sec-

tion 4.2, which begins with the results of denoising data via contrast enhancement, before

moving onto Mask R-CNN application. Following the development and optimisation of Mask

R-CNN, this section investigates the effectiveness of Kalman filtering in enhancing the accu-

racy of the predicted segmentation masks. Additionally, the results of experimenting with

different background subtraction algorithms are included.

4.3.1 Denoising Data

In Figure 32 and Figure 33, the left column contains “good contrast” images, the middle

column contains “moderate contrast” images and the right column “poor contrast”. Fig-

ure 32(a) is after converting to greyscale but before denoising, and the remaining rows each

show the results of the various denoising techniques described in Section 4.2.1. The aim of

denoising was to enhance image contrast to ensure there was a more distinct ladle visible

within the data so the model could learn and predict with more ease. Important details to

consider when evaluating the results in Figure 32 and Figure 33, are clarity of the ladle edges

and the brightness of the furnace flame.
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(a)

(b)

(c)

Figure 32: Good (left), moderate (center), and poor (right) quality contrast frames for (a) original greyscale, (b) HE, and (c)

CLAHE
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(a)

(b)

(c)

Figure 33: Good (left), moderate (center), and poor (right) quality contrast frames for (a) BPBHE (Note that these are sup-

posed to be white), (b) Gaussian BPDFHE, and (c) Triangular BPDFHE
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HE results in Figure 32(b) show a significant improvement with regards to ladle edge

visibility compared to the greyscale images. This is especially evident in the poor contrast

image, where the top-right quarter of the ladle changes from almost completely invisible to

clearly lighter than the background. However, with regards to the furnace flame brightness,

lens flare is significantly increased. Looking at the poor image, despite the overall change in

image aesthetic, increased lens flare does not appear to be distorting any important aspects of

the image. Contrarily, the good image could be considered worse than before HE application,

as the ladle edges, particularly in the top-right quarter, are less distinct than before.

Standard HE smooths out the histogram of the intensity values for each pixel, effectively

reducing extremities, and the bright furnace flame is a large extremity compared to the

surrounding dark pixels. Therefore, since HE equalises over the whole image at once, the

brightness of the furnace flame is distributed over the rest of the image. This is effective for

the poor image because it is extremely dark everywhere except the flame location, so this is

a good “source of light”. However, in the poor image, there is already some clarity present

in the image before HE. Dispersing the extreme brightness from the flame to the already

relatively bright pixels causes some extreme brightness to occur farther away from the flame,

which includes pixels constituting the ladle edges.

CLAHE results in Figure 32(c) equalises multiple histograms representing divided “tiles”

of the image to prevent over-enhancement of noise in homogeneous regions, which is the issue

with the HE results. Therefore, a significantly improved and more balanced performance

across varying contrast qualities is observable in the CLAHE results.

Brightness Preserving Bi-Histogram Equalisation (BPBHE) is designed to preserve the

mean brightness of an image, and in this case, Figure 33(a) shows application has resulted

in bright white images for all three contrast qualities. This indicates that the mean intensity

value is high (higher intensity pixels are whiter), so the higher intensity sub-image must

contain extremely bright pixels and upon equalisation, produces a white image. Meanwhile,

the lower intensity sub-image contains some moderately dark pixels and some very bright

pixels. When the sub-images are combined, overall intensity values are very high, which

explains the extreme brightness that can be seen.

Results for the Brightness Preserving Dynamic Fuzzy Histogram Equalisation (BPDFHE)

Gaussian variant are shown in Figure 33(b), and results for the triangular variant are shown

in Figure 33(c). Both variants had an insignificant effect on the images. The brightness

surrounding the flame was re-distributed, but no edges were made clearer. Despite this

being a brightness-preserving variant like BPBHE, there is a great difference in the output
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Figure 34: Figure showing the ladle edge in the original video (left), greyscale video (cen-

ter) and denoised video (right)

of both methods. BPDFHE uses the fuzzy domain to process grey value inexactness better

than in BPBHE, combined with fuzzy statistics that prevent random fluctuations in the

histogram (such as the small black areas in BPBHE output).

The best technique appeared to be CLAHE, which aligned with the literature presented

in Section 2.2 of Chapter 2. Figure 34 shows clearly the difference in edge visibility before

and after CLAHE.

The performance of Mask R-CNN when trained and tested on denoised and original data

was compared. This followed the format of the hyperparameter optimisation to analyse how

CLAHE affected mAP with different model configurations, rather than just looking at one

specific configuration. The first part of the hyperparameter optimisation was to test and

evaluate the different in Mask R-CNN performance when different backbones (ResNet50

and ResNet101) were used, and when different numbers of re-trained layers were used. As

will be discussed later, this led to five experiments for each backbone which included re-

training of just the network heads, re-training of layers comprising Stage 3 and up, Stage

4 and up, Stage 5 and up, and finally re-training all layers of Mask R-CNN. To evaluate

the effectiveness of applying CLAHE, ResNet101 with the five aforementioned re-training

approaches was used. The results of this evaluation are shown in Table 4.

The results in Table 4 show that in four out of five cases, using CLAHE significantly

improved mAP. Also, the highest mAP of all experiments by a significant amount, used

CLAHE and model re-training from Stage 3 and up. However, when re-training all layers,

using the original data with no contrast enhancement resulted in better performance, and
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Table 4: mAP comparison pre-optimisation for original and denoised data

Layers Re-Trained mAPCOCO (Original Frames) mAPCOCO (CLAHE)

Heads 0.004 0.112

3+ 0.008 0.276

4+ 0.056 0.131

5+ 0.027 0.158

All 0.197 0.113

this was the second highest of all experiments reported in Table 4. Therefore, results suggest

CLAHE is effective at improving model performance in environments with poor lighting.

4.3.2 Mask R-CNN Initial Optimisation

Table 5 shows results from the first set of experiments based on the choice of CNN backbone

(ResNet50 or ResNet101) and the amount of layers re-trained after pre-training on the COCO

set (see Section 4.2.3.2 for explanation on stages and re-trained layers). In this chapter, both

epoch and total training times are reported. Whilst epoch time provides insight into the

efficiency of each training iteration, total train time offers a comprehensive view of the overall

time consumption of each experiment. This highlights time and compute expense for each

configuration.

The results show that firstly, ResNet101 takes longer to train than ResNet50 which is

because it has approximately twice the number of layers. Also, across both ResNets, there

was a clear trend of less re-training requiring less time, which makes sense since the data

has to be passed through a smaller number of layers. In terms of losses, the training losses

of ResNet101 are generally lower (better) than the ResNet50 training losses, which is likely

due to the additional complexity that ResNet101 can handle over ResNet50. However, the

validation losses for both models are high, which combined with the much lower training

losses indicates that both models overfitted, which typically leads to poorer generalisation

on unseen data. Since two different ResNets were re-trained to various extents, the models

are likely not the issue here, but rather the training strategy or the data. The best epoch

from each experiment was used and so any overtraining past the optimal point is not included

in Table 5, which significantly reduces the likelihood of the low performance being due to
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the training strategy. Therefore, quality or quantity of the data are responsible. Data was

labelled carefully but was limited in size, indicating that model results could be improved

with more data. The large difference in training and validation losses also suggest that the

validation set is unrepresentative of the training and testing sets. This could be due to

including outliers in the validation set, or not having a large enough dataset to properly

validate the model. Whilst there were no strong trends with regards to mAP, ResNet101

tended to have higher mAP values than ResNet50, which aligns with the better training

losses and is due to ResNet101’s better capabilities at learning complex data.

Overall the experimental results in Table 5 indicate the dataset was lacking in size.

As shown throughout this chapter, the model was still developed to achieve reasonable

performance through hyperparameter optimisation. In Table 5, using ResNet101 whilst re-

training the third stage and up resulted in significantly better performance than other setups

(0.276 mAP, shown in bold) and was therefore taken forward to the next stage.

Table 5: Backbone and re-trained layers experimental results

Backbone Layers
Epoch

Time (s)

Train

Time (s)

Train

Loss

Val.

Loss

Inf.

Time (s)
Precision Recall mAPCOCO

ResNet50 All 1698 33950 0.587 1.996 0.440 0.102 0.102 0.092

ResNet50 3+ 1683 33657 0.586 2.440 0.434 0.153 0.153 0.149

ResNet50 4+ 1656 33126 0.561 2.646 0.331 0.131 0.131 0.125

ResNet50 5+ 1543 30855 0.339 3.078 0.392 0.109 0.109 0.107

ResNet50 Heads 1339 26781 0.606 2.177 0.349 0.129 0.129 0.128

ResNet101 All 1971 39416 0.480 2.909 0.365 0.128 0.128 0.113

ResNet101 3+ 1834 36671 0.474 2.447 0.361 0.257 0.276 0.276

ResNet101 4+ 1816 36319 0.479 2.547 0.447 0.127 0.133 0.131

ResNet101 5+ 1622 32430 0.469 2.693 0.367 0.159 0.159 0.158

ResNet101 Heads 1407 28137 0.528 2.325 0.350 0.112 0.112 0.112
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Table 6 shows results from the experiments based on image resizing settings. Style set-

tings included none, square, pad64 and crop, and dimension settings allowed more customi-

sation. These settings are described in Section 4.2.3.3. Results show that the pad64-1024

resizing yielded the best results in terms of precision, recall and mAP. This was followed

by no resizing, suggesting that resizing the image to make it square was detrimental to

performance. This is because the ladle shape is unique and quite complex, and therefore

forcing the shape to ensure the overall image is square, especially in the harsh environment,

compromises feature extraction. No image resizing was most efficient in terms of inference

time, which is because it requires the least processing, whilst pad64-1024 was the second

slowest after square-2048, which was not due to any obvious reason since it was more com-

putationally lightweight than pad64-2048. The trend in inference times was similar to the

trend in training times, suggesting the pad64-1024 configuration was less efficient than other

configurations, however the difference is minimal. pad64-1024 had the lowest training loss

and the highest mAP during testing, however it also had the highest validation loss and the

largest difference between training and validation losses. As mentioned in Table 5 discus-

sion, a larger validation loss often suggests poorer generalisation on new data, and a large

difference between training and validation losses indicates overfitting, which also leads to

poorer generalisation.

Data points collected from no image resizing are from the best experiment in Table 5

for efficiency, since the optimisation process was broad and configurations from Table 5 did

not change at the beginning of the Table 6 experiments. This was continued throughout

the optimisation process. In Table 6, using pad64-1024 image resizing resulted in the best

performance (0.282 mAP, shown in bold) and was therefore taken forward to the next stage.

Table 6: Image resizing experimental results

Image

Resizing

Epoch

Time (s)

Train

Time (s)

Train

Loss

Val.

Loss

Inf.

Time (s)
Precision Recall mAPCOCO

None 1392 27843 0.472 0.985 0.361 0.257 0.276 0.276

Square-1024 1350 26997 0.479 2.046 0.368 0.116 0.116 0.105

Square-2048 1433 28668 0.453 1.094 0.516 0.208 0.208 0.204

Pad64-1024 1364 27284 0.443 1.620 0.410 0.304 0.304 0.282

Pad64-2048 1290 25804 0.482 0.912 0.375 0.178 0.178 0.173
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Table 7 shows results from the third set of experiments which were based on the aug-

mentation settings. Evidently, mAP, precision and recall were significantly higher when

augmentation was not applied. Similarly to the image resizing discussion, this could be

due to the ladle shape complexity and harsh lighting conditions observable in the footage,

meaning only the original data was capable of containing sufficiently high quality features

for the model to learn from. Interestingly, whilst the non-augmented data experiment had a

large difference between training and validation losses as already discussed regarding image

resizing, the augmented data experiment had a significantly smaller gap, smaller than any

of the image resizing experiments and small enough to be more typical of successful model

training. For augmentation, there was only about a 10% increase in loss from training to

validation, suggesting the model found slightly more difficulty in predicting when it was

being challenged rather than taught through labels. Since the performance was still poorer

than when using no augmentation, this could just be by chance. However, the difference in

loss gaps between the two experiments, and the nature of augmentation procedures, suggests

that training and validation sets were originally too dissimilar, whilst training and testing

sets were more similar. Therefore, when augmentation was applied to training and validation

sets, it made them more similar resulting in a much smaller loss gap, however the training

data became much less similar to the testing set, resulting in lower overall performance.

These results emphasise the benefits of augmentation whilst also suggesting that the size

and distribution of the dataset used in this optimisation were insufficient. In Table 7, using

no augmentation resulted in the best performance (0.282 mAP, shown in bold) and was

therefore taken forward to the next stage of the optimisation.

Table 7: Augmentation experimental results

Augmentation
Epoch

Time (s)

Train

Time (s)

Train

Loss

Val.

Loss

Inf.

Time (s)
Precision Recall mAPCOCO

FALSE 1364 27284 0.443 1.620 0.410 0.304 0.304 0.282

TRUE 1302 26032 0.586 0.648 0.301 0.123 0.123 0.103

Table 8 shows results from mini-mask experiments, which show that model performance

decreased significantly with both the application of a mini-mask, as well as increasing mini-

mask size. Furthermore, the use of a mini-mask added a large computational strain, shown by

the (112, 112) mini-mask training failing roughly half way through and the (224, 224) mini-

mask failing completely, due to out-of-memory (OOM) errors. The purpose of mini-masks
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is to improve memory efficiency, however increasing mini-mask size still increases memory

requirements. Therefore, these results suggest that somewhere between (56, 56) and (112,

112), the increased memory usage from the size of the mini-mask begins to outweigh memory

saved. There were no trends in terms of training or inference times. In Table 8, using no

mini-mask resulted in the best performance (0.282 mAP, shown in bold) and was therefore

taken forward to the next stage.

Table 8: Mini-mask experimental results

Mini-Mask

Size

Epoch

Time (s)

Train

Time (s)

Train

Loss

Val.

Loss

Inf.

Time (s)
Precision Recall mAPCOCO

NA 1364 27284 0.443 1.620 0.410 0.304 0.304 0.282

56,56 1230 24605 0.479 1.362 0.330 0.187 0.187 0.156

112,112 1242 9933 (OOM) 0.011 3.206 0.485 0.043 0.043 0.041

224,224 OOM OOM OOM OOM OOM OOM OOM OOM

Table 9 shows results from weight decay experiments, which show mAP was much higher

when weight decay was lower. In fact, when weight decay was 0.01 and 0.001, results were

mostly the same. Meanwhile, when weight decay was 0.0001 performance metrics were much

better, suggesting a lower weight decay was more effective and at some point between 0.0001

and 0.001, there was a cut-off where increasing weight decay no longer affected performance.

Interestingly, the difference between training and validation losses increased with decreasing

weight decay, suggesting a trade-off between overfitting risk and model performance, which

is common in computer vision. There were no trends in terms of training or inference times.

In Table 9, using a weight decay value of 0.0001 resulted in the best performance (0.282

mAP, shown in bold) and was therefore taken to the next stage.

Table 9: Weight decay experimental results

Weight

Decay

Epoch

Time (s)

Train

Time (s)

Train

Loss

Val.

Loss

Inf.

Time (s)
Precision Recall mAPCOCO

0.01 1255 25107 0.464 0.994 0.367 0.025 0.025 0.025

0.001 1209 24184 0.448 1.553 0.358 0.025 0.025 0.025

0.0001 1364 27284 0.443 1.620 0.410 0.304 0.304 0.282
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4.3.3 Mask R-CNN Efficient Grid Search Optimisation

The initial optimisation included the backbone, the layers re-trained after pre-training, and

settings for image resizing, augmentation, mini-masking, and weight decay. The second

part of the optimisation consisted of the six “efficient grid search” (EGS) setups mentioned

in Section 4.2.3. As previously mentioned, the design of these searches were inspired by

both grid search [225] and Taguchi’s orthogonal arrays [226]. For each search, discussion is

supported by a table of results and an interaction plot which shows how changing different

hyperparameters affected performance.

4.3.3.1 Efficient Grid Search 1

Table 10 shows experimental results from EGS 1 which included steps per epoch and val-

idation steps (definitions are in Section 4.2). The letters “P” and “R” represent precision

and recall, respectively. Training time generally increased with more steps per epoch and

more validation steps. This is because more steps per epoch means more batches of data

processed during one epoch, and more validation steps means more computations are per-

formed at the end of each epoch. There were also a few outliers which were likely due to

inherent variability in system performance. Factors such as background processes and small

variations in hardware performance can cause these fluctuations.

The interaction plot in Figure 35 suggests the impact of the two hyperparameters on

mAP. As shown, there was a tendency for mAP to be higher with more steps per epoch,

however this effect was relatively small and could be due to random variability present in

neural networks. Additionally, the validation steps appeared to have a more significant

impact where using 50 over 25 or ten correlated with a significant increase in mAP.

The fact that the default values (1000 steps per epoch and 50 validation steps) gave the

best performance overall, suggests that the developers of Mask R-CNN already optimised

these settings either for another use-case or for general performance which seemingly aligns

with this study. This was found with other configurations too.
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Table 10: EGS 1 experimental results

Exp. No.
Steps

Per Epoch

Val.

Steps

Epoch

Time (s)

Train

Time (s)

Train

Loss

Val.

Loss

Inf.

Time (s)
P R mAPCOCO

1 250 10 1244 21153 0.487 1.642 0.325 0.079 0.082 0.076

2 250 25 1271 24141 0.024 2.327 0.326 0.043 0.044 0.044

3 250 50 1382 27633 0.461 0.948 0.427 0.090 0.093 0.078

4 500 10 1264 25281 0.459 0.924 0.360 0.122 0.122 0.119

5 500 25 1327 26540 0.457 1.168 0.343 0.021 0.021 0.018

6 500 50 1368 27361 0.033 1.528 0.369 0.242 0.242 0.204

7 1000 10 1465 29294 0.147 1.292 0.457 0.064 0.064 0.048

8 1000 25 1283 25655 0.460 1.388 0.449 0.064 0.064 0.048

9 1000 50 1364 27284 0.443 1.629 0.410 0.304 0.304 0.282
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Figure 35: Interaction plot for EGS 1 which shows the average mAP score achieved for

each setting of the “steps per epoch” and “validation steps” hyperparameters
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4.3.3.2 Efficient Grid Search 2

Table 11 shows experimental results from EGS 2 which included epochs, learning rate, learn-

ing momentum and gradient clip normalisation. Differently to previous experiments, the

best model was not taken forward from the previous set of experiments due to the Taguchi-

inspired orthogonal arrays not naturally aligning all of the previous configurations for any

one experiment. Unsurprisingly, the overall training time approximately double and tripled

when increasing epochs from ten to 20 and 30 respectively. Meanwhile, this appeared to

have no positive effect on overall performance, suggesting that ten epochs was enough to

maximise model performance. This was further supported by the fact that for all sets of

experiments up until this point, the best epoch was between the first and the tenth.

An interaction plot is shown in Figure 36 which visualises the impact of different hyper-

parameters on the mAP. The graph suggests that a higher learning momentum generally

resulted in a higher mAP and the lowest learning rate resulted in higher mAP values. Mean-

while, the graph suggests that the gradient clip normalisation had the largest impact on mAP

but with no obvious trend. A lower learning rate allows the model to learn more gradually,

therefore learning more nuanced features, whilst a higher learning momentum helps to avoid

local minima. However, all hyperparameters in EGS 2 would benefit from more thorough

analysis, possibly in separate experiments for a more in-depth analysis on the effects of each

one individually.

Based on this analysis, it is reasonable to state that these results are fairly inconclusive.

Therefore, since the best model from EGS 1 used the default values of 0.001, 0.9 and five for

LR, LM and GCN respectively, these settings were taken forward. This aligns with previous

discussion stating that Mask R-CNN developers likely optimised many hyperparameters

beforehand.
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Table 11: EGS 2 experimental results

Exp. No. Epochs LR LM
Grad.

Clip Norm.

Epoch

Time (s)

Train

Time (s)

Train

Loss

Val.

Loss

Inf.

Time (s)
P R mAPCOCO

1 10 0.02 0.5 2.5 1404 14038 0.467 1.055 0.397 0.076 0.076 0.075

2 10 0.001 0.9 5 1320 13198 0.463 1.300 0.367 0.036 0.036 0.028

3 10 0.0001 0.99 10 1411 14111 0.475 0.902 0.522 0.238 0.238 0.192

4 20 0.02 0.9 10 1399 27983 0.462 1.383 0.316 0.229 0.229 0.198

5 20 0.001 0.99 2.5 1336 26721 0.483 1.312 0.313 0.229 0.229 0.198

6 20 0.0001 0.5 10 1420 28393 0.482 1.368 0.435 0.048 0.048 0.040

7 30 0.02 0.99 5 1311 39329 0.494 1.034 0.345 0.060 0.060 0.052

8 30 0.001 0.5 10 1276 38286 0.444 1.703 0.334 0.096 0.096 0.075

9 30 0.0001 0.9 2.5 1278 38339 0.469 1.109 0.358 0.160 0.160 0.147
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Figure 36: Interaction plot for EGS 2 which shows the average mAP score achieved for

each setting of the “epochs”, “learning rate” (LR), “learning momentum” (LM) and “gra-

dient clip normalisation” (GCN) hyperparameters

108



4.3.3.3 Efficient Grid Search 3

Table 12 shows experimental results from EGS 3 which included RPN class loss, RPN bound-

ing box loss, Mask R-CNN class loss, Mask R-CNN bounding box loss and Mask R-CNN

mask loss. There are a few particularly notable aspects of Table 12, the first being that the

epoch and training times are a magnitude of order smaller than in previous experiments.

Since the number of experiments in this grid search were much more than previous grid

searches and each experiment was taking 20000-30000 seconds to train (approximately 5.5

to 8.3 hours), whilst EGS 1 results indicated that steps per epoch did not appear to have a

significant impact on model performance, it was decided that the steps per epoch would be

reduced to 100. In hindsight, this could have been attempted straight after EGS 1, however

the need for drastically improving time consumption did not become apparent until larger

sets of experiments were needed such as in EGS 3. The interaction plot for EGS 1 actually

showed a slight favour to higher steps per epoch when considering mAP, and whilst this

was not significant, it was decided that it was best to avoid decreasing it unless absolutely

necessary. The second notable aspect is that varying loss weights had a significant impact

on validation loss, as well as mAP. In terms of validation loss, it can be seen that the de-

fault settings in the first experiment (1, 1, 1, 1, 1) aligned with the best experiment from

EGS 1. This experiment had significantly higher validation loss than any other experiment,

indicating that for this case study, an equal loss weighting across classification, localisation

and segmentation was undesirable. Whilst the first experiment had the highest validation

loss by far, it lied somewhere in the middle of the distribution of mAP results. This meant

that many other loss weight experiments performed much better.

An interaction plot is shown in Figure 37 which visualises the impact of different hyper-

parameters on the mAP. The graph suggests that lower RPN bbox loss and MRCNN class

loss weights resulted in higher mAP performance. Lower RPN bbox loss being better could

mean that the model performs better when it focuses less on perfecting initial region proposal

boxes due to the later MRCNN localisation stage refining them anyway. Lower MRCNN class

loss weighting improving mAP could be because the only class (other than the background)

is the ladle, meaning there is not much need for the model to focus on improving this aspect

of prediction. The MRCNN bbox seemed to have the largest effect on the mAP but with no

obvious trend, so it would be useful to explore this hyperparameter on its own. It could have

the largest effect because the refinement of bounding boxes is crucial for overall prediction,

as opposed to RPN localisation which only needs to give initial approximations. MRCNN

mask loss had the second largest effect, which is unsurprising since the mAP is directly
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based on the accuracy of the final mask prediction. These results actually emphasise just

how much the final mask prediction relies on the underpinning localisation aspect (MRCNN

bbox loss). Finally, according to Figure 37, the RPN class loss was the third most impactful

weight closely following the mask loss in terms of impact. This could be because the initial

RPN stage is crucial for distinguishing between the ladle and the background by learning

which bounding boxes contain the ladle. Overall, the 24th experiment using loss weights

of (3, 2, 1, 3, 3) produced the highest mAP (0.438) and was therefore chosen as the best

configuration for these hyperparameters.
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Table 12: EGS 3 experimental results

Exp. No.
RPN

Class Loss

RPN

Bbox Loss

MRCNN

Class Loss

MRCNN

Bbox Loss

MRCNN

Mask Loss

Epoch

Time (s)

Train

Time (s)

Train

Loss

Val.

Loss

Inf.

Time (s)
P R mAPCOCO

1 1 1 1 1 1 1364 27284 0.443 1.620 0.410 0.304 0.304 0.282

2 1 1 1 1 2 216 2161 0.399 0.669 0.503 0.382 0.424 0.424

3 1 1 1 1 3 218 2182 0.371 0.649 0.460 0.423 0.423 0.363

4 1 2 2 2 1 220 2201 0.454 0.696 0.451 0.323 0.328 0.273

5 1 2 2 2 2 212 2121 0.396 0.684 0.475 0.077 0.078 0.078

6 1 2 2 2 3 217 2166 0.386 0.679 0.471 0.284 0.291 0.291

7 1 3 3 3 1 216 2163 0.507 0.608 0.455 0.283 0.316 0.316

8 1 3 3 3 2 211 2108 0.369 0.646 0.472 0.364 0.364 0.354

9 1 3 3 3 3 216 2161 0.377 0.700 0.455 0.198 0.198 0.165

10 2 1 2 3 1 212 2121 0.425 0.781 0.466 0.317 0.326 0.286

11 2 1 2 3 2 208 2084 0.447 0.697 0.466 0.418 0.419 0.419

12 2 1 2 3 3 212 2123 0.391 0.849 0.460 0.261 0.290 0.290

13 2 2 3 1 1 216 2164 0.358 0.767 0.479 0.320 0.335 0.335

14 2 2 3 1 2 219 2188 0.516 0.668 0.476 0.131 0.156 0.156

15 2 2 3 1 3 216 2160 0.424 0.678 0.461 0.214 0.231 0.231

16 2 3 1 2 1 220 2203 0.380 0.796 0.449 0.111 0.111 0.101

17 2 3 1 2 2 222 2224 0.491 0.678 0.480 0.094 0.123 0.123

18 2 3 1 2 3 223 2229 0.413 0.711 0.477 0.229 0.264 0.264

19 3 1 3 2 1 227 2265 0.400 0.603 0.470 0.142 0.143 0.143

20 3 1 3 2 2 223 2228 0.387 0.705 0.462 0.145 0.150 0.150

21 3 1 3 2 3 221 2214 0.410 0.691 0.461 0.294 0.295 0.295

22 3 2 1 3 1 222 2217 0.491 0.678 0.441 0.442 0.446 0.394

23 3 2 1 3 2 225 2254 0.429 0.618 0.456 0.241 0.245 0.245

24 3 2 1 3 3 225 2253 0.408 0.812 0.453 0.443 0.446 0.438

25 3 3 2 1 1 218 2175 0.433 0.674 0.483 0.375 0.429 0.429

26 3 3 2 1 2 219 2187 0.606 0.733 0.460 0.163 0.189 0.189

27 3 3 2 1 3 219 2193 0.465 0.634 0.473 0.236 0.274 0.274
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Figure 37: Interaction plot for EGS 3 which shows the average mAP score achieved for

each setting of the “RPN class loss”, “RPN bbox loss”, “MRCNN class loss”, “MRCNN

bbox loss” and “MRCNN mask loss” hyperparameters
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4.3.3.4 Efficient Grid Search 4

Table 13 shows experimental results from EGS 4 which included RPN anchor scales, RPN

anchor ratios, RPN anchor stride, RPN NMS threshold and RPN train anchors per image.

Note that in this grid search, similarly to EGS 2, the default configurations for the relevant

hyperparameters did not naturally align with any particular experiment and so every ex-

periment is entirely new. The interaction plot in Figure 38 does not show any real trends

and the most that can be drawn from the graph with regards to trends, is that excluding

the very slight variation in effect between levels one and two, RPN train anchors per image

generally had a more positive effect on mAP when it was lower. This is not strong evidence

and would need to be experimented with more thoroughly to prove, however if true, it could

be because less train anchors mean a lower likelihood of the model overfitting and some-

where between 256 and 512 anchors a threshold was crossed. Despite lack of trend insights,

Figure 38 does suggest the possible extent of impact of each hyperparameter on the mAP.

According to the plot, RPN anchor scales had the most significant impact on mAP, followed

by RPN anchor stride. For anchor scales, this could be because they ensure the size of region

proposals are similar to the size of the predicted objects, and since there is only one object

(the ladle) that does not change size throughout the video, it is important for the anchors

to be a specific size. This also aligns with the fact that medium-sized scales of (32, 64,

128, 256, 512) appeared to be superior to the larger and smaller settings. For anchor stride,

this could be because it is crucial for the region proposals to be dense enough to capture

the ladle whilst it is moving, whilst being sparse enough to ensure efficiency and perform

robustly to noise. Additionally, the remaining three hyperparameters all appeared to impact

mAP similarly. This could be because only one object is being tracked, so it is likely that

train anchors per image, anchor ratios and NMS threshold are within the optimal range for

every single setting, meaning they do no need to be changed. It is worth noting that due to

the number of hyperparameters tested in one go, some of these suggestions may be based on

results distorted by both the interaction between hyperparameters, as well as the factor of

random variability always present in neural networks.

Overall, the 11th experiment was considered the best which used anchor scales of (32,

64, 128, 256, 512), anchor ratios of (0.25, 0.5, 1), anchor stride of two, NMS threshold of

0.9 and 256 train anchors per image. Whilst this experiment did not result in the highest

mAP (0.396 compared to 0.438 in the first experiment), the mask appeared visually more

accurate in terms of both shape and coverage of the ladle. It did produce higher precision

than the highest mAP experiment, although a few other experiments did also. At this
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point of the model optimisation it became apparent that mAP was not as comprehensive to

measuring the extent of desirable model performance as first thought. Whilst in most cases,

experiments scoring a higher mAP visually appeared to segment the ladle better, in EGS 4,

there was a discrepancy between mAP and actual best performance. The discrepancy was

not large, but it was still significant. However, it is worth noting that whilst mAP does not

include any subjectivity, human visual judgement does. Therefore, it is possible that the

visual interpretation itself was inaccurate (although unlikely), and the mAP was actually a

sufficient metric. One way to confirm or deny this, would be to use the judgement of several

humans rather than just one.
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Table 13: EGS 4 experimental results

Exp. No.
RPN

Anchor Scales

RPN

Anchor Ratios

RPN

Anchor Stride

RPN

NMS Threshold

RPN Train

Anchors

Per Image

Epoch

Time (s)

Train

Time (s)

Train

Loss

Val.

Loss

Inf.

Time (s)
P R mAPCOCO

1 16, 32, 64, 128, 256 0.25, 0.5, 1 1 0.7 128 220 2204 0.416 0.6873 0.485 0.277 0.285 0.275

2 16, 32, 64, 128, 256 0.25, 0.5, 1 1 0.7 256 220 2201 0.511 0.8504 0.457 0.398 0.438 0.438

3 16, 32, 64, 128, 256 0.25, 0.5, 1 1 0.7 512 226 2255 0.502 0.693 0.470 0.131 0.155 0.155

4 16, 32, 64, 128, 256 0.5, 1, 2 2 0.8 128 221 2206 0.422 0.687 0.464 0.310 0.311 0.311

5 16, 32, 64, 128, 256 0.5, 1, 2 2 0.8 256 222 2224 0.408 0.605 0.462 0.248 0.252 0.250

6 16, 32, 64, 128, 256 0.5, 1, 2 2 0.8 512 223 2229 1.106 0.847 0.459 0.208 0.237 0.237

7 16, 32, 64, 128, 256 1, 2, 4 3 0.9 128 226 2257 0.508 0.822 0.457 0.286 0.288 0.283

8 16, 32, 64, 128, 256 1, 2, 4 3 0.9 256 219 2191 0.421 0.772 0.483 0.188 0.207 0.207

9 16, 32, 64, 128, 256 1, 2, 4 3 0.9 512 225 2247 0.409 0.796 0.455 0.294 0.296 0.288

10 32, 64, 128, 256, 512 0.25, 0.5, 1 2 0.9 128 225 2253 0.397 0.716 0.480 0.310 0.392 0.392

11 32, 64, 128, 256, 512 0.25, 0.5, 1 2 0.9 256 225 2254 0.366 0.707 0.448 0.404 0.404 0.396

12 32, 64, 128, 256, 512 0.25, 0.5, 1 2 0.9 512 225 2254 0.387 0.645 0.467 0.344 0.353 0.353

13 32, 64, 128, 256, 512 0.5, 1, 2 3 0.7 128 228 2277 0.431 0.714 0.486 0.319 0.393 0.393

14 32, 64, 128, 256, 512 0.5, 1, 2 3 0.7 256 223 2229 0.460 0.752 0.468 0.133 0.133 0.129

15 32, 64, 128, 256, 512 0.5, 1, 2 3 0.7 512 223 2226 0.484 0.751 0.451 0.354 0.354 0.342

16 32, 64, 128, 256, 512 1, 2, 4 1 0.8 128 226 2257 0.457 0.763 0.464 0.223 0.224 0.224

17 32, 64, 128, 256, 512 1, 2, 4 1 0.8 256 221 2214 0.367 0.885 0.478 0.414 0.426 0.426

18 32, 64, 128, 256, 512 1, 2, 4 1 0.8 512 216 2160 0.392 0.708 0.451 0.246 0.247 0.247

19 64, 128, 256, 512, 1024 0.25, 0.5, 1 3 0.8 128 222 2217 0.513 0.699 0.486 0.181 0.235 0.235

20 64, 128, 256, 512, 1024 0.25, 0.5, 1 3 0.8 256 226 2257 0.500 0.641 0.434 0.140 0.142 0.135

21 64, 128, 256, 512, 1024 0.25, 0.5, 1 3 0.8 512 221 2213 0.538 0.688 0.451 0.203 0.213 0.204

22 64, 128, 256, 512, 1024 0.5, 1, 2 1 0.9 128 224 2244 0.465 0.772 0.440 0.076 0.076 0.058

23 64, 128, 256, 512, 1024 0.5, 1, 2 1 0.9 256 225 2247 0.424 0.749 0.472 0.381 0.431 0.431

24 64, 128, 256, 512, 1024 0.5, 1, 2 1 0.9 512 228 2279 0.488 0.720 0.439 0.112 0.112 0.085

25 64, 128, 256, 512, 1024 1, 2, 4 2 0.7 128 223 2234 0.426 0.712 0.452 0.372 0.372 0.296

26 64, 128, 256, 512, 1024 1, 2, 4 2 0.7 256 228 2275 0.508 0.697 0.465 0.103 0.106 0.106

27 64, 128, 256, 512, 1024 1, 2, 4 2 0.7 512 232 2320 0.484 0.626 0.454 0.352 0.370 0.363
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Figure 38: Interaction plot for EGS 4 which shows the average mAP score achieved for

each setting of the “RPN anchor scales”, “RPN anchor ratios”, “RPN anchor stride”,

“RPN NMS threshold” and “RPN train anchors per image” hyperparameters
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4.3.3.5 Efficient Grid Search 5

Table 14 shows experimental results from EGS 5 which included pre-NMS limit, post-NMS

train RoIs, post-NMS inference RoIs, train RoIs per image and RoI positive ratio. Note

that in this grid search, similarly to EGS 2 and EGS 4, the default configurations for the

relevant hyperparameters did not naturally align with any particular experiment and so every

experiment is new. The interaction plot in Figure 39 shows no strong trends, and similar but

opposite to the train anchors in EGS 4, excluding the very slight variation in effect between

levels one and two, post-NMS train RoIs generally had a more positive effect on mAP when

it was lower. This is not strong evidence and would need to be experimented with more

thoroughly to prove, however if true, it could be because below some threshold (between

2000 and 4000), the model is forced to pay more attention to better proposals. In terms of

impact, Figure 39 shows that train RoIs per image and RoI positive ratio had the largest

impacts on mAP. Train RoIs dictate how many samples the model has to learn from and

therefore directly impacts the effectiveness of training, so it is unsurprising that it was shown

to have a large effect. Also, RoI positive ratio controls the number of object and background

samples during training which should ideally avoid false positives and false negatives, which

directly impacts precision, recall, and resulting mAP. Meanwhile, post-NMS RoIs for both

training and inference had similar impacts on mAP. These ensure that the correct amount

of proposals are finally used for training and inference, and whilst they need to be sufficient,

the most important aspect is that they are high quality. Finally, the pre-NMS proposal limit

had almost no impact on the mAP, which is explainable by the fact that it is more relevant to

computational efficiency, since post-NMS RoI values are what ultimately effect the number

of RoIs actually used.

Overall, the 13th experiment was considered the best which used a pre-NMS limit of 6000,

2000 post-NMS training RoIs, 2000 post-NMS inference RoIs, 100 train RoIs per image, and

a RoI positive ratio of 0.25. Similarly to EGS 4, whilst this experiment did not result in the

highest mAP (0.426 compared to 0.466), the mask appeared visually more accurate in terms

of both shape and coverage of the ladle. Again, this was subjective and could be confirmed

through the use of more human input.
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Table 14: EGS 5 experimental results

Exp. No.
Pre-NMS

Limit

Post-NMS

Train RoIs

Post-NMS

Inf. RoIs

Train RoIs

Per Image

RoI

Positive Ratio

Epoch

Time (s)

Train

Time (s)

Train

Loss

Val.

Loss

Inf.

Time (s)
P R mAPCOCO

1 3000 1000 500 100 0.25 224 2242 0.380 0.769 0.500 0.408 0.466 0.466

2 3000 1000 500 100 0.33 229 2285 0.418 0.781 0.453 0.245 0.246 0.246

3 3000 1000 500 100 0.5 227 2271 0.441 0.643 0.487 0.303 0.319 0.319

4 3000 2000 1000 200 0.25 227 2271 0.479 0.637 0.467 0.244 0.260 0.260

5 3000 2000 1000 200 0.33 221 2208 0.400 0.808 0.498 0.202 0.211 0.211

6 3000 2000 1000 200 0.5 227 2269 0.390 0.791 0.475 0.358 0.391 0.391

7 3000 4000 2000 400 0.25 239 2393 0.447 0.692 0.470 0.154 0.181 0.181

8 3000 4000 2000 400 0.33 228 2276 0.406 0.792 0.481 0.179 0.204 0.204

9 3000 4000 2000 400 0.5 237 2367 0.418 0.751 0.476 0.301 0.335 0.335

10 6000 1000 1000 400 0.25 237 2366 0.357 0.692 0.486 0.422 0.465 0.465

11 6000 1000 1000 400 0.33 235 2350 0.510 0.660 0.472 0.299 0.336 0.336

12 6000 1000 1000 400 0.5 232 2324 0.427 0.676 0.459 0.332 0.333 0.330

13 6000 2000 2000 100 0.25 236 2362 0.380 0.626 0.468 0.420 0.433 0.426

14 6000 2000 2000 100 0.33 237 2365 0.457 0.689 0.491 0.292 0.360 0.360

15 6000 2000 2000 100 0.5 236 2361 0.389 0.563 0.494 0.351 0.354 0.351

16 6000 4000 500 200 0.25 237 2371 0.409 0.687 0.492 0.150 0.165 0.165

17 6000 4000 500 200 0.33 238 2381 1.042 0.761 0.442 0.000 0.000 0.000

18 6000 4000 500 200 0.5 232 2316 0.454 0.796 0.471 0.088 0.099 0.099

19 12000 1000 2000 200 0.25 237 2371 0.366 0.730 0.479 0.328 0.342 0.336

20 12000 1000 2000 200 0.33 243 2430 0.472 0.681 0.451 0.076 0.077 0.076

21 12000 1000 2000 200 0.5 231 2312 0.406 0.691 0.484 0.194 0.226 0.226

22 12000 2000 500 400 0.25 233 2330 0.360 0.733 0.489 0.287 0.299 0.296

23 12000 2000 500 400 0.33 227 2265 0.521 0.814 0.490 0.150 0.156 0.155

24 12000 2000 500 400 0.5 237 2366 0.418 0.785 0.478 0.424 0.451 0.451

25 12000 4000 1000 100 0.25 226 2263 0.431 0.729 0.462 0.343 0.403 0.403

26 12000 4000 1000 100 0.33 226 2258 0.498 0.740 0.487 0.234 0.287 0.287

27 12000 4000 1000 100 0.5 224 2235 0.375 0.674 0.461 0.356 0.372 0.362
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Figure 39: Interaction plot for EGS 5 which shows the average mAP score achieved for

each setting of the “pre-NMS limit”, “post-NMS RoIs training”, “post-NMS RoIs infer-

ence”, “train RoIs per image” and “RoI positive ratio” hyperparameters
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4.3.3.6 Efficient Grid Search 6

Table 15 shows experimental results from EGS 6 which included pool size, mask pool size and

mask shape. The interaction plot (Figure 40) suggests there were no trends, however pool

size was shown to have almost no impact on mAP, whereas mask pool size and mask shape

did. Pool size dictates the feature map size of each RoI after pooling which is essential for

classification and localisation and therefore, in hindsight, would have been better off being

grouped into an earlier grid search as opposed to being grouped with mask-related hyper-

parameters which are associated with the end of the network. Since the model optimisation

was conducted in this manner, it is highly likely that due to other RPN-related hyperparam-

eters were already optimised in previous grid search experimentation, the remaining effect

of changing pool size was suppressed. Whilst this uncovers the fact that the organisation

of the hyperparameter optimisation was sub-optimal in this case, it more importantly in-

dicates that the optimisation up to this stage, at least in terms of RPN and RoI related

hyperparameters, was successful. In other words, since the optimisation already led to high

quality region proposals, there was no improvement that modifying pool size could make.

Moving focus towards mask-related optimisation, the larger mask pool size impact makes

sense, since it directly affects the resolution of feature maps for mask generation. This is the

same for mask shape.

Overall the third experiment produced the best precision, recall and mAP, whilst also

being judged visually as the best model. This experiment used a pool size of seven, a mask

pool size of 56, and a mask shape of (112, 112) and achieved an mAP of 0.516.
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Table 15: EGS 6 experimental results

Exp. No. Pool Size
Mask Pool

Size

Mask

Shape

Epoch

Time (s)

Train

Time (s)

Train

Loss

Val.

Loss

Inf.

Time (s)
P R mAPCOCO

1 7 14 28, 28 236 2362 0.380 0.626 0.468 0.420 0.430 0.426

2 7 28 56, 56 230 2302 0.996 0.849 0.469 0.002 0.003 0.003

3 7 56 112, 112 227 2270 0.416 0.636 0.455 0.477 0.516 0.516

4 14 14 56, 56 228 2281 0.397 0.558 0.457 0.242 0.242 0.242

5 14 28 112, 112 214 2140 0.418 0.593 0.472 0.358 0.358 0.358

6 14 56 28, 28 222 2215 0.445 0.766 0.444 0.348 0.348 0.296

7 28 14 112, 112 227 2269 0.362 0.767 0.466 0.366 0.367 0.364

8 28 28 28, 28 228 2282 0.437 0.707 0.451 0.193 0.213 0.213

9 28 56 56, 56 229 2288 0.404 0.696 0.490 0.239 0.283 0.283
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Figure 40: Interaction plot for EGS 6 which shows the average mAP score achieved for

each setting of the “pool size”, “mask pool size” and “mask shape” hyperparameters
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4.3.4 Analysis of Hyperparameter Optimisation Results

Table 16 presents the optimal settings for each hyperparameter after completing the hy-

perparameter optimisation. This model was trained for ten epochs which took just under

four minutes each on average and just under 38 minutes in total. The mAP achieved was

0.516 and the inference time for each frame was 0.46s. This set of experiments exposed some

interesting aspects to Mask R-CNN and its hyperparameters. For example, whilst increasing

steps per epoch did correlate with a slight increase in mAP initially, decreasing this from

1000 to 100 appeared to have a noticeable impact on model performance but saved approxi-

mately 90% training time which was significant. Furthermore, since the best training epochs

were between one and ten, reducing them from 20 to ten halved the required training time.

These two findings were crucial to the efficiency of the optimisation at apparently no cost

to model performance. In future work, a much more conservative approach will be taken to

optimising hyperparameters, especially as many as the 24 optimised here.

EGS 3 was a key turning point in model performance. Before then, most hyperparameters

appeared to have little effect on mAP and validation losses were typically about double that

of the training losses indicating overfitting. This was likely caused by the dataset being too

small. One pouring video was used for training and validation, and one was used for testing.

However, for a task as complex as instance segmentation in a poorly-lit environment, this

was insufficient and would possibly require ten or more videos for each subset to develop a

high-performance model. In EGS 3 however, modifying loss weights closed the gap between

training and validation losses, and validation losses decreased to more acceptable values.

Loss weights had a large impact on performance because some operations of Mask R-CNN

are much more important than others depending on the scenario. In this case study, only one

object needed to be detected against the background, making the Mask R-CNN classification

loss less important. Similarly, the purpose was to segment the ladle, meaning Mask R-CNN

mask loss was crucial to the overall performance.

Also worth noting, is that the seemingly ineffective hyperparameters near the beginning

of the optimisation were not necessarily unimportant, but were experimented at a stage

where their impact could not be exposed. In future work it would be useful to incorporate

optimisation of hyperparameters such as learning rate and learning momentum after opti-

mising loss weights, which could result in an entirely different outcome to this one. The

most extreme example of non-ideal optimisation organisation was with the pool size hyper-

parameter in EGS 6. The fact that it was grouped far later on in the optimisation than its

most related hyperparameters (RoI and RPN based), meant that by the time it was tested,
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it was already redundant. This did uncover the success of some of the most crucial stages of

the optimisation however.

Table 16: Optimal hyperparameter settings

Hyperparameter Setting

CNN backbone ResNet101

Layers re-trained 3+

Image resizing pad1024

Augmentation off

Mini-mask off

Weight decay 0.0001

EGS 1

Steps per epoch 100

Validation steps 50

EGS 2

Epochs Variable

Learning rate 0.001

Learning momentum 0.9

Gradient clip norm. 5

EGS 3

RPN class loss 3

RPN bbox loss 2

MRCNN class loss 1

MRCNN bbox loss 3

MRCNN mask loss 3

EGS 4

RPN anchor scales (32, 64, 128, 256, 512)

RPN anchor ratios (0.25, 0.5, 1)

RPN anchor stride 2

RPN NMS threshold 0.9

RPN train anchors per image 256

Continued on next page
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Table 16 – continued from previous page

Hyperparameter Settings

EGS 5

Pre-NMS limit 6000

Post-NMS training RoIs 2000

Post-NMS RoIs inference 2000

Train RoIs per image 100

RoI positive ratio 0.25

EGS 6

Pool size 7

Mask pool size 56

Mask shape 112

It is important to note that the inherent complexity of the hyperparameter optimisation

played a large role in this task. By addressing 24 different hyperparameters, many involving

complex mathematical concepts, strategising the approach to optimisation was incredibly

challenging. Without already having expertise on Mask R-CNN, it would have been impos-

sible to plan the optimisation in an optimal way within one iteration. In fact, there is no one

optimal way, although some approaches could produce more useful conclusions than others.

In this case study, an approach was taken that generally organised optimisation stages so

that they aligned with sequential steps of the Mask R-CNN network. This approach turned

out to be effective and evidently from discussion, there were many findings. However, by

conducting this iteration, findings point to other potential optimisation strategies for further

insight. Due to the complexity of Mask R-CNN, many iterations could be performed with

many different strategies and novel approaches would still be uncovered.

Whilst the hyperparameter optimisation was a vast operation that was critical for many

learnings related to Mask R-CNN, there were some constraints on resources. On one hand,

these added to the challenge and made the learning process more tailored to industry where

resource efficiency is critical, which aligns with the aims of this project. On the other hand,

the results of this case study, whilst successful, do indicate that resources were limiting to

the final model produced. To elaborate, the time constraints were useful in that they forced

the pace of development and pushed some critical decisions such as reducing the steps per

epoch which saved 90% of the training time from that point onwards. Oppositely, the data
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constraints were too constrictive when it came to model development. Whilst a few hundred

labelled ladle frames were perceived as potentially being enough to develop a robust model

initially, with the additional research experience gained throughout all case studies, a number

of samples somewhere in the region of a few thousand would have been required at minimum

to achieve a production level model. Not only the dataset size, but the diversity of the

samples would need to be expanded also. Industrial application will be discussed in more

depth in Section 4.4. It is worth noting that labelling 100 frames of the ladle mask while

pouring was far more time-consuming than labelling 100 frames would have been for many

other objects. This was not only due to the complex shape of the mask, but particularly

because it was obstructed by emissions and was set in an environment with poor lighting.

If an auto-labelling method was developed for this kind of challenge, it would be incredibly

valuable to industry.

4.3.5 Kalman Filter Tracking

Following hyperparameter optimisation of Mask R-CNN, Kalman filtering experiments were

conducted to further advance the model. As mentioned in Section 4.2.4, Kalman filtering

was applied to enable the model to associate masks between sequential frames so that it

would have an improved understanding of ladle shape and movement across the video rather

than simply on a frame-by-frame basis. The expectation was that this would improve the

robustness of segmentation by adding a sequential understanding as well as a spatial under-

standing. Kalman filters predict the future position of an object, and in this case, the task is

multi-object tracking where the “objects” are points sampled from the predicted mask edges

in each frame.

Equation (15) in Section 4.2.4 showed the default state transition matrix, where ma-

trix values dictated how point positions and velocities changed (or stayed the same) across

timesteps, whilst δt was the change in timestep. Since elements [3,3] and [4,4] were used for

x and y velocity changes, and this model assumes constant velocity, they remained remain

unchanged.

Element [1,1] was tested at values from one to ten incrementally, and six gave the best

performance. Next, element [2,2] was tested in the same way whilst maintaining the value

of six for [1,1], and a value of eight produced the best performance. The optimal matrix is

shown in Equation (17).
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Âk =


6 0 ∆t 0

0 8 0 ∆t

0 0 1 0

0 0 0 1

 (17)

Table 17 shows how optimisation of the different elements improved the mAP. The original

mAP after completing the hyperparameter optimisation was 0.516, using the hyperparameter

settings summarised in Table 16 in Section 4.3.4. Therefore, optimising the first element gave

an improvement of 0.058, and optimising the second gave an improvement of 0.032. The

addition of the Kalman filtering increased the average inference time from 0.46s (2.17fps) to

0.59s (1.69fps).

Table 17: State transition matrix experimental results

Variable Tested mAPCOCO

xk−1 0.574

yk−1 0.606

In Table 17, xk−1 ([1,1] in Equation (17)) and yk−1 ([2,2] in Equation (17)) are x and y

position values respectively. The improvement observed by changing [1,1] and [2,2] to six and

eight respectively, is likely because they match what can be observed in the video. The ladle

begins on the lower right-hand side of the video, and since Python reads images from top

to bottom (therefore y-coordinate increases downwards), the six and eight in Equation (17)

roughly align with the x and y positions respectively.

Figure 41 and Figure 42 shows examples of Kalman filtering effects on the predicted

mask. From initial Kalman filter application, the mask result looked like Figure 41(a), (b)

and (c). As shown, the masks reach the edges of the ladle quite well, however they are

jagged and therefore incomplete, which is due to the point-to-point drawing of the edges.

In Figure 42(a), (b) and (c), the same frames are shown but after the convex hull was

applied. As shown, the jaggedness has been eliminated. In Figure 42(a), (b) and (c), there

are also green, yellow and red points shown. The green points are the initial Kalman filter

predictions, the yellow points are the measured mask edge points from Mask R-CNN, and

the red points are the Kalman filter predictions after being updated based on the actual

measurements. It may be noticeable that there are more yellow points than red points and
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the reason for this is the K-Nearest Neighbour clustering that was done to preserve points

that were close to each other and exclude points that were surrounding the ladle edge but

some distance away from it. K-Nearest Neighbours was applied with two neighbours, which

was found to preserve points sitting on the ladle edge whilst eliminating unwanted point

predictions.

(a) Frame 13 with Kalman filtering applied (b) Frame 66 with Kalman filtering applied

(c) Frame 112 with Kalman filtering ap-

plied

Figure 41: Comparison of mask outputs with Kalman filtering
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(a) Frame 13 with Kalman filtering and

convex hull applied

(b) Frame 66 with Kalman filtering and

convex hull applied

(c) Frame 112 with Kalman filtering and

convex hull applied

Figure 42: Comparison of mask outputs after applying the convex hull operation

Figure 42(a), (b) and (c) can be used to compare the original mask prediction (yellow

marks) to the Kalman filter mask. As shown, the Kalman filter does reach the ladle edges

better than the original masks, however since the overall shape is based purely on positions

of individual points, rather than the features of the ladle as a whole, there is less alignment

with the natural shape of the ladle and the Kalman mask. Therefore, although Kalman
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filtering improved the mAP, it was less ideal for real-world measurements compared to the

Mask R-CNN mask which had learned intricate features of the ladle and how it is supposed

to look. This indicates avenues for future work. For example, the state transition matrix for

every point was optimised in one go. In future work, it would likely enhance performance

if each of the 32 filters were optimised individually in some way, possibly setting matrix

elements as equations that take the pixel coordinates of a reference mask as input. Secondly,

since the Kalman model used in this research assumes linear motion, it is limited particularly

when the ladle rotates. Therefore, future work may benefit from using an extended Kalman

filtering approach [68].

4.3.6 Background Subtraction

Based on the success found in applying background subtraction (BGS) algorithms in Chapter

5 and Chapter 6, the same algorithms were applied in this case study also, to see if there

were any possible benefits to using this approach. The specific aspects of this case study

that BGS were thought to be potentially useful for, were tracking the ladle as it moves

since the background is “fixed” (which is not strictly true and is explained later), as well as

segmenting out the furnace emissions during pouring.

4.3.6.1 Analysis of Ladle Movement Frame

Figure 43 and Figure 44 show the results of an early frame where the ladle is approaching

the furnace after being processed with different BGS algorithms including MOG (Mixture

of Gaussians) [238], MOG2 [239], GSOC (Google Summer of Code) [240], GMG (Gaussian

Mixture-based Background Foreground Segmentation) [241], KNN (K-Nearest Neighbours)

[242] and CNT (Counting) algorithms [243]. At this stage of the footage, Figure 43(a)

which uses the MOG (Mixture of Gaussians) algorithm shows some potential for useful

application since it is capturing the the front edge of the ladle accurately. In all other cases

(including the second MOG variant MOG2), the harsh conditions and poor lighting comprise

an environment that is too complex for the algorithms to perform high quality segmentation

on just the ladle.
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(a) MOG (b) MOG2

(c) GSOC

Figure 43: Figure showing the effects of different BGS algorithms (MOG, MOG2 and

GSOC) on a frame showing the ladle moving towards the furnace

131



(a) GMG (b) KNN

(c) CNT

Figure 44: Figure showing the effects of different BGS algorithms (GMG, KNN and CNT)

on a frame showing the ladle moving towards the furnace
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4.3.6.2 Analysis of Early Pour Frame

Figure 45 and Figure 46 shows the results at an early point of pouring after being processed

with different BGS algorithms. This frame opens up discussion related more to the flame

severity measurement than the ladle tracking. All algorithms are not segmenting the ladle,

but instead, segmenting the flame region. Even though the ladle is moving, it does not stand

out much from the background and features such as the three light sources on the right hand

side, and particularly brightness changes in the flame region, are much more obvious from

the perspective of the algorithms. Whilst all algorithms in Figure 45 and Figure 46 show

potential use in flame severity measurement, they all have slightly different approaches as

shown by the differing masks. More investigation is required to understand the effectiveness

of these methods at measuring flame severity.

(a) MOG (b) MOG2

(c) GSOC

Figure 45: Figure showing the effects of different BGS algorithms (MOG, MOG2 and

GSOC) on a frame showing the ladle starting to pour molten metal into the furnace
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(a) GMG (b) KNN

(c) CNT

Figure 46: Figure showing the effects of different BGS algorithms (GMG, KNN and CNT)

on a frame showing the ladle starting to pour molten metal into the furnace
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4.3.6.3 Analysis of Mid-Pour Video Frame

Finally, Figure 47 and Figure 48 show the results of a frame mid-pour after being processed

with different BGS algorithms. These examples show some weak tracking of the ladle edges

and in some cases such as (d) and (f) there is added noise. Furthermore, there is some

mild emissions present in the flame region which are only captured by the CNT algorithm

which captures the flame region as well as the added noise anyway, preventing it from being

effective for real application. Whilst the results in Figure 45 and Figure 46 show potential

for BGS algorithms for flame severity measurement, the results in Figure 47 and Figure 48

show that they may produce a lot of false negatives unless combined with other techniques

or used in different lighting conditions.

(a) MOG (b) MOG2

(c) GSOC

Figure 47: Figure showing the effects of different BGS algorithms (MOG, MOG2 and

GSOC) on a frame showing the ladle pouring molten metal into the furnace
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(a) GMG (b) KNN

(c) CNT

Figure 48: Figure showing the effects of different BGS algorithms (GMG, KNN and CNT)

on a frame showing the ladle pouring molten metal into the furnace
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4.4 Industrial Application

This section investigates industrial application of the developed model for advancing upon

traditional ladle technology. By monitoring measurements like ladle pouring height, ladle ro-

tation angle, and furnace emission severity, this model provides real-world benefits. Firstly, it

can be used to record data for optimising pouring for emission reduction, leading to increased

safety and reduced equipment degradation. Secondly, it paves the way for automating the

pouring process, which would standardise it and eliminate the need for manual labour. The

following pages detail the approach used for real-world usage and the subsequent results

obtained.

4.4.1 Measuring the Pouring Process

To demonstrate the potential of the model for industrial use, focus was placed on estimating

three variables, namely pouring height, rotation angle, and flame or emission severity. These

variables are key aspects when assessing pour quality since the pouring height and rota-

tion angle majorly dictate ladle pouring behaviour, whilst the emission severity in the flame

region is an indicator of the severity of harmful fumes and equipment degradation. There-

fore, the concept was that ladle behaviour could be monitored simultaneously with emission

severity, and the relationship between process parameters and process quality could be un-

derstood more intricately. This contributes towards addressing the gap identified in Chapter

2 regarding using CV models to measure real-world characteristics.

Pouring height was measured by taking the highest pixel of the segmentation mask and

giving a fixed pixel offset, since there seemed to be a fairly constant-sized gap between the

top of the mask and the top of the actual ladle. If the segmentation was very precise, this

offset may be removed. A five-point moving average was also applied since the ladle height

changed gradually whereas the mask changed every frame, and since it was unstable at times,

this added unnecessary error to the model predictions.

Rotation angle was measured based on the bottom edge of the ladle as this was the most

accurately predicted throughout the footage and therefore gave the most reliable estimate.

The bottom edge was captured by a moving window that was scaled dynamically based on

the location of the right-most point of the mask, since the ladle was always tilted slightly to

the left. As the right-most point moved upwards (ladle pouring), the moving window became

narrower and expanded in a downwards manner, effectively capturing the bottom ladle edge

as it rotated from the bottom side to the right-hand side. A line of best fit was produced
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Table 18: Flame severity boundaries for the number of bright pixels in the flame region

Bright Pixels Flame Severity

0-1000 0

1000-2000 1

2000-6000 2

6000-10000 3

10000-15000 4

15000+ 5

from the bottom ladle edge and used to calculate the angle of rotation. A four-point moving

average was applied to this to eliminate small fluctuations in angle estimations to produce

a smoother signal that was more like one that would be expected from the gradual and

constant rotation of the ladle during pouring.

Finally, flame severity was measured by focusing on the area significantly affected by

furnace flames. Pixels exceeding a brightness threshold of 235 were counted and depending

on how this value fitted into several pre-defined ranges, a severity rating for each frame was

established. Table 18 shows the boundaries that were used for each flame severity. These

measurements (pouring height, rotation angle and flame severity) were captured over a whole

pouring video and then used to gain insights on the pouring process through further analysis.

Examples of the final output of the model can be seen in Figure 49 and Figure 50. For

this aspect of the research, the training set was increased from 120 to 480 images to maximise

performance, and as previously discussed, Kalman filtering was disabled as it was found to

make the segmentation mask more unstable which was detrimental to the pouring height and

rotation angle estimations. The flame severity was on a scale of 0 to 5, the pouring height

was measured in pixels and the rotation was measured in degrees. As shown in Figure 49 and

Figure 50, the model performance was quite good across most frames which aligns with the

mAP value of 0.516. From Figure 49(a) to (c), followed by Figure 50(a) to (c), the frames

are in chronological order and show how the model dealt with the ladle rotating. The model

appeared to capture the shape of the visible parts of the ladle quite well and even does quite

a good job when the metal frame of the furnace obstructs part of it, demonstrating that

the labelling choice discussed in Section 4.2.1 was effective. Despite the visible portion of
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the ladle changing whilst it also rotated, the mask was fairly consistent. However, it can

also be seen that the edges of the mask do not reach the edges of the actual ladle, which

seemed to be a noticeable limitation throughout the whole case study. As mentioned, this

was counteracted by using Kalman filtering but at the cost of the quality of the mask shape

which was crucial for real-world measurements. It is believed that if much more training data

was provided to Mask R-CNN, then this limitation may be overcome, however considering

the original quality and quantity of the data provided for this case study, the results shown in

Figure 49 and Figure 50 demonstrate good performance. The frames shown in Figure 50(b)

and (c) show a slight reduction in prediction mask quality and this was likely to be because

Mask R-CNN was trained on less frames at this stage of the pouring process compared to

say, Figure 49(b) and (c) which the pouring process looks like for the majority of each pour.
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(a) Frame 11 (b) Frame 19

(c) Frame 48

Figure 49: Frame results from final model output with measurements displayed (1 of 2)
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(a) Frame 67 (b) Frame 75

(c) Frame 92

Figure 50: Frame results from final model output with measurements displayed (2 of 2)

141



The pouring height is represented by the dark blue horizontal line in subfigures of Fig-

ure 49 and Figure 50. As shown, this is offset from the ladle mask. As previously discussed,

this is because there was a consistent gap between the top of the mask and the actual top of

the ladle and so an offset of 40 pixels was used. As shown in Figure 49 and Figure 50, this

was partly due to the mask not reaching to the ladle edges. Whilst the Kalman filtering did

a better job of this, it was less stable as mentioned previously.

In the top left of subfigures of Figure 49 and Figure 50, a light blue line can be seen

which shows the perspective of the moving window. The line of best fit, produced from the

bottom ladle edge and used to calculate the angle of rotation, is vaguely visible over the top

of the light blue line in the top left of subfigures of Figure 49 and Figure 50. The light blue

vertical line was used as a normal to calculate angles.

(a) Frame 11 (b) Frame 48

(c) Frame 92

Figure 51: Frame results from fixed mask output
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Once the model had been developed to measure ladle behaviour and resulting emission

severity, a fixed mask approach was attempted to try to refine the model performance further

for industrial application. This was done by using the coordinates of one of the manual mask

annotations and overlaying it onto each frame. The location was based on the centroid of the

mask predicted by Mask R-CNN, and the rotation was based on the rotation angle already

calculated from the mask’s bottom edge. The concept of this is believed to be useful since

the ladle shape did not change throughout the footage, however in this case, the predicted

mask was not stable enough to produce an accurate fixed mask. If the predicted mask was

more accurate, the fixed mask could have been used to refine the edges. The results of this

can be seen in Figure 51. This is something to explore more in future work when a larger

dataset is used to train the model.

4.4.2 Analysis of the Pouring Process

One of the primary purposes of the model developed is to use it to improve understanding of

the pouring process. By improving understanding of process parameters, resulting process

quality and the relationship between the two, valuable insights can be drawn which aid

process optimisation for reducing emissions.

The measurements taken by the model were output in a table and then used to produce

several graphs to draw insights from. Figure 52 shows how brightness in the flame region

varied throughout the video. Note that pixels with a brightness of over 235 (on a scale

of 0 to 255 representing black and white respectively), are considered bright pixels. The

initially high value was due to the ladle being on the opposite side of the camera’s view to

the flame region. Once it moved into position to pour, the brightness in this area decreased

rapidly. As pouring began, the brightness increased up until a peak at around 18 frames

in, before gradually decreasing throughout the video. The initial peak was likely due to the

initial contact of the liquid metal with the contents of the furnace causing a large spike in

emissions. This suggests that this is a critical point of the pouring process with regards to

minimising equipment degradation and emission severity.

Figure 53 shows the pouring height across frames. It increased quickly between Frame 15

and Frame 18 in preparation for pouring, and then steadily increased up to Frame 60 whilst

pouring, which was likely done as the ladle became less full for a consistent pouring rate.

There was a fluctuation in pouring height roughly between Frame 60 and Frame 100, which

could be seen in the video. This could have been to keep the pouring process as smooth as

possible whilst the ladle was almost empty and needed to be tilted more.
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Figure 52: Plot showing the variation of pixel brightness throughout the pouring process

Figure 53: Plot showing the variation of ladle pouring height throughout the pouring pro-

cess
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This leads on to Figure 54, which shows how ladle rotation varied with time. The figure

suggests that rotation angle increased gradually with time up from about 15◦to 90◦, which

aligns with what was seen in the video. Whilst the graph suggests reasonable accuracy, the

rotation angle results provide more insight later on when rate of rotation is discussed.

Figure 54: Plot showing the variation of ladle rotation angle, in degrees, throughout the

pouring process

Collectively, these graphs suggest that the model was reasonably accurate in its mea-

surements, since it aligns with what is observable in the footage, however the model would

benefit from being validated by better established measurement methods. Furthermore, the

industrial aspect of this case study was focused around building a ladle monitoring model

that, if developed to production standard, could be used in two ways.

The first, more immediate application would be to apply this model to a variety of

pouring footage samples with varying pouring techniques, automatically collect data on

the ladle pouring behaviour (process inputs) and resulting flame emission severity (process

quality indicator), and analyse the relationships between the inputs and outputs to give

deeper insights into how the process inputs could be optimised to maximise process quality

in terms of flame emissions.

The second, more advanced application would be to fully integrate the model into a

system that also takes control of the ladle behaviour, and by doing so, automate the pouring

process for minimal emission severity. Since the model, in its current primitive state, can

detect when flame severity is high, it could combine this awareness with learned pouring

patterns to adjust the pouring technique in real-time. In both cases, emission severity can
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be reduced, resulting in improved health and safety, reduced equipment degradation and

overall improved operational efficiency. This benefits the environment, the economy and the

operators. Further applications could include estimation of cumulative flame damage, daily

emissions, process duration and possibly even energy expenditure.

In order to demonstrate the potential application of the model developed in this case

study, some further analysis was conducted which aimed to gain some real-world insights

on the ladle pouring process using the model outputs. The Spearman’s Rank correlation

coefficient was used to determine the correlation between brightness (emission severity) and

pouring height and rotation angle, and the results are in Table 19. The results show that

pouring height had a weak to moderate negative correlation with brightness in the flame

region, suggesting a higher pouring height may reduce flame emissions. This could be due

to a slightly larger cooling effect during air contact before the falling liquid metal hits the

surface of the liquid metal in the furnace. The air could also improve mixing with oxygen

and therefore reduce incomplete combustion which typically causes smoke. Additionally, a

higher pouring height could allow the metal to reduce turbulence more before contacting the

surface of the metal inside the furnace, resulting in less splashing. The results in Table 19

also show that rotation had a more negative correlation with brightness in the flame region

than pouring height did, suggesting more rotation resulted in less flame emissions. This

is likely to be because increasing the ladle rotation angle gradually throughout the pour,

ensured a steady flow of molten metal into the furnace, therefore avoiding agitation in the

furnace and splashing events. Not only this, but it likely also aided in ensuring a better

temperature distribution (as an effect of steady flow rate), which further avoided agitation

in the furnace. Note that in terms of minimising emissions, less agitation is better, however

this is not the case for gas mixing and therefore an optimal level of agitation should be found.

Table 19: Correlation between process parameters and flame severity

Parameter
Spearman’s Rank

Correlation Coefficient

Pouring Height -0.366

Rotation -0.605

Additionally, since rotation angle and pouring speed are known to affect flow rate, rate

of rotation was plotted and shown in Figure 55, as it is closely linked to both of these vari-
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ables (it is the rate of change of rotation angle which directly impacts pouring speed) [244].

However, the Spearman’s correlation coefficient was only 0.136, indicating flame severity in-

creased slightly with increasing rate of rotation. This was a weak correlation and should be

investigated further. It is likely that the rate of rotation had a much more significant impact

than this, and one or more of pouring height, rotation angle or flame severity measurements

were lacking in accuracy. It is also possible that one or more unconsidered factors con-

tributed to flame severity, such as the fullness of the ladle, since ladle behaviour appeared to

require adjustment as it became emptier. Furthermore, this evaluation was only performed

on one pouring video due to the resource constraints, meaning more insights could be drawn

from evaluating results on a wide variety of pouring approaches. This way, common effects

such as those experienced when the ladle becomes emptier (which occurs during every pour),

could be recognised and separated from other pouring parameters such as rate of rotation.

Overall, with regards to industrial application, these measurements suggest that a higher

pouring height reduces emission severity, a constantly increasing rotation rate reduces emis-

sion severity, and the effects of rate of rotation require further investigation.

Figure 55: Plot showing the variation of ladle rotation rate, in degrees per second,

throughout the pouring process
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4.4.3 Model Performance Evaluation for Production-Readiness

After analysing the industrial application of the model presented, it is also important to

consider the current model state in comparison to what it would require to be developed to

real-world production standard. The model performance was limited mainly by the amount

of data used to develop it, which was discussed throughout Section 4.3. With a minimum

of a few thousand frames based on different pouring techniques in slightly different environ-

mental conditions (e.g. lighting, dust, human presence), the reliability of the model could

be improved significantly. Also, with better segmentation performance, say an mAP above

0.7 or 0.8, a fixed mask component could further improve reliability. Furthermore, ensur-

ing that all pouring techniques are filmed from a fixed camera position, the same position

intended for the production-ready system, would also increase reliability. This is different

to the splatter severity measurement model discussed in Chapter 5, where for example, the

model is built to be robust to changes in camera position. For a task as complex as precisely

segmenting a complex ladle shape in dark and dusty environments whilst sparks, flames and

smoke are emitted from it, for maximum reliability, a fixed camera would be necessary with

the CV technology available today.

Another factor that affected both development and performance, was the presence of

structural obstacles that partially covered the ladle as it approached the furnace. It is

assumed that these are necessary, and so the model may needed to be adapted further to

ensure they do not compromise performance. Other aspects such as dealing with more

drastic changes in lighting, dealing with the presence of one or more groups of operators, as

well as dealing with potential process failures or anomalous events, would be considered for

model robustness when delivered in a production environment. It is worth noting that at the

time this case study was initiated, Mask R-CNN was arguably the best available instance

segmentation model available for real-world applications. However, now there are better

alternatives which would provide more precise, real-time performance with much more ease

such as YOLOv8-seg (You Only Look Once segmentation - see Section 2.5.6 of Chapter 2).

In the current state, it is difficult to precisely describe the accuracy of model measure-

ments for pouring height, rotation angle and flame severity, however the results and discus-

sion surrounding them suggest they are at minimum, an excellent foundation to production-

ready systems. If they are lacking accuracy in some ways, which to an extent is quite likely,

by reiterating model development with the above suggestions surrounding the likes of dataset

size and camera positioning, model accuracy can certainly be improved to become precise

enough for real-world application. Additionally, enhancing sensor technology by using stereo
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cameras or even sensor fusion approaches with camera and LiDAR for example, are likely to

greatly benefit this kind of research and development.

Overall, this model lays the foundation for research and development in ladle pouring

process monitoring using modern CV techniques. By using a collection of innovative meth-

ods, it shows what works and what does not work when developing a system of this kind.

Also, this model is a complete evolution in comparison to traditional pouring monitoring

methods such as human observation. Not only is this work a pioneering study for gaining

previously uncovered insights into how the pouring process inputs affect emission severity

and equipment degradation, but it also provides many insights which are applicable to other

industrial applications. For example, any other processes involving large, heavy machinery

with complex geometry and harsh environments such as those involving rolling, forging and

casting machinery, as well as cranes and many others. If reiterated with the knowledge and

experience gained throughout this case study, this model could be used for at minimum, an

alarm system that notifies operators when emissions are high, as well as process optimisation

using analysis insights, In its most developed state, it could be used to achieve full closed-

loop control process automation whilst avoiding high emissions in real-time.

4.5 Conclusions

This chapter has presented a case study where noisy ladle pouring video data was success-

fully denoised and used to train a segmentation model for monitoring of process parameters

and resulting process quality during hot metal ladle pouring. This work demonstrates a

significant advancement in process monitoring technology through the application of tradi-

tional image processing, signal processing and modern machine learning techniques.

In this work, six different HE methods were tested and CLAHE was found to be the

best across varying contrast qualities and successfully denoised good, moderately good and

poor contrast quality images. Considering the harsh lighting conditions included in the

data for this case study, CLAHE proved to be highly effective in mitigating this problem

and demonstrates how contrast enhancement can be used to improve model robustness in

scenarios where lighting is poor.

For segmentation, Mask R-CNN data pre-processing settings and hyperparameter set-

tings were optimised via extensive experimentation using an efficient grid search approach.

The optimal configuration re-trained ResNet101 from its third stage onwards, with a weight

decay of 0.0001, a learning rate of 0.001, a weight loss configuration of (3, 2, 1, 3, 3) for

RPN class, RPN bounding box, Mask R-CNN class, Mask R-CNN bounding box and Mask
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R-CNN mask losses respectively, an RPN NMS threshold of 0.9 and a mask shape of (112,

112). This configuration achieved an mAP of 0.516.

There were a few main learning points from the optimisation such as the importance of

using a sufficiently sized dataset that is also sufficiently diverse. Also, the importance of the

structure and order of the optimisation particularly in relation to a complex network such

as Mask R-CNN was amplified during this process. In future work, a much larger dataset

consisting of several different pouring videos should be used. To obtain a larger dataset, time

designated to the project would need to be increased significantly, but could also be reduced

somewhat by applying an auto-labelling method once model mask predictions are quite good

(similarly to Case Study 3 auto-labelling seen in Chapter 6). Note that access to a larger

dataset would also be crucial in developing a production-ready ladle monitoring system.

Additionally, the optimisation should be planned according to the findings presented in the

optimisation discussion of this chapter. This is expected to minimise time consumption

whilst maximising further findings and improving model performance further. In other

words, whilst a lot was learned from this optimisation, another iteration would be highly

beneficial due to the number of complexities that have been addressed during this iteration.

The optimal configuration performance was boosted to 0.606 mAP using Kalman filter-

ing, however this had a destabilising effect on the ladle mask shape which made it errati-

cally change across sequential frames which was negative for estimating process parameters.

Kalman filtering still showed potential for future developments if harnessed correctly. One

example of how this implementation may be improved is by optimising the state transition

matrix for each sampled point of the original segmentation mask edge. Another example is

the use of non-linear Kalman filter variants to account for the ladle rotational movements.

Applying BGS algorithms resulted in a few interesting findings. Firstly, the MOG algo-

rithm did initially show some clear segmentation of the front edge of the ladle which could

be useful for monitoring velocity, height and rotation. However, this was quickly disrupted

when the scene became more complex. Nonetheless, with the correct lighting and camera

setup, it may be possible to apply this in a useful way. Secondly, all algorithms showed po-

tential in capturing the flame severity, however they are all prone to producing false positives

and again, would need to be used with the correct lighting and camera setup. Also, they

may need to be combined with other techniques to ensure the best quality emission capture.

Overall, the research presented in this chapter is significant to the field of steelmaking,

as well as the field of CV. Within steelmaking, it is a pioneering study into ladle pouring

process monitoring using cutting-edge techniques such as video segmentation. Within CV, it
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advances the current capabilities of existing techniques by adapting them to benefit industrial

processes. Furthermore, this case study has addressed three of the research gaps identified

in Chapter 2. Firstly, it has involved the generation of a novel dataset based on the ladle

pouring process, which addresses the lack of datasets available for developing CV applications

for steel production processes. Secondly, it has contributed to addressing the lack of real-

world measurements performed by CV models. Lastly, it has addressed the lack of hybrid

CV models that make use of both traditional techniques and deep learning-based techniques.

4.6 Future Work

There are a wide variety of insights drawn here such as the crucial requirement for larger

datasets, to the potential benefits of changing to the current state-of-the-art networks, as

well as the impact using the efficient grid search for hyperparameter optimisation has on

resource requirements.

Additionally, this work opens up various future research avenues involving the automa-

tion of data collection, which includes measurement of process parameters such as cumulative

flame damage, daily emissions, process duration and possibly even energy expenditure. The

research here can be developed to play a major role in root-cause analysis, process optimisa-

tion, predictive maintenance and closed-loop monitoring systems. Therefore, this work can

be used to guide and inspire future developments that overlap between the fields of steel-

making and computer vision.
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Chapter 5: Real-Time Analysis of Zinc

Splatter in Steel Galvanising

In this chapter, a novel method is presented for quantifying the severity of splatter occurring

during galvanisation in real-time and in-situ using a camera. Through use of Counting (CNT)

background subtraction (BGS) for splatter segmentation, combined with the YOLOv5 (You

Only Look Once) object detection network for air knife detection which provides robustness

to variation in camera and air knife positioning, this work is an innovative approach for

splatter severity monitoring. Beyond model development, there is presentation of model

deployment which proves the production-readiness of the designed system. To date, there

are no other systems developed for this purpose reported in the literature, making it a

substantial novel contribution to the field.

5.1 Introduction

During the galvanisation of steel, one crucial step involves submerging preheated steel strip

into a bath of molten zinc. This step causes a zinc-iron alloy to form on the surface of the

steel which significantly enhances corrosion resistance of the material. To ensure uniform

thickness coating, a pair of air knives are used which wipe off excess zinc after submersion

(see Figure 56). Ideally, the excess zinc flows smoothly down the strip and into the bath, but

at high strip speeds where productivity is maximised, zinc detaches from the strip surface

and sprays onto the surrounding equipment. This effect is described as zinc splatter. This

means that zinc accumulates on the air knives, the electromagnetic stabilisation system and

the strip itself, causing equipment degradation which leads to downtime, as well as surface

defects which worsen material and energy wastage. Various process parameters such as air

knife distance and air pressure affect the splatter severity and currently, severity is visually

inspected by operators. This has many inherent limitations such as subjectivity, difficulties

recognising splatter occurrence, and the requirement for manual effort for a single judgement.

These limitations could be overcome if the splatter severity were to be measured objectively

and automatically, which is the aim of this study. By achieving this, the process can be

optimised for minimal splatter at high strip speeds which will lead to reduced equipment

downtime and improved product quality.

The overall objective this case study was to develop a real-time analytical tool capable
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of quantifying the severity of molten zinc splatter occurring during the steel galvanising

process. The first aim was to develop a model that overcomes the challenges of precisely

monitoring dynamic fluid morphology at high speed in complex environments with moving

machinery and changes in camera perspective. If deployed and implemented, this would

enable operators to monitor splatter severity under varying conditions such as changes in

strip speed and air knife distance, to identify relationships between process parameters and

resulting process quality. These relationships could be used for optimising the galvanising

process to reduce splatter whilst maximising strip speed. The second aim was to demonstrate

deployment of this model.

Implementation of this work onto the line will contribute to process improvement, root-

cause analysis of splatter will be more obvious, and maintenance strategies will be based

on a deeper understanding of the process. Additionally, a closed-loop control system could

be developed to adjust variables, such as air knife distance, in real-time depending on the

splatter severity level at the current time and their effect on it. Other than previously

mentioned benefits such as reduced downtime and increased product quality, this technology

could be used to find previously undiscovered trends along the galvanising line, whilst also

laying the foundation for similar applications on different processes. Source code is available

on GitHub [245].

Figure 56: Schematic representing the part of the galvanising process where zinc splatter

occurs
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5.2 Methodology

The data for this case study was generated by recording a section of the galvanising line which

is already monitored on a screen by operators 24/7. An overview of the methodology is given

in Figure 57, which shows there were six main steps. The first step was data preparation,

which involved labelling frames and splitting them into training, validation, testing and

deployment testing sets. The data prepared in this case study addresses the gap in Chapter

2 that relates to the lack of diverse datasets available for developing computer vision (CV)

applications for steel production processes. The second step was the implementation of

background subtraction and denoising of the foreground mask produced. The third step

involved using the foreground mask for quantifying the severity of splatter. The fourth step

was the implementation of object detection, the fifth step was final validation using a range of

scenarios the model will be expected to experience during application, combined with expert

operator judgement against model predictions, and the final step involved the deployment

of the model.

5.2.1 Data Preparation

Figure 58 gives an overview of the data strategy used for this case study, and descriptions

of each source video are provided in Table 20. In VGG (Visual Geometry Group) Image

Annotator (VIA), each frame was annotated with bounding boxes so that the front faces

of the air knives were marked as “Knife Face”, and their undersides were similarly labelled

as “Knife Underside”. This annotation process was applied to 30 seconds of footage from

seven distinct videos (Video 1 to Video 7), each offering different camera perspectives and

process conditions. Each of these videos are indicated by the blue colour coding in Figure 58.

Utilising a diverse dataset ensures that model development results in robust model perfor-

mance which is crucial for applications in complex environments such as those found in steel

production.

With the footage running at a frame rate of 25fps, this equated to annotating 750 frames

per video, resulting in a dataset of 5,250 samples for model development. This is indicated by

the green colour coding in Figure 58. The dataset was strategically split, allocating roughly

80% (4,200 samples) for training, 10% (525 samples) for validation and 10% for testing, also

indicated by the green colour in Figure 58. This ratio is typically successful in the field

of machine learning (ML) since it ensures model training is conducted on a large enough

dataset whilst reserving enough data for thorough validation and testing.
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Figure 57: Overview of the methodology used for Case Study 2
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Additionally, seven one-minute videos, highlighted in red, were utilised for production

testing (PT) of the model. This is an extension of the conventional “testing” phase of model

development seen in the field and was performed to assess the model in conditions that were

as close to a production environment as possible, in order to ensure production-readiness.

These one-minute videos were comprised of the same footage as the seven 30-second video

sets used in the original dataset, which is indicated by the red colour coding in Figure 58.

Figure 58: Diagram showing an overview of the data strategy used in this case study

Table 20: Air knife footage with varying conditions used in this case study

Name Splatter Severity Air Knife Movement Camera Position

Video 1 Entire range No Normal distance

Video 2 Low - Mid No Close to knives

Video 3 Low No Far from knives

Video 4 Low No Zinc pool shown

Video 5 Low Horizontal Angled towards right

Video 6 Entire range No Angled towards right

Video 7 Low - Mid Vertical Close to knives
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5.2.2 Background Subtraction

Following the preparation of all necessary data, the next phase involved selection of an ap-

propriate background subtraction algorithm. Background subtraction involves a group of

algorithms specifically designed to distinguish between background and foreground pixels in

sequences of frames. Based on the literature presented in Section 2.6 of Chapter 2, as well

as additional algorithms available in OpenCV [119], these included Mixture of Gaussians

variants (MOG and MOG2), LSBP (Local Singular Value Decomposition Binary Pattern),

Google Summer of Code (GSOC), Gaussian Mixture-based Background Foreground Seg-

mentation (GMG), K-Nearest Neighbours (KNN), and CNT. The MOG, MOG2 and GMG

algorithms are examples of Gaussian mixture models (GMM) which means they model each

pixel over a sequence of frames as a mixture of Gaussian distributions, which exaggerates key

features whilst excluding small changes such as lighting and shadows [113]. Gaussian distri-

butions are bell-curves defined by their mean and variance, and are often utilised for mod-

elling distributions in datasets such as those representing key features in images [246, 247].

5.2.2.1 Gaussian Mixture Models

Equation (18) calculates the probability of a given pixel having a value of xN at time N ,

where each pixel is modelled by a mixture of K Gaussians [248].

p(xN) =
K∑
j=1

wjη(xN ; θj) (18)

In Equation (18), wj is the weight parameter of the jth Gaussian component, η is the

probability density function and θj denotes the j
th Gaussian component parameters including

mean and covariance [248]. GMMs use varying numbers of Gaussians for each pixel and this is

a key aspect of their design [113]. Each component captures a different part of the background

and their combined weights indicate the likelihood of different pixel values occurring [113].

For each frame, pixels not aligning with the expected background are considered foreground

pixels [113].

5.2.2.2 Local Singular Value Decomposition Binary Pattern

There is limited information available on the GSOC algorithm, however it is a variant of

LSBP [249, 250, 251]. LSBP is a combination of local binary patterns (LBP) and sin-

gular value decomposition (SVD) [249, 251]. LBP extracts texture-based features through
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neighbouring pixel comparison and encoding relationships into a binary pattern [252]. Equa-

tion (19) calculates LBP based on P neighbouring pixels at radius R, where s is the sign

function used to compare intensities of the central pixel and the neighbouring pixel, gp is the

intensity of the pth neighbouring pixel, gc is the intensity of the central pixel being evaluated

and 2p is the binomial factor which corresponds to the pth position of the neighbouring pixel

[252].

LBPP,R =
P−1∑
p=0

s(gp − gc)2
p (19)

When neighbouring pixels are similar, LBP struggles with noise [249]. SVD is utilised for

dimensionality reduction of rectangular matrices, and is therefore is combined with LBP to

improve robustness [249]. It achieves this by exaggerating significant patterns, reducing the

effect of noise, which provides improved stability of the background [249]. Equation (20)

calculates SVD on a matrix B surrounding location (x, y), where U and V are orthogonal

matrices, and Σ is a diagonal matrix containing singular values of B(x, y) [249].

B(x, y) = UΣV T (20)

LSBP begins by obtaining the LBP descriptor for each pixel using local neighbourhoods,

after this it creates descriptor matrices, then it applies SVD to the matrices for principal

components which reduces noise, and finally, principal components are utilised to identify

the foreground and background robustly [249]. Equation (21) calculates the LSBP binary

string at (xc, yc), where ip is the neighbourhood value and ic is the central value [249].

LSBP (xc, yc) =
P−1∑
p=0

s(ip, ic)2
p (21)

5.2.2.3 K-Nearest Neighbours

KNN background subtraction is based on K-Nearest Neighbours, which is essentially similarity-

based classification [253]. The KNN background subtraction algorithm is non-parametric
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and uses a kernel for classifying pixels as foreground or background [242]. The kernel is

described in literature as a “balloon estimator” which has a diameter that is dynamically

adjusted to cover a number of data points that is pre-defined and then adapts depending

on local data density [242]. Data density is the degree of similarity between pixels in terms

of different features such as colour [242] Therefore, the algorithm can effectively adapt to

varying sample density, ensuring robustness to noise and gradual background changes [242].

Equation (22) calculates the non-parametric density estimate which differentiates between

background (BG) components and foreground (FG) components [242]. In Equation (22), T

is the number of historical frames used to adapt, t is the current time, m is the earliest frame

that the algorithm iterates through until it reaches t, −→x (m) is the RGB value of the pixel at

time m, −→x is the RGB value of the pixel at the current time, k is the number of dataset

samples XT that lie within the hypersphere (balloon) volume V of the kernel of diameter D,

and K(u) is the kernel function [242].

p̂non-parametric(
−→x |XT , BG+ FG) =

1

TV

t∑
m=t−T

K
(
∥−→x (m) −−→x ∥

D

)
=

k

TV
(22)

5.2.2.4 Counting

The CNT background subtraction algorithm played a major role in quantifying zinc splatter,

as well as monitoring gaseous plumes in Chapter 6. Therefore, details of the algorithm have

been presented in Section 3.3.2.

All algorithms detailed in this section were implemented using OpenCV in Python. Most

algorithms come with a set of adjustable parameters, although some do not offer any cus-

tomisation. In order to determine the most suitable algorithm for the zinc splatter model

whilst ensuring efficiency of the model development process, Video 1 was used to compare

the performances of different algorithms. Performance was judged based on the precision of

splatter segmentation, as well as the frame rate achieved. For parameter optimisation, there

was already some idea as to which settings were likely to be ideal based on previous results

with default parameter settings. Therefore, values were adjusted incrementally to balance

sensitivity to splatter with resistance to noise from dust particles, heat distortion and air

knife movement.
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5.2.3 Splatter Severity Measurement

The optimal background subtraction algorithm produced a mask that was usable for mea-

suring splatter. This mask underwent further processing through morphological erosion and

contour thresholding to reduce noise. Morphological erosion involves thinning the external

boundaries of contours. In this case study, erosion was applied to mitigate noise caused by

camera movement and subtle heat wave distortions in the footage. Contour thresholding

refers to the removal of contours smaller than a defined number of pixels, further eliminating

residual noise. The refined foreground mask was confined to a designated splatter mea-

surement region which was then analysed in terms of splatter amount and splatter width,

both quantified in pixels. Splatter amount was the number of foreground mask pixels within

the splatter region and splatter width was how widespread they were. These measurements

were tracked for each frame and used to produce two histograms. These histograms were

then used for the categorisation of splatter into five severity levels for both splatter amount

and splatter width. An overall splatter severity score was assigned based on these levels, as

shown in the splatter severity rating system in Figure 59. This scoring system operates on

the premise that both splatter amount and splatter width equally influence the total sever-

ity rating, meaning the final score corresponds to the higher of the two individual severity

scores.

Figure 59: The rating system used to obtain an overall splatter severity rating
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5.2.4 Object Detection

After establishing a method to quantify splatter severity, it was crucial to enhance the model’s

robustness to changes in camera positioning. This goal was accomplished by implementing

object detection to classify and localise air knives. YOLOv5 was selected for its state-of-

the-art performance at the time this case study began, as shown in Section 2.3.8 of Chapter

2. Accurate detection of these knives is essential for several reasons. In the context of this

research, they were used to define the splatter region, which is the area within the footage

that is targeted for measurement. This was to prevent measurement of irrelevant areas that

reduce the accuracy and efficiency of background subtraction. Secondly, air knife bound-

ing box sizes were used to scale model configurations up or down based on their distance

from the camera using a reference size for calibration. The relative distance between the air

knives and camera was estimated using a scale factor (SF), which is shown in Equation (23)

as SF and was based on the size of bounding boxes in pixels B, relative to a reference size R.

SF =
B

R
(23)

The scaling factor was calculated per frame which was limited by small variations in bound-

ing box size between every frame (since YOLOv5 predicts slightly different boxes each time).

Based on this, and the fact operators only change the camera position between shifts (every

few hours at least), it was more appropriate to use a moving average (MA) of the scaling

factor as the final value for the model. The equation is shown in Equation (24) where X

represents the SF calculated for one frame and n represents the number of averaged points.

MA(SF ) =
X1 +X2 + ...+Xn

n
(24)

The object detection process utilised YOLOv5, which required training, validation, and

testing phases. Training was conducted over 30 epochs on the YOLOv5s model, utilising

4,200 samples for training and 525 samples for end-of-epoch validation (see Figure 58 in

Section 5.2.1). A set of 525 test samples were then used to more accurately assess the

model’s generalisation performance on unseen data.
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5.2.5 Final Evaluation

As model development came close to completion, validating its functionality and performance

became crucial to confirm its suitability for deployment. The initial step in this process

was to process seven one-minute videos through the model (see Figure 58 and Table 20

in Section 5.2.1). The resulting output videos were then visually inspected to verify that

the model performed accurately across a range of potential real-world scenarios it might

encounter. Following this, a practical validation test was conducted by two operators who

work at the galvanising site and deal with the air knife system on a daily basis. This

test required operators to assess the splatter severity across 20 carefully selected frames,

characterised by diverse camera angles and process conditions. Their assessments were then

compared with the ratings provided by the model to gauge its accuracy and reliability.

5.3 Results and Discussion

This section presents and discusses the results obtained from experimentation described in

Section 5.2, which begins with the results of background subtraction before moving onto

YOLOv5 for air knife detection. Following object detection will be definition of the splatter

region and scaling factor. Finally, the results of evaluating the developed model will be

presented, which consist of evaluation of performance on a set of videos with diverse en-

vironmental conditions, as well as validation of model estimations against galvanising site

operator judgements.

5.3.1 Background Subtraction

Initial background subtraction results were based on the performance of each algorithm using

Video 1. Only one video was required since performance differences were sufficiently distinct,

eliminating the need for evaluation using additional videos. Preliminary testing indicated

that variations in camera positioning did not significantly influence performance. This is

likely because the algorithms are designed to handle variations by focusing on pixel-level

changes as opposed to static background features. However, in Video 7, where the air knives

exhibit upward movement, this resulted in a change in system appearance, therefore affecting

the algorithm performance. This issue is addressed later in this section. Metrics evaluated

in this initial phase were the foreground segmentation (background subtraction) precision,

as well as inference time (the time taken to perform background subtraction on one frame)

and the resulting processing speed, the details of which are presented in Table 21.
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Table 21: Inference times and frame rate for various BGS algorithms

Algorithm Inference Time (s) Inference speed (fps)

MOG 0.095 10.515

MOG2 0.112 8.961

LSBP 1.019 0.982

GSOC 0.407 2.459

GMG 0.273 3.659

KNN 0.129 7.776

CNT 0.051 19.802

The originally captured footage operated at a frame rate of 25fps. The goal was to

achieve real-time processing which meant the frames from the source could be live-streamed

to the model and enough of them could be inferred upon to gain useful outputs without

stopping or slowing the stream down (see Section 3.4.6). Given that each frame would

undergo YOLOv5 inference, splatter measurement, and other processing steps, the speed

of the selected background subtraction algorithm was a critical factor and needed to be

maximised. Faster algorithms minimise processing bottlenecks and ensure that real-time

analysis can be maintained. Note that the frame rates detailed in Table 21 could be sig-

nificantly improved through various methods, such as utilising a GPU (graphical processing

unit), resizing frames, and fine-tuning algorithm parameters. Therefore, speeds should be

compared relative to one another rather than solely based on say, their ability to get close

to a 25fps rate.

From the data in Table 21, MOG, MOG2, and CNT were the most promising algorithms

for real-time monitoring, whilst LSBP was the least suitable by a significant gap in speed.

Based on these findings, LSBP was excluded from further consideration in the final model.

The next step was to look at the segmentation precision.
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5.3.1.1 Analysis of Early, Low Splatter Severity Frame

(a) MOG (b) MOG2

(c) GSOC

Figure 60: Figure showing the effects of different background subtraction algorithms

(MOG, MOG2 and GSOC) on an early frame with low splatter

Figure 60 and Figure 61 show a frame during the first second of Video 1 after being

processed by each of the algorithms at default settings (excluding LSBP), where splatter

severity is low.

Figure 60(a) shows the MOG algorithm results where a small amount of zinc was seg-

mented as well as a small amount of noise. Excluding the noise which is made up of many

small contours and therefore easily removable using denoising techniques, the zinc segmented

looks fairly precise. However, since zinc adheres to the steel strip and there is therefore not

any “splatter” as such. The MOG algorithm works by modelling each background pixel as

a mixture of several Gaussian distributions, which determines whether a pixel belongs to

the background or foreground by evaluating how well its value fits these distributions [238].

The weights of the mixture represent relative time periods that different colours stay in the

scene, and the probable background colours are the ones which stay longer and more static

[238]. This approach allows the algorithm to adapt to gradual changes in the background

because the Gaussian mixture model can update to reflect the most stable colours over time.
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(a) GMG (b) KNN

(c) CNT

Figure 61: Figure showing the effects of different background subtraction algorithms

(GMG, KNN and CNT) on an early frame with low splatter

Therefore, MOG effectively finds a balance between detecting moving objects and ignoring

minor changes, which leads to fairly precise segmentation of the zinc in this scenario.

Figure 60(b) shows MOG2 algorithm results where there was no segmentation mask

(fuschia) but some light grey mask was present, which was where the algorithm began to

track pixel movement as shadows. Unlike MOG, MOG2 incorporates shadow detection that

differentiates foreground pixels from shadow pixels [239]. This added functionality allows

MOG2 to handle dynamic lighting conditions better than MOG. Distinguishing between

shadows and actual foreground objects reduces false positives from shadows, leading to more

accurate segmentation in environments with varying light conditions, which is shown here

by detecting zinc movement without confusing it with splatter. In this case, it has detected

noise as shadow but not splatter, whilst the MOG algorithm detected the noise as splatter.

This indicates that MOG2 is slightly more resistant to noise than MOG. However, the MOG2

algorithm has also detected zinc that is starting to move away to the strip as shadow rather

than splatter. On one hand, zinc beginning to move away from the strip is not actually

“splatter” and could therefore be ignored, making the MOG2 result in Figure 60(b) an

accurate representation of the severity of splatter. On the other hand, in some scenarios, it
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could be preferable to segment any slight disturbances along the strip, such as how MOG

has in Figure 60(a).

Figure 60(c) shows the GSOC algorithm results where the majority of the steel strip was

segmented as well as some noise. The strip contours have much more coverage than the MOG

algorithm, which could be better or worse. On one hand, the strip is moving at all times

and always has some zinc moving along the surface, so more coverage would indicate better

motion detection. On the other hand, it is not necessarily desirable to detect all motion along

the strip, rather just the zinc that is beginning to move away from the strip. Either way, more

coverage indicates higher sensitivity to movement. This aligns with the fact that the GSOC

algorithm performs better on the CDNet 2014 dataset than other algorithms, which is a

dataset used to evaluate the robustness of motion detection algorithms using a variety of real-

world challenges such as dynamic backgrounds, camera jitter, unstable lighting conditions,

and various types of motion which require an algorithm sensitive to subtle changes [240, 254].

Therefore, whilst the GSOC algorithm is designed to detect subtle changes in dynamic

environments, this also makes it prone to over-segmentation. Also, whilst the algorithm has

been proven to work well in complex scenarios, the particular scenario in Figure 60(c) is

even more complex than CDNet samples due to the subtle differences in texture and depth

of the zinc and the surrounding environment. This highlights the uniqueness and highly

challenging aspects of developing CV applications for industrial environments, as opposed

to more typical scenes found in the CDNet dataset [254].

Figure 61(a) shows zero background subtraction because the GMG algorithm needs a

few frames to initialise. It uses Bayesian updating, essentially meaning it gives each pixel

weights which are based on initial estimations from the first few frames, and then adapts

them over time (similarly to Kalman filtering used in Chapter 4 which also uses Bayes’

theorem [241, 255]).

Figure 61(b) shows that similarly to the GSOC algorithm, the KNN algorithm was also

over-sensitive. In this case, whilst the steel strip segmentation was similar to that seen in

Figure 60(c), the surrounding noise was more widespread and more evenly distributed using

many smaller contours as opposed to thicker ones seen in Figure 60(c). The nature of the

noise in Figure 60(b) means it would be easier to remove using morphological operations,

however there is still a lot of noise covering most of the splatter measurement zone. The

KNN algorithm uses a dynamic method to analyse each pixel’s surroundings [242]. It adjusts

the area it examines around each pixel, depending on how many moving pixels are nearby

[242]. This adaptability means it can mistake minor changes or slight camera movements as
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significant, especially in scenes with many edges such as this one (observable below the air

knives) [242]. This approach helps capture most movement in the video, but can also make

it overly sensitive to small, unimportant changes.

Finally, Figure 61(c) shows that the CNT algorithm considered the whole frame as fore-

ground. This is opposite to the GMG algorithm that considered the whole frame as back-

ground until the algorithm had finished initialising. The CNT algorithm requires initialising

because it is based on pixel stabilities, which are essentially values given to each pixel which

dictate how likely it is to be part of the foreground or background. Since pixel stabilities are

adapted over time, it takes at least a few initial frames for them to be established [243].

5.3.1.2 Analysis of Moderate Splatter Severity Frame

(a) MOG (b) MOG2

(c) GSOC

Figure 62: Figure showing the effects of different background subtraction algorithms

(MOG, MOG2 and GSOC) on a frame with moderate splatter

Figure 62 and Figure 63 show a frame during the 18th second of footage processed by

each of the algorithms at default settings, where splatter severity is moderate.

Figure 62(a) shows the MOG algorithm has successfully segmented zinc that is splat-

tering off the steel strip is captured with good precision. As discussed, this is because

167



(a) GMG (b) KNN

(c) CNT

Figure 63: Figure showing the effects of different background subtraction algorithms

(GMG, KNN and CNT) on a frame with moderate splatter

the Gaussian mixture model updates distributions continuously according to changes in the

scene, maintaining a balance between detecting splatter and ignoring static elements. As

with Figure 60(a), there is a small amount of noise made up of many small contours that

would be easily removable using denoising techniques.

Figure 62(b) shows the MOG2 result is significantly different to that shown in Fig-

ure 60(b). Whilst in the early, low severity frame in Figure 60, there were only shadows

detected, in Figure 62(b) there is a significant quantity of foreground segmentation. As the

algorithm processed more frames, it became better at differentiating between foreground

pixels and shadows, leading to more accurate segmentation in later frames. In comparison

to the MOG result, more splatter is segmented due to the increased sensitivity, however this

also caused some over-segmentation, since the algorithm predicted some of the background

and shadows as foreground.

Figure 62(c) shows the GSOC result which has improved significantly from Figure 60(c).

Whilst in Figure 60, most of the steel strip was segmented, as well as fairly large noise

contours, in Figure 62(c) the steel strip is no longer segmented, but the splatter has been

segmented quite effectively. Also, in comparison to Figure 62(a) and Figure 62(b), there are
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no small noise contours surrounding the splatter. The significant improvement over time

indicates the strong learning capability of the GSOC algorithm. Since the algorithm is de-

signed for complex environments such as those in CDNet 2014 [254], it is able to adapt to the

scene and refine the background model, which leads to more accurate splatter segmentation

as it becomes more familiar with the dynamics present in the scene. However, there is some

over-segmentation between the individual streams of zinc which is, as previously explained

with Figure 62(b), due to the finite details of the liquid which is a similar colour to the

background colours, highlighting the difficulty of this task.

Figure 63(a) shows that the GMG algorithm had initialised by this point of the footage.

The algorithm over-segmented the splatter and also produced some noise made up of contours

of varying size. On the left-hand side of the image the contours are thicker and more

connected, whereas on the right-hand side there are smaller contours. The over-segmentation

being more extreme than in other algorithms suggests that the GMG algorithm is not as

good at dealing with rapidly changing, complex scenes with subtle changes as the others.

This is because Bayesian updating makes the GMG algorithm highly sensitive to changes,

which can lead to over-segmentation. Varying contour sizes show that the algorithm is

trying to dynamically adjust to different areas of the frame, but its high sensitivity results in

more noise. The difference in left-side and right-side noise could also be due to a difference in

lighting conditions. When looking more closely at the noise in Figure 62(a) and Figure 62(b),

as well as Figure 63(b) and Figure 63(c), there is an observable imbalance between the left-

side and right-side noises which follows the same pattern of the left-side noise being slightly

more extreme than the right-side. Since Figure 62(a) shows the most over-segmentation, as

well as the most extreme noise, this result suggests the GMG algorithm is the most sensitive

to changes in scene and probably too sensitive for this application.

Figure 62(b) shows the KNN algorithm performed quite well with some slight over-

segmentation. This is a significant improvement upon what is seen in Figure 61(b) since

there is far less noise, making it much easier to remove using denoising techniques. This

result suggests the KNN algorithm adapts well over time. This is likely due to the fact that

the KNN algorithm changes the area of interest around each pixel depending on moving

pixels nearby, and in this case of moderate splatter, has done so effectively. Despite this, it

is evident that its adaptability can sometimes lead to slight over-segmentation.

Finally, Figure 63(c) shows the CNT algorithm had initialised by this point of the footage.

The algorithm segmented the splatter competently with minimal over-segmentation. This

is due to the pixel stability-based approach, which involves differentiating between stable
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background pixels and dynamic foreground objects based on how consistent their colours

are. Since pixel stability thresholds were at default in this experiment, these results imply

that the default values were reasonably close to optimal for this scenario. The captured

foreground mask follows the natural shape formed by the splattering zinc more than other

algorithms, however there is a moderate amount of noise in the form of small contours on

the left and right-hand sides of the image. Since the noise is in this form, it is removable

using denoising techniques.

5.3.1.3 Analysis of High Splatter Severity Frame

(a) MOG (b) MOG2

(c) GSOC

Figure 64: Figure showing the effects of different background subtraction algorithms

(MOG, MOG2 and GSOC) on a frame with high splatter

Figure 64 and Figure 65 show a frame during the 33rd second of footage processed by

each of the algorithms at default settings, where splatter severity is high.

Figure 64(a) shows the MOG algorithm captured the splatter quite effectively, with some

slight under-segmentation. Note that in this frame the zinc is splattering off from the strip

but also moving away from it without fully splattering on the left and right sides of the

strip also. The MOG algorithm has captured both the splatter and the partial separation of
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(a) GMG (b) KNN

(c) CNT

Figure 65: Figure showing the effects of different background subtraction algorithms

(GMG, KNN and CNT) on a frame with high splatter

the zinc from the strip, whilst avoiding segmentation of the strip itself. This distinction is

quite impressive, however as mentioned, there is some under-segmentation which can be seen

towards the top-left end of the strip. High splatter scenes are typically more complex than

moderate or low splatter scenes, and whilst MOG continues to effectively segment splatter

by adapting to changes, the increased complexity of the scene makes it more difficult for the

algorithm to fully capture all dynamic elements, which evidently can lead to slight under-

segmentation.

Figure 64(b) shows the MOG2 algorithm was again more sensitive than the MOG al-

gorithm. This resulted in slight over-segmentation of zinc as well as some small amount of

noise. As discussed, the increased sensitivity of MOG2 compared to MOG can be beneficial

in capturing dynamic details but can also lead to over-segmentation, which is particularly

true in high splatter scenarios where there is more complexity. Based on all frames discussed

in this section, it seems that MOG and MOG2 are fairly effective at background subtraction

in this environment. The heightened sensitivity of MOG2 could be beneficial or detrimental

depending on the use-case, however in this study the difference is not significant. Addition-

ally, both algorithms have shown to improve their robustness to noise over time.
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Figure 64(c) shows the GSOC algorithm performed very similarly to the MOG algo-

rithm, except with slightly more severe under-segmentation. This can mainly be seen on the

splattering zinc on the left-hand side, where the MOG algorithm captured three streams of

splatter whereas the GSOC algorithm only captured one (which is over-segmented). Simi-

larly to Figure 62(c), there is no scattered noise. Based on all three GSOC frames discussed

in this section, it seems that whilst it is effective at adapting to dynamic environments over

time and robust to small amounts of noise, it is also prone to under-segmentation. It could

also be said that it is prone to over-segmentation, since in some cases it segmented between

and around individual streams of splatter, which is certainly erroneous, however most algo-

rithms were prone to this at some point due the subtle details of the splatter footage. Whilst

GSOC has been proven to work effectively on complex scenes, the level of intricate detail and

rapid changes in high splatter scenarios make them particularly challenging, which evidently

can lead to under-segmentation as it struggles to differentiate between closely packed moving

objects.

Figure 65(a) shows the GMG algorithm followed the same pattern as in Figure 63(a).

There is over-segmentation of zinc that has splattered off the strip, as well as the zinc that

is still not fully detached from it. There is also noise scattered around the entire frame in a

more sparse distribution than other algorithms in previous frames. To an extent, this was

noticeable in Figure 63(a), however here the uniqueness of it is more obvious firstly because

other algorithms have eliminated most of their “scattered” noise, and secondly the noise is

quite consistently spread throughout the whole image whereas in Figure 63(a) it was not so

spread out. As discussed, the high sensitivity of GMG makes it prone to over-segmentation,

which is amplified in high splatter scenarios since they are the most complex. From all three

GMG frame results in this section, it seems the GMG algorithm is over-sensitive and is

incompatible with the use-case in this case study.

Figure 65(b) shows the KNN algorithm performed similarly to the MOG2 algorithm.

There is arguably a very slight amount of under-segmentation however further research,

preferably involving a contrasting coloured background, would be required to reach conclu-

sions. Whilst the MOG2 algorithm is arguably slightly over-sensitive and definitely produces

some scattered noise around the image (particularly visible on the right-hand side), the KNN

algorithm is arguably slightly under-sensitive and definitely produces minimal scattered noise

around the image.

This is because it adapts well to local changes which is suitable for visually complex, high

splatter scenarios. However, highly complex scenarios cause the KNN algorithm to take a
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more conservative approach to avoid noise, which unlike in less complex scenarios (such as

moderate splatter scenarios), can lead to slight under-segmentation, since it excludes some

of the fine details to maintain overall precision. The results in this section suggest the KNN

algorithm performs well in this scenario, becomes more robust to noise over time and may

be prone to slight under-segmentation in complex scenarios (which aids noise reduction).

Finally, Figure 65(c) shows the CNT algorithm performed similarly to the previous frame

shown in Figure 63(c). There is improved segmentation at the top-left of the strip compared

to other algorithms which were prone to under-segmentation in this region. However, there

was also a lot of small, scattered noise spread throughout the image in comparison to most

other algorithms which had almost none of this kind of noise by this point. Still, the noise

produced by the CNT algorithm was made up by many small contours and therefore would

be relatively straightforward to remove. There is also some segmentation along the strip itself

which is hard to distinguish as strip or zinc, but is mostly out of the splatter measurement

zone anyway. The pixel stability-based approach of the CNT algorithm clearly enables it

to handle high splatter scenarios effectively, since it maintains precision even in challenging

regions and in comparison to other algorithm predictions, false positives are more easily

mitigated using denoising techniques due to its scattered nature. The results in this section

suggest the CNT algorithm performs well in this scenario, more so than all other algorithms.

5.3.1.4 Analysis of Air Knife Movement

Since the CNT algorithm was the fastest by far (Table 21) and also showed the best segmen-

tation results provided it was intended to be combined with denoising techniques, it was the

background subtraction algorithm of choice for this case study. To assess the algorithm’s

handling of air knife movement in Video 7, it was tested with default settings. Figure 66

displays three frames at 12, 16, and 21 seconds, highlighting a noticeable issue. The CNT

algorithm had established the background over multiple frames before the movement of the

knives. Therefore when the knives moved, the algorithm detected this as a change, leading

to inaccuracies in the segmentation mask. This inaccuracy progressively worsens across the

frames shown in Figure 66.
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(a) Frame 300 of Video 7 (b) Frame 420 of Video 7

(c) Frame 540 of Video 7

Figure 66: Figure showing CNT at default settings failing to distinguish knife movement

from splatter

To address the air knife movement issue in Video 7, experimental adjustments were made

to the CNT algorithm parameters, particularly focusing on minimum and maximum pixel

stability. Minimum pixel stability is the number of frames a pixel requires constant colour

for to be considered stable for segmentation, and this was manually set to fixed values within

a low range (0-3) to capture the rapidly changing splatter between frames [202]. Maximum

pixel stability, which is the longest possible memory of a pixel’s stability, was adjusted to

a value that balanced sensitivity to small changes and exclusion of occasional disturbances

like air knife movement [202]. The optimal settings chosen were one for minimum and ten

for maximum pixel stability respectively. As mentioned in Section 5.2.2, optimal settings

were found by incrementally adjusting pixel stability thresholds from their default settings

until results were satisfactory. Figure 66 and Figure 67 compare results before and after

optimisation, showing improved segmentation and a slight decrease in inference time from

50.5ms to 50ms. This optimisation effectively enhanced the CNT algorithm’s ability to deal

with air knife movement.
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(a) Frame 300 of Video 7 (b) Frame 420 of Video 7

(c) Frame 540 of Video 7

Figure 67: Figure showing the effects of knife movement on CNT background segmenta-

tion after modifying the CNT algorithm

5.3.1.5 Analysis of Noise Filtering

To tackle the excess noise caused by the CNT algorithm, erosion with a (2,2) filter was applied

to the mask, removing minor background noise caused by heatwaves and camera movement.

Figure 68(a) shows the result before erosion and Figure 68(b) shows the improved clarity af-

ter erosion was applied. This step significantly refined the mask. Morphological opening was

considered (erosion followed by dilation), however due to there being some larger contours

involved in this scenario, it was considered important to maintain these larger structures in

the mask. Whilst erosion still affected them, using a small filter meant they were barely

affected whilst most of the small noise contours were removed. If opening was used, the dila-

tion step would have caused slightly more distortion of the larger contours. Dilating contours

after eroding them would preserve most of the overall size of the remaining contours, but

would distort the shape. Therefore, there is a trade-off depending on which approach is used

and in this case, erosion was chosen for computational efficiency, since the actual difference

made by the extra dilation step would be insignificant. Additionally, a contour threshold of

75 pixels was set to exclude very minor splatter contours that were widespread and could
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disproportionately influence the severity rating by dramatically affecting the splatter width.

This ensured anomalies in the splatter distribution were excluded and the overall severity

measurement accurately represented occurring splatter.

(a)

(b)

Figure 68: Figure showing the effects of contour erosion on CNT background segmentation
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5.3.2 Splatter Severity Measurement

The next step after splatter segmentation was splatter measurement via splatter amount (the

number of segmented pixels in the splatter region) and splatter width (the distance between

the left-most and right-most segmented pixels in the splatter region). To minimise noise, the

area expected to contain splatter was defined as the splatter region, which changed based

on bounding boxes (discussed later). This contributes towards addressing the gap identified

in Chapter 2 regarding using CV models to measure real-world characteristics.

Figure 69: Histogram showing how frequent different splatter amount values occurred

Figure 70: Histogram showing how frequent different splatter width values occurred
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For every frame of Video 1, splatter amount and width were measured and plotted as his-

tograms (Figure 69 and Figure 70). Both histograms were divided up into five ranges which

each represented a different severity level for splatter amount and splatter width. Splatter

amount ranged from 0 to 42655 and splatter width from 0 to 847. The majority of frames

fell into the first severity level, which was the baseline state. The second range, indicating

a severity of one, had fewer frames than the first but more than the subsequent levels. The

third range represented a severity of two and was the outcome of significantly less frames

again. The fourth and fifth ranges, representing severities three and four, contained very

few frames, with the fifth having no upper limit to include extreme cases. This distribution

showed higher severity levels as less common, aligning with real-world scenarios. The final

splatter severity rating for each frame was determined using the system from Figure 59 in

Section 5.2.3, with examples shown in the following section.

5.3.3 Object Detection

Once splatter severity measurement was achieved, integration of an object detection model

was carried out. As a reminder, object detection consists of object classification (identify-

ing the type of object), and object localisation (identifying the location of the object and

enclosing it with a bounding box). In the context of this research, detection of air knives

is important for defining the splatter region and scaling factor, as detailed in Section 5.2.4.

The combination of background subtraction, with a modern deep learning-based technique

such as YOLOv5 addresses the gap in Chapter 2 regarding a lack of applications built

from combining traditional and modern techniques. The YOLOv5 object detection model

was trained, validated and tested on frames where the air knives were labelled, in order to

achieve automated air knife detection. The results of this model development are presented

in this section.

5.3.3.1 Model Training

Figure 71 shows a loss versus epoch graph for bounding box, objectness and classification

losses over 30 epochs of training of YOLOv5. Training took 14 minutes and 38 seconds per

epoch, which overall took 439 minutes. All losses followed similar trends and were normal for

successful training as it shows the model initially improved its ability to predict bounding box

coordinates, object presence and classification labels quickly and this rate of improvement

slowed down as epoch number increased. This was likely because the model initially learned

more obvious features in the training data quickly, and as the remaining unlearned features
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were more subtle overall, training losses reduced at a slower rate. The training data consisted

of all different scenarios existing in the provided footage, varying by camera position and

environmental conditions (see Table 20 in Section 5.2.1). The air knives barely changed in

appearance and if they did, it was due to movement. Therefore, considering a substantial

amount of data was provided, including many examples of each scenario with little variation

in knife appearance, it makes sense why training was straightforward.

Validation losses, which were lower than training losses, are shown in Figure 72. Typically,

validation losses are slightly higher than training losses since they are based on unseen

examples. This type of result could be caused by samples being distributed between training,

validation and testing sets so that the validation set is easier to predict on than the training

set. In this case, there is also a decreasing trend over epochs showing successful training at

each epoch, and since there was not much variation of the knives in the whole dataset, these

results suggest that the model learned from the training samples very quickly.

Figure 71: Graph showing how training loss changed over 30 epochs of training

Table 22 shows the precision, recall and COCO (Common Objects in Context) mAP

(mean average precision) results for the intra-epoch validation which align with discussion

on Figure 71 and the low validation loss shown in Figure 72. Since the dataset was large and

did not vary much, YOLOv5 was able to successfully learn features with ease and therefore

achieve near perfect performance.
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Figure 72: Graph showing how validation loss changed over 30 epochs of training

Table 22: Precision, recall and mAP results for intra-epoch validation of air knife detection

Precision Recall mAPCOCO

0.99988 1.00000 0.99414

5.3.3.2 Model Testing

Figure 73 shows model testing results in the form of a confusion matrix. For each class,

the matrix shows true positive and false positive predictions, and here all predictions were

correct. Figure 74 shows visualised labels and Figure 75 shows corresponding predictions,

which align with the confusion matrix. As shown, the model performance is near to identical

compared to the labels. This suggests the model will make good predictions during deploy-

ment. It will experience slightly different camera positions, however it has been trained on

a range of different positions already and should therefore still perform well. For optimal

deployment performance, the model may need to be improved iteratively based on any new

camera positions.

The precision, recall and mAP results for the testing stage in Table 23 show that similarly

to validation, testing resulted in near perfect model performance. Whilst the recall was

perfect for both validation and testing (indicates all ground-truth labels were detected),

the precision was slightly less than perfect. This indicates the model did make at least

one bounding box prediction that was not in the ground-truth data. This was likely just

one or a few incorrect bounding box predictions in random frames that were due to the
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Figure 73: Confusion matrix showing 100% true positives for “knife face” class (labelled

“0”) and 100% true positives for “knife underside” class (labelled “1”)

Figure 74: Visualisation of air knife labels where both classes are present on the left, and

only the “knife face” class is present on the right

Figure 75: Visualisation of air knife YOLOv5 predictions where both classes are present

on the left, and only the “knife face” class is present on the right
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model recognising features incorrectly, which whilst imperfect, would not significantly impact

performance during deployment (they would last less than one second). It is worth noting

that taking the confusion matrix and Table 23 at face value, they do not agree. Whilst the

confusion matrix indicates perfect results, Table 23 indicates slightly imperfect results. This

is likely because confusion matrix values were rounded.

Table 23: Precision, recall and mAP results for model testing on air knife detection

Precision Recall mAPCOCO

0.99989 1.00000 0.99449

5.3.4 Splatter Region Definition

Following the success of air knife detection, it was possible to define the splatter region more

precisely. Originally, the intention was to define a splatter region by a static horizontal

line entered manually for each video. However, as it became known that there would be

variations in camera position between operator shifts, as well as knife movement, the splatter

region definition required improvement so that it could adapt to changing environments.

Figure 76(a) shows the optimised splatter region line which adheres to the change in level

when under the front side of the air knives. This ensured as much of the steel strip was within

the splatter measurement region as possible. When underside faces were visible, there was

little to no difference between the knife level and the outer level (the part the knives are

attached to). Also, at some angles the splatter underside was visible at a lower point than

the outer level. Therefore, it made sense to make the splatter region boundary line straight

when underside faces were detected as in Figure 76(b). An example of the underside face

bounding boxes sitting lower than the outer level can be seen in Figure 76(c).

Another notable aspect of Figure 76(b) and Figure 76(c) is that the underside faces are

classified as front faces (“Knife Face” as opposed to “Knife Underside”). It was found that

despite the near perfect results found during model testing, the model often struggled to tell

the difference between the front faces and the underside faces. This shows a limitation in

the model, however it did not affect the performance of the splatter region definition, since

underside faces only ever existed underneath front faces, and so the presence of underside

faces could be detected based on whether there were two bounding boxes directly under

the front face bounding boxes, or not. Further analysis into the YOLOv5 classification

performance is a potential avenue for future work.
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(a)

(b)

(c)

Figure 76: Demonstration of splatter region line (long, red, horizontal) changing depend-

ing on how the knives are positioned. In (a) it is stepped to follow the change in level be-

tween the air knives (black) and their supporting structure (greyish-brown). In (b) there

is less of a level change and so the line has adapted to be straight all the way along. In (c)

there is no level change and the line is appropriately straight
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5.3.5 Scaling Factor Definition

Using air knife bounding boxes to define the splatter region was an effective aid in ensuring

the model was robust to variations in camera positioning. However, the model is most

reliable when the camera position is kept as similar as possible to the reference position,

which is the one used for Video 1. Therefore, if the primary task of operators at any given

time period is to collect splatter severity data for process optimisation, then the reference

camera position should be imitated as best as possible. In future work, a camera position

check could be added to automatically identify if the camera is in a similar position or not.

Further robustness was ensured by using the bounding boxes to calculate a scaling factor

which was applied to splatter amount and splatter width severity level boundaries. The

scaling factor was calculated from the pixel area of the air knives’ bounding boxes compared

to a reference area. Since variations in the camera-to-knives distance altered the bounding

box sizes, the scaling factor was also adjusted as shown in Equation (23) of Section 5.2.4.

This scaling factor was applied to the splatter amount and width thresholds to maintain

accuracy in the splatter severity assessment, regardless of changes in camera distance.

Results from two different camera positions are shown in Figure 77(a) and Figure 77(b),

where similar splatter amounts and splatter widths are shown, but in Figure 77(b) the

severity rating is lower since the distance between the camera and knives is smaller which

only gives the appearance of severe splatter.

The implementation of the scaling factor was followed by the addition of a 25,000-point

moving average. This was based on the 25fps frame rate and meant the scaling factor

would be refreshed approximately every 17 minutes. Under the assumption that camera

adjustments by operators would occur a few hours apart, this setup provided a substantial

safety factor for typical operation whilst also allowing for flexibility if the camera was to be

moved more frequently.
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(a)

(b)

Figure 77: Demonstration of splatter measurement boundaries adapting to changes in

camera position
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5.3.6 Final Evaluation

Verifying the suitability of the developed model for real-world application was crucial for

evaluating its effectiveness. This comprised of two parts and the first was to evaluate the

model on a range of videos with different conditions expected in production (listed in Table 20

of Section 5.2.1). The second was to validate splatter severity measurements made by the

model against the judgement of operators. Both of these parts address the gap identified in

Chapter 2 regarding a lack of real-world testing of models.

5.3.6.1 Video Evaluation

The model was firstly evaluated for production-readiness using the seven 60-second videos

mentioned in Section 5.2.1.

In Video 1, the camera’s distance from the knives was similar to the scaling factor’s

reference distance and exhibited all severity levels. The model’s performance was largely

accurate, with only a few frames showing noise-related errors. These anomalies were easily

identifiable since they caused random spikes in splatter severity and could therefore be

excluded or disregarded when using the model output for process optimisation. Note that

even though the nature of the splatter severity is to fluctuate rapidly, this is different to

the aforementioned random spikes. The difference is that when there are no anomalies from

noise, the overall trend of fluctuations increases or decreases gradually, whereas anomalies

cause the severity level to spike dramatically for just one or two frames from the baseline.

In Video 2, the camera was positioned more than twice the reference distance from the

knives, mostly showing low severity levels but occasionally higher ones too. The model

demonstrated effective performance with minimal noise-related inaccuracies.

In Video 3, the camera was positioned at about half the reference point for the scaling

factor and mostly low splatter severity levels were exhibited. Inaccuracies were minimal and

there were no outstanding anomalies from noise.

In Video 4, the camera was positioned at a normal distance similar to the reference

distance, allowing clear visibility of the zinc pool in which the steel strip is bathed in molten

zinc to form a protective coating prior to passing through the air knives. As shown in

Figure 78, the zinc pool visibility led the CNT algorithm to inaccurately detect the constantly

moving zinc in the pool as splatter. Whilst a method to enable the algorithm to accurately

segment splatter and ignore the zinc pool is yet to be developed, the current solution for this

deployment involves positioning the camera to avoid capturing the pool which is a feasible

approach since the pool is typically out of view.
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In Video 5, the camera was positioned about half the reference distance from the knives

and the primarily low severity levels were seen. In this video, there was light reflecting near

the air knives which was not observable in other videos and posed a challenge since it was

incorrectly segmented by the CNT algorithm. This is shown in Figure 79 and has been

considered an acceptable limitation of the model. In future work, this issue could maybe

be mitigated using denoising techniques. However, this issue can currently be avoided by

positioning the camera to avoid the reflective area which is a simpler and more resource-

efficient solution than modifying the model. The video also displayed minor horizontal knife

movement, which the YOLOv5 component handled effectively by adjusting the splatter

region.

In Video 6, the camera position was close to the reference position and a range of sever-

ity levels were exhibited. The camera was angled to the right slightly which brought the

reflecting light discussed in regards to Video 5 into view. Other than this known issue, the

model performed well.

In Video 7, the camera was positioned at about double the distance from the reference

point and low severity levels were exhibited. There was also a significant amount of vertical

air knife movement ranging from the bottom to the top of the field of view. The model

successfully modified the splatter region dynamically whilst air knives moved and coped well

with the appearance of the underside faces.

Figure 78: Frame of Video 4 showing the zinc pool effect on the CNT algorithm
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Figure 79: Frame of Video 5 showing the effect of reflecting light on the CNT algorithm

5.3.6.2 Expert Validation

Following video evaluation, splatter severity measurements made by the model were validated

against the judgement of two different operators working at the galvanising site where the

data was collected. The fully developed and optimised model was used to quantify the

splatter severity level present in 20 hand-picked frames that represented a diverse range of

camera angles and process conditions, whilst operators also estimated the splatter severity

level present within these frames by eye. Operator judgement was then compared to model

estimates to assess the accuracy and reliability of the model. The purpose of this validation

process was to gauge the practical applicability of the model and ensure estimates aligned

closely with human expert judgements.

Table 24 presents the MAE (mean average error) values comparing discrepancies between

model predictions and the judgements of two zinc pot operators. The maximum MAE of the

model across operators is 0.95, indicating that model predictions rarely deviate more than

one level from expert assessment, which is encouraging in terms of accuracy. Interestingly,

the MAE between the Pot Operator 1 (PO1) and Pot Operator 2 (PO2) is higher than

between the model and PO2, suggesting either significant subjectivity in human evaluations

or reliability of the model. Further testing is required to determine the significance of

these discrepancies between operators, particularly to understand the influence of different

datasets, environmental conditions and operator experience levels.
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Table 24: Mean average error values comparing the difference between the model esti-

mates, Operator 1 judgement and Operator 2 judgement

Model-O1 MAE Model-O2 MAE O1-O2 MAE

0.95 0.60 0.95

Figure 80 and Figure 81 show scatter plots which compare the model’s frame-by-frame

predictions with those of PO1 and PO2 respectively. The results indicate a closer alignment

with PO2 than PO1, suggesting the model’s assessment criteria may be more aligned with

PO2’s approach. However, it mostly remained between the two, suggesting model predic-

tions may be a good reference point if there is a disagreement between operators. Model

predictions fell outside both operators’ judgements by one severity level in six specific frames,

primarily when the camera was close to the knives. This suggests that better results were

achieved when the camera was positioned closer to the reference position, which suggests

the scaling factor design was sub-optimal and would benefit from more design iterations.

Furthermore, of the seven close-distance frames that were used in the validation set, five of

them were part of the more discrepant judgements.

Figure 80: Scatter plot showing model predictions compared to PO1 over 20 hand-selected

validation frames
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Figure 81: Scatter plot showing model predictions compared to PO2 over 20 hand-selected

validation frames

Frame 11 of the expert validation set is shown in Figure 82. Whilst the model predicted a

splatter severity level of zero, PO1 and PO2 judged it as one. Figure 82 shows there was not

much splatter, however not much of the zinc was detected by the CNT algorithm anyway. It

is debatable whether the model or the pot operators were more accurate and there was bias

built into the model during the development stages when severity boundaries were decided.

In this case, a small amount of splatter occurred and it is reasonable to consider this as

level one severity such as how the pot operators did, however this was not how the model

was designed and therefore resulted in this discrepancy. In general, in some cases the model

may struggle to differentiate between minimal splatter and no splatter, since this requires a

certain degree of precision. However, in most cases the model is expected to cope well.

Frame 14 of the expert validation set is shown in Figure 83. Whilst the model predicted

a splatter severity of one, PO1 and PO2 estimated it as four and two respectively. This was

the most significant discrepancy since the gap between PO2 and the model was three severity

levels. Results show PO1 and the model differed by one severity level, which was probably

due to the scaling factor multiplier. Also, PO1 and PO2 estimations differed significantly.

Considering what is shown in Figure 83, at the same time as the fact that the model did not

disagree with any operator judgement in any other frame by more than two severity levels,

it is reasonable to assume that the value given by PO1 was misjudged.
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Figure 82: Frame 11 in the expert validation sample set where a discrepancy was found

between operators and the model

Figure 83: Frame 14 in the expert validation sample set where a discrepancy was found

between operators and the model
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Frame 18 within the expert validation set is shown in Figure 84. This frame’s results

were the only ones that showed clear discrepancy with operators whilst not having a scaling

factor of 2.3. Whilst the model predicted a splatter severity of four, both operators judged

it as three. This appears to be due to built-in bias when deciding on severity boundaries.

The model was developed to consider this splatter amount as exhibiting the highest severity

level, whereas the operators considered it second highest. By observing Figure 84, it is fair

to state that the operators were more accurate as this is not as extreme as many splatter

events occurring throughout the data. Multiple cases of this analysis suggest the scaling

factor may need to be readjusted throughout design iterations. However, to be certain

that it needs adjusting, extensive investigation into the expert validation set samples of

choice, environmental conditions whilst operators completed the validation tests, and the

pot operator judgement would be required.

Figure 84: Frame 18 in the expert validation sample set where a discrepancy was found

between operators and the model

Figure 85 shows a box and whisker plot which explores the relationship between model

and operator judgement more deeply. Boxes represent the interquartile range of each set of

results and whiskers represent the range of possible values which remained constant. The

model prediction distribution was between operator distributions, as shown by the boxes.

Model and PO2 were most similar for interquartile range and the model and PO1 were

most similar for median. This suggests the model generated similar predictions to operators,

demonstrating its potential for robustly standardising splatter severity measurements.
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Figure 85: Box and whisker plot showing model prediction distribution compared to two

different operators over 20 hand-selected validation frames

Overall, the model shows promising performance in accurately predicting zinc splatter

severity, though variability among operator evaluations suggests a more complex situation

than first expected with regards to manually assessing splatter severity. This opens the door

to more research avenues whilst emphasising the benefit of developing a reliable computa-

tional system such as this one to avoid discrepancies between operators. The model appears

to be well-suited to assist experts and could help standardise splatter severity assessments.

For the model to be refined to exceed expert accuracy with confidence, a deeper study into

expert judgement is essential.

5.4 Industrial Application and Model Deployment

Upon completion of the final evaluation of the model, a deployment stage was undertaken

to develop the model so that it was as close to production-ready as possible. This section

outlines the system architecture and setup, optimisation results using TensorRT (TRT), final

deployment results and discussion of the real-world implications of the developed technology.

5.4.1 System Architecture and Setup

Figure 86 presents the data workflow of the developed system. As shown, the system is

comprised of several components. Firstly, all inferences are performed on the NVIDIA Jetson

Orin Nano device. This was chosen for the balance it provides between energy efficiency and

computational power, which makes it suitable for deploying computer vision (CV) models
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on the edge [256]. This is a specialised single-board computer designed for edge AI (artificial

intelligence) and deep learning tasks. It is equipped with a 6-core Arm Cortex-A78AE

central processing unit (CPU), a NVIDIA GPU featuring 1024 CUDA (Compute Unified

Device Architecture) cores and 32 tensor cores, and 8GB of 128-bit LPDDR5 (Low Power

Double Data Rate 5) memory [256]. Additionally, it has a variety of ports and built-in Wi-Fi

connectivity.

Figure 86: Schematic representing the data workflow of the deployed system

On the device, everything that is required to run the model in real-world application is

stored within a Docker container. Containers are lightweight, portable, packages that contain

all resources required to run a given application [257]. These include libraries, code, tools

and more. Docker is the most popular containerisation platform and ensures applications run

properly on different operating systems [257]. Since Docker provides a consistent, isolated
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environment, containerising components means the model can be rapidly deployed on other

devices in future with minimal to no extra configuration. This significantly enhances the

scalability of the system which is beneficial for industrial use.

To ensure that the model can interface with users, the client computer and other systems,

FastAPI is used which is a high-performance web framework for building APIs (application

programming interfaces) [258]. FastAPI was chosen over alternatives due to speed, robust-

ness, automatic interactive documentation and ease of implementation [258]. In this study,

speed is critical to ensure the system has real-time capabilities. One way FastAPI performs

well is through asynchronous operations which enable efficient handling of I/O bound pro-

cesses, making it well-aligned with real-time processing [258]. Furthermore, the interactive

documentation allows for easier maintenance of the API which is ideal for development and

ongoing use in industry.

Uvicorn is an ASGI (asynchronous server gateway interface) server that is typically used

in conjunction with FastAPI and is a medium between the API and the web [259]. Uvi-

corn receives client requests and sends them to FastAPI for processing, whilst also returning

responses to the client [259]. Uvicorn is capable of handling multiple client requests simul-

taneously using asynchronous operations, making it complimentary to FastAPI since it also

operates asynchronously [259]. This means it can handle a high volume of requests with

high performance, ensuring scalability of real-time applications.

In terms of the actual data workflow, it begins with a video source being streamed to

the client computer. Note that the video source could also be stored on the computer itself,

however in real-world application this will be a live video feed from an IP (internet protocol)

camera and so the system was designed for this purpose. Assuming the FastAPI application

server (hosted on Uvicorn) is online, a client-side Python script can be executed on the

client computer to connect to the server. Once a connection is made, the first frame of

the video source can be sent to the server with the request of performing inference on it.

When the server receives the frame, the FastAPI application processes it by interacting with

the computer vision model. The API provides the model with input (the video frame) and

executes the inference script, which returns a splatter severity level. The severity level is

then sent back to the client through the FastAPI application. At this point, the request

made by the client has been successful and this loop will continue until there is no video

stream available.

By using the results of the system developed in this case study in combination with

known process parameter values such as strip speed and air knife distance, relationships can
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be identified between their settings and the resulting splatter severity. These relationships

can then be used to optimise the galvanising process to minimise splatter severity at high

strip speeds.

The optimisation process would first begin by collecting data during typical production

cycles using the system proposed in this chapter, identifying variations in process parameters

and then correlating them with changes in splatter severity measured by the system. Using

statistical methods such as regression analysis, the relationships between parameters and

outcomes can be identified, which can then help identify optimal settings for parameters

such as air knife distance and air pressure that minimise splatter whilst maintaining high

strip speeds and therefore high productivity. This could be continuously refined as more

data is collected.

Additionally, once well-established, these findings can be integrated into process control

systems to create a feedback loop where the galvanising line automatically adjusts parame-

ters to control splatter. Using predictive analytics, the system could even be developed to

anticipate splatter before it occurs and adjust process controls to prevent it. Implementa-

tion of these data-driven optimisations will reduce splatter occurrence whilst improving the

overall efficiency of the galvanising process. Reduced splatter leads to reduced equipment

downtime, reduced maintenance costs, reduced waste and enhanced product quality.

5.4.2 TensorRT Optimisation Results

The deployed system, operating on the NVIDIA Jetson Orin Nano and presented in Fig-

ure 86, is a robust solution for real-time splatter severity measurement. It was first developed

on a personal computer using the PyTorch implementation of YOLOv5. For deployment, it

was optimised using TensorRT (TRT) library. The results in Table 25 show the difference in

performance of YOLOv5 when using PyTorch and TensorRT. All results were obtained by

averaging measurements across an entire video. They show that YOLOv5 inferences using

TensorRT took approximately 75% of the time that the PyTorch inferences did. This is

because TensorRT optimisation applies techniques such as precision calibration, layer fusion

and quantisation to enhance computational efficiency, and is highly beneficial for real-world

applications [201].

Table 26 shows the difference in PyTorch and TensorRT performance of the overall model

that includes YOLOv5, background subtraction and post-processing steps such as splatter

region definition, scaling factor definition and splatter severity measurement. As shown,

the TensorRT implementation took approximately 50% of the time that the PyTorch im-
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plementation did. This reinforces what was shown in Table 25 since not only was YOLOv5

faster with TensorRT, but other components of the full model were too. This highlights the

effectiveness of using TensorRT for real-time industrial challenges.

Table 25: PyTorch vs. TensorRT YOLOv5 air knife detection inference speed

PyTorch

YOLOv5 (ms)

TRT

YOLOv5 (ms)

28.20 21.82

Table 26: PyTorch vs. TensorRT full splatter severity model inference speed

PyTorch

Full Model (ms)

TRT

Full Model (ms)

131.90 64.75

5.4.3 Final Deployment Results

Table 27: Times taken for the deployed model to perform each step from receiving a frame

from the client device to returning a severity value

Step Time (ms)

Receive Frame 65.33

Decode Frame 42.76

Pre-process Frame 0.92

Inference 21.82

Postprocess Frame 42.93

Send Severity 0.64

Total 174.41
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After TensorRT optimisation was completed, the full system was tested for speed. Ta-

ble 27 shows the times taken for the system to perform each step required to fully process

one frame. Each step is described as follows:

Receive frame is the duration taken for the server to receive a frame from the client.

Decode frame is the time taken to convert the frame from .jpeg to a NumPy array.

Pre-process frame is the time taken for the frame to be pre-processed.

Inference is the time taken to perform YOLOv5 inference.

Postprocess frame is the background subtraction and severity measurement time.

Send severity is the time taken for splatter severity value to be sent back to the client.

Total is the time taken for all steps to be performed.

The receive, decode, inference and postprocessing steps were the most time-consuming

parts of the system. This is partly because the frames were large in size which made the re-

ceiving and decoding of them relatively slow, but also because frame reception was dependent

on network strength. Furthermore, the inference and postprocess steps involve major opera-

tions of the system where it makes predictions and measures splatter severity, and therefore

they are expected to come at the cost of a certain degree of time expenditure. The necessity

of the receive frame, decode frame and send severity steps is due to the frames being sent

to the Jetson Orin Nano via a client device which sources the video. These network-based

steps make up 108.73ms of the total time, which shows just how much of the overall system

speed is based on network speed. Without this, the system takes 65.68ms to process each

frame which is equivalent to 15.23fps. With the network cost included, this system currently

operates at 5.73fps using a typical home Wi-Fi connection.

Since the original video feed ran at 25fps, the deployed model is capable of making

inferences on just over 60% of the frames locally and just over 20% over a network, which

is sufficient for real-world application. This is highly successful, however there are various

opportunities to improve this further. For example, image size was large at 1920x1080px

and this could be reduced to as low as 25% of the original size (i.e., downsampling the

frames to approximately 480x270px). This would not significantly affect the quality of the

inferences since the high resolution is not essential for detecting the objects of interest, but

it would considerably improving the speed of YOLOv5 and CNT by reducing the amount of
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data processed per frame, leading to faster inference times without compromising detection

accuracy.

Also, whilst the currently implementation is highly efficient, direct integration of C++

where there are bottlenecks could significantly improve speed since it is much faster than

Python. This addresses the gap in Chapter 2 regarding a lack of real-time edge-based

solutions using computer vision in steel production scenarios.

5.4.4 Discussion on Real-World Applicability

Discussing the potential real-world impact of the developed system is important to assess

its value. Technologically there are a wide variety of real-world benefits that this system

brings. Firstly, it enables the numerical measurement of splatter severity which is unprece-

dented. The existing method is visual inspection via line operators which is subjective and

is susceptible to many biases including operator location, operator experience and operator

mood. In contrast, the deployed model measures splatter severity consistently and eliminates

these biases. This is not only beneficial for reliability of results, but also could be used as

a standardisation tool for splatter measurements when optimising the process over a long

period of time. The automatic aspect also reduces resource requirements after setup.

The availability of severity measurements opens various doors such as root-cause analysis

of splatter events, preventive and predictive maintenance, and process optimisation. The

capability to measure changes in splatter when adjustments are made to the process means

pinpointing the cause of it will be much easier. Preventive maintenance in the form of

cleaning is simplified by monitoring the accumulated splatter on surrounding equipment

over a given period of time (either through manual data analysis or this could be automated

as an additional feature to the model). Predictive maintenance is also simplified by knowing

how much splatter has accumulated. Also, collected data be analysed to discover new trends

which can guide process improvements which reduce splatter at high strip speeds. This will

reduce equipment downtime and increase productivity.

This model and its application is novel and combines advanced CV algorithms to monitor

a previously unmeasured process variable in real-time, which means it lays the foundation for

future developments of CV in manufacturing, particularly those involving liquid with fast-

paced morphology changes. For example, an air knife distance measuring feature could be

developed to more closely examine any relationships between air knife distance and splatter

severity. If relationships were found, air knife distance could be automatically adjusted in

real-time to minimise splatter severity.
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Examples of applications this kind of model would be suitable for firstly include au-

tomating the evaluation of spray coverage when coating aircraft components. Overspray

detection prevents wasting materials and unnecessary expense, whilst underspray detection

avoids compromising performance. This would aid quality control and sustainability. An-

other example is leak detection for food and drinks manufacturing to improve adaptability,

production efficiency and waste reduction of the process. A final example is real-time assess-

ment of lubrication spray for coverage, volume and consistency to prevent excessive wear,

decrease downtime and ensure high standards.

The deployed model can be used to enhance the galvanising process in terms of reducing

defects. Therefore, producing the same quantity of galvanised steel requires less energy and

materials. Therefore, this is both environmentally and economically beneficial to the process.

In terms of social benefits, implementation of this model would reduce the amount of time

workers spend cleaning zinc from the floor and surrounding equipment, which reduces their

workload. This also improves health and safety by minimising the amount of time workers

spend in close proximity to the hazardous equipment on the galvanising line. Additionally,

the fact this model automates the previous visual inspection performed by workers means

workload is further reduced, whilst worker confidence and awareness is boosted when making

decisions related to zinc splatter.

It is also crucial to acknowledge the limitations of the proposed approach. A significant

challenge of this approach is the initial setup of the model which includes tasks such as data

preparation, model training and model deployment. These tasks consume a considerable

amount of time and resources which could potentially be problematic for small and medium-

sized enterprises (SMEs) which may lack computational resources and technical expertise.

In contrast, the current approach only requires on-site operators. Additionally, adapting the

model for varying environments would require the setup process to be reiterated with new

datasets which prevents rapid deployment. However, techniques such as transfer learning

and auto-labelling could be used to minimise these additional resource requirements. Over-

all, whilst human readiness and adaptability is advantageous, the benefits provided by an

automated, objective system surpass low resource demands.

5.5 Conclusions

This chapter has presented a case study where real-time quantification of zinc splatter sever-

ity during the steel galvanising process was achieved through use of CNT background sub-

traction for splatter segmentation and YOLOv5 for robustness to changing environmental
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conditions. This research and development addresses the limitations of subjective visual

inspections by operators by offering an objective and automatic alternative. Therefore, this

work demonstrates a significant advancement in industrial technology.

In this work, seven different background subtraction algorithms were tested and the

CNT algorithm was found to be the best in terms of performance and real-time suitability.

The CNT algorithm parameters were optimised so that the minimum and maximum pixel

stability thresholds were one and ten respectively. Furthermore, denoising techniques such

as morphological erosion and contour thresholding were used to refine CNT masks. YOLOv5

was trained on 4200 images which resulted in excellent precision, recall and mAP results,

which were all 1, indicating perfect performance. Also, promising results were drawn from

comparison of model predictions and operator judgements where the model was more similar

to individual operators than they were to each other.

Successful model deployment exemplifies the production-readiness of the developed sys-

tem and is exhibited through the result of 5.73fps on a NVIDIA Jetson Orin Nano which

includes client requests and responding over a Wi-Fi network. Whilst TensorRT optimisa-

tion was highly successful and an incredibly valuable aspect of this study, allowing inferences

to run at over 15fps with no image resizing on 1920x1080px images, resizing images before

initiating YOLOv5 model training would largely improve inference speed. Furthermore, the

use of Docker and FastAPI in this study have ensured the model is scalable.

This chapter contributes to the advancement of steel galvanisation monitoring technology

whilst demonstrating the suitability of integrating modern computer vision techniques in

industrial environments. Therefore, it is pioneering research that offers great insight that

could guide the development of future technologies in CV and manufacturing. Furthermore,

this case study has addressed four of the research gaps identified in Chapter 2. Firstly, it has

addressed the lack of real-time edge-based CV applications developed for steel production

processes. Secondly, it has involved the generation of a novel dataset based on the galvanising

process which addresses the lack of datasets available for developing CV applications for

steel production processes. Thirdly, it has contributed to addressing the lack of real-world

measurements performed by CV models. Lastly, it has addressed the lack of hybrid CV

models that make use of both traditional and deep learning-based techniques.

5.6 Future work

In future work, implementing the splatter severity system into the galvanising line would

contribute to enhancing process efficiency and quality control through data-driven insights
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during tasks such as root-cause analysis, process optimisation and maintenance planning.

Additionally, there is opportunity to develop this work into a closed-loop control system

that automatically adjusts process variables depending on the resulting splatter in real-time,

as well as integrate it into an alarm system that automatically alerts operators of high

splatter severity events. Therefore, this work paves the way for discovering new trends in

the galvanising process and promotes future developments based on similar methodologies

that accelerate the progress of manufacturing technology.
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Chapter 6: Analysis of Gaseous Plume

Dynamics, Refractory Wear and

Stirring Efficiency in Gas Stirring

In this chapter, a novel approach using computer vision (CV) is presented to monitor plume

characteristics from experiments simulating gas stirring in a basic-oxygen furnace (BOF).

The CV model uses the YOLOv5 (You Only Look Once) detection network for plume de-

tection, DeepSORT (Deep Simple Online and Real-Time Tracking) for plume tracking, and

Counting (CNT) background subtraction (BGS) for plume segmentation. This innovative

method provides insights into plume dynamics, refractory wear, and stirring efficiency of

different gas stirring configurations, whilst demonstrating a significant improvement over

traditional measurement techniques.

6.1 Introduction

During steel production, the refinement process within the basic-oxygen furnace is crucial,

and optimising this process could significantly enhance the efficiency and quality of steel

production [260]. Gas stirring is a technique that facilitates improved mixing between steel

and slag which increases yield and scrap charge (i.e., more recycled steel can be used),

improves phosphorus removal, reduces skulling and reduces consumption of aluminium and

flux [260, 261]. However, gas injection into the BOF is achieved via a mixing element and this

technique has been found to increase wear on the refractory lining surrounding the mixing

element, which is due to thermo-mechanical stresses from gas injection and compressive

failure of the refractory material [262, 263]. Previous approaches for assessing this wear

include time-domain reflectometry, laser scanning and temperature monitoring, which offer

valuable insights but are limited by their static nature and point-specific measurements [264].

This objective of this case study was to develop an analytical tool for monitoring helium

gas plumes in a water column setup that replicated BOF gas stirring using a specific mixing

element design called the annular tuyère, which is proposed in [264]. A schematic of the

simulation setup is shown in Figure 87, where water acts as liquid steel and helium acts as

injected gas (argon in real application). Whilst gas stirring is known to improve the efficiency

of metal purification, the incorporation of a mixing element into the furnace setup causes
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refractory wear in the area adjacent to the element. By detecting and tracking plumes in

different column setups, plume characteristics can be measured which provide insights into

how different furnace setups affect wearing of the refractory lining, as well as the efficiency of

the stirring process. These insights can be used for optimising the tuyère design to minimise

refractory wear and maximise stirring efficiency. Therefore, another goal of this case study

was to demonstrate how the analytical tool could be used for real-world application by

using it to gain insight on different column setups. This work overcomes the challenges of

monitoring several characteristics of gaseous plumes that are complex due to their dynamic

behaviour, indefinite shapes and inconsistent patterns of merging and splitting.

The primary contribution of this study is a novel application of CV that indicates opti-

mal gas stirring configurations that reduce refractory wear and increase stirring efficiency,

leading to extended equipment life and enhanced product quality. Additionally, work pre-

sented here paves the way for integrating real-time monitoring systems, advancing predictive

maintenance technology and further enhancing operational efficiency. The model is likely to

be applicable to other mixing element designs without further training, which would enable

better design decisions beyond gas stirring configuration. Furthermore, this approach could

be adapted to other processes, which would widen current monitoring capabilities and deliver

more benefits to industry. Source code is available on GitHub [265].

Figure 87: Schematic representing the gas stirring simulation setup. During experimenta-

tion, helium is injected into the system via the annular tuyère which induces jetting. As it

rises, plumes form, expand and then begin collapsing towards the top area
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6.2 Methodology

The data for this case study was generated by recording a series of experiments designed to

simulate gas stirring in the BOF using water instead of liquid steel and helium to simulate

argon. These experiments were conducted by another researcher who captured footage using

six different configurations. An overview of the methodology is given in Figure 88, which

shows there were seven main steps. The first step of this case study was to generate an

initial dataset by labelling one of the six sets of footage that were available, and then split-

ting it up into training, validation and testing sets. The data prepared in this case study

addresses the gap in Chapter 2 regarding the lack of diverse datasets available for developing

CV applications for steel production processes. The second step was to experiment with

three different object detection models and establish which one was most suitable for this

application. The third step involved comprehensive preparation of all unlabelled datasets

using an efficient auto-labelling approach, to build a dataset sufficient for maximising model

performance in later stages. The fourth step entailed model development for taking real-

world measurements, which included experimentation of various background subtraction

algorithms to establish which one was most suitable for this application. The fifth stage

involved optimisation of the object detection network to maximise performance. Once these

stages were complete, the model was validated on real-world data to assess performance,

before it was utilised to calculate wear rate factor (WF), which indicates the expected wear

on the furnace refractory lining and stirring efficiency (SE), which indicates the effectiveness

of the stirring process. These metrics were calculated for different gas stirring configurations

to draw industrial insights on the process.

6.2.1 Initial Data Preparation

All datasets prepared for this case study were prepared using footage of gas stirring using

the annular slot tuyère design proposed in [264]. There were six different gas injection rates

used and therefore the data used for this case study is shown in Table 28.

Each of the six datasets contained approximately 750 frames and were originally provided

in frame format rather than video. Whilst model predictions were visualised in video format,

developing a real-time analysis tool was outside the scope of this case study since the aim was

to develop a tool used for postprocessing, and therefore whilst a higher inference speed was

preferable for minimising time consumption, it was not a significant concern in comparison

to model accuracy.
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Figure 88: Overview of the methodology used for Case Study 3
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Table 28: Original datasets used in Case Study 3

Injection Rate (Nm3h-1) Dataset Name

50 Plume50

75 Plume75

100 Plume100

120 Plume120

150 Plume150

180 Plume180

Since the labelling process was time-consuming and complex, Plume50 was the only

dataset used for initial model development as this was sufficient for comparing several object

detection networks and assessing their suitability for this use-case. Each plume instance

throughout Plume50 was labelled in terms of location and and classification using the VGG

(Visual Geometry Group) Image Annotator (VIA) [215]. The overall classifications for this

case study were as follows: plumes exhibiting jetting phenomena were marked as “jetting”,

plumes in a state of continuous expansion were marked as “forming” and plumes that had

achieved maximum diameter and had began shrinking and dispersing were identified as

“collapsing”. However, for the initial data preparation stage only “forming” and “collapsing”

were used to simplify the process. This annotation process was particularly challenging due

to the dynamic and complex behaviour of the gaseous plumes which were often structurally

chaotic and were constantly evolving, splitting and merging. These challenges are addressed

in-depth in Section 6.3.1.

The number of instances of each class in Plume50 are shown in Table 29. Plume50 was

split using a 70:20:10 ratio for training, validation and testing sets, which resulted in the

subset sizes shown in Table 30. Note that jetting instances were not used during initial

model development to maintain simplicity of the process.

Table 29: Number of instances of each class in Plume50

Class Number of Instances

Forming 561

Collapsing 1238

Jetting 128
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Table 30: Number of frames of each subset of Plume50

Subset Frames

Training 526

Validation 150

Testing 75

Total 751

6.2.2 Initial Model Development

To effectively monitor plume behaviour, it was essential to implement a high performance

method for object detection and tracking. Three distinct detection networks underwent

evaluation to determine their practicality for this case study, before proceeding to develop a

comprehensive measurement tool. The networks selected for evaluation were Faster R-CNN

(Faster Region-based Convolutional Neural Network) [48], RetinaNet [55], and YOLOv5

[63]. Each network was integrated with the DeepSORT tracking algorithm [92] and was

subjected to training, validation, and testing using the Plume50 dataset. These models

were selected for their promising performance, as evidenced in Section 2.3 of Chapter 2.

Performance was measured using metrics such as precision, recall, average precision (AP),

mean average precision (mAP) and inference time. These were also chosen based on what

was shown as common practice throughout Chapter 2. The final choice of the detection

model was primarily influenced by its COCO (Common Objects in Context) mAP score,

although other metrics were also considered.

For this case study, models were developed in Google Colaboratory (differently to other

case studies which were developed on local resources). It was challenging to align all three

models to perform the same task and evaluate them using the same metrics. This is because

all three models varied in terms of their development history and underlying architectures.

Each model (Faster R-CNN, RetinaNet and YOLOv5), was originally developed by different

teams. This meant that a deep understanding of their unique implementations was required.

Google Colaboratory was partly used for this case study due to the availability of pre-built

Colab notebooks that either already integrated DeepSORT, or made it easier to integrate

it manually. In the case of YOLOv5, it was possible to find a notebook with DeepSORT

integrated [266], whereas with Faster R-CNN and RetinaNet it was necessary to manually

integrate it [267, 268, 269]. It was possible to implement these notebooks locally, however
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Google Colaboratory was used so that the final model was easily accessible for the collabo-

rating researcher, without needing Python experience or software to be downloaded locally

as it was all available on the cloud. This is an example of good scalability since the model

can easily be distributed to anyone wishing to use it to collect results.

Also, each model needed to be trained, validated and tested using annotated data of

different formats which can be seen in Table 31. They were exported in the VIA JSON

(JavaScript object notation) format and converted to their respective formats using online

conversion tools [216, 270]. Note that PASCAL VOC XML refers to “Pattern Analysis,

Statistical Modelling and Computational Learning Visual Object Classes extensible markup

language”. PASCAL is a collaborative network of excellence contributing to the advancement

of pattern analysis and machine learning (ML), VOC is a dataset developed by the PASCAL

network (see Section 2.1 of Chapter 2), and .xml is a data format used for annotating

datasets.

Furthermore, the evaluation functions built-in to each model by their respective devel-

opers were not equal and in some cases, non-existent. This was particularly true for the

mAP which as mentioned in Section 3.4.4 of Chapter 3, can be calculated in different ways.

Therefore, each model needed to be modified to output evaluation metrics that were calcu-

lated in the exact same way every time and included the most important metric, the COCO

mAP.

Table 31: Annotation format required for each initial model

Model Annotation Format

Faster R-CNN COCO JSON

RetinaNet PASCAL VOC XML

YOLOv5 .txt

6.2.3 Comprehensive Data Preparation

Following initial model development, it was necessary to label the remaining available data

to ensure the final model was suitable for application. Since labelling was time-consuming

and complex, an auto-labelling approach was taken to adapt to resource-constraints and

maximise efficiency. There were three auto-labelling (AL) stages (shown in Figure 88).

Initially, the model trained on Plume50 was used to auto-label Plume75, as it most

closely resembled Plume50. Note that the “jetting” instances had to be added manually
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to Plume50 and used to re-train the model before initiating auto-labelling. Following the

first auto-labelling task, manual adjustments were still necessary for correcting imprecise

bounding boxes predicted by the model. However, this process was notably quicker than

prior manual labelling from scratch.

In the second stage, the model was trained on a dataset comprised of both Plume50 and

Plume75. This newly trained model was then applied to label Plume150 and Plume180, cre-

ating a need for a moderate degree of manual correction. Although Plume150 and Plume180

differed more from Plume50 and Plume75 than Plume100 and Plume120, the labelling of

Plume100 and Plume120 would still require moderate adjustments after auto-labelling but

would not expose the model to the full extreme of possibilities in the following stage.

The final stage required minimal corrections. This approach was proposed as efficient

due to the model’s training on the two extremes (Plume50 and Plume75, and Plume150

and Plume180), providing it with reference points for interpolation when encountering new,

unseen data. In contrast, training the model with only the first four datasets lacks exposure

to the unique features present in the extremes of Plume150 and Plume180, therefore limiting

its potential for interpolation capabilities.

6.2.4 Measurement and Background Subtraction Development

This stage focused on enabling the object detection model established in the initial devel-

opment phase to accurately measure various plume characteristics across different injection

rates. Collectively, these measurements could provide insights into the wear and stirring

characteristics of the tuyère design and therefore aid in optimisation for minimising wear

and maximising stirring efficiency. Key characteristics measured include plume state, plume

height, plume width, contact width, jetting length and plume frequency.

Plume state (jetting, forming or collapsing) was described by the classification results,

whereas plume height and width were derived using bounding box dimensions. Then, using

the scale in Figure 89, these pixel-based measurements were converted into millimeters. The

plume-tuyère contact width was used to calculate washing severity (WS) which impacted

wear rate factor (WF) since washing phenomena causes refractory wear, the plume height

and width were used to calculate plume volume using the ellipsoid volume equation [271],

which impacts stirring efficiency (SE), plume frequency contributed to both WF and SE,

and the jetting length was measured for additional insight but not fully integrated into the

overall configuration assessment. The practical application of these variables is detailed in

Section 6.4.1 and the results of application are presented in Section 6.4.2.
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Figure 89: Image of a ruler within the experimental setup that was used to scale pixels to

millimetres

Whilst bounding boxes were sufficient for overall plume height and width measurements,

measuring the plume-tuyère contact width was more complex since typically, the contact

width was not the same as the overall plume width. This created the need for plume

width measurement at a certain level within the bounding box (the level of the tuyère

surface). This capability was achieved by assessing the performance of multiple background

subtraction algorithms and selecting the best one. These algorithms have been detailed in

Section 5.2.2 of Chapter 5 (all algorithms except CNT) and Section 3.3.2 of Chapter 3 (for

CNT). Additionally, morphological operations [28], in-range colour removal [272], and Hough

transformations [273] were used to denoise the segmentation mask.

Case Study 2 only used erosion when applying morphological techniques, however this

case study used morphological opening (erosion and dilation) [28]. As discussed in Chapter

5, after erosion removes small noise contours, subsequent dilation can distort contour shapes

but preserve size. Unlike in Chapter 5, this case study did not hold real-time performance

as a goal, meaning the extra computation required for the dilation step was not detrimental.

Also, whilst contour shapes were important, sizes were more important to ensure major

geometrical features of plumes such as height and width, were preserved.

To further refine BGS masks, a technique called in-range colour removal was implemented

[272]. This method involves eliminating colours within a pre-defined range of RGB values.
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It was used to remove a noticeable aspect of the mask that surrounded the plumes but were

not part of them, and appeared to be a different colour to the accurate part of the mask.

The area prone to this error was probed 20 times to obtain RGB values, and this was to

remove as much of the unwanted mask as possible.

Hough line transforms are a method for line detection [273] and were applied to identify

lines within the segmentation mask. These lines were specifically targeted for their location

and angle, which matched the straight edges of the tuyère. The column setup occasionally

experienced instability, leading to movements of the tuyère which resulted in the edges of

the tuyère being mistakenly identified as gas in the segmentation process. By applying

Hough line detection, it was possible to consistently eliminate these inaccurately detected

edges from the segmentation mask. This was an unconventional but innovative application

of Hough line transforms.

Optimisation of the parameter settings for each technique was conducted using grid

searches. The effectiveness of these settings was evaluated by comparing the plume-tuyère

contact width measurements from the model against manual measurements from previous

research [264]. Since some of the validation data seemed imprecise, a careful comparison of

model predictions, earlier manual measurements from [264], and new manual observations

was undertaken. This cross-examination was essential for maximising the reliability of the

model.

6.2.5 Object Detection Optimisation

Following the completion of BGS development, the object detection model underwent further

optimisation to enhance performance. A comprehensive grid search [274] was conducted

which applied every possible combination of selected parameter settings. Optimisation was

carried out on three parameters, each at three distinct levels. The strategy for data setup

drew inspiration from k-fold cross-validation and involved pairing the six datasets to create

three new sets. For each variant of data setup, two pairs were designated for training

and a different pair was allocated for testing. This ensures model performance was not

biased by the selection of particularly favorable or unfavorable sets for training and testing

[275]. Model sizes compared were the small (YOLOv5s), medium (YOLOv5m), and large

(YOLOv5l) versions of YOLOv5. Architecturally, these networks differ in complexity and

size, with YOLOv5s having the fewest convolutional layers and the lightest structure, whilst

YOLOv5l has the most layers, making it better suited for handling more complex detection

tasks. An overview of the differences between these networks are presented in Section 3.3.1
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[196]. In terms of training epochs, 50, 100, and 200 were used.

Throughout the grid search, training loss, validation loss, performance metrics such as

mAP, as well as model predictions of real-world characteristics were used to evaluate the

performance of each model design. Overall, these results allowed for thorough assessment

of which design produced the most accurate results. Table 32 shows the experimental setup

which includes 27 experiments in total.
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Table 32: Grid search experimental setup involving three different data setups, YOLOv5

model sizes (S - small, M - medium, L - large), and numbers of training epochs

Exp. No. Data Setup Model Size Number of Epochs

1 1 S 50

2 2 S 50

3 3 S 50

4 1 M 50

5 2 M 50

6 3 M 50

7 1 L 50

8 2 L 50

9 3 L 50

10 1 S 100

11 2 S 100

12 3 S 100

13 1 M 100

14 2 M 100

15 3 M 100

16 1 L 100

17 2 L 100

18 3 L 100

19 1 S 200

20 2 S 200

21 3 S 200

22 1 M 200

23 2 M 200

24 3 M 200

25 1 L 200

26 2 L 200

27 3 L 200
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6.2.6 Real-World Validation

Upon completion of model optimisation, it was necessary to validate its ability to measure

real-world characteristics. This process aimed to address the gap identified in Chapter 2

regarding the lack of real-world validation of computer vision model measurements.

The validation process entailed comparing predictions with manual measurements ob-

tained from previous research, as well as new annotations produced manually for training

the object detecton model. The validation focused on key plume characteristics including

plume width at the tuyère surface and jetting length.

6.3 Results and Discussion

This section presents and discusses the results obtained from experimentation described in

Section 6.2, which begins with the results of initial data preparation and model development,

followed by comprehensive data preparation and model development. Finally, the model

estimations of real-world characteristics are validated against manual measurements.

6.3.1 Initial Data Preparation

The initial phase of data preparation presented various challenges, mainly posed by the

constantly changing nature of the plumes as they formed and collapsed. An example of this

complexity is illustrated in Figure 90 which shows an unlabelled frame from Plume50. The

unclear boundaries of each plume in the image make it challenging to accurately measure the

plume geometry, leading to potential ambiguity in identifying the number of plumes, which

could be anywhere from two to five depending on how the frame is observed. When patterns

across series’ of frames were examined, as opposed to individual frames, the labelling process

became even more complex. This meant labelling required careful consideration, practice,

and multiple revisions for each frame to ensure the chosen approach would yield the most

effective measurement tool during deployment.

One of the main labelling challenges was based on occlusions. The gaseous nature meant

plumes were always partially merged and therefore defining the precise edges of plume bound-

ing boxes was difficult. Additionally, the overlapping nature of plumes further complicated

the process. Note that overlapping is not the same as merging. Whilst overlapping refers

to one plume occluding the other from the camera perspective, merging refers to the actual

combination of two or more plumes. The fact that the approach in this case study used 2D

data, which lacks depth information, was one of the reasons for the aforementioned labelling
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challenges. In future work, it would be beneficial to experiment with 3D data however this

would introduce new challenges surrounding the complexity of data, increased computational

resource requirements and the necessity to use more sophisticated algorithms. In terms of

partial merging of plumes, a decision was made to avoid identifying exact physical bound-

aries for each plume since this was virtually impossible to do perfectly using the human

eye. Instead, bounding boxes were assigned as best as possible and no attempt was made to

account for overlapping. Figure 91 exemplifies this labelling approach.

Figure 90: Frame of Plume50 demonstrating the ambiguous nature of plumes

Another challenge arose from the seemingly random forming and merging of plumes.

In certain instances, rather than adhering to the typical jetting-forming-collapsing pattern,

plumes unexpectedly merged with neighbouring plumes during formation. This complexity

introduced challenges in the labelling process, as judgement was required to determine when

two constituent plumes should be treated as a single entity. The dynamic nature of the

gas which has previously been described, meant it was not always evident which plumes

were undergoing merging. In Figure 90 this uncertainty is shown in the bottom third of the

image, where it is unclear whether one or two plumes exist. Similarly, ambiguity persists

in the top two-thirds of the image, and deciding whether the partially collapsed gas in the

middle belongs to plumes above or below adds further complexity to the labelling process.

Labelling challenges also included the ambiguous definition of the outer edges of plumes,

primarily caused by random gas streams partially detaching from the plumes and creating
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Figure 91: Labelled frame of Plume50 showing plume ambiguity

confusion of where exact boundaries were. This phenomenon is exhibited in Figure 92. To

address this issue, labels were applied with a focus on capturing the main body of plumes,

allowing for a slight allowance for diverging gas until detachment began. This approach

is shown in Figure 92, where the detached gas stream in the bottom left of the image is

excluded at a specific extent of separation.

Figure 92: Labelled frame of Plume50 showing diverging gas
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6.3.2 Initial Model Development

The initial model development stage entailed the evaluation of several existing object de-

tection architectures in order to choose the most appropriate one for this case study. The

three models chosen were Faster R-CNN, RetinaNet and YOLOv5. It is important to note

that whilst comprehensive testing results are available for all three models, the training and

validation data, which would have provided additional insights into the learning dynamics

and generalisation capabilities of models, are not present. This absence is due to an over-

sight during initial model development, where most of the focus was placed on ensuring

DeepSORT was correctly integrated with each model, aligning all three models to perform

the same task and ensuring uniform evaluation criteria despite their structural differences.

This led to training results not being stored carefully for later use. Further complicating

this issue, the Python version of Google Colaboratory updated in this time, which posed

challenges in re-training the models, as they were originally developed for an earlier version.

Whilst re-training and data collection remain feasible, the Google Colaboratory update has

made this process significantly more time-consuming. To mitigate issues in future projects,

it is essential to implement more documentation protocols, backup procedures and version

control using GitHub from the outset.

Fortunately, the results in Tables 33, 34, and 35 show the aim of the initial model

development stage, which was to find the most appropriate model for this application, was

still achieved. The models were evaluated on the task of localising gaseous plumes with

bounding boxes and classifying them as either “forming” or “collapsing”, which overall is an

assessment of their ability to perform object detection on every plume that was visible in the

footage. The number of plumes detected was not a specific consideration in the evaluation of

model performance, as the focus was on the overall accuracy of detection and classification

rather than the count of individual detections. Whilst the ability to analyse model behaviour

during the training phase is limited, the testing phase results still offer a robust basis for

evaluating and comparing the performance of these models. Also, experience was gained in

that using a cloud service such as Google Colaboratory means certain precautions should be

taken in the preliminary stages to ensure models are adapted to handle any uncontrollable

updates. Therefore, not only will documentation, backup and version control activities be

practiced thoroughly in future projects, but extra precaution will be taken to prepare for the

utilisation of cloud computing resources. All models were trained for 30 epochs on Plume50

and the epoch with the lowest validation loss was used to produce the results presented.

The testing was conducted across ten IoU (intersection-over-union) thresholds, adhering
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to COCO mAP standards, in order to ensure a thorough comparison of model performances

for this task whilst avoiding any biases to particular IoU thresholds. Despite the missing

training and validation data, these results provide a strong indication of the superiority of

YOLOv5 in terms of accuracy and efficiency in the context of this case study. For initial

model development (assessment of three architectures), tabular data that follows was much

more insightful than visual results, which are therefore not presented for conciseness. How-

ever, visual results will be presented in later elements of this section where observations were

more significant.
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Table 33: Testing results for object detection of plumes using Faster R-CNN across varying IoU thresholds (0.50 to 0.95 from

most relaxed to most strict)

IoU

Thresh.

#Ground

Truths
#Predictions TP FP Precision Recall

Avg. Inference

Time (s)

Forming

AP

Collapsing

AP
mAPCOCO

0.50 359 410 340 70 0.829 0.947 0.092 0.805 0.879 0.842

0.55 359 410 96 314 0.234 0.267 0.092 0.000 0.292 0.146

0.60 359 410 10 400 0.024 0.028 0.092 0.000 0.019 0.010

0.65 359 410 3 407 0.007 0.008 0.092 0.000 0.005 0.003

0.70 359 410 0 410 0.000 0.000 0.092 0.000 0.000 0.000

0.75 359 410 0 410 0.000 0.000 0.092 0.000 0.000 0.000

0.80 359 410 0 410 0.000 0.000 0.092 0.000 0.000 0.000

0.85 359 410 0 410 0.000 0.000 0.092 0.000 0.000 0.000

0.90 359 410 0 410 0.000 0.000 0.092 0.000 0.000 0.000

0.95 359 410 0 410 0.000 0.000 0.092 0.000 0.000 0.000

Overall 359 410 45 365 0.110 0.125 0.092 0.080 0.120 0.100
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Table 33 shows the testing results for Faster R-CNN. At the lowest IoU threshold of 0.50,

Faster R-CNN performance was quite good with a precision of 0.829 and a recall of 0.947.

The primary metric of COCO mAP was also good at 0.842, indicating the effectiveness of

Faster R-CNN for this task when the threshold for an acceptable prediction is relaxed. On

the other hand, there were still 19 ground-truth instances missed as shown by comparing

ground-truths to true positives (TP), as well as 70 instances predicted that did not match

any ground-truth instance as shown by false positives (FP).

A significant decline in performance was observed as the IoU threshold increased. Beyond

a threshold of 0.50, both precision and recall experienced a marked decrease due to the model

predicting less than a third of the true positives previously predicted whilst over quadrupling

the number of false positives. From thresholds 0.70 and above, a point of zero performance

was reached. To clarify, the cause of this is that the IoU threshold (a measure of the

overlap between predictions and ground-truth data) that must be met for a prediction to

be considered a true positive is stricter than all of the predictions that were made. In other

words, all predictions made had an IoU score below 0.70 and did not overlap enough with the

labelled data to meet the stricter criteria. This trend emphasises the limitations of Faster

R-CNN in achieving accurate predictions under moderately strict criteria. The collapsing

and forming class AP values followed a similar trend, starting strong at the 0.50 threshold

but reducing rapidly when the threshold was increased. An interesting aspect of this is that

the ability of Faster R-CNN to predict forming declined much quicker than collapsing. This

was because, as mentioned in Section 6.2.1, Plume50 contained 561 forming instances and

1238 collapsing instances. Therefore, Faster R-CNN had learned the features of collapsing

instances significantly better than those for forming instances.

Overall, the COCO mAP achieved by Faster R-CNN was 0.100 which reflects the deterio-

rating performance at higher thresholds, and again suggests limitations in its ability to make

precise predictions. It is also worth noting the inference time of 0.092 seconds which suggests

reasonable efficiency in processing. However, given the overall performance trends it is clear

that whilst Faster R-CNN can effectively detect objects at lower precision requirements, it

is limited in ability to perform high-precision detection. Therefore, it is not suitable for an

application such as the one in this case study.
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Table 34: Testing results for object detection of plumes using RetinaNet across varying IoU thresholds (0.50 to 0.95 from

most relaxed to most strict)

IoU

Thresh.

#Ground

Truths
#Predictions TP FP Precision Recall

Avg. Inference

Time (s)

Forming

AP

Collapsing

AP
mAPCOCO

0.50 359 2063 359 1704 0.174 1.000 2.770 0.985 0.985 0.985

0.55 359 2063 359 1704 0.174 1.000 2.770 0.985 0.985 0.985

0.60 359 2063 359 1704 0.174 1.000 2.770 0.985 0.985 0.985

0.65 359 2063 357 1706 0.173 0.994 2.770 0.980 0.974 0.977

0.70 359 2063 349 1714 0.169 0.972 2.770 0.961 0.945 0.953

0.75 359 2063 334 1729 0.162 0.930 2.770 0.900 0.921 0.910

0.80 359 2063 311 1752 0.151 0.866 2.770 0.802 0.865 0.833

0.85 359 2063 260 1803 0.126 0.724 2.770 0.593 0.724 0.658

0.90 359 2063 168 1895 0.081 0.468 2.770 0.294 0.355 0.325

0.95 359 2063 45 2018 0.022 0.125 2.770 0.056 0.025 0.040

Overall 359 2063 290 1773 0.141 0.808 2.770 0.754 0.776 0.765
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Table 34 shows the testing results for RetinaNet. At the lowest threshold of 0.50, Reti-

naNet achieved a perfect recall of 1.000 and a COCO mAP of 0.985, indicating its ability

to detect all ground-truth instances. However, this was accompanied by a high number of

False Positives (1704), resulting in a low precision of 0.174. This trend of high recall but low

precision existed across all IoU thresholds, suggesting that whilst RetinaNet was effective

in detecting the presence of objects (high recall), it struggled with the precision of these

detections (high FP). The high number of predictions (2063) compared to the number of

ground-truths (359) further indicates that the model had a tendency to over-predict. Despite

detecting all or nearly all ground-truth instances, the substantial number of false positives

significantly impacted precision.

In real-world application of object detection, models are typically designed by considering

a trade-off between precision and recall. This is managed through confidence thresholding

which is a post-processing step that follows detection, where only predicted bounding boxes

with confidence scores (how likely the model thinks a prediction is correct) above the set

threshold are kept, effectively filtering out low-confidence predictions. This leads to fewer,

but more reliable detections. RetinaNet showed high recall but low precision due to a

large number of predictions. Adjusting the confidence threshold upwards can significantly

improve precision by only accepting higher-confidence detections, consequently reducing false

positives. This adjustment, however, typically decreases recall. The optimal threshold varies

based on the application the model is used for and is generally higher where high precision

is required, and lower where missing detections is highly undesirable. Balancing this trade-

off is essential, especially in industrial applications like this case study, to ensure effective

detection with minimal false positives. For this part of model development, the confidence

threshold was left at default. For Faster R-CNN and RetinaNet this was 0.05, whereas for

YOLOv5 this was 0.001. This was to avoid interfering with thresholds set by the developers

until it was necessary to optimise the best model for real-world application.

As the IoU threshold increased, there was a gradual decrease in both precision and

recall. At an IoU of 0.95, the precision to dropped to 0.022, and the recall to 0.125, with a

corresponding decrease in COCO mAP to 0.040. For any model that does not have perfect

performance, a decline in performance is expected as the IoU threshold increases. However,

comparing Faster R-CNN results to RetinaNet results, it can be seen that the performance

of RetinaNet does not appear to degrade as rapidly as Faster R-CNN. In the case of Faster

R-CNN, there was failure to predict over 90% of the ground-truth instances from a threshold

of 0.60 and above, whilst in the case of RetinaNet, there was failure to predict 87% of ground-
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truth instances reached at a threshold of 0.95 which is significantly better. However, Faster

R-CNN only made 410 predictions during a single testing experiment, whereas RetinaNet

made 2063 which is much less efficient, especially when considering there were only 359

ground-truths. This is why Faster R-CNN achieved a higher precision than RetinaNet until

a threshold of 0.60.

Collapsing and forming AP values remained relatively high across most thresholds and

compared to Faster R-CNN, there was significantly less degradation in performance with

increasing threshold, as well as less difference between classes. At most thresholds, collapsing

AP was higher than forming AP, which aligns with previous discussion surrounding the

number of training samples. However, there were a few cases where forming samples were

predicted slightly better than collapsing samples, which suggests the model learned both

classes well.

Overall, the COCO mAP achieved by RetinaNet was 0.765, which reflects reasonably

good performance across the range of thresholds. However, this was at the computational

cost of many false predictions and performance still degraded significantly from a threshold of

0.80 to 0.95. This suggests that whilst RetinaNet had the capability to capture ground-truth

instances quite well, confidence threshold optimisation would be required to minimise false

positives if it were to be used in a real-world applications. Also, other hyperparameters such

as the learning rate and focal loss parameters would need to be optimised to improve overlap

between prediction and ground-truth boxes to improve results at higher IoU thresholds.

Another important aspect to consider is the average inference time of 2.770 seconds. This

is considerably higher than Faster R-CNN, further supporting the suggestion that whilst

RetinaNet may have more ability to detect objects, it does so at the cost of efficiency. With

optimisation, RetinaNet may be suitable for an application such as the one in this case

study, however it is quite slow and inefficient. If a real-time system was developed in future

projects, RetinaNet may be unsuitable for this reason.
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Table 35: Testing results for object detection of plumes using YOLOv5 across varying IoU thresholds (0.50 to 0.95 from most

relaxed to most strict)

IoU

Thresh.

#Ground

Truths
#Predictions TP FP Precision Recall

Avg. Inference

Time (s)

Forming

AP

Collapsing

AP
mAPCOCO

0.50 359 1913 359 1554 0.188 1.000 0.006 0.976 0.983 0.979

0.55 359 1913 359 1554 0.188 1.000 0.006 0.976 0.983 0.979

0.60 359 1913 358 1555 0.187 0.997 0.006 0.976 0.983 0.979

0.65 359 1913 357 1556 0.187 0.994 0.006 0.970 0.983 0.976

0.70 359 1913 354 1559 0.185 0.986 0.006 0.936 0.980 0.958

0.75 359 1913 348 1565 0.182 0.969 0.006 0.915 0.980 0.947

0.80 359 1913 330 1583 0.173 0.919 0.006 0.840 0.962 0.901

0.85 359 1913 282 1631 0.147 0.786 0.006 0.648 0.869 0.759

0.90 359 1913 187 1726 0.098 0.521 0.006 0.318 0.500 0.409

0.95 359 1913 60 1853 0.031 0.167 0.006 0.041 0.168 0.105

Overall 359 1913 299 1614 0.157 0.834 0.006 0.760 0.839 0.799
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Table 35 shows the testing results for YOLOv5. At the two lowest thresholds of 0.50

and 0.55, YOLOv5 was able to detect all ground-truth instances, achieving a perfect recall

of 1.000 and an impressive COCO mAP of 0.979. However, this high detection rate is

accompanied by a considerable number of False Positives (1554), leading to a low precision

of 0.1877. Similarly to RetinaNet, the trend of high recall and low precision suggests that

whilst YOLOv5 is highly effective in identifying objects, it also over-predicts. Previous

discussion on confidence thresholds with respect to RetinaNet addresses the over-predictive

behaviour of YOLOv5.

As the IoU threshold increases, both precision and recall gradually decrease. At the

highest threshold of 0.95, the recall drops significantly to 0.167, and precision to 0.031, with

the COCO mAP correspondingly falling to 0.105. As previously discussed, performance is

expected to deteriorate with increasing threshold, especially at a threshold of 0.95. Con-

sidering this, in comparison to Faster R-CNN the rate of deterioration was much better.

In comparison to RetinaNet, the rate of deterioration was similar. YOLOv5 made 150 less

predictions than RetinaNet and therefore had slightly better precision however exactly the

same recall. The performance results of YOLOv5 for collapsing and forming followed the

same trend as Faster R-CNN and RetinaNet. This was again, likely due to the class imbal-

ance in the training set. Table 36 shows the key results for each model tested during this

development stage.

Table 36: Overall testing results for plume detection using Faster R-CNN, RetinaNet and

YOLOv5

Model Precision Recall
Inference

Time (s)
mAPCOCO

Faster R-CNN 0.110 0.125 0.092 0.100

RetinaNet 0.141 0.808 2.770 0.765

YOLOv5 0.157 0.834 0.006 0.799

Overall, the COCO mAP achieved by YOLOv5 was 0.799, which suggests generally

good performance across most thresholds and the best out of the three models evaluated.

Similarly to RetinaNet, there were many false predictions made which is a concern for real-

world application due to prediction reliability and model efficiency. However, confidence

threshold discussion has suggested it may be possible to improve the precision of YOLOv5

significantly by sacrificing a relatively small amount of recall performance. Additionally,
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YOLOv5 achieved an average inference time of 0.006 seconds which significantly surpasses

Faster R-CNN and RetinaNet.

YOLOv5 did not outperform RetinaNet to a great extent in terms of mAP, however it

was significantly better in terms of inference speed. Whilst real-time performance was not a

primary aim of this case study, a faster model was still preferable. Therefore, YOLOv5 was

used for the remainder of the case study. Visually, it was observed that the bounding boxes

predicted by RetinaNet and YOLOv5 were generally tighter compared to Faster R-CNN,

suggesting better localisation of plumes.

The results and discussion surrounding confidence thresholds proved crucial to the suc-

cess of real-world application and therefore some further experimentation was conducted on

YOLOv5 to observe the effects of changing this hyperparameter. The default confidence

threshold value of YOLOv5 was 0.001 as previously mentioned. Note that there are multiple

“default values” for this hyperparameter in the Ultralytics distribution depending on which

script is used and for validation, 0.001 is the default. This is to ensure that even lower-

confidence predictions are included in the results, allowing for a comprehensive evaluation of

model performance and the identification of patterns in detection that may not be apparent

when only higher-confidence predictions are considered. For extended experimentation, the

value was changed to 0.25 and the results are shown in Table 37.

The results in Table 37 show that when the confidence threshold was raised to 0.25,

there was a significant increase in precision across all IoU thresholds due to the drastic

decrease in false positives. At an IoU threshold of 0.50, the precision is 0.928 with only 27

false positives, as opposed to the previous 0.188 precision with 1554 false positives. This

improvement indicates that the model was generating fewer but more accurate predictions

overall. Meanwhile, recall was only reduced marginally at each threshold, indicating that

YOLOv5 can effectively detect most ground-truth instances with minimal false detections.

There was also a slight decrease in true positives but this was a small cost relative to the

large reduction in false positives. These results are promising for real-world application.

The mAP values were slightly lower for lower IoU thresholds but as the criteria for an

acceptable detection became stricter, the higher confidence threshold model began to surpass

the original model. The COCO mAP was higher for the new model (0.818 compared to

0.799) indicating the superiority of the new confidence threshold. There was still a decline

in performance as IoU threshold increased and this became more drastic in the highest

thresholds, however the confidence modification made a significant improvement to overall

performance and suitability for application.
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Table 37: YOLOv5 confidence threshold testing results at a threshold value of 0.25

IoU

Thresh.

#Ground

Truths
#Predictions TP FP Precision Recall

Avg. Inference

Time (s)

Forming

AP

Collapsing

AP
mAPCOCO

0.50 359 376 349 27 0.928 0.972 5.897 0.983 0.970 0.976

0.55 359 376 349 27 0.928 0.972 5.897 0.983 0.970 0.976

0.60 359 376 348 28 0.926 0.969 5.897 0.983 0.968 0.975

0.65 359 376 346 30 0.920 0.964 5.897 0.983 0.961 0.972

0.70 359 376 335 41 0.891 0.933 5.897 0.978 0.929 0.953

0.75 359 376 330 46 0.878 0.919 5.897 0.978 0.916 0.947

0.80 359 376 315 61 0.838 0.877 5.897 0.961 0.964 0.912

0.85 359 376 274 102 0.729 0.763 5.897 0.900 0.714 0.807

0.90 359 376 183 193 0.487 0.510 5.897 0.586 0.407 0.496

0.95 359 376 59 317 0.157 0.164 5.897 0.243 0.080 0.162

Overall 359 376 289 87 0.768 0.805 5.897 0.858 0.778 0.818
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6.3.3 Comprehensive Data Preparation

Initial model development resulted in YOLOv5 emerging as superior for this application

(see Section 6.3.2). Therefore, YOLOv5 was used to auto-label remaining data during the

comprehensive data preparation stage, which was a prerequisite to later development stages.

Results of the auto-labelling process are presented in Table 38. As expected, the initial

labelling phase consumed the most time. Manually correcting Plume75 required 80% of the

time it took to label Plume50 from scratch, proving less efficient than anticipated, but still

advantageous. Plume150 and Plume180 required slightly less time than Plume75, indicating

that the model had successfully learned features from Plume50 and Plume75. However, an

additional factor influencing these findings was the improvement of manual labelling ability

over time. As labelling experience increased, it was possible to label plumes more accurately

in less time. This factor might account for the one-hour discrepancy between Plume150 and

Plume180, for instance. Plume100 and Plume120 proved to be the quickest and significantly

less effort-intensive to label than other datasets. Plume120, in particular, was labelled in

just 20% of the time it took to label Plume50, proving the effectiveness of the method.

Table 38: Times taken to label each subset

Dataset AL Stage Time (Hours)

Plume50 Initial 20

Plume75 1 14

Plume100 3 5

Plume120 3 4

Plume150 2 11

Plume180 2 12

6.3.4 Measurement and Background Subtraction Development

After YOLOv5 was shown to be the best model, the model was developed for real-world

measurement. Combining BGS with detection and tracking enabled the model to measure

the contact width between plumes and the tuyère surface. This addresses the gap iden-

tified in Chapter 2 regarding combining traditional and modern techniques. Additionally,

this addresses the gap identified in Chapter 2 regarding using CV techniques to measure

real-world characteristics. BGS algorithms included MOG, MOG2 (Mixture of Gaussians
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variants), GMG (Gaussian Mixture-based Background Foreground Segmentation), GSOC

(Google Summer of Code), KNN (K-Nearest Neighbours) and CNT.

6.3.4.1 Analysis of Early Video Frame

(a) MOG (b) MOG2

(c) GSOC

Figure 93: Figure showing the effects of different BGS algorithms (MOG, MOG2 and

GSOC) on a early frame in Plume50
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(a) GMG (b) KNN

(c) CNT

Figure 94: Figure showing the effects of different BGS algorithms (GMG, KNN and CNT)

on a early frame in Plume50

Figure 93 and Figure 94 show an early frame of Plume50 footage after being processed

by each of the algorithms. In Figure 93(a), MOG algorithm results show its capability to

extract the gas edges to some extent. However, its effectiveness in capturing the actual

gaseous body is limited. The MOG algorithm captures background pixels through multiple

Gaussian distributions and primarily focuses on changes in the scene, which explains its

partial success in edge detection but its failure to recognise the fuller body of the gas. This
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observation aligns with the algorithm design which is to detect changes in pixel values rather

than capturing larger, more cohesive moving objects.

In Figure 93(b), the MOG2 algorithm is shown to be slightly more sensitive compared

to MOG. This is evident by its marginally better performance in capturing the gas edges as

well as parts of plume bodies. It is possible that the improved sensitivity of MOG2 is due to

its shadow detection feature that distinguishes between foreground and shadows. However,

similar to MOG, MOG2 also struggled with accurately representing the entirety of plumes

which suggests their limitations in dealing with larger dynamic fluid structures.

Figure 93(c) presents GSOC results. Whilst it managed to segment most of the gas, it

appears overly sensitive, as it also segments parts of the background. The excess segmenta-

tion is quite severe since it not only includes areas adjacent to the gas but also the image

corners, and even some of the dark column structure. This over-sensitivity is likely due to

lighting conditions, since it segmented shadows in the corners and the dark structures which

are similar in colour. This behavior suggests that sensitivity to subtle changes, whilst useful

in some contexts, leads to significant over-segmentation in this scenario.

In Figure 94(a), it can be seen that the GMG algorithm interpreted the entire scene

as background due to GMG Bayesian updating mechanism, which requires a few frames to

initialise and adapt to the data. Therefore, early frames are not accurately processed since

it is necessary for the algorithm to establish a reliable background model.

Figure 94(b) shows KNN results, which appears to be the most effective among the tested

methods. It successfully captured both the gaseous body and its edges with reasonable

precision. KNN performs dynamic analysis of the surroundings of each pixel which allows it

to adapt effectively to the scene, although it does exhibit some over-sensitivity around the

gas edges. This performance suggests a good balance in sensitivity, enabling it to detect and

segment the gas more adequately than the other algorithms already discussed.

Finally, Figure 94(c) shows CNT results, which in contrast to GMG, interpreted the

entire scene as foreground. This is due to relying on establishing pixel stabilities over time,

which requires a few frames to differentiate between foreground and background effectively.
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6.3.4.2 Analysis of Mid-Video Frame

(a) MOG (b) MOG2

(c) GSOC

Figure 95: Figure showing the effects of different BGS algorithms (MOG, MOG2 and

GSOC) on a mid-video frame in Plume50
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(a) GMG (b) KNN

(c) CNT

Figure 96: Figure showing the effects of different BGS algorithms (GMG, KNN and CNT)

on a mid-video frame in Plume50

Figure 95 and Figure 96 show a frame within the 8th second of footage after being

processed by each of the algorithms. In Figure 95(a), the MOG algorithm results show a

reduced ability to segment the gas. The edges of the gas are defined worse than in the earlier

frame in Figure 93(a) and there is no improvement in segmentation of the plume body. This

suggests that the MOG algorithm is not suitable for this application. This is because the

Gaussian distributions are failing to accurately capture changes in the scene, which is likely
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due to the fluidity of plumes causing Gaussians to struggle modelling the continuous nature

of the gas.

Figure 95(b) shows the more sensitive MOG2 algorithm performed better than the MOG2

algorithm as it managed to capture some edges of the plumes and small regions of the body.

Whilst the MOG2 algorithm performance did not suffer as much as the MOG algorithm

when moving from Figure 93 to Figure 95, the edge capturing ability does appear to have

reduced slightly. This suggests that either this particular frame is difficult for MOG-based

algorithms to perform on, or this application is generally not well-suited for MOG or MOG2

use. The performance difference between MOG and MOG2 is due to the increased sensitivity

and shadow detection capability of MOG2, indicating the potential benefit of increased

sensitivity when modelling fluid structures with Gaussians, as well as the benefit of using

MOG2 to reduce the impact of lighting changes.

In Figure 95(c), the GSOC algorithm shows significant improvement from its initial

over-sensitivity. Whilst it continued to segment some unnecessary background elements, its

ability to adapt to the scene over time is evident. This is because it is designed to adapt to

dynamic backgrounds, camera jitter, unstable lighting conditions, various types of motion

and other subtle changes [240, 254]. The algorithm captured the majority of the gas whilst

reducing unnecessary background segmentation. However, it still shows some over-sensitivity

towards the top half of the frame and some under-segmentation in the middle section of the

frame. The improvement of the GSOC algorithm over time suggests it may be useful for this

application, but may need a long time to properly adapt to footage.

Figure 96(a) presents the GMG algorithm’s initial segmentation results. After allowing

it time to initialise, GMG began to detect the gas edges and parts of the body. The perfor-

mance can be considered quite good, since most of the edges are captured well and these are

more important than the body, which is due to the high sensitivity of the Bayesian updating

mechanism through constant adjustments based on new data. However, it struggled to seg-

ment plume bodies, indicating that Bayesian updating is suitable for complex edge detection

but not the inner section of objects. Therefore, it has potential for this application.

In Figure 96(b), the KNN algorithm shows a significant difference in approach compared

to in Figure 94(b). Whilst it still captured most edges and some parts of the body, it

adapted towards using a much more conservative approach. This indicates the complexity of

the scene, since KNN adapts conservatively to avoid over-segmenting fine details. This is also

evidenced by the fact that the plume edges are less complex than the bodies. This means

that whilst there is far less noise, there is also far less segmentation in general, meaning
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important features are potentially excluded. Further experimentation would be required to

reveal whether the performance shown in Figure 96(b) is inferior or superior to that shown

in Figure 94(b), and therefore whether performance is improving or deteriorating over time.

Finally, Figure 96(c) shows the CNT algorithm now effectively differentiating the gas

from the background. It accurately segmented most of the gas, with a slight decline in

performance towards the top as the gas disperses and therefore changes morphology. This

is because the pixel stability-based approach enables the algorithm to learn which pixels

are static and which are changing over time. Since it is based on pixel stability thresholds,

the default threshold values used here must be near optimal for this application. This

pattern of segmentation aligns well with the objective of measuring plume width at the

tuyère surface since that is the area of the scene in which precise segmentation is most

crucial, making the CNT algorithm particularly suitable for this aspect of the study. Despite

some over-sensitivity, the detailed capture of the gas structure suggests its potential as the

preferred choice for background subtraction if used in combination with additional processing

techniques to address over-segmentation.
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6.3.4.3 Analysis of Late Video Frame

(a) MOG (b) MOG2

(c) GSOC

Figure 97: Figure showing the effects of different BGS algorithms (MOG, MOG2 and

GSOC) on a late video frame in Plume50
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(a) GMG (b) KNN

(c) CNT

Figure 98: Figure showing the effects of different BGS algorithms (GMG, KNN and CNT)

on a late video frame in Plume50

Figure 97 and Figure 98 show a frame within the 28th second of footage after being

processed by each algorithm. In Figure 97(a), MOG results continue to show a lack of

improvement in segmenting the gas. Its inability to accurately define either the edges or the

body of the gas is consistent with observations in Figure 95(a), reinforcing the conclusion

that MOG is not optimal for this task due to Gaussian modelling struggling with the fluidity

of the gas structure.
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In Figure 97(b), the MOG2 algorithm, despite being more sensitive than MOG, also

failed to deliver effective results and continued to struggle with accurately capturing the gas.

Whilst MOG2 has shown to be slightly better than MOG, it is still not an ideal choice for this

specific application based on the results. As discussed, the increased sensitivity and shadow

detection improve suitability for this application, however they still result in unacceptable

performance. Developing an MOG variant more sensitive than MOG2 may be beneficial.

In Figure 97(c), GSOC again shows significant change from the previous frame. Whilst

Figure 93(c) showed large over-segmentation, Figure 95(c) showed a more conservative es-

timation. Meanwhile, Figure 97(c) shows a significantly more conservative estimation than

both previous frames, suggesting high adaptiveness, which is due to GSOC being designed

to adapt to subtle changes. In Figure 97(c), some edges are captured however it is not sub-

stantial enough for application, whilst minimal body regions are captured.

Figure 98(a) shows the GMG algorithm maintained similar performance to that shown

in Figure 96(a). There is good performance shown in terms of edge segmentation and body

segmentation is nearly non-existent. These results suggest that once the Bayesian updating

mechanism has initialised, the GMG algorithm does not change much over time. This is

because it becomes less sensitive to new changes as it is continuously refined, and eventually

stabilises. Despite this, it could be useful for edge detection of complex dynamic structures.

Figure 98(b) shows KNN algorthm performance declined in effectiveness over time. It still

captures some edges and some parts of the body but has become too conservative, leading

to lack of segmentation of key features. This suggests that whilst KNN initially showed

promise, its adaptability over time was detrimental. As discussed, this has been caused by

the complexity of the scene causing the algorithm to adapt by avoiding over-segmentation

of fine details, resulting in it under-segmenting plume bodies. Whilst the algorithm may be

effective at adapting to dynamic scenes, this particular scenario is too complex.

Finally, Figure 98(c) presents CNT performance, which remains consistent with previous

results. It successfully segments the majority of the gas but tends to over-segment more

dynamic regions of the video. Overall, the CNT algorithm appears able to maintain high

accuracy, particularly at the bottom of the frame which aligns well with the objective of mea-

suring plume-tuyère contact width, indicating its suitability for application. As discussed,

this is because the pixel stability-based approach enables the algorithm to distinguish back-

ground and foreground pixels over time. Analyses and discussion indicate CNT was the

most appropriate choice for this study. After selecting CNT for background subtraction,

focus shifted to mitigating the tendency of the algorithm to over-segment.
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6.3.4.4 Analysis of Noise Removal

(a) No operation applied (b) (3, 3)

(c) (5, 5) (d) (7, 7)

Figure 99: Figure showing the effects of different kernels on a frame in Plume50

Following algorithm selection, morphological operations were used to reduce noise. Mor-

phological opening (as mentioned in Section 6.2.4) consists of erosion (size reduction) to

remove minor contours that added noise, followed by dilation (expansion) to restore the size

of the remaining segmentation mask. Morphological operation tests used a standard grid

kernel (a square matrix where all values are equal to one) and sizes varied between 3x3, 5x5,

240



and 7x7 pixels, to determine the most effective size for noise reduction. Figure 99(a) shows

the frame prior to any processing, where there is noise in the form of minor contours and

specks. These small artifacts are the result of the initial segmentation by the CNT algorithm,

which is sensitive to minor variations in pixel intensity.

Figure 99(b) shows the effect of a (3,3) kernel, which marginally reduces the noise around

the gas, noticeable by the disappearance of some specks particularly in the top-right quarter

of the image where the vertical black column is located. This is because the erosion process

in morphological opening removes small, isolated pixel groups. However, the small kernel size

means that not all noise is effectively removed, highlighting the trade-off between preserving

fine details and reducing noise.

The result of using a (5,5) kernel is presented in Figure 99(c), where a significant portion

of the surrounding noise is eliminated, though a few specks remain. The larger kernel is more

effective at removing isolated noise without overly distorting the shape of the segmented gas

areas. This balance is due to the increased erosion strength followed by dilation, which helps

in maintaining the original shape of larger features whilst eliminating smaller artifacts.

With a (7,7) kernel, as seen in Figure 99(d), nearly all the noise is removed. However, the

square shape of the kernel introduces a grid-like pattern which causes the original mask to

lose natural shapes and details. This occurs because the kernel’s uniform structure averages

out the pixel values in a grid formation, resulting in straight edges and corners that do

not accurately represent the true contours of the objects being processed. This makes it

unsuitable for making precise measurements and demonstrates the importance of selecting

an appropriately sized kernel to balance noise reduction and shape preservation. Therefore,

the (5,5) kernel was selected as the most suitable option.

In hindsight, a (7,7) kernel may not have been as detrimental to plume-tuyère contact

width measurement as first expected and to uncover whether this is true or false, further

experimentation would be required. However, observation of the tuyère region in Figure 99(a)

to (d) shows that (5,5) was the smallest kernel size that successfully removed noise in this

area, and therefore had the least chance of compromising measurement accuracy, which made

it the most logical choice at this point of the model development process.

After morphological opening was implemented, it became apparent that the segmented

plume areas were surrounded by a residual mask from previous frame tracking, as shown in

Figure 100(a). To address this, the technique of in-range colour removal was applied.

The unwanted mask was easily distinguishable by its lighter shade of fuchsia compared

to the desired mask, and was therefore sampled multiple times to determine its RGB value
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(a) No in-range removal applied (b) In-range removal applied

Figure 100: Figure showing the effects of in-range colour removal on a frame in Plume50

range. The minimum and maximum RGB values sampled were then used as parameters

for the in-range removal process to eliminate mask pixels where image pixels fell within

that range. RGB values of the image created by superimposing the mask onto the original

image were probed which resulted in the minimum RGB values being (200, 85, 190) and

the maximum RGB values being (255, 149, 255). This approach was particularly effective

due to the bright background of the column setup emphasising the unwanted mask, which

is valuable knowledge for future projects. This method successfully preserved key features

whilst removing the residual mask, and the result is shown in Figure 100(b).

(a) No Hough line removal applied

(b) Hough line removal applied

Figure 101: Figure showing the effects of Hough line removal on a frame in Plume50
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The last denoising step involved correcting the occasional segmentation of tuyère edges

in some frames. This issue arose as the tuyère itself seemed to vibrate during the footage,

leading the CNT algorithm to interpret it as movement. To counter this, the Hough line

transform technique was used to identify lines in the segmentation mask in the tuyère area

and remove them. This required some trial-and-error of the Hough transform function which

required custom input on the expected angle and length of lines detected. The transform was

applied once on the left side of the tuyère and once on the right side since these lines were

at different angles. Figure 101(a) and Figure 101(b) depict the tuyère before and after the

application of Hough line removal, respectively. The bottom image clearly shows the absence

of the lines in the segmentation mask that are present in the top image, demonstrating the

success of the approach. This adjustment was crucial, particularly since these erroneous lines

affected the accuracy of the plume-tuyère contact width measurements.

6.3.5 Object Detection Optimisation

The grid search results for optimisation of YOLOv5 are shown in Table 39. The setup

for each experiment has already been presented in Table 32 of Section 6.2.5. To address

inference times, the lowest inference time of 4.6ms was achieved by Experiment 3 which

used Data Setup 3, small YOLOv5 and 50 epochs of training. It is assumed that data

setup does not significantly impact speed since there was no correlation found between the

two. The results also showed no correlation between the inference speed and the number

of training epochs. Changing epochs typically affect model performance in terms of mAP

but not inference speed, so this was as expected. Interestingly, inference times decreased as

model size increased, which is expressed in Figure 102.

Figure 102 shows inference speeds for experiments using YOLOv5s ranged from 4.64ms to

4.80ms, whilst experiments using YOLOv5m inferred at speeds between 10.27ms to 10.79ms,

and experiments using YOLOv5l ranged from 16.81ms to 17.05ms. This makes sense because

the increasing size of the YOLOv5 architecture means the data must be processed by more

layers, which results in more time consumption. Whilst speed is an important factor of any

CV model, in this case study real-time performance was not a primary goal. Therefore,

whilst lower inference speeds were both preferred, and more promising for future projects

evolving from this one, the primary aim was to maximise precision, recall and mAP. It is

worth noting that even the slowest inference time here was 17.05ms which is 58.65fps, making

all experiments fast enough for real-time application (keep in mind this is just for YOLOv5

inferences and not any additional processing such as background subtraction).
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Table 39: Grid search results for optimisation of YOLOv5 involving different data setups,

network sizes and numbers of training epochs

Exp. No. Precision Recall
Forming

AP

Collapsing

AP

Jetting

AP
mAPCOCO

Inference

Time (ms)

1 0.822 0.862 0.712 0.793 0.591 0.699 4.802

2 0.854 0.878 0.834 0.780 0.668 0.761 4.746

3 0.807 0.791 0.643 0.518 0.632 0.598 4.635

4 0.828 0.858 0.753 0.811 0.597 0.720 10.789

5 0.869 0.873 0.843 0.788 0.670 0.767 10.496

6 0.811 0.780 0.656 0.547 0.619 0.607 10.388

7 0.802 0.880 0.763 0.837 0.607 0.736 16.814

8 0.854 0.869 0.849 0.798 0.675 0.774 16.853

9 0.831 0.757 0.672 0.558 0.609 0.613 16.871

10 0.809 0.860 0.716 0.800 0.609 0.708 4.687

11 0.858 0.879 0.845 0.770 0.703 0.773 4.654

12 0.812 0.797 0.667 0.520 0.622 0.603 4.657

13 0.814 0.851 0.735 0.823 0.594 0.718 10.311

14 0.847 0.904 0.852 0.786 0.683 0.773 10.500

15 0.800 0.795 0.663 0.542 0.612 0.606 10.407

16 0.809 0.846 0.732 0.823 0.562 0.706 17.020

17 0.839 0.877 0.848 0.778 0.680 0.769 17.034

18 0.798 0.788 0.667 0.554 0.589 0.603 16.961

19 0.817 0.839 0.706 0.797 0.586 0.696 4.742

20 0.854 0.901 0.846 0.775 0.701 0.774 4.747

21 0.809 0.767 0.658 0.531 0.606 0.598 4.776

22 0.806 0.852 0.722 0.835 0.563 0.706 10.274

23 0.872 0.858 0.831 0.761 0.682 0.758 10.289

24 0.800 0.769 0.679 0.548 0.566 0.598 10.278

25 0.801 0.833 0.726 0.827 0.545 0.700 16.981

26 0.863 0.848 0.833 0.755 0.641 0.743 17.053

27 0.817 0.775 0.660 0.554 0.591 0.602 17.033
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Figure 102: Box plot showing how inference speed changed with model size. YOLOv5s,

YOLOv5m and YOLOv5l are the small, medium and large variants, respectively

Table 39 does not suggest any correlation between model size and mAP since the two best

experiments used the small and large YOLOv5 variants. Furthermore, comparing mAP and

model size of every experiment showed no correlation. It may be expected that a larger, more

complex model is capable of capturing more intricate features and would therefore surpass

the precision of smaller networks, however the results show that this was not the case here,

and is likely due to YOLOv5s being large enough for effective feature extraction which would

mean layers in larger variants were excessive. Similarly, it would be logical to assume that

more training epochs would increase precision, however this is often not the case in practice

and there is typically a cut-off point where increasing epochs causes overfitting. Experiment

8 and Experiment 20 achieved the highest mAPs. Data Setup 2 was used in both of these

which suggests it was the best data setup. This is probably due to the same principle used

in the auto-labelling approach for the comprehensive data preparation stage. To elaborate,

Data setup 2 used Plume50, Plume75, Plume150 and Plume180 for training and was tested

on Plume100 and Plume120. Therefore, the model was trained on two extremes of possible

scenarios and tested on data in the middle of these extremes, allowing it to capture and

interpolate between features from both sides. This aligns with the motive behind the auto-

labelling approach and verifies the successful results of that stage. Also, experiments using

Data Setup 2 consistently achieved the highest mAP performances which is expressed in

Figure 103. Note that in Experiment 20, training took one minute and 34 seconds to train

per epoch which overall took approximately 313 minutes.
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Figure 103: Box plot showing how mAP changed with different data setups

Figure 103 shows all Data Setup 2 experiments achieved a COCOmAP between 0.743 and

0.774, all Data Setup 1 experiments achieved a COCO mAP between 0.696 and 0.736, and all

Data Setup 3 experiments achieved a COCO mAP between 0.598 and 0.613. These results

show Data Setup 2 was the best setup which can be explained by discussion for Table 39

(in this section) related to exposing the model to a wide range of scenarios, which enhanced

its ability to generalise on unseen scenarios. Additionally, the difference in mAP values

between Data Setup 1 and Data Setup 3 are due to less new features being introduced after

the injection rate was increased from 100Nm3h-1to 180Nm3h-1. Therefore, since Plume50 and

Plume75 had more unique features than the higher injection rate videos, they were harder

to predict on without explicit training on those unique features. Also, since the results show

that all of the highest performing models used Data Setup 2, followed by Data Setup 1,

followed by Data Setup 3, this is a clear indication that the data setup used in any given

experiment dictated the overall performance achieved. This emphasises the importance of a

well-curated dataset over a complex neural network or training strategy.

Looking at Data Setup 2 experiments, model performance still exhibited no relationship

with model size or the number of epochs. In real-world application, it therefore is most

efficient to use the smallest possible network and the lowest number of epochs to minimise

inference time and computational requirements. Closer analysis reveals Experiment 8 or

Experiment 20 should be chosen to align with the goal of maximising the mAP. Experiment

20 required a one-off training requirement of 200 epochs, whilst Experiment 8 used YOLOv5l

which significantly increases computational requirements for both training and inference, and
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also takes almost four times the amount of time to make inferences. Additionally, the recall

of Experiment 20 marginally surpassed that of Experiment 8, further supporting the case

for using the design of Experiment 20 in real-world application. Note that Experiment 2

achieved an mAP of 0.761 and an inference time of 4.75ms whilst using YOLOv5s and only

50 training epochs which made it competitive. Whilst this may be useful for future projects,

in this case, the aim was to maximise mAP and therefore it was not selected.

After analysing the results across experiments in Table 39, discussion on differences

between Table 39 results and Table 37 results (confidence-adjusted YOLOv5 results in Sec-

tion 6.3.2) brings up some interesting points of discussion regarding the overall progress

of model development. Note that whilst Table 37 explicitly shows the results at each IoU

threshold and includes true positives and false positives, Table 39 shows the overall results

after averaging these values for each experiment. Also, whilst Table 37 results were produced

using Plume50 with YOLOv5 at a confidence threshold of 0.25, Table 39 results used all six

injection rate datasets. This means differences in metrics such as precision and recall are

based on the prediction of many more samples. For clarification, Data Setup 1 tested on

3019 instances (Plume150 and Plume180), Data Setup 2 tested on 3187 instances (Plume100

and Plume120) and Data Setup 3 tested on 3650 instances (Plume50 and Plume75). This

is in comparison to the 1799 instances in Plume50 (excluding jetting instances). Also note

the difference in jetting instances adding a whole new class to the challenge during Table 39

experiments. For brevity and clarity, discussion will primarily focus on the best experiment

for this application, which was Experiment 20, in comparison to the results in Table 37.

Comparison shows that firstly, the precision in every experiment in Table 39 surpasses

the overall precision in Table 37 whereas the recall in Table 39 roughly lies in the middle of

the recall values for experiments in Table 37. This suggests that the increase in training data

(roughly four times as much), enhanced precision regardless of different data setups, network

sizes, training epochs, an extended testing set and an additional testing class (jetting). This

emphasises the importance of a sufficiently large training set. Also, the results indicate that

recall was more variable and this may have been due to the change in the number of instances

across different data setups. Experiment 20 surpassed the results achieved in Table 37 in

terms of both recall and precision, demonstrating the effectiveness of this design.

Secondly, differently to Table 37 and other initial model development results, class APs in

Table 39 varied in terms of which classes were predicted the best. Overall forming instances

were generally predicted the best, followed by collapsing instances, followed by jetting in-

stances. This follows a different pattern to that found and discussed in Section 6.3.2 which

247



was based on the number of training samples for each class.

Generally the collapsing instances were more difficult to accurately localise than other

class instances because they were the most complex and most changeable, especially consid-

ering the plumes left the field of view in a collapsed form which required some subjectivity

during labelling as to when they were no longer detectable. The effect of this issue appeared

to be non-existent in earlier stages of model development. The model actually performed

better on collapsing instances than forming instances. However, Table 39 shows the model

struggled slightly more with collapsing than forming when larger datasets with more variety

were introduced. At this point, the labelling issue may have come into effect.

Jetting AP results were generally the lowest of the three classes, indicating the theory

on training sample size previously discussed is still valid, but with the full dataset, other

factors (such as the complexity of predicting specific classes) came into play. However, this

order did vary. For example, almost all experiments using Data Setup 1 favoured collapsing

instances, followed by forming instances, followed by jetting instances. This could suggest

that the first four injection rate datasets provided superior collapsing samples, or that the

last two injection rate datasets included collapsing samples that were easier to predict.

Generally, experiments using Data Setup 2 and Data Setup 3 favoured forming instances

over collapsing and jetting instances. Similarly to Data Setup 1 discussion, this could suggest

that the first four datasets included forming samples that were easier to predict. Data

Setup 3 typically favoured jetting instances over collapsing instances. This suggests that the

complexity of predicting collapsing instances was particularly high in the first two datasets,

and emphasises the dominant effect of a complex class over the number of training data

samples. Whilst there was some variation in the number of samples for each class across

different data setups, collapsing instances were still significantly dominant over the other

two classes, and forming instances were significantly dominant over jetting instances.

The superior and inferior classes in Table 37 and Experiment 20 in Table 39 swapped, and

Table 37 achieved higher class APs and a higher overall COCO mAP. This is due to the fact

that there was an extra class predicted in Table 39, as well as roughly double the number

of instances in the test set. Considering this, the difference in COCO mAP is actually

impressive and shows that the model from Experiment 20 in Table 39 is a significantly

evolved version of the model reported in Table 37.

Finally, the inference time in Table 37 is marginally higher than YOLOv5s model exper-

iments in Table 39, which is expected since they both used YOLOv5s. This could be due to

random fluctuations in system performance at the time of obtaining results.
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6.3.6 Real-World Validation

It was essential to validate the effectiveness of models in measuring real-world plume char-

acteristics, beyond standard object detection metrics. This addresses the gap identified in

Chapter 2 regarding a lack of real-world validation of models. A key aspect of this assess-

ment involved judging the accuracy of plume width measurements at the tuyère surface. It

was observed that whilst the model generally performed well, it did not consistently succeed

in every frame. In some instances, it failed to make detections, which could be due to a

need for more training data despite already using over 3000 frames with more than 11000

labels, or a limitation inherent to the YOLOv5 model itself which could be improved by

using a more advanced model such as YOLOv8. Furthermore, the width of the tuyère de-

sign was known to be 68.5mm and so any measurements falling below this threshold were

considered to be either the result of minor noise or missed detections, and were therefore

ignored. Model measurements were validated against data from prior research [264], which

involved manual measurement techniques. Initially, these measurements were intended for

validation purposes, but it was realised that in some instances, the computer vision model

actually provided more accurate results than the original manual methods. This is further

explored later in this section.

Figure 104 exhibits a comparison of the model predictions and manual measurements

from [264] for the Plume100 data. It is observable that the manual measurements exhibit

a relatively smooth, cyclic pattern, whereas the model’s measurements show more variation

within these cycles, suggesting a noisier output. Typically, the natural dynamics of plumes

expanding and detaching from the tuyère surface would create a regular oscillation in width

measurements. However, other than occasional inaccuracies of the model already addressed,

there were some inter-cycle fluctuations which were partly due to its reliance on a fixed row

of pixels for measurements. If this row encounters sub-optimal lighting conditions or camera

angles in any given frame, the model measurement accuracy was affected. In contrast, manual

measurement allows for more flexibility, as a human observer might adjust the measurement

row for optimal visibility. This complication was recognised during this research and could

be addressed in future work by enhancing the gas stirring simulation setup for a clearer view

of the tuyère surface, or by integrating multiple sensing technologies, such as combining

stereo vision with depth cameras or LiDAR sensors, to achieve more robust measurements.

Figure 105 highlights frames where significant differences were observed between model

predictions and the original manual measurements from [264]. Frame 66, is shown in Fig-

ure 105(a), where the model estimated the contact width to be approximately 20mm wider
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Figure 104: Graph comparing model predictions to manual measurements performed in

another author’s work

(a) Frame 66 of Plume100 (b) Frame 95 of Plume100

(c) Frame 315 of Plume100 (d) Frame 439 of Plume100

Figure 105: Figure showing model predictions on frames of significant discrepancy between

predictions and manual measurements

than the manually measured width. The red horizontal line in Figure 105(a) illustrates the

measurement taken by the model. Upon closer inspection, it is evident that whilst the seg-

mentation was accurate, the pre-set measurement line was positioned slightly higher than

the actual surface, which led to a wider section of the plume being measured. This issue

was anticipated early in the development process but due to occasional shaking of the tuyère

250



surface during injection, consistently measuring along an accurate line proved challenging.

Alternative methods, such as using multiple lines for measurement were explored, but the

chosen single-line approach yielded the most consistent results. This problem opens up an

avenue for future work.

Next along Figure 104, the most obvious inconsistency occurs across Frame 95 and sur-

rounding frames, presented in Figure 105(b). Here, the model failed to accurately segment

the plume edges. Although the measurement line in Figure 105(b) appears accurate, this

was coincidental. The overall results suggest that the segmentation algorithm had difficulties

in this section of the footage.

In Frame 315, shown in Figure 105(c), there is a discrepancy of around 40mm which is

observable in Figure 104. Unlike the earlier case in Figure 105(a), the measurement line

here was appropriately placed. Adjusting the line lower would not result in a significant

reduction in the measured width, despite less than ideal segmentation in the lower pixel

rows. This, and other similar instances, indicate that the original manual measurements

were not consistently reliable and that, in some cases, the model measured the width more

accurately. Figure 106 shows the contact width manually measured is approximately 155cm

as opposed to the original manual measurement of approximately 110cm.

Lastly, also seen as a discrepancy in Figure 104, Frame 439 in Figure 105(d) exhibited

a similar fluctuation to what was seen around Frame 95. In this instance, gas bubbles

detaching from the left side of the plume interfered with the segmentation algorithm. Whilst

these bubbles are ideally ignored since they do not contribute to the washing effect, some

residual noise was poorly eliminated. This resulted in the model overestimating the contact

width.

286px ≈ 155mm

Figure 106: Frame 315 labelled manually by authors of this thesis and converted from pix-

els to millimetres, showing improvement of model over original human measurements
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Another real-world plume characteristic that was of interest was the jetting length, which

occurs during the initial gas injection into the liquid. Object detection identifies different

stages of gas behaviour such as jetting, forming, and collapsing plumes, which facilitated

these measurements. The model determined the jetting length using the height of bounding

boxes associated with the jetting class. Previously recorded data suggested that the maxi-

mum jetting length, observed across various injection rates, was between 12mm to 15mm.

It was hypothesised that this maximum length would occur at the highest injection rate of

180Nm3h-1, following the logic that increased injection rates lead to longer jetting lengths.

The final model in this research was trained using data from Plume50, Plume75, Plume150,

and Plume180, and therefore jetting estimation analysis began with predictions on Plume100

and Plume120 which are shown in Figure 107 and Figure 108 respectively. Analysis of these

figures reveals two key observations. Firstly, the jetting lengths for Plume100 and Plume120

were measured to be approximately 20mm to 26mm, and 18mm to 39mm, respectively. This

aligns with the expectation that higher injection rates result in longer jetting phenomena.

Secondly, both measurements significantly exceed the previous maximum jetting length for

Plume180 in [264]. This difference raised questions about the accuracy of either model

measurements or the original manual measurements. To look further into this, further clar-

ification is provided with the aid of Figure 109 and Figure 110.

Figure 107: Graph showing model jetting length predictions across Plume100

Figure 109 presents the new manual measurements of jetting lengths for Plume180 which

were taken from the model annotations. They show that the maximum jetting length reaches

roughly 61mm, reinforcing the previously proposed trend where an increase in the injection
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Figure 108: Graph showing model jetting length predictions across Plume120

rate corresponds to a larger jetting lengths. However, this measurement quadruples the

maximum length of 12mm to 15mm reported in earlier research. Therefore, whilst the

manual annotations and inference measurements of this case study appear to align, there

are discrepancies with the previous manual measurements. This considerable difference

emphasised the need for observing the actual images.

Figure 109: Graph showing Plume180 annotated jetting lengths as part of this work

Figure 110 shows Frame 299 (instance 486) from the Plume180 dataset, which Figure 109

shows as the instance with the longest jetting length across all predictions of all injection

rates. The jetting length in this frame is highlighted with a red double-ended arrow and is

253



annotated to be precisely 112 pixels in length. Applying the pixel-to-millimeter conversion

rate of 1.84, this measurement translates to approximately 60.87mm. This measurement

closely matches the data in Figure 109 which therefore validates the accuracy of the model

predictions of jetting length. This finding also challenges the accuracy of the previously

reported range of 12mm to 15mm for jetting length from earlier authors [264].

112px ≈ 61mm

Figure 110: Image of the 486th instance in Plume180 with the red label proving accurate

model predictions

6.4 Industrial Application

The model outputs the state of each plume (classified as jetting, forming, or collapsing), the

width and height of each plume, the height of jetting events, plume-tuyère contact width

and plume frequency. Using these outputs along with some known environmental variables,

it was possible to determine the wear rate factor WF , as well as a stirring efficiency rating

SE. This section will detail the calculation of WF and SE values, which were devised as

part of this project, and present results.

6.4.1 Methodology for Calculating Wear Rate Factor and Stirring Efficiency

Equation (25) shows how WF has been calculated, which is constituted by three different

variables. Washing severity WS indicates the severity of plume-tuyère contact events, veloc-

ity ratio VR is the ratio between the inlet velocity of injected gas, to the maximum velocity

reached (which is 180Nm3h-1), and the frequency of plumes occurring, Fplume.

WF = WS × VR × Fplume (25)
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Equation (26) shows how WS has been calculated, which is essentially the width of the

contact event, Wcontact, normalised using the maximum surface width Wmax. Since washing

events cause refractory wear, the more severe they are, the more wear is occurring. Nor-

malisation is performed to ensure WS reflects the contact width in relation to the column

width, and therefore adapting the approach to work across column setups of varying width.

WS =
Wcontact

Wmax

(26)

Equation (27) shows how VR has been calculated and is the ratio of the gas inlet velocity

Uinlet, to the maximum velocity record Umax. Higher inlet velocities aid gas stirring but also

induce stress on the refractory lining. Normalisation is performed to ensure the inlet veloc-

ity is accounted for in relation to the maximum gas velocity, which ensures the approach is

consistent across column configurations of different scales (some simulations may be 10% of

the furnace size whereas others may be 50% of it, for example).

VR =
Uinlet

Umax

(27)

Equation (28) shows how the plume frequency Fplume was calculated, where N is the number

of plumes occurring over a video and D is the video duration in seconds. Plumes promote

gas stirring but also contribute to refractory wear.

Fplume =
N

D
(28)

The approach presented here also extends to the calculation of stirring efficiency which has

been performed using Equation (29). This approach assumes that larger volume plumes

result in improved stirring efficiency, and therefore VPplume is included, which is the ratio

of instantaneous plume volume to the maximum plume volume, as well as the the velocity

ratio and plume frequency as these also affect how effective stirring is.

SE = VPplume × VR × Fplume (29)

255



Equation (30) shows how the plume volume proportion has been calculated, which is the

ratio of the instantaneous plume volume Vinstantaneous, to the maximum plume volume at

the point just before collapse, Vmax. The instantaneous point was chosen arbitrarily as four

frames before the point just before collapse, which was used consistently for all measurements.

VPplume =
Vinstantaneous

Vmax

(30)

6.4.2 Results of Wear Rate Factor and Stirring Efficiency Calculations

For assessing different configurations, the wear rate factor and stirring efficiency values for

Plume100 and Plume120 were calculated and the results are shown in Table 40 and Table 41.

Table 40: Results of wear rate factor calculation for Plume100 and Plume120

Dataset WS VR Fplume WF

Plume100 5.770 0.556 0.247 0.792

Plume120 4.741 0.667 0.198 0.626

Table 41: Results of stirring efficiency calculation for Plume100 and Plume120

Dataset VPplume VR Fplume SE

Plume100 0.826 0.556 0.247 0.113

Plume120 0.871 0.667 0.198 0.115

Table 40 shows Plume100 had more severe washing overall than Plume120, suggesting

that an injection rate of 100Nm3h-1 results in more contact between plumes and the tuyère

surface, and therefore more refractory wear is experienced, which is reflected by the higher

wear rate factor of Plume100. A lower velocity ratio was seen in Plume100 to Plume120,

which is due to the lower injection rate, and a higher frequency was seen in Plume100,

suggesting lower injection rates result in more frequent plume occurrence. Essentially, the

injection rate of 120Nm3h-1 resulted in less wear.
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Table 41 shows a higher injection rate resulted in a marginally higher plume volume

proportion which suggests better mixing. Also, stirring efficiency was found to be slightly

higher for Plume120 than Plume100. Therefore, these results show that the increase in

injection rate may have improved stirring efficiency but not significantly.

Out of the two configurations evaluated, Plume120 appears better due to less intense

washing events and therefore less wear, as well as marginally better stirring efficiency. Over-

all, this suggests an injection rate of 120Nm3h-1 is superior. However, whilst this demon-

strates the effectiveness of the model developed, a more extensive set of experiments should

be analysed to build a comprehensive understanding of different setups and how they affect

wear rate and stirring efficiency.

6.5 Conclusions

This chapter has presented a case study where various plume characteristics have been

measured throughout video footage of an experimental simulation of gas stirring in the BOF,

using YOLOv5 for plume detection, DeepSORT for plume tracking and CNT background

subtraction for plume segmentation. Using plume measurements, this work has presented

an approach for calculating a wear rate factor and a stirring efficiency rating for any given

simulation experiment. Assessing these variables across a range of setups aids gas stirring

design optimisation which is highly beneficial for the process and industry as a whole, since

it helps to minimise equipment degradation and improve mixing.

This study explored various object detection models and YOLOv5 was the best. In the

final model, YOLOv5 was trained on approximately 3000 images and tested on approximately

1500. This resulted in precision, recall and COCO mAP results of 0.854, 0.901 and 0.774

respectively. The full model ran at 7.6fps, which is a good starting point for any future

developments requiring real-time application, provided the model is optimised for speed.

This study also explored various background subtraction algorithms and the CNT algorithm

was the best. This algorithm was then combined with morphological opening, in-range

removal and Hough line removal for denoising purposes, which ensures robustness.

Furthermore, contact width and jetting length measurements were compared to validation

data which found that the proposed approach was accurate for most frames but still had

room for improvement, and in some cases, outperformed the manual measurements taken

in previous research. Wear rate factor and stirring efficiency rating calculations showed an

injection rate of 120Nm3h-1 was superior to 100Nm3h-1, since it resulted in less wear and

higher stirring efficiency.
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In conclusion, research contributes significantly to the advancement of steel production

technology in terms of process monitoring, particularly in the context of fluid dynamics,

whilst improving design capabilities through automation, efficiency and novel insights. Fur-

thermore, this research contributes to CV through the innovative application of techniques

such as detection, tracking and segmentation to gain an understanding of complex and dy-

namic industrial environments. Through use of Google Colaboratory, which does not have

any requirements other than an internet connection, the model can easily be distributed to

anyone wishing to analyse gas stirring simulation experiments, which ensures it is scalable

for its current purpose.

This case study has addressed three of the research gaps identified in Chapter 2. Firstly,

it has involved the generation of a novel dataset based on the ladle pouring process, which

addresses the lack of datasets available for developing CV applications for steel production

processes. Secondly, it has contributed to addressing the lack of real-world measurements

performed by CV models. Lastly, it has addressed the lack of hybrid CV models that make

use of both traditional and deep learning-based techniques.

6.6 Future Work

Future work should initially include detection refinement to overcome missed detections,

followed by BGS refinement to reduce noise issues and therefore enhance measurement ac-

curacy.

Additionally, there are various pathways for future work related to this case study, such

as improving inference times and deploying the model onto an Internet of Things (IoT)

device for real-time feedback. Another pathway could be to extend the model by integrating

a time series model and applying it to the current model’s output for advancing predictive

maintenance capabilities. The current model could also be applied to varying mixing element

designs, or even different processes. Therefore, this work lays a foundation for monitoring

various dynamic fluid characteristics and drawing insights that are valuable for enhancing

the operational efficiency and quality of steelmaking processes.
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Chapter 7: Case Study Comparison

This chapter will contain a comparative analysis of the three case studies presented in Chap-

ters 4, 5 and 6 by looking at them holistically in terms of their methodologies and results.

In the methodological comparison, notable similarities and differences will be discussed in

terms of tools utilised, data preparation, model development and evaluation metrics. In the

results comparison, discussion will be based on model performance, robustness, scalability

and limitations.

7.1 Introduction

The rise of computer vision (CV) technology has begun to rapidly improve the state of steel

production technology by enhancing a wide variety of processes through aspects such as

operational efficiency and product quality. Chapters 4, 5 and 6 explored the application of

CV for three processes: hot metal ladle pouring (Case Study 1), steel galvanisation (Case

Study 2), and basic oxygen furnace (BOF) gas stirring (Case Study 3). Each case study

highlighted the applicability of CV to complex industrial challenges, whilst also contributing

findings unique to each case study.

The objective of this chapter is to synthesise insights from individual studies whilst

identifying some of the wider implications of this project that only become apparent when

viewing case studies as cohesive components. By doing this, it is ensured that analysis of

the work undertaken is thorough.

The overall contribution of this chapter is that it provides valuable insights into develop-

ing CV applications for steel production. It offers a comparison of different methodological

aspects across different scenarios, whilst also evaluating model performances, assessing the

robustness and scalability of systems in real industrial environments, and addressing com-

monly occurring limitations when undertaking challenges based on application of CV to steel

processes.

7.2 Methodological Comparison

This section compares the methodologies of each case study in terms of the software and

hardware tools used, the data preparation, how models were developed and how they were

evaluated.
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7.2.1 Software Tools

For all three case studies, similar software tools were used. This primarily includes Python,

Python libraries and the VGG (Visual Geometry Group) Image Annotator (VIA) [276]

labelling tool. Microsoft Excel was also used for all three studies when outputting real-

world measurements from Python, as this was a more appropriate format when dealing with

sponsors, collaborating researchers and writing research papers. However, there were a few

notable differences between the case studies.

Firstly, as discussed, Case Study 2 and Case Study 3 used Roboflow dataset conversion

tools [216], whereas annotations for Mask R-CNN (Mask Region-based Convolutional Neural

Network) in Case Study 1 required no conversion from VIA. Secondly, Case Study 3 used

Google Colaboratory, which was primarily for ease of access when collaborating with another

researcher who used the model to gain insights. This was an advantage when collaborating,

however as mentioned in Section 6.3.2 of Chapter 6, there was a downside to this which

created an issue when revisiting models.

Both cloud and local approaches were used in this body of work and in future, it would

be preferable to operate locally but upload models to the cloud when collaborating with

researchers who do not specialise in machine learning (ML). This way, the advantages of

both approaches are gained. For deployment of the splatter severity measurement model

demonstration, Docker [257], FastAPI [258], Uvicorn [259] and TensorRT [201] were used

which was unique to Case Study 2.

7.2.2 Hardware Tools

There were some differences between the hardware used for each study. For example, Case

Study 1 was entirely conducted using the NVIDIA RTX 2070 Super GPU (graphical pro-

cessing unit), whilst Case Study 2 used the same GPU for development but for deployment

used the NVIDIA Jetson Orin Nano’s GPU. Case Study 3 did not use either as it made use

of the Google Colaboratory GPU which was the Tesla T4. The differences in GPU selection

affected various aspects of the development process of each study. For example, the 2070

Super GPU is more powerful than the T4 overall, and is therefore better for model develop-

ment, but the T4 is specifically built for machine learning training and inference, meaning

it is likely more suitable for inference and especially for deployment since it is much more

power efficient [217, 277]. Also, the Jetson Orin Nano GPU is less powerful than the 2070

Super GPU, but is intended to be embedded into other systems for Internet of Things (IoT)

applications, and is therefore much more efficient in terms of size and power consumption
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[256]. There was benefit in using the 2070 Super and T4 simultaneously when working on

multiple case studies in parallel was required, and having access to multiple GPUs would

certainly be advantageous for time efficiency in real-world model development scenarios.

7.2.3 Data Preparation

In all three studies, data was provided by industrial sponsors or researchers and required

processing from their raw format into formats appropriate for model development. As men-

tioned, all data was then labelled using VIA [276]. However, the way in which data was

treated from that point onwards differed for each study. As mentioned in Chapters 4, 5 and

6, every case study addressed the research gap identified in Chapter 2 regarding the lack of

datasets available for developing CV applications for steel production.

7.2.3.1 Case Study 1

In Case study 1 frames were extracted to produce 1fps sequences to ensure inferences could be

performed on complete pouring videos without taking too long. Contrast-Limited Adaptive

Histogram Equalisation (CLAHE) was also applied to combat poor lighting. When develop-

ing the model for industrial application, the training set was extended whilst the validation

set remained unchanged. As explained in Section 4.2.1 of Chapter 4, Mask R-CNN used the

same set for intra-epoch validation as it did for model testing, which is a common approach

used when available data is limited. This contrasted with other case studies that used four

distinct datasets which included extra sets for model testing and production testing.

7.2.3.2 Case Study 2

In Case Study 2 frames were extracted at the natural rate of 25fps, split into training,

validation, testing and production testing sets and labelled. After labelling, the Roboflow

conversion tool [216] was used to convert the dataset from VIA JSON (JavaScript object

notation) format to YOLOv5 (You Only Look Once) Pytorch .txt format. Unlike Case Study

1, four separate sets were used since there was much more data available. The training set

was obviously used for training, the validation set was used for intra-epoch validation, the

testing set was used to evaluate the performance of the trained model on unseen data, and

the production set was used to assess and adapt the model performance to perform robustly

in real-world scenarios. Therefore, this study involved more complex data management than

Case Study 1 and facilitated a more rigorous assessment of model robustness.
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7.2.3.3 Case Study 3

In Case Study 3 frames were provided individually, not as video, and were split into training,

validation and testing sets and labelled. After labelling, Roboflow conversion tools [216]

were used to convert the dataset from VIA JSON format to YOLOv5 Pytorch .txt and

PASCAL VOC (Pattern Analysis, Statistical Modelling and Computational Learning Visual

Object Classes) XML (extensible markup language) format for the YOLOv5 and RetinaNet

models respectively [216, 270]. For Faster R-CNN, annotations were exported in the COCO

(Common Objects in Context) JSON format. Labelling was conducted in two stages, the

initial manual labelling of Plume50, and the auto-labelling of the remaining plume datasets

using YOLOv5. Finally, the production testing involved an approach inspired by k-fold cross

validation which used all datasets for training and testing in turn to mitigate the effects of

any biases in the data. The multi-format, auto-labelling and validation approaches used in

this case study make the most advanced study overall in terms of data strategy.

7.2.4 Model Development

In all three studies, existing neural networks were trained for manufacturing-based applica-

tions, validated and tested. In every case, deep learning was complemented by various other

machine learning and image processing techniques. Each network, as well as any additional

techniques incorporated, served a purpose that contributed towards to monitoring of a real

or simulated process.

7.2.4.1 Case Study 1

Case Study 1 used Mask R-CNN for its state-of-the-art instance segmentation performance

at the time of project initiation, as reported in Section 2.5.1 of Chapter 2, to achieve precise

ladle segmentation in poor lighting conditions. Meanwhile, Case Study 2 and Case Study

3 used YOLOv5 for its state-of-the-art object detection performance at the time they were

initiated, which is shown in Section 2.3.8 of Chapter 2. Also, the second and third case studies

used background subtraction (BGS) rather than instance segmentation. See Section 2.6 of

Chapter 2 for the distinction between segmentation networks and background subtraction

algorithms. Although background subtraction results were presented in Chapter 4 (Case

Study 1), this was additional experimentation that was not a core element to the model

developed. In all three studies, the COCO dataset was used to pre-train models to give a

foundational understanding of what objects look like. This was inspired by the fact that
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literature in Chapter 2 frequently reported model evaluation via the COCO dataset and

COCO mean average precision (mAP) metric.

Case Study 1 model development was challenging due to limited data availability, meaning

focus was primarily placed on compensating for a smaller dataset through hyperparameter

optimisation. Through completion of the case studies, it has been learned that the dataset

often dictates model performance more than the model itself. This was not fully understood

during Case Study 1 and regardless, data available was limited and labelling ladle masks in

poorly-lit images was far more time-consuming than labelling bounding boxes on air knives

and plumes.

7.2.4.2 Case Study 2

Whilst Case Study 2 and Case Study 3 both used YOLOv5 and background subtraction,

these stages were conducted differently in each case study. Note that this addressed the

research gap identified in Chapter 2 regarding the lack of hybrid CV models that make use

of both traditional and deep learning-based techniques. In Case Study 2, the overall aim

of the study was to develop a tool that could provide a zinc splatter severity level in real-

time during galvanising. For this study, YOLOv5 was used in two main ways. Primarily,

it was used to adjust the measurement region in real-time as the air knives moved upwards

and downwards. The relevant region of splatter always remained below the air knives, and

since the CNT (Counting) background subtraction algorithm was the basis of the splatter

measurement, and one of the limitations of BGS algorithms is dynamic backgrounds (see

Section 2.6 of Chapter 2), YOLOv5 was used to detect the locations of each air knife and

therefore identify where the splatter was expected to occur. Secondarily, in the provided

footage, and through discussions with operators, it was clear that the cameras at the area

of interest were moved regularly (in-between operator shifts). Therefore, any measurement

methods needed to be scaled differently depending on the camera position to ensure model

robustness. By using YOLOv5, the sizes of predicted bounding boxes for air knives (in

pixels) could be used to give an indication of the distance between the camera and the air

knives. Based on a reference bounding box size, it was possible to scale splatter severity

measurement boundaries up or down accordingly.

With the exception of the air knives which moved up and down infrequently and were

handled by YOLOv5, and of course the splattering zinc which was desirable to measure,

there was almost no movement. Therefore, the CNT algorithm was used to segment moving

splatter from the background in real-time. The main advantage of using the CNT algorithm
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is that it is significantly faster than all available BGS algorithms whilst maintaining high

precision [8]. This advantage was well-suited to Case Study 2 since real-time performance

was desirable. Another advantage of the CNT algorithm is that it adapts well to environ-

mental changes, and since the splatter was erratic, fluctuating dramatically multiple times

per second, the CNT algorithm was even more fitting for this application [8].

7.2.4.3 Case Study 3

In terms of Case Study 3, the overall aim of the study was to develop a tool that could

monitor and record gaseous plume states and geometries for design optimisation of gas

mixing elements. For this study, YOLOv5 had several purposes. Firstly, the classification

element of detection was used to distinguish between three different plume states which were

jetting, forming and collapsing. Secondly, the bounding boxes were used to measure the

height and width of plumes in order to calculate their aspect ratio at the time just before

they collapsed, which was the last frame on which they were classified as forming. Thirdly,

the bounding boxes were used to identify and isolate plumes that were washing the mixing

element surface, so that the BGS mask was only measured in the area of interest when

measuring plume-tuyère contact width. Finally, the bounding boxes and classification were

used to identify and measure the height of jetting events.

With the exception of small gas bubbles and streams detaching from the main plumes,

which were dealt with using a variety of denoising techniques, the background was mostly

static. Therefore, the CNT algorithm was used to segment plume motion from injection

until they collapsed and left the visible region of the water column. Like with Case Study

2, the CNT algorithm’s adaptability to the environment was key in the success of the model

development, since plume behaviours were complex and at times, unpredictable. The speed

of the CNT algorithm was not as crucial in this case study, however it contributed to the

overall quality and industrial impact of the final model.

The main use of CNT BGS in this case study was to read plume width when it formed

on the mixing element surface, as this affected refractory wear. Whilst YOLOv5 located a

mixing element washing event using a bounding box, BGS measured plume width precisely

within the box at pixel-level, which was not possible using object detection alone.

Furthermore, Case Study 3 involved experimentation with Faster R-CNN, RetinaNet,

and YOLOv5 in the initial stages, as opposed to just choosing one model based on literature

review. This was because experience, and therefore efficiency, had been improved over the

course of the two previous case studies.
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7.2.5 Model Evaluation Metrics

The main difference between computer vision metrics used in different case studies was that

segmentation uses masks to calculate intersection-over-union (IoU) whereas detection uses

bounding boxes. This is explained in Section 3.4.1 of Chapter 3. Other than this difference,

conventional metrics remain unchanged between detection and segmentation, as evidenced

in model performances reported in the literature in Section 2.3 and Section 2.5 of Chapter 2.

In terms of evaluating real-world measurements such as ladle parameters, splatter severity

and jetting length, there were some trends as well as differences.

In Case Study 1 there was no real-world evaluation data available for pouring angle

or pouring height, which limited the ability to fully assess the model’s robustness in real

application. It was during this case study that the possibility of adapting a computer vision

model for measuring real-world process parameters was first considered.

In Case Study 2, there was no evaluation data in terms of exact splatter severity levels

since this effect had never been quantified before, however two operator judgements were

used to evaluate the effectiveness of the model using metrics such as mean average error

(MAE), median and interquartile range. Therefore, the real-world evaluation of Case Study

2 was significantly more rigorous than in Case Study 1.

Whilst some characteristics measured in Case Study 3 did not have real-world measure-

ments, data was available for characteristics such as plume-tuyère contact width and jetting

length. This highlighted the importance of reliable real-world measurements, as well as the

need for novel approaches in generating them to accommodate the development of novel

deep learning-based monitoring techniques.

7.3 Results Comparison

This section compares the results of each case study in terms of the performances achieved

by each model, the robustness of each model to changes in environmental conditions, the

potential scalability of each model, and finally, the limitations experienced.

7.3.1 Model Performance

Table 42 shows the precision, recall, COCO mAP and speed of the main models developed

as part of this project. As shown, the precision, recall and mAP of the splatter model is

the highest and virtually perfect, followed by plume model performance which is very good,

followed by the ladle model performance which is good considering the scenario. Note that
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the Kalman filter ladle model in Case Study 1 was not used for comparison since it reduced

the suitability of the model for real-world application, despite improving CV metrics. The

splatter study had the easiest object detection task with the least variation, as well as

the most training data. The plume study involved a fairly difficult object detection task

with a lot of variation and had slightly less training data. The ladle study involved a very

challenging object segmentation task with a complex shape in a harsh environment, and had

the least available training data by a significant amount, near 10% of the available data for

the splatter study. This discussion suggests that task complexity and available training data

were the two primary factors that affected model performance.

In terms of speed, the splatter was the fastest, followed by the plume model and then

the ladle model. The splatter model was optimised with TensorRT and the speed of 5.73fps

includes network overhead. Without it, the model achieved over 15.23fps with large images,

meaning use of image resizing could significantly improve this speed (see Section 5.4 of

Chapter 5). For the use-case of the splatter model, the 5.73fps speed was sufficient for real-

time monitoring on the NVIDIA Jetson Orin Nano and there were clear opportunities to

speed this up further, such as resizing images from large to small. This study addressed

the research gap identified in Chapter 2 regarding the lack of real-time edge-based CV

applications developed for steel production processes.

For the plume model, real-time was not an aim, however for future developments 7.6fps is

a good start, especially considering it utilised PyTorch and was therefore not optimised using

TensorRT. Regarding the ladle model, it is far from being applicable in real-time. Even if

the natural frame rate of the video stream is diluted, 2.17fps is not sufficient. However, this

was developed using Mask R-CNN which was state-of-the-art when the study initiated, and

has now been surpassed by the likes of YOLOv8-seg (see Section 2.5.1 and Section 2.5.6 of

Chapter 2). If a closed-loop control system were to be built using the ladle model, it would

certainly need to be redesigned using a network such as YOLOv8-seg.

Table 42: Comparison of model performances across different case studies

Model Precision Recall mAPCOCO Inference Speed (fps)

Ladle (RTX) 0.477 0.516 0.516 2.170

Splatter (Jetson) 1.000 1.000 0.994 15.230

Splatter (Jetson - Over network) 1.000 1.000 0.994 5.730

Plume (T4) 0.854 0.901 0.774 7.600
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7.3.2 Robustness

Robustness of models was a key discussion point throughout this work and is included here

to highlight the environmental challenges involved in each case study. All case studies involve

the development of models that can measure real-world process variables and are robust to

different environmental conditions. Therefore, they all address the research gap identified in

Chapter 2 regarding the lack of real-world measurement, testing and validation surrounding

CV applications.

Case Study 1 dealt with harsh lighting conditions and an obstacle blocking the view of

the ladle. Through application of CLAHE, the negative effect of the harsh lighting con-

ditions was significantly reduced, proving the effectiveness of this approach and suggesting

potential applicability in other similar scenarios. Through the labelling approach described

in Section 4.2.1 of Chapter 4, the occlusion was mitigated and this could also be beneficial

in future scenarios.

Case Study 2 dealt with variations in camera position and air knife movement. Through

application of YOLOv5, robustness to camera position variations was improved significantly,

however the results and discussion showed that for optimal model performance, a fixed

camera position should be used every time. Also through use of YOLOv5, the air knife

movement aspect was managed with minimal issues, however there was a tendency for the

model to struggle distinguishing between front knife faces and underside knife faces, but this

did not impact deployment performance.

Due to the experimental nature of the data provided in Case Study 3, there were minimal

variations in the environment that required extra attention. One example was that the tuyère

tended to vibrate, which caused segmentation mask noise that was addressed by using Hough

line transforms to remove the segmented edge during these occurrences.

7.3.3 Scalability

When considering industrial application of models, scalability becomes important for real-

world deployment and especially for the future advancement of computer vision in steel

production. This refers to the ability of a model to be replicated across various devices,

potentially operating simultaneously on different operating systems and in diverse scenarios.

Also whilst doing this, good scalability means model performance and efficiency will not be

sacrificed when it is applied in different situations. During Case study 2 and Case Study 3

it was ensured that models developed can be utilised on different devices by different users,

which addressed the research gap identified in Chapter 2 regarding the lack of real-world
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measurement, testing and validation surrounding CV applications.

For Case Study 1, scalability was limited. The model is capable of processing multiple

videos, however can not be considered ready for real-world deployment until it is trained and

tested on much larger datasets.

For Case Study 2, scalability is promising. The model has successfully been developed on

a personal computer and deployed on a NVIDIA Jetson Orin Nano using FastAPI, Uvicorn

and Docker. FastAPI allows operators to easily interface with the model without having

coding experience, Uvicorn provides a server for the API (application programming interface)

to connect to the web, and Docker ensures the model is lightweight, portable and functional

on any operating system. Uvicorn and FastAPI both support asynchronous operations which

enhances efficiency, enables multiple simultaneous request handling, and ensures scalability.

For Case Study 3, the scalability is also promising. Using Google Colaboratory, re-

searchers with minimal to no coding experience and no local software or libraries can easily

access and operate the model simply by uploading plume footage, typically waiting a few

minutes and then downloading the predictions. This could easily be shared and duplicated

to run many tests at once.

7.3.4 Limitations

7.3.4.1 Case Study 1

Case Study 1 experienced more limitations than the other two studies for various reasons.

Firstly, since it was the first study of the whole project, experience at tackling CV tasks

was at a minimum. In contrast, Case Study 3 benefited from improved familiarity with

CV, leading to more efficient and effective completion. Furthermore, due to the emergent

nature of CV, learning resources, literature, existing networks and community contributions

were limited, which made progressing more difficult. This ties in with other limitations such

as data availability, time consumption of labelling data and performance of state-of-the-art

networks.

Since Mask R-CNN was the highest performance, applicable, instance segmentation

model at the time of initiation, this was the best choice. However, even on a much more

powerful GPU than the RTX 2070 Super (which not many existed that were better than

this at the time), the model would not be able to reach near real-time performance. For this

reason, and for the high time consumption of labelling, pouring videos were simplified down

to 1fps.

Also, there were only four pouring videos available, and in total this gave less than
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600 frames for the entire dataset. Considering the harsh environmental conditions in the

footage, as well as the complexity of instance segmentation, as well as the complex shape

of the ladle, this was not enough data to develop a high-performance model. Despite this,

the performance achieved at the end of the study achieved through methods such as the

hyperparameter optimisation, was impressive considering the high complexity and minimal

data availability during the task. This is discussed more in Section 4.4 of Chapter 4.

7.3.4.2 Case Study 2

Case Study 2 limitations were somewhat similar to Case Study 1 but with some variation. In

terms of experience, a large amount had been gained from the first case study which meant

the rate of progress improved significantly and there were less technical pitfalls when dealing

with things like debugging coding issues. Also, compared to Mask R-CNN, YOLOv5 was

less complex with more community contributions for help with issues. However, there were

still challenges such as data access and scoping the problem for real industrial benefit.

In terms of data access, it was necessary to communicate with operators at the galvanising

site to request different kinds of footage that could be used for model development. For

example, a range of splatter severities were required to ensure the model could handle the

whole range of magnitudes, footage of air knife movement was required to ensure the object

detection worked, and footage from various camera positions were required so the model

could be built to be robust to this. COVID-19 restrictions making the site inaccessible were

active during much of this period, which made data acquisition difficult. Therefore, unlike

the other case studies where all available data was provided from the beginning, in Case

Study 2 there was an element of uncertainty in terms of what data the model would need to

be developed for.

In terms of scoping the problem, Case Study 1 industrial aims were provided gradually

throughout the study by a collaborating researcher which complicated the process and will

be avoided in future, whereas Case Study 2 aims were specified at the beginning of the

study which was crucial for the success of it. When developing computer vision systems

for stakeholders that have no computer vision experience, it is necessary to bridge the gap

in understanding the capabilities and limitations, as well as identify exactly how specific

stakeholder objectives are achievable using different techniques. For example, technologists

at the galvanising site requested a tool that could quantify the severity of splatter in real-time

and this was initially achieved on one video using background subtraction. However, it later

became known that the camera position was changed by operators between each shift and
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the air knives actually moved up and down during the process. Therefore, the model had to

be further developed. This highlighted the importance of gaining a deep understanding of

the problem early on.

7.3.4.3 Case Study 3

Case study 3 limitations included the large time consumption of labelling thousands of com-

plex plumes, but was overcome through the auto-labelling approach. Raw data availability

was of no issue since it was all readily available and easily transferred by a collaborating

researcher. This contrasts from other case studies where data was either unavailable or dif-

ficult to access. However, there were limitations surrounding the complexity of the task.

For example, it has been mentioned in Section 6.3.1 of Chapter 6 that plumes were

difficult to capture individually with 2D bounding boxes due to the complex, gaseous nature

of them. This was unique compared to the other case studies which involved objects with

more consistent shapes. This not only made labelling difficult, but potentially affected the

quality of results. This is not to say the results were poor, because they were not, but using

3D data capturing methods would greatly benefit this kind of task.

There were only two other notable limitations of Case Study 3 which were firstly, the

movement of the tuyère. This was mitigated competently using the Hough line removal,

however without movement this would have meant less processing for the model and in

some frames, possibly an improvement in precision. The other limitation is that the water

column had a dark grid-like structure behind the plumes, which if removed, would have

made the setup optimal for feature extraction due to the contrast between plumes and the

background. This aspect, along with the moving camera position in Case Study 2, highlighted

the importance of optimising the environment and camera setup for computer vision systems

to maximise results.

7.4 Conclusion

The comparative analysis conducted in this chapter has presented the application of CV

technologies across three steel production processes. Through methodological analysis, valu-

able insights have been drawn such as the versatility of CV models when monitoring various

aspects of different industrial environments, the crucial requirement for sufficient quantity

and quality of data for achieving desired model performances, and the importance of select-

ing the right tools and evaluation metrics to facilitate efficient and effective development.
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Key insights have also been drawn from results analysis, which include the importance of

choosing the right device for development and deployment depending on what the use-case is

for a given model, the subtle details to environmental changes that models need to account

for in real-world applications in order to be robust, as well as the aspects of development

that need to be considered to ensure models can be integrated at scale.

Furthermore, this chapter has uncovered some of the common challenges and limitations

of CV that are important to consider when developing CV technology for industry. These

contribute to current understanding of CV application to industrial processes, whilst also

paving the way for better practices in future projects.

As discussed in Chapters 4, 5 and 6, this comparative analysis has highlighted how the

three case studies have addressed several significant gaps identified in the literature in Chap-

ter 2. These include enabling real-time processing capabilities in edge-based CV systems,

generating diverse datasets that represent the complexity of real industrial environments,

conducting real-world application, testing and validation of CV systems, as well as synthesis-

ing traditional techniques with more modern, deep learning-based techniques. By addressing

these gaps, this research advances the field of computer vision with regards to application in

the steel industry.
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Chapter 8: Conclusion

This thesis has demonstrated the capabilities of machine learning-based computer vision

(CV) for advancing the current state of manufacturing technology. By tackling three different

case studies based on three entirely different processes within steelmaking, this work has

demonstrated how versatile CV is as a tool, and how it can be used to monitor highly

complex and variable environments in ways that were previously unattainable. Additionally,

the impact of integrating CV into steel production has been critically evaluated in terms of

enhancing operational efficiency and product quality, whilst reducing equipment degradation

and ensuring safer working conditions. The primary research objectives of this body of work

are listed below.

8.1 Research Objectives

1. Conduct a comprehensive literature review of modern advances in computer vision

techniques with emphasis on industrial and manufacturing scenarios. This includes

establishing a clear understanding of the state-of-the-art, critically analysing existing

literature, and identifying research gaps.

In terms of the first objective, Chapter 2 presents a thorough literature review on mod-

ern computer vision techniques and their applications to industrial scenarios, with particular

emphasis on manufacturing scenarios and primary focus on steel processing. Through this,

the state-of-the-art has been clearly established, critically analysed, and used to identify

research gaps which have either been addressed in this work or recommended for future en-

deavours. The gaps addressed include the need for more real-time edge-based CV systems

on production lines, the need for more steel production datasets that are based on a range of

different processes, the lack of innovation in the field with regards to combining traditional

and modern CV techniques, and the lack of application of CV for making real-world mea-

surements and validating them.

Collectively, addressing these gaps has significantly contributed to the field. Remaining

gaps such as establishing standardised evaluation approaches for fairer comparison of model

performances in industrial environments, analysing cost-effectiveness of CV implementation

and accounting for human factors, are left open for future endeavours.
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2. Design novel computer vision systems tailored for different processes within steel pro-

duction (hot metal ladle pouring, galvanisation, and gas stirring) to monitor and anal-

yse key process variables that give insights for enhancing operational efficiency and

product quality.

In terms of the second objective, all case studies advance CV application in steel man-

ufacturing through process monitoring and analysis of process variables for insights into

improving the efficiency and effectiveness of production methods.

In Chapter 4, ladle process parameters and resulting emission severity were, for the first

time, monitored using CV to give insights that improve operational efficiency. This sets a

new standard for process monitoring within the steel industry. The novel dataset developed

addressed the gap identified in Chapter 2 related to the lack of steel production process

datasets, the combination of Mask R-CNN and Kalman filtering addressed the gap related

to the lack of innovation involving traditional and DL-based CV techniques in combination,

and the measurement of pouring height, rotation angle, and flame severity was pioneering

and addressed the gap related to the measurement of real-world process variables using CV.

In Chapter 5, splatter severity, which has never been quantified before, was monitored

in real-time on an edge device to enable operators to draw insights that improve both op-

erational efficiency and product quality. This has demonstrated the capability of computer

vision to monitor new process variables that were previously not measured. The novel dataset

developed addressed the gap identified in Chapter 2 related to the lack of steel production

process datasets, the combination of YOLOv5 with background subtraction addressed the

gap related to the lack of innovation involving traditional and DL-based CV techniques in

combination, and the measurement and validation of zinc splatter severity was revolution-

ary to the process whilst addressing the gap related to the measurement and validation of

real-world process variables using CV.

In Chapter 6, refractory wear was monitored by analysing plumes in an innovative way to

give novel insights that improve operational efficiency and product quality. This has opened

up many new possibilities in terms of optimising the gas stirring process. The novel dataset

developed addressed the gap identified in Chapter 2 related to the lack of steel production

process datasets, the combination of YOLOv5 with background subtraction addressed the

gap related to the lack of innovation involving traditional and DL-based CV techniques in

combination, and the measurement of plume characteristics and validation of contact width

and jetting length was groundbreaking for optimising gas stirring whilst addressing the gap

of measurement and validation of real-world process variables using CV.
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3. Investigate the deployment of computer vision technologies into steel production envi-

ronments as both post-processing and real-time monitoring applications. This includes

the consideration of robustness and scalability of systems to ensure they can withstand

the complexities and variations of deploying to real industrial settings.

In terms of the third objective, each study explores practical deployment of computer

vision technologies, whether this is for real-time monitoring or post-processing analysis.

In Chapter 4, the model developed is robust to poor lighting conditions and can be used as

a post-processing tool. However, state-of-the-art instance segmentation has advanced since

the initiation of the study and with a larger training set, as well as application of a more

recently released segmentation network, it could be deployed in real-time and potentially

used for closed-loop control of ladle motion.

In Chapter 5, the model developed was deployed onto an edge device, operates in real-

time, and is ready for integration into a real-world application. It is robust to changes

in camera position, changes in air knife position, dust particles and heat distortion. It is

also deployed within a Docker container and accessed through an application programming

interface (API), both of which ensure scalability. This addresses the gap identified in Chapter

2 related to the lack of real-time edge-based CV systems on production lines.

In Chapter 6, the model produced is available as a post-processing tool and has been

used by another researcher for this purpose. It is robust to tuyère vibrations and can

easily be distributed as a Google Colaboratory notebook, demonstrating scalability. With

collaboration from gas stirring process experts, it is possible to further develop the model

for real-time application.

In Chapter 7, a comprehensive comparative analysis of the case studies emphasised the

importance of data quality and quantity, the selection of appropriate models and evaluation

metrics, and tools that were crucial for both development and deployment. Additionally,

it discussed the practicality, robustness and scalability of the developed models, whilst also

detailing the limitations with regards to development and deployment.

Overall, deployment has been a key topic investigated in every case study. This is par-

ticularly true in Chapter 5, where the technology was taken from theoretical performance

evaluation to deployment, and Chapter 6, where it was passed over to another researcher for

use. These are significant contributions to both CV and manufacturing.
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8.2 Key Findings & Implications

The findings of each case study are highly beneficial for future research on CV applications

for process monitoring. Chapter 4 laid the foundation for future advancements in monitoring

ladle pouring by offering a novel approach that can be developed to reduce emissions and

equipment degradation whilst improving safety.

Chapter 5 demonstrated the practical application of a CV model to quantify zinc splatter

severity occurring on the galvanising line, using a deployed edge-based system with Wi-

Fi and real-time capabilities, ready for implementation. The system built in this study

can be implemented to reduce equipment degradation and the occurrence of defects, whilst

improving operational efficiency.

Chapter 6 provided a tool for easily and automatically comparing the wear rate and

stirring efficiency of different gas stirring configurations, which contributes to the reduction

of equipment degradation and improvement of operational efficiency and product quality.

The implications of this work are vast. Firstly, this research contributes to progressing

the integration of CV technology into industrial environments and is evidence of the benefits

that can be gained by doing so. Applying CV to three entirely different areas of steel

production emphasises the adaptability and widespread potential of CV technology across

many industrial processes, which greatly contributes to the field of manufacturing technology,

whilst also contributing to the field of CV. Secondly, the successful deployment of one model,

and the successful handover of another, demonstrate the feasibility of utilising CV models

in real-world steel production environments for tangible benefits. This challenges existing

perspectives on the limitations of CV technology in complex industrial environments, whilst

laying the foundation for future developments across the entire manufacturing sector. Lastly,

the limitations found in this work are valuable to future projects in both the academic space

and the industrial space. Addressing these challenges has provided guidance for developing

and implementing CV solutions in a wide variety of scenarios.

8.3 Limitations

Key limitations discovered firstly include the complexities of dealing with harsh industrial

environments that make high model performance and model deployment particularly chal-

lenging to achieve. These environments introduced significant sources of noise and variability

such as poor lighting, heat distortion and vibrations, which impacted model performance and

required extensive data pre-processing and robust model design to overcome.
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Also, there were limitations surrounding problem scoping and data acquisition which

highlighted the challenges in communicating with individuals from different professional

backgrounds and obtaining datasets of a sufficient volume, diversity and quality from col-

leagues for satisfactory model performance upon training. Problem scoping was challenging

due to the general lack of familiarity with computer vision within the steel sector, whilst data

acquisition for real industrial environments was particularly difficult due to their variable

nature.

Furthermore, labelling thousands of frames, often containing complex shapes such as

plumes and ladles, was highly time consuming. This highlighted the need for more resource-

efficient approaches such as the auto-labelling approach demonstrated in Chapter 6.

Additionally, the necessity for efficient approaches to hyperparameter optimisations be-

came evident throughout Chapter 4. Computer vision models often have many different

hyperparameters and one training session (and therefore one experiment), can take a con-

siderable amount of time to complete. Therefore, in this field efficient experimental design

is crucial in order to develop high-performing models within computational power and time

constraints.

Finally, deployment of a real-time edge-based system in Chapter 5 highlighted various

limitations such as requiring maximum efficiency for real-time performance on limited com-

putational power, meaning only essential code can be processed. For example, once the

model has been validated as reliable, removing the visual display of measurements may be

necessary depending on project demands.

These limitations highlight areas that should be carefully considered in future work to

avoid some of the pitfalls and bottlenecks experienced during this project. Through aware-

ness of these challenges, which are all common in industrial CV projects, future developments

will progress more efficiently and more effectively. Therefore, these limitations are valuable

to future researchers.

8.4 Future Research Directions

Due to the emergent nature of computer vision, there are a vast number of potential future

research directions which not only involve further development of the case studies in this

project, but also diversifying models to be used in other steel production processes (or even

in other industries). This section will firstly focus specifically on ways of addressing the

identified limitations, and secondly how work here can generally be developed further. In

order to address the limitations, the following improvements can be made:
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• In all future research projects, establishing a thorough understanding of the problem

statement, relevant environmental conditions and data availability will be imperative.

This will ensure that the full problem is understood by all parties involved from project

initiation, and that every stage of the project is conducted with this in mind.

• If extensive data labelling is required, efficient methods such as auto-labelling (or

transfer learning) should be used to minimise time consumption. This can significantly

reduce project duration and significantly increase the volume of labelled data (provided

there is enough data originally acquired). The performance of models in all studies

could be improved significantly with larger datasets.

• Hyperparameter optimisation should be tackled with more advanced approaches that

reduce computational overhead and shorten the overall time to complete a series of

experiments. An example of this could be early stopping, which stops training when

performance plateaus.

• Model deployment for real-time application should be approached with more focus on

enhancing computational efficiency through efficient use of data types, data structures

and memory allocation, as well as using a minimalistic design of model features, and

maximising the use of optimisation techniques such as quantisation and knowledge

distillation.

• To address remaining gaps in the literature, an evaluation methodology could be estab-

lished that is suitable for all case studies, to work towards more comparable outcomes

across the entire field. Furthermore, cost-effectiveness and human factors could be in-

vestigated to better understand the economic impacts and user interactions with these

technologies, as well as promote wider acceptance and utilisation within the industry.

There are also several potential research avenues that could be pursued to further develop

each case study:

• For Chapter 4, the ladle model could be redeveloped using a model such as YOLOv8-seg

to improve both speed and precision. This should be conducted using a larger dataset

that includes thousands of labelled frames rather than hundreds, whilst also validating

model measurements against reliable real-world measurements. These improvements

would enhance insights, and with extensive testing for full physical integration into the

pouring site, could result in a closed-loop control system that minimises emissions by

adjusting pouring controls in real-time.
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• For Chapter 5, the splatter model could be implemented onto the ZODIAC galvanising

line. This way it could be used for an alarm system to alert operators of high splatter

severity, as well as for data collection and analysis to optimise process parameters for

maximum strip speed and minimum splatter.

• For Chapter 6, the plume model is currently usable for comparing different gas stirring

configurations, but would benefit from using YOLOv8, and maybe a different column

setup more adapted for computer vision application, to further improve performance.

If this system was to be integrated directly into the basic-oxygen furnace, it would be

revolutionary for the stirring process. Additionally, the plume model itself could be

evolved by taking a 3D approach rather than a 2D approach.
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