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Abstract

Computer vision (CV) is a branch of artificial intelligence (AI) that enables machines to un-
derstand visual input. The recent rise of deep learning (DL) has empowered CV significantly,
leading to well-established applications such as autonomous vehicles, medical diagnosis and
facial recognition. These new capabilities extend to the manufacturing sector, however they
have not been widely adopted to monitor processes in the steel industry due to challenges re-
lated to harsh environmental conditions such as poor lighting, heat distortion, dust particles
and vibrations. As a result, existing datasets are limited and advances have predominantly
been evaluated within research settings but not real-world settings. Therefore, this project
investigates the application of CV for monitoring steel production processes and how inte-
gration impacts state-of-the-art technology. This work aims to produce CV systems capable
of monitoring different processes and utilise them to draw valuable real-world insights for
industry. Also, it aims to investigate how these systems, and CV as a whole, can enhance the
efficiency, quality and sustainability of steel manufacturing. This research involves the devel-
opment of CV models tailored to three processes: ladle pouring, galvanising and gas stirring.
In each case study, DL and traditional methods are used to monitor real or simulated produc-
tion environments and extract useful information. Primary outcomes of this research include
a foundation for monitoring ladle pouring to reduce emissions, a deployed system for quanti-
fying zinc splatter occurring during galvanisation in real-time, and a tool for comparing the
wear rate and stirring efficiency of different gas stirring approaches. Outcomes of this work
highlight the revolutionary benefits of applying CV in production environments for process
monitoring and control. By developing CV models for monitoring processes, overcoming
harsh conditions typical in production environments, and drawing valuable insights from
CV application, this work establishes a strong foundation for real-world implementation of

CV in manufacturing.
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Chapter 1: Introduction

1.1 Background

Artificial intelligence (AI) is a rapidly evolving area of computer science concerned with
incorporating human-like behavior and intelligence into machines or systems [I]. There are
various subfields of AI which include, but are not limited to, natural language processing
(NLP), automated speech recognition (ASR) and computer vision (CV) [1]. Whilst NLP and
ASR are closely related and focus on text and sound-based understanding, CV focuses on
using visual data to enable computational models and systems to acquire an understanding
of different environments [1].

Traditionally, computer vision has aimed to mimic the visual capabilities of humans
through tasks such as object recognition, image segmentation and motion detection [2].
This has relied heavily on explicit programming and simple pattern recognition techniques,
and has therefore been greatly limited in terms of handling the complexity and variability
inherently present in visual data [2]. However, in recent years, computer vision has been
revolutionised through advances in machine learning (ML), particularly the type of ML
referred to as deep learning (DL) [2]. Whilst ML a subfield of AI that is based on building
analytical models that can learn from historical data [I], DL is a subfield of ML that is
centred around the use of multi-layered neural networks for pattern recognition [I]. In broad
terms, neural networks are algorithms that have been modelled based on the architecture of
the human brain [2]. They are comprised of layers of neurons through which data is passed,
typically in series, so that each layer can extract useful features from the data [2].

With the dramatic improvement of computational capabilities over the last two decades,
DL has been greatly empowered due to increased data storage capacity as well as neural
network training resource availability [2]. Big Data, characterised by high volume, high
velocity or high variety, is the major driving force that empowers deep learning models
to learn complex patterns [3]. Consequentially, the state of DL-based CV has made leaps
and bounds in terms of recognising complex patterns and making intelligent decisions with
a level of precision that was previously unattainable. These enhanced capabilities have
opened the door to a vast number of breakthroughs in tasks such as image classification,
object detection and object segmentation [2]. The integration of CV, DL and Big Data has
laid the foundation for generations of innovative applications across various sectors including

healthcare, agriculture and particularly manufacturing.



Through insights gained from visual data, steel manufacturers can optimise the opera-
tional efficiency of their processes, improve product quality, ensure safer working conditions,
and much more. Areas of steel production that are already experiencing major advancements
due to CV include process monitoring and automation, quality control via defect detection
systems and microstructural analysis (see Section of Chapter 2 for more examples of

applications) [4] [l [6].

1.2 Research Objectives

The overall aim of this project is to enhance the efficiency and quality of steel production
through the application of advanced computer vision technologies. This is approached by
addressing several key challenges that expose novel opportunities in the steel industry. In
order to address some of the challenges and opportunities in steel production, this thesis

focuses on three primary research objectives:

1. Conduct a comprehensive literature review of modern advances in computer vision
techniques with emphasis on industrial and manufacturing scenarios. This includes
establishing a clear understanding of the state-of-the-art, critically analysing existing

literature, and identifying research gaps.

2. Design novel computer vision systems tailored for different processes within steel pro-
duction (hot metal ladle pouring, galvanisation, and gas stirring) to monitor and anal-
yse key process variables that give insights for enhancing operational efficiency and

product quality.

3. Investigate the deployment of computer vision technologies into steel production envi-
ronments as both post-processing and real-time monitoring applications. This includes
the consideration of robustness and scalability of systems to ensure they can withstand

the complexities and variations of deploying to real industrial settings.



1.3 Thesis Structure

Chapter 2: Provides an extensive review of existing computer vision techniques and their
applications in manufacturing, highlights advances and identifies gaps in the literature.
This chapter sets the stage for the thesis firstly by establishing the significance of
computer vision in manufacturing, particularly in the steel industry. By identifying
gaps, it also highlights the need for innovative solutions and therefore justifies the

purpose of this research.

Chapter 3: Details common techniques and tools that were utilised across multiple case
studies. The fundamental principles of computer vision methods used in this research
are covered, as well as their configurations, justifications for their selection, and poten-
tial limitations. Additional resources that were critical to the success of this work such
as software, hardware and the Common Objects in Context (COCO) dataset are also

detailed. This ensures a clear methodological framework is defined from the outset.

Chapter 4: Presents Case Study 1, a novel method for tracking the motion of hot metal
ladles during the pouring process in harsh environmental conditions. The chapter
details the application of Contrast-Limited Adaptive Histogram Equalisation (CLAHE)
for contrast enhancement of poorly-lit footage, and Mask R-CNN (Mask Region-based
Convolutional Neural Network) for ladle segmentation. It demonstrates how these
techniques can be used to monitor ladle pouring height, rotation angle, and furnace
flame severity. The insights gained pave the way for enhancing ladle process monitoring

and control.

Chapter 5: Presents Case Study 2, an innovative approach for quantifying the severity
of zinc splatter during the galvanisation process in real-time. It describes the use of
Counting (CNT) background subtraction (BGS) for splatter segmentation and YOLOv5
(You Only Look Once) for air knife detection. The chapter also investigates the de-
ployment of the model onto hardware suitable for a production environment, proving
its robustness and practicality. The developed system can be implemented to reduce

equipment downtime and improve product quality.

Chapter 6: Presents Case Study 3, which focuses on the analysis of gaseous plume dy-
namics, refractory wear, and stirring efficiency in gas stirring processes within a basic-
oxygen furnace (BOF). The chapter introduces a novel approach using computer vision

to monitor various plume characteristics from experiments simulating gas stirring. It



details the use YOLOvV5 for plume detection, DeepSORT (Deep Simple Online and
Real-Time Tracking) for tracking, and CNT background subtraction for segmentation.
It demonstrates how application of these techniques was used to estimate the impact

of different stirring configurations on refractory wear and stirring efficiency.

Chapter 7: Provides a comparative analysis of the three case studies presented in Chap-
ters 4, 5 and 6 in terms of methodologies and results. This chapter also discusses the
common challenges encountered, such as dealing with harsh environmental conditions
and overcoming resource constraints with regards to data availability, computational
expense and time. By synthesising insights gained from each case study, this empha-

sises the broader impact of the solutions presented.

Chapter 8: Concludes the thesis with a summary of the key findings and significant con-
tributions to the field of computer vision in manufacturing. It reflects on the original
research objectives and how they were achieved, and also summarises key findings and
implications of this research on the state of manufacturing technology. Additionally,
this chapter summarises the main limitations experienced in this project, before offer-

ing recommendations for future research.

1.4 Key Research Outcomes

The research presented in this thesis has several significant outcomes that contribute to
both the academic body of knowledge and the practical applications in the steel production

industry. The key outcomes are listed below:

e Developed a computer vision model capable of estimating ladle pouring height, angle of
rotation and resulting flame severity in ladle pouring processes which sets a foundation

for future real-world applications.

e Developed and deployed a model for quantifying splatter severity on a galvanising
line on a NVIDIA Jetson Orin Nano which exhibits real-time capability over a Wi-Fi

network.

e Created a model for detecting, tracking, and segmenting gaseous plumes in furnace gas
stirring simulations to obtain stirring efficiency rating and wear rate factor values for

assessment of different stirring setups.



These advancements highlight the potential of computer vision technologies to enhance
operational efficiency and process quality in steel manufacturing. Further details on each

case study are discussed in the subsequent chapters of this thesis.

1.5 Research Outputs

The outputs of this project are stated below:

e Publication of two journal papers (items 1 and 2 below), based on Case Study 1
(Chapter 4) and Case Study 2 (Chapter 5) respectively.

e Submission of one journal paper (item 3 below), based on Case Study 3 (Chapter 6).

This is currently under review.

e Publication of two conference papers (items 4 and 5 below), based on the wider impli-
cations of computer vision application in manufacturing with regards to sustainability
and Industry 4.0.

e Deployment of a real-time, Wi-Fi enabled, splatter severity quantification model on an
Internet of Things (IoT) device suitable for implementation into the galvanising line.
If process technologists at the galvanising site decided to implement this it would aid
in reducing equipment degradation and surface defects. This emphasises the practical

applicability of this research.

e Contribution of a model for gaseous plume analysis to a collaborative project, which
has been utilised by another researcher to gain understanding of gas dynamics in steel
production, and could be used to aid optimisation of the real furnace gas stirring

process to reduce equipment degradation and improve stirring efficiency.

Implications of these contributions for future research and industry application are pro-
vided in the conclusion chapter which finalises findings and proposes directions for future

work. The publications mentioned are listed below:

1. [7]: This article details the development and evaluation of a computer vision model
designed to estimate ladle pouring height, ladle rotation angle and flame severity during

the ladle pouring process.

2. [8]: This article focuses on the development, evaluation, and deployment of a model

designed to quantify zinc splatter severity occurring on the galvanising line.



3. [9]: This article describes the development, evaluation and application of a model
designed to monitor gaseous plumes during gas stirring simulations and give insight on

the resulting refractory wear rate and stirring efficiency.

4. [10]: This conference paper, presented at the International Conference on Industry
4.0 and Smart Manufacturing in 2023, investigates the integration of computer vision

technology into steel factories to improve the sustainability of the industry.

5. [II]: This conference paper, presented at the International Conference on Manufac-
turing Research in 2023, investigates modern advances in computer vision applications

for steel production and their implications on the sustainability of the industry.



Chapter 2: Literature Review

This chapter will give an overview of a typical computer vision (CV) project workflow fol-
lowed in industry, before presenting state-of-the-art (SOTA) methods shaping the field. Tech-
niques will be discussed and critically analysed in terms of suitability for application. Addi-
tionally, applications of traditional techniques (denoising, tracking and background subtrac-
tion), whilst more modern techniques utilising deep learning (object detection and instance
segmentation), will initially only focus on theoretical performance evaluations. Finally, ap-
plications that use deep learning-based techniques will be presented and critically analysed
in terms of their suitability for deployment. Through analysis of both SOTA methods and
specific manufacturing applications, gaps in the field will be identified. Some gaps will be
directly addressed throughout this project, and others will remain as potential avenues for

future research.

2.1 Introduction

Chapter 1 already provided an introduction that explains how CV is a branch of artificial
intelligence (AI) and has advanced significantly in recent years which has enabled the de-
velopment of intelligent systems that interpret visual data with precision. This literature
review will build upon the foundational understanding of CV that was laid out in Chapter 1
by presenting advancements in CV technology and applications relevant to the manufactur-
ing sector, with a particular focus on steel production where possible. The objective of this
review is to provide a comprehensive background of existing CV techniques and evaluate
their potential for real manufacturing applications.

The project workflow of CV is fundamental to understanding how models are integrated
into systems as real practical tools that enhance manufacturing processes. Typically, a CV
project begins with data collection and pre-processing which ensure datasets are sufficiently
large and a suitable format for model development. Denoising methods are considered a cru-
cial part of pre-processing. With the right datasets, model development is conducted which
involves training, validation and testing. All object detection and instance segmentation
networks discussed in this review undergo this process. For tracking methods, this varies
depending on whether deep learning is involved, and for background subtraction methods,
training is not required. Following development, models are normally deployed in a real-

world scenario on a suitable device which could be a conventional computer, a cloud server,



a mobile device, or a single-board computer (SBC). The datasets introduced in this review,
with the exception of those related to surface defect detection, are summarised in Table [T}

In Section [2.7.4) where surface defect detection is discussed, a separate table is included.

Table 1: Object detection datasets discussed in this review

Dataset Images Classes Description Source

VOC 2007 9963 20 “Visual Object Classes” - Dataset of [12]
common objects for benchmarking

object detection models.

VOC 2010 10103 20 Dataset of common objects for bench- [12]

marking object detection models.

VOC 2012 11530 20 Dataset of common objects for bench- [12]

marking object detection models.

COCO 2015 205000 804+  “Common Objects in Context” - [13]
Dataset of common objects in natu-
ral environments for benchmarking
models on various CV tasks, primar-
ily object detection, segmentation and

image captioning.

COCO 2016 205000 80+  Extension of COCO 2015 with key- [14]

points for human pose estimation.

COCO 2017 164000 80+  Updated train/val/test splits with [13]
continued support for detection, seg-

mentation, captioning, and keypoints.

Roboflow-100 224714 829  Crowd-sourced dataset for bench- [15]
marking models on object detection

tasks across a wider variety of do-

mains than VOC and COCO.




2.2 Denoising Methods

The pre-processing stage of developing CV models can involve techniques with a variety of
functions, including but not limited to, data compression for computational efficiency, data
normalisation for consistent input formats, data augmentation for maximising the use of
limited datasets, and denoising for model accuracy. This section will give an overview of
denoising techniques relevant to this project, critical analysis of their application in real-

world settings and identification of research gaps.

2.2.1 Histogram Equalisation Methods

Histogram Equalisation (HE) is a commonly used contrast enhancement technique that lends
itself well to computer vision tasks [16]. HE works by using the intensity values of all pixels
within an image to produce a histogram, and then adjusting intensity values of pixels with
more frequent intensities to produce a more evenly distributed histogram [I7]. This results
in areas of lower local contrast changing to a higher contrast, making them more visible [17].
In greyscale images “intensity” refers to how dark or light a pixel is. In HSV colour space
(hue-saturation-value), HE can be performed on value channels whereas in HSL colour space
(hue-saturation-luminance), HE can be performed on luminance values. In RGB images the
intensity or brightness is more complex [I7]. Standard HE is prone to over-enhancing images
with highly variable contrast which is common in industrial environments such as steelworks.
In Figure[l|an example image with poor contrast is shown on the left, and its corresponding
histogram is shown on the right [I8]. In Figure [2| the same image in Figure [1] after being
processed with HE is shown on the left, and its corresponding histogram is shown on the
right [1§].

Adaptive Histogram Equalisation (AHE) is a variant of HE that takes local spatial infor-
mation into consideration by dividing images into tiles and performing HE on each tile [I7].
This localised approach is more advantageous in images with more diverse lighting condi-
tions such as industrial environments. In [19], a variety of medical images including X-ray,
computed tomography (CT) and magnetic resonance imaging (MRI) scans, were used to
evaluate the method against HE and another, more applicable variant discussed next called
Contrast-Limited Adaptive Histogram Equalisation (CLAHE). The absolute mean bright-
ness error (AMBE) and peak signal-to-noise ratio (PSNR) metrics were used for evaluation.
AMBE measures the quality of brightness preservation after HE processing and a lower num-

ber indicates better performance [20], whereas PSNR refers to the extent of distortion and a
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higher number indicates better performance [21]. Despite the concept of AHE being sound,
using AHE in [19] resulted in AMBE being higher and PSNR being lower than when HE and
CLAHE were used. This suggests application in manufacturing environments is unsuitable
due to poor brightness preservation and image distortion [19].

CLAHE is a further modified variant of AHE that operates by clipping the contrast of
each equalised tile and redistributing clipped intensity over histogram bins [17]. This method
is more sophisticated than HE and AHE as it avoids overemphasis of any noise present and
prevents edge-shadowing [I7]. When enhancing MRI images, CLAHE was reported in [19]
to achieve an average AMBE value of approximately 20% that of HE and 16% of AHE,
whilst achieving an average PSNR value of approximate double that of HE and two and a
half times that of AHE, demonstrating its effectiveness in real-world applications. This was
further demonstrated in [22] which evaluated CLAHE against HE, contrast stretching and
a newly proposed method developed by the authors at enhancing medical images (X-ray,
CT, MRI and mammogram images). For PSNR, CLAHE performed better on almost every
image, whilst for AMBE it outperformed HE in every case [22]. For PSNR, CLAHE was
very close to the performance of the proposed method and for AMBE it was the closest by
a significant amount [22]. The results of these studies highlight the capability of CLAHE to
enhance image contrast whilst preserving image quality, which is crucial in CV applications
for steel processes where lighting conditions may be harsh and high image quality will be
necessary for precision. However, it would be beneficial to evaluate the performance of
CLAHE on a wide range of steel production environments to identify the strengths and
weaknesses of the technique more specifically.

Brightness Preserving Bi-Histogram Equalisation (BPBHE) is another variant that uses
two sub-images which capture pixels at the lower and upper halves of the intensity distri-
bution [23]. Both sub-images are processed using HE and then combined by using the pixel
values from the dark sub-image for original pixel intensities below the mean intensity, and
the pixel values from the bright sub-image for original pixel intensities above the mean in-
tensity [23]. The success of this method has been demonstrated in various use-cases such
as with images containing a large amount of snow and clouds (high intensity images), dark
rooms (low intensity images) and poorly-lit objects [23]. In comparison to other HE variants,
it has shown success in applications such as emphasis of pathological features within brain
MRI and lung CT scans [20]. For the CT scans, BPBHE was combined with a Gaussian
probability function and resulted in the lowest AMBE for the focused area of the patholog-

ical material, as well as for the whole image [20]. Whilst this approach excels in a variety
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of scenarios, including where there are extreme variations in contrast, the dual-image aspect
has the potential to impact computational expense which might be limiting in real-time ap-
plications.

The final HE variant that will be discussed is Brightness Preserving Dynamic Fuzzy
Histogram Equalisation (BPDFHE). This variant processes images in the fuzzy domain using
a fuzzy histogram rather than the standard histogram and Gaussian probability function
[24]. Fuzzy logic is a problem solving approach that allows for degrees of truth as opposed to
binary logic that only allows true or false, which is useful when dealing with approximations
which are typically necessary to deal with in real-world scenarios [25]. The effectiveness
of BPDFHE has been demonstrated in [26] where it performed better than CLAHE at
enhancing leaf images for disease detection for multiple metrics including mean squared
error (MSE) and PSNR, as well as in enhancing high-resolution aerial images in [27] where
it performed better than HE and BPBHE in terms of PSNR, UIQI (universal image quality
index - a quality retention metric) and AMBE. The leaves and aerial images contained more
detail than medical images previously discussed, suggesting BPDFHE can be particularly
effective at dealing with more complex images in comparison to other HE variants. However,
the fuzzy logic aspect could come with computational expense. In the cases of both BPBHE
and BPDFHE, the literature and following analyses suggest these two HE variants could be

useful for industrial application but only for highly specific scenarios.

2.2.2 Morphological Operations

Whilst HE variants are beneficial for improving the contrast of images, morphological op-
erations are beneficial for eliminating small, irrelevant entities which reduces noise and can
aid in improving the shape of desired structures. Morphological operations discussed in this
thesis are erosion and dilation. Erosion involves passing a kernel of a pre-defined size and
structure over each frame, computing the local minimum over the kernel area and replacing
the image pixel under the kernel anchor point with the minimum value [28]. This process
effectively removes the edges of contours so that they are smaller or non-existent and is
demonstrated in Figure [3| [29]. While this operation is similar to convolution in that it in-
volves moving a kernel across an image, it differs in that it computes a local minimum rather
than performing a weighted sum of the kernel and the pixel values. Oppositely, dilation
slides a kernel over images and calculates the local maximum which it uses to replace the
image pixel under the kernel anchor point, which effectively thickens contour edges so that

contours are larger [28]. This is demonstrated in Figure [4] [30]. In practice, erosion can be
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used to “shrink away” small noise contours which are unwanted features that may appear
in due to dust particles, heat distortion, moving machinery, or other sources of inaccuracies
such as generally poor image quality. A follow-up dilation operation ensures helpful contours

are reverted to their original state that existed before noise removal occurred.

(a) Before erosion (b) After erosion

Figure 3: Figure showing the effects of erosion

(a) Before dilation (b) After dilation

Figure 4: Figure showing the effects of dilation

This approach has been used in applications such as steel billet defect detection [31] where
an 87.5% detection rate was achieved which highlights the effectiveness of it in quality control
scenarios and shows efficacy when dealing with varying surface textures. Also, morphological
operations aided real-time defect detection of high-speed steel bar in coil [32] where a 96.7%
detection rate was achieved by the proposed model. This reinforces the applicability of this
approach in steel production environments since real-time capabilities were demonstrated.
Additionally, morphological operations were used for size distribution estimation of iron-ore
pellets [33] where the approach proposed in the study achieved over 90% accuracy in diameter
estimation. The fact that this is based on material handling rather than defect detection

emphasises the suitability of morphological approaches for a variety of steel production tasks.
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Despite promising outcomes in the literature, applying morphological operations still pose
challenges such as requiring optimal sensitivity settings to adequately remove noise without
reducing the quality of important features. Similarly to contrast enhancement, it could be
beneficial to evaluate the performance of morphological operations on a wide range of steel
production environments to build a better understanding of which scenarios could benefit

most from its use.

2.3 Object Detection Methods

Object detection is typically a core element of the model development process and encom-
passes a wide range of techniques that, fundamentally, perform the tasks of object localisation
(predicting an object’s location using a bounding box) and object classification (predicting
an object’s class) together. This section will provide an overview of some of the key detection
networks that constitute modern CV. This will include SOTA as well as some predecessors
of the SOTA to build a comprehensive picture of how the field has evolved rapidly year-on-
year. Model evaluation results based on standard evaluation datasets in the field will provide
some insight into conventional evaluation methods, as well as demonstrate the evolution of
CV since deep learning burgeoned. Additionally, there will be critical analysis of model

application to real-world settings and identification of research gaps.

2.3.1 R-CNN

R-CNN (Region-based Convolutional Neural Network) is a basic object detection model
that consists of three modules shown in Figure |5 [34]. The first module generates region
proposals that define all possible detections available to the detector, the second module is a
large convolutional neural network (CNN) that performs feature extraction on each region,
and the third module is a set of class-specific linear support vector machines (SVM) that
classify the objects within the regions [34].

The authors of the R-CNN paper evaluated the model on the Pattern Analysis, Statistical
Modeling and Computational Learning Visual Object Classes (PASCAL VOC) 2007 and 2010
datasets which are described quantitatively in Table|1| [I2]. For the 2007 set, several R-CNN
variants were compared along with DPM (deformable part model) methods for benchmarking
[34, B35]. Results showed that for every category, R-CNN was superior and achieved a mean
average precision (mAP) of 0.585 [34]. mAP is the mean of the average precisions (APs)
achieved for each class. AP is the area under a plotted precision-recall curve and is a metric
commonly used to describe the accuracy of object detection algorithms (see Section of
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Figure 5: Schematic representing R-CNN object detection

Chapter 3). For the 2010 set, R-CNN was benchmarked with a DPM model [35], Selective
Search [36], Regionlets [37] and SegDPM [34] 38]. Results showed that the R-CNN was again
superior in all categories with an mAP of 0.537 [34].

Despite success, R-CNN is relatively inefficient, resulting in high computational cost and
slow inference times, making it unsuitable for real-time applications [39]. This is because
R-CNN proposes each region individually using Selective Search which is an algorithm that
firstly generates a set of initial segments through segmentation, and then iteratively merges
them based on similarity metrics, such as color and texture, to create region proposals [36].
This process is time-consuming. Furthermore, R-CNN also has a modular pipeline (region
proposal generation, feature extraction, classification), that requires individual optimisation
for each module rather than end-to-end that could improve speed and accuracy [36, 39]. This
has led to the development of more efficient architectures such as Fast R-CNN and Faster
R-CNN.

2.3.2 Fast R-CNN

Fast R-CNN is a development from R-CNN that is advantageous due to its improved training
and testing speed, combined with its increased accuracy [39]. An overview is shown in
Figure [6] [39]. Fast R-CNN is a more streamlined than the modular build of R-CNN [39].
Unlike R-CNN;, Fast R-CNN takes region proposals (from a method such as Selective Search)
as input and processes a single image at once rather than a single proposal, through use of
a pre-trained fully convolutional network (FCN) [39]. A region of interest (Rol) pooling
layer is used to extract vectors from the feature map for each proposal which are then used
to perform classification and localisation simultaneously [39]. Also, Fast R-CNN eliminates
the hundreds of gigabytes storage requirement of R-CNN as it does not cache features [39].

These changes make it much more suitable for speed-critical applications.
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Figure 6: Schematic representing Fast R-CNN object detection

Fast R-CNN was evaluated by the authors by using pre-trained ImageNet [40] models
named (in order of smallest to largest network size) CaffeNet (an implementation using Caffe)
[41] [34], VGG_-CNN_M_1024 [42] and VGG16 (Visual Geometry Group) [43] for feature
extraction [39]. Using these networks, from smallest to largest, Fast R-CNN training speed
was benchmarked against R-CNN and SPPNet (Spatial Pyramid Pooling Network) [44]
and was 18.3, 14 and 8.8 times faster than R-CNN respectively, and significantly passed
SPPNet speed also [39]. SPPNet is a CNN that pools each feature map at multiple scales
and concatenates pooled feature maps into a single fixed-sized output, enabling multi-scale
feature extraction without resizing images or adding more network layers, both of which can
introduce inefficiencies [44].

Also, depending on the choice of feature extraction network, Fast R-CNN was 80 to 146
times faster at testing than R-CNN and SPPNet [39]. In terms of inference speed, 0.10, to
0.32 images per second was achieved depending on the choice of feature extractor [39]. The
significant reduction in training and testing times of Fast R-CNN are much more aligned
with industrial challenges that demand rapid model development and implementation. Using
CaffeNet and VGG_CNN_M_1024, Fast R-CNN achieved only slightly lower mAPs than R-
CNN which was impressive considering the huge increase in training and testing speeds [39).
The slight mAP reduction highlights the trade-off between speed and precision which is
crucial to consider when implementing object detection into a steel production environment.
When detail is critical, speed may have to be sacrificed and vice-versa. When using VGG16,
Fast R-CNN achieved the highest of all three algorithms with 0.669, whilst R-CNN and
SPPnet achieved mAPs of 0.660 and 0.631 respectively [39]. This suggests that Fast R-CNN
performance is dependent on the network size and therefore this is a factor that should also
be considered when implementing it into an industrial application.

Fast R-CNN precision was evaluated on the VOC 2007, VOC 2010, VOC 2012 and
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Microsoft Common Objects in Context (COCO) 2015 [45] datasets which are detailed in
Table 1] [39]. For the VOC 2007 dataset, variants of Fast R-CNN were compared to SPPNet
and R-CNN, both with bounding box regression [39]. The first variant of Fast R-CNN was
trained on VOC 2007, the second was the same except without difficult examples and the
third was trained on VOC 2007 and VOC 2012 [39]. Results showed that for 15 out of 20
object categories, the Fast R-CNN trained on two VOC datasets achieved the highest AP
(and therefore the highest mAP overall — 0.700) [39]. This demonstrates the robustness of
Fast R-CNN across diverse and complex data, which is promising for industry.

Fast R-CNN trained using the VOC 2012 dataset and Fast R-CNN trained using both
the VOC 2007 and VOC 2012 datasets, were compared to BabyLearning [46], R-CNN with
bounding box regression and SegDeepM [47] for detection performance on the VOC 2010
test set [39]. Results showed that the Fast R-CNN model trained on both datasets achieved
the highest AP for 15 of the 20 objects and an mAP of 0.688. The 15 categories Fast R-CNN
performed best in for VOC 2010 set were not the exact same as for the VOC 2007 set [39].
These results further emphasise the ability of Fast R-CNN to generalise well on new data
since different datasets reveal different strengths and weaknesses of the same model. This is
crucial in industrial applications where the environment may change significantly.

The same two Fast R-CNN variants were also evaluated on the VOC 2012 test set against
BabyLearning, NUS_NIN_c2000 (NUS referring to the National University of Singapore and
NIN referring to “Network-in-Network” architecture) [46] and R-CNN with bounding box
regression [39]. The Fast R-CNN variant trained on two datasets achieved the highest AP
in 18 of 20 categories and achieved an mAP of 0.684 [39]. Again, the consistently high
performance of Fast R-CNN across various datasets shows its effectiveness and adaptability

which is desirable in industry.

2.3.3 Faster R-CNN

Fast R-CNN was developed further into Faster R-CNN by adding a new module to the
beginning of the architecture [48]. An overview of Faster R-CNN is shown below in Figure
[48]. The new module is a deep FCN used as a Region Proposal Network (RPN), in contrast
to Selective Search discussed previously [48]. The RPN is trainable end-to-end and regresses
region bounds and objectness (probability of a region containing an object) scores at the
same time [48]. FCNs use convolutional layers followed by more convolutional layers instead
of the more common fully-connected layers. Faster R-CNN works by training the region

proposal network (RPN) and Fast R-CNN independently, whilst allowing them to share
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features through their shared convolutional layers using alternating training [48]. Sharing
features means the computational expense and time required to train and test the Faster

R-CNN network is greatly reduced in comparison to Fast R-CNN [4§].
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Figure 7: Schematic representing Faster R-CNN object detection

Faster R-CNN performance was evaluated on the PASCAL VOC 2007 and 2012 datasets
[48]. Two models were tested (Zeiler and Fergus (ZF) [49] and VGG-16) which used five
and 13 shared convolutional layers respectively [48]. Faster R-CNN using the ZF network
ran at 17fps [48], and using the VGG network ran at 5fps [48]. Fast R-CNN that used the
VGG network ran at 0.5fps [48]. These results show that Faster R-CNN can be ten to 34
times faster than Fast R-CNN depending on the CNN used [48]. Also, the introduction of
an RPN significantly improves speed, which is due to a reduction in the number of proposals
requiring processing. This is important when considering real-time industrial application
due to the high operating speeds found in production sites.

For the VOC 2007 test set, variants of Faster R-CNN were compared with variants of
Fast R-CNN [48]. Results showed that Faster R-CNN trained on the COCO 2015, VOC 2007
and VOC 2012 datasets achieved the highest mAP of 0.788, followed by the Faster R-CNN
trained on just the VOC datasets (0.732 mAP), followed by the Fast R-CNN trained on
just the VOC datasets (0.700 mAP) which was closely followed by Faster R-CNN trained
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on only the VOC 2007 dataset (0.699 mAP) [48]. Whilst a model trained on more data
performs better on unseen data, overall, Faster R-CNN is more accurate than Fast R-CNN
on this dataset. These results show the capability of Faster R-CNN to generalise well across
different datasets. This in particular shows robustness since COCO and VOC are unrelated
(as opposed to VOC variants which are), which is promising for real-world application where
unpredictable scenarios are common.

Regarding the VOC 2012 test set, Faster R-CNN trained on all three datasets achieved
the highest mAP again (0.759) and this was followed by Faster R-CNN trained on just the
VOC datasets (0.704 mAP) [48]. This trend continued as with the VOC 2007 evaluation
results [48]. Results also demonstrate that Faster R-CNN performed better than Fast R-
CNN (0.684 mAP) on the VOC 2012 test set [39] 48]. These results reinforce the real-world
applicability of Faster R-CNN and the benefits of the added RPN module. However, despite
the benefits, the complexity of configuring the RPN could be considered a limitation, since
it often requires fine-tuning which is balanced with the detector component for optimal per-
formance and efficient use of computational resources. This can be particularly challenging

for less experienced engineers and could be detrimental in resource-constrained scenarios.

2.3.4 YOLO

YOLO (“You Only Look Once”) is part of a family of networks that are an alternative
option to the R-CNN family. An overview of YOLO is shown in Figure 8] [50]. YOLO works
by treating object detection as a single regression problem, hence the name [50]. Unlike
multi-stage methods such as R-CNN and its derivatives, YOLO uses a CNN to predict object
bounding boxes and object class probabilities simultaneously, resulting in fast inferences [50].
It firstly divides an image into a grid and each grid cell predicts bounding boxes, confidence
scores for those boxes (indicating accuracy and object presence), and class probabilities on
those cells containing an object [50]. YOLO uses Darknet-19 as an image classifier, which is
a fast open source neural network that allows YOLO to process images at high speed [50].
Due to the good accuracy and high speed of YOLO, it is suitable for applications requiring
real-time processing [50].

When evaluated on the PASCAL VOC 2007 dataset, YOLO achieved a speed of 45fps
on a Titan X graphical processing unit (GPU) with no batch processing required (meaning
data can be streamed) [50]. An evolved version of YOLO named Fast-YOLO improves
this for a speed of 155fps at the cost of reduced accuracy [50]. YOLO and Fast-YOLO
achieved mAPs of 0.634 and 0.527 respectively [50]. These results suggest that YOLO is
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Figure 8: Schematic representing YOLO object detection

highly suitable for real-time applications but at the cost of precision. In deployment, the
trade-off between speed and precision must be carefully considered based on the demands of

the specific challenge.

2.3.5 YOLOv2

YOLOv2 is an evolution of the original YOLO model which addressed localisation errors
and lower recall compared to Fast R-CNN, whilst maintaining the high speed of the original
model [51]. Improvements included the addition of batch normalisation to all convolutional
layers which removed the need for other regularisation methods and dropout layers, training
the classifier on 448x448 images rather than 224x224 which improved precision, replacing
direct bounding box prediction of the fully-connected network with pre-defined anchor boxes
which enhanced recall, as well as using k-means clustering to optimise anchor box dimensions
which improved accuracy and stability [51]. A diagram representing this process is shown in
Figure [9] Other improvements included a passthrough layer that takes a higher resolution
feature map from an earlier layer to improve the detection of smaller objects, and a multi-
scale training strategy where the model dynamically adjusts input image size during training,
improving its ability to deal image size variations [51].

YOLOv2 was evaluated against a variety of models, SSD512 (Single-Shot Detector),
Fast R-CNN and Faster R-CNN most notably, on the VOC 2007, VOC 2012 and COCO
2015 datasets (shown in Table (1)) [5I]. On the VOC 2007 dataset, YOLOv2 was able to
achieve the highest mAP and the the highest frame rate [51]. On the VOC 2012 dataset,
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YOLOvV2 achieved a competitive mAP that was marginally surpassed by SSD512 [52] and
ResNet (Residual Neural Network) [53], but was over twice as fast [51]. Finally, on the
COCO 2015 dataset, YOLOvV2 was competitive at the 0.50 IoU (intersection-over-union)
threshold, but using the COCO mAP metric it was surpassed by Faster R-CNN, SSD300
and SSD512 [51], 52]. ToU measures the overlap between the predicted and actual object
boundaries. It is calculated as the area of overlap divided by the area of union between
predicted and ground-truth bounding boxes. A prediction with a higher IoU means the
model is more accurate and the prediction is more likely to be considered a true positive
(depending on if the IoU surpasses the pre-defined threshold). The COCO mAP metric
accounts for multiple IoU thresholds and is therefore more informative than just using one.
More details on this are provided in Section [3.4.1] It is worth noting that whilst YOLOv2
was surpassed by a maximum of 0.052 mAP (~20% increase), it made inferences at least
twice as fast as all other models evaluated [51]. Despite the inferior precision of YOLOv2,
the advantage it demonstrated with regards to speed was significant enough to make it a
strong choice for real-time applications. Similarly to the original YOLO model, YOLOvV2 also
poses a trade-off between speed and precision which should be considered if implementing
it for industrial application. Whilst an R-CNN variant may be more suitable for precision-
critical applications such as crack detection, YOLOv2 may be more suitable for time-critical

applications such as monitoring high-speed production lines.
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2.3.6 YOLOv3

YOLOV3 is the successor of YOLOvV2 and incorporates several improvements. Firstly, for
class prediction YOLOv2 uses a softmax layer which assumes that each box has one class
which is not always true (i.e. objects overlap), so YOLOv3 uses a multi-label approach in-
stead [54]. This allows the model to deal with overlapping objects which is highly beneficial
in industrial environments. Secondly, boxes are predicted across three different scales sim-
ilarly to feature pyramid networks (FPNs) which are discussed in the following subsection
in relation to RetinaNet [54] [55]. This is achieved through the new Darknet-53 in place of
Darknet-19, which enriches feature extraction with more convolutional layers (19 to 53) and
uses ResNet-type skip connections [54]. Skip connections allow training data to bypass cer-
tain layers to facilitate gradient flow during backpropagation to combat vanishing gradients,
a common problem in deep neural networks [53]. Darknet-19 and Darknet-53 architectures
are shown in Figure 10| [56]. Feature maps from different layers are then concatenated which
aids detection of smaller objects through a mixture of fine-grained and semantic information,

before the last layer predicts the bounding box, objectness and class predictions [54].
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Type Filters Size/Stride output
Convolutional 32 3 X3 224 x 224
Maxpool 2x2/2 112x 112
Convolutional 64 3 X3 112x 112
Maxpool 2x2/2 56 x 56
Convolutional 128 3 X3 56 x 56
Convolutional 64 1 X1 56 x 56
Convolutional 128 3 X3 56 x 56
Maxpool 2x2/72 28 x 28
Convolutional 256 3 X3 28x28
Convolutional 128 1 X1 28 x 28
Convolutional 256 3 X3 28 x 28
Maxpool 2x2/2 14x 14
Convolutional 512 3 X3 14x 14
Convolutional 256 1 X1 14x 14
Convolutional 512 3 X3 14x 14
Convolutional 256 1 X1 14x 14
Convolutional 512 3X3 14x 14
Maxpool 2x2/2 Tx7
Convolutional 1024 3 X3 Tx7
Convolutional 512 1 X1 7x7
Convolutional 1024 3 X3 Tx7
Convolutional 512 1 X1 Tx7
Convolutional 1024 3 X3 Tx7
Convolutional 1000 1 X1 Tx7
Avgpool Global 1000
Softmax

Figure 10: The architectures of Darknet-19 (left) and Darknet-53 (right)
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Type Filters Size/Stride output
Convolutional 32 3x3 256 x 256
Convolutional 64 3x3/2 128 x 128
Convolutional 32 Ix1
Convolutional 64 3x3

Residual 128 x 128
Convolutional 128 3x3/2 64 x 64
Convolutional 64 Ix1
Convolutional 128 3x3

Residual 64 x 64
Convolutional 256 3x3/2 32x32
Convolutional 128 Ix1
Convolutional 256 3x3

Residual 32x32
Convolutional 512 3x32 16x 16
Convolutional 256 Ix1
Convolutional 512 3x3

Residual 16x 16
Convolutional 1024 3x32 8x 8
Convolutional 512 Ix1
Convolutional 1024 3x3

Residual 8x8

Avgpool Global

Connected 1000
Softmax




YOLOv3 was evaluated using the COCO 2017 dataset (shown in Table[I)) and the mAP-50
metric (mAP based on a 0.5 IoU threshold). YOLOv3-320, YOLOv3-416 and YOLOv3-608
achieved mAP-50 values of 0.515, 0.553 and 0.579 respectively, whilst achieving inference
times of 22ms, 29ms and 51ms respectively [54]. Compared to other object detection models
such as SSD and RetinaNet variants, YOLOv3 performed the best in terms of inference
time and competitively in terms of mAP, with YOLOv3-608 had the second highest mAP-50
[54]. These results highlight the improved balance between speed and precision compared
to YOLOvV2 since speed is still superior whilst precision is more competitive. This makes
YOLOv3 more promising for diverse industrial application than YOLOv2, meaning it may
be suitable for both real-time applications and those which require more precision. However,
the precision is not sufficient for precision-critical applications. YOLOv3-608 was also eval-
uated using the COCO 2017 dataset with the COCO mAP metric, where it was marginally
surpassed by Faster R-CNN variants and SSD variants (which it greatly surpassed in speed)
[54]. There was a significant gap of 0.078 mAP between YOLOv3 and RetinaNet perfor-
mance, however RetinaNet was reported to take 3.8 times longer when making inferences [54].
These results show the trade-off between speed and precision in object detection tasks. If
precision is critical to an application, RetinaNet would be a better choice, whereas YOLOv3

would be superior for time-critical applications.

2.3.7 RetinaNet

Naturally, discussion now leads to RetinaNet before continuing with the most recent YOLO
models. RetinaNet is a one-stage object detection network that was released in 2017, be-
tween the release of YOLOv2 and YOLOv3 [55]. The model addresses the problem of class
imbalances using a specialised focal loss function that, during training, reduces the weight of
easy samples and increases the weight of difficult samples [55]. Similarly to YOLO models,
RetinaNet does not separate region proposal and classification into two stages [55]. These
two key characteristics of RetinaNet enable it to perform with fast inference times whilst
maintaining high accuracy [55]. The architecture is constituted by a CNN backbone net-
work for feature extraction which is typically a ResNet variant combined with an FPN to
aid detection at various scales [55]. A diagram of an FPN can be seen in Figure [11] [57].
FPNs combine high-level semantic features with low-level detailed features in order to cap-
ture information from multiple scales. This results in robust performance across different
scales using a single network.

The authors of the RetinaNet paper benchmarked it on the COCO 2017 dataset against
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Figure 11: Schematic representing the architecture of an FPN

Faster R-CNN variants, SSD variants and YOLOv2 using mAP [55]. The results showed
that RetinaNet achieved significantly higher mAP values (0.391 and 0.408 for two different
variants) than other models, with the next best mAP being from a Faster R-CNN variant
at 0.368 [55]. Another evaluation involving other RetinaNet variants, SSD variants and
YOLOv2, showed RetinaNet variants achieved the highest COCO mAP overall and made
inferences at a competitive speed, with different variants offering a different trade-off between
mAP and inference speed [55]. These results indicate the superior precision of RetinaNet
whilst being competitive with regards to speed. Similarly but opposite to YOLOv3, Reti-
naNet would be well-suited to precision-critical applications such as defect detection, and
may even be used at moderately high speeds such as intermittently checking alignment of
steel sheets, but not in applications where high speed is critical such as real-time monitoring

of conveyor belts.

2.3.8 YOLOv5

YOLOVS5 is the fifth iteration of YOLO which features new improvements. Firstly, CSP-
Darknet-53 is used as the CNN backbone which incorporates a Cross Stage Partial Network
(CSPNet) which improves computational efficiency by dividing the base layer feature map
into two parts, and then re-combining them after one part has passed through subsequent
layers and one has skipped them [58]. Secondly, spatial pyramid pooling (via SPPNet)
enhances feature extraction at various scales and a Path Aggregation Network (PANet) [59]
refines feature aggregation, which together improve localisation accuracy. An overview of
YOLOVS5 is provided in Figure [12| which shows how data flows from CSP blocks for feature
extraction, to SPP and PANet for multi-scale feature extraction and aggregation, before
reaching the output layers.

YOLOV5 is currently one of the most suitable choices for applications due to its speed,

flexibility, active open source community, user-friendly implementation and general ease of
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Figure 12: Schematic representing the architecture of YOLOvV5

deployment. Whilst it is recognised that YOLOvT7 [60], YOLOvS [61], YOLO-NAS (YOLO
Neural Architecture Search) [62] and others are now available and suitable for application
with good support, they were not released by the time any case study presented in this
thesis had began. As well as this, YOLOv5 has more information built up by community
contributions over time. Despite all of these positive points, there is no official paper for
YOLOvV5 and most available information on it is located at the Ultralytics Github repository,
managed by Glenn Jocher, the developer of YOLOv5 [63].

There is no official paper benchmarking the model, however a study exists evaluating
YOLOVS5 performance [64], which reports YOLOv5 as superior to EfficientDet [65] in terms
of COCO mAP and inference speed on the COCO 2017 dataset, whilst the EfficientDet
paper [65] reports variants of its own that are superior to YOLOv3, RetinaNet and multiple
other competitive models in both speed and accuracy on the COCO 2017 dataset using
the COCO mAP metric. This is not a direct comparison made by one author, however it
is the best available to date and does show the effectiveness of the model since the same
dataset and same metric was used for comparison. It implies that YOLOvV5 outperforms
older models in terms of speed and precision, which makes it a very promising choice for
a variety of steel production applications that are both time-critical and precision-critical.
However, the absence of a direct comparison in peer-reviewed literature means YOLOvV5
should undergo rigorous performance evaluation if chosen for application, to ensure it meets

the requirements of the task at hand.
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2.3.9 YOLOvS

At the time of writing this thesis, there is currently no official paper released on YOLOVS,
similarly to YOLOv5. Some of the key improvements of YOLOvVS firstly include a C2f
module (cross stage partial bottleneck with two convolutions) to the CSP backbone which
combines high-level features with contextual information to improve detection accuracy [58),
61]. Secondly, YOLOVS is anchor-free which reduces box predictions, speeding up non-
maximum suppression (NMS) and reducing computational expense [58, [61]. YOLOvS8 can
also perform other tasks such as instance segmentation, pose estimation and classification
[61]. A full diagram of the YOLOVS architecture is excluded from this review for conciseness,
however it can be found at [66].

YOLOvVS8 has been benchmarked against previous versions using the COCO 2017 dataset
and the COCO mAP [61]. Whilst YOLOv5n (n for “nano” - the smallest, fastest vari-
ant) achieved approximately 0.275 mAP at an inference time of approximately 1ms per im-
age, YOLOv8n achieved approximately 0.375 mAP with virtually the same inference speed
[61]. This is a significant improvement in precision without sacrificing speed, which makes
YOLOvVS8 even more diverse in terms of industrial application than YOLOv5. Moving across
from the smallest to largest variants, the performance gap between YOLOvV8 and YOLOv7
became obvious only at the large and extra large network sizes, where YOLOvSI achieved ap-
proximately 0.02 more mAP than YOLOvTI at the cost of approximately 0.10ms per image,
and YOLOv8X achieved about 0.01 more mAP than YOLOv7X at the cost of approximately
0.25ms per image [61]. These results highlight the ongoing theme of a speed-precision trade-
off if the maximum performance for one of them is desired. However, it is clear that as YOLO
variants develop over time, the lower and upper bounds of speed and precision improve which
makes successive models more suitable for a wider range of industrial applications. One lim-
itation of the literature surrounding YOLOvVS is that there is a lack of it, particularly in
industrial application and even more specifically, for steel production processes. This gap

will close over time as more applications are developed.

2.3.10 YOLO-NAS

YOLO-NAS (YOLO Neural Architecture Search), developed by Deci, is one of the most
recent YOLO variants released [62]. It uses a technique called Neural Architecture Search
(NAS) to improve upon YOLOVS in terms of speed, accuracy and efficiency [62]. Also, it is
quantised using a hybrid approach which balances between accuracy and latency [62]. Quan-

tisation is a technique that reduces computational costs for more rapid, efficient deployment
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by converting high-precision data types into lower precision data types [67]. Additionally,
it uses Deci’s proprietary Automated Neural Architecture Construction technology (Au-
toNAC) to fine-tune the model structure for optimal performance [62]. Finally, YOLO-NAS
uses methods such as Knowledge Distillation (KD) and Distribution Focal Loss (DFL) dur-
ing training to enhance its ability to classify and localise objects [62]. A full diagram of
the YOLO-NAS architecture is excluded from this review for conciseness, however it can be
found at [62].

Upon evaluation using the COCO 2017 dataset, YOLO-NAS variants outperformed all
other YOLO variants, from version five to eight, significantly on both mAP and inference
speed [62]. Upon evaluation using the the Roboflow-100 dataset which is in Table , both the
small and medium variants of YOLO-NAS outperformed YOLOv5, YOLOv7 and YOLOvVS
on mAP (extrapolation suggests other YOLO-NAS variants also being superior) [62]. These
results emphasise the rapid advancements in object detection with each successive model.
This means that new models are becoming increasingly adaptable to a range of industrial
applications, but also it exposes a gap in the research for extensive evaluation of newly re-
leased models with regards to industrial, and in particular steel industry-based applications.
Whilst initial evaluations are useful and give a reliable indication to which models gener-
ally show superior performance in terms of speed and precision, there is a lack of datasets
and evaluation approaches that indicate how they perform in harsh industrial environments.
Similarly to YOLOvS8, YOLO-NAS suffers from a lack of peer-reviewed publications that

report comparable performance metrics.

2.4 Tracking Methods

Object tracking is continuously identifying objects and following them as they move through
time and space. This requires precision and speed, but is most challenging when it requires
robustness to dynamic environments such as those found in steel industry. Some challenges
here include occlusions, similar looking objects, and objects moving in and out of the field
of view. Whilst challenging, object tracking adds an additional dimension to visual under-
standing on top of detection which can be highly beneficial. In this section, an overview of
traditional techniques such as Kalman filtering and the SORT (Simple Online and Real-Time
Tracking) algorithm is provided, as well as more modern approaches that utilise deep learn-
ing such as LSTM (long short-term memory) networks and the DeepSORT (Deep Simple
Online and Real-Time Tracking) algorithm. They will be critically analysed in terms of their

suitability for real application where appropriate, and research gaps will be identified.
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2.4.1 Kalman Filtering

A Kalman filter is an algorithm that uses an initial estimation, combined with measured
values over a series of timesteps, to predict the future state of a system [68]. Whilst the
initial estimation might not be precise due to limited information, the algorithm improves
its accuracy through a two-step process [68]. Firstly, it makes a prediction and secondly, it
updates that prediction based on the most recent measurements it is provided [68]. Using
this approach iteratively leads to precise tracking of a desired variable, such as the position of
an object [68]. A diagram representing the Kalman filtering process can be seen in Figure ,
and specific equations used in Kalman filtering are presented in Section [£.2.4]
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Figure 13: Schematic representing the Kalman filtering algorithm

Kalman filters have demonstrated their practical capabilities both as standalone tools and
in combination with machine learning (ML) techniques. One notable application involved
integrating Kalman filters with a fuzzy expert system for tracking tool tips for fastening
[69]. The Kalman filter aided estimation of tool orientation and center of mass location,
and the system reduced tool position error during an experiment where eight bolts were
fastened [69]. Whilst the operator approach gave a final position error of 93mm, the model
achieved 6mm which demonstrates a substantial improvement in operational precision [69].
Kalman filtering was also used in welding applications, where it was used to enhance the
robustness of weld position detection and seam tracking [70]. In this case, Kalman filtering
led to a significant reduction in weld position covariance error from 0.0084mm to 0.0010mm,
whilst the seam tracking error decreased from 0.33mm to 0.11mm [70]. Again, these results
show that Kalman filtering led to a significant reduction in error which demonstrates the

effectiveness of it in high-precision applications. Kalman filtering was also used in cutting
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of gamma-prime strengthened alloys, where it was used for tool flank wear estimation [71].
In one experiment, compared to manual measurements the root mean square error (RMSE)
was reduced by 41%, in a repeat experiment it increased error by 8%, and then reduced it
by 25% in a third experiment [7I]. These results show how Kalman filters can be sensitive
to environmental changes which could be detrimental for application, depending on the
scenario.

Examples of applications using Kalman filter variants include [72] where an extended
Kalman Filter (EKF) was used to estimate flank wear area during wet turning of Inconel 718,
where it increased the accuracy of estimation by 60%. This suggests that Kalman filtering can
significantly improve operational efficiency and product quality by mitigating inaccuracies
that lead to defects. Damage detection in composite beams via tracking of the neutral axis
under different loading conditions was achieved using multi-rate Kalman filtering in [73]. The
traditional approach of directly estimating damage resulted in false negatives due to a high
standard deviation in performance, however using Kalman filtering, the standard deviation
was much smaller and therefore avoided false negatives [73]. This demonstrates the ability
of Kalman filtering to improve the reliability of structural health monitoring systems which
could transfer to steel production equipment health monitoring applications. Also, contact
force and torque sensing for robotic manipulators in manufacturing tasks was achieved using
adaptive Kalman filtering, where force estimation RMSE was between 0.78N and 1.35N,
whilst torque estimation RMSE was between 0.12Nm to 0.18Nm [74]. This application
emphasises the suitability of Kalman filtering for enhancing the precision of robotic systems,
which is becoming increasingly applicable to manufacturing production lines, and could also
transfer to processes involving other moving parts.

There are a range of examples of Kalman filters being combined with machine learning for
manufacturing applications. Chatter detection during milling was achieved using AlexNet (a
deep CNN) [75] with Kalman filtering in [76] with 98.9% accuracy. This high level of accuracy
demonstrates the potential of combining machine learning models with Kalman filtering for
dynamic process monitoring and suggests it could play a critical role in minimising defects
and equipment downtime. Steel sheet coils were tracked at 8fps during transport to the
uncoiler using a CNN with Kalman filtering, where a standard deviation of below 15 pixels
was achieved [77]. These results expose the high precision capabilities of Kalman filters, as
well as their real-time capabilities, which makes them a valuable asset in real-time monitoring
systems in manufacturing environments. Furthermore, an EKF was used in conjunction with

a vanilla artificial neural network (ANN) to monitor tool wear condition with a classification
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accuracy of 89.2% [78]. This reinforces the suitability of Kalman filtering in maintenance
applications. Finally, deformation force monitoring of aero-engine casing during machining
was achieved by combining a deep autoregressive network with Kalman filtering, which
resulted in a monitoring success rate 30% higher than the traditional approach [79]. Again,
this result emphasises the benefits of using Kalman filtering with machine learning to improve

reliability of monitoring systems.

2.4.2 LSTMs

Long short-term memory networks (LSTMs) are a more sophisticated type of recurrent neural
network (RNN) that are designed to retain information over multiple timesteps, making them
useful when dealing with sequential data such as video frames [80]. Whilst traditional RNNs
can be effective at remembering information from recent timesteps using their hidden state,
LSTMs have a unique gating architecture shown in Figure [81]. This includes an input
gate (middle o and tanh operations), a forget gate (left-side o operaton) and an output gate
(right-side o and tanh operations) [80]. The input gate controls the flow of new information
into the cell state, the forget gate decides what information is discarded from the cell state,
and the output gate controls which data is output from the cell state to the hidden state
[80]. This means LSTMs can retain information over longer sequences and retain the most
relevant data, which is a key aspect of object tracking where the environment is dynamic
[80]. Whilst LSTMs are excellent at dealing with sequential data, CNNs are well-suited to
dealing with spatial data, making the combination of the two a powerful force for dealing
with spatio-temporal scenarios such as when tracking objects through videos [80].

In the context of manufacturing, LSTMs have been used to prevent cyber-physical attacks
compromising mechanical properties of additively manufactured products within 0.85ms,
with precision and recall values of 0.950 and 0.980 respectively [82]. This suggests LSTMs
can be used in applications where precision is critical, and also that they may be useful in
real-time applications. A bi-directional LSTM was also proposed for tracking and predicting
remaining useful life (RUL) of manufacturing machines with an RMSE of 15.42 cycles, which
was superior compared to a deep CNN; an RNN (recurrent neural network), an MLP (multi-
layer perceptron - a type of classic neural network) and an LSTM, which achieved RMSE
values ranging from roughly 18 to 21 cycles [83]. The superior performance highlights the
effectiveness of LSTMs at dealing with sequential data and in particular, equipment health
monitoring data, which is useful in steel production. LSTMs were also used as part of a

closed-loop system to track the trajectory of piezoelectric actuators and reduced the maxi-
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Figure 14: Schematic representing LSTM architecture

mum tracking error from 1.59pm to 0.15um (90.4% reduction) [84]. This level of precision
reinforces the idea that LSTMs are suitable for high-precision engineering tasks. Further-
more, a bi-directional LSTM network was used in a smart manufacturing system involving
throwing and catching robots for enhanced part transportation, where the LSTM was used
for trajectory tracking and prediction of thrown objects and speeds of up to 10ms™! over
distances of up to 3m were achieved, with a maximum error achieved of no more than 2mm
[85]. This shows that LSTMs are precise but also that they are appropriate for real-time
applications in manufacturing environments. However, since LSTMs are a type of neural
network, they typically require large datasets for training and can be computationally ex-
pensive to train, which could be limiting in resource-constrained environments.

CNN-LSTMs have been used for electro-mechanical equipment health condition recogni-
tion and prediction where 98.6% test accuracy was achieved [86], weld penetration monitoring
using dynamic weld pool images with 0.3mm mean square error (MSE) [87] and power data
pattern detection and tracking for manufacturing sites with a test loss of 0.1197 [88]. Note
that loss is a measure of the difference between predictions and real values. These applica-
tions demonstrate the robust model performance that can be achieved across a variety of
scenarios when integrating LSTMs with CNNs. This is because LSTMs exceed at dealing
with sequential data, whilst CNNs exceed at dealing with spatial data.
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2.4.3 DeepSORT

DeepSORT (Deep Simple Online and Real-Time Tracking) is an advancement of the original
SORT (Simple Online and Real-Time Tracking) algorithm [89] and is a key player in many
object tracking tasks. SORT was developed as a straightforward approach for tracking ob-
jects in real-time using motion information, and uses Kalman filtering discussed in a previous
subsection [89]. Whilst SORT is fast and efficient, it has issues with handling occlusions and
creates too many “identity switches” when objects are blocked [90]. DeepSORT integrates
SORT with YOLO (version is optional) to enable sophisticated feature extraction of ob-
jects. This, as well as data association techniques, greatly improve Kalman filter tracking
performance across sequential frames, particularly in cases of occlusion and objects with
similar appearances [90]. This is further supported through a track management module
[90]. A diagram providing an overview of DeepSORT is shown in Figure |15 [01]. DeepSORT
allows for more robust object tracking, therefore lending itself well to various real-world ap-
plications such as tracking moving machinery, humans and goods [90, 92 93]. Due to deep
learning integration, the computational demands of DeepSORT are increased compared to

SORT which may need to be considered in industrial application, depending on the available
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Figure 15: Schematic representing the DeepSORT algorithm

DeepSORT was combined with YOLOvV3 to track crane movement in a manufacturing
site as presented in [92] where no evaluation was performed, which highlights a gap in quanti-

tatively measuring tracking performance. This is because even though conventional metrics
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exist for object tracking such as multi-object tracking accuracy (MOTA), reports often lack
thorough evaluation using these metrics and typically focus more on evaluating detection
performance, since it is often the foundation of tracking and high performance detection
often leads to high performance tracking (see Section [3.4.5). Another article reported that
DeepSORT and ScaledYOLOv4 were combined for defect tracking for a real-time manufac-
turing system which reduced double counting of defects by over 50% which demonstrates the
real-time capabilities of DeepSORT as well as its suitability for quality control applications
[94]. Additionally, DeepSORT and YOLOv5 were combined to help distinguish humans
from goods in warehouse scenarios in [93] where, using the MOTA tracking metric, a per-
formance of 75.8% was achieved. The quantitative assessment using MOTA in [93], and the
lack of it in [92] suggests there is inconsistency in the literature with regards to measuring
tracking performance. MOTA is a widely used metric for evaluating the performance of
multi-object tracking algorithms and takes into account false positives, false negatives and
identity switches (see Section [95].

2.5 Instance Segmentation Methods

Instance segmentation methods are an advancement upon object detection methods in that
they combine the tasks of detection and semantic segmentation [96]. In semantic segmen-
tation, all pixels within an image are classified into a category according to which object it
represents, resulting in full image segmentation into different regions. However, this does not
include differentiation between individual instances of the same class. In contrast, instance
segmentation distinguishes between instances of the same class, allowing for objects to be
identified as separate entities [97]. In an industrial context, distinguishing between multiple
objects of the same type is an incredibly useful ability. Instance segmentation is typically
performed using deep learning models that constitute of a combination of CNNs and other
techniques. Segmentation, and especially this type, offers insights into visual data that is
much more specific than object detection, since it not only localises and classified objects,
but also identifies the precise boundaries of them at pixel-level. This section will give an
overview of some of the most prominent approaches to this task to date, critically analyse

their suitability for real application where appropriate, and identify research gaps.

2.5.1 Mask R-CNN

Mask R-CNN (Mask Region-based Convolutional Neural Network) enhances Faster R-CNN

by enabling pixel-level segmentation capabilities [08]. After feature extraction is performed
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by the CNN backbone, an RolAlign layer is used to refine feature maps, which is an im-
provement upon the RolPool method used in previous models [98]. RoIPool divides Rols
into quantised spatial bins which can lead to misalignment between the Rol and its features
[98]. RolAlign however, uses bi-linear interpolation on each bin prior to aggregation which
ensures alignment and therefore more accurate segmentation [98]. Mask R-CNN then in-
corporates a segmentation mask generation branch parallel to the bounding box branch at
the end of the network [98]. An FCN generates pixel-level segmentation masks for each Rol
which results in greater accuracy and efficiency compared to the fully-connected layers used
in earlier R-CNN models [08]. Figure [16|shows the flow of data in Mask R-CNN from input
to RolAlign to the final segmented output.
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Figure 16: Schematic representing Mask R-CNN instance segmentation

Using a NVIDIA Tesla M40 GPU, the authors of the Mask R-CNN paper evaluated its
instance segmentation performance on the COCO 2017 dataset (which includes mask labels
as well as detection labels), and compared it to the COCO 2015 and COCO 2016 (shown
in Table 1)) segmentation challenge winners, MNC (Multi-Task Network Cascade) and FCIS
(Fully Convolutional Instance-Aware Semantic Segmentation) respectively [98]. Mask R-
CNN outperformed both models with a mask AP of 0.371 (calculated the same way as for
object detection except mask IoU is used instead of bounding box IoU - see Section of
Chapter 3), whilst MNC [99], FCIS [100] and FCIS+++ [100] achieved APs of 0.246, 0.292
and 0.336 respectively [08]. This suggests that at the time, Mask R-CNN was superior to
other instance segmentation models in terms of precision. Mask R-CNN processed images at

a frame rate of 5fps, which advanced the field at the time it was released. However, this may
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not suffice for real-time applications and as CV has progressed over the years, more modern
algorithms are capable of higher speeds. As discussed later in Section [3.4.6)of Chapter 3, the
meaning of “real-time” is ambiguous. One common definition of a real-time system is one
that processes frames fast enough for practical application [I01], whereas another popular
definition is that a minimum frame rate of 25fps should be achieved [102]. Mask R-CNN is
unlikely to meet the stricter definition of real-time, which highlights a potential limitation

in terms of deployment in real-time scenarios [98].

2.5.2 YOLACT

YOLACT (“You Only Look At Coefficients”) is a one-stage instance segmentation network
that works by generating prototype masks and computing mask coefficients for every in-
stance and then combining them to produce instance masks [103]. Firstly, a deep backbone
network is used for feature extraction and features are refined through an FPN to enhance
multi-scale detection [I03]. Deep backbone features enable more robust mask generation
and higher resolution prototypes improve mask quality, especially for smaller objects [103].
Next, prototype masks are generated using a branch named Protonet (a fully convolutional
network) whilst a YOLOv3 prediction head predicts class confidences, bounding boxes and
mask coefficients [I03]. The final masks are produced by merging prototypes with coeffi-
cients which results in detailed segmentation of individual objects [103]. A diagram of the
YOLACT architecture can be seen in Figure [17] [T03].
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Figure 17: Schematic representing the architecture of YOLACT

YOLACT performance was evaluated on the COCO 2017 dataset against several models
including FCIS, Mask R-CNN and others. YOLACT achieved a mask AP of 0.298 which
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was slightly higher than FCIS and 0.059 below Mask R-CNN [103]. However, YOLACT ran
at 33.5fps as opposed to Mask R-CNN that ran at 8.6fps [103]. These results suggest that
at the cost of precision, YOLACT is much more adapted to handling real-time applications
than similar models. The speed-precision trade-off between YOLACT and Mask R-CNN is
comparable to that of R-CNN and YOLO object detecton variants, and must be considered
when attempting to implement these models into industrial systems. YOLACT was evalu-

ated using a Titan XP GPU [103].

2.5.3 YOLACT++

YOLACT++ is a more precise version of YOLACT whilst attempting to retain real-time
performance [104]. Key improvements include a fast mask re-scoring network which can be
seen in Figure (18 and re-ranks mask predictions according to their quality [104]. Also, the
backbone uses deformable convolutions which help align feature sampling with instances of
different scales, rotations and aspect ratios, resulting in better detections and more precise
prototype masks [104]. Furthermore, the prediction head was optimised by changing multi-
scale anchors per FPN level which improved the speed-accuracy trade-off [104].

X
/ 18x18  ona X128 xc €
3/x35  x32

69%x69 x16

138x138 <8

x1

Figure 18: Schematic representing the fast mask re-scoring network in YOLACT++

Upon evaluation of YOLACT++ on the COCO 2017 dataset, it achieved a mask AP of
0.341 at a speed of 33.5fps which matched the already superior speed of YOLACT, whilst
significantly improving the mAP closer towards the likes of Mask R-CNN [104]. This im-
provement demonstrates the effectiveness of the re-scoring and deformable convolutions. At
the time the YOLACT++ paper was authored, it was the first instance segmentation method
to achieve over 30fps and over 0.300 mAP on the COCO dataset, demonstrating its poten-
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tial effectiveness for real-world applications requiring real-time processing and high quality
instance segmentation [104]. YOLACT++ was evaluated using a Titan XP GPU [104].

2.5.4 SOLO

SOLO (“Segmenting Objects by Locations”) is a streamlined, single-shot method for seg-
mentation that simplifies the process of mask prediction by classifying each pixel within an
instance based on its location and size [105]. It does this by segmenting the image into a
grid of S x S cells which are used to predict classes of objects with center coordinates that
fall within a given cell [105]. Individual pixels are then classified based on the relative area
of the cell they reside in, which ensures accurate mask generation [105]. Additionally, SOLO
uses an FPN which utilises multi-level feature maps to differentiate objects of varying sizes
[105]. Figure |19 provides an overview of the the flow of data in SOLO [105].

Figure 19: Schematic representing SOLO instance segmentation

SOLO instance segmentation performance was evaluated on the COCO 2017 dataset
against MCN, FCIS, YOLACT, Mask R-CNN and others in [I05], and achieved a mask AP
of 0.371 which matches what was reported for Mask R-CNN in [9§]. SOLO ran at 10.4fps and
one variant even ran at 22.5fps at the cost of an AP reduction to 0.342 [105]. These results
suggest SOLO is competitive with other instance segmentation models in terms of both speed
and precision, and like other models such as YOLACT, has a trade-off between the two
metrics which should be considered if implemented in real-world applications. The results
indicate that SOLO balances speed and precision effectively, however it must be noted that
SOLO was evaluated using a Tesla V100 GPU which is significantly more resource-intensive
than the Tesla M40 used in Mask R-CNN evaluation and Titan XP used in YOLACT
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and YOLACT++ evaluation [I05]. This difference can significantly affect performance and

should be considered when comparing models.

2.5.5 SOLOv2

SOLOvV2 is the successor of SOLO and is enhanced with regards to efficiency and accuracy
[106]. SOLOvV?2 introduces a dynamic instance segmentation strategy which instead of using
a fixed grid, it dynamically predicts pixel categories on a pixel-by-pixel basis [106]. SOLOv2
decouples mask generation into dynamic mask kernel prediction with a kernel branch and
high-resolution mask feature learning with a feature branch to ensure different instances of
the same class are distinguished [106]. Additionally, the FPN is more sophisticated in a
variety of ways, including improved integration of multi-level features which aids computa-
tional efficiency and enhances feature extraction of objects of varying sizes [106]. Figure
provides an overview of the the flow of data in SOLOv2 [106].
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Figure 20: Schematic representing SOLOvV2 instance segmentation

SOLOvV2 performance was evaluated on the COCO 2017 dataset against SOLO, Mask R-
CNN, YOLACT and others, and achieved the highest mask AP of 0.417, whilst a lightweight
variant achieved a mask AP of 0.371 with a speed of 31.3fps which is convincingly meets
real-time performance standards [I06]. These results surpass similar models in terms of
speed and precision which suggests it is a strong choice for real-world instance segmenta-
tion applications. However, like SOLO, SOLOv2 was also evaluated using a Tesla V100 GPU

which potentially gives it a significant advantage with regards to performance metrics, at the
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cost of significant computational expense [106]. In industry, deployment is often resource-
constrained, particularly on production lines where real-time Internet of Things (IoT') appli-
cations are common. Therefore, whilst SOLOv2 shows promising results, it would need to

be evaluated on less powerful GPUs for realistic assessment of its practical applicability.

2.5.6 YOLOv5-seg and YOLOvVS8-seg

A Protonet module, similar to the one mentioned as part of YOLACT and YOLACT++, was
incorporated into the YOLOVS (two years after its original release) and YOLOvVS (as part
of its release) architectures as an instance segmentation branch, in parallel to the original
detection head [107, I0§]. This was a complimentary addition to both models and made
them more versatile in terms of application. Figure shows the architecture of Protonet
[103].
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Figure 21: Schematic representing the architecture of Protonet

When evaluated on the COCO 2017 test set, YOLOv)-seg variants ranged from 0.276
to 0.507 mAP and approximately 222fps to 833fps, where increasing model size resulted in
slower but more precise predictions [I07]. Also, YOLOvS8-seg variants ranged from 0.367 to
0.534 mAP whilst running at 240fps to 846fps [10§]. In comparison to previously discussed
models, these results show that medium to extra large YOLO segmentation models generally
surpass previous instance segmentation networks in terms of mAP, whilst greatly surpassing
them in terms of inference speed. This makes them much more suitable for real-time appli-
cations in industry. The “seg” variants are relatively new (even YOLOv5-seg) and therefore
documented applications are limited, however they are likely to become key players in many
future industrial scenarios.

Both models were evaluated on a NVIDIA A100 GPU, which must be taken into account
since it is significantly more computationally intensive than previously mentioned GPUs

and therefore is likely to have provided a significant advantage during evaluation [107, [10§].
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A more realistic assessment would need to be undertaken before deploying these models,
however even with the GPU advantage removed, these models are likely to retain a significant

portion of their speed.

2.5.7 FastSAM

FastSAM (Fast Segment Anything Model) is a cutting-edge segmentation model that is
different to all the models discussed so far, since it performs segmentation based on user
input prompts [I09]. Whilst this may mean it will have different use-cases than some of
the previous models, it is difficult to predict how the forefront of CV will evolve in terms
of industry applications. FastSAM is a faster, more lightweight version of SAM (Segment
Anything Model) released by Meta mid-2023 that is currently at the forefront of CV [110].
SAM is a promptable visual transformer network trained on a dataset containing over 1
billion masks (SA-1B) within over 11 million images, making it highly adaptable [I10]. It is
described as a zero-shot model, meaning it can classify objects that are not in its training set,
which is impressive [I10]. FastSAM utilises previously discussed components such as a CNN
backbone and an FPN for multi-scale feature extraction, integrated with a Protonet module
for mask generation [109]. These are used in combination with user prompts which can be
point-based, box-based or text-based and guide the segmentation process [109]. Figure
shows the architecture of FastSAM [109].

FastSAM achieved 0.465 mask AP on the COCO 2017 dataset without being trained on
it [I10]. However, SAM is reported to run very slowly, far more slowly than 1fps, meaning it
is currently unsuitable for many industrial applications [I10]. FastSAM is a first attempt to
combat this by using a YOLOv8-seg backbone and only 2% of the original SA-1B dataset,
which allows it to make inferences 50x faster than the original SAM [109]. At the cost of a re-
duction to 0.379 mask AP on the COCO dataset, FastSAM can run at 25fps using a NVIDIA
GeForce RTX 3090 (and over 83fps when optimised using TensorRT - see Section of
Chapter 5 for more details on TensorRT) [109]. This is much faster and more precise than
Mask R-CNN, and places it near YOLACT++ in terms of speed, which is very promising for
real-time future developments. However, it still requires high-end hardware and the prompt
requirement is generally undesirable for many production line applications which typically
work fully automatically in resource-constrained environments.

Current [oT hardware is typically not as powerful as an RTX 3090, however this is
becoming less true each year. Also, prompt-based applications in manufacturing could be

beneficial provided they are used where appropriate. For example, a fully automated system
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Figure 22: Schematic representing the architecture of FastSAM
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would be better for steel surface defect detection, whereas a prompt-based system might
be better for adjusting inspection specifications on-the-fly for different customers. More
investigation into prompt-based computer vision applications in the steel industry would

certainly address a gap in the research.

2.6 Background Subtraction Methods

As mentioned, instance segmentation networks can be excellent at extracting and inter-
preting complex features, however they are resource-intensive in terms of time, data and
hardware. Alternatively, traditional background subtraction (BGS) algorithms, which are
often (but not always) based on Gaussian mixture models (GMMSs), are less time-consuming,
less computationally intensive and easier to implement [IT1]. Figure shows a simplistic
overview of how background subtraction algorithms typically operate [112]. The basis of
background subtraction methods is to segment moving foreground objects from static back-
ground pixels across a sequence of images using various thresholding techniques, as opposed
to instance segmentation networks that classify each pixel and create masks that distinguish
each object instance. This section will discuss examples in literature where BGS techniques
have been used for CV applications, including critical analysis of their suitability for appli-
cation in real-world settings and identification of research gaps.

GMDMs in particular use a set of Gaussian distributions to represent parts of the back-
ground using Gaussian probability densities, which collectively, are able to represent the
entire background [113]. Both BGS and segmentation have their limitations. For example,
BGS approaches are less accurate when dealing with complex scenes, especially when they
involve dynamic backgrounds [IT14]. Meanwhile, instance segmentation typically requires
labelled datasets and time-consuming model training in comparison to BGS algorithms that
are capable of operating effectively almost instantly.

Whilst BGS techniques have shown potential in various areas, their value is yet to be
capitalised on in the steel industry. In [115], the “Mixture of Gaussians” (MOG) algorithm
is used in combination with a timed motion history image method (motion segmentation),
as well as Kalman filtering, to achieve real-time vehicle traffic tracking. Four-phase BGS
which combined MOG, Shi-Tomasi feature extraction [116], optical flow vehicle tracking
[T17] and centroid estimation was applied for traffic surveillance and reported in [118], where
the model estimated the speed of three cars with below 0.5km per hour error [I18]. These
studies demonstrate the capabilities of BGS algorithms to not only operate in real-time, but

also integrate with other techniques such as Kalman filtering and optical flow estimation,
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which is promising for real-time measurement systems in production lines such as monitoring
the flow of materials.

BGS algorithms available in OpenCV [I19] were evaluated on ship detection on inland
waters, which found that the Google Summer of Code (GSOC) and Counting (CNT) algo-
rithms performed the best in terms of quality [120]. Meanwhile, BGS algorithms were eval-
uated on animal detection using near infrared spectrum images of moving wild mammals,
which included evaluation of Gaussian Mixture-based Background Foreground Segmenta-
tion (GMG), KNN (K-Nearest Neighbours), MOG and MOG2 [121]. The KNN algorithm
produced a mask most similar to the handcrafted labels used for validation, which was fol-
lowed by MOG2 [121]. However, MOG2 was faster, making it more suitable for real-time
application. These studies show how the effectiveness of different BGS algorithms can vary
depending on the specific environment they are being used in, as well as the objects they are
used to track. If used in any real-world application, it would be important to experiment
with a variety of BGS algorithms to ensure the best one is chosen.

Additional examples of applications include [122] where a GMM was combined with
KNN (in a different way to [121]) to recognise suspicious activity in a gated region with 97%
accuracy, [123] where MOG BGS was coupled with principal component analysis (PCA) for
fall detection of vulnerable people with a detection rate of 86.21%, and [124] where MOG
BGS was paired with Kalman appearance tracking to track patients with Parkinson’s disease
for fall detection and to inform caregivers of severity and evolution of the disease with average

precision and average recall values of 0.871 and 0.875 respectively. These studies show the
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high performance of BGS in terms of both precision and speed, as well as reinforcing their
compatibility with other techniques and practical applicability to a diverse range of scenarios.
However, with all of the applications discussed here, there is a clear gap in the research for
steel production-based applications using BGS which is important to address due to the low
resource-intensiveness yet high effectiveness of the approach. Furthermore, deep learning has
been combined with BGS in the past such as in [125] [126] 127], however existing literature
is by no means extensive. Using these two sets of techniques in combination is an exciting
area of future research that has potential to improve the current state of manufacturing

technology.

2.7 Computer Vision Applications for Manufacturing

CV opens the door to a multitude of potential benefits including efficiency, quality, and
safety. So far in this literature review, different types of CV techniques have been presented
and discussed in terms of their theoretical performance and potential suitability for appli-
cation. Traditional CV approaches have been described and their application in real-world
scenarios has been demonstrated, whilst modern approaches that utilise deep learning have
only been described and evaluated against each other on benchmark datasets such as the
COCO dataset. This was explained in the introduction of this chapter and is deliberate
in order to draw a clear line between the theoretical performance of DL models, and the
practical impact of them.

This section will focus on a wide range of CV applications, stretching from gas moni-
toring, to monitoring of blast furnaces and ladles, to surface defection inspection, and even
applications specific to health and safety. Each subsection will briefly provide some back-
ground knowledge on the topic before critically analysing recent advances driven by CV and
identifying research gaps where possible. Whilst focus is primarily on steel manufacturing,
in some cases other kinds of applications are discussed (where appropriate and still relevant
to steelmaking in some way), such as Section which covers other subfields of manufac-

turing.

2.7.1 Gas Monitoring

Historically, the monitoring of gases relied on a variety of analytical methods that describe
chemical properties and compositions. These include gas chromatography (GC) [128, 129],
mass spectrometry (MS) [130, 131], infrared spectroscopy [132], 133], ultraviolet (UV) [134],
135] and differential absorption LiDAR (DIAL) [136}[137]. Before the advent of deep learning,
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traditional CV approaches such as Hough transforms, Canny edge detection and stereo vision
were also used for gas analysis [138), 139 [140)].

With the rapid advancement in hardware and data processing capabilities, the field of
deep learning has experienced significant growth, leading to revolutionary changes in CV
techniques. This has notably enhanced gas monitoring systems which is evident in literature
such as [I41] which presented BubCNN, a bubble detection network built upon Faster R-
CNN and a shape regression network. The model achieved an mAP ranging from 0.740 to
1.000 depending on the amount of space between bubbles [I41]. The variability of model
performance depending on the space between bubbles highlights the challenging nature of
dealing with dynamic scenes in real-world applications where conditions such as lighting and
camera position can significantly affect results. Developing more standardised approaches
for managing these factors in steel industry has not been addressed and would be challenging
but highly beneficial for making model deployment for industrial applications more efficient.

In another study, U-Net and Mask R-CNN were utilised to detect and segment bubbles
during the boiling of water at different sub-atmospheric pressures to measure dynamic boiling
characteristics [142]. Mask R-CNN outperformed U-Net at counting bubbles despite inferior
segmentation accuracy, and under varying conditions deviated by less than 10% from the
real number of bubbles. However, this was achieved in a laboratory setting where the
environmental conditions were carefully controlled. For applicability of this approach to
large-scale industrial environments, such as across multiple steel production sites where
conditions are more variable, model performance may suffer significantly.

A smart gas stove system element that was capable of gas leak detection and prevention
was reported in [143]. The model combined Haar Cascading with a CNN for the task of gas
detection as well as age detection to restrict prevent usage by young children, however no
evaluation results were reported which raises concerns about the reliability and effectiveness
of the element [143].

Finally, flames and smoke detection using a CNN was achieved with 93% accuracy in
[144], where SSD [52] and Faster R-CNN [48] were also evaluated and achieved 85% and
89% accuracy respectively [I44]. This demonstrates the potential of CV to enhance safety
systems. However, the variability in performance shown in both this study and previous
studies suggests rigorous testing would be required before deploying CV models in safety-

critical scenarios.
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2.7.2 Blast Furnace Process Monitoring

The blast furnace plays a crucial role in the steel production process, where raw materials
such as iron ore, coke, and limestone react under extremely high temperatures, resulting
in the production of pig iron, a raw material for steel products [145]. In this process,
these raw materials are added in precise quantities before being added to the furnace. Hot
air is then heated to a temperature range of 900 to 1300°C and blown into the furnace,
leading to a reaction with the coke, which ultimately forms molten iron through various
chemical reactions [I45]. At the same time, limestone reacts with ore impurities to create
molten slag which not only helps remove impurities from the iron, but also forms a layer that
protects against oxidation [145]. The heavier molten iron settles at the bottom of the furnace,
from where it is periodically extracted through a “tap hole” into a crucible. Additionally,
the floating slag is also intermittently skimmed off the top for disposal [146]. These steps
are crucial to maintain the high purity of the molten iron necessary for high quality steel
production.

A temperature measurement and compensation method using infrared imaging with deep
learning was presented in [147], where a series of steps were described to determine the tem-
perature of molten iron whilst compensating for measurement error caused by dust [147].
Canny edge detection was used in combination with morphological operations such as coars-
ening, skeletonisation and deburring to identify molten iron boundaries in captured thermal
images [147]. To compensate for measurement errors, dust features were extracted and used
as inputs to an ensemble network comprising of a vanilla ANN and support vector regression
[147]. This model enhanced measurement accuracy by predicting the measurement error
caused by dust [147]. The final model achieved an RMSE of 0.087°C for temperature mea-
surement [147] which demonstrates the potential of CV both for refining measurements and
dealing with alternative forms of imaging data such as infrared.

In [148], a blast furnace chute wear characterisation method that was developed using a
CNN-RELM (Regularised Extreme Learning Machine) [149] to detect holes, metallic screws,
metal sheet, rusted metal and weld marks on six different chute images was proposed, which
achieved 80% accuracy [148]. This approach is innovative and the accuracy is fairly high,
however for actual industrial application, this approach would need to be tested on a much
wider variety of data samples which would likely expose the need for further development.
The underlying concept of this approach could be applied to a range of equipment typically
seen in steelworks.

Fast R-CNN and a variational mode decomposition algorithm were coupled to detect
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blast furnace bearing faults with a precision of 0.970 and a recall of 0.910 in [I50]. These
performance values are impressive and indicate the effectiveness of CV in fault detection.
However, Fast R-CNN has been surpassed by other detection networks in terms of both speed
and precision, so this model could be improved with little effort. Upgrading to a superior
network such as Faster R-CNN or YOLOv8 would improve the likelihood of the approach
remaining robust to more variable environmental conditions during deployment and could
also provide real-time capabilities.

Also, YOLOv5 was applied to infrared images for blast furnace charging state recognition
with an accuracy of over 95.5% in [I51], which emphasises the potential of CV models to be
used in a range of blast furnace-related applications.

Finally, a dynamic attention-wise deep network that used attention to self-learn relation-
ships between process parameters and prediction targets was proposed in [I52]. The model
was reportedly used for molten iron quality indices and achieved RMSE values of 0.0644,
0.0026 and 0.0071 on silicon, sulphur and phosphorus percentages respectively. These re-
sults indicate the precision of CV techniques when predicting quality control factors in steel

manufacturing.

2.7.3 Slag Process Monitoring

Slag, the primary by-product in steel manufacturing, emerges from a variety of processes
and typically contains a mix of silicon, aluminum, calcium, and magnesium oxides [153], [154].
Traditionally, slag removal has been a manual task. The manual process of separating slag
from molten metal, known as de-slagging, poses significant risks of severe injury or even
fatality to workers. In addition, inadequate removal of slag can lead to a notable decrease in
the quality of the steel produced, resulting in the wastage of materials and energy [154] [155].

A CNN model was used to estimate a path to automate the de-slagging process from ladles
according to [I53], and the proposed model achieved 91.96% accuracy. A similar study was
published using a slag distribution image (SDI) and a slag removal path estimation network
(SPRENet) [146]. SRPENet uses the SDI to train the network, then operates by estimating
removal path control points before estimating a goodness score of the points estimated [146].
The model was compared to the performance of a human operator and was reported as
being 19.83% more effective, whilst having real-time capabilities [I46]. The results of these
studies indicate that CV approaches are promising for automating hazardous tasks which
is beneficial for both safety and efficiency. However, the robustness and scalability of these

approaches require further investigation before implementation.
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A convolutional recurrent neural network (CRNN) was utilised to determine whether or
not a slag dart had plugged the exit hole of a basic-oxygen furnace (BOF) or not during
tapping, according to [4]. The model presented was constituted by a CNN and an LSTM and
used real-time closed-circuit television (CCTV) as input [4] to achieve a reported accuracy
of 99.45%, which was 10% better than operator judgement, whilst reducing workload by
30% [4]. These results show a significant improvement over the traditional approach and
therefore emphasises the revolutionary potential of deep learning in the steel industry.

Slag dart input success during tapping was estimated to prevent slag carry-over by com-
bining pre-processing of slag-detection system (SDS) image data, followed by use of an LSTM
to deal with sequential frames in [I54]. A classification accuracy of 99.61% was achieved when
the model was evaluated on the test set [154]. This reinforces the idea that CV models can
perform tasks that are traditionally performed manually, whilst also highlighting their ben-
efits in improving product quality. However, a common theme with these applications (both
slag-related and others), is that they require extensive testing, development and integration

with current systems before being production-ready.

2.7.4 Surface Defect Detection

Ensuring quality of steel products is crucial for steelmaking. Surface defects indicate im-
perfections that not only compromise structural integrity and overall performance, but also
ruin the aesthetic quality. Defects lead to wasted resources such as energy and materials.
Also, if defective steel reaches the customer it could harm manufacturer reputation and even
customer health. Historically, manual methods of steel defect detection were primarily used,
which resulted in a high false detection rate [I56]. For the most experienced workers the
detection rate of defects has been reported as 80%, leaving one in five defects overlooked
[156]. The datasets introduced in this section are summarised in Table [2]

U-Net [164] was pre-trained on the ImageNet dataset before being utilised as the founda-
tion of a network called TLU-Net (Transfer Learning-based U-Net) [5]. An accuracy of 97%
was achieved on the Severstal steel surface defect dataset, which was promising for indus-
trial application and testing the model in a real-world environment with more defect types
would ensure deployment is practical [I57]. Real-world environments introduce challenges
such as noise, lighting changes, distortion from heat and movement, as well as many others.
Ensuring that models can perform well whilst these challenges are present is a key difference
between proper deployment and simply developing and evaluating a model.

Various types of surface defect detection were performed using a variant of the Swin
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Table 2: Surface defect detection datasets discussed in this review

Dataset

Images

Classes

Description

Source

Severstal

18106

4

Steel surface defect dataset for object
detection, including pitted surface,

crazing, scratches and patches.

[157]

DAGM

16100

10

“Deutsche Arbeitsgemeinschaft fiir
Mustererkennung” - Synthetic dataset
for defect detection on textured sur-

faces.

[158]

KolektorSDD

399

“Kolektor Surface Defect Dataset” -
Real-world detection dataset of de-
fective and non-defective production

items collected by Kolektor Group.

[159, [160]

NEU-DET

1800

6

“Northeastern University Detec-

tion Dataset” - Real-world detection
dataset of six common surface defects
on hot-rolled steel strips, including
rolled-in scale, patches, crazing, pitted

surfaces, inclusions and scratches.

[161]

Magnetic-Tile

2688

6

Dataset of surface defects on mag-
netic tiles including blowholes, cracks,

breaks, fraying, unevenness and free.

[162, [163]

Transformer model (Cas-VSwin Transformer) according to [165], where detection was per-
The model achieved APs of 0.999, 0.997, 0.994
and 0.805 on the DAGM dataset which consists of synthetic textured surface defects [I58],
the KolektorSDD dataset which contains production item defects [I59], the Severstal Steel
dataset [I57], and the NEU-DET datset which contains steel surface defects [161], respec-

tively [165]. These results are impressive however there is quite a significant decrease in

formed on four surface defect datasets.

performance on the NEU-DET dataset compared to others, which is most similar to what is
expected in industry since it is steel-based and includes more defect types than the Severstal

dataset. Whilst promising, further investigation with more steel-based datasets would be

20



required before attempting to deploy this model as part of a steel defect detection system.

In [166], YOLOvV5 was modified by embedding the backbone with a Convolutional Block
Attention Module (CBAM) [167] to enhance feature extraction. Four defects from NEU-
DET were evaluated and the model achieved 0.854 mAP, which was marginally better than
a CBAM version of YOLOv4 and standard YOLOv4 [166]. Whilst the mAP highlights
the effectiveness of the model and potential applicability for industry, the evaluation is
questionable since YOLOv4-CBAM and YOLOv5-CBAM showed barely any difference in
performance and standard YOLOv5 was not included in the evaluation. However, there was
a significant enough increase in performance from YOLOv4 to YOLOv4-CBAM to imply
that the attention module was beneficial for defect detection. Also worth noting is that
only four defects from NEU-DET were used which means further investigation is required
to assess the ability of the model to deal with more diverse data.

All six defects of the NEU-DET dataset were used to evaluate a CNN classification
model with 93% accuracy in [I68]. Whilst this is a good result, more extensive testing would
be required in real-world environments to confirm the practical applicability of this model.
Furthermore, the lack of localisation could be limiting in scenarios where multiple defects
are close together.

Also, in [169], a model named NSLNet (Neural Structured Learning Network) was re-
ported as achieving over 99% classification performance with limited training data. NSLNet
consisted of Neural Structured Learning, Histogram Equalisation and a vanilla classifier [169].
NSLNet was developed and evaluated using the NEU-DET dataset as well as an extended
version of NEU-DET that includes noise, blurring, lighting changes and other perturbations
that are more similar to what would be experienced in a real production line. Therefore,
this model could be a great foundation for developing a real surface defect detection system.
However, it purely classifies defects with no localisation, which like [I68], could be limiting
if multiple defects occur close together.

CenterNet [170] was combined with a dilated feature enhancement model (DFEM) and
a prediction head to result in a model called DCC-CenterNet (meaning of “DCC” is not
stated), which was evaluated on the NEU-DET dataset, where it was report to achieve an
mAP of 0.794 and a speed of 71.37fps [I71]. The mAP is high enough to consider this model
for further development and eventual deployment, however the result that is more unique to
this study is the speed. Some defect detecton studies do not report speed and those that do,
do not report speeds this high. For real-time surface defect detection at high strip speeds,

this model should be considered.
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Similarly, MSFT-YOLO (meaning of “MSFT” is not stated), is a model comprised of
YOLOV5, a transformer and a bi-directional FPN, and was tested on the NEU-DET dataset
where it achieved 0.757 mAP and 29.10fps [172]. The precision of this model comes close
to that of DCC-CenterNet whilst speed is less than half. However, both results are still
promising for industrial application in real-time systems and should therefore be investigated
more deeply in future work to see how they compare on more diverse data and computational
expense.

A segmentation network named TAS2-Net (Triple-Attention Semantic Segmentation Net-
work), comprised of GAN-based augmentation (where “GAN” is the abbreviation of “genera-
tive adversarial networks”) and various attention modules, was evaluated on the NEU-DET,
DAGM and Magnetic-Tile [162] datasets against SDM (Saliency Detection Model) [173],
RefineNet [I74], U-Net and other models and performed the best in every metric on every
dataset, with precisions of 0.981, 0.972 and 0.963 on the DAGM, NEU-DET and Magnetic-
Tile datasets respectively [I75]. On the NEU-DET dataset, TAS2-Net achieved 41fps also.
These results suggest the model is effective on a range of datasets in terms of both precision
and speed which indicates its potential for industrial application. However, there appears
to be no evaluation in terms of mAP which is typically the most common and informative
metric used for detection tasks and should therefore be included so that it can be more easily
compared to the likes of DCC-CenterNet and MSFT-YOLO. Additionally, this study implies
that use of GANs and attention networks could be highly beneficial to defect detection tasks,

but this may be at the cost of significantly increased computational expense.

2.7.5 Microstructural Analysis

Microstructural analysis is important for material property assessment both physically and
chemically. Historically, analysis has been performed manually which is labor-intensive and
allows for significant potential of human error due to the intricate nature of microstructures
[T76]. However, technology is progressing due to the successful application of classification
and segmentation methods. Since segmentation is at pixel-level, it is particularly suitable
for microstructural analysis tasks due to the intricacies of the imaging involved.
Microstructural segmentation and analysis of ultra-high carbon steel was performed using
a PixelNet variant [6] as reported in [I77]. The model was able to distinguish proeutectoid
cementite network, fields of spheroidite particles, ferritic matrix within the particle-free de-
nuded zone near the network, and Widmanstatten laths, with an impressive 92.6% accuracy

[I77]. This segmentation built the foundation for describing cementite particle size and
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denuded zone width distributions [I77]. This application is innovative and indicates great
potential for the approach used. However, the dataset only contained 24 samples. Whilst
this highlights how well the model performed with minimal training samples (six-fold cross-
validation was used so 20 training samples per experiment), it also highlights the lack of
evaluation on a wide range of diverse data samples to ensure robustness across different
alloys and environmental conditions [177].

A deep CNN was also used for classification of eight different types of steel microstructure
captured using light optical microscopy (LOM), on which it achieved 96.5% accuracy [178].
The accuracy is impressive and demonstrates the effectiveness of CNNs when dealing with
microstructural images. However, the test set of 20283 samples was pre-processed to remove
certain samples that were highly dissimilar to more typical examples, which likely made the
test set less challenging and the accuracy higher [I78]. Practical application of this model
would require development using a dataset that is more representative of what is found in

real-world scenarios.

2.7.6 Health and Safety

Health and safety is a key component of any industry, but particularly in steel production.
Given the nature of the equipment involved such has heavy machinery carrying molten metal,
other hot materials and hazardous chemicals such as those involved in coating, it is vital
that practices remain closely aligned with health and safety regulations.

In regards to this, several existing CV studies have been conducted. Faster R-CNN was
trained on 4500 images labelled with and without helmets in order to develop a safety helmet
recognition system for steel factories, where a reported mAP of 0.712 was achieved [I79].
Whilst the mAP is reasonably high, full implementation would require more development.
However, this study lays the foundation for a variety of safety compliance checking systems
which could be highly beneficial to hazardous industries such as steel. Safety helmet recogni-
tion is a relatively simple example, but with more research and development, future advances
could involve full safety gear checks involving gloves or high-visibility clothing. Addition-
ally, CV could be used to ensure that operational procedures are being followed prior to
equipment access. Overall, these types of applications could significantly lower the risk of
accidents.

Another study presented a model that used Mask R-CNN to validate the correct align-
ment of crane hooks and ladle trunnions to prevent accidents, which achieved a segmentation

accuracy of 92% and a safety judgement accuracy (whether the alignment is correct or not)
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of 96% [180]. Varying from [I79], this study highlights the suitability of CV approaches
to increasing safety standards for tasks directly involving large, heavy, moving machinery.
Whilst the evaluation in [180] is not particularly extensive, the application is innovative and
lays a foundation for future applications involving other moving equipment such as furnace
doors or industrial presses. These could improve workplace safety, but also improve opera-

tional efficiency and equipment lifespan.

2.7.7 Identification Number Recognition

Automatic recognition of identification (ID) numbers printed on steel products facilitates
efficient manufacturing. Traditionally, this task is conducted using the vision and judgement
of workers, often whilst they are affected by performance influencing factors such as high-
temperatures, as well as dusty and dark environments, with ID characters being a fairly large
distance away. This is detrimental for operational efficiency and the reliability of workers
correctly reading the ID [I81]. It also adds unnecessary responsibility on the workers and
could impact their productivity in other areas [I8I]. CV approaches to this task typically
involve pre-processing of samples to distinguish ID characters from the background, followed
by character detection. Automating this process with CV could lead to significant improve-
ments in operational efficiency, as well as improved reliability due to elimination of human
error.

An early attempt at this task used steel billets for experimentation and used a combi-
nation of image pre-processing, image segmentation (not using deep learning) and a back-
propagation neural network (this part is deep learning) for character recognition [I81]. For
the characters from zero to nine, the model accuracy ranged from 95.29% to 97.53% with
inference times ranging from 55ms to 62ms [I81]. The accuracy range reported is promis-
ing for applications based on character recognition which could be developed for a variety
of logistical scenarios involving any kind of resource or part that requires an identification
number. Furthermore, the inference times imply that this approach has potential for real-
time application which is desirable if many objects are being identified in quick succession
such as on a production line.

Another study applied a deep CNN (DCNN) with transfer learning to localise and classify
steel slab identification numbers (SINs) and for localisation, recall and precision values of
0.927 and 0.924 were achieved respectively, whilst 99.6% classification accuracy was achieved
[182]. This study used images collected from a real industrial site which meant challenges

such as changes in lighting conditions, heat distortion, camera distance and slab length were
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included in the dataset. Furthermore, both letters and numbers were included in the samples.
Therefore, this approach is very promising for real industrial application. Applying this
model to other ID recognition scenarios would be beneficial to the field in terms of research
and industrial advancement.

Automatic slab identification number recognition was also performed using ground-truth
data “weakly” annotated using a one-click system, to train variations of an FCN [I83]. The
proposed method achieved a recall of 0.996 and a precision of 0.995, which indicates the
effectiveness of the models used even with low-detail annotations [I83]. This approach is
highly efficient and results in high performance despite minimal annotation effort which ef-
fectively addresses a common bottleneck in deep learning projects. Additionally, the dataset
was collected from two different places of a real steelworks which implies there were environ-
mental challenges overcome such as lighting and noise. Whilst the annotation approach is
innovative and efficient, since the annotator only clicks the centroid of each character to label
it, there are certainly limitations to this approach. For example, this assumes all characters
can be annotated to a high standard by using the same size bounding boxes, which is only
realistic if the distance between the camera and slab remains constant. Also, in terms of
scalability, this may become problematic since slightly different slab setups would require
different pre-set bounding box sizes.

Finally, a more advanced task of recognising arched hot-rolled steel coil identification
numbers was achieved by combining image processing, followed by segmentation (without
deep learning), alignment to account for the arched labels, followed by character classification
using a CNN and a final post-processing stage [I84]. The model achieved an accuracy of
98.49% with a speed of 0.37s per image [I84]. This study highlights the extended capability
of CV to deal with arched text, whilst also demonstrating high accuracy and inference
speeds significantly faster than human speed. This uncovers more potential applications for
ID recognition than other studies, since it proves that text does not have to be linear for
successful recognition. Other variants could include recognition tasks where text is vertical
or circular. This added flexibility of ID recognition could be crucial for developing technology

that can recognise ID characters on every labelled part in an entire steelworks site.

2.7.8 Other Manufacturing Applications

CV techniques are widely applied across various manufacturing sectors, not just in steel
production. The rapid development of Al presents opportunities for applications in the

broader field of manufacturing such as automotive and additive manufacturing. This section
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will explore the integration of CV into such areas.

In the automotive industry, CV has been applied to the inspection of surface quality. A
notable example is a study that developed a system for assessing the quality of painted car
bodies [I85]. This system comprised a two-step process, defect detection using TinyDefec-
tRNet (based on the previously released TinyDefectNet [I86]), a model based on YOLOv3,
followed by an evaluation of appearance quality [I85]. The system recall and precision varied
between approximately 0.919 to 0.953 and 0.882 to 0.907, respectively, depending on the car
body side under examination, with average analysis times ranging from 20.30s for the hood
to around 64.70s and 64.20s for the left and right sides respectively [I85]. This application is
innovative and if deployed, could be beneficial to the automotive industry. However, the ap-
pearance of different vehicles can vary significantly and therefore, for this model to perform
consistently across different cars it would need to be thoroughly trained on a wide variety
of samples from every body side of many different car models. The diversity of the dataset
created for the study is unclear.

Additionally, YOLOv3 was used to localise and classify three types of solder joints on
automotive door panels (rectangle, semi-circle, and circle) [I87], achieving an mAP of 0.852
and a detection time of 0.18s per panel image, which meets the real-time requirements of the
production line. The mAP is good but shows room for improvement which may be possible
through a simple change from YOLOv3 to a more recent model such as YOLOvS8. This
would also improve the detection speed.

In electronics manufacturing, CV technology has shown significant benefits. For instance,
[188] describes automated surface inspection of copper clad laminate images for defect de-
tection using an efficient CNN architecture. This architecture included convolutional layers,
squeeze-and-excitation blocks, and squeeze-and-expand blocks [I88]. The model achieved
precision and recall values of 0.991, outperforming other models such as MobileNet-v2 [189]
and ResNet-50 [53]. The proposed model also ran at 20ms per image, which was faster than
other models, except MobileNet-v2, which it was more accurate than [I88]. These metrics
are impressive and suggests the model is suitable for integration into production lines, which
was achieved, as reported by the authors [I88]. Also, according to the authors, there is room
to improve the computational efficiency of the model, which is a potential area for future
research [18§].

Another study used an improved version of YOLOv3 for detecting electronic components
on printed circuit boards (PCBs) using both real and synthetic data [I190]. The model

recognised 29 different component types such as resistors and capacitors and achieved an
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mAP of 0.931 [I90]. This was highly successful and promising for real-world application,
especially considering the high number of different categories. However, it was noticed that
the AP of the resistor, capacitor and component instances were 0.480, 0.720, and 0.560
respectively, which was because resistors and capacitors were visually similar, and instances
within the component category varied significantly [I90]. It is likely that if a more recent
version of YOLO such as YOLOv8 was used for this task, low-scoring category AP values
could be improved. Note that the “component” category included components that did not
fit neatly into any other category [190].

CV applications in additive manufacturing include process monitoring and defect detec-
tion. One research paper presented a hybrid CNN model for quality-level classification in
laser powder bed fusion (LPBF) processes [191]. When tested under overheating, normal,
irregularity and balling conditions, it achieved detection accuracy values of 0.995, 0.996,
0.998 and 0.996 respectively [191]. These high-performance results across a variety of de-
fects demonstrate the potential of CV technology to ensure high product quality in additive
manufacturing [191]. Further investigation using different additive manufacturing processes,
different machines and different materials would be valuable for advancing the field.

Another study in LPBF utilised a parallel model combining a CNN and a thresholding
neural network (TNN) to segment spatter signatures [192]. This model, tested across differ-
ent laser powers, achieved precision and recall values of 0.777 and 0.805, respectively [192].
This application is innovative and demonstrates reasonable effectiveness whilst suggesting
there is significant room for improvement. Spatter signatures have a complex and variable
appearance in terms of shape, intensity and image coverage. Therefore, this kind of segmen-
tation could be transferable to other applications involving “spatter-like” or “splatter-like”

attributes such as splattering liquid.

2.8 Conclusions

This literature review has investigated modern advancements of CV technology with partic-
ular focus on their integration into manufacturing industry and a deeper emphasis on steel
production. The review discussed several key groups of techniques that are believed to be
beneficial towards industry, detailing their relative performances and suitability for indus-
trial application. Additionally, discussion has included CV applications that have begun to
revolutionise the technological state of manufacturing. Current and potential future benefits
from this integration include, but are not limited to, improved operational efficiency, reduced

defects, process automation and increased workplace safety, which are all of high value to
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the industry. Through examination of relevant techniques, as well as promising applications,
this review has highlighted the applicability of CV to a diverse range of scenarios across
all areas of manufacturing, and especially steel production. Also, this review has identified
several research gaps and opportunities for future research and development.

The most significant research gaps identified include the need for real-time processing ca-
pabilities in edge-based CV systems without using large, powerful GPUs that lack portability
and low computational expense. Improving models to not just perform well on standard met-
rics, but to perform efficiently on edge devices at real-time speeds is invaluable to successful
implementation into high-pace, space-constrained scenarios such as those found on steel pro-
duction lines.

Additionally, there is a lack of diverse datasets that properly represent the full complexity
of industrial environments, which is critical for model development to ensure robustness to
harsh conditions such as those found in steel production. Dataset creation is a substantial
challenge separate from model development and deployment, and there are many different
steel production scenarios that models could be developed for. Therefore, developing datasets
that are large enough, diverse enough and also incorporate the visually harsh environments
in steel industry, is a considerable challenge. If a dataset was built to target key emerging
applications of CV in steel industry, such as a steel-based version of the COCO dataset, this
could be incredibly valuable for the industry.

The literature also highlights the lack of extensive real-world application, testing and
validation of these systems, since many models do not predict real-world characteristics
and are evaluated using highly controlled conditions that are optimal for producing high
performance results. Real-world application, testing and validation is essential for ensuring
suitability for real application, which includes reliability, robustness and scalability. This
does not simply mean adapting models to deal with harsh environmental conditions, but
also to ensure aspects such as computational efficiency, hardware compatibility and ease of
integration with existing industrial systems, are suitable for deployment. This ties in with the
fact that most of the literature focuses on achieving good scores in metrics such as accuracy
and mAP, whereas details on model deployment and the capability to perform accurate
real-world measurements would provide better insights into the real-world applicability of
research undertaken.

Furthermore, the integration of deep learning with traditional techniques such as back-
ground subtraction is an innovative research direction that requires further investigation,

particularly in terms of computational efficiency and deployment on resource-constrained
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devices. Use of background subtraction algorithms for steel production applications is a gap
in the research by itself, but incorporating the modern capabilities of deep learning opens
up many possibilities for what is relatively unexplored in the field.

Another significant gap is the need for more standardised evaluation approaches for fair
comparison of CV models in industrial environments. Whilst most studies use the same
metrics, they are not inclusive of aspects such as dataset size, diversity or difficulty. This
could be addressed by establishing metrics that account for the complexity of a given envi-
ronment such as the level of heat distortion, the abundance of dust or the quality of lighting.
This would help to distinguish between studies that use datasets that are easier to achieve
good performance values on, and datasets that are more representative of what is found in
industrial environments.

Analysis of the cost-effectiveness and potential return on investment of implementing
CV techniques in manufacturing settings would be highly beneficial to the field and is not
addressed in any reviewed literature. This would give more insight into which advances in
CV are most likely to translate to financially viable solutions, and therefore help stakeholders
in making more well-informed decisions in a field that is largely misunderstood by the wider
public.

Also closely related, is consideration of human factors to ensure human interaction with
CV systems is as easy and as effective as possible, which has not been addressed in literature.
By focusing on user interaction, implementation of CV is more likely to occur quickly with
less resistance from operators, and less technical issues. This includes aspects such as user-
friendly interfaces, operator training strategies and ergonomic design.

This thesis will address several of the research gaps identified. Firstly, by deploying a
model that not only performs well on typical CV metrics, but also operates efficiently in
real-time on the edge without the need for heavy-duty hardware, meaning it is suitable for
the high-pace and space-constrained environments of production lines.

Secondly, novel datasets will be developed for specific aspects of processes that CV tech-
nology is developed for. This contributes to reducing the data scarcity issue in the field.
These datasets will incorporate the harsh conditions of steel production environments such
as heat, dust, vibrations and poor lighting conditions, and will be used to develop CV sys-
tems that can be utilised in industry settings.

Thirdly, real-world application of CV models will be addressed by measuring real-world
characteristics in every case study. In most cases, these measurements will be validated by

data acquired through more traditional methods such as visual inspection and manual mea-
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surement. Robustness to environmental challenges is a key aspect of every case study, and
scalability is ensured in two of three case studies. Real-world testing and validation will also
be addressed through the development of a fully functioning real-time edge system function-
ing over a Wi-Fi network. Whilst this has not been physically integrated into the production
line, it has been extensively tested on specialised hardware and optimised thoroughly for de-
ployment, which has thrown up many of the challenges that would be experienced in the
implementation stages as opposed to just the model development stages.

Fourthly, this thesis will pursue the integration of deep learning with traditional CV
techniques and draw conclusions on both the current effectiveness and the future potential
of these kinds of approaches.

Lastly, whilst standardised approaches have not necessarily been developed here, models
have been evaluated against manually recorded data obtained from other researchers and
site operators. This promotes the importance of comparing model outputs to real-world
measurements, which gives a more industry-specific evaluation of model performances.

By addressing these gaps, this thesis aims to advance the field of computer vision within
the context of steel production through demonstration of practical solutions that are novel
and can be utilised by industry to enhance operational efficiency, sustainability and overall
technological capabilities. This thesis also aims to bridge the gap between theoretical research
and real-world application through consideration of model deployment, as well as model
development. Furthermore, completion of this research provides a baseline for future studies
involving CV technology that is not only technically sound but also aligned with the demands
of industry.
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Chapter 3: Methods and Materials

This chapter covers the primary methodologies and tools that form the basis of this research,
with focus on those which have been utilised in multiple case studies. Components such as
the Mask R-CNN (Mask Region-based Convolutional Neural Network) segmentation network
and DeepSORT (Deep Simple Online and Real-Time Tracking) network are unique to specific
case studies and are therefore excluded to streamline the thesis structure. Key aspects of
this research are presented including computer vision (CV) tasks, algorithms and evaluation
metrics, as well as the Microsoft Common Objects in Context (COCO) dataset which was the
only public dataset utilised in this research. Also provided, are the software and hardware

tools that were crucial for performing certain tasks.

3.1 Introduction

The integration of CV technology into industry has significantly advanced in recent years,
which is directly applicable to steel production. As discussed in Section of Chapter 2,
these technologies have proven to be invaluable when addressing complex challenges such as
surface defect detection, microstructural analysis and slag monitoring [4], 5], [6]. This chapter
outlines the resources utilised for this body of work whilst highlighting their relevance and
value for current industry challenges.

The objective of this chapter is to clearly lay out the key resources used for this thesis to
ensure the reader can understand the core components used to achieve presented outcomes.
Furthermore, this chapter aims to aid future projects that are replicating or re-thinking this
work.

This chapter contributes to the field by detailing a set of valuable methodologies and tools
that are well-suited to projects involving the application of computer vision algorithms to
steel process monitoring. Algorithms such as YOLOv5 (You Only Look Once) and Counting
(CNT) background subtraction (BGS) are noted for their strengths in monitoring appli-
cations, whilst the COCO dataset is identified as a dataset beneficial when pre-training a

model for any computer vision application.
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3.2 Tasks

CV encompasses a variety of tasks that allow computers to gain an understanding of digital
images and videos. In the context of this project, the CV tasks performed are classification,
object detection, instance segmentation and multi-object tracking. Background subtraction
is also a CV task relevant to this work, but is traditional and does not use deep learning.
Therefore, it will be introduced as part of its own section (Section [3.3).

3.2.1 Classification

Classification refers to the task of identifying the class of an object. Typically, a set of class
labels are pre-defined and during inference, a label is assigned to either an image, or specific
objects within an image [193]. This is one of the most basic CV tasks and allows computers

to gain a basic understanding of visual data that is presented to it.

3.2.2 Object Detection

Object detection goes a step further than classification by identifying object class, whilst
also identifying object location (known as object localisation) [193]. Locations are indicated
by drawing bounding boxes around detected objects. Object detection networks can be
two-stage detectors which generate bounding box proposals, and then refine boxes whilst
classifying objects within them [I93], or they can be one-stage detectors which simultaneously
perform full classification and localisation [193]. YOLOvV5 (You Only Look Once) used in this
project is one-stage, hence the name. Mask R-CNN that is used in Case Study 1 (Chapter
4), is based on the Faster R-CNN detector which is two-stage [63], 08]. Typically, two-stage
detectors are more accurate and one-stage detectors are faster [193]. Detection is useful for

applications where the presence and position of objects is of interest.

3.2.3 Instance Segmentation

Instance segmentation advances further from the capabilities of object detection by predict-
ing precise pixel-level object boundaries whilst distinguishing between different instances of
the same class [194]. This task is useful for applications that require detailed analysis of
the exact shape, size, and location of objects, and enables CV applications to build a more
complex understanding of different scenes. The model used in Chapter 4, Mask R-CNN;, is

an instance segmentation network.
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3.2.4 Multi-Object Tracking

Multi-object tracking (MOT) refers to the identification (ID) and tracking of multiple objects
as their position changes across a sequence of video frames [195]. Typically, tracking is
performed through a “tracking-by-detection” approach which starts with object detection
and then uses a re-identification model to associate object IDs across frames [195]. MOT
is useful for analysing scenes where understanding patterns in object movement over time
is of interest. MOT has been used in Case Study 3 (Chapter 6) to track multiple plumes

simultaneously.

3.3 Algorithms

In CV, algorithms are arguably the most important part of developing an application since
it is essentially them which allow computers to gain an understanding of visual data. In the
context of this project, common algorithms utilised include YOLOvV5 for object detection,

and the Counting algorithm for background subtraction.

3.3.1 YOLOv5

YOLOv5 was a core component of Case Study 2 (Chapter 5) and Case Study 3. Whilst
an overview of YOLOv)H was provided in Chapter 2, this section will go into more depth
on application details both generally and in the context of this research, the rationale for
selecting this model over alternatives, as well as some known limitations of the model.

YOLOvV5 has already been commended for being computationally efficient, fast and
adaptable in Section of Chapter 2. Additionally, it has a wide variety of customis-
able options for optimal application. Firstly, there are several variants that differ in size,
offering different degrees of speed, precision and computational cost. Figure [24] shows the
variants that have been used in this research and their results when tested on the COCO
dataset [196].

In addition to model size, YOLOv5 has many different hyperparameters that can be ad-
justed depending on the scenario for optimal performance. Examples of key hyperparameters
include learning rate, which dictates how quickly the model adapts to data during training,
and weight decay, which is a regularisation technique that reduces overfitting by penalising
larger model weights to help maintain small weights, therefore improving resistance to noise
[197, 198]. To clarify, overfitting is when a neural network overly adapts to a set of training

data which results in poorer performance on unseen data. There is also the option to modify

63



Small Medium Large
YOLOv5s YOLOvV5m YOLOV5I
14 MBFP16 41 MBFP16 90 MBFP16
2.2 ms,.. 2.9 ms 100 3.8 ms,.
36.8 MAP__ 44.5 mAP__ . 48.1 mAP__ .

Figure 24: Variants of YOLOvV5 differing by network size

thresholds for non-maximum suppression (NMS) and detection confidence which control the
number of false positives, and therefore offer a trade-off between precision and recall (intro-
duced in Section .

Finally, Ultralytics have incorporated a feature to export trained models in .onnx for-
mat for optimal deployment performance [199]. ONNX (Open Neural Network Exchange)
is different to the typical PyTorch format and enables portability of models across different
devices, which is particularly useful for real-world application of CV [200]. Additionally,
ONNX models can be optimised for high speed and high precision, solidifying their practi-
cality for real applications. This feature was used prior to converting the Chapter 5 model
into .engine format for TensorRT optimisation and inference, which is explained more in
Chapter 5 [201].

In Chapter 5, zinc splatter severity was quantified during the galvanising process in real-
time. YOLOvV) was used to dynamically adjust the splatter measurement region in response
to air knife movement for accurate monitoring. YOLOv5 was also used to ensure consistent
model performance across varying camera positions, by scaling severity boundaries based on
bounding box sizes. In Chapter 6, gaseous plumes formed during a gas stirring simulation
were monitored for design optimisation. YOLOv5 was used to classify plume state (jetting,
forming, collapsing) and bounding box dimensions were used to calculate plume geometries.

At the time of initiating the studies, YOLOv) was the true state-of-the-art object detec-
tion network. More improved versions of YOLO have been released since then, but YOLOv5
still stands as a well-established, proven and effective technique with substantial community
support. Due to being released several years ago, it is arguable that YOLOV5 is still a more

appropriate choice of detection network for industry challenges that require robustness, than
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a more evolved version such as YOLOvVS. This is evident from the literature that has been
published exhibiting either direct applications of YOLOvS, or applications using models
that have been built using YOLOvV5 as a foundation. Several examples of this are covered in
Chapter 2 [93] 151], 172], which show a range of successful cases such as blast furnace charging
state recognition and defect detection with high mean average precision (mAP) results and
over 29fps inference speed. In this research, YOLOv) has been combined with background
subtraction to reap the benefits from both approaches. Through this novel combination of
techniques, it has been possible to monitor distinct steel production processes and extract
valuable insights. This has not been attempted in any existing literature.

Whilst YOLOVS5 is an excellent tool for solving real-world problems with object detection,
it is also important to acknowledge some known limitations of the model that were considered
before utilising it. It is known that there is challenge in balancing a trade-off between speed
and accuracy, and therefore it was expected that this would have to be accounted for by
sacrificing one or the other for each case study depending on the aims. Inference speed was
critical in Chapter 5, and therefore it used YOLOv5s. In Chapter 6, precision was more
critical, (however YOLOv5s slightly outperformed YOLOv5] anyway due to overfitting).
Another limitation is that YOLOv5 is a 2D object detector and therefore, unless great
model developments are performed, the model is limited to learning and making predictions
from 2D features. In engineering scenarios such as those described in this thesis, lack of
a third dimension constrains model capabilities. It is acknowledged that there are ways to

overcome this, such as using multiple cameras, but it still remains a limitation.

3.3.2 CNT Background Subtraction

CNT (Counting) background subtraction which was also a key component of this project,
was utilised in all three case studies and successful in two. Whilst an overview of different
BGS algorithms was given in Section of Chapter 2, this section will go more in-depth
on the CNT algorithm in particular, application details (both general and in the context of
this research), the rationale for selecting this model over alternatives, as well as some known
limitations of the model.

The CNT algorithm works by counting the number of frames each pixel value stays con-
stant for (called pixel stability) [202]. It uses pixel stability thresholds to dictate whether the
stability value of each pixel should class it as foreground or background [202]. The algorithm
is also based on colour similarity which uses a colour similarity threshold to define what

colour ranges are considered the “same” colour [202]. This algorithm is more procedural
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than based on statistical distribution models (like other BGS algorithms), so it is not repre-

sented by any formula. Therefore, Algorithm [I| presents the operation of the CNT algorithm.

Algorithm 1 CNT Algorithm

for each pixel in the frame do

if pixelColour == previousPixelColour then
pixelStability += 1

else
pixelStability -=

end if

if pixelStability > minPixelStability then
classify pixel as background

else
classify pixel as foreground

end if

end for

In Chapter 5, the CNT algorithm was utilised for segmenting zinc splatter from the
background. The speed of the CNT algorithm was crucial for monitoring splatter in real-
time, and the ability to adapt to environmental changes ensured precise segmentation despite
the highly variable nature of the splatter. In Chapter 6, the CNT algorithm was used to
segment plumes from the background. The adaptability of CNT background subtraction to
the complex fluid dynamics of plumes was critical to the success of the model.

CNT background subtraction is highly effective at motion detection which makes it use-
ful for industrial applications, particularly those with static backgrounds [203]. The CNT
algorithm is faster than all other OpenCV BGS algorithms and literature has reported it as
the highest quality algorithm also [120, 203]. Furthermore, the literature (see Section [2.6| of
Chapter 2) shows that OpenCV BGS algorithms have been successfully applied in a variety of
cases such as ship detection, vehicle detection, suspicious activity recognition, fall detection,
wild mammal detection and Parkinson’s patient tracking [115, 118, 120} 121 122} 123, 124].
Despite these examples, there are no known cases of these algorithms being successfully
applied to steel processes, which highlights the novelty and contribution of this thesis. Fur-
thermore, there are a few known cases of BGS being combined with deep learning which
are mentioned in Section of Chapter 2, however they are again, not for steel production
processes and do not use an object detector as efficient for real-time application as YOLOv5
[125], 126, 127].
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Despite the strengths of background subtraction and particularly the CNT algorithm,
considering limitations is still important. The limitations of background subtraction have
already been discussed in Section of Chapter 2, which mentioned that dynamic back-
grounds may significantly affect BGS performance [114]. Industrial environments such as
those related to this project, are typically harsh with multiple sources of noise and moving
objects. Whilst BGS can deal with noise effectively (provided it is applied correctly), mov-
ing objects that are not being tracked can be problematic and should therefore be overcome
using another approach, such as object detection. The air knife movement in Chapter 5
is a great example of this kind of scenario and exemplifies overcoming limitations of one

technique by capitalising on the benefits of another.

3.4 Metrics

In CV, metrics are essential for evaluating model performance against previous and future
iterations of development, as well as comparison against similar models performing the same
or similar tasks. Metrics utilised in this work include precision, recall, average precision
(AP), mean average precision (mAP) and inference speed. These are conventional metrics
as evidenced in evaluation reports throughout Chapter 2. Multi-object tracking accuracy
(MOTA) is also included here to be comprehensive, however is not used in the case studies

for reasons explained in Section [3.4.5]

3.4.1 Intersection-over-Union

Intersection-over-union (IoU) is a simple way to indicate the accuracy of an object detection
(or instance segmentation) network. Essentially, it is the amount of overlap (intersection)
between predicted bounding boxes or segmentation masks, and the ground-truth boxes or
masks, compared to the total area of the two boxes or masks (union) [204]. This is demon-

strated in Equation ({1)).

ol — Area of Overlap

(1)

Area of Union

When evaluating models, depending on the approach, one or more IoU thresholds are set to
distinguish between predictions considered accurate and predictions considered inaccurate.

Predictions with an IoU above the IoU threshold are considered true positives (TP), and
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predictions below the threshold are considered false positives (FP). Therefore, predictions

are categorised as:

e TP if JoU > threshold.

o P if JoU < threshold.

3.4.2 Precision and Recall

The total numbers of true positives and true negatives can be used for deeper evaluation
insights by calculating precision and recall for a given experiment. These are calculated as
shown in Equation (2)) and Equation (3]) [205]. Precision indicates how many correct guesses
the model made out of all guesses made, and recall indicates how many ground-truth boxes
or masks were correctly predicted compared to the entire set. Note that in Equation
false negatives (FN) are also used, which are ground-truth instances that were unsuccess-
fully predicted. In this context, the distinction between a false positive and a false negative
is that false positives are based on unsuccessful predictions that were made by the model,
whereas false negatives are based on unsuccessfully predicted ground-truth instances in the
data.

Procisi TP TP )
recision = =
TP + FP  #predictions
TP TP
Recall = (3)

TP + FN #ground-truths

3.4.3 Average Precision

To gain even more insight on model performance, precision and recall can be used to plot
a precision-recall curve such as the yellow one shown in Figure [25| [206]. The values for all
TP predictions on all test images are ordered based on increasing recall, and then the curve
is smoothed by replacing the precision at every data point with the maximum precision
value with the same or higher recall value, resulting in the green line in Figure [206].

Smoothing involves replacing each precision value with the maximum precision found at
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Figure 25: Example showing smoothing of a precision-recall curve

that recall level or higher. This is based on the principle that precision should not decrease
as recall increases, which is an optimistic approach that ensures anomalies do not distort the
calculation of average precision (AP), and is a standard approach in computer vision [207].
After smoothing the precision-recall curve, the AP is calculated using the area under the
curve (AUC) [207].

The COCO AP is a standard evaluation metric in computer vision and is a variant of
AP that is designed to be more comprehensive when measuring the performance of a model.
For COCOQO evaluation, AP is calculated by dividing the curve at 101 points along the recall

axis, summing the 101 corresponding precision values and then taking the mean average of
these values, AP, [208]. This is shown in Equation (4)) [206, 208].

1
AP:W Z AP,

re(0.0,...,1.0)
1 ()
= ﬁ Z pinterp(r)
r€(0.0,...,1.0)

The pinterp(r) in Equation is the interpolated precision at each selected recall point 7,
which is the maximum precision at any given recall point, as shown in Equation (5)) [206, 208].

pinterp(r) = maxp(f) (5)

>
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3.4.4 Mean Average Precision

In multi-class problems, the AP is calculated for every class and the mean average of the AP
values is calculated to obtain an mAP value, which is a common indicator of the performance
of a model used in CV [207]. For the COCO mAP, which was designed to reduce any bias
towards certain IoU thresholds, the mAP is calculated for threshold values ranging from 0.5
to 0.95 in increments of 0.05. After calculating all mAP values, a mean average of them is
taken to give a final COCO mAP value. This is shown in Equation (6] [207].

mAPO.g,O + mAP0,55 + ...mAP0.95
mAPCOCO = 10 (6)

It is worth noting that whilst the real definition of the COCO mAP has been demonstrated
here, the term “mAP” can be ambiguous due to the different approaches researchers use for
model evaluation. For example, some researchers do not clarify whether they use mAP at
a specific IoU threshold or the COCO mAP. Also, some researchers calculate it using an
11-point interpolation rather than a 101-point interpolation, and sometimes the way it is

averaged across a set of object instances or video frames can vary [209, 210, 21T].

3.4.5 Multi-Object Tracking Accuracy

Multi-object tracking accuracy (MOTA) is used to evaluate the performance of multi-object
tracking algorithms. It is calculated using the number of instances in the ground-truth that
the algorithm did not detect (misses), the number of instances predicted by the algorithm
that were not in the ground-truth data (false positives) and the number of instances where
the identity of an object was changed incorrectly (identity switches) [95]. Equation (7)) shows
the MOTA calculation [95].

(Misses + False Positives + Mismatches)
(Total Ground — Truth Objects)

MOTA=1— (7)

Whilst MOTA is a strong indicator of tracking performance, researchers typically focus more
on detection and segmentation performance, since they are the foundation of high perfor-
mance tracking (as mentioned in Section of Chapter 2 [195]. Additionally, it is difficult

to obtain tracking annotations since good detection and segmentation performance typically
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leads to good tracking performance, and the benefits of good detection and segmentation
are more obvious and immediate [212]. During this research, MOTA was not used due to
these reasons. However, as the field develops and more tracking datasets and annotation
methods become available, MOTA will give deeper insight into model performance. By us-
ing MOTA, a more holistic view of tracking algorithm performance will be available which
will be particularly useful in complex tracking scenarios where objects interact closely and

occlude each other, since in these scenarios, maintaining consistent identities will be crucial.

3.4.6 Inference Speed

Inference speed is a critical metric for many real-world applications of CV, particularly in
the case of industrial process monitoring. In all three case studies, it has been preferable for
models to operate at the fastest speed possible. However, the need for high speed performance
varied. In Chapter 4, if possible, the model would be more beneficial if it operated in real-
time, since this would enable it as a foundation for building a closed-loop control system.
The definition of “real-time” in CV is ambiguous. One common definition of a real-time
system is one that processes frames fast enough for practical application [I01], whereas
another popular definition is that a minimum frame rate of 25fps should be achieved [102].
For this project, the former of these two definitions has been considered “real-time” since
this is what is needed for industry. In Chapter 5, the model was required to run in real-time
upon deployment, including the additional network overhead from the video source sending
frames and the inference device returning model results. In Chapter 6, more speed was
preferable, especially for any future developments, however it was not critical to the design
since the model was used as a post-processing tool after collecting footage of experiments. In
this thesis, “inference speed” has been used to describe the frame speed a model can run at
(measured in frames per second), whilst “inference time” refers to the time it takes a model

to make an inference (typically measured in seconds or milliseconds).

3.5 Datasets

Datasets are arguably the most important component when developing CV applications with
deep learning (DL). Each case study used unique datasets that were developed specifically
for this project, however, the COCO (Common Objects in Context) dataset was used to
pre-train Mask R-CNN in the first case study, and YOLOvV5 in the second and third case
studies. This is common practice, as is use of the COCO dataset for benchmarking model

performances, as shown throughout Chapter 2.
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3.5.1 Microsoft COCO Dataset

The COCO dataset is a renowned resource in the field of CV that is used for tasks such
as image classification, object detection and instance segmentation [45]. The dataset was
initially released in two separate parts; the first in 2014 and the second in 2015, which
cumulatively contained 165482 training samples, 81208 validation samples and 81434 testing
samples [45]. When first released, COCO contained 91 object classes easily recognisable by a
four year old, within their natural everyday scenes. Examples include dogs, cats, aeroplanes,
boats, kites, plants and teddy bears. Overall there were 2.5 million labelled instances and
some examples are shown in Figure [26] [45], 213].

By presenting a diverse range of objects in their natural environments that exhibited
challenges such as varying scales, angles, lighting and overlapping, COCO helped in training
models to be robust to complex, realistic scenes. This was different to previous datasets
containing objects in unobstructed, centered and clear contexts which led them to being less
robust in other scenarios [45]. At the time of release, COCO was also unique as it focused
on providing detailed instance segmentation masks, as opposed to other datasets that only
focused on classification, detection and semantic segmentation [45]. This meant it could
be used for training models with more precise localisation and applications requiring more
detailed visual understanding [45].

Since the initial release in 2014, newer versions have been released with the latest com-
plete dataset to date being the COCO 2017 dataset, however other partial updates occurred
up until 2020, such as the inclusion of keypoint and panoptic annotations [214]. Since being
released, the COCO dataset has been at the core of the COCO challenge which was hosted
annually until 2020, whilst also becoming established as a highly popular benchmarking
dataset for state-of-the-art models performing tasks such as object detection and segmenta-
tion [214]. By providing a consistent format for evaluating algorithms, the COCO dataset
has become a fundamental resource for many advancements in the field.

For the purpose of this research, the COCO dataset was used as the foundation for pre-
training Mask R-CNN for the ladle study. It was also used to pre-train YOLOvV5 in both
the splatter severity measurement and plume monitoring studies. Despite the fact that steel
production environments do not fall into “common” contexts, pre-training models on COCO
is still beneficial as it provides models with foundational knowledge on how to understand

general objects, before being trained to specialise in a more specific context.
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Figure 26: Annotated samples from the COCO dataset

3.6 Software and Hardware

Software and hardware were crucial to the success of this project since they provided the
capabilities to perform all tasks. Key resources include Python, VGG (Visual Geometry
Group) Image annotator (VIA), and graphical processing units (GPUs).

3.6.1 Python

Python served as the programming language for this research and was therefore crucial to the
success of it. Python was suitable for a variety of reasons including its versatility, simplicity,
well-established community and in particular its compatibility with deep learning projects.
It was used for pre-processing data, model development, model evaluation, data visualisation
and results analysis.

In terms of pre-processing data, Python libraries were used such as OpenCV for image
processing, NumPy for numerical computations and data manipulation, Pandas for creating
results tables which were typically exported in Microsoft Excel format, and JSON (Javascript
object notation) for inspecting, editing and loading annotations. These libraries provided
capabilities in data cleaning and data splitting into training, validation and testing sets, so
that they were suitable for processing by the models.

Model development was driven by Python due to its seamless integration with deep
learning frameworks which in this project, were TensorFlow and PyTorch. This was crucial
in order to analyse, break down, modify and optimise models such as Mask R-CNN and
YOLOV5 through actions such as custom layer addition, hyperparameter optimisation and
standardising evaluation metrics. Furthermore, OpenCV played a large part in developing
the elements of models that utilised more traditional CV techniques such as background
segmentation and image denoising. Model evaluations which were, at times quite complex,

were made possible through Python’s relative ease of implementation of metrics such as
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precision, recall and COCO mAP.

Data visualisation was a key aspect for gaining insight on model behaviour and model
performance, as well as actually presenting results to stakeholders. Using OpenCV, the
effects of different techniques, such as image segmentation and image denoising, were visible
along every stage of the overall process. Meanwhile, OpenCV was also used to produce video
output from the models in various formats such as trimmed versions of raw data, binary mask
videos, as well as original data with model predictions superimposed.

Finally, Python was not only used for visualising data but also analysing numerical
results, such as severity levels of different process variables. Through Python, actions such
as monitoring model performance, troubleshooting model issues and extracting insights from
model outputs were possible.

In addition to the all of the aforementioned capabilities provided by Python, Microsoft
Excel was also used for some aspects of data presentation and analysis. Due to being more
familiar with stakeholders, it was useful for efficient exchange and demonstration of results,

and therefore was used to compliment the primary workload conducted using Python.

3.6.2 VGG Image Annotator

VIA was the annotation tool of choice for every case study [215]. VIA is a simple open source
manual annotation tool that enables users to annotate images with box or mask annotations
and export them in multiple formats depending on their intended approach for using the
annotations [215]. In this research, annotations were exported in the JSON format. This
format is widely used and therefore relatively easy to integrate into model setups or convert
to appropriate formats. For YOLOvV5 applications (splatter severity measurement and plume
monitoring studies), a conversion tool was used to convert the JSON annotations into .txt
format suitable for YOLOvV5 processing [216]. In the case of Mask R-CNN, the JSON files

were suitable for processing with no conversion needed.

3.6.3 GPU

The NVIDIA GeForce RTX 2070 Super was the primary GPU used for this research. This
device is a graphic card developed by NVIDIA that has 8GB of GDDR6 (graphics double data
rate 6) memory and 2560 cores, meaning it has the ability to perform highly computationally
intensive tasks [217]. The 2070 Super is built to support demanding activities such as video
transcoding, physics simulation, ray tracing and more, making it well-suited for deep learning

applications [217].
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In the context of this research, this GPU significantly improved training and inference
times, which was crucial not only for project efficiency, but also for model evaluation with
regards to suitability for industrial application. By using this hardware, it was possible
to perform tasks such as the hyperparameter optimisation in Chapter 4 within reasonable
timescales. Additionally, it made a significant difference to the speed of the final splatter
severity measurement model (pre-deployment), proving its ability to deal with real-time data
processing particularly in the context of CV where computational demand is high due to the
heavy-duty processing of large datasets containing high-resolution images. The compatibility
of the chosen GPU with frameworks such as TensorFlow and Pytorch made this research
much more streamlined, and was due to the CUDA (Compute Unified Device Architecture)
and CUDnn (CUDA Deep Neural Network) libraries developed by NVIDIA, which enable

optimised GPU-accelerated computations that are crucial for deep learning [218] 219].

3.7 Conclusion

This chapter has outlined the common computer vision tasks performed in this project, the
algorithms used to perform them, the dataset used for pre-training of algorithms, the metrics
used to evaluate algorithm performance, as well as the software and hardware resources used
to conduct research.

Throughout this chapter, it has been made evident that decisions surrounding algorithm
selection, evaluation metric selection and dataset selection are based on the literature re-
viewed in Chapter 2. This has ensured that techniques and resources used in this project
align with what is typical in the field of computer vision.

Moving forward, the aspects discussed in this chapter form the foundations of the case
studies in the following chapters. By establishing a robust methodological framework, this

research paves the way for future innovations and applications in the steel industry.
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Chapter 4: Hot Metal Ladle Pouring
Process Parameter and Process

Quality Estimation

In this chapter, a novel method is presented for tracking the motion of hot metal ladles
during pouring in harsh environmental conditions. By utilising Contrast-Limited Adaptive
Histogram Equalisation (CLAHE) for contrast enhancement, combined with Mask R-CNN
(Mask Region-based Convolutional Neural Network) for ladle segmentation, this work is an
innovative approach for monitoring ladle behaviour. As well as monitoring ladle pouring

height and rotation angle, flame severity is estimated as a process quality indicator.

4.1 Introduction

Pouring of hot metal into basic-oxygen furnace (BOF) vessels is a critical step of the steel-
making process. It is typically performed manually and is associated with challenges such as
harmful emissions in the form of flames, smoke and metallic dust due to reactions occurring
within the furnace, equipment degradation caused by reactions, and operational variability
due to inconsistent human performance. This drives the need for minimising emissions to
enhance workplace safety and extend the useful life of equipment, and standardising the
process through automation. A schematic of the pouring setup is shown in Figure [27]

One aim of this case study was to segment a hot metal ladle in each frame of a video with
a COCO (Common Objects in Context) mean average precision (mAP) of at least 0.5 (see
Section of Chapter 3 for more details on this metric). This was chosen as the acceptable
minimum performance before attempting to monitor ladle behaviour, and was a pragmatic
estimate based on the various mAP results reported throughout Chapter 2, as well as the
highly challenging conditions of the task. Challenges included poor lighting conditions, the
presence of smoke and dust obscuring the ladle, and resource-constraints with regards to
time and primarily data availability since it was difficult to obtain. These constraints are
akin to conditions present in industry. Additionally, another aim was to quantify the severity
of emissions in the furnace based on what was observable in the footage. By monitoring ladle
behaviour and the emission severity resulting from it, this research finally aimed to look at

the relationship between the two types of measurements and provide insight on how pouring
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process parameters affect the quality of the pouring process.

This work demonstrates how computer vision (CV) can be used for monitoring and op-
timisation of the pouring process. Other potential benefits include full process automation
in a closed-loop control system and gaining deeper insights for root-cause analysis and pre-
dictive maintenance strategies. These lead to reduced human error, improved health and
safety, improved environmental impact and cost savings. This work was largely a learning
experience that began during the infantile stages of the overall project, however it has laid

a strong foundation in the field for ladle monitoring applications. Source code is available

on GitHub [220].

BOF
Converter

Vessel Mouth Hot Metal

Ladle

Figure 27: Schematic representing the ladle pouring setup

4.2 Methodology

The data for this case study was generated by another researcher recording different ladle
pouring events. An overview of the methodology is given in Figure 28] which shows there were
five main steps. The first step of the methodology involved data preparation, which included
labelling frames, denoising them and then splitting them into training and validation sets.
The data prepared in this case study addresses the gap in Chapter 2 regarding the lack of
diverse datasets available for developing CV applications for steel production processes. This
was followed by the initial training and testing of an instance segmentation network using
the prepared ladle data. Mask R-CNN was selected for its state-of-the-art performance at
the time this case study began, as shown in Section of Chapter 2. Following training
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and testing, the hyperparameter optimisation was conducted which involved a large range of
configurations to maximise model performance. Afterwards, Kalman filtering was applied for
tracking of the predicted segmentation mask to improve model performance further. Finally,
the model was adapted to measure real-world characteristics in order to draw useful insights

for industry.

Model Training &
Testing

Hyperparameter
Optimisation

Kalman Filter
Tracking

Industrial
Application

Figure 28: Overview of the methodology used for Case Study 1
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4.2.1 Data Preparation

The first step of data preparation is labelling. Video frames were extracted at a rate of
one frame per second using frame extraction code. This rate was chosen as a minimalistic
approach, considering the original videos ran at over 30fps. This decision was made to lessen
the computational demands and simplify the task whilst still providing a visually adequate
output for analysis. The frames were labelled using the VGG (Visual Geometry Group)
Image Annotator [215], involving the creation of a polygon (mask) around the ladle in each
frame, which was then copied, pasted onto subsequent frames, and adjusted until all frames
were labelled.

During the labelling process, there were frames where parts of the ladle were occluded
by a metal structure that belonged to the furnace. To address this, three strategies were

considered:

e Labelling the ladle as if there were no obstructions.
e Labelling only the prominently visible part of the ladle.

e Labelling all visible sections of the ladle, whether completely or partially visible.

Of the proposed approaches, the first was found to be the most practical choice. It
provided the consistency required by Mask R-CNN whereas the other two methods led to
significant variations in shape due to occlusions.

The second step of data preparation is frame denoising. Figure illustrates that the
video had sub-optimal lighting conditions, leading to frames where the ladle appeared dis-
torted. This distortion negatively affected the performance of Mask R-CNN. To tackle this,
efforts were made to enhance the visual clarity by improving lighting conditions in the frames.
The approach to contrast enhancement involved initially converting the frames from RGB
to greyscale, before applying different methods of Histogram Equalisation (HE) to enhance
the lighting whilst preserving the overall quality of the frames. The specific variants of HE
that were used are detailed below.

HE requires initially transforming the frames into greyscale to acquire the intensity val-
ues for each pixel. These values range from 0 to 255, indicating the degree of darkness (0)
or lightness (255) of each pixel. Following this conversion, a histogram representing the
frequency of each intensity level was constructed. Figure 30| displays the histogram corre-
sponding to the greyscale image shown in Figure
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Figure 29: Frame with poor lighting, noticeable mostly around the right-side edge of the
ladle

After generating a histogram like the one in Figure [30] it became feasible to improve the
image contrast through equalisation, which involves utilising a broader range of intensity
values more frequently. The first step in this process was calculating the probability mass
function (PMF), which represents the likelihood of each intensity value appearing in the
image. This calculation was achieved by dividing the frequency of each intensity value, as
indicated in the histogram, by the total pixel count in the frame. This approach is detailed in
Equation where X generally represents any set of grey values in the image, p(z;) denotes
the probability of any specific greyscale value occurring, s is the frequency of occurrence of

that greyscale value, and S represents the total number of pixels in the frame [221].
p(z;) = P({s € §|X(s) = z:}) (8)

It was possible to calculate the cumulative distribution function (CDF') using the PMF, since
it is the cumulative sum of all PMF values. This is demonstrated in Equation @D where

F(z) represents the CDF up to a specified intensity level z [221].

F(z)=P(X <z), forany z € R 9)

For each CDF value, which was determined by accumulating along the PMF values, a multi-
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Figure 30: Greyscale histogram of the image in Figure showing greyscale values along

the x-axis and pixel frequency on the y-axis

plication was performed with the corresponding number of greyscale levels minus one. This
calculation was done to obtain new intensity values for the image [221].

Adaptive Histogram Equalisation (AHE), an advanced version of the standard HE tech-
nique, starts by partitioning the image into uniformly sized square sections. Standard HE
is then applied to each of these squares individually. This process results in a block-like
appearance in the image’s contrast, which is smoothed out using bilinear interpolation [222].

Due to the tendency of AHE to emphasise noise in areas where a square consists of pix-
els with mostly similar intensity values, contrast limiting can be applied before calculating
the CDF [223]. This involves establishing a threshold for pixel frequency and clipping the
histogram at this threshold before the CDF calculation, which helps prevent excessive en-
hancement of noise in uniform regions of the image. Contrast limiting is particularly effective
for images that exhibit a relatively uniform distribution of intensity values [224].

The third step of data preparation is splitting the dataset. For the initial aim of achieving
0.5 minimum mAP, 120 frames were used for training and 114 frames were used for testing.
These were essentially two different pouring videos. Whilst in many scenarios, it is typically
ideal to use a split of about 70% for training, 10% to 20% for validation and 10% to 20% for
testing, in this particular case the 120/114 split was a more logical approach. This was for
two reasons.

Firstly, the data available was limited. The maximum amount of ladle video frames were
594 and labelling a few hundred was highly time-consuming due to the complex ladle shape,
as well as the harsh environment the ladle existed in.

Secondly, rather than using random frames for training and testing, it was important that
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the model was trained on a full pour so that it was familiar with the whole process. Ideally,
the training and validation sets would have contained several full pouring videos, and there
would be a separate testing set for evaluating the model. To clarify, in this case study, the
validation set was used for both intra-epoch validation for model feedback during training, as
well as validation once it had been trained. This is not the same as using the same data for
training and testing, but still has the potential to result in some bias that eventually leads
to overfitting. This is fairly common practice in machine learning (ML) tasks where data is
limited, and bias can be mitigated through approaches such as hyperparameter optimisation.

Once the model was proven to work, the remaining 360 frames available were labelled

and added to the training set to improve performance for industrial application.

4.2.2 Model Training and Testing

Mask R-CNN was trained and tested using a NVIDIA GeForce RTX 2070 Super GPU
(graphical processing unit). Network weights were pre-trained on the COCO dataset before
being used for this case study. This reduced time and computational expense by ensuring
the model was somewhat familiar with general objects, their features and their contexts.
Steel production environments are different to the common objects in the COCO dataset,
however pre-training is still beneficial for providing the model foundational knowledge of
objects, boundaries, colours and other aspects of complex scenes. This is the first step
before fine-tuning the model on the specialised area of steelmaking. A dataset that is similar
to the COCO dataset but based on steelmaking environments would be highly valuable,

since it could be used to accelerate the state of steelmaking technology significantly.

4.2.3 Mask R-CNN Hyperparameter Optimisation

The first part of the hyperparameter optimisation consisted of several grid searches using
a variety of settings. These included the choice of backbone, the layers re-trained (after
the COCO pre-training), the image resizing, augmentation and mini-mask configurations,
as well as the weight decay. The second part of the hyperparameter optimisation consisted
of six “efficient grid search” (EGS) setups. The experimental design of these searches were
inspired by both grid search [225] and Taguchi’s orthogonal arrays [226]. This approach
used orthogonal arrays to dictate the style of grid searches by using levels and settings in the
same combinations as they would be used in Design of Experiments (DoE). This way, grid
searches could be performed on multiple hyperparameters simultaneously whilst minimising

the number of experiments. Since there were a large number of hyperparameters tested (24),
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it was important to organise the experimental design into multiple groups. In this case study,
EGS setups each contained anywhere from two to five hyperparameters. After each EGS,
the best model was taken forwards which was decided primarily based on mAP, however
at times, visual judgement did also come into the decision-making process. The order of
initial grid searches, as well as all EGS setups, was chosen strategically in order to maximise
benefits such as model performance and research findings. This was conducted by following
an order that in most cases, aligned with the order of interaction of each hyperparameter
during model training and testing. This was not the case for every single hyperparameter
as Mask R-CNN is complex and sometimes has functions running in parallel. Additionally,
since the case study was a learning process, some hyperparameters such as “pool size” were
incorrectly ordered. The hyperparameters and their settings can be seen in Table |3|in order

of experimentation.

Table 3: Hyperparameters and settings for optimisation where “CNN” is convolutional
neural network, “ResNet” is Residual Neural Network, “RPN” is region proposal network,
“Bbox” refers to “bounding box”, “MRCNN" is Mask R-CNN, “NMS” is non-maximum

suppression and “Rol” is region of interest

Hyperparameter

Settings

CNN backbone
Layers re-trained
Image resizing
Augmentation
Mini-mask
Weight decay

ResNetb0, ResNet101

heads, 3+, 4+, 5+, all

none, squarel024, square2048, pad1024, pad2048
off, on

off, on-56, on-112, on-224

0.01, 0.001, 0.0001

EGS 1
Steps per epoch 250, 500, 1000
Validation steps 10, 25, 50
EGS 2
Epochs 10, 20, 30
Learning rate 0.0001, 0.001, 0.02
Learning momentum 0.5, 0.9, 0.99
Gradient clip norm 2.5,5,10

Continued on next page
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Table 3 — continued from previous page

Hyperparameter Settings
EGS 3
RPN class loss 1,2,3
RPN bbox loss 1,2, 3
MRCNN class loss 1,2,3
MRCNN bbox loss 1,2,3
MRCNN mask loss 1,2,3
EGS 4
RPN anchor scales (16, 32, 64, 128, 256), (32, 64, 128, 256, 512), (64, 128,
256, 512, 1024)
RPN anchor ratios (0.25, 0.5, 1), (0.5, 1, 2), (1, 2, 4)
RPN anchor stride 1,2, 3
RPN NMS threshold 0.7, 0.8, 0.9

RPN train anchors per image 128, 256, 512

EGS 5
Pre-NMS limit 3000, 6000, 12000
Post-NMS training Rols 1000, 2000, 4000
Post-NMS Rols inference 500, 1000, 2000

Train Rols per image 100, 200, 400
Rol positive ratio 0.25, 0.33, 0.5
EGS 6
Pool size 7, 14, 28
Mask pool size 14, 28, 56
Mask shape 28, 56, 112

4.2.3.1 CNN Backbone

The CNN backbone is a large network consisting of many layers, primarily convolutional
layers, hence the name. The backbone is a fundamental part of Mask R-CNN and is used
for feature extraction. ResNetb0 and ResNet101 are typical choices due to having proven

high performance and reasonable computational efficiency in many other tasks [227].
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4.2.3.2 Layers Re-trained

The CNN backbone layers are divided up into stages. Since it is already pre-trained on the
COCO dataset, the number of layers re-trained using custom data is optional, so the user
dictates the depth of fine-tuning. Whilst “heads” only trains the top network layers, “3+"
trains Stage 3 and up, “44” trains Stage 4 and up, “5+” trains Stage 5 and up and “all”
re-trains all layers [227].

4.2.3.3 Image Resizing

Image resizing mostly relates to processing efficiency and aspect ratio. Making images smaller
reduces computational load, making them square can improve or worsen performance often
depending on whether original image sizes are uniform or not, and pad64 ensures a certain

image size is obtained whilst preserving image quality through padding [227].

4.2.3.4 Augmentation

Augmentation can help to improve model robustness when the dataset is limited, by pro-
cessing data in various ways to increase the dataset diversity and number of samples. The
augmentation in Mask R-CNN was limited to horizontal flipping by default. It was possible
to perform custom augmentation however this was not attempted due to time constraints,

and was unlikely to be of any benefit due to the complexity of this particular scenario.

4.2.3.5 Mini-Mask

The normal mask of an object is based on the bounding box of an object and so has edges
that touch the bounding box. Alternatively, a mini-mask that wraps more tightly around the
object can be used [228]. Whilst it can affect model performance by missing small details, it
is more computationally efficient [228]. The default size was (56, 56) and since the ladle was
likely to be no smaller than this, other settings chosen were (112, 112) and (224, 224) [227].

4.2.3.6 Weight Decay

Weight decay is also known as L2 regularisation and essentially adds a term to the loss
function which is proportional to the sum of the squares of the weights [198]. It does this
to prevent overfitting by lessening the effect of large weights [I98]. The default setting
chosen by the developers of Mask R-CNN was 0.0001 and generally the optimal value of this

85



hyperparameter can vary largely between 0.1 and 0.00001 depending on how much overfitting
needs to be counteracted [227]. Therefore, values of 0.0001, 0.001 and 0.01 were used here.

4.2.3.7 Steps Per Epoch

This is the number of batches of samples processed at once by the model during training.
After each batch is processed, the model updates weights and biases for each neuron [227].
More steps per epoch takes longer but is less computationally intensive. The default was
1000 and this was time-consuming so it was halved once and twice for two more optimisation

settings.

4.2.3.8 Validation Steps

Validation steps is the amount of validation steps performed at the end of each epoch. A
higher number improves validation performance but slows down training [227]. The default
was 50 steps which was time-consuming and so this was halved to 25 and then reduced

further to ten since 12.5 steps were not possible.

4.2.3.9 Epochs

Epochs dictates the number of times the full training dataset is passed through the network
and largely influences overall model performance. More epochs give the model a chance to
learn more from the data, however too much of this can cause overfitting. The default was
20 epochs which was treated as a moderate setting so ten and 30 epochs were used in the

optimisation.

4.2.3.10 Learning Rate

Learning rate (LR) controls the size of the steps the SGD (stochastic gradient descent)
optimiser takes during training [227, 229]. A smaller learning rate allows for more granular
learning but is generally slower, whilst a larger learning rate speeds up learning but may

result in lower performance.

4.2.3.11 Learning Momentum

Learning momentum (LM) adds a fraction of the previous step’s vector to the current step,

which allows the optimiser to accelerate in directions where there is a consistent reduction
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in the loss function [230]. The default setting was 0.9 and typical ranges seemed to be from

0.5 to 0.99, and so these two extremities were used also for optimisation [227], 231], 232]

4.2.3.12 Gradient Clip Normalisation

Gradient clip normalisation (GCN) is a technique used to clip gradients to prevent the
exploding gradient problem where large gradients cause the model to destabilise during
training. The default value is five and a value of one has been known to work [233]. Not
much information could be found on this hyperparameter and so 2.5 was used as the smallest
experimental setting and ten was used as the largest, effectively halving and doubling the
default.

4.2.3.13 Loss Weights

All of the loss weights dictate how much the learning process is optimised for different
components of Mask R-CNN. By weighting one loss higher than other, the model will learn
to improve in the higher weighted component relative to the lower weighted component.
RPN class loss can be used to emphasise whether anchors contain objects or not, RPN bbox
loss can emphasise the bounding box coordinates for each anchor, Mask R-CNN class loss
can emphasise the accuracy of object categories during classification, Mask R-CNN bbox
loss can emphasise the precision of bounding box coordinates of detected objects and Mask
R-CNN mask loss can emphasise accuracy of pixel-level mask predictions [229]. The default
for all losses was one, and experimental settings of two and three were also used, as this
aligned with the number of settings in the orthogonal array without making any weights too
extreme [227].

4.2.3.14 RPN Anchor Scales, Ratios and Stride

Scales, ratios and stride dictate the size, aspect ratio and density of anchors used for region
proposal respectively [227]. Different values are appropriate depending on the scenario, and
so the default settings were used as a moderate level and were halved and doubled to give
the other experimental settings. Anchor stride was an exception to this since the default

was one, so in this case two and three were used [227].
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4.2.3.15 RPN NMS Threshold

This threshold controls the NMS process which effectively filters out overlapping bounding
boxes by keeping the best boxes and filtering out boxes which overlap with them [234]. The
threshold dictates how much overlap there has to be with a high confidence box for a lower
confidence box to be removed [234]. The higher the threshold, the more boxes are kept.

4.2.3.16 RPN Train Anchors Per Image

The number of anchors used in each image to train the RPN are decided using this hyper-
parameter [227]. The higher this number, the more likely detection performance is to be
improved, however it also increases computational load. The default was 256 and this was
treated as moderate, giving half and double this as the other two settings for experimenta-

tion.

4.2.3.17 Pre-NMS Limit

The pre-NMS limit is the maximum number of proposals possible to use before applying
NMS [227]. Depending on the objectness of proposals (likelihood to contain an object),
some may be filtered out to leave only top scoring proposals for further processing. This
helps improve computational load but if it is too small then it could affect performance.
Similarly to other hyperparameters, the default value of 6000 proposals, as well as half and

double this, were used for experimentation [227, 229].

4.2.3.18 Post-NMS Training and Inference Rols

These hyperparameters are similar to the pre-NMS limit, except they are applied after NMS
to further reduce proposal redundancy [227, 229]. Whilst training regions of interest (Rols)
are used during training, inference Rols are used during inference [227, 229]. Both should be
selected to achieve a balance of performance and computational efficiency, and so the default

values, as well as half and double of them were used.

4.2.3.19 Train Rols Per Image

This is the number of Rols finally chosen for training on each image, similarly to post-NMS
training Rols, except this hyperparameter makes the final decision [227, 229]. The default
was 200 and so this was halved and doubled.
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4.2.3.20 Rol Positive Ratio

This determines the ratio of proposals that are considered objects compared to background.
For example, a value of 0.25 assumes 25% of the sampled proposals are overlapping with the
ladle and should therefore be used to train the network [227, 229]. The default value was
0.33, whilst 0.25 was used to force the model to focus more on distinguishing the ladle from
the background, and 0.5 was used to give an equal balance to the ladle and the background

to see if learning from both equally was beneficial [227].

4.2.3.21 Pool Size

Pool size is the size of the feature map extracted from each Rol for classification and bounding
box regression [227,229]. A larger pool size can contain more detailed information but carries
a heavier computational load. Again, finding the right balance is the aim, and the default
of seven was doubled once to 14, and twice to 28 since the ladle scenario was complex and

was likely to benefit from more information [227].

4.2.3.22 Mask Pool Size

The mask pool size is the size of the feature map extracted from each Rol for mask prediction
[227, 229]. It is similar to the pool size but is focused on generating masks for instance
segmentation, rather than classification or object detection [227 229]. The default of 14 was
doubled to 28, and again to 56 since the ladle scenario was complex and was likely to benefit

from more information [227].

4.2.3.23 Mask Shape

The mask shape is the resolution of the binary output mask for each object and defines the
level of detail provided for final mask predictions [227, 229]. Again, the optimal size is a
trade-off between performance and computational load. The default was (28,28) and since
the mask pool size was doubled twice for experimentation, the mask shape was set to align
with this [227].

4.2.4 Kalman Filter Tracking

Following Mask R-CNN optimisation, efforts were made to enhance the model’s tracking

capabilities over sequential frames by integrating edge refinement and stabilisation through
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Kalman filtering. The Kalman filter is a computational method used for predicting the
future trajectory of an object, and was used to associate masks between sequential frames
to enhance the model’s understanding of the ladle shape as it moved throughout videos (as
opposed to individual frames). This is inspired by the likes of CNN-LSTM models (where
“LSTM” abbreviates “long short-term memory” and DeepSORT (Deep Simple Online and
Real-Time Tracking) reported in the literature and reviewed in Section of Chapter 2
[86], 87, 88, [90]. Kalman filters utilise a set of five recursive equations to forecast unknown
variables of a system.

The algorithm firstly involves an initial estimation or prediction of the system state,
which is then refined based on feedback using data that may contain noise. The prediction
phase uses Equation and Equation to derive the current state and error covariance
estimates. This process results in what is known as the a priori estimate for the next time
step. In the update phase, covered by Equations —, a new measurement is included in
this a priori estimate, leading to an updated, or a posteriori, estimate [68]. Further details
of this process are given below.

In Equation , the first predict step element, which is the a prior: next state estima-
tion (Z,,,), is calculated by adding the product of the state transition matrix (Ay), and the
a priori estimate for the current step (Zy), to the product of the control input matrix and

the control vector (Buy) [68].

CAC];_H = A,z + Buy (10)

Next, as shown in Equation , the error covariance a priori estimate for the next step
(P4 1), is calculated by the adding the product of the transition matrix and the current error

covariance a posteriori estimation (Fy), to the transition matrix and process noise (Qy) [68].

Py = AP+ AL + Qx (11)

The first part of the update step is shown in Equation ((12)), where the optimal Kalman gain
(K}), is calculated using the current error covariance a priori estimate (P, ), the Jacobian

matrix (Hy), and the measurement error covariance (Ry) [68].

Ky = P, HI (H P, HF + R;,) ™ (12)
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The a posteriori state estimate (), is calculated in Equation (13)) using the a priori state

estimate, the Kalman gain, and the actual measurement (z;) [68].

The error covariance a posteriori estimate (Fy), is calculated in Equation ((14) using an iden-
tity matrix (/), the Kalman gain, the Jacobian matrix, and the current step a priori error

covariance [68].

P, = (I — K Hy) Py (14)

The concept behind using Kalman filtering for this case study, was to assign a separate filter
to each point in a set of points, which were sampled from the edges of the mask initially
predicted by Mask R-CNN. The hypothesis was that each filter would process the pixel
coordinates of its corresponding edge point from successive frames as input. The expectation
was that the Kalman filter’s updated predictions would refine the initial predictions made
by Mask R-CNN. When these refined point predictions were used collectively, they were
anticipated to enhance the overall mAP whilst stabilising the mask over sequential frames
so that it became less erratic.

To implement this, edge pixels of the original Mask R-CNN mask were identified through
image processing using OpenCV, and their coordinates were stored in a list. A fixed number
of these points (32) were then sampled and input into the Kalman filters. Each filter was
responsible for tracking an individual point, leading to a sequence of multi-point predictions
that collectively comprised a refined mask.

To mitigate the jaggedness that naturally occurred from Kalman filter predictions, a con-
vex hull (see Figure was constructed using the gift wrapping algorithm on the predicted
points [235]. The convex hull was designed to be the most efficient boundary that enclosed
all points whilst maintaining all interior angles below 180° [236]. To ensure the convex hull
was formed by a smooth set of points, K-Nearest Neighbours (KNN) was used to preserve
the points closer together (which typically sat along the ladle edge) whilst excluding the
surrounding points that were less accurate. The KNN background subtraction (BGS) algo-
rithm discussed later is based on K-Nearest Neighbours but to be clear, it is not the exact
same approach.

After establishing the convex hull, the state transition matrices of the Kalman filters were
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Figure 31: Example of a convex hull

refined through a series of experiments. The state transition matrix is a crucial component
in Kalman filtering that connects the current state of the system, with its state at the next
time step. It essentially guides the transition from one state to another [68].

In this particular application, the state transition matrix, with dimensions of 4x4, was
used to model the movement of points across frames. The fact that the problem was in 2D
meant that the matrix accounted for the x and y positions and velocities of the points, each
represented by a separate row in the matrix. The elements within each row of this matrix
correspond to variables in the 2D kinematic equations and so they can be adjusted based on
available information on the system [237]. The essence of kinematics is to predict the future
position and velocity of an object based on its current state and motion dynamics. In this
case, acceleration is assumed to be zero and velocity is assumed to be constant.

Initially, the optimal values for the state transitions were unknown. Therefore, experi-
mental adjustments were made, starting by incrementally altering the default value for x;_;
from one to ten, in attempt to align them with what was observable in the ladle footage.
After each increment, the impact on the mAP was assessed, and the value yielding the high-
est mAP was retained. This methodology was then replicated for y;_, whilst keeping the
previously optimised value for x;_;. The same procedure was applied to the remaining two
variables to refine the transition matrix further.

The default state transition matrix A, is present in Equation and written in full
form in Equation [237]. Tt is a matrix representation of the constant velocity model in
kinematics. Elements that are equal to one are multipliers for terms corresponding in the a
priori estimate for the current step also known as the state vector,  (see Equation (16])).

Whilst elements in Ay carry over system information from one time step to the next, (in-
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cluding the At elements which account for the effect of velocity on position over the given
time interval), the 2 elements represent the x position, y position, x velocity and y velocity
in descending order of Equation . Therefore, the elements of A, can be modified to align

with what is observed in the ladle footage, to fine-tune Kalman filter performance.

1 0 At 0
01 0 At
Ay = (15)
0 0 1 0
0 0 O 1
Tk—1
i= | (16)
Tr—1
Yk—1

4.3 Results and Discussion

This section presents and discusses results obtained from experimentation described in Sec-
tion 4.2 which begins with the results of denoising data via contrast enhancement, before
moving onto Mask R-CNN application. Following the development and optimisation of Mask
R-CNN;, this section investigates the effectiveness of Kalman filtering in enhancing the accu-
racy of the predicted segmentation masks. Additionally, the results of experimenting with

different background subtraction algorithms are included.

4.3.1 Denoising Data

In Figure and Figure [33] the left column contains “good contrast” images, the middle
column contains “moderate contrast” images and the right column “poor contrast”. Fig-
ure (a) is after converting to greyscale but before denoising, and the remaining rows each
show the results of the various denoising techniques described in Section 4.2.1. The aim of
denoising was to enhance image contrast to ensure there was a more distinct ladle visible
within the data so the model could learn and predict with more ease. Important details to
consider when evaluating the results in Figure 32| and Figure are clarity of the ladle edges

and the brightness of the furnace flame.
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Figure 32: Good (left), moderate (center), and poor (right) quality contrast frames for (a) original greyscale, (b) HE, and (c)
CLAHE



g6

(a)

(b)

(c)

Figure 33: Good (left), moderate (center), and poor (right) quality contrast frames for (a) BPBHE (Note that these are sup-
posed to be white), (b) Gaussian BPDFHE, and (c) Triangular BPDFHE



HE results in Figure [32b) show a significant improvement with regards to ladle edge
visibility compared to the greyscale images. This is especially evident in the poor contrast
image, where the top-right quarter of the ladle changes from almost completely invisible to
clearly lighter than the background. However, with regards to the furnace flame brightness,
lens flare is significantly increased. Looking at the poor image, despite the overall change in
image aesthetic, increased lens flare does not appear to be distorting any important aspects of
the image. Contrarily, the good image could be considered worse than before HE application,
as the ladle edges, particularly in the top-right quarter, are less distinct than before.

Standard HE smooths out the histogram of the intensity values for each pixel, effectively
reducing extremities, and the bright furnace flame is a large extremity compared to the
surrounding dark pixels. Therefore, since HE equalises over the whole image at once, the
brightness of the furnace flame is distributed over the rest of the image. This is effective for
the poor image because it is extremely dark everywhere except the flame location, so this is
a good “source of light”. However, in the poor image, there is already some clarity present
in the image before HE. Dispersing the extreme brightness from the flame to the already
relatively bright pixels causes some extreme brightness to occur farther away from the flame,
which includes pixels constituting the ladle edges.

CLAHE results in Figure (C) equalises multiple histograms representing divided “tiles”
of the image to prevent over-enhancement of noise in homogeneous regions, which is the issue
with the HE results. Therefore, a significantly improved and more balanced performance
across varying contrast qualities is observable in the CLAHE results.

Brightness Preserving Bi-Histogram Equalisation (BPBHE) is designed to preserve the
mean brightness of an image, and in this case, Figure (a) shows application has resulted
in bright white images for all three contrast qualities. This indicates that the mean intensity
value is high (higher intensity pixels are whiter), so the higher intensity sub-image must
contain extremely bright pixels and upon equalisation, produces a white image. Meanwhile,
the lower intensity sub-image contains some moderately dark pixels and some very bright
pixels. When the sub-images are combined, overall intensity values are very high, which
explains the extreme brightness that can be seen.

Results for the Brightness Preserving Dynamic Fuzzy Histogram Equalisation (BPDFHE)
Gaussian variant are shown in Figure [33(b), and results for the triangular variant are shown
in Figure 33|(c). Both variants had an insignificant effect on the images. The brightness
surrounding the flame was re-distributed, but no edges were made clearer. Despite this

being a brightness-preserving variant like BPBHE, there is a great difference in the output
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Figure 34: Figure showing the ladle edge in the original video (left), greyscale video (cen-
ter) and denoised video (right)

of both methods. BPDFHE uses the fuzzy domain to process grey value inexactness better
than in BPBHE, combined with fuzzy statistics that prevent random fluctuations in the
histogram (such as the small black areas in BPBHE output).

The best technique appeared to be CLAHE, which aligned with the literature presented
in Section of Chapter 2. Figure |34] shows clearly the difference in edge visibility before
and after CLAHE.

The performance of Mask R-CNN when trained and tested on denoised and original data
was compared. This followed the format of the hyperparameter optimisation to analyse how
CLAHE affected mAP with different model configurations, rather than just looking at one
specific configuration. The first part of the hyperparameter optimisation was to test and
evaluate the different in Mask R-CNN performance when different backbones (ResNet50
and ResNet101) were used, and when different numbers of re-trained layers were used. As
will be discussed later, this led to five experiments for each backbone which included re-
training of just the network heads, re-training of layers comprising Stage 3 and up, Stage
4 and up, Stage 5 and up, and finally re-training all layers of Mask R-CNN. To evaluate
the effectiveness of applying CLAHE, ResNet101 with the five aforementioned re-training
approaches was used. The results of this evaluation are shown in Table

The results in Table [] show that in four out of five cases, using CLAHE significantly
improved mAP. Also, the highest mAP of all experiments by a significant amount, used
CLAHE and model re-training from Stage 3 and up. However, when re-training all layers,

using the original data with no contrast enhancement resulted in better performance, and
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Table 4: mAP comparison pre-optimisation for original and denoised data

Layers Re-Trained mAPgoco (Original Frames) mAPcoco (CLAHE)

Heads 0.004 0.112
3+ 0.008 0.276
4+ 0.056 0.131
o+ 0.027 0.158
All 0.197 0.113

this was the second highest of all experiments reported in Table[d Therefore, results suggest

CLAHE is effective at improving model performance in environments with poor lighting.

4.3.2 Mask R-CNN Initial Optimisation

Table |5 shows results from the first set of experiments based on the choice of CNN backbone
(ResNet50 or ResNet101) and the amount of layers re-trained after pre-training on the COCO
set (see Section for explanation on stages and re-trained layers). In this chapter, both
epoch and total training times are reported. Whilst epoch time provides insight into the
efficiency of each training iteration, total train time offers a comprehensive view of the overall
time consumption of each experiment. This highlights time and compute expense for each
configuration.

The results show that firstly, ResNet101 takes longer to train than ResNet50 which is
because it has approximately twice the number of layers. Also, across both ResNets, there
was a clear trend of less re-training requiring less time, which makes sense since the data
has to be passed through a smaller number of layers. In terms of losses, the training losses
of ResNet101 are generally lower (better) than the ResNet50 training losses, which is likely
due to the additional complexity that ResNet101 can handle over ResNet50. However, the
validation losses for both models are high, which combined with the much lower training
losses indicates that both models overfitted, which typically leads to poorer generalisation
on unseen data. Since two different ResNets were re-trained to various extents, the models
are likely not the issue here, but rather the training strategy or the data. The best epoch
from each experiment was used and so any overtraining past the optimal point is not included

in Table |5, which significantly reduces the likelihood of the low performance being due to
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the training strategy. Therefore, quality or quantity of the data are responsible. Data was
labelled carefully but was limited in size, indicating that model results could be improved
with more data. The large difference in training and validation losses also suggest that the
validation set is unrepresentative of the training and testing sets. This could be due to
including outliers in the validation set, or not having a large enough dataset to properly
validate the model. Whilst there were no strong trends with regards to mAP, ResNet101
tended to have higher mAP values than ResNet50, which aligns with the better training
losses and is due to ResNet101’s better capabilities at learning complex data.

Overall the experimental results in Table 9| indicate the dataset was lacking in size.
As shown throughout this chapter, the model was still developed to achieve reasonable
performance through hyperparameter optimisation. In Table [5], using ResNet101 whilst re-
training the third stage and up resulted in significantly better performance than other setups

(0.276 mAP, shown in bold) and was therefore taken forward to the next stage.

Table 5: Backbone and re-trained layers experimental results

Epoch Train Train  Val. Inf. .
Backbone Layers Precision Recall mAPcoco

Time (s) Time (s) Loss Loss Time (s)

ResNet50 All 1698 33950  0.587 1.996  0.440 0.102 0.102 0.092
ResNetb0 3+ 1683 33657  0.586 2.440  0.434 0.153 0.153 0.149
ResNet50 44 1656 33126  0.561 2.646  0.331 0.131 0.131 0.125
ResNetd0 5+ 1543 30855  0.339 3.078  0.392 0.109 0.109 0.107
ResNet50  Heads 1339 26781  0.606 2.177  0.349 0.129 0.129 0.128

ResNet101 All 1971 39416  0.480 2.909  0.365 0.128 0.128 0.113
ResNet101 3+ 1834 36671 0474 2447  0.361 0.257 0.276 0.276
ResNet101 4+ 1816 36319 0479 2.547  0.447 0.127 0.133 0.131
ResNet101 5+ 1622 32430  0.469 2.693  0.367 0.159 0.159 0.158
ResNet101 Heads 1407 28137 0.528 2325  0.350 0.112 0.112 0.112
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Table [0] shows results from the experiments based on image resizing settings. Style set-
tings included none, square, pad64 and crop, and dimension settings allowed more customi-
sation. These settings are described in Section 4.2.3.3. Results show that the pad64-1024
resizing yielded the best results in terms of precision, recall and mAP. This was followed
by no resizing, suggesting that resizing the image to make it square was detrimental to
performance. This is because the ladle shape is unique and quite complex, and therefore
forcing the shape to ensure the overall image is square, especially in the harsh environment,
compromises feature extraction. No image resizing was most efficient in terms of inference
time, which is because it requires the least processing, whilst pad64-1024 was the second
slowest after square-2048, which was not due to any obvious reason since it was more com-
putationally lightweight than pad64-2048. The trend in inference times was similar to the
trend in training times, suggesting the pad64-1024 configuration was less efficient than other
configurations, however the difference is minimal. pad64-1024 had the lowest training loss
and the highest mAP during testing, however it also had the highest validation loss and the
largest difference between training and validation losses. As mentioned in Table [5| discus-
sion, a larger validation loss often suggests poorer generalisation on new data, and a large
difference between training and validation losses indicates overfitting, which also leads to
poorer generalisation.

Data points collected from no image resizing are from the best experiment in Table
for efficiency, since the optimisation process was broad and configurations from Table [5| did
not change at the beginning of the Table [6] experiments. This was continued throughout
the optimisation process. In Table [6] using pad64-1024 image resizing resulted in the best

performance (0.282 mAP, shown in bold) and was therefore taken forward to the next stage.

Table 6: Image resizing experimental results

Image Epoch Train Train  Val. Inf. o
Precision Recall mAPcoco
Resizing  Time (s) Time (s) Loss Loss Time (s)

None 1392 27843 0472 0.985 0.361 0.257 0.276 0.276
Square-1024 1350 26997 0479 2.046 0.368 0.116 0.116 0.105
Square-2048 1433 28668  0.453 1.094  0.516 0.208 0.208 0.204
Pad64-1024 1364 27284  0.443 1.620 0.410 0.304 0.304 0.282
Pad64-2048 1290 25804  0.482 0.912 0.375 0.178 0.178 0.173
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Table [7] shows results from the third set of experiments which were based on the aug-
mentation settings. Evidently, mAP, precision and recall were significantly higher when
augmentation was not applied. Similarly to the image resizing discussion, this could be
due to the ladle shape complexity and harsh lighting conditions observable in the footage,
meaning only the original data was capable of containing sufficiently high quality features
for the model to learn from. Interestingly, whilst the non-augmented data experiment had a
large difference between training and validation losses as already discussed regarding image
resizing, the augmented data experiment had a significantly smaller gap, smaller than any
of the image resizing experiments and small enough to be more typical of successful model
training. For augmentation, there was only about a 10% increase in loss from training to
validation, suggesting the model found slightly more difficulty in predicting when it was
being challenged rather than taught through labels. Since the performance was still poorer
than when using no augmentation, this could just be by chance. However, the difference in
loss gaps between the two experiments, and the nature of augmentation procedures, suggests
that training and validation sets were originally too dissimilar, whilst training and testing
sets were more similar. Therefore, when augmentation was applied to training and validation
sets, it made them more similar resulting in a much smaller loss gap, however the training
data became much less similar to the testing set, resulting in lower overall performance.
These results emphasise the benefits of augmentation whilst also suggesting that the size
and distribution of the dataset used in this optimisation were insufficient. In Table [7], using
no augmentation resulted in the best performance (0.282 mAP, shown in bold) and was

therefore taken forward to the next stage of the optimisation.

Table 7: Augmentation experimental results

Epoch Train Train  Val. Inf. .
Augmentation Precision Recall mAPcoco
Time (s) Time (s) Loss Loss Time (s)
FALSE 1364 27284 0.443 1.620 0.410 0.304 0.304 0.282
TRUE 1302 26032 0.586 0.648 0.301 0.123 0.123 0.103

Table [§] shows results from mini-mask experiments, which show that model performance
decreased significantly with both the application of a mini-mask, as well as increasing mini-
mask size. Furthermore, the use of a mini-mask added a large computational strain, shown by
the (112, 112) mini-mask training failing roughly half way through and the (224, 224) mini-

mask failing completely, due to out-of-memory (OOM) errors. The purpose of mini-masks
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is to improve memory efficiency, however increasing mini-mask size still increases memory
requirements. Therefore, these results suggest that somewhere between (56, 56) and (112,
112), the increased memory usage from the size of the mini-mask begins to outweigh memory
saved. There were no trends in terms of training or inference times. In Table [§] using no
mini-mask resulted in the best performance (0.282 mAP, shown in bold) and was therefore

taken forward to the next stage.

Table 8: Mini-mask experimental results

Mini-Mask  Epoch Train Train  Val. Inf. o
Precision Recall mAPgoco

Size Time (s) Time (s) Loss  Loss Time (s)

NA 1364 27284 0.443 1.620 0.410 0.304 0.304 0.282
96,56 1230 24605 0.479 1.362 0.330 0.187 0.187 0.156
112,112 1242 9933 (OOM) 0.011 3.206 0.485 0.043 0.043 0.041
224,224 OOM OOM OOM OOM  OOM OOM OOM OOM

Table [0 shows results from weight decay experiments, which show mAP was much higher
when weight decay was lower. In fact, when weight decay was 0.01 and 0.001, results were
mostly the same. Meanwhile, when weight decay was 0.0001 performance metrics were much
better, suggesting a lower weight decay was more effective and at some point between 0.0001
and 0.001, there was a cut-off where increasing weight decay no longer affected performance.
Interestingly, the difference between training and validation losses increased with decreasing
weight decay, suggesting a trade-off between overfitting risk and model performance, which
is common in computer vision. There were no trends in terms of training or inference times.
In Table |§|, using a weight decay value of 0.0001 resulted in the best performance (0.282

mAP, shown in bold) and was therefore taken to the next stage.

Table 9: Weight decay experimental results

Weight  Epoch Train ~ Train  Val. Inf.

Precision Recall mAPcoco
Decay Time (s) Time (s) Loss Loss Time (s)

0.01 1255 25107 0.464 0.994  0.367 0.025 0.025 0.025
0.001 1209 24184  0.448 1.553  0.358 0.025 0.025 0.025
0.0001 1364 27284  0.443 1.620  0.410 0.304 0.304 0.282
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4.3.3 Mask R-CNN Efficient Grid Search Optimisation

The initial optimisation included the backbone, the layers re-trained after pre-training, and
settings for image resizing, augmentation, mini-masking, and weight decay. The second
part of the optimisation consisted of the six “efficient grid search” (EGS) setups mentioned
in Section [£.2.3] As previously mentioned, the design of these searches were inspired by
both grid search [225] and Taguchi’s orthogonal arrays [226]. For each search, discussion is
supported by a table of results and an interaction plot which shows how changing different

hyperparameters affected performance.

4.3.3.1 Efficient Grid Search 1

Table [10] shows experimental results from EGS 1 which included steps per epoch and val-
idation steps (definitions are in Section . The letters “P” and “R” represent precision
and recall, respectively. Training time generally increased with more steps per epoch and
more validation steps. This is because more steps per epoch means more batches of data
processed during one epoch, and more validation steps means more computations are per-
formed at the end of each epoch. There were also a few outliers which were likely due to
inherent variability in system performance. Factors such as background processes and small
variations in hardware performance can cause these fluctuations.

The interaction plot in Figure suggests the impact of the two hyperparameters on
mAP. As shown, there was a tendency for mAP to be higher with more steps per epoch,
however this effect was relatively small and could be due to random variability present in
neural networks. Additionally, the validation steps appeared to have a more significant
impact where using 50 over 25 or ten correlated with a significant increase in mAP.

The fact that the default values (1000 steps per epoch and 50 validation steps) gave the
best performance overall, suggests that the developers of Mask R-CNN already optimised
these settings either for another use-case or for general performance which seemingly aligns

with this study. This was found with other configurations too.
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Table 10: EGS 1 experimental results

Exp. No. Steps Val. Epoch Train ~ Train  Val. Inf. p R mAPeoco
Per Epoch Steps Time (s) Time (s) Loss Loss Time (s)
1 250 10 1244 21153  0.487 1.642 0.325 0.079 0.082 0.076
2 250 25 1271 24141 0.024 2.327 0.326 0.043 0.044 0.044
3 250 50 1382 27633  0.461 0.948  0.427  0.090 0.093 0.078
4 500 10 1264 25281 0.459 0.924 0.360 0.122 0.122 0.119
) 500 25 1327 26540  0.457 1.168 0.343 0.021 0.021 0.018
6 500 50 1368 27361  0.033 1.528 0.369 0.242  0.242 0.204
7 1000 10 1465 29294  0.147 1.292 0.457  0.064 0.064 0.048
8 1000 25 1283 25655  0.460 1.388 0.449 0.064 0.064 0.048
9 1000 50 1364 27284  0.443 1.629 0.410 0.304 0.304 0.282




1 2 3
Hyperparameter Setting

—o—Steps Per Epoch —e— Validation Steps

Figure 35: Interaction plot for EGS 1 which shows the average mAP score achieved for

each setting of the “steps per epoch” and “validation steps” hyperparameters
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4.3.3.2 Efficient Grid Search 2

Table [L1]shows experimental results from EGS 2 which included epochs, learning rate, learn-
ing momentum and gradient clip normalisation. Differently to previous experiments, the
best model was not taken forward from the previous set of experiments due to the Taguchi-
inspired orthogonal arrays not naturally aligning all of the previous configurations for any
one experiment. Unsurprisingly, the overall training time approximately double and tripled
when increasing epochs from ten to 20 and 30 respectively. Meanwhile, this appeared to
have no positive effect on overall performance, suggesting that ten epochs was enough to
maximise model performance. This was further supported by the fact that for all sets of
experiments up until this point, the best epoch was between the first and the tenth.

An interaction plot is shown in Figure [36| which visualises the impact of different hyper-
parameters on the mAP. The graph suggests that a higher learning momentum generally
resulted in a higher mAP and the lowest learning rate resulted in higher mAP values. Mean-
while, the graph suggests that the gradient clip normalisation had the largest impact on mAP
but with no obvious trend. A lower learning rate allows the model to learn more gradually,
therefore learning more nuanced features, whilst a higher learning momentum helps to avoid
local minima. However, all hyperparameters in EGS 2 would benefit from more thorough
analysis, possibly in separate experiments for a more in-depth analysis on the effects of each
one individually.

Based on this analysis, it is reasonable to state that these results are fairly inconclusive.
Therefore, since the best model from EGS 1 used the default values of 0.001, 0.9 and five for
LR, LM and GCN respectively, these settings were taken forward. This aligns with previous
discussion stating that Mask R-CNN developers likely optimised many hyperparameters
beforehand.
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Table 11: EGS 2 experimental results

Grad. Epoch Train  Train Val. Inf.
Exp. No. Epochs LR LM P R mAPcoco
Clip Norm. Time (s) Time (s) Loss Loss Time (s)
1 10 0.02 05 2.5 1404 14038  0.467 1.055  0.397  0.076 0.076 0.075
2 10 0.001 0.9 5 1320 13198  0.463 1.300  0.367  0.036 0.036 0.028
3 10 0.0001 0.99 10 1411 14111 0.475 0.902  0.522  0.238 0.238 0.192
4 20 0.02 0.9 10 1399 27983 0.462 1.383 0.316 0.229 0.229 0.198
5 20 0.001  0.99 2.5 1336 26721  0.483 1.312  0.313  0.229 0.229 0.198
6 20 0.0001 0.5 10 1420 28393  0.482 1.368 0435  0.048 0.048 0.040
7 30 0.02 0.99 5 1311 39329  0.494 1.034  0.345  0.060 0.060 0.052
8 30 0.001 0.5 10 1276 38286  0.444 1.703  0.334  0.096 0.096 0.075
9 30 0.0001 0.9 2.5 1278 38339  0.469 1.109  0.358  0.160 0.160 0.147
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Figure 36: Interaction plot for EGS 2 which shows the average mAP score achieved for

each setting of the “epochs”, “learning rate” (LR), “learning momentum” (LM) and “gra-

dient clip normalisation” (GCN) hyperparameters
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4.3.3.3 Efficient Grid Search 3

Table [L12[shows experimental results from EGS 3 which included RPN class loss, RPN bound-
ing box loss, Mask R-CNN class loss, Mask R-CNN bounding box loss and Mask R-CNN
mask loss. There are a few particularly notable aspects of Table the first being that the
epoch and training times are a magnitude of order smaller than in previous experiments.
Since the number of experiments in this grid search were much more than previous grid
searches and each experiment was taking 20000-30000 seconds to train (approximately 5.5
to 8.3 hours), whilst EGS 1 results indicated that steps per epoch did not appear to have a
significant impact on model performance, it was decided that the steps per epoch would be
reduced to 100. In hindsight, this could have been attempted straight after EGS 1, however
the need for drastically improving time consumption did not become apparent until larger
sets of experiments were needed such as in EGS 3. The interaction plot for EGS 1 actually
showed a slight favour to higher steps per epoch when considering mAP, and whilst this
was not significant, it was decided that it was best to avoid decreasing it unless absolutely
necessary. The second notable aspect is that varying loss weights had a significant impact
on validation loss, as well as mAP. In terms of validation loss, it can be seen that the de-
fault settings in the first experiment (1, 1, 1, 1, 1) aligned with the best experiment from
EGS 1. This experiment had significantly higher validation loss than any other experiment,
indicating that for this case study, an equal loss weighting across classification, localisation
and segmentation was undesirable. Whilst the first experiment had the highest validation
loss by far, it lied somewhere in the middle of the distribution of mAP results. This meant
that many other loss weight experiments performed much better.

An interaction plot is shown in Figure |37 which visualises the impact of different hyper-
parameters on the mAP. The graph suggests that lower RPN bbox loss and MRCNN class
loss weights resulted in higher mAP performance. Lower RPN bbox loss being better could
mean that the model performs better when it focuses less on perfecting initial region proposal
boxes due to the later MRCNN localisation stage refining them anyway. Lower MRCNN class
loss weighting improving mAP could be because the only class (other than the background)
is the ladle, meaning there is not much need for the model to focus on improving this aspect
of prediction. The MRCNN bbox seemed to have the largest effect on the mAP but with no
obvious trend, so it would be useful to explore this hyperparameter on its own. It could have
the largest effect because the refinement of bounding boxes is crucial for overall prediction,
as opposed to RPN localisation which only needs to give initial approximations. MRCNN

mask loss had the second largest effect, which is unsurprising since the mAP is directly
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based on the accuracy of the final mask prediction. These results actually emphasise just
how much the final mask prediction relies on the underpinning localisation aspect (MRCNN
bbox loss). Finally, according to Figure the RPN class loss was the third most impactful
weight closely following the mask loss in terms of impact. This could be because the initial
RPN stage is crucial for distinguishing between the ladle and the background by learning
which bounding boxes contain the ladle. Overall, the 24th experiment using loss weights
of (3, 2, 1, 3, 3) produced the highest mAP (0.438) and was therefore chosen as the best

configuration for these hyperparameters.
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Table 12: EGS 3 experimental results

RPN RPN MRCNN  MRCNN  MRCNN Epoch Train ~ Train Val Inf.
Exp. No. R mAPcoco
Class Loss Bbox Loss Class Loss Bbox Loss Mask Loss Time (s) Time (s) Loss Loss Time (s)
1 1 1 1 1 1 1364 27284 0.443 1.620 0.410 0.304 0.304 0.282
2 1 1 1 1 2 216 2161 0.399 0.669 0.503 0.382 0.424 0.424
3 1 1 1 1 3 218 2182 0.371 0.649 0.460 0.423 0.423 0.363
4 1 2 2 2 1 220 2201 0.454 0.696 0.451 0.323 0.328 0.273
5 1 2 2 2 2 212 2121 0.396 0.684 0.475 0.077 0.078 0.078
6 1 2 2 2 3 217 2166 0.386 0.679 0.471 0.284 0.291 0.291
7 1 3 3 3 1 216 2163 0.507 0.608 0.455 0.283 0.316 0.316
8 1 3 3 3 2 211 2108 0.369 0.646 0.472 0.364 0.364 0.354
9 1 3 3 3 3 216 2161 0.377 0.700 0.455 0.198 0.198 0.165
10 2 1 2 3 1 212 2121 0.425 0.781 0.466 0.317 0.326 0.286
11 2 1 2 3 2 208 2084 0.447 0.697 0.466 0.418 0.419 0.419
12 2 1 2 3 3 212 2123 0.391 0.849 0.460 0.261 0.290 0.290
13 2 2 3 1 1 216 2164 0.358 0.767  0.479 0.320 0.335 0.335
14 2 2 3 1 2 219 2188 0.516 0.668 0.476 0.131 0.156 0.156
15 2 2 3 1 3 216 2160 0.424 0.678 0.461 0.214 0.231 0.231
16 2 3 1 2 1 220 2203 0.380 0.796 0.449 0.111 0.111 0.101
17 2 3 1 2 2 222 2224 0.491 0.678 0.480 0.094 0.123 0.123
18 2 3 1 2 3 223 2229 0.413 0.711 0.477 0.229 0.264 0.264
19 3 1 3 2 1 227 2265 0.400 0.603 0.470 0.142 0.143 0.143
20 3 1 3 2 2 223 2228 0.387 0.705 0.462 0.145 0.150 0.150
21 3 1 3 2 3 221 2214 0.410 0.691 0.461 0.294 0.295 0.295
22 3 2 1 3 1 222 2217 0.491 0.678 0.441 0.442 0.446 0.394
23 3 2 1 3 2 225 2254 0.429 0.618 0.456 0.241 0.245 0.245
24 3 2 1 3 3 225 2253 0.408 0.812 0.453 0.443 0.446 0.438
25 3 3 2 1 1 218 2175 0.433 0.674 0.483 0.375 0.429 0.429
26 3 3 2 1 2 219 2187 0.606 0.733 0.460 0.163 0.189 0.189
27 3 3 2 1 3 219 2193 0.465 0.634 0.473 0.236 0.274 0.274
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Figure 37: Interaction plot for EGS 3 which shows the average mAP score achieved for

each setting of the “RPN class loss”, “RPN bbox loss”, “MRCNN class loss”, “MRCNN
bbox loss” and “MRCNN mask loss” hyperparameters
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4.3.3.4 Efficient Grid Search 4

Table [13] shows experimental results from EGS 4 which included RPN anchor scales, RPN
anchor ratios, RPN anchor stride, RPN NMS threshold and RPN train anchors per image.
Note that in this grid search, similarly to EGS 2, the default configurations for the relevant
hyperparameters did not naturally align with any particular experiment and so every ex-
periment is entirely new. The interaction plot in Figure |38| does not show any real trends
and the most that can be drawn from the graph with regards to trends, is that excluding
the very slight variation in effect between levels one and two, RPN train anchors per image
generally had a more positive effect on mAP when it was lower. This is not strong evidence
and would need to be experimented with more thoroughly to prove, however if true, it could
be because less train anchors mean a lower likelihood of the model overfitting and some-
where between 256 and 512 anchors a threshold was crossed. Despite lack of trend insights,
Figure [38| does suggest the possible extent of impact of each hyperparameter on the mAP.
According to the plot, RPN anchor scales had the most significant impact on mAP, followed
by RPN anchor stride. For anchor scales, this could be because they ensure the size of region
proposals are similar to the size of the predicted objects, and since there is only one object
(the ladle) that does not change size throughout the video, it is important for the anchors
to be a specific size. This also aligns with the fact that medium-sized scales of (32, 64,
128, 256, 512) appeared to be superior to the larger and smaller settings. For anchor stride,
this could be because it is crucial for the region proposals to be dense enough to capture
the ladle whilst it is moving, whilst being sparse enough to ensure efficiency and perform
robustly to noise. Additionally, the remaining three hyperparameters all appeared to impact
mAP similarly. This could be because only one object is being tracked, so it is likely that
train anchors per image, anchor ratios and NMS threshold are within the optimal range for
every single setting, meaning they do no need to be changed. It is worth noting that due to
the number of hyperparameters tested in one go, some of these suggestions may be based on
results distorted by both the interaction between hyperparameters, as well as the factor of
random variability always present in neural networks.

Overall, the 11th experiment was considered the best which used anchor scales of (32,
64, 128, 256, 512), anchor ratios of (0.25, 0.5, 1), anchor stride of two, NMS threshold of
0.9 and 256 train anchors per image. Whilst this experiment did not result in the highest
mAP (0.396 compared to 0.438 in the first experiment), the mask appeared visually more
accurate in terms of both shape and coverage of the ladle. It did produce higher precision

than the highest mAP experiment, although a few other experiments did also. At this
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point of the model optimisation it became apparent that mAP was not as comprehensive to
measuring the extent of desirable model performance as first thought. Whilst in most cases,
experiments scoring a higher mAP visually appeared to segment the ladle better, in EGS 4,
there was a discrepancy between mAP and actual best performance. The discrepancy was
not large, but it was still significant. However, it is worth noting that whilst mAP does not
include any subjectivity, human visual judgement does. Therefore, it is possible that the
visual interpretation itself was inaccurate (although unlikely), and the mAP was actually a
sufficient metric. One way to confirm or deny this, would be to use the judgement of several

humans rather than just one.
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Table 13: EGS 4 experimental results

RPN RPN RPN RPN RPN Ty ek Train Traim Val  Inf.
Exp. No. ) ) Anchors ] ) i p R mAPcoco
Anchor Scales Anchor Ratios Anchor Stride NMS Threshold Time (s) Time (s) Loss Loss Time (s)
Per Image
1 16, 32, 64, 128, 256 0.25, 0.5, 1 1 0.7 128 920 9204 0416 0.6873 0485 0277 0285  0.275
2 16, 32, 64, 128, 256 0.25, 0.5, 1 1 0.7 256 920 92201 0511 0.8504 0457 0398 0438  0.438
3 16, 32, 64, 128, 256 0.25, 0.5, 1 1 0.7 512 226 2255 0.502  0.693 0.470 0.131 0.155 0.155
4 16, 32, 64, 128, 256 0.5, 1,2 2 0.8 128 221 2206 0.422  0.687 0.464 0.310 0.311 0.311
5 16, 32, 64, 128, 256 0.5, 1,2 2 0.8 256 222 2224 0.408  0.605 0.462 0.248 0.252 0.250
6 16, 32, 64, 128, 256 0.5,1,2 2 0.8 512 223 2229 1.106  0.847 0.459 0.208 0.237 0.237
7 16, 32, 64, 128, 256 1,2, 4 3 0.9 128 226 2257 0.508  0.822 0.457  0.286 0.288 0.283
8 16, 32, 64, 128, 256 1,2, 4 3 0.9 256 219 2191 0.421 0.772 0.483  0.188 0.207 0.207
9 16, 32, 64, 128, 256 1,2, 4 3 0.9 512 225 2247 0.409  0.796 0.455 0.294 0.296 0.288
10 32, 64, 128, 256, 512 0.25, 0.5, 1 2 0.9 128 225 2253 0.397  0.716 0.480 0.310 0.392 0.392
11 32, 64, 128, 256, 512 0.25, 0.5, 1 2 0.9 256 225 2254 0.366  0.707 0.448 0.404 0.404 0.396
12 32, 64, 128, 256, 512 0.25, 0.5, 1 2 0.9 512 925 92254 0387 0.645 0467 0344 0.353  0.353
13 32, 64, 128, 256, 512 0.5, 1, 2 3 0.7 128 928 9277 0431 0714 0486 0319 0.393  0.393
14 32, 64, 128, 256, 512 0.5, 1, 2 3 0.7 256 923 9229 0460 0752 0468  0.33 0.133  0.129
15 32, 64, 128, 256, 512 0.5, 1, 2 3 0.7 512 923 9226 0484 0751 0451 0354 0.354  0.342
16 32, 64, 128, 256, 512 1,2, 4 1 0.8 128 226 2257 0.457 0.763 0.464 0.223 0.224 0.224
17 32, 64, 128, 256, 512 1,2, 4 1 0.8 256 221 2214 0.367  0.885 0.478 0.414 0.426 0.426
18 32, 64, 128, 256, 512 1,2, 4 1 0.8 512 216 2160 0.392  0.708 0.451 0.246 0.247 0.247
19 64, 128, 256, 512, 1024 0.25, 0.5, 1 3 0.8 128 222 2217 0.513  0.699 0.486 0.181 0.235 0.235
20 64, 128, 256, 512, 1024 0.25, 0.5, 1 3 0.8 256 226 2257 0.500 0.641 0.434 0.140 0.142 0.135
21 64, 128, 256, 512, 1024 0.25, 0.5, 1 3 0.8 512 221 2213 0.538  0.688 0.451 0.203 0.213 0.204
22 64, 128, 256, 512, 1024 0.5,1,2 1 0.9 128 224 2244 0.465 0.772 0.440 0.076  0.076 0.058
23 64, 128, 256, 512, 1024 0.5,1,2 1 0.9 256 225 2247 0.424  0.749 0.472 0.381 0.431 0.431
24 64, 128, 256, 512, 1024 0.5,1,2 1 0.9 512 228 2279 0.488  0.720 0.439 0.112 0.112 0.085
25 64, 128, 256, 512, 1024 1,24 2 0.7 128 223 2234 0.426  0.712 0.452 0.372 0.372 0.296
26 64, 128, 256, 512, 1024 1,2, 4 2 0.7 256 228 2275 0.508  0.697 0.465 0.103 0.106 0.106
27 64, 128, 256, 512, 1024 1,2, 4 2 0.7 512 232 2320 0.484 0.626 0.454 0.352  0.370 0.363
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Figure 38: Interaction plot for EGS 4 which shows the average mAP score achieved for
each setting of the “RPN anchor scales”, “RPN anchor ratios”, “RPN anchor stride”,
“RPN NMS threshold” and “RPN train anchors per image” hyperparameters
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4.3.3.5 Efficient Grid Search 5

Table [14] shows experimental results from EGS 5 which included pre-NMS limit, post-NMS
train Rols, post-NMS inference Rols, train Rols per image and Rol positive ratio. Note
that in this grid search, similarly to EGS 2 and EGS 4, the default configurations for the
relevant hyperparameters did not naturally align with any particular experiment and so every
experiment is new. The interaction plot in Figure|39|shows no strong trends, and similar but
opposite to the train anchors in EGS 4, excluding the very slight variation in effect between
levels one and two, post-NMS train Rols generally had a more positive effect on mAP when
it was lower. This is not strong evidence and would need to be experimented with more
thoroughly to prove, however if true, it could be because below some threshold (between
2000 and 4000), the model is forced to pay more attention to better proposals. In terms of
impact, Figure |39 shows that train Rols per image and Rol positive ratio had the largest
impacts on mAP. Train Rols dictate how many samples the model has to learn from and
therefore directly impacts the effectiveness of training, so it is unsurprising that it was shown
to have a large effect. Also, Rol positive ratio controls the number of object and background
samples during training which should ideally avoid false positives and false negatives, which
directly impacts precision, recall, and resulting mAP. Meanwhile, post-NMS Rols for both
training and inference had similar impacts on mAP. These ensure that the correct amount
of proposals are finally used for training and inference, and whilst they need to be sufficient,
the most important aspect is that they are high quality. Finally, the pre-NMS proposal limit
had almost no impact on the mAP, which is explainable by the fact that it is more relevant to
computational efficiency, since post-NMS Rol values are what ultimately effect the number
of Rols actually used.

Overall, the 13th experiment was considered the best which used a pre-NMS limit of 6000,
2000 post-NMS training Rols, 2000 post-NMS inference Rols, 100 train Rols per image, and
a Rol positive ratio of 0.25. Similarly to EGS 4, whilst this experiment did not result in the
highest mAP (0.426 compared to 0.466), the mask appeared visually more accurate in terms
of both shape and coverage of the ladle. Again, this was subjective and could be confirmed

through the use of more human input.
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Table 14: EGS 5 experimental results

Pre-NMS Post-NMS  Post-NMS Train Rols Rol Epoch Train  Train  Val. Inf.
Exp. No. P R mAPcoco
Limit  Train Rols Inf. Rols Per Image Positive Ratio Time (s) Time (s) Loss Loss Time (s)
1 3000 1000 500 100 0.25 224 2242 0.380 0.769  0.500  0.408 0.466 0.466
2 3000 1000 500 100 0.33 229 2285 0.418 0.781  0.453  0.245 0.246 0.246
3 3000 1000 500 100 0.5 227 2271 0.441 0.643 0487  0.303 0.319 0.319
4 3000 2000 1000 200 0.25 227 2271 0.479 0.637  0.467  0.244 0.260 0.260
5 3000 2000 1000 200 0.33 221 2208 0.400 0.808  0.498  0.202 0.211 0.211
6 3000 2000 1000 200 0.5 227 2269 0.390 0.791 0.475 0.358 0.391 0.391
7 3000 4000 2000 400 0.25 239 2393 0.447 0.692 0470  0.154 0.181 0.181
8 3000 4000 2000 400 0.33 228 2276 0.406 0.792  0.481  0.179 0.204 0.204
9 3000 4000 2000 400 0.5 237 2367  0.418 0.751 0476  0.301 0.335 0.335
10 6000 1000 1000 400 0.25 237 2366 0.357 0.692  0.48  0.422 0.465 0.465
11 6000 1000 1000 400 0.33 235 2350 0.510 0.660 0.472 0.299 0.336 0.336
12 6000 1000 1000 400 0.5 232 2324 0.427 0.676 0459  0.332 0.333 0.330
13 6000 2000 2000 100 0.25 236 2362 0.380 0.626  0.468  0.420 0.433 0.426
14 6000 2000 2000 100 0.33 237 2365 0.457 0.689 0491  0.292 0.360 0.360
15 6000 2000 2000 100 0.5 236 2361 0.389 0.563 0.494  0.351 0.354 0.351
16 6000 4000 500 200 0.25 237 2371 0.409 0.687 0.492 0.150 0.165 0.165
17 6000 4000 500 200 0.33 238 2381 1.042 0.761  0.442  0.000 0.000 0.000
18 6000 4000 500 200 0.5 232 2316 0.454 0.796  0.471  0.088 0.099 0.099
19 12000 1000 2000 200 0.25 237 2371 0.366 0.730 0479  0.328 0.342 0.336
20 12000 1000 2000 200 0.33 243 2430 0.472 0.681 0451  0.076 0.077 0.076
21 12000 1000 2000 200 0.5 231 2312 0.406 0.691 0.484 0.194 0.226 0.226
22 12000 2000 500 400 0.25 233 2330 0.360 0.733  0.489  0.287 0.299 0.296
23 12000 2000 500 400 0.33 227 2265 0.521 0.814  0.490  0.150 0.156 0.155
24 12000 2000 500 400 0.5 237 2366 0.418 0.785  0.478  0.424 0.451 0.451
25 12000 4000 1000 100 0.25 226 2263 0.431 0.729 0462  0.343 0.403 0.403
26 12000 4000 1000 100 0.33 226 2258 0.498 0.740  0.487  0.234 0.287 0.287
27 12000 4000 1000 100 0.5 224 2235 0.375 0.674 0461  0.356 0.372 0.362
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Figure 39: Interaction plot for EGS 5 which shows the average mAP score achieved for
each setting of the “pre-NMS limit”, “post-NMS Rols training”, “post-NMS Rols infer-

ence”, “train Rols per image” and “Rol positive ratio” hyperparameters
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4.3.3.6 Efficient Grid Search 6

Table[I5]shows experimental results from EGS 6 which included pool size, mask pool size and
mask shape. The interaction plot (Figure suggests there were no trends, however pool
size was shown to have almost no impact on mAP, whereas mask pool size and mask shape
did. Pool size dictates the feature map size of each Rol after pooling which is essential for
classification and localisation and therefore, in hindsight, would have been better off being
grouped into an earlier grid search as opposed to being grouped with mask-related hyper-
parameters which are associated with the end of the network. Since the model optimisation
was conducted in this manner, it is highly likely that due to other RPN-related hyperparam-
eters were already optimised in previous grid search experimentation, the remaining effect
of changing pool size was suppressed. Whilst this uncovers the fact that the organisation
of the hyperparameter optimisation was sub-optimal in this case, it more importantly in-
dicates that the optimisation up to this stage, at least in terms of RPN and Rol related
hyperparameters, was successful. In other words, since the optimisation already led to high
quality region proposals, there was no improvement that modifying pool size could make.
Moving focus towards mask-related optimisation, the larger mask pool size impact makes
sense, since it directly affects the resolution of feature maps for mask generation. This is the
same for mask shape.

Overall the third experiment produced the best precision, recall and mAP, whilst also
being judged visually as the best model. This experiment used a pool size of seven, a mask
pool size of 56, and a mask shape of (112, 112) and achieved an mAP of 0.516.
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Table 15: EGS 6 experimental results

) Mask Pool =~ Mask Epoch Train  Train  Val. Inf.
Exp. No. Pool Size ] ] ) _ P R mAPcoco
Size Shape  Time (s) Time (s) Loss Loss Time (s)
1 14 28, 28 236 2362 0.380 0.626 0.468 0.420 0.430 0.426
2 28 56, 56 230 2302 0.996 0.849 0.469 0.002 0.003 0.003
3 56 112, 112 227 2270 0.416 0.636 0.455 0.477 0.516 0.516
4 14 14 56, 56 228 2281 0.397 0.558 0.457 0.242 0.242 0.242
5 14 28 112, 112 214 2140 0.418 0.593 0.472 0.358 0.358 0.358
6 14 56 28, 28 222 2215 0.445 0.766 0.444 0.348 0.348 0.296
7 28 14 112, 112 227 2269 0.362 0.767  0.466  0.366 0.367 0.364
8 28 28 28, 28 228 2282 0.437 0.707 0.451 0.193 0.213 0.213
9 28 56 56, 56 229 2288 0.404 0.696 0.490 0.239 0.283 0.283
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Figure 40: Interaction plot for EGS 6 which shows the average mAP score achieved for

each setting of the “pool size”, “mask pool size” and “mask shape” hyperparameters
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4.3.4 Analysis of Hyperparameter Optimisation Results

Table presents the optimal settings for each hyperparameter after completing the hy-
perparameter optimisation. This model was trained for ten epochs which took just under
four minutes each on average and just under 38 minutes in total. The mAP achieved was
0.516 and the inference time for each frame was 0.46s. This set of experiments exposed some
interesting aspects to Mask R-CNN and its hyperparameters. For example, whilst increasing
steps per epoch did correlate with a slight increase in mAP initially, decreasing this from
1000 to 100 appeared to have a noticeable impact on model performance but saved approxi-
mately 90% training time which was significant. Furthermore, since the best training epochs
were between one and ten, reducing them from 20 to ten halved the required training time.
These two findings were crucial to the efficiency of the optimisation at apparently no cost
to model performance. In future work, a much more conservative approach will be taken to
optimising hyperparameters, especially as many as the 24 optimised here.

EGS 3 was a key turning point in model performance. Before then, most hyperparameters
appeared to have little effect on mAP and validation losses were typically about double that
of the training losses indicating overfitting. This was likely caused by the dataset being too
small. One pouring video was used for training and validation, and one was used for testing.
However, for a task as complex as instance segmentation in a poorly-lit environment, this
was insufficient and would possibly require ten or more videos for each subset to develop a
high-performance model. In EGS 3 however, modifying loss weights closed the gap between
training and validation losses, and validation losses decreased to more acceptable values.
Loss weights had a large impact on performance because some operations of Mask R-CNN
are much more important than others depending on the scenario. In this case study, only one
object needed to be detected against the background, making the Mask R-CNN classification
loss less important. Similarly, the purpose was to segment the ladle, meaning Mask R-CNN
mask loss was crucial to the overall performance.

Also worth noting, is that the seemingly ineffective hyperparameters near the beginning
of the optimisation were not necessarily unimportant, but were experimented at a stage
where their impact could not be exposed. In future work it would be useful to incorporate
optimisation of hyperparameters such as learning rate and learning momentum after opti-
mising loss weights, which could result in an entirely different outcome to this one. The
most extreme example of non-ideal optimisation organisation was with the pool size hyper-
parameter in EGS 6. The fact that it was grouped far later on in the optimisation than its

most related hyperparameters (Rol and RPN based), meant that by the time it was tested,
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it was already redundant. This did uncover the success of some of the most crucial stages of

the optimisation however.

Table 16: Optimal hyperparameter settings

Hyperparameter Setting
CNN backbone ResNet101
Layers re-trained 3+
Image resizing pad1024
Augmentation off
Mini-mask off
Weight decay 0.0001
EGS 1
Steps per epoch 100
Validation steps 50
EGS 2
Epochs Variable
Learning rate 0.001
Learning momentum 0.9
Gradient clip norm. 5
EGS 3
RPN class loss 3
RPN bbox loss 2
MRCNN class loss 1
MRCNN bbox loss 3
MRCNN mask loss 3

EGS 4
RPN anchor scales

(32, 64, 128, 256, 512)

RPN anchor ratios (0.25, 0.5, 1)
RPN anchor stride 2
RPN NMS threshold 0.9

RPN train anchors per image 256

Continued on next page
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Table 16 — continued from previous page

Hyperparameter Settings
EGS 5
Pre-NMS limit 6000
Post-NMS training Rols 2000
Post-NMS Rols inference 2000
Train Rols per image 100
Rol positive ratio 0.25
EGS 6
Pool size 7
Mask pool size 56
Mask shape 112

It is important to note that the inherent complexity of the hyperparameter optimisation
played a large role in this task. By addressing 24 different hyperparameters, many involving
complex mathematical concepts, strategising the approach to optimisation was incredibly
challenging. Without already having expertise on Mask R-CNN;, it would have been impos-
sible to plan the optimisation in an optimal way within one iteration. In fact, there is no one
optimal way, although some approaches could produce more useful conclusions than others.
In this case study, an approach was taken that generally organised optimisation stages so
that they aligned with sequential steps of the Mask R-CNN network. This approach turned
out to be effective and evidently from discussion, there were many findings. However, by
conducting this iteration, findings point to other potential optimisation strategies for further
insight. Due to the complexity of Mask R-CNN, many iterations could be performed with
many different strategies and novel approaches would still be uncovered.

Whilst the hyperparameter optimisation was a vast operation that was critical for many
learnings related to Mask R-CNN, there were some constraints on resources. On one hand,
these added to the challenge and made the learning process more tailored to industry where
resource efficiency is critical, which aligns with the aims of this project. On the other hand,
the results of this case study, whilst successful, do indicate that resources were limiting to
the final model produced. To elaborate, the time constraints were useful in that they forced
the pace of development and pushed some critical decisions such as reducing the steps per

epoch which saved 90% of the training time from that point onwards. Oppositely, the data
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constraints were too constrictive when it came to model development. Whilst a few hundred
labelled ladle frames were perceived as potentially being enough to develop a robust model
initially, with the additional research experience gained throughout all case studies, a number
of samples somewhere in the region of a few thousand would have been required at minimum
to achieve a production level model. Not only the dataset size, but the diversity of the
samples would need to be expanded also. Industrial application will be discussed in more
depth in Section [£.4 It is worth noting that labelling 100 frames of the ladle mask while
pouring was far more time-consuming than labelling 100 frames would have been for many
other objects. This was not only due to the complex shape of the mask, but particularly
because it was obstructed by emissions and was set in an environment with poor lighting.
If an auto-labelling method was developed for this kind of challenge, it would be incredibly

valuable to industry.

4.3.5 Kalman Filter Tracking

Following hyperparameter optimisation of Mask R-CNN, Kalman filtering experiments were
conducted to further advance the model. As mentioned in Section [£.2.4] Kalman filtering
was applied to enable the model to associate masks between sequential frames so that it
would have an improved understanding of ladle shape and movement across the video rather
than simply on a frame-by-frame basis. The expectation was that this would improve the
robustness of segmentation by adding a sequential understanding as well as a spatial under-
standing. Kalman filters predict the future position of an object, and in this case, the task is
multi-object tracking where the “objects” are points sampled from the predicted mask edges
in each frame.

Equation in Section showed the default state transition matrix, where ma-
trix values dictated how point positions and velocities changed (or stayed the same) across
timesteps, whilst 0t was the change in timestep. Since elements [3,3] and [4,4] were used for
x and y velocity changes, and this model assumes constant velocity, they remained remain
unchanged.

Element [1,1] was tested at values from one to ten incrementally, and six gave the best
performance. Next, element [2,2] was tested in the same way whilst maintaining the value
of six for [1,1], and a value of eight produced the best performance. The optimal matrix is
shown in Equation (17)).
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Ap = (17)
00 1 0
00 0 1

Table [L7] shows how optimisation of the different elements improved the mAP. The original
mAP after completing the hyperparameter optimisation was 0.516, using the hyperparameter
settings summarised in Table[16]in Section Therefore, optimising the first element gave
an improvement of 0.058, and optimising the second gave an improvement of 0.032. The
addition of the Kalman filtering increased the average inference time from 0.46s (2.17fps) to
0.59s (1.69fps).

Table 17: State transition matrix experimental results

Variable Tested mAPcoco

Tho1 0.574
Yoo 0.606

In Table [17, 41 ([1,1] in Equation (17)) and yx_1 ([2,2] in Equation (17)) are x and y
position values respectively. The improvement observed by changing [1,1] and [2,2] to six and
eight respectively, is likely because they match what can be observed in the video. The ladle
begins on the lower right-hand side of the video, and since Python reads images from top
to bottom (therefore y-coordinate increases downwards), the six and eight in Equation
roughly align with the x and y positions respectively.

Figure (1] and Figure [42] shows examples of Kalman filtering effects on the predicted
mask. From initial Kalman filter application, the mask result looked like Figure [i1j(a), (b)
and (c). As shown, the masks reach the edges of the ladle quite well, however they are
jagged and therefore incomplete, which is due to the point-to-point drawing of the edges.
In Figure [42|(a), (b) and (c), the same frames are shown but after the convex hull was
applied. As shown, the jaggedness has been eliminated. In Figure [42(a), (b) and (c), there
are also green, yellow and red points shown. The green points are the initial Kalman filter
predictions, the yellow points are the measured mask edge points from Mask R-CNN, and
the red points are the Kalman filter predictions after being updated based on the actual

measurements. It may be noticeable that there are more yellow points than red points and
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the reason for this is the K-Nearest Neighbour clustering that was done to preserve points
that were close to each other and exclude points that were surrounding the ladle edge but
some distance away from it. K-Nearest Neighbours was applied with two neighbours, which
was found to preserve points sitting on the ladle edge whilst eliminating unwanted point

predictions.

(b) Frame 66 with Kalman filtering applied

(c¢) Frame 112 with Kalman filtering ap-
plied

Figure 41: Comparison of mask outputs with Kalman filtering
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(a) Frame 13 with Kalman filtering and (b) Frame 66 with Kalman filtering and

convex hull applied convex hull applied

(c) Frame 112 with Kalman filtering and

convex hull applied

Figure 42: Comparison of mask outputs after applying the convex hull operation

Figure [42|(a), (b) and (c) can be used to compare the original mask prediction (yellow
marks) to the Kalman filter mask. As shown, the Kalman filter does reach the ladle edges
better than the original masks, however since the overall shape is based purely on positions
of individual points, rather than the features of the ladle as a whole, there is less alignment

with the natural shape of the ladle and the Kalman mask. Therefore, although Kalman
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filtering improved the mAP, it was less ideal for real-world measurements compared to the
Mask R-CNN mask which had learned intricate features of the ladle and how it is supposed
to look. This indicates avenues for future work. For example, the state transition matrix for
every point was optimised in one go. In future work, it would likely enhance performance
if each of the 32 filters were optimised individually in some way, possibly setting matrix
elements as equations that take the pixel coordinates of a reference mask as input. Secondly,
since the Kalman model used in this research assumes linear motion, it is limited particularly
when the ladle rotates. Therefore, future work may benefit from using an extended Kalman

filtering approach [68].

4.3.6 Background Subtraction

Based on the success found in applying background subtraction (BGS) algorithms in Chapter
5 and Chapter 6, the same algorithms were applied in this case study also, to see if there
were any possible benefits to using this approach. The specific aspects of this case study
that BGS were thought to be potentially useful for, were tracking the ladle as it moves
since the background is “fixed” (which is not strictly true and is explained later), as well as

segmenting out the furnace emissions during pouring.

4.3.6.1 Analysis of Ladle Movement Frame

Figure [43| and Figure [44] show the results of an early frame where the ladle is approaching
the furnace after being processed with different BGS algorithms including MOG (Mixture
of Gaussians) [238], MOG2 [239], GSOC (Google Summer of Code) [240], GMG (Gaussian
Mixture-based Background Foreground Segmentation) [241], KNN (K-Nearest Neighbours)
[242] and CNT (Counting) algorithms [243]. At this stage of the footage, Figure [43|a)
which uses the MOG (Mixture of Gaussians) algorithm shows some potential for useful
application since it is capturing the the front edge of the ladle accurately. In all other cases
(including the second MOG variant MOG2), the harsh conditions and poor lighting comprise
an environment that is too complex for the algorithms to perform high quality segmentation

on just the ladle.
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(a) MOG (b) MOG2

(c) GSOC

Figure 43: Figure showing the effects of different BGS algorithms (MOG, MOG2 and

GSOC) on a frame showing the ladle moving towards the furnace
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(a) GMG (b) KNN

(c) CNT

Figure 44: Figure showing the effects of different BGS algorithms (GMG, KNN and CNT)

on a frame showing the ladle moving towards the furnace
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4.3.6.2 Analysis of Early Pour Frame

Figure [45] and Figure [46] shows the results at an early point of pouring after being processed
with different BGS algorithms. This frame opens up discussion related more to the flame
severity measurement than the ladle tracking. All algorithms are not segmenting the ladle,
but instead, segmenting the flame region. Even though the ladle is moving, it does not stand
out much from the background and features such as the three light sources on the right hand
side, and particularly brightness changes in the flame region, are much more obvious from
the perspective of the algorithms. Whilst all algorithms in Figure and Figure [46| show
potential use in flame severity measurement, they all have slightly different approaches as
shown by the differing masks. More investigation is required to understand the effectiveness

of these methods at measuring flame severity.

(a) MOG (b) MOG2

(c) GSOC

Figure 45: Figure showing the effects of different BGS algorithms (MOG, MOG2 and

GSOC) on a frame showing the ladle starting to pour molten metal into the furnace
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(a) GMG (b) KNN

(c) CNT

Figure 46: Figure showing the effects of different BGS algorithms (GMG, KNN and CNT)

on a frame showing the ladle starting to pour molten metal into the furnace
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4.3.6.3 Analysis of Mid-Pour Video Frame

Finally, Figure 47 and Figure [48 show the results of a frame mid-pour after being processed
with different BGS algorithms. These examples show some weak tracking of the ladle edges
and in some cases such as (d) and (f) there is added noise. Furthermore, there is some
mild emissions present in the flame region which are only captured by the CNT algorithm
which captures the flame region as well as the added noise anyway, preventing it from being
effective for real application. Whilst the results in Figure |45 and Figure 46| show potential
for BGS algorithms for flame severity measurement, the results in Figure [47] and Figure

show that they may produce a lot of false negatives unless combined with other techniques

or used in different lighting conditions.

(a) MOG (b) MOG2

(c) GSOC

Figure 47: Figure showing the effects of different BGS algorithms (MOG, MOG2 and

GSOC) on a frame showing the ladle pouring molten metal into the furnace
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(a) GMG (b) KNN

(c) CNT

Figure 48: Figure showing the effects of different BGS algorithms (GMG, KNN and CNT)

on a frame showing the ladle pouring molten metal into the furnace
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4.4 Industrial Application

This section investigates industrial application of the developed model for advancing upon
traditional ladle technology. By monitoring measurements like ladle pouring height, ladle ro-
tation angle, and furnace emission severity, this model provides real-world benefits. Firstly, it
can be used to record data for optimising pouring for emission reduction, leading to increased
safety and reduced equipment degradation. Secondly, it paves the way for automating the
pouring process, which would standardise it and eliminate the need for manual labour. The
following pages detail the approach used for real-world usage and the subsequent results

obtained.

4.4.1 Measuring the Pouring Process

To demonstrate the potential of the model for industrial use, focus was placed on estimating
three variables, namely pouring height, rotation angle, and flame or emission severity. These
variables are key aspects when assessing pour quality since the pouring height and rota-
tion angle majorly dictate ladle pouring behaviour, whilst the emission severity in the flame
region is an indicator of the severity of harmful fumes and equipment degradation. There-
fore, the concept was that ladle behaviour could be monitored simultaneously with emission
severity, and the relationship between process parameters and process quality could be un-
derstood more intricately. This contributes towards addressing the gap identified in Chapter
2 regarding using CV models to measure real-world characteristics.

Pouring height was measured by taking the highest pixel of the segmentation mask and
giving a fixed pixel offset, since there seemed to be a fairly constant-sized gap between the
top of the mask and the top of the actual ladle. If the segmentation was very precise, this
offset may be removed. A five-point moving average was also applied since the ladle height
changed gradually whereas the mask changed every frame, and since it was unstable at times,
this added unnecessary error to the model predictions.

Rotation angle was measured based on the bottom edge of the ladle as this was the most
accurately predicted throughout the footage and therefore gave the most reliable estimate.
The bottom edge was captured by a moving window that was scaled dynamically based on
the location of the right-most point of the mask, since the ladle was always tilted slightly to
the left. As the right-most point moved upwards (ladle pouring), the moving window became
narrower and expanded in a downwards manner, effectively capturing the bottom ladle edge

as it rotated from the bottom side to the right-hand side. A line of best fit was produced
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Table 18: Flame severity boundaries for the number of bright pixels in the flame region

Bright Pixels Flame Severity

0-1000
1000-2000
2000-6000

6000-10000
10000-15000
15000+

T = W NN = O

from the bottom ladle edge and used to calculate the angle of rotation. A four-point moving
average was applied to this to eliminate small fluctuations in angle estimations to produce
a smoother signal that was more like one that would be expected from the gradual and
constant rotation of the ladle during pouring.

Finally, flame severity was measured by focusing on the area significantly affected by
furnace flames. Pixels exceeding a brightness threshold of 235 were counted and depending
on how this value fitted into several pre-defined ranges, a severity rating for each frame was
established. Table [18| shows the boundaries that were used for each flame severity. These
measurements (pouring height, rotation angle and flame severity) were captured over a whole
pouring video and then used to gain insights on the pouring process through further analysis.

Examples of the final output of the model can be seen in Figure 19 and Figure [50] For
this aspect of the research, the training set was increased from 120 to 480 images to maximise
performance, and as previously discussed, Kalman filtering was disabled as it was found to
make the segmentation mask more unstable which was detrimental to the pouring height and
rotation angle estimations. The flame severity was on a scale of 0 to 5, the pouring height
was measured in pixels and the rotation was measured in degrees. As shown in Figure 49|and
Figure [50, the model performance was quite good across most frames which aligns with the
mAP value of 0.516. From Figure [19|(a) to (c), followed by Figure [50j(a) to (c), the frames
are in chronological order and show how the model dealt with the ladle rotating. The model
appeared to capture the shape of the visible parts of the ladle quite well and even does quite
a good job when the metal frame of the furnace obstructs part of it, demonstrating that

the labelling choice discussed in Section was effective. Despite the visible portion of
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the ladle changing whilst it also rotated, the mask was fairly consistent. However, it can
also be seen that the edges of the mask do not reach the edges of the actual ladle, which
seemed to be a noticeable limitation throughout the whole case study. As mentioned, this
was counteracted by using Kalman filtering but at the cost of the quality of the mask shape
which was crucial for real-world measurements. It is believed that if much more training data
was provided to Mask R-CNN, then this limitation may be overcome, however considering
the original quality and quantity of the data provided for this case study, the results shown in
Figure 49 and Figure [50| demonstrate good performance. The frames shown in Figure (b)
and (c) show a slight reduction in prediction mask quality and this was likely to be because
Mask R-CNN was trained on less frames at this stage of the pouring process compared to

say, Figure [49|(b) and (c) which the pouring process looks like for the majority of each pour.
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(c) Frame 48

Figure 49: Frame results from final model output with measurements displayed (1 of 2)
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(a) Frame 67

(c) Frame 92

Figure 50: Frame results from final model output with measurements displayed (2 of 2)
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The pouring height is represented by the dark blue horizontal line in subfigures of Fig-
ure [49] and Figure [50] As shown, this is offset from the ladle mask. As previously discussed,
this is because there was a consistent gap between the top of the mask and the actual top of
the ladle and so an offset of 40 pixels was used. As shown in Figure 49 and Figure [50] this
was partly due to the mask not reaching to the ladle edges. Whilst the Kalman filtering did
a better job of this, it was less stable as mentioned previously.

In the top left of subfigures of Figure [49] and Figure a light blue line can be seen
which shows the perspective of the moving window. The line of best fit, produced from the
bottom ladle edge and used to calculate the angle of rotation, is vaguely visible over the top
of the light blue line in the top left of subfigures of Figure 49 and Figure 50} The light blue

vertical line was used as a normal to calculate angles.

(a) Frame 11

(c) Frame 92

Figure 51: Frame results from fixed mask output

142



Once the model had been developed to measure ladle behaviour and resulting emission
severity, a fixed mask approach was attempted to try to refine the model performance further
for industrial application. This was done by using the coordinates of one of the manual mask
annotations and overlaying it onto each frame. The location was based on the centroid of the
mask predicted by Mask R-CNN, and the rotation was based on the rotation angle already
calculated from the mask’s bottom edge. The concept of this is believed to be useful since
the ladle shape did not change throughout the footage, however in this case, the predicted
mask was not stable enough to produce an accurate fixed mask. If the predicted mask was
more accurate, the fixed mask could have been used to refine the edges. The results of this
can be seen in Figure [5I] This is something to explore more in future work when a larger

dataset is used to train the model.

4.4.2 Analysis of the Pouring Process

One of the primary purposes of the model developed is to use it to improve understanding of
the pouring process. By improving understanding of process parameters, resulting process
quality and the relationship between the two, valuable insights can be drawn which aid
process optimisation for reducing emissions.

The measurements taken by the model were output in a table and then used to produce
several graphs to draw insights from. Figure 52| shows how brightness in the flame region
varied throughout the video. Note that pixels with a brightness of over 235 (on a scale
of 0 to 255 representing black and white respectively), are considered bright pixels. The
initially high value was due to the ladle being on the opposite side of the camera’s view to
the flame region. Once it moved into position to pour, the brightness in this area decreased
rapidly. As pouring began, the brightness increased up until a peak at around 18 frames
in, before gradually decreasing throughout the video. The initial peak was likely due to the
initial contact of the liquid metal with the contents of the furnace causing a large spike in
emissions. This suggests that this is a critical point of the pouring process with regards to
minimising equipment degradation and emission severity.

Figure [53|shows the pouring height across frames. It increased quickly between Frame 15
and Frame 18 in preparation for pouring, and then steadily increased up to Frame 60 whilst
pouring, which was likely done as the ladle became less full for a consistent pouring rate.
There was a fluctuation in pouring height roughly between Frame 60 and Frame 100, which
could be seen in the video. This could have been to keep the pouring process as smooth as

possible whilst the ladle was almost empty and needed to be tilted more.

143



25000

20000

15000

10000

Bright Pixels

5000

0 20 40 60 80 100 120
Frame Number

Figure 52: Plot showing the variation of pixel brightness throughout the pouring process

780
760
740
720

700

Pouring Height (px)

680

660
100 120

=]
[
=]
S
>
(=)
=]
[~
>

Frame Number

Figure 53: Plot showing the variation of ladle pouring height throughout the pouring pro-

cess
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This leads on to Figure [54] which shows how ladle rotation varied with time. The figure
suggests that rotation angle increased gradually with time up from about 15°to 90°, which
aligns with what was seen in the video. Whilst the graph suggests reasonable accuracy, the

rotation angle results provide more insight later on when rate of rotation is discussed.
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Figure 54: Plot showing the variation of ladle rotation angle, in degrees, throughout the

pouring process

Collectively, these graphs suggest that the model was reasonably accurate in its mea-
surements, since it aligns with what is observable in the footage, however the model would
benefit from being validated by better established measurement methods. Furthermore, the
industrial aspect of this case study was focused around building a ladle monitoring model
that, if developed to production standard, could be used in two ways.

The first, more immediate application would be to apply this model to a variety of
pouring footage samples with varying pouring techniques, automatically collect data on
the ladle pouring behaviour (process inputs) and resulting flame emission severity (process
quality indicator), and analyse the relationships between the inputs and outputs to give
deeper insights into how the process inputs could be optimised to maximise process quality
in terms of flame emissions.

The second, more advanced application would be to fully integrate the model into a
system that also takes control of the ladle behaviour, and by doing so, automate the pouring
process for minimal emission severity. Since the model, in its current primitive state, can
detect when flame severity is high, it could combine this awareness with learned pouring

patterns to adjust the pouring technique in real-time. In both cases, emission severity can
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be reduced, resulting in improved health and safety, reduced equipment degradation and
overall improved operational efficiency. This benefits the environment, the economy and the
operators. Further applications could include estimation of cumulative flame damage, daily
emissions, process duration and possibly even energy expenditure.

In order to demonstrate the potential application of the model developed in this case
study, some further analysis was conducted which aimed to gain some real-world insights
on the ladle pouring process using the model outputs. The Spearman’s Rank correlation
coefficient was used to determine the correlation between brightness (emission severity) and
pouring height and rotation angle, and the results are in Table The results show that
pouring height had a weak to moderate negative correlation with brightness in the flame
region, suggesting a higher pouring height may reduce flame emissions. This could be due
to a slightly larger cooling effect during air contact before the falling liquid metal hits the
surface of the liquid metal in the furnace. The air could also improve mixing with oxygen
and therefore reduce incomplete combustion which typically causes smoke. Additionally, a
higher pouring height could allow the metal to reduce turbulence more before contacting the
surface of the metal inside the furnace, resulting in less splashing. The results in Table
also show that rotation had a more negative correlation with brightness in the flame region
than pouring height did, suggesting more rotation resulted in less flame emissions. This
is likely to be because increasing the ladle rotation angle gradually throughout the pour,
ensured a steady flow of molten metal into the furnace, therefore avoiding agitation in the
furnace and splashing events. Not only this, but it likely also aided in ensuring a better
temperature distribution (as an effect of steady flow rate), which further avoided agitation
in the furnace. Note that in terms of minimising emissions, less agitation is better, however

this is not the case for gas mixing and therefore an optimal level of agitation should be found.

Table 19: Correlation between process parameters and flame severity

Spearman’s Rank

Parameter
Correlation Coefficient
Pouring Height -0.366
Rotation -0.605

Additionally, since rotation angle and pouring speed are known to affect flow rate, rate

of rotation was plotted and shown in Figure [55] as it is closely linked to both of these vari-
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ables (it is the rate of change of rotation angle which directly impacts pouring speed) [244].
However, the Spearman’s correlation coefficient was only 0.136, indicating flame severity in-
creased slightly with increasing rate of rotation. This was a weak correlation and should be
investigated further. It is likely that the rate of rotation had a much more significant impact
than this, and one or more of pouring height, rotation angle or flame severity measurements
were lacking in accuracy. It is also possible that one or more unconsidered factors con-
tributed to flame severity, such as the fullness of the ladle, since ladle behaviour appeared to
require adjustment as it became emptier. Furthermore, this evaluation was only performed
on one pouring video due to the resource constraints, meaning more insights could be drawn
from evaluating results on a wide variety of pouring approaches. This way, common effects
such as those experienced when the ladle becomes emptier (which occurs during every pour),
could be recognised and separated from other pouring parameters such as rate of rotation.
Overall, with regards to industrial application, these measurements suggest that a higher
pouring height reduces emission severity, a constantly increasing rotation rate reduces emis-

sion severity, and the effects of rate of rotation require further investigation.
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Figure 55: Plot showing the variation of ladle rotation rate, in degrees per second,

throughout the pouring process
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4.4.3 Model Performance Evaluation for Production-Readiness

After analysing the industrial application of the model presented, it is also important to
consider the current model state in comparison to what it would require to be developed to
real-world production standard. The model performance was limited mainly by the amount
of data used to develop it, which was discussed throughout Section 4.3, With a minimum
of a few thousand frames based on different pouring techniques in slightly different environ-
mental conditions (e.g. lighting, dust, human presence), the reliability of the model could
be improved significantly. Also, with better segmentation performance, say an mAP above
0.7 or 0.8, a fixed mask component could further improve reliability. Furthermore, ensur-
ing that all pouring techniques are filmed from a fixed camera position, the same position
intended for the production-ready system, would also increase reliability. This is different
to the splatter severity measurement model discussed in Chapter 5, where for example, the
model is built to be robust to changes in camera position. For a task as complex as precisely
segmenting a complex ladle shape in dark and dusty environments whilst sparks, flames and
smoke are emitted from it, for maximum reliability, a fixed camera would be necessary with
the CV technology available today.

Another factor that affected both development and performance, was the presence of
structural obstacles that partially covered the ladle as it approached the furnace. It is
assumed that these are necessary, and so the model may needed to be adapted further to
ensure they do not compromise performance. Other aspects such as dealing with more
drastic changes in lighting, dealing with the presence of one or more groups of operators, as
well as dealing with potential process failures or anomalous events, would be considered for
model robustness when delivered in a production environment. It is worth noting that at the
time this case study was initiated, Mask R-CNN was arguably the best available instance
segmentation model available for real-world applications. However, now there are better
alternatives which would provide more precise, real-time performance with much more ease
such as YOLOv8-seg (You Only Look Once segmentation - see Section of Chapter 2).

In the current state, it is difficult to precisely describe the accuracy of model measure-
ments for pouring height, rotation angle and flame severity, however the results and discus-
sion surrounding them suggest they are at minimum, an excellent foundation to production-
ready systems. If they are lacking accuracy in some ways, which to an extent is quite likely,
by reiterating model development with the above suggestions surrounding the likes of dataset
size and camera positioning, model accuracy can certainly be improved to become precise

enough for real-world application. Additionally, enhancing sensor technology by using stereo
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cameras or even sensor fusion approaches with camera and LiDAR for example, are likely to
greatly benefit this kind of research and development.

Overall, this model lays the foundation for research and development in ladle pouring
process monitoring using modern CV techniques. By using a collection of innovative meth-
ods, it shows what works and what does not work when developing a system of this kind.
Also, this model is a complete evolution in comparison to traditional pouring monitoring
methods such as human observation. Not only is this work a pioneering study for gaining
previously uncovered insights into how the pouring process inputs affect emission severity
and equipment degradation, but it also provides many insights which are applicable to other
industrial applications. For example, any other processes involving large, heavy machinery
with complex geometry and harsh environments such as those involving rolling, forging and
casting machinery, as well as cranes and many others. If reiterated with the knowledge and
experience gained throughout this case study, this model could be used for at minimum, an
alarm system that notifies operators when emissions are high, as well as process optimisation
using analysis insights, In its most developed state, it could be used to achieve full closed-

loop control process automation whilst avoiding high emissions in real-time.

4.5 Conclusions

This chapter has presented a case study where noisy ladle pouring video data was success-
fully denoised and used to train a segmentation model for monitoring of process parameters
and resulting process quality during hot metal ladle pouring. This work demonstrates a
significant advancement in process monitoring technology through the application of tradi-
tional image processing, signal processing and modern machine learning techniques.

In this work, six different HE methods were tested and CLAHE was found to be the
best across varying contrast qualities and successfully denoised good, moderately good and
poor contrast quality images. Considering the harsh lighting conditions included in the
data for this case study, CLAHE proved to be highly effective in mitigating this problem
and demonstrates how contrast enhancement can be used to improve model robustness in
scenarios where lighting is poor.

For segmentation, Mask R-CNN data pre-processing settings and hyperparameter set-
tings were optimised via extensive experimentation using an efficient grid search approach.
The optimal configuration re-trained ResNet101 from its third stage onwards, with a weight
decay of 0.0001, a learning rate of 0.001, a weight loss configuration of (3, 2, 1, 3, 3) for
RPN class, RPN bounding box, Mask R-CNN class, Mask R-CNN bounding box and Mask
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R-CNN mask losses respectively, an RPN NMS threshold of 0.9 and a mask shape of (112,
112). This configuration achieved an mAP of 0.516.

There were a few main learning points from the optimisation such as the importance of
using a sufficiently sized dataset that is also sufficiently diverse. Also, the importance of the
structure and order of the optimisation particularly in relation to a complex network such
as Mask R-CNN was amplified during this process. In future work, a much larger dataset
consisting of several different pouring videos should be used. To obtain a larger dataset, time
designated to the project would need to be increased significantly, but could also be reduced
somewhat by applying an auto-labelling method once model mask predictions are quite good
(similarly to Case Study 3 auto-labelling seen in Chapter 6). Note that access to a larger
dataset would also be crucial in developing a production-ready ladle monitoring system.
Additionally, the optimisation should be planned according to the findings presented in the
optimisation discussion of this chapter. This is expected to minimise time consumption
whilst maximising further findings and improving model performance further. In other
words, whilst a lot was learned from this optimisation, another iteration would be highly
beneficial due to the number of complexities that have been addressed during this iteration.

The optimal configuration performance was boosted to 0.606 mAP using Kalman filter-
ing, however this had a destabilising effect on the ladle mask shape which made it errati-
cally change across sequential frames which was negative for estimating process parameters.
Kalman filtering still showed potential for future developments if harnessed correctly. One
example of how this implementation may be improved is by optimising the state transition
matrix for each sampled point of the original segmentation mask edge. Another example is
the use of non-linear Kalman filter variants to account for the ladle rotational movements.

Applying BGS algorithms resulted in a few interesting findings. Firstly, the MOG algo-
rithm did initially show some clear segmentation of the front edge of the ladle which could
be useful for monitoring velocity, height and rotation. However, this was quickly disrupted
when the scene became more complex. Nonetheless, with the correct lighting and camera
setup, it may be possible to apply this in a useful way. Secondly, all algorithms showed po-
tential in capturing the flame severity, however they are all prone to producing false positives
and again, would need to be used with the correct lighting and camera setup. Also, they
may need to be combined with other techniques to ensure the best quality emission capture.

Overall, the research presented in this chapter is significant to the field of steelmaking,
as well as the field of CV. Within steelmaking, it is a pioneering study into ladle pouring

process monitoring using cutting-edge techniques such as video segmentation. Within CV it
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advances the current capabilities of existing techniques by adapting them to benefit industrial
processes. Furthermore, this case study has addressed three of the research gaps identified
in Chapter 2. Firstly, it has involved the generation of a novel dataset based on the ladle
pouring process, which addresses the lack of datasets available for developing CV applications
for steel production processes. Secondly, it has contributed to addressing the lack of real-
world measurements performed by CV models. Lastly, it has addressed the lack of hybrid

CV models that make use of both traditional techniques and deep learning-based techniques.

4.6 Future Work

There are a wide variety of insights drawn here such as the crucial requirement for larger
datasets, to the potential benefits of changing to the current state-of-the-art networks, as
well as the impact using the efficient grid search for hyperparameter optimisation has on
resource requirements.

Additionally, this work opens up various future research avenues involving the automa-
tion of data collection, which includes measurement of process parameters such as cumulative
flame damage, daily emissions, process duration and possibly even energy expenditure. The
research here can be developed to play a major role in root-cause analysis, process optimisa-
tion, predictive maintenance and closed-loop monitoring systems. Therefore, this work can
be used to guide and inspire future developments that overlap between the fields of steel-

making and computer vision.
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Chapter 5: Real-Time Analysis of Zinc
Splatter in Steel Galvanising

In this chapter, a novel method is presented for quantifying the severity of splatter occurring
during galvanisation in real-time and in-situ using a camera. Through use of Counting (CNT)
background subtraction (BGS) for splatter segmentation, combined with the YOLOv5 (You
Only Look Once) object detection network for air knife detection which provides robustness
to variation in camera and air knife positioning, this work is an innovative approach for
splatter severity monitoring. Beyond model development, there is presentation of model
deployment which proves the production-readiness of the designed system. To date, there
are no other systems developed for this purpose reported in the literature, making it a

substantial novel contribution to the field.

5.1 Introduction

During the galvanisation of steel, one crucial step involves submerging preheated steel strip
into a bath of molten zinc. This step causes a zinc-iron alloy to form on the surface of the
steel which significantly enhances corrosion resistance of the material. To ensure uniform
thickness coating, a pair of air knives are used which wipe off excess zinc after submersion
(see Figure . Ideally, the excess zinc flows smoothly down the strip and into the bath, but
at high strip speeds where productivity is maximised, zinc detaches from the strip surface
and sprays onto the surrounding equipment. This effect is described as zinc splatter. This
means that zinc accumulates on the air knives, the electromagnetic stabilisation system and
the strip itself, causing equipment degradation which leads to downtime, as well as surface
defects which worsen material and energy wastage. Various process parameters such as air
knife distance and air pressure affect the splatter severity and currently, severity is visually
inspected by operators. This has many inherent limitations such as subjectivity, difficulties
recognising splatter occurrence, and the requirement for manual effort for a single judgement.
These limitations could be overcome if the splatter severity were to be measured objectively
and automatically, which is the aim of this study. By achieving this, the process can be
optimised for minimal splatter at high strip speeds which will lead to reduced equipment
downtime and improved product quality.

The overall objective this case study was to develop a real-time analytical tool capable
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of quantifying the severity of molten zinc splatter occurring during the steel galvanising
process. The first aim was to develop a model that overcomes the challenges of precisely
monitoring dynamic fluid morphology at high speed in complex environments with moving
machinery and changes in camera perspective. If deployed and implemented, this would
enable operators to monitor splatter severity under varying conditions such as changes in
strip speed and air knife distance, to identify relationships between process parameters and
resulting process quality. These relationships could be used for optimising the galvanising
process to reduce splatter whilst maximising strip speed. The second aim was to demonstrate
deployment of this model.

Implementation of this work onto the line will contribute to process improvement, root-
cause analysis of splatter will be more obvious, and maintenance strategies will be based
on a deeper understanding of the process. Additionally, a closed-loop control system could
be developed to adjust variables, such as air knife distance, in real-time depending on the
splatter severity level at the current time and their effect on it. Other than previously
mentioned benefits such as reduced downtime and increased product quality, this technology
could be used to find previously undiscovered trends along the galvanising line, whilst also
laying the foundation for similar applications on different processes. Source code is available
on GitHub [245].

Air knives
wipe the strip

Air Knife Air Knife

Zinc
"splatters"

Strip moves

Runoff runs upwards

into bath

Molten Zinc Bath

Figure 56: Schematic representing the part of the galvanising process where zinc splatter

occurs
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5.2 Methodology

The data for this case study was generated by recording a section of the galvanising line which
is already monitored on a screen by operators 24/7. An overview of the methodology is given
in Figure |57, which shows there were six main steps. The first step was data preparation,
which involved labelling frames and splitting them into training, validation, testing and
deployment testing sets. The data prepared in this case study addresses the gap in Chapter
2 that relates to the lack of diverse datasets available for developing computer vision (CV)
applications for steel production processes. The second step was the implementation of
background subtraction and denoising of the foreground mask produced. The third step
involved using the foreground mask for quantifying the severity of splatter. The fourth step
was the implementation of object detection, the fifth step was final validation using a range of
scenarios the model will be expected to experience during application, combined with expert
operator judgement against model predictions, and the final step involved the deployment

of the model.

5.2.1 Data Preparation

Figure [58| gives an overview of the data strategy used for this case study, and descriptions
of each source video are provided in Table . In VGG (Visual Geometry Group) Image
Annotator (VIA), each frame was annotated with bounding boxes so that the front faces
of the air knives were marked as “Knife Face”, and their undersides were similarly labelled
as “Knife Underside”. This annotation process was applied to 30 seconds of footage from
seven distinct videos (Video 1 to Video 7), each offering different camera perspectives and
process conditions. Each of these videos are indicated by the blue colour coding in Figure 58|
Utilising a diverse dataset ensures that model development results in robust model perfor-
mance which is crucial for applications in complex environments such as those found in steel
production.

With the footage running at a frame rate of 25fps, this equated to annotating 750 frames
per video, resulting in a dataset of 5,250 samples for model development. This is indicated by
the green colour coding in Figure 58] The dataset was strategically split, allocating roughly
80% (4,200 samples) for training, 10% (525 samples) for validation and 10% for testing, also
indicated by the green colour in Figure This ratio is typically successful in the field
of machine learning (ML) since it ensures model training is conducted on a large enough

dataset whilst reserving enough data for thorough validation and testing.
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Figure 57: Overview of the methodology used for Case Study 2
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Additionally, seven one-minute videos, highlighted in red, were utilised for production
testing (PT) of the model. This is an extension of the conventional “testing” phase of model
development seen in the field and was performed to assess the model in conditions that were
as close to a production environment as possible, in order to ensure production-readiness.
These one-minute videos were comprised of the same footage as the seven 30-second video

sets used in the original dataset, which is indicated by the red colour coding in Figure [58|

Video 1| [Video2| Video3| Videod| Video5 Video6 |Video7 [
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Production-Ready Model

Figure 58: Diagram showing an overview of the data strategy used in this case study

Table 20: Air knife footage with varying conditions used in this case study

Name  Splatter Severity Air Knife Movement Camera Position
Video 1 Entire range No Normal distance
Video 2 Low - Mid No Close to knives
Video 3 Low No Far from knives
Video 4 Low No Zinc pool shown
Video 5 Low Horizontal Angled towards right
Video 6 Entire range No Angled towards right
Video 7 Low - Mid Vertical Close to knives
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5.2.2 Background Subtraction

Following the preparation of all necessary data, the next phase involved selection of an ap-
propriate background subtraction algorithm. Background subtraction involves a group of
algorithms specifically designed to distinguish between background and foreground pixels in
sequences of frames. Based on the literature presented in Section of Chapter 2, as well
as additional algorithms available in OpenCV [119], these included Mixture of Gaussians
variants (MOG and MOG?2), LSBP (Local Singular Value Decomposition Binary Pattern),
Google Summer of Code (GSOC), Gaussian Mixture-based Background Foreground Seg-
mentation (GMG), K-Nearest Neighbours (KNN), and CNT. The MOG, MOG2 and GMG
algorithms are examples of Gaussian mixture models (GMM) which means they model each
pixel over a sequence of frames as a mixture of Gaussian distributions, which exaggerates key
features whilst excluding small changes such as lighting and shadows [I13]. Gaussian distri-
butions are bell-curves defined by their mean and variance, and are often utilised for mod-

elling distributions in datasets such as those representing key features in images [246], 247].

5.2.2.1 Gaussian Mixture Models

Equation (18)) calculates the probability of a given pixel having a value of xy at time N,

where each pixel is modelled by a mixture of K Gaussians [248].

p(xn) = Zwﬂ?(XN;@j) (18)

In Equation (18)), w; is the weight parameter of the j™ Gaussian component, 7 is the
probability density function and 6; denotes the ;™ Gaussian component parameters including
mean and covariance [248]. GMMs use varying numbers of Gaussians for each pixel and this is
a key aspect of their design [I13]. Each component captures a different part of the background
and their combined weights indicate the likelihood of different pixel values occurring [113].
For each frame, pixels not aligning with the expected background are considered foreground
pixels [113].

5.2.2.2 Local Singular Value Decomposition Binary Pattern

There is limited information available on the GSOC algorithm, however it is a variant of
LSBP [249, 250, 251]. LSBP is a combination of local binary patterns (LBP) and sin-
gular value decomposition (SVD) [249] 251]. LBP extracts texture-based features through
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neighbouring pixel comparison and encoding relationships into a binary pattern [252]. Equa-
tion ([19) calculates LBP based on P neighbouring pixels at radius R, where s is the sign
function used to compare intensities of the central pixel and the neighbouring pixel, g, is the
intensity of the p'" neighbouring pixel, g. is the intensity of the central pixel being evaluated
and 27 is the binomial factor which corresponds to the p'" position of the neighbouring pixel
[252].

"
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LBPpr =) s(gp—9c)2" (19)
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When neighbouring pixels are similar, LBP struggles with noise [249]. SVD is utilised for
dimensionality reduction of rectangular matrices, and is therefore is combined with LBP to
improve robustness [249]. It achieves this by exaggerating significant patterns, reducing the
effect of noise, which provides improved stability of the background [249]. Equation ([20))
calculates SVD on a matrix B surrounding location (x,y), where U and V are orthogonal

matrices, and ¥ is a diagonal matrix containing singular values of B(x,y) [249).

B(z,y) =UsVT (20)

LSBP begins by obtaining the LBP descriptor for each pixel using local neighbourhoods,
after this it creates descriptor matrices, then it applies SVD to the matrices for principal
components which reduces noise, and finally, principal components are utilised to identify
the foreground and background robustly [249]. Equation calculates the LSBP binary

string at (x.,y.), where i, is the neighbourhood value and i, is the central value [249].
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5.2.2.3 K-Nearest Neighbours

KNN background subtraction is based on K-Nearest Neighbours, which is essentially similarity-
based classification [253]. The KNN background subtraction algorithm is non-parametric
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and uses a kernel for classifying pixels as foreground or background [242]. The kernel is
described in literature as a “balloon estimator” which has a diameter that is dynamically
adjusted to cover a number of data points that is pre-defined and then adapts depending
on local data density [242]. Data density is the degree of similarity between pixels in terms
of different features such as colour [242] Therefore, the algorithm can effectively adapt to
varying sample density, ensuring robustness to noise and gradual background changes [242].
Equation calculates the non-parametric density estimate which differentiates between
background (BG) components and foreground (FG) components [242]. In Equation (22), T
is the number of historical frames used to adapt, t is the current time, m is the earliest frame
that the algorithm iterates through until it reaches ¢, 2 is the RGB value of the pixel at
time m, 7 is the RGB value of the pixel at the current time, k is the number of dataset
samples X r that lie within the hypersphere (balloon) volume V' of the kernel of diameter D,
and /C(u) is the kernel function [242].

A - |7 — 2| k
pnon—parametric(7|XT7 BG + FG) = — Z K < ) = (22)
TV = D TV

5.2.2.4 Counting

The CNT background subtraction algorithm played a major role in quantifying zinc splatter,
as well as monitoring gaseous plumes in Chapter 6. Therefore, details of the algorithm have
been presented in Section [3.3.2]

All algorithms detailed in this section were implemented using OpenCV in Python. Most
algorithms come with a set of adjustable parameters, although some do not offer any cus-
tomisation. In order to determine the most suitable algorithm for the zinc splatter model
whilst ensuring efficiency of the model development process, Video 1 was used to compare
the performances of different algorithms. Performance was judged based on the precision of
splatter segmentation, as well as the frame rate achieved. For parameter optimisation, there
was already some idea as to which settings were likely to be ideal based on previous results
with default parameter settings. Therefore, values were adjusted incrementally to balance
sensitivity to splatter with resistance to noise from dust particles, heat distortion and air

knife movement.
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5.2.3 Splatter Severity Measurement

The optimal background subtraction algorithm produced a mask that was usable for mea-
suring splatter. This mask underwent further processing through morphological erosion and
contour thresholding to reduce noise. Morphological erosion involves thinning the external
boundaries of contours. In this case study, erosion was applied to mitigate noise caused by
camera movement and subtle heat wave distortions in the footage. Contour thresholding
refers to the removal of contours smaller than a defined number of pixels, further eliminating
residual noise. The refined foreground mask was confined to a designated splatter mea-
surement region which was then analysed in terms of splatter amount and splatter width,
both quantified in pixels. Splatter amount was the number of foreground mask pixels within
the splatter region and splatter width was how widespread they were. These measurements
were tracked for each frame and used to produce two histograms. These histograms were
then used for the categorisation of splatter into five severity levels for both splatter amount
and splatter width. An overall splatter severity score was assigned based on these levels, as
shown in the splatter severity rating system in Figure |59 This scoring system operates on
the premise that both splatter amount and splatter width equally influence the total sever-
ity rating, meaning the final score corresponds to the higher of the two individual severity

scores.

Splatter Width

0-200 |200-400400-600|600-800| 800+

30000+

Splatter Amount

Figure 59: The rating system used to obtain an overall splatter severity rating
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5.2.4 Object Detection

After establishing a method to quantify splatter severity, it was crucial to enhance the model’s
robustness to changes in camera positioning. This goal was accomplished by implementing
object detection to classify and localise air knives. YOLOv5 was selected for its state-of-
the-art performance at the time this case study began, as shown in Section of Chapter
2. Accurate detection of these knives is essential for several reasons. In the context of this
research, they were used to define the splatter region, which is the area within the footage
that is targeted for measurement. This was to prevent measurement of irrelevant areas that
reduce the accuracy and efficiency of background subtraction. Secondly, air knife bound-
ing box sizes were used to scale model configurations up or down based on their distance
from the camera using a reference size for calibration. The relative distance between the air
knives and camera was estimated using a scale factor (SF), which is shown in Equation

as S'F' and was based on the size of bounding boxes in pixels B, relative to a reference size R.
B
SF = — 23
= (23)

The scaling factor was calculated per frame which was limited by small variations in bound-
ing box size between every frame (since YOLOVS5 predicts slightly different boxes each time).
Based on this, and the fact operators only change the camera position between shifts (every
few hours at least), it was more appropriate to use a moving average (MA) of the scaling
factor as the final value for the model. The equation is shown in Equation (24)) where X

represents the SF calculated for one frame and n represents the number of averaged points.

Xi+Xo+ ...+ X,

MA(SF) = -

(24)

The object detection process utilised YOLOvV5, which required training, validation, and
testing phases. Training was conducted over 30 epochs on the YOLOv5s model, utilising
4,200 samples for training and 525 samples for end-of-epoch validation (see Figure in
Section . A set of 525 test samples were then used to more accurately assess the

model’s generalisation performance on unseen data.
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5.2.5 Final Evaluation

As model development came close to completion, validating its functionality and performance
became crucial to confirm its suitability for deployment. The initial step in this process
was to process seven one-minute videos through the model (see Figure and Table
in Section . The resulting output videos were then visually inspected to verify that
the model performed accurately across a range of potential real-world scenarios it might
encounter. Following this, a practical validation test was conducted by two operators who
work at the galvanising site and deal with the air knife system on a daily basis. This
test required operators to assess the splatter severity across 20 carefully selected frames,
characterised by diverse camera angles and process conditions. Their assessments were then

compared with the ratings provided by the model to gauge its accuracy and reliability.

5.3 Results and Discussion

This section presents and discusses the results obtained from experimentation described in
Section which begins with the results of background subtraction before moving onto
YOLOV5 for air knife detection. Following object detection will be definition of the splatter
region and scaling factor. Finally, the results of evaluating the developed model will be
presented, which consist of evaluation of performance on a set of videos with diverse en-
vironmental conditions, as well as validation of model estimations against galvanising site

operator judgements.

5.3.1 Background Subtraction

Initial background subtraction results were based on the performance of each algorithm using
Video 1. Only one video was required since performance differences were sufficiently distinct,
eliminating the need for evaluation using additional videos. Preliminary testing indicated
that variations in camera positioning did not significantly influence performance. This is
likely because the algorithms are designed to handle variations by focusing on pixel-level
changes as opposed to static background features. However, in Video 7, where the air knives
exhibit upward movement, this resulted in a change in system appearance, therefore affecting
the algorithm performance. This issue is addressed later in this section. Metrics evaluated
in this initial phase were the foreground segmentation (background subtraction) precision,
as well as inference time (the time taken to perform background subtraction on one frame)

and the resulting processing speed, the details of which are presented in Table 21}
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Table 21: Inference times and frame rate for various BGS algorithms

Algorithm  Inference Time (s) Inference speed (fps)

MOG 0.095 10.515
MOG2 0.112 8.961
LSBP 1.019 0.982
GSOC 0.407 2.459
GMG 0.273 3.659
KNN 0.129 7.776
CNT 0.051 19.802

The originally captured footage operated at a frame rate of 25fps. The goal was to
achieve real-time processing which meant the frames from the source could be live-streamed
to the model and enough of them could be inferred upon to gain useful outputs without
stopping or slowing the stream down (see Section . Given that each frame would
undergo YOLOvV5 inference, splatter measurement, and other processing steps, the speed
of the selected background subtraction algorithm was a critical factor and needed to be
maximised. Faster algorithms minimise processing bottlenecks and ensure that real-time
analysis can be maintained. Note that the frame rates detailed in Table [21] could be sig-
nificantly improved through various methods, such as utilising a GPU (graphical processing
unit), resizing frames, and fine-tuning algorithm parameters. Therefore, speeds should be
compared relative to one another rather than solely based on say, their ability to get close
to a 25fps rate.

From the data in Table 2T, MOG, MOG2, and CNT were the most promising algorithms
for real-time monitoring, whilst LSBP was the least suitable by a significant gap in speed.
Based on these findings, LSBP was excluded from further consideration in the final model.

The next step was to look at the segmentation precision.
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5.3.1.1 Analysis of Early, Low Splatter Severity Frame

(a) MOG (b) MOG2

(c) GSOC

Figure 60: Figure showing the effects of different background subtraction algorithms
(MOG, MOG2 and GSOC) on an early frame with low splatter

Figure and Figure show a frame during the first second of Video 1 after being
processed by each of the algorithms at default settings (excluding LSBP), where splatter
severity is low.

Figure (a) shows the MOG algorithm results where a small amount of zinc was seg-
mented as well as a small amount of noise. Excluding the noise which is made up of many
small contours and therefore easily removable using denoising techniques, the zinc segmented
looks fairly precise. However, since zinc adheres to the steel strip and there is therefore not
any “splatter” as such. The MOG algorithm works by modelling each background pixel as
a mixture of several Gaussian distributions, which determines whether a pixel belongs to
the background or foreground by evaluating how well its value fits these distributions [238].
The weights of the mixture represent relative time periods that different colours stay in the
scene, and the probable background colours are the ones which stay longer and more static
[238]. This approach allows the algorithm to adapt to gradual changes in the background

because the Gaussian mixture model can update to reflect the most stable colours over time.
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(a) GMG (b) KNN

(c) CNT

Figure 61: Figure showing the effects of different background subtraction algorithms
(GMG, KNN and CNT) on an early frame with low splatter

Therefore, MOG effectively finds a balance between detecting moving objects and ignoring
minor changes, which leads to fairly precise segmentation of the zinc in this scenario.
Figure [60(b) shows MOG2 algorithm results where there was no segmentation mask
(fuschia) but some light grey mask was present, which was where the algorithm began to
track pixel movement as shadows. Unlike MOG, MOG?2 incorporates shadow detection that
differentiates foreground pixels from shadow pixels [239]. This added functionality allows
MOG?2 to handle dynamic lighting conditions better than MOG. Distinguishing between
shadows and actual foreground objects reduces false positives from shadows, leading to more
accurate segmentation in environments with varying light conditions, which is shown here
by detecting zinc movement without confusing it with splatter. In this case, it has detected
noise as shadow but not splatter, whilst the MOG algorithm detected the noise as splatter.
This indicates that MOG?2 is slightly more resistant to noise than MOG. However, the MOG2
algorithm has also detected zinc that is starting to move away to the strip as shadow rather
than splatter. On one hand, zinc beginning to move away from the strip is not actually
“splatter” and could therefore be ignored, making the MOG2 result in Figure (b) an

accurate representation of the severity of splatter. On the other hand, in some scenarios, it
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could be preferable to segment any slight disturbances along the strip, such as how MOG
has in Figure [60](a).

Figure (c) shows the GSOC algorithm results where the majority of the steel strip was
segmented as well as some noise. The strip contours have much more coverage than the MOG
algorithm, which could be better or worse. On one hand, the strip is moving at all times
and always has some zinc moving along the surface, so more coverage would indicate better
motion detection. On the other hand, it is not necessarily desirable to detect all motion along
the strip, rather just the zinc that is beginning to move away from the strip. Either way, more
coverage indicates higher sensitivity to movement. This aligns with the fact that the GSOC
algorithm performs better on the CDNet 2014 dataset than other algorithms, which is a
dataset used to evaluate the robustness of motion detection algorithms using a variety of real-
world challenges such as dynamic backgrounds, camera jitter, unstable lighting conditions,
and various types of motion which require an algorithm sensitive to subtle changes [240, 254].
Therefore, whilst the GSOC algorithm is designed to detect subtle changes in dynamic
environments, this also makes it prone to over-segmentation. Also, whilst the algorithm has
been proven to work well in complex scenarios, the particular scenario in Figure (c) is
even more complex than CDNet samples due to the subtle differences in texture and depth
of the zinc and the surrounding environment. This highlights the uniqueness and highly
challenging aspects of developing CV applications for industrial environments, as opposed
to more typical scenes found in the CDNet dataset [254].

Figure (a) shows zero background subtraction because the GMG algorithm needs a
few frames to initialise. It uses Bayesian updating, essentially meaning it gives each pixel
weights which are based on initial estimations from the first few frames, and then adapts
them over time (similarly to Kalman filtering used in Chapter 4 which also uses Bayes’
theorem [241), 255]).

Figure (b) shows that similarly to the GSOC algorithm, the KNN algorithm was also
over-sensitive. In this case, whilst the steel strip segmentation was similar to that seen in
Figure (c), the surrounding noise was more widespread and more evenly distributed using
many smaller contours as opposed to thicker ones seen in Figure [60[c). The nature of the
noise in Figure (b) means it would be easier to remove using morphological operations,
however there is still a lot of noise covering most of the splatter measurement zone. The
KNN algorithm uses a dynamic method to analyse each pixel’s surroundings [242]. It adjusts
the area it examines around each pixel, depending on how many moving pixels are nearby

[242]. This adaptability means it can mistake minor changes or slight camera movements as
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significant, especially in scenes with many edges such as this one (observable below the air
knives) [242]. This approach helps capture most movement in the video, but can also make
it overly sensitive to small, unimportant changes.

Finally, Figure (c) shows that the CNT algorithm considered the whole frame as fore-
ground. This is opposite to the GMG algorithm that considered the whole frame as back-
ground until the algorithm had finished initialising. The CNT algorithm requires initialising
because it is based on pixel stabilities, which are essentially values given to each pixel which
dictate how likely it is to be part of the foreground or background. Since pixel stabilities are

adapted over time, it takes at least a few initial frames for them to be established [243].

5.3.1.2 Analysis of Moderate Splatter Severity Frame

(a) MOG (b) MOG2

(c) GSOC

Figure 62: Figure showing the effects of different background subtraction algorithms
(MOG, MOG2 and GSOC) on a frame with moderate splatter

Figure and Figure [63] show a frame during the 18th second of footage processed by
each of the algorithms at default settings, where splatter severity is moderate.
Figure (a) shows the MOG algorithm has successfully segmented zinc that is splat-

tering off the steel strip is captured with good precision. As discussed, this is because
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(b) KNN

(c) CNT

Figure 63: Figure showing the effects of different background subtraction algorithms
(GMG, KNN and CNT) on a frame with moderate splatter

the Gaussian mixture model updates distributions continuously according to changes in the
scene, maintaining a balance between detecting splatter and ignoring static elements. As
with Figure (a), there is a small amount of noise made up of many small contours that
would be easily removable using denoising techniques.

Figure b) shows the MOG2 result is significantly different to that shown in Fig-
ure [60[(b). Whilst in the early, low severity frame in Figure there were only shadows
detected, in Figure b) there is a significant quantity of foreground segmentation. As the
algorithm processed more frames, it became better at differentiating between foreground
pixels and shadows, leading to more accurate segmentation in later frames. In comparison
to the MOG result, more splatter is segmented due to the increased sensitivity, however this
also caused some over-segmentation, since the algorithm predicted some of the background
and shadows as foreground.

Figure [62|c) shows the GSOC result which has improved significantly from Figure [60|(c).
Whilst in Figure most of the steel strip was segmented, as well as fairly large noise
contours, in Figure [62c) the steel strip is no longer segmented, but the splatter has been
segmented quite effectively. Also, in comparison to Figure [62(a) and Figure [62|(b), there are
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no small noise contours surrounding the splatter. The significant improvement over time
indicates the strong learning capability of the GSOC algorithm. Since the algorithm is de-
signed for complex environments such as those in CDNet 2014 [254], it is able to adapt to the
scene and refine the background model, which leads to more accurate splatter segmentation
as it becomes more familiar with the dynamics present in the scene. However, there is some
over-segmentation between the individual streams of zinc which is, as previously explained
with Figure (b), due to the finite details of the liquid which is a similar colour to the
background colours, highlighting the difficulty of this task.

Figure [63|a) shows that the GMG algorithm had initialised by this point of the footage.
The algorithm over-segmented the splatter and also produced some noise made up of contours
of varying size. On the left-hand side of the image the contours are thicker and more
connected, whereas on the right-hand side there are smaller contours. The over-segmentation
being more extreme than in other algorithms suggests that the GMG algorithm is not as
good at dealing with rapidly changing, complex scenes with subtle changes as the others.
This is because Bayesian updating makes the GMG algorithm highly sensitive to changes,
which can lead to over-segmentation. Varying contour sizes show that the algorithm is
trying to dynamically adjust to different areas of the frame, but its high sensitivity results in
more noise. The difference in left-side and right-side noise could also be due to a difference in
lighting conditions. When looking more closely at the noise in Figure [62(a) and Figure[62|(b),
as well as Figure [63(b) and Figure [63](c), there is an observable imbalance between the left-
side and right-side noises which follows the same pattern of the left-side noise being slightly
more extreme than the right-side. Since Figure (a) shows the most over-segmentation, as
well as the most extreme noise, this result suggests the GMG algorithm is the most sensitive
to changes in scene and probably too sensitive for this application.

Figure (b) shows the KNN algorithm performed quite well with some slight over-
segmentation. This is a significant improvement upon what is seen in Figure (b) since
there is far less noise, making it much easier to remove using denoising techniques. This
result suggests the KNN algorithm adapts well over time. This is likely due to the fact that
the KNN algorithm changes the area of interest around each pixel depending on moving
pixels nearby, and in this case of moderate splatter, has done so effectively. Despite this, it
is evident that its adaptability can sometimes lead to slight over-segmentation.

Finally, Figure[63|c) shows the CNT algorithm had initialised by this point of the footage.
The algorithm segmented the splatter competently with minimal over-segmentation. This

is due to the pixel stability-based approach, which involves differentiating between stable
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background pixels and dynamic foreground objects based on how consistent their colours
are. Since pixel stability thresholds were at default in this experiment, these results imply
that the default values were reasonably close to optimal for this scenario. The captured
foreground mask follows the natural shape formed by the splattering zinc more than other
algorithms, however there is a moderate amount of noise in the form of small contours on
the left and right-hand sides of the image. Since the noise is in this form, it is removable

using denoising techniques.

5.3.1.3 Analysis of High Splatter Severity Frame

(c) GSOC

Figure 64: Figure showing the effects of different background subtraction algorithms
(MOG, MOG2 and GSOC) on a frame with high splatter

Figure [64] and Figure [65] show a frame during the 33rd second of footage processed by
each of the algorithms at default settings, where splatter severity is high.

Figure (a) shows the MOG algorithm captured the splatter quite effectively, with some
slight under-segmentation. Note that in this frame the zinc is splattering off from the strip
but also moving away from it without fully splattering on the left and right sides of the

strip also. The MOG algorithm has captured both the splatter and the partial separation of
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(c) CNT

Figure 65: Figure showing the effects of different background subtraction algorithms
(GMG, KNN and CNT) on a frame with high splatter

the zinc from the strip, whilst avoiding segmentation of the strip itself. This distinction is
quite impressive, however as mentioned, there is some under-segmentation which can be seen
towards the top-left end of the strip. High splatter scenes are typically more complex than
moderate or low splatter scenes, and whilst MOG continues to effectively segment splatter
by adapting to changes, the increased complexity of the scene makes it more difficult for the
algorithm to fully capture all dynamic elements, which evidently can lead to slight under-
segmentation.

Figure [64(b) shows the MOG2 algorithm was again more sensitive than the MOG al-
gorithm. This resulted in slight over-segmentation of zinc as well as some small amount of
noise. As discussed, the increased sensitivity of MOG2 compared to MOG can be beneficial
in capturing dynamic details but can also lead to over-segmentation, which is particularly
true in high splatter scenarios where there is more complexity. Based on all frames discussed
in this section, it seems that MOG and MOG?2 are fairly effective at background subtraction
in this environment. The heightened sensitivity of MOG2 could be beneficial or detrimental
depending on the use-case, however in this study the difference is not significant. Addition-

ally, both algorithms have shown to improve their robustness to noise over time.
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Figure [64(c) shows the GSOC algorithm performed very similarly to the MOG algo-
rithm, except with slightly more severe under-segmentation. This can mainly be seen on the
splattering zinc on the left-hand side, where the MOG algorithm captured three streams of
splatter whereas the GSOC algorithm only captured one (which is over-segmented). Simi-
larly to Figure|62(c), there is no scattered noise. Based on all three GSOC frames discussed
in this section, it seems that whilst it is effective at adapting to dynamic environments over
time and robust to small amounts of noise, it is also prone to under-segmentation. It could
also be said that it is prone to over-segmentation, since in some cases it segmented between
and around individual streams of splatter, which is certainly erroneous, however most algo-
rithms were prone to this at some point due the subtle details of the splatter footage. Whilst
GSOC has been proven to work effectively on complex scenes, the level of intricate detail and
rapid changes in high splatter scenarios make them particularly challenging, which evidently
can lead to under-segmentation as it struggles to differentiate between closely packed moving
objects.

Figure [65(a) shows the GMG algorithm followed the same pattern as in Figure [63{a).
There is over-segmentation of zinc that has splattered off the strip, as well as the zinc that
is still not fully detached from it. There is also noise scattered around the entire frame in a
more sparse distribution than other algorithms in previous frames. To an extent, this was
noticeable in Figure [63|(a), however here the uniqueness of it is more obvious firstly because
other algorithms have eliminated most of their “scattered” noise, and secondly the noise is
quite consistently spread throughout the whole image whereas in Figure (a) it was not so
spread out. As discussed, the high sensitivity of GMG makes it prone to over-segmentation,
which is amplified in high splatter scenarios since they are the most complex. From all three
GMG frame results in this section, it seems the GMG algorithm is over-sensitive and is
incompatible with the use-case in this case study.

Figure (b) shows the KNN algorithm performed similarly to the MOG2 algorithm.
There is arguably a very slight amount of under-segmentation however further research,
preferably involving a contrasting coloured background, would be required to reach conclu-
sions. Whilst the MOG2 algorithm is arguably slightly over-sensitive and definitely produces
some scattered noise around the image (particularly visible on the right-hand side), the KNN
algorithm is arguably slightly under-sensitive and definitely produces minimal scattered noise
around the image.

This is because it adapts well to local changes which is suitable for visually complex, high

splatter scenarios. However, highly complex scenarios cause the KNN algorithm to take a
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more conservative approach to avoid noise, which unlike in less complex scenarios (such as
moderate splatter scenarios), can lead to slight under-segmentation, since it excludes some
of the fine details to maintain overall precision. The results in this section suggest the KNN
algorithm performs well in this scenario, becomes more robust to noise over time and may
be prone to slight under-segmentation in complex scenarios (which aids noise reduction).
Finally, Figure (C) shows the CNT algorithm performed similarly to the previous frame
shown in Figure (c) There is improved segmentation at the top-left of the strip compared
to other algorithms which were prone to under-segmentation in this region. However, there
was also a lot of small, scattered noise spread throughout the image in comparison to most
other algorithms which had almost none of this kind of noise by this point. Still, the noise
produced by the CNT algorithm was made up by many small contours and therefore would
be relatively straightforward to remove. There is also some segmentation along the strip itself
which is hard to distinguish as strip or zinc, but is mostly out of the splatter measurement
zone anyway. The pixel stability-based approach of the CNT algorithm clearly enables it
to handle high splatter scenarios effectively, since it maintains precision even in challenging
regions and in comparison to other algorithm predictions, false positives are more easily
mitigated using denoising techniques due to its scattered nature. The results in this section

suggest the CN'T algorithm performs well in this scenario, more so than all other algorithms.

5.3.1.4 Analysis of Air Knife Movement

Since the CNT algorithm was the fastest by far (Table and also showed the best segmen-
tation results provided it was intended to be combined with denoising techniques, it was the
background subtraction algorithm of choice for this case study. To assess the algorithm’s
handling of air knife movement in Video 7, it was tested with default settings. Figure
displays three frames at 12, 16, and 21 seconds, highlighting a noticeable issue. The CNT
algorithm had established the background over multiple frames before the movement of the
knives. Therefore when the knives moved, the algorithm detected this as a change, leading
to inaccuracies in the segmentation mask. This inaccuracy progressively worsens across the

frames shown in Figure [66]
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(b) Frame 420 of Video 7

(c) Frame 540 of Video 7

Figure 66: Figure showing CNT at default settings failing to distinguish knife movement

from splatter

To address the air knife movement issue in Video 7, experimental adjustments were made
to the CNT algorithm parameters, particularly focusing on minimum and maximum pixel
stability. Minimum pixel stability is the number of frames a pixel requires constant colour
for to be considered stable for segmentation, and this was manually set to fixed values within
a low range (0-3) to capture the rapidly changing splatter between frames [202]. Maximum
pixel stability, which is the longest possible memory of a pixel’s stability, was adjusted to
a value that balanced sensitivity to small changes and exclusion of occasional disturbances
like air knife movement [202]. The optimal settings chosen were one for minimum and ten
for maximum pixel stability respectively. As mentioned in Section optimal settings
were found by incrementally adjusting pixel stability thresholds from their default settings
until results were satisfactory. Figure and Figure [67 compare results before and after
optimisation, showing improved segmentation and a slight decrease in inference time from
50.5ms to 50ms. This optimisation effectively enhanced the CNT algorithm’s ability to deal

with air knife movement.
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(a) Frame 300 of Video 7 (b) Frame 420 of Video 7

(c) Frame 540 of Video 7

Figure 67: Figure showing the effects of knife movement on CNT background segmenta-

tion after modifying the CNT algorithm

5.3.1.5 Analysis of Noise Filtering

To tackle the excess noise caused by the CNT algorithm, erosion with a (2,2) filter was applied
to the mask, removing minor background noise caused by heatwaves and camera movement.
Figure [68|(a) shows the result before erosion and Figure [68(b) shows the improved clarity af-
ter erosion was applied. This step significantly refined the mask. Morphological opening was
considered (erosion followed by dilation), however due to there being some larger contours
involved in this scenario, it was considered important to maintain these larger structures in
the mask. Whilst erosion still affected them, using a small filter meant they were barely
affected whilst most of the small noise contours were removed. If opening was used, the dila-
tion step would have caused slightly more distortion of the larger contours. Dilating contours
after eroding them would preserve most of the overall size of the remaining contours, but
would distort the shape. Therefore, there is a trade-off depending on which approach is used
and in this case, erosion was chosen for computational efficiency, since the actual difference
made by the extra dilation step would be insignificant. Additionally, a contour threshold of

75 pixels was set to exclude very minor splatter contours that were widespread and could
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disproportionately influence the severity rating by dramatically affecting the splatter width.
This ensured anomalies in the splatter distribution were excluded and the overall severity

measurement accurately represented occurring splatter.

(b)

Figure 68: Figure showing the effects of contour erosion on CN'T background segmentation
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5.3.2 Splatter Severity Measurement

The next step after splatter segmentation was splatter measurement via splatter amount (the
number of segmented pixels in the splatter region) and splatter width (the distance between
the left-most and right-most segmented pixels in the splatter region). To minimise noise, the
area expected to contain splatter was defined as the splatter region, which changed based
on bounding boxes (discussed later). This contributes towards addressing the gap identified

in Chapter 2 regarding using CV models to measure real-world characteristics.
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Figure 69: Histogram showing how frequent different splatter amount values occurred
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Figure 70: Histogram showing how frequent different splatter width values occurred

177



For every frame of Video 1, splatter amount and width were measured and plotted as his-
tograms (Figure [69| and Figure . Both histograms were divided up into five ranges which
each represented a different severity level for splatter amount and splatter width. Splatter
amount ranged from 0 to 42655 and splatter width from 0 to 847. The majority of frames
fell into the first severity level, which was the baseline state. The second range, indicating
a severity of one, had fewer frames than the first but more than the subsequent levels. The
third range represented a severity of two and was the outcome of significantly less frames
again. The fourth and fifth ranges, representing severities three and four, contained very
few frames, with the fifth having no upper limit to include extreme cases. This distribution
showed higher severity levels as less common, aligning with real-world scenarios. The final
splatter severity rating for each frame was determined using the system from Figure in

Section [5.2.3] with examples shown in the following section.

5.3.3 Object Detection

Once splatter severity measurement was achieved, integration of an object detection model
was carried out. As a reminder, object detection consists of object classification (identify-
ing the type of object), and object localisation (identifying the location of the object and
enclosing it with a bounding box). In the context of this research, detection of air knives
is important for defining the splatter region and scaling factor, as detailed in Section [5.2.4]
The combination of background subtraction, with a modern deep learning-based technique
such as YOLOv5 addresses the gap in Chapter 2 regarding a lack of applications built
from combining traditional and modern techniques. The YOLOv5 object detection model
was trained, validated and tested on frames where the air knives were labelled, in order to
achieve automated air knife detection. The results of this model development are presented

in this section.

5.3.3.1 Model Training

Figure [71] shows a loss versus epoch graph for bounding box, objectness and classification
losses over 30 epochs of training of YOLOv5. Training took 14 minutes and 38 seconds per
epoch, which overall took 439 minutes. All losses followed similar trends and were normal for
successful training as it shows the model initially improved its ability to predict bounding box
coordinates, object presence and classification labels quickly and this rate of improvement
slowed down as epoch number increased. This was likely because the model initially learned

more obvious features in the training data quickly, and as the remaining unlearned features
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were more subtle overall, training losses reduced at a slower rate. The training data consisted
of all different scenarios existing in the provided footage, varying by camera position and
environmental conditions (see Table [20 in Section . The air knives barely changed in
appearance and if they did, it was due to movement. Therefore, considering a substantial
amount of data was provided, including many examples of each scenario with little variation
in knife appearance, it makes sense why training was straightforward.

Validation losses, which were lower than training losses, are shown in Figure[72] Typically,
validation losses are slightly higher than training losses since they are based on unseen
examples. This type of result could be caused by samples being distributed between training,
validation and testing sets so that the validation set is easier to predict on than the training
set. In this case, there is also a decreasing trend over epochs showing successful training at
each epoch, and since there was not much variation of the knives in the whole dataset, these

results suggest that the model learned from the training samples very quickly.
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Figure 71: Graph showing how training loss changed over 30 epochs of training

Table shows the precision, recall and COCO (Common Objects in Context) mAP
(mean average precision) results for the intra-epoch validation which align with discussion
on Figure [71 and the low validation loss shown in Figure[72 Since the dataset was large and
did not vary much, YOLOv5 was able to successfully learn features with ease and therefore

achieve near perfect performance.
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Figure 72: Graph showing how validation loss changed over 30 epochs of training

Table 22: Precision, recall and mAP results for intra-epoch validation of air knife detection

Precision Recall mAPcoco

0.99988  1.00000  0.99414

5.3.3.2 Model Testing

Figure shows model testing results in the form of a confusion matrix. For each class,
the matrix shows true positive and false positive predictions, and here all predictions were
correct. Figure shows visualised labels and Figure shows corresponding predictions,
which align with the confusion matrix. As shown, the model performance is near to identical
compared to the labels. This suggests the model will make good predictions during deploy-
ment. It will experience slightly different camera positions, however it has been trained on
a range of different positions already and should therefore still perform well. For optimal
deployment performance, the model may need to be improved iteratively based on any new
camera positions.

The precision, recall and mAP results for the testing stage in Table [23|show that similarly
to validation, testing resulted in near perfect model performance. Whilst the recall was
perfect for both validation and testing (indicates all ground-truth labels were detected),
the precision was slightly less than perfect. This indicates the model did make at least
one bounding box prediction that was not in the ground-truth data. This was likely just

one or a few incorrect bounding box predictions in random frames that were due to the
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Predicted

True

Figure 73: Confusion matrix showing 100% true positives for “knife face” class (labelled

“0”) and 100% true positives for “knife underside” class (labelled “17)

Figure 74: Visualisation of air knife labels where both classes are present on the left, and

only the “knife face” class is present on the right

Figure 75: Visualisation of air knife YOLOv5 predictions where both classes are present

on the left, and only the “knife face” class is present on the right
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model recognising features incorrectly, which whilst imperfect, would not significantly impact
performance during deployment (they would last less than one second). It is worth noting
that taking the confusion matrix and Table [23| at face value, they do not agree. Whilst the
confusion matrix indicates perfect results, Table [23|indicates slightly imperfect results. This

is likely because confusion matrix values were rounded.

Table 23: Precision, recall and mAP results for model testing on air knife detection

Precision Recall mAPcoco

0.99989  1.00000  0.99449

5.3.4 Splatter Region Definition

Following the success of air knife detection, it was possible to define the splatter region more
precisely. Originally, the intention was to define a splatter region by a static horizontal
line entered manually for each video. However, as it became known that there would be
variations in camera position between operator shifts, as well as knife movement, the splatter
region definition required improvement so that it could adapt to changing environments.
Figure (a) shows the optimised splatter region line which adheres to the change in level
when under the front side of the air knives. This ensured as much of the steel strip was within
the splatter measurement region as possible. When underside faces were visible, there was
little to no difference between the knife level and the outer level (the part the knives are
attached to). Also, at some angles the splatter underside was visible at a lower point than
the outer level. Therefore, it made sense to make the splatter region boundary line straight
when underside faces were detected as in Figure [76[b). An example of the underside face
bounding boxes sitting lower than the outer level can be seen in Figure [76{c).

Another notable aspect of Figure [76(b) and Figure [76|c) is that the underside faces are
classified as front faces (“Knife Face” as opposed to “Knife Underside”). It was found that
despite the near perfect results found during model testing, the model often struggled to tell
the difference between the front faces and the underside faces. This shows a limitation in
the model, however it did not affect the performance of the splatter region definition, since
underside faces only ever existed underneath front faces, and so the presence of underside
faces could be detected based on whether there were two bounding boxes directly under
the front face bounding boxes, or not. Further analysis into the YOLOv) classification

performance is a potential avenue for future work.
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Splatter Severity: O
Splatter quantity: 2150
Splatter width: 82

Splatter Severity: O
Splatter quantity: 3131
Splatter width: 83

Splatter Severity: 0
Splatter quantity: 1440
Splatter width: 56

Scaling Factor: 2.4
MA Scaling Factor: 2.4

Scaling Factor: 2.2
MA Scaling Factor: 2.4

Scaling Factor
MA Scaling Fac

Figure 76: Demonstration of splatter region line (long, red, horizontal) changing depend-
ing on how the knives are positioned. In (a) it is stepped to follow the change in level be-
tween the air knives (black) and their supporting structure (greyish-brown). In (b) there
is less of a level change and so the line has adapted to be straight all the way along. In (c)

there is no level change and the line is appropriately straight
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5.3.5 Scaling Factor Definition

Using air knife bounding boxes to define the splatter region was an effective aid in ensuring
the model was robust to variations in camera positioning. However, the model is most
reliable when the camera position is kept as similar as possible to the reference position,
which is the one used for Video 1. Therefore, if the primary task of operators at any given
time period is to collect splatter severity data for process optimisation, then the reference
camera position should be imitated as best as possible. In future work, a camera position
check could be added to automatically identify if the camera is in a similar position or not.

Further robustness was ensured by using the bounding boxes to calculate a scaling factor
which was applied to splatter amount and splatter width severity level boundaries. The
scaling factor was calculated from the pixel area of the air knives’ bounding boxes compared
to a reference area. Since variations in the camera-to-knives distance altered the bounding
box sizes, the scaling factor was also adjusted as shown in Equation of Section m
This scaling factor was applied to the splatter amount and width thresholds to maintain
accuracy in the splatter severity assessment, regardless of changes in camera distance.

Results from two different camera positions are shown in Figure [77(a) and Figure [77|(b),
where similar splatter amounts and splatter widths are shown, but in Figure (b) the
severity rating is lower since the distance between the camera and knives is smaller which
only gives the appearance of severe splatter.

The implementation of the scaling factor was followed by the addition of a 25,000-point
moving average. This was based on the 25fps frame rate and meant the scaling factor
would be refreshed approximately every 17 minutes. Under the assumption that camera
adjustments by operators would occur a few hours apart, this setup provided a substantial
safety factor for typical operation whilst also allowing for flexibility if the camera was to be

moved more frequently.
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Splatter Severity: 3 Scaling Factor: O.
Splatter quantity: 19893 MA Scaling Factor:
Splatter width: 156

Splatter Severity: 1 Scaling Factor: 2.3
Splatter quantity | MA Scaling Factor: 2.3
Splatter width: 123

(b)

Figure 77: Demonstration of splatter measurement boundaries adapting to changes in

camera position
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5.3.6 Final Evaluation

Verifying the suitability of the developed model for real-world application was crucial for
evaluating its effectiveness. This comprised of two parts and the first was to evaluate the
model on a range of videos with different conditions expected in production (listed in Table
of Section . The second was to validate splatter severity measurements made by the
model against the judgement of operators. Both of these parts address the gap identified in
Chapter 2 regarding a lack of real-world testing of models.

5.3.6.1 Video Evaluation

The model was firstly evaluated for production-readiness using the seven 60-second videos
mentioned in Section [£.2.1]

In Video 1, the camera’s distance from the knives was similar to the scaling factor’s
reference distance and exhibited all severity levels. The model’s performance was largely
accurate, with only a few frames showing noise-related errors. These anomalies were easily
identifiable since they caused random spikes in splatter severity and could therefore be
excluded or disregarded when using the model output for process optimisation. Note that
even though the nature of the splatter severity is to fluctuate rapidly, this is different to
the aforementioned random spikes. The difference is that when there are no anomalies from
noise, the overall trend of fluctuations increases or decreases gradually, whereas anomalies
cause the severity level to spike dramatically for just one or two frames from the baseline.

In Video 2, the camera was positioned more than twice the reference distance from the
knives, mostly showing low severity levels but occasionally higher ones too. The model
demonstrated effective performance with minimal noise-related inaccuracies.

In Video 3, the camera was positioned at about half the reference point for the scaling
factor and mostly low splatter severity levels were exhibited. Inaccuracies were minimal and
there were no outstanding anomalies from noise.

In Video 4, the camera was positioned at a normal distance similar to the reference
distance, allowing clear visibility of the zinc pool in which the steel strip is bathed in molten
zinc to form a protective coating prior to passing through the air knives. As shown in
Figure[78] the zinc pool visibility led the CNT algorithm to inaccurately detect the constantly
moving zinc in the pool as splatter. Whilst a method to enable the algorithm to accurately
segment splatter and ignore the zinc pool is yet to be developed, the current solution for this
deployment involves positioning the camera to avoid capturing the pool which is a feasible

approach since the pool is typically out of view.
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In Video 5, the camera was positioned about half the reference distance from the knives
and the primarily low severity levels were seen. In this video, there was light reflecting near
the air knives which was not observable in other videos and posed a challenge since it was
incorrectly segmented by the CNT algorithm. This is shown in Figure and has been
considered an acceptable limitation of the model. In future work, this issue could maybe
be mitigated using denoising techniques. However, this issue can currently be avoided by
positioning the camera to avoid the reflective area which is a simpler and more resource-
efficient solution than modifying the model. The video also displayed minor horizontal knife
movement, which the YOLOv5 component handled effectively by adjusting the splatter
region.

In Video 6, the camera position was close to the reference position and a range of sever-
ity levels were exhibited. The camera was angled to the right slightly which brought the
reflecting light discussed in regards to Video 5 into view. Other than this known issue, the
model performed well.

In Video 7, the camera was positioned at about double the distance from the reference
point and low severity levels were exhibited. There was also a significant amount of vertical
air knife movement ranging from the bottom to the top of the field of view. The model
successfully modified the splatter region dynamically whilst air knives moved and coped well

with the appearance of the underside faces.

atter Severity: 4 Scaling Factor: 1.2
atter quantity: 34692 MA Scaling Factor: 1.2
Splatter width: 1714

Figure 78: Frame of Video 4 showing the zinc pool effect on the CNT algorithm
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Splatter Severity: 4 caling Factor: 0.5
Splatter quantity: 7773 A Scaling Factor: 0.5
Splatter width: 997

Figure 79: Frame of Video 5 showing the effect of reflecting light on the CNT algorithm

5.3.6.2 Expert Validation

Following video evaluation, splatter severity measurements made by the model were validated
against the judgement of two different operators working at the galvanising site where the
data was collected. The fully developed and optimised model was used to quantify the
splatter severity level present in 20 hand-picked frames that represented a diverse range of
camera angles and process conditions, whilst operators also estimated the splatter severity
level present within these frames by eye. Operator judgement was then compared to model
estimates to assess the accuracy and reliability of the model. The purpose of this validation
process was to gauge the practical applicability of the model and ensure estimates aligned
closely with human expert judgements.

Tablepresents the MAE (mean average error) values comparing discrepancies between
model predictions and the judgements of two zinc pot operators. The maximum MAE of the
model across operators is 0.95, indicating that model predictions rarely deviate more than
one level from expert assessment, which is encouraging in terms of accuracy. Interestingly,
the MAE between the Pot Operator 1 (PO1) and Pot Operator 2 (PO2) is higher than
between the model and PO2, suggesting either significant subjectivity in human evaluations
or reliability of the model. Further testing is required to determine the significance of
these discrepancies between operators, particularly to understand the influence of different

datasets, environmental conditions and operator experience levels.
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Table 24: Mean average error values comparing the difference between the model esti-

mates, Operator 1 judgement and Operator 2 judgement

Model-O1 MAE Model-O2 MAE 01-02 MAE

0.95 0.60 0.95

Figure 80| and Figure [81] show scatter plots which compare the model’s frame-by-frame
predictions with those of PO1 and PO2 respectively. The results indicate a closer alignment
with PO2 than PO1, suggesting the model’s assessment criteria may be more aligned with
PO2’s approach. However, it mostly remained between the two, suggesting model predic-
tions may be a good reference point if there is a disagreement between operators. Model
predictions fell outside both operators’ judgements by one severity level in six specific frames,
primarily when the camera was close to the knives. This suggests that better results were
achieved when the camera was positioned closer to the reference position, which suggests
the scaling factor design was sub-optimal and would benefit from more design iterations.
Furthermore, of the seven close-distance frames that were used in the validation set, five of

them were part of the more discrepant judgements.

4 n L
z3 | ] u
5
>
3
s 2 ™ — = m
s
a1 m ™ m

0 = oo o

0 5 10 15 20

Validation Frame

B Model Prediction PO1

Figure 80: Scatter plot showing model predictions compared to PO1 over 20 hand-selected

validation frames
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Figure 81: Scatter plot showing model predictions compared to PO2 over 20 hand-selected

validation frames

Frame 11 of the expert validation set is shown in Figure[82] Whilst the model predicted a
splatter severity level of zero, PO1 and PO2 judged it as one. Figure [82]shows there was not
much splatter, however not much of the zinc was detected by the CNT algorithm anyway. It
is debatable whether the model or the pot operators were more accurate and there was bias
built into the model during the development stages when severity boundaries were decided.
In this case, a small amount of splatter occurred and it is reasonable to consider this as
level one severity such as how the pot operators did, however this was not how the model
was designed and therefore resulted in this discrepancy. In general, in some cases the model
may struggle to differentiate between minimal splatter and no splatter, since this requires a
certain degree of precision. However, in most cases the model is expected to cope well.

Frame 14 of the expert validation set is shown in Figure [83] Whilst the model predicted
a splatter severity of one, PO1 and PO2 estimated it as four and two respectively. This was
the most significant discrepancy since the gap between PO2 and the model was three severity
levels. Results show PO1 and the model differed by one severity level, which was probably
due to the scaling factor multiplier. Also, PO1 and PO2 estimations differed significantly.
Considering what is shown in Figure [83] at the same time as the fact that the model did not
disagree with any operator judgement in any other frame by more than two severity levels,

it is reasonable to assume that the value given by PO1 was misjudged.
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Scaling Factor: 2.2
MA Scaling Factor: 2.3

Figure 82: Frame 11 in the expert validation sample set where a discrepancy was found

between operators and the model

Scaling Factor: 2.3
MA Scaling Factor:

Figure 83: Frame 14 in the expert validation sample set where a discrepancy was found

between operators and the model
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Frame 18 within the expert validation set is shown in Figure This frame’s results
were the only ones that showed clear discrepancy with operators whilst not having a scaling
factor of 2.3. Whilst the model predicted a splatter severity of four, both operators judged
it as three. This appears to be due to built-in bias when deciding on severity boundaries.
The model was developed to consider this splatter amount as exhibiting the highest severity
level, whereas the operators considered it second highest. By observing Figure it is fair
to state that the operators were more accurate as this is not as extreme as many splatter
events occurring throughout the data. Multiple cases of this analysis suggest the scaling
factor may need to be readjusted throughout design iterations. However, to be certain
that it needs adjusting, extensive investigation into the expert validation set samples of
choice, environmental conditions whilst operators completed the validation tests, and the

pot operator judgement would be required.

Scaling Factor: 0.8
MA Scaling Factor: 0.8

Figure 84: Frame 18 in the expert validation sample set where a discrepancy was found

between operators and the model

Figure |85| shows a box and whisker plot which explores the relationship between model
and operator judgement more deeply. Boxes represent the interquartile range of each set of
results and whiskers represent the range of possible values which remained constant. The
model prediction distribution was between operator distributions, as shown by the boxes.
Model and PO2 were most similar for interquartile range and the model and PO1 were
most similar for median. This suggests the model generated similar predictions to operators,

demonstrating its potential for robustly standardising splatter severity measurements.
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Figure 85: Box and whisker plot showing model prediction distribution compared to two

different operators over 20 hand-selected validation frames

Overall, the model shows promising performance in accurately predicting zinc splatter
severity, though variability among operator evaluations suggests a more complex situation
than first expected with regards to manually assessing splatter severity. This opens the door
to more research avenues whilst emphasising the benefit of developing a reliable computa-
tional system such as this one to avoid discrepancies between operators. The model appears
to be well-suited to assist experts and could help standardise splatter severity assessments.
For the model to be refined to exceed expert accuracy with confidence, a deeper study into

expert judgement is essential.

5.4 Industrial Application and Model Deployment

Upon completion of the final evaluation of the model, a deployment stage was undertaken
to develop the model so that it was as close to production-ready as possible. This section
outlines the system architecture and setup, optimisation results using TensorRT (TRT), final

deployment results and discussion of the real-world implications of the developed technology.

5.4.1 System Architecture and Setup

Figure presents the data workflow of the developed system. As shown, the system is
comprised of several components. Firstly, all inferences are performed on the NVIDIA Jetson
Orin Nano device. This was chosen for the balance it provides between energy efficiency and

computational power, which makes it suitable for deploying computer vision (CV) models
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on the edge [256]. This is a specialised single-board computer designed for edge AT (artificial

intelligence) and deep learning tasks.

It is equipped with a 6-core Arm Cortex-A78AE

central processing unit (CPU), a NVIDIA GPU featuring 1024 CUDA (Compute Unified
Device Architecture) cores and 32 tensor cores, and 8GB of 128-bit LPDDR5 (Low Power
Double Data Rate 5) memory [256]. Additionally, it has a variety of ports and built-in Wi-Fi

connectivity.
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Figure 86: Schematic representing the data workflow of the deployed system

On the device, everything that is required to run the model in real-world application is

stored within a Docker container. Containers are lightweight, portable, packages that contain

all resources required to run a given application [257]. These include libraries, code, tools

and more. Docker is the most popular containerisation platform and ensures applications run

properly on different operating systems [257]. Since Docker provides a consistent, isolated
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environment, containerising components means the model can be rapidly deployed on other
devices in future with minimal to no extra configuration. This significantly enhances the
scalability of the system which is beneficial for industrial use.

To ensure that the model can interface with users, the client computer and other systems,
FastAPI is used which is a high-performance web framework for building APIs (application
programming interfaces) [258]. FastAPI was chosen over alternatives due to speed, robust-
ness, automatic interactive documentation and ease of implementation [258]. In this study,
speed is critical to ensure the system has real-time capabilities. One way FastAPI performs
well is through asynchronous operations which enable efficient handling of I/O bound pro-
cesses, making it well-aligned with real-time processing [258]. Furthermore, the interactive
documentation allows for easier maintenance of the API which is ideal for development and
ongoing use in industry.

Uvicorn is an ASGI (asynchronous server gateway interface) server that is typically used
in conjunction with FastAPI and is a medium between the API and the web [259]. Uvi-
corn receives client requests and sends them to FastAPI for processing, whilst also returning
responses to the client [259]. Uvicorn is capable of handling multiple client requests simul-
taneously using asynchronous operations, making it complimentary to FastAPI since it also
operates asynchronously [259]. This means it can handle a high volume of requests with
high performance, ensuring scalability of real-time applications.

In terms of the actual data workflow, it begins with a video source being streamed to
the client computer. Note that the video source could also be stored on the computer itself,
however in real-world application this will be a live video feed from an IP (internet protocol)
camera and so the system was designed for this purpose. Assuming the Fast API application
server (hosted on Uvicorn) is online, a client-side Python script can be executed on the
client computer to connect to the server. Once a connection is made, the first frame of
the video source can be sent to the server with the request of performing inference on it.
When the server receives the frame, the Fast API application processes it by interacting with
the computer vision model. The API provides the model with input (the video frame) and
executes the inference script, which returns a splatter severity level. The severity level is
then sent back to the client through the FastAPI application. At this point, the request
made by the client has been successful and this loop will continue until there is no video
stream available.

By using the results of the system developed in this case study in combination with

known process parameter values such as strip speed and air knife distance, relationships can
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be identified between their settings and the resulting splatter severity. These relationships
can then be used to optimise the galvanising process to minimise splatter severity at high
strip speeds.

The optimisation process would first begin by collecting data during typical production
cycles using the system proposed in this chapter, identifying variations in process parameters
and then correlating them with changes in splatter severity measured by the system. Using
statistical methods such as regression analysis, the relationships between parameters and
outcomes can be identified, which can then help identify optimal settings for parameters
such as air knife distance and air pressure that minimise splatter whilst maintaining high
strip speeds and therefore high productivity. This could be continuously refined as more
data is collected.

Additionally, once well-established, these findings can be integrated into process control
systems to create a feedback loop where the galvanising line automatically adjusts parame-
ters to control splatter. Using predictive analytics, the system could even be developed to
anticipate splatter before it occurs and adjust process controls to prevent it. Implementa-
tion of these data-driven optimisations will reduce splatter occurrence whilst improving the
overall efficiency of the galvanising process. Reduced splatter leads to reduced equipment

downtime, reduced maintenance costs, reduced waste and enhanced product quality.

5.4.2 TensorRT Optimisation Results

The deployed system, operating on the NVIDIA Jetson Orin Nano and presented in Fig-
ure 80|, is a robust solution for real-time splatter severity measurement. It was first developed
on a personal computer using the PyTorch implementation of YOLOv5. For deployment, it
was optimised using TensorRT (TRT) library. The results in Table [25{show the difference in
performance of YOLOv5 when using PyTorch and TensorRT. All results were obtained by
averaging measurements across an entire video. They show that YOLOvV5 inferences using
TensorRT took approximately 75% of the time that the PyTorch inferences did. This is
because TensorRT optimisation applies techniques such as precision calibration, layer fusion
and quantisation to enhance computational efficiency, and is highly beneficial for real-world
applications [201].

Table 26 shows the difference in PyTorch and TensorRT performance of the overall model
that includes YOLOvV5, background subtraction and post-processing steps such as splatter
region definition, scaling factor definition and splatter severity measurement. As shown,

the TensorRT implementation took approximately 50% of the time that the PyTorch im-
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plementation did. This reinforces what was shown in Table [25] since not only was YOLOvH
faster with TensorRT, but other components of the full model were too. This highlights the

effectiveness of using TensorRT for real-time industrial challenges.

Table 25: PyTorch vs. TensorRT YOLOV5 air knife detection inference speed

PyTorch TRT
YOLOvV5 (ms) YOLOV5 (ms)

28.20 21.82

Table 26: PyTorch vs. TensorRT full splatter severity model inference speed

PyTorch TRT
Full Model (ms) Full Model (ms)

131.90 64.75

5.4.3 Final Deployment Results

Table 27: Times taken for the deployed model to perform each step from receiving a frame

from the client device to returning a severity value

Step Time (ms)

Receive Frame 65.33
Decode Frame 42.76
Pre-process Frame 0.92
Inference 21.82
Postprocess Frame 42.93
Send Severity 0.64

Total 174.41
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After TensorRT optimisation was completed, the full system was tested for speed. Ta-
ble [27] shows the times taken for the system to perform each step required to fully process

one frame. Each step is described as follows:

Receive frame is the duration taken for the server to receive a frame from the client.
Decode frame is the time taken to convert the frame from .jpeg to a NumPy array.
Pre-process frame is the time taken for the frame to be pre-processed.

Inference is the time taken to perform YOLOv) inference.

Postprocess frame is the background subtraction and severity measurement time.
Send severity is the time taken for splatter severity value to be sent back to the client.

Total is the time taken for all steps to be performed.

The receive, decode, inference and postprocessing steps were the most time-consuming
parts of the system. This is partly because the frames were large in size which made the re-
ceiving and decoding of them relatively slow, but also because frame reception was dependent
on network strength. Furthermore, the inference and postprocess steps involve major opera-
tions of the system where it makes predictions and measures splatter severity, and therefore
they are expected to come at the cost of a certain degree of time expenditure. The necessity
of the receive frame, decode frame and send severity steps is due to the frames being sent
to the Jetson Orin Nano via a client device which sources the video. These network-based
steps make up 108.73ms of the total time, which shows just how much of the overall system
speed is based on network speed. Without this, the system takes 65.68ms to process each
frame which is equivalent to 15.23fps. With the network cost included, this system currently
operates at 5.73fps using a typical home Wi-Fi connection.

Since the original video feed ran at 25fps, the deployed model is capable of making
inferences on just over 60% of the frames locally and just over 20% over a network, which
is sufficient for real-world application. This is highly successful, however there are various
opportunities to improve this further. For example, image size was large at 1920x1080px
and this could be reduced to as low as 25% of the original size (i.e., downsampling the
frames to approximately 480x270px). This would not significantly affect the quality of the
inferences since the high resolution is not essential for detecting the objects of interest, but

it would considerably improving the speed of YOLOv5 and CNT by reducing the amount of
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data processed per frame, leading to faster inference times without compromising detection
accuracy.

Also, whilst the currently implementation is highly efficient, direct integration of C++
where there are bottlenecks could significantly improve speed since it is much faster than
Python. This addresses the gap in Chapter 2 regarding a lack of real-time edge-based

solutions using computer vision in steel production scenarios.

5.4.4 Discussion on Real-World Applicability

Discussing the potential real-world impact of the developed system is important to assess
its value. Technologically there are a wide variety of real-world benefits that this system
brings. Firstly, it enables the numerical measurement of splatter severity which is unprece-
dented. The existing method is visual inspection via line operators which is subjective and
is susceptible to many biases including operator location, operator experience and operator
mood. In contrast, the deployed model measures splatter severity consistently and eliminates
these biases. This is not only beneficial for reliability of results, but also could be used as
a standardisation tool for splatter measurements when optimising the process over a long
period of time. The automatic aspect also reduces resource requirements after setup.

The availability of severity measurements opens various doors such as root-cause analysis
of splatter events, preventive and predictive maintenance, and process optimisation. The
capability to measure changes in splatter when adjustments are made to the process means
pinpointing the cause of it will be much easier. Preventive maintenance in the form of
cleaning is simplified by monitoring the accumulated splatter on surrounding equipment
over a given period of time (either through manual data analysis or this could be automated
as an additional feature to the model). Predictive maintenance is also simplified by knowing
how much splatter has accumulated. Also, collected data be analysed to discover new trends
which can guide process improvements which reduce splatter at high strip speeds. This will
reduce equipment downtime and increase productivity.

This model and its application is novel and combines advanced CV algorithms to monitor
a previously unmeasured process variable in real-time, which means it lays the foundation for
future developments of CV in manufacturing, particularly those involving liquid with fast-
paced morphology changes. For example, an air knife distance measuring feature could be
developed to more closely examine any relationships between air knife distance and splatter
severity. If relationships were found, air knife distance could be automatically adjusted in

real-time to minimise splatter severity.
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Examples of applications this kind of model would be suitable for firstly include au-
tomating the evaluation of spray coverage when coating aircraft components. Overspray
detection prevents wasting materials and unnecessary expense, whilst underspray detection
avoids compromising performance. This would aid quality control and sustainability. An-
other example is leak detection for food and drinks manufacturing to improve adaptability,
production efficiency and waste reduction of the process. A final example is real-time assess-
ment of lubrication spray for coverage, volume and consistency to prevent excessive wear,
decrease downtime and ensure high standards.

The deployed model can be used to enhance the galvanising process in terms of reducing
defects. Therefore, producing the same quantity of galvanised steel requires less energy and
materials. Therefore, this is both environmentally and economically beneficial to the process.
In terms of social benefits, implementation of this model would reduce the amount of time
workers spend cleaning zinc from the floor and surrounding equipment, which reduces their
workload. This also improves health and safety by minimising the amount of time workers
spend in close proximity to the hazardous equipment on the galvanising line. Additionally,
the fact this model automates the previous visual inspection performed by workers means
workload is further reduced, whilst worker confidence and awareness is boosted when making
decisions related to zinc splatter.

It is also crucial to acknowledge the limitations of the proposed approach. A significant
challenge of this approach is the initial setup of the model which includes tasks such as data
preparation, model training and model deployment. These tasks consume a considerable
amount of time and resources which could potentially be problematic for small and medium-
sized enterprises (SMEs) which may lack computational resources and technical expertise.
In contrast, the current approach only requires on-site operators. Additionally, adapting the
model for varying environments would require the setup process to be reiterated with new
datasets which prevents rapid deployment. However, techniques such as transfer learning
and auto-labelling could be used to minimise these additional resource requirements. Over-
all, whilst human readiness and adaptability is advantageous, the benefits provided by an

automated, objective system surpass low resource demands.

5.5 Conclusions

This chapter has presented a case study where real-time quantification of zinc splatter sever-
ity during the steel galvanising process was achieved through use of CNT background sub-

traction for splatter segmentation and YOLOv5 for robustness to changing environmental
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conditions. This research and development addresses the limitations of subjective visual
inspections by operators by offering an objective and automatic alternative. Therefore, this
work demonstrates a significant advancement in industrial technology.

In this work, seven different background subtraction algorithms were tested and the
CNT algorithm was found to be the best in terms of performance and real-time suitability.
The CNT algorithm parameters were optimised so that the minimum and maximum pixel
stability thresholds were one and ten respectively. Furthermore, denoising techniques such
as morphological erosion and contour thresholding were used to refine CNT masks. YOLOv5
was trained on 4200 images which resulted in excellent precision, recall and mAP results,
which were all 1, indicating perfect performance. Also, promising results were drawn from
comparison of model predictions and operator judgements where the model was more similar
to individual operators than they were to each other.

Successful model deployment exemplifies the production-readiness of the developed sys-
tem and is exhibited through the result of 5.73fps on a NVIDIA Jetson Orin Nano which
includes client requests and responding over a Wi-Fi network. Whilst TensorRT optimisa-
tion was highly successful and an incredibly valuable aspect of this study, allowing inferences
to run at over 15fps with no image resizing on 1920x1080px images, resizing images before
initiating YOLOv5 model training would largely improve inference speed. Furthermore, the
use of Docker and FastAPI in this study have ensured the model is scalable.

This chapter contributes to the advancement of steel galvanisation monitoring technology
whilst demonstrating the suitability of integrating modern computer vision techniques in
industrial environments. Therefore, it is pioneering research that offers great insight that
could guide the development of future technologies in CV and manufacturing. Furthermore,
this case study has addressed four of the research gaps identified in Chapter 2. Firstly, it has
addressed the lack of real-time edge-based CV applications developed for steel production
processes. Secondly, it has involved the generation of a novel dataset based on the galvanising
process which addresses the lack of datasets available for developing CV applications for
steel production processes. Thirdly, it has contributed to addressing the lack of real-world
measurements performed by CV models. Lastly, it has addressed the lack of hybrid CV

models that make use of both traditional and deep learning-based techniques.

5.6 Future work

In future work, implementing the splatter severity system into the galvanising line would

contribute to enhancing process efficiency and quality control through data-driven insights

201



during tasks such as root-cause analysis, process optimisation and maintenance planning.
Additionally, there is opportunity to develop this work into a closed-loop control system
that automatically adjusts process variables depending on the resulting splatter in real-time,
as well as integrate it into an alarm system that automatically alerts operators of high
splatter severity events. Therefore, this work paves the way for discovering new trends in
the galvanising process and promotes future developments based on similar methodologies

that accelerate the progress of manufacturing technology.
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Chapter 6: Analysis of Gaseous Plume
Dynamics, Refractory Wear and

Stirring Efficiency in (Gas Stirring

In this chapter, a novel approach using computer vision (CV) is presented to monitor plume
characteristics from experiments simulating gas stirring in a basic-oxygen furnace (BOF).
The CV model uses the YOLOv5 (You Only Look Once) detection network for plume de-
tection, DeepSORT (Deep Simple Online and Real-Time Tracking) for plume tracking, and
Counting (CNT) background subtraction (BGS) for plume segmentation. This innovative
method provides insights into plume dynamics, refractory wear, and stirring efficiency of
different gas stirring configurations, whilst demonstrating a significant improvement over

traditional measurement techniques.

6.1 Introduction

During steel production, the refinement process within the basic-oxygen furnace is crucial,
and optimising this process could significantly enhance the efficiency and quality of steel
production [260]. Gas stirring is a technique that facilitates improved mixing between steel
and slag which increases yield and scrap charge (i.e., more recycled steel can be used),
improves phosphorus removal, reduces skulling and reduces consumption of aluminium and
flux [260, 261]. However, gas injection into the BOF is achieved via a mixing element and this
technique has been found to increase wear on the refractory lining surrounding the mixing
element, which is due to thermo-mechanical stresses from gas injection and compressive
failure of the refractory material [262, 263]. Previous approaches for assessing this wear
include time-domain reflectometry, laser scanning and temperature monitoring, which offer
valuable insights but are limited by their static nature and point-specific measurements [264].

This objective of this case study was to develop an analytical tool for monitoring helium
gas plumes in a water column setup that replicated BOF gas stirring using a specific mixing
element design called the annular tuyere, which is proposed in [264]. A schematic of the
simulation setup is shown in Figure where water acts as liquid steel and helium acts as
injected gas (argon in real application). Whilst gas stirring is known to improve the efficiency

of metal purification, the incorporation of a mixing element into the furnace setup causes
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refractory wear in the area adjacent to the element. By detecting and tracking plumes in
different column setups, plume characteristics can be measured which provide insights into
how different furnace setups affect wearing of the refractory lining, as well as the efficiency of
the stirring process. These insights can be used for optimising the tuyere design to minimise
refractory wear and maximise stirring efficiency. Therefore, another goal of this case study
was to demonstrate how the analytical tool could be used for real-world application by
using it to gain insight on different column setups. This work overcomes the challenges of
monitoring several characteristics of gaseous plumes that are complex due to their dynamic
behaviour, indefinite shapes and inconsistent patterns of merging and splitting.

The primary contribution of this study is a novel application of CV that indicates opti-
mal gas stirring configurations that reduce refractory wear and increase stirring efficiency,
leading to extended equipment life and enhanced product quality. Additionally, work pre-
sented here paves the way for integrating real-time monitoring systems, advancing predictive
maintenance technology and further enhancing operational efficiency. The model is likely to
be applicable to other mixing element designs without further training, which would enable
better design decisions beyond gas stirring configuration. Furthermore, this approach could
be adapted to other processes, which would widen current monitoring capabilities and deliver

more benefits to industry. Source code is available on GitHub [265].

Collapsing
plume
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Figure 87: Schematic representing the gas stirring simulation setup. During experimenta-
tion, helium is injected into the system via the annular tuyere which induces jetting. As it

rises, plumes form, expand and then begin collapsing towards the top area
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6.2 Methodology

The data for this case study was generated by recording a series of experiments designed to
simulate gas stirring in the BOF using water instead of liquid steel and helium to simulate
argon. These experiments were conducted by another researcher who captured footage using
six different configurations. An overview of the methodology is given in Figure [88 which
shows there were seven main steps. The first step of this case study was to generate an
initial dataset by labelling one of the six sets of footage that were available, and then split-
ting it up into training, validation and testing sets. The data prepared in this case study
addresses the gap in Chapter 2 regarding the lack of diverse datasets available for developing
CV applications for steel production processes. The second step was to experiment with
three different object detection models and establish which one was most suitable for this
application. The third step involved comprehensive preparation of all unlabelled datasets
using an efficient auto-labelling approach, to build a dataset sufficient for maximising model
performance in later stages. The fourth step entailed model development for taking real-
world measurements, which included experimentation of various background subtraction
algorithms to establish which one was most suitable for this application. The fifth stage
involved optimisation of the object detection network to maximise performance. Once these
stages were complete, the model was validated on real-world data to assess performance,
before it was utilised to calculate wear rate factor (WF), which indicates the expected wear
on the furnace refractory lining and stirring efficiency (SE), which indicates the effectiveness
of the stirring process. These metrics were calculated for different gas stirring configurations

to draw industrial insights on the process.

6.2.1 Initial Data Preparation

All datasets prepared for this case study were prepared using footage of gas stirring using
the annular slot tuyere design proposed in [264]. There were six different gas injection rates
used and therefore the data used for this case study is shown in Table 28]

Each of the six datasets contained approximately 750 frames and were originally provided
in frame format rather than video. Whilst model predictions were visualised in video format,
developing a real-time analysis tool was outside the scope of this case study since the aim was
to develop a tool used for postprocessing, and therefore whilst a higher inference speed was
preferable for minimising time consumption, it was not a significant concern in comparison

to model accuracy.
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Figure 88: Overview of the methodology used for Case Study 3
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Table 28: Original datasets used in Case Study 3

Injection Rate (Nm3h!) Dataset Name

50 Plumeb0
75 PlumeT75
100 Plume100
120 Plume120
150 Plumel50
180 Plumel80

Since the labelling process was time-consuming and complex, Plume50 was the only
dataset used for initial model development as this was sufficient for comparing several object
detection networks and assessing their suitability for this use-case. Each plume instance
throughout Plume50 was labelled in terms of location and and classification using the VGG
(Visual Geometry Group) Image Annotator (VIA) [215]. The overall classifications for this
case study were as follows: plumes exhibiting jetting phenomena were marked as “jetting”,
plumes in a state of continuous expansion were marked as “forming” and plumes that had
achieved maximum diameter and had began shrinking and dispersing were identified as
“collapsing”. However, for the initial data preparation stage only “forming” and “collapsing”
were used to simplify the process. This annotation process was particularly challenging due
to the dynamic and complex behaviour of the gaseous plumes which were often structurally
chaotic and were constantly evolving, splitting and merging. These challenges are addressed
in-depth in Section [6.3.1

The number of instances of each class in Plume50 are shown in Table R Plume50 was
split using a 70:20:10 ratio for training, validation and testing sets, which resulted in the
subset sizes shown in Table 30l Note that jetting instances were not used during initial

model development to maintain simplicity of the process.

Table 29: Number of instances of each class in Plumeb0

Class Number of Instances
Forming 261
Collapsing 1238
Jetting 128
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Table 30: Number of frames of each subset of Plumeb0

Subset Frames

Training 526
Validation 150
Testing 75

Total 751

6.2.2 Initial Model Development

To effectively monitor plume behaviour, it was essential to implement a high performance
method for object detection and tracking. Three distinct detection networks underwent
evaluation to determine their practicality for this case study, before proceeding to develop a
comprehensive measurement tool. The networks selected for evaluation were Faster R-CNN
(Faster Region-based Convolutional Neural Network) [48], RetinaNet [55], and YOLOv5
[63]. Each network was integrated with the DeepSORT tracking algorithm [92] and was
subjected to training, validation, and testing using the Plume50 dataset. These models
were selected for their promising performance, as evidenced in Section of Chapter 2.
Performance was measured using metrics such as precision, recall, average precision (AP),
mean average precision (mAP) and inference time. These were also chosen based on what
was shown as common practice throughout Chapter 2. The final choice of the detection
model was primarily influenced by its COCO (Common Objects in Context) mAP score,
although other metrics were also considered.

For this case study, models were developed in Google Colaboratory (differently to other
case studies which were developed on local resources). It was challenging to align all three
models to perform the same task and evaluate them using the same metrics. This is because
all three models varied in terms of their development history and underlying architectures.
Each model (Faster R-CNN, RetinaNet and YOLOv5), was originally developed by different
teams. This meant that a deep understanding of their unique implementations was required.

Google Colaboratory was partly used for this case study due to the availability of pre-built
Colab notebooks that either already integrated DeepSORT, or made it easier to integrate
it manually. In the case of YOLOvV), it was possible to find a notebook with DeepSORT
integrated [200], whereas with Faster R-CNN and RetinaNet it was necessary to manually
integrate it [267, 268, [269]. It was possible to implement these notebooks locally, however
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Google Colaboratory was used so that the final model was easily accessible for the collabo-
rating researcher, without needing Python experience or software to be downloaded locally
as it was all available on the cloud. This is an example of good scalability since the model
can easily be distributed to anyone wishing to use it to collect results.

Also, each model needed to be trained, validated and tested using annotated data of
different formats which can be seen in Table 31} They were exported in the VIA JSON
(JavaScript object notation) format and converted to their respective formats using online
conversion tools [216, 270]. Note that PASCAL VOC XML refers to “Pattern Analysis,
Statistical Modelling and Computational Learning Visual Object Classes extensible markup
language”. PASCAL is a collaborative network of excellence contributing to the advancement
of pattern analysis and machine learning (ML), VOC is a dataset developed by the PASCAL
network (see Section of Chapter 2), and .xml is a data format used for annotating
datasets.

Furthermore, the evaluation functions built-in to each model by their respective devel-
opers were not equal and in some cases, non-existent. This was particularly true for the
mAP which as mentioned in Section of Chapter 3, can be calculated in different ways.
Therefore, each model needed to be modified to output evaluation metrics that were calcu-
lated in the exact same way every time and included the most important metric, the COCO

mAP.

Table 31: Annotation format required for each initial model

Model Annotation Format

Faster R-CNN COCO JSON
RetinaNet PASCAL VOC XML
YOLOv5 txt

6.2.3 Comprehensive Data Preparation

Following initial model development, it was necessary to label the remaining available data
to ensure the final model was suitable for application. Since labelling was time-consuming
and complex, an auto-labelling approach was taken to adapt to resource-constraints and
maximise efficiency. There were three auto-labelling (AL) stages (shown in Figure [88).
Initially, the model trained on Plumeb0 was used to auto-label Plume75, as it most

closely resembled Plumeb0. Note that the “jetting” instances had to be added manually
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to Plumeb0 and used to re-train the model before initiating auto-labelling. Following the
first auto-labelling task, manual adjustments were still necessary for correcting imprecise
bounding boxes predicted by the model. However, this process was notably quicker than
prior manual labelling from scratch.

In the second stage, the model was trained on a dataset comprised of both Plumeb0 and
Plume75. This newly trained model was then applied to label Plumel50 and Plumel80, cre-
ating a need for a moderate degree of manual correction. Although Plumel50 and Plumel80
differed more from Plume50 and Plume75 than Plumel00 and Plumel20, the labelling of
Plumel00 and Plumel20 would still require moderate adjustments after auto-labelling but
would not expose the model to the full extreme of possibilities in the following stage.

The final stage required minimal corrections. This approach was proposed as efficient
due to the model’s training on the two extremes (Plume50 and Plume75, and Plumel50
and Plumel80), providing it with reference points for interpolation when encountering new,
unseen data. In contrast, training the model with only the first four datasets lacks exposure
to the unique features present in the extremes of Plumel50 and Plumel80, therefore limiting

its potential for interpolation capabilities.

6.2.4 Measurement and Background Subtraction Development

This stage focused on enabling the object detection model established in the initial devel-
opment phase to accurately measure various plume characteristics across different injection
rates. Collectively, these measurements could provide insights into the wear and stirring
characteristics of the tuyere design and therefore aid in optimisation for minimising wear
and maximising stirring efficiency. Key characteristics measured include plume state, plume
height, plume width, contact width, jetting length and plume frequency.

Plume state (jetting, forming or collapsing) was described by the classification results,
whereas plume height and width were derived using bounding box dimensions. Then, using
the scale in Figure [89] these pixel-based measurements were converted into millimeters. The
plume-tuyere contact width was used to calculate washing severity (WS) which impacted
wear rate factor (WF) since washing phenomena causes refractory wear, the plume height
and width were used to calculate plume volume using the ellipsoid volume equation [271],
which impacts stirring efficiency (SE), plume frequency contributed to both WF and SE,
and the jetting length was measured for additional insight but not fully integrated into the
overall configuration assessment. The practical application of these variables is detailed in
Section and the results of application are presented in Section [6.4.2]
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Figure 89: Image of a ruler within the experimental setup that was used to scale pixels to

millimetres

Whilst bounding boxes were sufficient for overall plume height and width measurements,
measuring the plume-tuyere contact width was more complex since typically, the contact
width was not the same as the overall plume width. This created the need for plume
width measurement at a certain level within the bounding box (the level of the tuyere
surface). This capability was achieved by assessing the performance of multiple background
subtraction algorithms and selecting the best one. These algorithms have been detailed in
Section of Chapter 5 (all algorithms except CNT) and Section of Chapter 3 (for
CNT). Additionally, morphological operations [28], in-range colour removal [272], and Hough
transformations [273] were used to denoise the segmentation mask.

Case Study 2 only used erosion when applying morphological techniques, however this
case study used morphological opening (erosion and dilation) [28]. As discussed in Chapter
5, after erosion removes small noise contours, subsequent dilation can distort contour shapes
but preserve size. Unlike in Chapter 5, this case study did not hold real-time performance
as a goal, meaning the extra computation required for the dilation step was not detrimental.
Also, whilst contour shapes were important, sizes were more important to ensure major
geometrical features of plumes such as height and width, were preserved.

To further refine BGS masks, a technique called in-range colour removal was implemented

[272]. This method involves eliminating colours within a pre-defined range of RGB values.
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It was used to remove a noticeable aspect of the mask that surrounded the plumes but were
not part of them, and appeared to be a different colour to the accurate part of the mask.
The area prone to this error was probed 20 times to obtain RGB values, and this was to
remove as much of the unwanted mask as possible.

Hough line transforms are a method for line detection [273] and were applied to identify
lines within the segmentation mask. These lines were specifically targeted for their location
and angle, which matched the straight edges of the tuyere. The column setup occasionally
experienced instability, leading to movements of the tuyere which resulted in the edges of
the tuyere being mistakenly identified as gas in the segmentation process. By applying
Hough line detection, it was possible to consistently eliminate these inaccurately detected
edges from the segmentation mask. This was an unconventional but innovative application
of Hough line transforms.

Optimisation of the parameter settings for each technique was conducted using grid
searches. The effectiveness of these settings was evaluated by comparing the plume-tuyere
contact width measurements from the model against manual measurements from previous
research [264]. Since some of the validation data seemed imprecise, a careful comparison of
model predictions, earlier manual measurements from [264], and new manual observations
was undertaken. This cross-examination was essential for maximising the reliability of the

model.

6.2.5 Object Detection Optimisation

Following the completion of BGS development, the object detection model underwent further
optimisation to enhance performance. A comprehensive grid search [274] was conducted
which applied every possible combination of selected parameter settings. Optimisation was
carried out on three parameters, each at three distinct levels. The strategy for data setup
drew inspiration from k-fold cross-validation and involved pairing the six datasets to create
three new sets. For each variant of data setup, two pairs were designated for training
and a different pair was allocated for testing. This ensures model performance was not
biased by the selection of particularly favorable or unfavorable sets for training and testing
[275]. Model sizes compared were the small (YOLOv5s), medium (YOLOv5m), and large
(YOLOV5]) versions of YOLOv5. Architecturally, these networks differ in complexity and
size, with YOLOv5s having the fewest convolutional layers and the lightest structure, whilst
YOLOvV5I has the most layers, making it better suited for handling more complex detection

tasks. An overview of the differences between these networks are presented in Section [3.3.]]
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[196]. In terms of training epochs, 50, 100, and 200 were used.

Throughout the grid search, training loss, validation loss, performance metrics such as
mAP, as well as model predictions of real-world characteristics were used to evaluate the
performance of each model design. Overall, these results allowed for thorough assessment
of which design produced the most accurate results. Table |32 shows the experimental setup

which includes 27 experiments in total.
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Table 32: Grid search experimental setup involving three different data setups, YOLOv)

model sizes (S - small, M - medium, L - large), and numbers of training epochs

Exp. No. Data Setup Model Size Number of Epochs

1 1 S 50
2 2 S 50
3 3 S 50
4 1 M 50
) 2 M 50
6 3 M 50
7 1 L 50
8 2 L 50
9 3 L 50
10 1 S 100
11 2 S 100
12 3 S 100
13 1 M 100
14 2 M 100
15 3 M 100
16 1 L 100
17 2 L 100
18 3 L 100
19 1 S 200
20 2 S 200
21 3 S 200
22 1 M 200
23 2 M 200
24 3 M 200
25 1 L 200
26 2 L 200
27 3 L 200
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6.2.6 Real-World Validation

Upon completion of model optimisation, it was necessary to validate its ability to measure
real-world characteristics. This process aimed to address the gap identified in Chapter 2
regarding the lack of real-world validation of computer vision model measurements.

The validation process entailed comparing predictions with manual measurements ob-
tained from previous research, as well as new annotations produced manually for training
the object detecton model. The validation focused on key plume characteristics including

plume width at the tuyere surface and jetting length.

6.3 Results and Discussion

This section presents and discusses the results obtained from experimentation described in
Section [6.2] which begins with the results of initial data preparation and model development,
followed by comprehensive data preparation and model development. Finally, the model

estimations of real-world characteristics are validated against manual measurements.

6.3.1 Initial Data Preparation

The initial phase of data preparation presented various challenges, mainly posed by the
constantly changing nature of the plumes as they formed and collapsed. An example of this
complexity is illustrated in Figure [90] which shows an unlabelled frame from Plume50. The
unclear boundaries of each plume in the image make it challenging to accurately measure the
plume geometry, leading to potential ambiguity in identifying the number of plumes, which
could be anywhere from two to five depending on how the frame is observed. When patterns
across series’ of frames were examined, as opposed to individual frames, the labelling process
became even more complex. This meant labelling required careful consideration, practice,
and multiple revisions for each frame to ensure the chosen approach would yield the most
effective measurement tool during deployment.

One of the main labelling challenges was based on occlusions. The gaseous nature meant
plumes were always partially merged and therefore defining the precise edges of plume bound-
ing boxes was difficult. Additionally, the overlapping nature of plumes further complicated
the process. Note that overlapping is not the same as merging. Whilst overlapping refers
to one plume occluding the other from the camera perspective, merging refers to the actual
combination of two or more plumes. The fact that the approach in this case study used 2D

data, which lacks depth information, was one of the reasons for the aforementioned labelling
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challenges. In future work, it would be beneficial to experiment with 3D data however this
would introduce new challenges surrounding the complexity of data, increased computational
resource requirements and the necessity to use more sophisticated algorithms. In terms of
partial merging of plumes, a decision was made to avoid identifying exact physical bound-
aries for each plume since this was virtually impossible to do perfectly using the human
eye. Instead, bounding boxes were assigned as best as possible and no attempt was made to

account for overlapping. Figure 91| exemplifies this labelling approach.

Figure 90: Frame of Plume50 demonstrating the ambiguous nature of plumes

Another challenge arose from the seemingly random forming and merging of plumes.
In certain instances, rather than adhering to the typical jetting-forming-collapsing pattern,
plumes unexpectedly merged with neighbouring plumes during formation. This complexity
introduced challenges in the labelling process, as judgement was required to determine when
two constituent plumes should be treated as a single entity. The dynamic nature of the
gas which has previously been described, meant it was not always evident which plumes
were undergoing merging. In Figure 90| this uncertainty is shown in the bottom third of the
image, where it is unclear whether one or two plumes exist. Similarly, ambiguity persists
in the top two-thirds of the image, and deciding whether the partially collapsed gas in the
middle belongs to plumes above or below adds further complexity to the labelling process.

Labelling challenges also included the ambiguous definition of the outer edges of plumes,

primarily caused by random gas streams partially detaching from the plumes and creating

216



Figure 91: Labelled frame of Plume50 showing plume ambiguity

confusion of where exact boundaries were. This phenomenon is exhibited in Figure 02, To
address this issue, labels were applied with a focus on capturing the main body of plumes,
allowing for a slight allowance for diverging gas until detachment began. This approach
is shown in Figure |92 where the detached gas stream in the bottom left of the image is

excluded at a specific extent of separation.

Figure 92: Labelled frame of Plume50 showing diverging gas
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6.3.2 Initial Model Development

The initial model development stage entailed the evaluation of several existing object de-
tection architectures in order to choose the most appropriate one for this case study. The
three models chosen were Faster R-CNN, RetinaNet and YOLOv5. It is important to note
that whilst comprehensive testing results are available for all three models, the training and
validation data, which would have provided additional insights into the learning dynamics
and generalisation capabilities of models, are not present. This absence is due to an over-
sight during initial model development, where most of the focus was placed on ensuring
DeepSORT was correctly integrated with each model, aligning all three models to perform
the same task and ensuring uniform evaluation criteria despite their structural differences.
This led to training results not being stored carefully for later use. Further complicating
this issue, the Python version of Google Colaboratory updated in this time, which posed
challenges in re-training the models, as they were originally developed for an earlier version.
Whilst re-training and data collection remain feasible, the Google Colaboratory update has
made this process significantly more time-consuming. To mitigate issues in future projects,
it is essential to implement more documentation protocols, backup procedures and version
control using GitHub from the outset.

Fortunately, the results in Tables B4 and show the aim of the initial model
development stage, which was to find the most appropriate model for this application, was
still achieved. The models were evaluated on the task of localising gaseous plumes with
bounding boxes and classifying them as either “forming” or “collapsing”, which overall is an
assessment of their ability to perform object detection on every plume that was visible in the
footage. The number of plumes detected was not a specific consideration in the evaluation of
model performance, as the focus was on the overall accuracy of detection and classification
rather than the count of individual detections. Whilst the ability to analyse model behaviour
during the training phase is limited, the testing phase results still offer a robust basis for
evaluating and comparing the performance of these models. Also, experience was gained in
that using a cloud service such as Google Colaboratory means certain precautions should be
taken in the preliminary stages to ensure models are adapted to handle any uncontrollable
updates. Therefore, not only will documentation, backup and version control activities be
practiced thoroughly in future projects, but extra precaution will be taken to prepare for the
utilisation of cloud computing resources. All models were trained for 30 epochs on Plumeb0
and the epoch with the lowest validation loss was used to produce the results presented.

The testing was conducted across ten IoU (intersection-over-union) thresholds, adhering
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to COCO mAP standards, in order to ensure a thorough comparison of model performances
for this task whilst avoiding any biases to particular IoU thresholds. Despite the missing
training and validation data, these results provide a strong indication of the superiority of
YOLOvV5 in terms of accuracy and efficiency in the context of this case study. For initial
model development (assessment of three architectures), tabular data that follows was much
more insightful than visual results, which are therefore not presented for conciseness. How-
ever, visual results will be presented in later elements of this section where observations were

more significant.
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Table 33: Testing results for object detection of plumes using Faster R-CNN across varying IoU thresholds (0.50 to 0.95 from

most relaxed to most strict)

IoU #Ground LPredictions TP FP  Precision Recall Avg. Inference Forming Collapsing AP oo
Thresh.  Truths Time (s) AP AP
0.50 359 410 340 70 0.829 0.947 0.092 0.805 0.879 0.842
0.55 359 410 96 314 0.234 0.267 0.092 0.000 0.292 0.146
0.60 359 410 10 400 0.024 0.028 0.092 0.000 0.019 0.010
0.65 359 410 3 407  0.007 0.008 0.092 0.000 0.005 0.003
0.70 359 410 0 410 0.000 0.000 0.092 0.000 0.000 0.000
0.75 359 410 0 410 0.000 0.000 0.092 0.000 0.000 0.000
0.80 359 410 0 410 0.000 0.000 0.092 0.000 0.000 0.000
0.85 359 410 0 410 0.000 0.000 0.092 0.000 0.000 0.000
0.90 359 410 0 410 0.000 0.000 0.092 0.000 0.000 0.000
0.95 359 410 0 410 0.000 0.000 0.092 0.000 0.000 0.000

Overall 359 410 45 365 0.110 0.125 0.092 0.080 0.120 0.100




Table 33 shows the testing results for Faster R-CNN. At the lowest IoU threshold of 0.50,
Faster R-CNN performance was quite good with a precision of 0.829 and a recall of 0.947.
The primary metric of COCO mAP was also good at 0.842, indicating the effectiveness of
Faster R-CNN for this task when the threshold for an acceptable prediction is relaxed. On
the other hand, there were still 19 ground-truth instances missed as shown by comparing
ground-truths to true positives (TP), as well as 70 instances predicted that did not match
any ground-truth instance as shown by false positives (FP).

A significant decline in performance was observed as the IoU threshold increased. Beyond
a threshold of 0.50, both precision and recall experienced a marked decrease due to the model
predicting less than a third of the true positives previously predicted whilst over quadrupling
the number of false positives. From thresholds 0.70 and above, a point of zero performance
was reached. To clarify, the cause of this is that the IoU threshold (a measure of the
overlap between predictions and ground-truth data) that must be met for a prediction to
be considered a true positive is stricter than all of the predictions that were made. In other
words, all predictions made had an IoU score below 0.70 and did not overlap enough with the
labelled data to meet the stricter criteria. This trend emphasises the limitations of Faster
R-CNN in achieving accurate predictions under moderately strict criteria. The collapsing
and forming class AP values followed a similar trend, starting strong at the 0.50 threshold
but reducing rapidly when the threshold was increased. An interesting aspect of this is that
the ability of Faster R-CNN to predict forming declined much quicker than collapsing. This
was because, as mentioned in Section [6.2.1] Plumeb0 contained 561 forming instances and
1238 collapsing instances. Therefore, Faster R-CNN had learned the features of collapsing
instances significantly better than those for forming instances.

Overall, the COCO mAP achieved by Faster R-CNN was 0.100 which reflects the deterio-
rating performance at higher thresholds, and again suggests limitations in its ability to make
precise predictions. It is also worth noting the inference time of 0.092 seconds which suggests
reasonable efficiency in processing. However, given the overall performance trends it is clear
that whilst Faster R-CNN can effectively detect objects at lower precision requirements, it
is limited in ability to perform high-precision detection. Therefore, it is not suitable for an

application such as the one in this case study.
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Table 34: Testing results for object detection of plumes using RetinaNet across varying IoU thresholds (0.50 to 0.95 from

most relaxed to most strict)

IoU #Ground LPredictions TP FP  Precision Recall Avg. Inference Forming Collapsing mAPcoco
Thresh.  Truths Time (s) AP AP
0.50 359 2063 359 1704 0.174 1.000 2.770 0.985 0.985 0.985
0.55 359 2063 359 1704 0.174 1.000 2.770 0.985 0.985 0.985
0.60 359 2063 359 1704 0.174 1.000 2.770 0.985 0.985 0.985
0.65 359 2063 357 1706 0.173 0.994 2.770 0.980 0.974 0.977
0.70 359 2063 349 1714 0.169 0.972 2.770 0.961 0.945 0.953
0.75 359 2063 334 1729 0.162 0.930 2.770 0.900 0.921 0.910
0.80 359 2063 311 1752 0.151 0.866 2.770 0.802 0.865 0.833
0.85 359 2063 260 1803 0.126 0.724 2.770 0.593 0.724 0.658
0.90 359 2063 168 1895 0.081 0.468 2.770 0.294 0.355 0.325
0.95 359 2063 45 2018 0.022 0.125 2.770 0.056 0.025 0.040
Overall 359 2063 290 1773 0.141 0.808 2.770 0.754 0.776 0.765




Table [34] shows the testing results for RetinaNet. At the lowest threshold of 0.50, Reti-
naNet achieved a perfect recall of 1.000 and a COCO mAP of 0.985, indicating its ability
to detect all ground-truth instances. However, this was accompanied by a high number of
False Positives (1704), resulting in a low precision of 0.174. This trend of high recall but low
precision existed across all IoU thresholds, suggesting that whilst RetinaNet was effective
in detecting the presence of objects (high recall), it struggled with the precision of these
detections (high FP). The high number of predictions (2063) compared to the number of
ground-truths (359) further indicates that the model had a tendency to over-predict. Despite
detecting all or nearly all ground-truth instances, the substantial number of false positives
significantly impacted precision.

In real-world application of object detection, models are typically designed by considering
a trade-off between precision and recall. This is managed through confidence thresholding
which is a post-processing step that follows detection, where only predicted bounding boxes
with confidence scores (how likely the model thinks a prediction is correct) above the set
threshold are kept, effectively filtering out low-confidence predictions. This leads to fewer,
but more reliable detections. RetinaNet showed high recall but low precision due to a
large number of predictions. Adjusting the confidence threshold upwards can significantly
improve precision by only accepting higher-confidence detections, consequently reducing false
positives. This adjustment, however, typically decreases recall. The optimal threshold varies
based on the application the model is used for and is generally higher where high precision
is required, and lower where missing detections is highly undesirable. Balancing this trade-
off is essential, especially in industrial applications like this case study, to ensure effective
detection with minimal false positives. For this part of model development, the confidence
threshold was left at default. For Faster R-CNN and RetinaNet this was 0.05, whereas for
YOLOV5 this was 0.001. This was to avoid interfering with thresholds set by the developers
until it was necessary to optimise the best model for real-world application.

As the IoU threshold increased, there was a gradual decrease in both precision and
recall. At an IoU of 0.95, the precision to dropped to 0.022, and the recall to 0.125, with a
corresponding decrease in COCO mAP to 0.040. For any model that does not have perfect
performance, a decline in performance is expected as the IoU threshold increases. However,
comparing Faster R-CNN results to RetinaNet results, it can be seen that the performance
of RetinaNet does not appear to degrade as rapidly as Faster R-CNN. In the case of Faster
R-CNN, there was failure to predict over 90% of the ground-truth instances from a threshold
of 0.60 and above, whilst in the case of RetinaNet, there was failure to predict 87% of ground-
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truth instances reached at a threshold of 0.95 which is significantly better. However, Faster
R-CNN only made 410 predictions during a single testing experiment, whereas RetinaNet
made 2063 which is much less efficient, especially when considering there were only 359
ground-truths. This is why Faster R-CNN achieved a higher precision than RetinaNet until
a threshold of 0.60.

Collapsing and forming AP values remained relatively high across most thresholds and
compared to Faster R-CNN, there was significantly less degradation in performance with
increasing threshold, as well as less difference between classes. At most thresholds, collapsing
AP was higher than forming AP, which aligns with previous discussion surrounding the
number of training samples. However, there were a few cases where forming samples were
predicted slightly better than collapsing samples, which suggests the model learned both
classes well.

Overall, the COCO mAP achieved by RetinaNet was 0.765, which reflects reasonably
good performance across the range of thresholds. However, this was at the computational
cost of many false predictions and performance still degraded significantly from a threshold of
0.80 to 0.95. This suggests that whilst RetinaNet had the capability to capture ground-truth
instances quite well, confidence threshold optimisation would be required to minimise false
positives if it were to be used in a real-world applications. Also, other hyperparameters such
as the learning rate and focal loss parameters would need to be optimised to improve overlap
between prediction and ground-truth boxes to improve results at higher IoU thresholds.
Another important aspect to consider is the average inference time of 2.770 seconds. This
is considerably higher than Faster R-CNN, further supporting the suggestion that whilst
RetinaNet may have more ability to detect objects, it does so at the cost of efficiency. With
optimisation, RetinaNet may be suitable for an application such as the one in this case
study, however it is quite slow and inefficient. If a real-time system was developed in future

projects, RetinaNet may be unsuitable for this reason.
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Table 35: Testing results for object detection of plumes using YOLOv5 across varying loU thresholds (0.50 to 0.95 from most

relaxed to most strict)

IoU #Ground LPredictions TP FP  Precision Recall Avg. Inference Forming Collapsing mAPcoco
Thresh.  Truths Time (s) AP AP
0.50 359 1913 359 1554 0.188 1.000 0.006 0.976 0.983 0.979
0.55 359 1913 359 1554 0.188 1.000 0.006 0.976 0.983 0.979
0.60 359 1913 358 1555 0.187 0.997 0.006 0.976 0.983 0.979
0.65 359 1913 357 1556 0.187 0.994 0.006 0.970 0.983 0.976
0.70 359 1913 354 1559 0.185 0.986 0.006 0.936 0.980 0.958
0.75 359 1913 348 1565 0.182 0.969 0.006 0.915 0.980 0.947
0.80 359 1913 330 1583 0.173 0.919 0.006 0.840 0.962 0.901
0.85 359 1913 282 1631 0.147 0.786 0.006 0.648 0.869 0.759
0.90 359 1913 187 1726 0.098 0.521 0.006 0.318 0.500 0.409
0.95 359 1913 60 1853 0.031 0.167 0.006 0.041 0.168 0.105

Overall 359 1913 299 1614 0.157 0.834 0.006 0.760 0.839 0.799




Table shows the testing results for YOLOv5. At the two lowest thresholds of 0.50
and 0.55, YOLOvV5 was able to detect all ground-truth instances, achieving a perfect recall
of 1.000 and an impressive COCO mAP of 0.979. However, this high detection rate is
accompanied by a considerable number of False Positives (1554), leading to a low precision
of 0.1877. Similarly to RetinaNet, the trend of high recall and low precision suggests that
whilst YOLOvV5 is highly effective in identifying objects, it also over-predicts. Previous
discussion on confidence thresholds with respect to RetinaNet addresses the over-predictive
behaviour of YOLOV5.

As the ToU threshold increases, both precision and recall gradually decrease. At the
highest threshold of 0.95, the recall drops significantly to 0.167, and precision to 0.031, with
the COCO mAP correspondingly falling to 0.105. As previously discussed, performance is
expected to deteriorate with increasing threshold, especially at a threshold of 0.95. Con-
sidering this, in comparison to Faster R-CNN the rate of deterioration was much better.
In comparison to RetinaNet, the rate of deterioration was similar. YOLOvH made 150 less
predictions than RetinaNet and therefore had slightly better precision however exactly the
same recall. The performance results of YOLOvV5 for collapsing and forming followed the
same trend as Faster R-CNN and RetinaNet. This was again, likely due to the class imbal-
ance in the training set. Table 36| shows the key results for each model tested during this

development stage.

Table 36: Overall testing results for plume detection using Faster R-CNN, RetinaNet and
YOLOv5

o Inference
Model Precision Recall mAPcoco
Time (s)
Faster R-CNN 0.110 0.125 0.092 0.100
RetinaNet 0.141 0.808 2.770 0.765
YOLOv5 0.157 0.834 0.006 0.799

Overall, the COCO mAP achieved by YOLOv5 was 0.799, which suggests generally
good performance across most thresholds and the best out of the three models evaluated.
Similarly to RetinaNet, there were many false predictions made which is a concern for real-
world application due to prediction reliability and model efficiency. However, confidence
threshold discussion has suggested it may be possible to improve the precision of YOLOvH

significantly by sacrificing a relatively small amount of recall performance. Additionally,
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YOLOvV5 achieved an average inference time of 0.006 seconds which significantly surpasses
Faster R-CNN and RetinaNet.

YOLOv5 did not outperform RetinaNet to a great extent in terms of mAP, however it
was significantly better in terms of inference speed. Whilst real-time performance was not a
primary aim of this case study, a faster model was still preferable. Therefore, YOLOvV5 was
used for the remainder of the case study. Visually, it was observed that the bounding boxes
predicted by RetinaNet and YOLOvV5 were generally tighter compared to Faster R-CNN,
suggesting better localisation of plumes.

The results and discussion surrounding confidence thresholds proved crucial to the suc-
cess of real-world application and therefore some further experimentation was conducted on
YOLOvV) to observe the effects of changing this hyperparameter. The default confidence
threshold value of YOLOv5 was 0.001 as previously mentioned. Note that there are multiple
“default values” for this hyperparameter in the Ultralytics distribution depending on which
script is used and for validation, 0.001 is the default. This is to ensure that even lower-
confidence predictions are included in the results, allowing for a comprehensive evaluation of
model performance and the identification of patterns in detection that may not be apparent
when only higher-confidence predictions are considered. For extended experimentation, the
value was changed to 0.25 and the results are shown in Table [37]

The results in Table |37 show that when the confidence threshold was raised to 0.25,
there was a significant increase in precision across all IoU thresholds due to the drastic
decrease in false positives. At an IoU threshold of 0.50, the precision is 0.928 with only 27
false positives, as opposed to the previous 0.188 precision with 1554 false positives. This
improvement indicates that the model was generating fewer but more accurate predictions
overall. Meanwhile, recall was only reduced marginally at each threshold, indicating that
YOLOvV5 can effectively detect most ground-truth instances with minimal false detections.
There was also a slight decrease in true positives but this was a small cost relative to the
large reduction in false positives. These results are promising for real-world application.

The mAP values were slightly lower for lower IoU thresholds but as the criteria for an
acceptable detection became stricter, the higher confidence threshold model began to surpass
the original model. The COCO mAP was higher for the new model (0.818 compared to
0.799) indicating the superiority of the new confidence threshold. There was still a decline
in performance as IoU threshold increased and this became more drastic in the highest
thresholds, however the confidence modification made a significant improvement to overall

performance and suitability for application.
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Table 37: YOLOvV5 confidence threshold testing results at a threshold value of 0.25

IoU #Ground Avg. Inference Forming Collapsing

8CC

#Predictions TP FP Precision Recall mAPcoco
Thresh.  Truths Time (s) AP AP
0.50 359 376 349 27 0.928 0.972 5.897 0.983 0.970 0.976
0.55 359 376 349 27 0.928 0.972 5.897 0.983 0.970 0.976
0.60 359 376 348 28 0.926 0.969 5.897 0.983 0.968 0.975
0.65 359 376 346 30 0.920 0.964 5.897 0.983 0.961 0.972
0.70 359 376 335 41 0.891 0.933 5.897 0.978 0.929 0.953
0.75 359 376 330 46 0.878 0.919 5.897 0.978 0.916 0.947
0.80 359 376 315 61 0.838 0.877 5.897 0.961 0.964 0.912
0.85 359 376 274 102 0.729 0.763 5.897 0.900 0.714 0.807
0.90 359 376 183 193 0.487 0.510 5.897 0.586 0.407 0.496
0.95 359 376 59 317 0.157 0.164 5.897 0.243 0.080 0.162

Overall 359 376 289 87 0.768 0.805 2.897 0.858 0.778 0.818




6.3.3 Comprehensive Data Preparation

Initial model development resulted in YOLOv5 emerging as superior for this application
(see Section [6.3.2). Therefore, YOLOv5 was used to auto-label remaining data during the
comprehensive data preparation stage, which was a prerequisite to later development stages.

Results of the auto-labelling process are presented in Table 38 As expected, the initial
labelling phase consumed the most time. Manually correcting Plume75 required 80% of the
time it took to label Plume50 from scratch, proving less efficient than anticipated, but still
advantageous. Plumel50 and Plumel80 required slightly less time than Plume75, indicating
that the model had successfully learned features from Plumeb0 and Plume75. However, an
additional factor influencing these findings was the improvement of manual labelling ability
over time. As labelling experience increased, it was possible to label plumes more accurately
in less time. This factor might account for the one-hour discrepancy between Plumel50 and
Plumel80, for instance. Plumel00 and Plumel20 proved to be the quickest and significantly
less effort-intensive to label than other datasets. Plumel20, in particular, was labelled in

just 20% of the time it took to label Plume50, proving the effectiveness of the method.

Table 38: Times taken to label each subset

Dataset AL Stage Time (Hours)

Plumeb0 Initial 20
Plume75 1 14
Plume100 3

Plumel20 3 4
Plume150 2 11
Plume180 2 12

6.3.4 Measurement and Background Subtraction Development

After YOLOv5 was shown to be the best model, the model was developed for real-world
measurement. Combining BGS with detection and tracking enabled the model to measure
the contact width between plumes and the tuyere surface. This addresses the gap iden-
tified in Chapter 2 regarding combining traditional and modern techniques. Additionally,
this addresses the gap identified in Chapter 2 regarding using CV techniques to measure
real-world characteristics. BGS algorithms included MOG, MOG2 (Mixture of Gaussians
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variants), GMG (Gaussian Mixture-based Background Foreground Segmentation), GSOC
(Google Summer of Code), KNN (K-Nearest Neighbours) and CNT.

6.3.4.1 Analysis of Early Video Frame

(a) MOG (b) MOG2

(c) GSOC

Figure 93: Figure showing the effects of different BGS algorithms (MOG, MOG2 and
GSOC) on a early frame in Plume50
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(a) GMG

(c) CNT

Figure 94: Figure showing the effects of different BGS algorithms (GMG, KNN and CNT)

on a early frame in Plumeb0

Figure 03] and Figure [94] show an early frame of Plume50 footage after being processed
by each of the algorithms. In Figure (a), MOG algorithm results show its capability to
extract the gas edges to some extent. However, its effectiveness in capturing the actual
gaseous body is limited. The MOG algorithm captures background pixels through multiple
Gaussian distributions and primarily focuses on changes in the scene, which explains its

partial success in edge detection but its failure to recognise the fuller body of the gas. This
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observation aligns with the algorithm design which is to detect changes in pixel values rather
than capturing larger, more cohesive moving objects.

In Figure [93|(b), the MOG2 algorithm is shown to be slightly more sensitive compared
to MOG. This is evident by its marginally better performance in capturing the gas edges as
well as parts of plume bodies. It is possible that the improved sensitivity of MOG2 is due to
its shadow detection feature that distinguishes between foreground and shadows. However,
similar to MOG, MOG2 also struggled with accurately representing the entirety of plumes
which suggests their limitations in dealing with larger dynamic fluid structures.

Figure (c) presents GSOC results. Whilst it managed to segment most of the gas, it
appears overly sensitive, as it also segments parts of the background. The excess segmenta-
tion is quite severe since it not only includes areas adjacent to the gas but also the image
corners, and even some of the dark column structure. This over-sensitivity is likely due to
lighting conditions, since it segmented shadows in the corners and the dark structures which
are similar in colour. This behavior suggests that sensitivity to subtle changes, whilst useful
in some contexts, leads to significant over-segmentation in this scenario.

In Figure [94](a), it can be seen that the GMG algorithm interpreted the entire scene
as background due to GMG Bayesian updating mechanism, which requires a few frames to
initialise and adapt to the data. Therefore, early frames are not accurately processed since
it is necessary for the algorithm to establish a reliable background model.

Figure (b) shows KNN results, which appears to be the most effective among the tested
methods. It successfully captured both the gaseous body and its edges with reasonable
precision. KNN performs dynamic analysis of the surroundings of each pixel which allows it
to adapt effectively to the scene, although it does exhibit some over-sensitivity around the
gas edges. This performance suggests a good balance in sensitivity, enabling it to detect and
segment the gas more adequately than the other algorithms already discussed.

Finally, Figure (C) shows CNT results, which in contrast to GMG, interpreted the
entire scene as foreground. This is due to relying on establishing pixel stabilities over time,

which requires a few frames to differentiate between foreground and background effectively.
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6.3.4.2 Analysis of Mid-Video Frame

(a) MOG (b) MOG2

(c) GSOC

Figure 95: Figure showing the effects of different BGS algorithms (MOG, MOG2 and
GSOC) on a mid-video frame in Plume50

233



(b) KNN

(c) CNT

Figure 96: Figure showing the effects of different BGS algorithms (GMG, KNN and CNT)

on a mid-video frame in Plume50

Figure and Figure show a frame within the 8th second of footage after being
processed by each of the algorithms. In Figure (a), the MOG algorithm results show a
reduced ability to segment the gas. The edges of the gas are defined worse than in the earlier
frame in Figure [93[a) and there is no improvement in segmentation of the plume body. This
suggests that the MOG algorithm is not suitable for this application. This is because the

Gaussian distributions are failing to accurately capture changes in the scene, which is likely
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due to the fluidity of plumes causing Gaussians to struggle modelling the continuous nature
of the gas.

Figure (b) shows the more sensitive MOG2 algorithm performed better than the MOG2
algorithm as it managed to capture some edges of the plumes and small regions of the body.
Whilst the MOG2 algorithm performance did not suffer as much as the MOG algorithm
when moving from Figure [93] to Figure the edge capturing ability does appear to have
reduced slightly. This suggests that either this particular frame is difficult for MOG-based
algorithms to perform on, or this application is generally not well-suited for MOG or MOG2
use. The performance difference between MOG and MOG?2 is due to the increased sensitivity
and shadow detection capability of MOG2, indicating the potential benefit of increased
sensitivity when modelling fluid structures with Gaussians, as well as the benefit of using
MOG2 to reduce the impact of lighting changes.

In Figure [95{c), the GSOC algorithm shows significant improvement from its initial
over-sensitivity. Whilst it continued to segment some unnecessary background elements, its
ability to adapt to the scene over time is evident. This is because it is designed to adapt to
dynamic backgrounds, camera jitter, unstable lighting conditions, various types of motion
and other subtle changes [240, 254]. The algorithm captured the majority of the gas whilst
reducing unnecessary background segmentation. However, it still shows some over-sensitivity
towards the top half of the frame and some under-segmentation in the middle section of the
frame. The improvement of the GSOC algorithm over time suggests it may be useful for this
application, but may need a long time to properly adapt to footage.

Figure (a) presents the GMG algorithm’s initial segmentation results. After allowing
it time to initialise, GMG began to detect the gas edges and parts of the body. The perfor-
mance can be considered quite good, since most of the edges are captured well and these are
more important than the body, which is due to the high sensitivity of the Bayesian updating
mechanism through constant adjustments based on new data. However, it struggled to seg-
ment plume bodies, indicating that Bayesian updating is suitable for complex edge detection
but not the inner section of objects. Therefore, it has potential for this application.

In Figure (b), the KNN algorithm shows a significant difference in approach compared
to in Figure (b) Whilst it still captured most edges and some parts of the body, it
adapted towards using a much more conservative approach. This indicates the complexity of
the scene, since KNN adapts conservatively to avoid over-segmenting fine details. This is also
evidenced by the fact that the plume edges are less complex than the bodies. This means

that whilst there is far less noise, there is also far less segmentation in general, meaning
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important features are potentially excluded. Further experimentation would be required to
reveal whether the performance shown in Figure (b) is inferior or superior to that shown
in Figure (b), and therefore whether performance is improving or deteriorating over time.

Finally, Figure [96|c) shows the CNT algorithm now effectively differentiating the gas
from the background. It accurately segmented most of the gas, with a slight decline in
performance towards the top as the gas disperses and therefore changes morphology. This
is because the pixel stability-based approach enables the algorithm to learn which pixels
are static and which are changing over time. Since it is based on pixel stability thresholds,
the default threshold values used here must be near optimal for this application. This
pattern of segmentation aligns well with the objective of measuring plume width at the
tuyere surface since that is the area of the scene in which precise segmentation is most
crucial, making the CNT algorithm particularly suitable for this aspect of the study. Despite
some over-sensitivity, the detailed capture of the gas structure suggests its potential as the
preferred choice for background subtraction if used in combination with additional processing

techniques to address over-segmentation.
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6.3.4.3 Analysis of Late Video Frame

(a) MOG

(c) GSOC

Figure 97: Figure showing the effects of different BGS algorithms (MOG, MOG2 and
GSOC) on a late video frame in Plume50
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(c) CNT

Figure 98: Figure showing the effects of different BGS algorithms (GMG, KNN and CNT)

on a late video frame in Plume50

Figure [97] and Figure 0§ show a frame within the 28th second of footage after being
processed by each algorithm. In Figure @(a), MOG results continue to show a lack of
improvement in segmenting the gas. Its inability to accurately define either the edges or the
body of the gas is consistent with observations in Figure [95(a), reinforcing the conclusion
that MOG is not optimal for this task due to Gaussian modelling struggling with the fluidity

of the gas structure.
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In Figure 07(b), the MOG2 algorithm, despite being more sensitive than MOG, also
failed to deliver effective results and continued to struggle with accurately capturing the gas.
Whilst MOG2 has shown to be slightly better than MOG, it is still not an ideal choice for this
specific application based on the results. As discussed, the increased sensitivity and shadow
detection improve suitability for this application, however they still result in unacceptable
performance. Developing an MOG variant more sensitive than MOG2 may be beneficial.

In Figure (c), GSOC again shows significant change from the previous frame. Whilst
Figure [03|(c) showed large over-segmentation, Figure [95|c) showed a more conservative es-
timation. Meanwhile, Figure @(c) shows a significantly more conservative estimation than
both previous frames, suggesting high adaptiveness, which is due to GSOC being designed
to adapt to subtle changes. In Figure (c), some edges are captured however it is not sub-
stantial enough for application, whilst minimal body regions are captured.

Figure [08|(a) shows the GMG algorithm maintained similar performance to that shown
in Figure (a). There is good performance shown in terms of edge segmentation and body
segmentation is nearly non-existent. These results suggest that once the Bayesian updating
mechanism has initialised, the GMG algorithm does not change much over time. This is
because it becomes less sensitive to new changes as it is continuously refined, and eventually
stabilises. Despite this, it could be useful for edge detection of complex dynamic structures.

Figure[98(b) shows KNN algorthm performance declined in effectiveness over time. It still
captures some edges and some parts of the body but has become too conservative, leading
to lack of segmentation of key features. This suggests that whilst KNN initially showed
promise, its adaptability over time was detrimental. As discussed, this has been caused by
the complexity of the scene causing the algorithm to adapt by avoiding over-segmentation
of fine details, resulting in it under-segmenting plume bodies. Whilst the algorithm may be
effective at adapting to dynamic scenes, this particular scenario is too complex.

Finally, Figure (c) presents CN'T performance, which remains consistent with previous
results. It successfully segments the majority of the gas but tends to over-segment more
dynamic regions of the video. Overall, the CNT algorithm appears able to maintain high
accuracy, particularly at the bottom of the frame which aligns well with the objective of mea-
suring plume-tuyere contact width, indicating its suitability for application. As discussed,
this is because the pixel stability-based approach enables the algorithm to distinguish back-
ground and foreground pixels over time. Analyses and discussion indicate CNT was the
most appropriate choice for this study. After selecting CNT for background subtraction,

focus shifted to mitigating the tendency of the algorithm to over-segment.
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6.3.4.4 Analysis of Noise Removal

(d) (7, 7)

Figure 99: Figure showing the effects of different kernels on a frame in Plume50

Following algorithm selection, morphological operations were used to reduce noise. Mor-
phological opening (as mentioned in Section consists of erosion (size reduction) to
remove minor contours that added noise, followed by dilation (expansion) to restore the size
of the remaining segmentation mask. Morphological operation tests used a standard grid

kernel (a square matrix where all values are equal to one) and sizes varied between 3x3, 5x5,
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and 7x7 pixels, to determine the most effective size for noise reduction. Figure [99|(a) shows
the frame prior to any processing, where there is noise in the form of minor contours and
specks. These small artifacts are the result of the initial segmentation by the CNT algorithm,
which is sensitive to minor variations in pixel intensity.

Figure [09|(b) shows the effect of a (3,3) kernel, which marginally reduces the noise around
the gas, noticeable by the disappearance of some specks particularly in the top-right quarter
of the image where the vertical black column is located. This is because the erosion process
in morphological opening removes small, isolated pixel groups. However, the small kernel size
means that not all noise is effectively removed, highlighting the trade-off between preserving
fine details and reducing noise.

The result of using a (5,5) kernel is presented in Figure[99|(c), where a significant portion
of the surrounding noise is eliminated, though a few specks remain. The larger kernel is more
effective at removing isolated noise without overly distorting the shape of the segmented gas
areas. This balance is due to the increased erosion strength followed by dilation, which helps
in maintaining the original shape of larger features whilst eliminating smaller artifacts.

With a (7,7) kernel, as seen in Figure [09(d), nearly all the noise is removed. However, the
square shape of the kernel introduces a grid-like pattern which causes the original mask to
lose natural shapes and details. This occurs because the kernel’s uniform structure averages
out the pixel values in a grid formation, resulting in straight edges and corners that do
not accurately represent the true contours of the objects being processed. This makes it
unsuitable for making precise measurements and demonstrates the importance of selecting
an appropriately sized kernel to balance noise reduction and shape preservation. Therefore,
the (5,5) kernel was selected as the most suitable option.

In hindsight, a (7,7) kernel may not have been as detrimental to plume-tuyere contact
width measurement as first expected and to uncover whether this is true or false, further
experimentation would be required. However, observation of the tuyere region in Figure (a)
to (d) shows that (5,5) was the smallest kernel size that successfully removed noise in this
area, and therefore had the least chance of compromising measurement accuracy, which made
it the most logical choice at this point of the model development process.

After morphological opening was implemented, it became apparent that the segmented
plume areas were surrounded by a residual mask from previous frame tracking, as shown in
Figure m(a). To address this, the technique of in-range colour removal was applied.

The unwanted mask was easily distinguishable by its lighter shade of fuchsia compared

to the desired mask, and was therefore sampled multiple times to determine its RGB value
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(a) No in-range removal applied (b) In-range removal applied

Figure 100: Figure showing the effects of in-range colour removal on a frame in Plume50

range. The minimum and maximum RGB values sampled were then used as parameters
for the in-range removal process to eliminate mask pixels where image pixels fell within
that range. RGB values of the image created by superimposing the mask onto the original
image were probed which resulted in the minimum RGB values being (200, 85, 190) and
the maximum RGB values being (255, 149, 255). This approach was particularly effective
due to the bright background of the column setup emphasising the unwanted mask, which
is valuable knowledge for future projects. This method successfully preserved key features

whilst removing the residual mask, and the result is shown in Figure [LO0|(b).

(a) No Hough line removal applied

(b) Hough line removal applied

Figure 101: Figure showing the effects of Hough line removal on a frame in Plumeb0
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The last denoising step involved correcting the occasional segmentation of tuyere edges
in some frames. This issue arose as the tuyere itself seemed to vibrate during the footage,
leading the CNT algorithm to interpret it as movement. To counter this, the Hough line
transform technique was used to identify lines in the segmentation mask in the tuyere area
and remove them. This required some trial-and-error of the Hough transform function which
required custom input on the expected angle and length of lines detected. The transform was
applied once on the left side of the tuyere and once on the right side since these lines were
at different angles. Figure [10I)(a) and Figure [101(b) depict the tuyere before and after the
application of Hough line removal, respectively. The bottom image clearly shows the absence
of the lines in the segmentation mask that are present in the top image, demonstrating the
success of the approach. This adjustment was crucial, particularly since these erroneous lines

affected the accuracy of the plume-tuyere contact width measurements.

6.3.5 Object Detection Optimisation

The grid search results for optimisation of YOLOvV5 are shown in Table |39, The setup
for each experiment has already been presented in Table of Section [6.2.5] To address
inference times, the lowest inference time of 4.6ms was achieved by Experiment 3 which
used Data Setup 3, small YOLOv5 and 50 epochs of training. It is assumed that data
setup does not significantly impact speed since there was no correlation found between the
two. The results also showed no correlation between the inference speed and the number
of training epochs. Changing epochs typically affect model performance in terms of mAP
but not inference speed, so this was as expected. Interestingly, inference times decreased as
model size increased, which is expressed in Figure [102]

Figure shows inference speeds for experiments using YOLOvb5s ranged from 4.64ms to
4.80ms, whilst experiments using YOLOv5m inferred at speeds between 10.27ms to 10.79ms,
and experiments using YOLOvV5I ranged from 16.81ms to 17.05ms. This makes sense because
the increasing size of the YOLOvV5 architecture means the data must be processed by more
layers, which results in more time consumption. Whilst speed is an important factor of any
CV model, in this case study real-time performance was not a primary goal. Therefore,
whilst lower inference speeds were both preferred, and more promising for future projects
evolving from this one, the primary aim was to maximise precision, recall and mAP. It is
worth noting that even the slowest inference time here was 17.05ms which is 58.65fps, making
all experiments fast enough for real-time application (keep in mind this is just for YOLOv5

inferences and not any additional processing such as background subtraction).
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Table 39: Grid search results for optimisation of YOLOv5 involving different data setups,

network sizes and numbers of training epochs

. Forming Collapsing Jetting Inference
Exp. No. Precision Recall mAPcoco
AP AP AP Time (ms)
1 0.822 0.862 0.712 0.793 0.591 0.699 4.802
2 0.854 0.878 0.834 0.780 0.668 0.761 4.746
3 0.807 0.791 0.643 0.518 0.632 0.598 4.635
4 0.828 0.858 0.753 0.811 0.597 0.720 10.789
5 0.869 0.873 0.843 0.788 0.670 0.767 10.496
6 0.811 0.780 0.656 0.547 0.619 0.607 10.388
7 0.802 0.880 0.763 0.837 0.607 0.736 16.814
8 0.854 0.869 0.849 0.798 0.675 0.774 16.853
9 0.831 0.757 0.672 0.558 0.609 0.613 16.871
10 0.809 0.860 0.716 0.800 0.609 0.708 4.687
11 0.858 0.879 0.845 0.770 0.703 0.773 4.654
12 0.812 0.797 0.667 0.520 0.622 0.603 4.657
13 0.814 0.851 0.735 0.823 0.594 0.718 10.311
14 0.847 0.904 0.852 0.786 0.683 0.773 10.500
15 0.800 0.795 0.663 0.542 0.612 0.606 10.407
16 0.809 0.846 0.732 0.823 0.562 0.706 17.020
17 0.839 0.877 0.848 0.778 0.680 0.769 17.034
18 0.798 0.788 0.667 0.554 0.589 0.603 16.961
19 0.817 0.839 0.706 0.797 0.586 0.696 4.742
20 0.854 0.901 0.846 0.775 0.701 0.774 4.747
21 0.809 0.767 0.658 0.531 0.606 0.598 4.776
22 0.806 0.852 0.722 0.835 0.563 0.706 10.274
23 0.872 0.858 0.831 0.761 0.682 0.758 10.289
24 0.800 0.769 0.679 0.548 0.566 0.598 10.278
25 0.801 0.833 0.726 0.827 0.545 0.700 16.981
26 0.863 0.848 0.833 0.755 0.641 0.743 17.053
27 0.817 0.775 0.660 0.554 0.591 0.602 17.033
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Figure 102: Box plot showing how inference speed changed with model size. YOLOvb5s,
YOLOv5bm and YOLOvVSI are the small, medium and large variants, respectively

Table 39| does not suggest any correlation between model size and mAP since the two best
experiments used the small and large YOLOvV5 variants. Furthermore, comparing mAP and
model size of every experiment showed no correlation. It may be expected that a larger, more
complex model is capable of capturing more intricate features and would therefore surpass
the precision of smaller networks, however the results show that this was not the case here,
and is likely due to YOLOv5s being large enough for effective feature extraction which would
mean layers in larger variants were excessive. Similarly, it would be logical to assume that
more training epochs would increase precision, however this is often not the case in practice
and there is typically a cut-off point where increasing epochs causes overfitting. Experiment
8 and Experiment 20 achieved the highest mAPs. Data Setup 2 was used in both of these
which suggests it was the best data setup. This is probably due to the same principle used
in the auto-labelling approach for the comprehensive data preparation stage. To elaborate,
Data setup 2 used Plumeb0, Plume75, Plumel50 and Plumel80 for training and was tested
on Plumel00 and Plumel20. Therefore, the model was trained on two extremes of possible
scenarios and tested on data in the middle of these extremes, allowing it to capture and
interpolate between features from both sides. This aligns with the motive behind the auto-
labelling approach and verifies the successful results of that stage. Also, experiments using
Data Setup 2 consistently achieved the highest mAP performances which is expressed in
Figure [103] Note that in Experiment 20, training took one minute and 34 seconds to train

per epoch which overall took approximately 313 minutes.
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Figure 103: Box plot showing how mAP changed with different data setups

Figure[103|shows all Data Setup 2 experiments achieved a COCO mAP between 0.743 and
0.774, all Data Setup 1 experiments achieved a COCO mAP between 0.696 and 0.736, and all
Data Setup 3 experiments achieved a COCO mAP between 0.598 and 0.613. These results
show Data Setup 2 was the best setup which can be explained by discussion for Table
(in this section) related to exposing the model to a wide range of scenarios, which enhanced
its ability to generalise on unseen scenarios. Additionally, the difference in mAP values
between Data Setup 1 and Data Setup 3 are due to less new features being introduced after
the injection rate was increased from 100Nm3h*to 180Nm?h. Therefore, since Plume50 and
Plume75 had more unique features than the higher injection rate videos, they were harder
to predict on without explicit training on those unique features. Also, since the results show
that all of the highest performing models used Data Setup 2, followed by Data Setup 1,
followed by Data Setup 3, this is a clear indication that the data setup used in any given
experiment dictated the overall performance achieved. This emphasises the importance of a
well-curated dataset over a complex neural network or training strategy.

Looking at Data Setup 2 experiments, model performance still exhibited no relationship
with model size or the number of epochs. In real-world application, it therefore is most
efficient to use the smallest possible network and the lowest number of epochs to minimise
inference time and computational requirements. Closer analysis reveals Experiment 8 or
Experiment 20 should be chosen to align with the goal of maximising the mAP. Experiment
20 required a one-off training requirement of 200 epochs, whilst Experiment 8 used YOLOv5I

which significantly increases computational requirements for both training and inference, and
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also takes almost four times the amount of time to make inferences. Additionally, the recall
of Experiment 20 marginally surpassed that of Experiment 8, further supporting the case
for using the design of Experiment 20 in real-world application. Note that Experiment 2
achieved an mAP of 0.761 and an inference time of 4.75ms whilst using YOLOv5s and only
50 training epochs which made it competitive. Whilst this may be useful for future projects,
in this case, the aim was to maximise mAP and therefore it was not selected.

After analysing the results across experiments in Table 39, discussion on differences
between Table [39| results and Table [37] results (confidence-adjusted YOLOV5 results in Sec-
tion brings up some interesting points of discussion regarding the overall progress
of model development. Note that whilst Table [37] explicitly shows the results at each IoU
threshold and includes true positives and false positives, Table [39| shows the overall results
after averaging these values for each experiment. Also, whilst Table |37 results were produced
using Plume50 with YOLOvV5 at a confidence threshold of 0.25, Table [39 results used all six
injection rate datasets. This means differences in metrics such as precision and recall are
based on the prediction of many more samples. For clarification, Data Setup 1 tested on
3019 instances (Plumel50 and Plumel80), Data Setup 2 tested on 3187 instances (Plumel00
and Plumel20) and Data Setup 3 tested on 3650 instances (Plume50 and Plume75). This
is in comparison to the 1799 instances in Plume50 (excluding jetting instances). Also note
the difference in jetting instances adding a whole new class to the challenge during Table
experiments. For brevity and clarity, discussion will primarily focus on the best experiment
for this application, which was Experiment 20, in comparison to the results in Table

Comparison shows that firstly, the precision in every experiment in Table [39] surpasses
the overall precision in Table [37] whereas the recall in Table |39 roughly lies in the middle of
the recall values for experiments in Table This suggests that the increase in training data
(roughly four times as much), enhanced precision regardless of different data setups, network
sizes, training epochs, an extended testing set and an additional testing class (jetting). This
emphasises the importance of a sufficiently large training set. Also, the results indicate that
recall was more variable and this may have been due to the change in the number of instances
across different data setups. Experiment 20 surpassed the results achieved in Table in
terms of both recall and precision, demonstrating the effectiveness of this design.

Secondly, differently to Table[37|and other initial model development results, class APs in
Table [39| varied in terms of which classes were predicted the best. Overall forming instances
were generally predicted the best, followed by collapsing instances, followed by jetting in-
stances. This follows a different pattern to that found and discussed in Section which
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was based on the number of training samples for each class.

Generally the collapsing instances were more difficult to accurately localise than other
class instances because they were the most complex and most changeable, especially consid-
ering the plumes left the field of view in a collapsed form which required some subjectivity
during labelling as to when they were no longer detectable. The effect of this issue appeared
to be non-existent in earlier stages of model development. The model actually performed
better on collapsing instances than forming instances. However, Table [39| shows the model
struggled slightly more with collapsing than forming when larger datasets with more variety
were introduced. At this point, the labelling issue may have come into effect.

Jetting AP results were generally the lowest of the three classes, indicating the theory
on training sample size previously discussed is still valid, but with the full dataset, other
factors (such as the complexity of predicting specific classes) came into play. However, this
order did vary. For example, almost all experiments using Data Setup 1 favoured collapsing
instances, followed by forming instances, followed by jetting instances. This could suggest
that the first four injection rate datasets provided superior collapsing samples, or that the
last two injection rate datasets included collapsing samples that were easier to predict.

Generally, experiments using Data Setup 2 and Data Setup 3 favoured forming instances
over collapsing and jetting instances. Similarly to Data Setup 1 discussion, this could suggest
that the first four datasets included forming samples that were easier to predict. Data
Setup 3 typically favoured jetting instances over collapsing instances. This suggests that the
complexity of predicting collapsing instances was particularly high in the first two datasets,
and emphasises the dominant effect of a complex class over the number of training data
samples. Whilst there was some variation in the number of samples for each class across
different data setups, collapsing instances were still significantly dominant over the other
two classes, and forming instances were significantly dominant over jetting instances.

The superior and inferior classes in Table|37]and Experiment 20 in Table |[39|swapped, and
Table 37 achieved higher class APs and a higher overall COCO mAP. This is due to the fact
that there was an extra class predicted in Table [39 as well as roughly double the number
of instances in the test set. Considering this, the difference in COCO mAP is actually
impressive and shows that the model from Experiment 20 in Table is a significantly
evolved version of the model reported in Table [37]

Finally, the inference time in Table [37]is marginally higher than YOLOv5s model exper-
iments in Table which is expected since they both used YOLOv5s. This could be due to

random fluctuations in system performance at the time of obtaining results.
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6.3.6 Real-World Validation

It was essential to validate the effectiveness of models in measuring real-world plume char-
acteristics, beyond standard object detection metrics. This addresses the gap identified in
Chapter 2 regarding a lack of real-world validation of models. A key aspect of this assess-
ment involved judging the accuracy of plume width measurements at the tuyere surface. It
was observed that whilst the model generally performed well, it did not consistently succeed
in every frame. In some instances, it failed to make detections, which could be due to a
need for more training data despite already using over 3000 frames with more than 11000
labels, or a limitation inherent to the YOLOv)H model itself which could be improved by
using a more advanced model such as YOLOvS. Furthermore, the width of the tuyere de-
sign was known to be 68.5mm and so any measurements falling below this threshold were
considered to be either the result of minor noise or missed detections, and were therefore
ignored. Model measurements were validated against data from prior research [264], which
involved manual measurement techniques. Initially, these measurements were intended for
validation purposes, but it was realised that in some instances, the computer vision model
actually provided more accurate results than the original manual methods. This is further
explored later in this section.

Figure [104] exhibits a comparison of the model predictions and manual measurements
from [264] for the Plumel00 data. It is observable that the manual measurements exhibit
a relatively smooth, cyclic pattern, whereas the model’s measurements show more variation
within these cycles, suggesting a noisier output. Typically, the natural dynamics of plumes
expanding and detaching from the tuyere surface would create a regular oscillation in width
measurements. However, other than occasional inaccuracies of the model already addressed,
there were some inter-cycle fluctuations which were partly due to its reliance on a fixed row
of pixels for measurements. If this row encounters sub-optimal lighting conditions or camera
angles in any given frame, the model measurement accuracy was affected. In contrast, manual
measurement allows for more flexibility, as a human observer might adjust the measurement
row for optimal visibility. This complication was recognised during this research and could
be addressed in future work by enhancing the gas stirring simulation setup for a clearer view
of the tuyere surface, or by integrating multiple sensing technologies, such as combining
stereo vision with depth cameras or LIDAR sensors, to achieve more robust measurements.

Figure highlights frames where significant differences were observed between model
predictions and the original manual measurements from [264]. Frame 66, is shown in Fig-

ure m(a), where the model estimated the contact width to be approximately 20mm wider
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Figure 104: Graph comparing model predictions to manual measurements performed in

another author’s work

) Frame 66 of Plumel00 ) Frame 95 of Plumel00
) Frame 315 of Plumel00 ) Frame 439 of Plumel00

Figure 105: Figure showing model predictions on frames of significant discrepancy between

predictions and manual measurements

than the manually measured width. The red horizontal line in Figure [L05](a) illustrates the
measurement taken by the model. Upon closer inspection, it is evident that whilst the seg-
mentation was accurate, the pre-set measurement line was positioned slightly higher than
the actual surface, which led to a wider section of the plume being measured. This issue

was anticipated early in the development process but due to occasional shaking of the tuyere
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surface during injection, consistently measuring along an accurate line proved challenging.
Alternative methods, such as using multiple lines for measurement were explored, but the
chosen single-line approach yielded the most consistent results. This problem opens up an
avenue for future work.

Next along Figure the most obvious inconsistency occurs across Frame 95 and sur-
rounding frames, presented in Figure M(b) Here, the model failed to accurately segment
the plume edges. Although the measurement line in Figure b) appears accurate, this
was coincidental. The overall results suggest that the segmentation algorithm had difficulties
in this section of the footage.

In Frame 315, shown in Figure m(c), there is a discrepancy of around 40mm which is
observable in Figure [104 Unlike the earlier case in Figure [L05(a), the measurement line
here was appropriately placed. Adjusting the line lower would not result in a significant
reduction in the measured width, despite less than ideal segmentation in the lower pixel
rows. This, and other similar instances, indicate that the original manual measurements
were not consistently reliable and that, in some cases, the model measured the width more
accurately. Figure [106[shows the contact width manually measured is approximately 155cm
as opposed to the original manual measurement of approximately 110cm.

Lastly, also seen as a discrepancy in Figure m Frame 439 in Figure M(d) exhibited
a similar fluctuation to what was seen around Frame 95. In this instance, gas bubbles
detaching from the left side of the plume interfered with the segmentation algorithm. Whilst
these bubbles are ideally ignored since they do not contribute to the washing effect, some
residual noise was poorly eliminated. This resulted in the model overestimating the contact
width.

Figure 106: Frame 315 labelled manually by authors of this thesis and converted from pix-

els to millimetres, showing improvement of model over original human measurements
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Another real-world plume characteristic that was of interest was the jetting length, which
occurs during the initial gas injection into the liquid. Object detection identifies different
stages of gas behaviour such as jetting, forming, and collapsing plumes, which facilitated
these measurements. The model determined the jetting length using the height of bounding
boxes associated with the jetting class. Previously recorded data suggested that the maxi-
mum jetting length, observed across various injection rates, was between 12mm to 15mm.
It was hypothesised that this maximum length would occur at the highest injection rate of
180Nm?h!, following the logic that increased injection rates lead to longer jetting lengths.

The final model in this research was trained using data from Plume50, Plume75, Plume150,
and Plumel80, and therefore jetting estimation analysis began with predictions on Plume100
and Plumel20 which are shown in Figure {107 and Figure [LOg| respectively. Analysis of these
figures reveals two key observations. Firstly, the jetting lengths for Plume100 and Plume120
were measured to be approximately 20mm to 26mm, and 18mm to 39mm, respectively. This
aligns with the expectation that higher injection rates result in longer jetting phenomena.
Secondly, both measurements significantly exceed the previous maximum jetting length for
Plumel80 in [264]. This difference raised questions about the accuracy of either model
measurements or the original manual measurements. To look further into this, further clar-

ification is provided with the aid of Figure [109] and Figure [T10]
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Figure 107: Graph showing model jetting length predictions across Plumel00

Figure presents the new manual measurements of jetting lengths for Plume180 which
were taken from the model annotations. They show that the maximum jetting length reaches

roughly 61mm, reinforcing the previously proposed trend where an increase in the injection
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Figure 108: Graph showing model jetting length predictions across Plumel20

rate corresponds to a larger jetting lengths. However, this measurement quadruples the
maximum length of 12mm to 15mm reported in earlier research. Therefore, whilst the
manual annotations and inference measurements of this case study appear to align, there
are discrepancies with the previous manual measurements. This considerable difference

emphasised the need for observing the actual images.
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Figure 109: Graph showing Plumel80 annotated jetting lengths as part of this work

Figure shows Frame 299 (instance 486) from the Plumel80 dataset, which Figure[109]
shows as the instance with the longest jetting length across all predictions of all injection

rates. The jetting length in this frame is highlighted with a red double-ended arrow and is
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annotated to be precisely 112 pixels in length. Applying the pixel-to-millimeter conversion
rate of 1.84, this measurement translates to approximately 60.87mm. This measurement
closely matches the data in Figure [[09] which therefore validates the accuracy of the model
predictions of jetting length. This finding also challenges the accuracy of the previously
reported range of 12mm to 15mm for jetting length from earlier authors [264].

* 112px ~ 61mah»

Figure 110: Image of the 486th instance in Plumel80 with the red label proving accurate

model predictions

6.4 Industrial Application

The model outputs the state of each plume (classified as jetting, forming, or collapsing), the
width and height of each plume, the height of jetting events, plume-tuyere contact width
and plume frequency. Using these outputs along with some known environmental variables,
it was possible to determine the wear rate factor WF, as well as a stirring efficiency rating
SE. This section will detail the calculation of WF and SE values, which were devised as

part of this project, and present results.

6.4.1 Methodology for Calculating Wear Rate Factor and Stirring Efficiency

Equation shows how WF' has been calculated, which is constituted by three different
variables. Washing severity WS indicates the severity of plume-tuyere contact events, veloc-
ity ratio VR is the ratio between the inlet velocity of injected gas, to the maximum velocity

reached (which is 180Nm?h!), and the frequency of plumes occurring, Fpiume.

WF = WS X VR X Fyume (25)
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Equation shows how WS has been calculated, which is essentially the width of the
contact event, Weontaet, normalised using the maximum surface width W,,,.. Since washing
events cause refractory wear, the more severe they are, the more wear is occurring. Nor-
malisation is performed to ensure WS reflects the contact width in relation to the column

width, and therefore adapting the approach to work across column setups of varying width.

Wcontact

WS =
Wmam

(26)

Equation shows how VR has been calculated and is the ratio of the gas inlet velocity
Uiniet, to the maximum velocity record U,,,... Higher inlet velocities aid gas stirring but also
induce stress on the refractory lining. Normalisation is performed to ensure the inlet veloc-
ity is accounted for in relation to the maximum gas velocity, which ensures the approach is
consistent across column configurations of different scales (some simulations may be 10% of

the furnace size whereas others may be 50% of it, for example).

Uz‘nl et
Umam

VR = (27)

Equation shows how the plume frequency F,me was calculated, where IV is the number
of plumes occurring over a video and D is the video duration in seconds. Plumes promote

gas stirring but also contribute to refractory wear.

N
Fplume = 5 (28>

The approach presented here also extends to the calculation of stirring efficiency which has
been performed using Equation (29). This approach assumes that larger volume plumes
result in improved stirring efficiency, and therefore VP, is included, which is the ratio
of instantaneous plume volume to the maximum plume volume, as well as the the velocity

ratio and plume frequency as these also affect how effective stirring is.

SE = VPplume x VR x Fplume (29)
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Equation shows how the plume volume proportion has been calculated, which is the
ratio of the instantaneous plume volume Vj,stantancous, t0 the maximum plume volume at
the point just before collapse, V;,4.. The instantaneous point was chosen arbitrarily as four

frames before the point just before collapse, which was used consistently for all measurements.

‘/mstantaneous
vpplume = Vmam (30)

6.4.2 Results of Wear Rate Factor and Stirring Efficiency Calculations

For assessing different configurations, the wear rate factor and stirring efficiency values for

Plumel00 and Plume120 were calculated and the results are shown in Table [40] and Table [41l

Table 40: Results of wear rate factor calculation for Plumel00 and Plumel20

Dataset WS VR Foume WF

PlumelO0 5.770 0.556 0.247  0.792
Plumel20 4.741 0.667 0.198 0.626

Table 41: Results of stirring efficiency calculation for Plumel00 and Plume120

Dataset VPiume VR Fpuume SE

PlumelO0  0.826 0.556 0.247 0.113
Plumel20 0.871  0.667 0.198 0.115

Table |40 shows Plumel00 had more severe washing overall than Plumel20, suggesting
that an injection rate of 100Nm®h results in more contact between plumes and the tuyere
surface, and therefore more refractory wear is experienced, which is reflected by the higher
wear rate factor of Plumel00. A lower velocity ratio was seen in Plumel00 to Plumel20,
which is due to the lower injection rate, and a higher frequency was seen in Plumel00,
suggesting lower injection rates result in more frequent plume occurrence. Essentially, the

injection rate of 120Nm?®h! resulted in less wear.
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Table shows a higher injection rate resulted in a marginally higher plume volume
proportion which suggests better mixing. Also, stirring efficiency was found to be slightly
higher for Plumel20 than PlumelO0. Therefore, these results show that the increase in
injection rate may have improved stirring efficiency but not significantly.

Out of the two configurations evaluated, Plumel20 appears better due to less intense
washing events and therefore less wear, as well as marginally better stirring efficiency. Over-
all, this suggests an injection rate of 120Nm?3h! is superior. However, whilst this demon-
strates the effectiveness of the model developed, a more extensive set of experiments should
be analysed to build a comprehensive understanding of different setups and how they affect

wear rate and stirring efficiency.

6.5 Conclusions

This chapter has presented a case study where various plume characteristics have been
measured throughout video footage of an experimental simulation of gas stirring in the BOF,
using YOLOvV5 for plume detection, DeepSORT for plume tracking and CNT background
subtraction for plume segmentation. Using plume measurements, this work has presented
an approach for calculating a wear rate factor and a stirring efficiency rating for any given
simulation experiment. Assessing these variables across a range of setups aids gas stirring
design optimisation which is highly beneficial for the process and industry as a whole, since
it helps to minimise equipment degradation and improve mixing.

This study explored various object detection models and YOLOv5 was the best. In the
final model, YOLOvV5 was trained on approximately 3000 images and tested on approximately
1500. This resulted in precision, recall and COCO mAP results of 0.854, 0.901 and 0.774
respectively. The full model ran at 7.6fps, which is a good starting point for any future
developments requiring real-time application, provided the model is optimised for speed.
This study also explored various background subtraction algorithms and the CNT algorithm
was the best. This algorithm was then combined with morphological opening, in-range
removal and Hough line removal for denoising purposes, which ensures robustness.

Furthermore, contact width and jetting length measurements were compared to validation
data which found that the proposed approach was accurate for most frames but still had
room for improvement, and in some cases, outperformed the manual measurements taken
in previous research. Wear rate factor and stirring efficiency rating calculations showed an
injection rate of 120Nm3h™ was superior to 100Nm>h!, since it resulted in less wear and

higher stirring efficiency.
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In conclusion, research contributes significantly to the advancement of steel production
technology in terms of process monitoring, particularly in the context of fluid dynamics,
whilst improving design capabilities through automation, efficiency and novel insights. Fur-
thermore, this research contributes to CV through the innovative application of techniques
such as detection, tracking and segmentation to gain an understanding of complex and dy-
namic industrial environments. Through use of Google Colaboratory, which does not have
any requirements other than an internet connection, the model can easily be distributed to
anyone wishing to analyse gas stirring simulation experiments, which ensures it is scalable
for its current purpose.

This case study has addressed three of the research gaps identified in Chapter 2. Firstly,
it has involved the generation of a novel dataset based on the ladle pouring process, which
addresses the lack of datasets available for developing CV applications for steel production
processes. Secondly, it has contributed to addressing the lack of real-world measurements
performed by CV models. Lastly, it has addressed the lack of hybrid CV models that make

use of both traditional and deep learning-based techniques.

6.6 Future Work

Future work should initially include detection refinement to overcome missed detections,
followed by BGS refinement to reduce noise issues and therefore enhance measurement ac-
curacy.

Additionally, there are various pathways for future work related to this case study, such
as improving inference times and deploying the model onto an Internet of Things (IoT)
device for real-time feedback. Another pathway could be to extend the model by integrating
a time series model and applying it to the current model’s output for advancing predictive
maintenance capabilities. The current model could also be applied to varying mixing element
designs, or even different processes. Therefore, this work lays a foundation for monitoring
various dynamic fluid characteristics and drawing insights that are valuable for enhancing

the operational efficiency and quality of steelmaking processes.
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Chapter 7: Case Study Comparison

This chapter will contain a comparative analysis of the three case studies presented in Chap-
ters 4, 5 and 6 by looking at them holistically in terms of their methodologies and results.
In the methodological comparison, notable similarities and differences will be discussed in
terms of tools utilised, data preparation, model development and evaluation metrics. In the
results comparison, discussion will be based on model performance, robustness, scalability

and limitations.

7.1 Introduction

The rise of computer vision (CV) technology has begun to rapidly improve the state of steel
production technology by enhancing a wide variety of processes through aspects such as
operational efficiency and product quality. Chapters 4, 5 and 6 explored the application of
CV for three processes: hot metal ladle pouring (Case Study 1), steel galvanisation (Case
Study 2), and basic oxygen furnace (BOF) gas stirring (Case Study 3). Each case study
highlighted the applicability of CV to complex industrial challenges, whilst also contributing
findings unique to each case study.

The objective of this chapter is to synthesise insights from individual studies whilst
identifying some of the wider implications of this project that only become apparent when
viewing case studies as cohesive components. By doing this, it is ensured that analysis of
the work undertaken is thorough.

The overall contribution of this chapter is that it provides valuable insights into develop-
ing CV applications for steel production. It offers a comparison of different methodological
aspects across different scenarios, whilst also evaluating model performances, assessing the
robustness and scalability of systems in real industrial environments, and addressing com-
monly occurring limitations when undertaking challenges based on application of CV to steel

processes.

7.2 Methodological Comparison

This section compares the methodologies of each case study in terms of the software and
hardware tools used, the data preparation, how models were developed and how they were

evaluated.
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7.2.1 Software Tools

For all three case studies, similar software tools were used. This primarily includes Python,
Python libraries and the VGG (Visual Geometry Group) Image Annotator (VIA) [276]
labelling tool. Microsoft Excel was also used for all three studies when outputting real-
world measurements from Python, as this was a more appropriate format when dealing with
sponsors, collaborating researchers and writing research papers. However, there were a few
notable differences between the case studies.

Firstly, as discussed, Case Study 2 and Case Study 3 used Roboflow dataset conversion
tools [216], whereas annotations for Mask R-CNN (Mask Region-based Convolutional Neural
Network) in Case Study 1 required no conversion from VIA. Secondly, Case Study 3 used
Google Colaboratory, which was primarily for ease of access when collaborating with another
researcher who used the model to gain insights. This was an advantage when collaborating,
however as mentioned in Section of Chapter 6, there was a downside to this which
created an issue when revisiting models.

Both cloud and local approaches were used in this body of work and in future, it would
be preferable to operate locally but upload models to the cloud when collaborating with
researchers who do not specialise in machine learning (ML). This way, the advantages of
both approaches are gained. For deployment of the splatter severity measurement model
demonstration, Docker [257], FastAPI [258], Uvicorn [259] and TensorRT [201] were used

which was unique to Case Study 2.

7.2.2 Hardware Tools

There were some differences between the hardware used for each study. For example, Case
Study 1 was entirely conducted using the NVIDIA RTX 2070 Super GPU (graphical pro-
cessing unit), whilst Case Study 2 used the same GPU for development but for deployment
used the NVIDIA Jetson Orin Nano’s GPU. Case Study 3 did not use either as it made use
of the Google Colaboratory GPU which was the Tesla T4. The differences in GPU selection
affected various aspects of the development process of each study. For example, the 2070
Super GPU is more powerful than the T4 overall, and is therefore better for model develop-
ment, but the T4 is specifically built for machine learning training and inference, meaning
it is likely more suitable for inference and especially for deployment since it is much more
power efficient [217, 277]. Also, the Jetson Orin Nano GPU is less powerful than the 2070
Super GPU, but is intended to be embedded into other systems for Internet of Things (IoT)

applications, and is therefore much more efficient in terms of size and power consumption
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[256]. There was benefit in using the 2070 Super and T4 simultaneously when working on
multiple case studies in parallel was required, and having access to multiple GPUs would

certainly be advantageous for time efficiency in real-world model development scenarios.

7.2.3 Data Preparation

In all three studies, data was provided by industrial sponsors or researchers and required
processing from their raw format into formats appropriate for model development. As men-
tioned, all data was then labelled using VIA [276]. However, the way in which data was
treated from that point onwards differed for each study. As mentioned in Chapters 4, 5 and
6, every case study addressed the research gap identified in Chapter 2 regarding the lack of

datasets available for developing CV applications for steel production.

7.2.3.1 Case Study 1

In Case study 1 frames were extracted to produce 1fps sequences to ensure inferences could be
performed on complete pouring videos without taking too long. Contrast-Limited Adaptive
Histogram Equalisation (CLAHE) was also applied to combat poor lighting. When develop-
ing the model for industrial application, the training set was extended whilst the validation
set remained unchanged. As explained in Section of Chapter 4, Mask R-CNN used the
same set for intra-epoch validation as it did for model testing, which is a common approach
used when available data is limited. This contrasted with other case studies that used four

distinct datasets which included extra sets for model testing and production testing.

7.2.3.2 Case Study 2

In Case Study 2 frames were extracted at the natural rate of 25fps, split into training,
validation, testing and production testing sets and labelled. After labelling, the Roboflow
conversion tool [216] was used to convert the dataset from VIA JSON (JavaScript object
notation) format to YOLOvV5 (You Only Look Once) Pytorch .txt format. Unlike Case Study
1, four separate sets were used since there was much more data available. The training set
was obviously used for training, the validation set was used for intra-epoch validation, the
testing set was used to evaluate the performance of the trained model on unseen data, and
the production set was used to assess and adapt the model performance to perform robustly
in real-world scenarios. Therefore, this study involved more complex data management than

Case Study 1 and facilitated a more rigorous assessment of model robustness.
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7.2.3.3 Case Study 3

In Case Study 3 frames were provided individually, not as video, and were split into training,
validation and testing sets and labelled. After labelling, Roboflow conversion tools [216]
were used to convert the dataset from VIA JSON format to YOLOvH Pytorch .txt and
PASCAL VOC (Pattern Analysis, Statistical Modelling and Computational Learning Visual
Object Classes) XML (extensible markup language) format for the YOLOv5 and RetinaNet
models respectively [216, 270]. For Faster R-CNN, annotations were exported in the COCO
(Common Objects in Context) JSON format. Labelling was conducted in two stages, the
initial manual labelling of Plumeb0, and the auto-labelling of the remaining plume datasets
using YOLOvV5. Finally, the production testing involved an approach inspired by k-fold cross
validation which used all datasets for training and testing in turn to mitigate the effects of
any biases in the data. The multi-format, auto-labelling and validation approaches used in

this case study make the most advanced study overall in terms of data strategy.

7.2.4 Model Development

In all three studies, existing neural networks were trained for manufacturing-based applica-
tions, validated and tested. In every case, deep learning was complemented by various other
machine learning and image processing techniques. Each network, as well as any additional
techniques incorporated, served a purpose that contributed towards to monitoring of a real

or simulated process.

7.2.4.1 Case Study 1

Case Study 1 used Mask R-CNN for its state-of-the-art instance segmentation performance
at the time of project initiation, as reported in Section of Chapter 2, to achieve precise
ladle segmentation in poor lighting conditions. Meanwhile, Case Study 2 and Case Study
3 used YOLOVS for its state-of-the-art object detection performance at the time they were
initiated, which is shown in Section[2.3.8 of Chapter 2. Also, the second and third case studies
used background subtraction (BGS) rather than instance segmentation. See Section of
Chapter 2 for the distinction between segmentation networks and background subtraction
algorithms. Although background subtraction results were presented in Chapter 4 (Case
Study 1), this was additional experimentation that was not a core element to the model
developed. In all three studies, the COCO dataset was used to pre-train models to give a
foundational understanding of what objects look like. This was inspired by the fact that
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literature in Chapter 2 frequently reported model evaluation via the COCO dataset and
COCO mean average precision (mAP) metric.

Case Study 1 model development was challenging due to limited data availability, meaning
focus was primarily placed on compensating for a smaller dataset through hyperparameter
optimisation. Through completion of the case studies, it has been learned that the dataset
often dictates model performance more than the model itself. This was not fully understood
during Case Study 1 and regardless, data available was limited and labelling ladle masks in
poorly-lit images was far more time-consuming than labelling bounding boxes on air knives

and plumes.

7.2.4.2 Case Study 2

Whilst Case Study 2 and Case Study 3 both used YOLOv5 and background subtraction,
these stages were conducted differently in each case study. Note that this addressed the
research gap identified in Chapter 2 regarding the lack of hybrid CV models that make use
of both traditional and deep learning-based techniques. In Case Study 2, the overall aim
of the study was to develop a tool that could provide a zinc splatter severity level in real-
time during galvanising. For this study, YOLOv)5 was used in two main ways. Primarily,
it was used to adjust the measurement region in real-time as the air knives moved upwards
and downwards. The relevant region of splatter always remained below the air knives, and
since the CNT (Counting) background subtraction algorithm was the basis of the splatter
measurement, and one of the limitations of BGS algorithms is dynamic backgrounds (see
Section of Chapter 2), YOLOv5 was used to detect the locations of each air knife and
therefore identify where the splatter was expected to occur. Secondarily, in the provided
footage, and through discussions with operators, it was clear that the cameras at the area
of interest were moved regularly (in-between operator shifts). Therefore, any measurement
methods needed to be scaled differently depending on the camera position to ensure model
robustness. By using YOLOVS, the sizes of predicted bounding boxes for air knives (in
pixels) could be used to give an indication of the distance between the camera and the air
knives. Based on a reference bounding box size, it was possible to scale splatter severity
measurement boundaries up or down accordingly.

With the exception of the air knives which moved up and down infrequently and were
handled by YOLOvV5, and of course the splattering zinc which was desirable to measure,
there was almost no movement. Therefore, the CNT algorithm was used to segment moving

splatter from the background in real-time. The main advantage of using the CNT algorithm
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is that it is significantly faster than all available BGS algorithms whilst maintaining high
precision [§]. This advantage was well-suited to Case Study 2 since real-time performance
was desirable. Another advantage of the CNT algorithm is that it adapts well to environ-
mental changes, and since the splatter was erratic, fluctuating dramatically multiple times

per second, the CNT algorithm was even more fitting for this application [§].

7.2.4.3 Case Study 3

In terms of Case Study 3, the overall aim of the study was to develop a tool that could
monitor and record gaseous plume states and geometries for design optimisation of gas
mixing elements. For this study, YOLOv5 had several purposes. Firstly, the classification
element of detection was used to distinguish between three different plume states which were
jetting, forming and collapsing. Secondly, the bounding boxes were used to measure the
height and width of plumes in order to calculate their aspect ratio at the time just before
they collapsed, which was the last frame on which they were classified as forming. Thirdly,
the bounding boxes were used to identify and isolate plumes that were washing the mixing
element surface, so that the BGS mask was only measured in the area of interest when
measuring plume-tuyere contact width. Finally, the bounding boxes and classification were
used to identify and measure the height of jetting events.

With the exception of small gas bubbles and streams detaching from the main plumes,
which were dealt with using a variety of denoising techniques, the background was mostly
static. Therefore, the CNT algorithm was used to segment plume motion from injection
until they collapsed and left the visible region of the water column. Like with Case Study
2, the CNT algorithm’s adaptability to the environment was key in the success of the model
development, since plume behaviours were complex and at times, unpredictable. The speed
of the CNT algorithm was not as crucial in this case study, however it contributed to the
overall quality and industrial impact of the final model.

The main use of CNT BGS in this case study was to read plume width when it formed
on the mixing element surface, as this affected refractory wear. Whilst YOLOvV5 located a
mixing element washing event using a bounding box, BGS measured plume width precisely
within the box at pixel-level, which was not possible using object detection alone.

Furthermore, Case Study 3 involved experimentation with Faster R-CNN, RetinaNet,
and YOLOVS5 in the initial stages, as opposed to just choosing one model based on literature
review. This was because experience, and therefore efficiency, had been improved over the

course of the two previous case studies.
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7.2.5 Model Evaluation Metrics

The main difference between computer vision metrics used in different case studies was that
segmentation uses masks to calculate intersection-over-union (IoU) whereas detection uses
bounding boxes. This is explained in Section of Chapter 3. Other than this difference,
conventional metrics remain unchanged between detection and segmentation, as evidenced
in model performances reported in the literature in Section 2.3 and Section of Chapter 2.
In terms of evaluating real-world measurements such as ladle parameters, splatter severity
and jetting length, there were some trends as well as differences.

In Case Study 1 there was no real-world evaluation data available for pouring angle
or pouring height, which limited the ability to fully assess the model’s robustness in real
application. It was during this case study that the possibility of adapting a computer vision
model for measuring real-world process parameters was first considered.

In Case Study 2, there was no evaluation data in terms of exact splatter severity levels
since this effect had never been quantified before, however two operator judgements were
used to evaluate the effectiveness of the model using metrics such as mean average error
(MAE), median and interquartile range. Therefore, the real-world evaluation of Case Study
2 was significantly more rigorous than in Case Study 1.

Whilst some characteristics measured in Case Study 3 did not have real-world measure-
ments, data was available for characteristics such as plume-tuyere contact width and jetting
length. This highlighted the importance of reliable real-world measurements, as well as the
need for novel approaches in generating them to accommodate the development of novel

deep learning-based monitoring techniques.

7.3 Results Comparison

This section compares the results of each case study in terms of the performances achieved
by each model, the robustness of each model to changes in environmental conditions, the

potential scalability of each model, and finally, the limitations experienced.

7.3.1 Model Performance

Table [42] shows the precision, recall, COCO mAP and speed of the main models developed
as part of this project. As shown, the precision, recall and mAP of the splatter model is
the highest and virtually perfect, followed by plume model performance which is very good,

followed by the ladle model performance which is good considering the scenario. Note that
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the Kalman filter ladle model in Case Study 1 was not used for comparison since it reduced
the suitability of the model for real-world application, despite improving CV metrics. The
splatter study had the easiest object detection task with the least variation, as well as
the most training data. The plume study involved a fairly difficult object detection task
with a lot of variation and had slightly less training data. The ladle study involved a very
challenging object segmentation task with a complex shape in a harsh environment, and had
the least available training data by a significant amount, near 10% of the available data for
the splatter study. This discussion suggests that task complexity and available training data
were the two primary factors that affected model performance.

In terms of speed, the splatter was the fastest, followed by the plume model and then
the ladle model. The splatter model was optimised with TensorRT and the speed of 5.73fps
includes network overhead. Without it, the model achieved over 15.23fps with large images,
meaning use of image resizing could significantly improve this speed (see Section of
Chapter 5). For the use-case of the splatter model, the 5.73fps speed was sufficient for real-
time monitoring on the NVIDIA Jetson Orin Nano and there were clear opportunities to
speed this up further, such as resizing images from large to small. This study addressed
the research gap identified in Chapter 2 regarding the lack of real-time edge-based CV
applications developed for steel production processes.

For the plume model, real-time was not an aim, however for future developments 7.6fps is
a good start, especially considering it utilised PyTorch and was therefore not optimised using
TensorRT. Regarding the ladle model, it is far from being applicable in real-time. Even if
the natural frame rate of the video stream is diluted, 2.17fps is not sufficient. However, this
was developed using Mask R-CNN which was state-of-the-art when the study initiated, and
has now been surpassed by the likes of YOLOv8-seg (see Section and Section of
Chapter 2). If a closed-loop control system were to be built using the ladle model, it would

certainly need to be redesigned using a network such as YOLOvS8-seg.

Table 42: Comparison of model performances across different case studies

Model Precision Recall mAPcoco Inference Speed (fps)
Ladle (RTX) 0.477 0.516 0.516 2.170
Splatter (Jetson) 1.000 1.000 0.994 15.230
Splatter (Jetson - Over network) — 1.000 1.000 0.994 5.730
Plume (T4) 0.854 0901  0.774 7.600
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7.3.2 Robustness

Robustness of models was a key discussion point throughout this work and is included here
to highlight the environmental challenges involved in each case study. All case studies involve
the development of models that can measure real-world process variables and are robust to
different environmental conditions. Therefore, they all address the research gap identified in
Chapter 2 regarding the lack of real-world measurement, testing and validation surrounding
CV applications.

Case Study 1 dealt with harsh lighting conditions and an obstacle blocking the view of
the ladle. Through application of CLAHE, the negative effect of the harsh lighting con-
ditions was significantly reduced, proving the effectiveness of this approach and suggesting
potential applicability in other similar scenarios. Through the labelling approach described
in Section of Chapter 4, the occlusion was mitigated and this could also be beneficial
in future scenarios.

Case Study 2 dealt with variations in camera position and air knife movement. Through
application of YOLOvV5, robustness to camera position variations was improved significantly,
however the results and discussion showed that for optimal model performance, a fixed
camera position should be used every time. Also through use of YOLOvV5, the air knife
movement aspect was managed with minimal issues, however there was a tendency for the
model to struggle distinguishing between front knife faces and underside knife faces, but this
did not impact deployment performance.

Due to the experimental nature of the data provided in Case Study 3, there were minimal
variations in the environment that required extra attention. One example was that the tuyere
tended to vibrate, which caused segmentation mask noise that was addressed by using Hough

line transforms to remove the segmented edge during these occurrences.

7.3.3 Scalability

When considering industrial application of models, scalability becomes important for real-
world deployment and especially for the future advancement of computer vision in steel
production. This refers to the ability of a model to be replicated across various devices,
potentially operating simultaneously on different operating systems and in diverse scenarios.
Also whilst doing this, good scalability means model performance and efficiency will not be
sacrificed when it is applied in different situations. During Case study 2 and Case Study 3
it was ensured that models developed can be utilised on different devices by different users,

which addressed the research gap identified in Chapter 2 regarding the lack of real-world
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measurement, testing and validation surrounding CV applications.

For Case Study 1, scalability was limited. The model is capable of processing multiple
videos, however can not be considered ready for real-world deployment until it is trained and
tested on much larger datasets.

For Case Study 2, scalability is promising. The model has successfully been developed on
a personal computer and deployed on a NVIDIA Jetson Orin Nano using FastAPI, Uvicorn
and Docker. FastAPI allows operators to easily interface with the model without having
coding experience, Uvicorn provides a server for the API (application programming interface)
to connect to the web, and Docker ensures the model is lightweight, portable and functional
on any operating system. Uvicorn and Fast API both support asynchronous operations which
enhances efficiency, enables multiple simultaneous request handling, and ensures scalability.

For Case Study 3, the scalability is also promising. Using Google Colaboratory, re-
searchers with minimal to no coding experience and no local software or libraries can easily
access and operate the model simply by uploading plume footage, typically waiting a few
minutes and then downloading the predictions. This could easily be shared and duplicated

to run many tests at once.

7.3.4 Limitations
7.3.4.1 Case Study 1

Case Study 1 experienced more limitations than the other two studies for various reasons.
Firstly, since it was the first study of the whole project, experience at tackling CV tasks
was at a minimum. In contrast, Case Study 3 benefited from improved familiarity with
CV, leading to more efficient and effective completion. Furthermore, due to the emergent
nature of CV, learning resources, literature, existing networks and community contributions
were limited, which made progressing more difficult. This ties in with other limitations such
as data availability, time consumption of labelling data and performance of state-of-the-art
networks.

Since Mask R-CNN was the highest performance, applicable, instance segmentation
model at the time of initiation, this was the best choice. However, even on a much more
powerful GPU than the RTX 2070 Super (which not many existed that were better than
this at the time), the model would not be able to reach near real-time performance. For this
reason, and for the high time consumption of labelling, pouring videos were simplified down
to 1fps.

Also, there were only four pouring videos available, and in total this gave less than
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600 frames for the entire dataset. Considering the harsh environmental conditions in the
footage, as well as the complexity of instance segmentation, as well as the complex shape
of the ladle, this was not enough data to develop a high-performance model. Despite this,
the performance achieved at the end of the study achieved through methods such as the
hyperparameter optimisation, was impressive considering the high complexity and minimal
data availability during the task. This is discussed more in Section of Chapter 4.

7.3.4.2 Case Study 2

Case Study 2 limitations were somewhat similar to Case Study 1 but with some variation. In
terms of experience, a large amount had been gained from the first case study which meant
the rate of progress improved significantly and there were less technical pitfalls when dealing
with things like debugging coding issues. Also, compared to Mask R-CNN, YOLOv5 was
less complex with more community contributions for help with issues. However, there were
still challenges such as data access and scoping the problem for real industrial benefit.

In terms of data access, it was necessary to communicate with operators at the galvanising
site to request different kinds of footage that could be used for model development. For
example, a range of splatter severities were required to ensure the model could handle the
whole range of magnitudes, footage of air knife movement was required to ensure the object
detection worked, and footage from various camera positions were required so the model
could be built to be robust to this. COVID-19 restrictions making the site inaccessible were
active during much of this period, which made data acquisition difficult. Therefore, unlike
the other case studies where all available data was provided from the beginning, in Case
Study 2 there was an element of uncertainty in terms of what data the model would need to
be developed for.

In terms of scoping the problem, Case Study 1 industrial aims were provided gradually
throughout the study by a collaborating researcher which complicated the process and will
be avoided in future, whereas Case Study 2 aims were specified at the beginning of the
study which was crucial for the success of it. When developing computer vision systems
for stakeholders that have no computer vision experience, it is necessary to bridge the gap
in understanding the capabilities and limitations, as well as identify exactly how specific
stakeholder objectives are achievable using different techniques. For example, technologists
at the galvanising site requested a tool that could quantify the severity of splatter in real-time
and this was initially achieved on one video using background subtraction. However, it later

became known that the camera position was changed by operators between each shift and
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the air knives actually moved up and down during the process. Therefore, the model had to
be further developed. This highlighted the importance of gaining a deep understanding of

the problem early on.

7.3.4.3 Case Study 3

Case study 3 limitations included the large time consumption of labelling thousands of com-
plex plumes, but was overcome through the auto-labelling approach. Raw data availability
was of no issue since it was all readily available and easily transferred by a collaborating
researcher. This contrasts from other case studies where data was either unavailable or dif-
ficult to access. However, there were limitations surrounding the complexity of the task.

For example, it has been mentioned in Section of Chapter 6 that plumes were
difficult to capture individually with 2D bounding boxes due to the complex, gaseous nature
of them. This was unique compared to the other case studies which involved objects with
more consistent shapes. This not only made labelling difficult, but potentially affected the
quality of results. This is not to say the results were poor, because they were not, but using
3D data capturing methods would greatly benefit this kind of task.

There were only two other notable limitations of Case Study 3 which were firstly, the
movement of the tuyere. This was mitigated competently using the Hough line removal,
however without movement this would have meant less processing for the model and in
some frames, possibly an improvement in precision. The other limitation is that the water
column had a dark grid-like structure behind the plumes, which if removed, would have
made the setup optimal for feature extraction due to the contrast between plumes and the
background. This aspect, along with the moving camera position in Case Study 2, highlighted
the importance of optimising the environment and camera setup for computer vision systems

to maximise results.

7.4 Conclusion

The comparative analysis conducted in this chapter has presented the application of CV
technologies across three steel production processes. Through methodological analysis, valu-
able insights have been drawn such as the versatility of CV models when monitoring various
aspects of different industrial environments, the crucial requirement for sufficient quantity
and quality of data for achieving desired model performances, and the importance of select-

ing the right tools and evaluation metrics to facilitate efficient and effective development.
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Key insights have also been drawn from results analysis, which include the importance of
choosing the right device for development and deployment depending on what the use-case is
for a given model, the subtle details to environmental changes that models need to account
for in real-world applications in order to be robust, as well as the aspects of development
that need to be considered to ensure models can be integrated at scale.

Furthermore, this chapter has uncovered some of the common challenges and limitations
of CV that are important to consider when developing CV technology for industry. These
contribute to current understanding of CV application to industrial processes, whilst also
paving the way for better practices in future projects.

As discussed in Chapters 4, 5 and 6, this comparative analysis has highlighted how the
three case studies have addressed several significant gaps identified in the literature in Chap-
ter 2. These include enabling real-time processing capabilities in edge-based CV systems,
generating diverse datasets that represent the complexity of real industrial environments,
conducting real-world application, testing and validation of CV systems, as well as synthesis-
ing traditional techniques with more modern, deep learning-based techniques. By addressing
these gaps, this research advances the field of computer vision with regards to application in

the steel industry.
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Chapter 8: Conclusion

This thesis has demonstrated the capabilities of machine learning-based computer vision
(CV) for advancing the current state of manufacturing technology. By tackling three different
case studies based on three entirely different processes within steelmaking, this work has
demonstrated how versatile CV is as a tool, and how it can be used to monitor highly
complex and variable environments in ways that were previously unattainable. Additionally,
the impact of integrating CV into steel production has been critically evaluated in terms of
enhancing operational efficiency and product quality, whilst reducing equipment degradation
and ensuring safer working conditions. The primary research objectives of this body of work

are listed below.

8.1 Research Objectives

1. Conduct a comprehensive literature review of modern advances in computer vision
techniques with emphasis on industrial and manufacturing scenarios. This includes
establishing a clear understanding of the state-of-the-art, critically analysing existing

literature, and identifying research gaps.

In terms of the first objective, Chapter 2 presents a thorough literature review on mod-
ern computer vision techniques and their applications to industrial scenarios, with particular
emphasis on manufacturing scenarios and primary focus on steel processing. Through this,
the state-of-the-art has been clearly established, critically analysed, and used to identify
research gaps which have either been addressed in this work or recommended for future en-
deavours. The gaps addressed include the need for more real-time edge-based CV systems
on production lines, the need for more steel production datasets that are based on a range of
different processes, the lack of innovation in the field with regards to combining traditional
and modern CV techniques, and the lack of application of CV for making real-world mea-
surements and validating them.

Collectively, addressing these gaps has significantly contributed to the field. Remaining
gaps such as establishing standardised evaluation approaches for fairer comparison of model
performances in industrial environments, analysing cost-effectiveness of CV implementation

and accounting for human factors, are left open for future endeavours.
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2. Design novel computer vision systems tailored for different processes within steel pro-
duction (hot metal ladle pouring, galvanisation, and gas stirring) to monitor and anal-
yse key process variables that give insights for enhancing operational efficiency and

product quality.

In terms of the second objective, all case studies advance CV application in steel man-
ufacturing through process monitoring and analysis of process variables for insights into
improving the efficiency and effectiveness of production methods.

In Chapter 4, ladle process parameters and resulting emission severity were, for the first
time, monitored using CV to give insights that improve operational efficiency. This sets a
new standard for process monitoring within the steel industry. The novel dataset developed
addressed the gap identified in Chapter 2 related to the lack of steel production process
datasets, the combination of Mask R-CNN and Kalman filtering addressed the gap related
to the lack of innovation involving traditional and DL-based CV techniques in combination,
and the measurement of pouring height, rotation angle, and flame severity was pioneering
and addressed the gap related to the measurement of real-world process variables using CV.

In Chapter 5, splatter severity, which has never been quantified before, was monitored
in real-time on an edge device to enable operators to draw insights that improve both op-
erational efficiency and product quality. This has demonstrated the capability of computer
vision to monitor new process variables that were previously not measured. The novel dataset
developed addressed the gap identified in Chapter 2 related to the lack of steel production
process datasets, the combination of YOLOv5 with background subtraction addressed the
gap related to the lack of innovation involving traditional and DL-based CV techniques in
combination, and the measurement and validation of zinc splatter severity was revolution-
ary to the process whilst addressing the gap related to the measurement and validation of
real-world process variables using CV.

In Chapter 6, refractory wear was monitored by analysing plumes in an innovative way to
give novel insights that improve operational efficiency and product quality. This has opened
up many new possibilities in terms of optimising the gas stirring process. The novel dataset
developed addressed the gap identified in Chapter 2 related to the lack of steel production
process datasets, the combination of YOLOv5 with background subtraction addressed the
gap related to the lack of innovation involving traditional and DL-based CV techniques in
combination, and the measurement of plume characteristics and validation of contact width
and jetting length was groundbreaking for optimising gas stirring whilst addressing the gap

of measurement and validation of real-world process variables using CV.
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3. Investigate the deployment of computer vision technologies into steel production envi-
ronments as both post-processing and real-time monitoring applications. This includes
the consideration of robustness and scalability of systems to ensure they can withstand

the complexities and variations of deploying to real industrial settings.

In terms of the third objective, each study explores practical deployment of computer
vision technologies, whether this is for real-time monitoring or post-processing analysis.

In Chapter 4, the model developed is robust to poor lighting conditions and can be used as
a post-processing tool. However, state-of-the-art instance segmentation has advanced since
the initiation of the study and with a larger training set, as well as application of a more
recently released segmentation network, it could be deployed in real-time and potentially
used for closed-loop control of ladle motion.

In Chapter 5, the model developed was deployed onto an edge device, operates in real-
time, and is ready for integration into a real-world application. It is robust to changes
in camera position, changes in air knife position, dust particles and heat distortion. It is
also deployed within a Docker container and accessed through an application programming
interface (API), both of which ensure scalability. This addresses the gap identified in Chapter
2 related to the lack of real-time edge-based CV systems on production lines.

In Chapter 6, the model produced is available as a post-processing tool and has been
used by another researcher for this purpose. It is robust to tuyere vibrations and can
easily be distributed as a Google Colaboratory notebook, demonstrating scalability. With
collaboration from gas stirring process experts, it is possible to further develop the model
for real-time application.

In Chapter 7, a comprehensive comparative analysis of the case studies emphasised the
importance of data quality and quantity, the selection of appropriate models and evaluation
metrics, and tools that were crucial for both development and deployment. Additionally,
it discussed the practicality, robustness and scalability of the developed models, whilst also
detailing the limitations with regards to development and deployment.

Overall, deployment has been a key topic investigated in every case study. This is par-
ticularly true in Chapter 5, where the technology was taken from theoretical performance
evaluation to deployment, and Chapter 6, where it was passed over to another researcher for

use. These are significant contributions to both CV and manufacturing.
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8.2 Key Findings & Implications

The findings of each case study are highly beneficial for future research on CV applications
for process monitoring. Chapter 4 laid the foundation for future advancements in monitoring
ladle pouring by offering a novel approach that can be developed to reduce emissions and
equipment degradation whilst improving safety.

Chapter 5 demonstrated the practical application of a CV model to quantify zinc splatter
severity occurring on the galvanising line, using a deployed edge-based system with Wi-
Fi and real-time capabilities, ready for implementation. The system built in this study
can be implemented to reduce equipment degradation and the occurrence of defects, whilst
improving operational efficiency.

Chapter 6 provided a tool for easily and automatically comparing the wear rate and
stirring efficiency of different gas stirring configurations, which contributes to the reduction
of equipment degradation and improvement of operational efficiency and product quality.

The implications of this work are vast. Firstly, this research contributes to progressing
the integration of CV technology into industrial environments and is evidence of the benefits
that can be gained by doing so. Applying CV to three entirely different areas of steel
production emphasises the adaptability and widespread potential of CV technology across
many industrial processes, which greatly contributes to the field of manufacturing technology,
whilst also contributing to the field of CV. Secondly, the successful deployment of one model,
and the successful handover of another, demonstrate the feasibility of utilising CV models
in real-world steel production environments for tangible benefits. This challenges existing
perspectives on the limitations of CV technology in complex industrial environments, whilst
laying the foundation for future developments across the entire manufacturing sector. Lastly,
the limitations found in this work are valuable to future projects in both the academic space
and the industrial space. Addressing these challenges has provided guidance for developing

and implementing CV solutions in a wide variety of scenarios.

8.3 Limitations

Key limitations discovered firstly include the complexities of dealing with harsh industrial
environments that make high model performance and model deployment particularly chal-
lenging to achieve. These environments introduced significant sources of noise and variability
such as poor lighting, heat distortion and vibrations, which impacted model performance and

required extensive data pre-processing and robust model design to overcome.
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Also, there were limitations surrounding problem scoping and data acquisition which
highlighted the challenges in communicating with individuals from different professional
backgrounds and obtaining datasets of a sufficient volume, diversity and quality from col-
leagues for satisfactory model performance upon training. Problem scoping was challenging
due to the general lack of familiarity with computer vision within the steel sector, whilst data
acquisition for real industrial environments was particularly difficult due to their variable
nature.

Furthermore, labelling thousands of frames, often containing complex shapes such as
plumes and ladles, was highly time consuming. This highlighted the need for more resource-
efficient approaches such as the auto-labelling approach demonstrated in Chapter 6.

Additionally, the necessity for efficient approaches to hyperparameter optimisations be-
came evident throughout Chapter 4. Computer vision models often have many different
hyperparameters and one training session (and therefore one experiment), can take a con-
siderable amount of time to complete. Therefore, in this field efficient experimental design
is crucial in order to develop high-performing models within computational power and time
constraints.

Finally, deployment of a real-time edge-based system in Chapter 5 highlighted various
limitations such as requiring maximum efficiency for real-time performance on limited com-
putational power, meaning only essential code can be processed. For example, once the
model has been validated as reliable, removing the visual display of measurements may be
necessary depending on project demands.

These limitations highlight areas that should be carefully considered in future work to
avoid some of the pitfalls and bottlenecks experienced during this project. Through aware-
ness of these challenges, which are all common in industrial CV projects, future developments
will progress more efficiently and more effectively. Therefore, these limitations are valuable

to future researchers.

8.4 Future Research Directions

Due to the emergent nature of computer vision, there are a vast number of potential future
research directions which not only involve further development of the case studies in this
project, but also diversifying models to be used in other steel production processes (or even
in other industries). This section will firstly focus specifically on ways of addressing the
identified limitations, and secondly how work here can generally be developed further. In

order to address the limitations, the following improvements can be made:

276



e In all future research projects, establishing a thorough understanding of the problem
statement, relevant environmental conditions and data availability will be imperative.
This will ensure that the full problem is understood by all parties involved from project

initiation, and that every stage of the project is conducted with this in mind.

o If extensive data labelling is required, efficient methods such as auto-labelling (or
transfer learning) should be used to minimise time consumption. This can significantly
reduce project duration and significantly increase the volume of labelled data (provided
there is enough data originally acquired). The performance of models in all studies

could be improved significantly with larger datasets.

e Hyperparameter optimisation should be tackled with more advanced approaches that
reduce computational overhead and shorten the overall time to complete a series of
experiments. An example of this could be early stopping, which stops training when

performance plateaus.

e Model deployment for real-time application should be approached with more focus on
enhancing computational efficiency through efficient use of data types, data structures
and memory allocation, as well as using a minimalistic design of model features, and
maximising the use of optimisation techniques such as quantisation and knowledge

distillation.

e To address remaining gaps in the literature, an evaluation methodology could be estab-
lished that is suitable for all case studies, to work towards more comparable outcomes
across the entire field. Furthermore, cost-effectiveness and human factors could be in-
vestigated to better understand the economic impacts and user interactions with these

technologies, as well as promote wider acceptance and utilisation within the industry.

There are also several potential research avenues that could be pursued to further develop

each case study:

e For Chapter 4, the ladle model could be redeveloped using a model such as YOLOv8-seg
to improve both speed and precision. This should be conducted using a larger dataset
that includes thousands of labelled frames rather than hundreds, whilst also validating
model measurements against reliable real-world measurements. These improvements
would enhance insights, and with extensive testing for full physical integration into the
pouring site, could result in a closed-loop control system that minimises emissions by

adjusting pouring controls in real-time.
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e For Chapter 5, the splatter model could be implemented onto the ZODIAC galvanising
line. This way it could be used for an alarm system to alert operators of high splatter
severity, as well as for data collection and analysis to optimise process parameters for

maximum strip speed and minimum splatter.

e For Chapter 6, the plume model is currently usable for comparing different gas stirring
configurations, but would benefit from using YOLOvS, and maybe a different column
setup more adapted for computer vision application, to further improve performance.
If this system was to be integrated directly into the basic-oxygen furnace, it would be
revolutionary for the stirring process. Additionally, the plume model itself could be

evolved by taking a 3D approach rather than a 2D approach.
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