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Abstract: Classic formulae for entropy and cross-entropy contain operations x
0 and log2 x

that are not defined on all inputs. This can lead to calculations with problematic subexpres-
sions such as 0 log2 0 and uncertainties in large scale calculations; partiality also introduces
complications in logical analysis. Instead of adding conventions or splitting formulae into
cases, we create a new algebra of real numbers with two symbols ±∞ for signed infinite
values and a symbol named ⊥ for the undefined. In this resulting arithmetic, entropy,
cross-entropy, Kullback–Leibler divergence, and Shannon divergence can be expressed
without concerning any further conventions. The algebra may form a basis for probability
theory more generally.

Keywords: partial formulae; fracterm calculus; transreals; entropic transreals; peripheral
numbers; entropy; cross-entropy

1. Introduction
Consider a probability function, or more precisely, a probability mass function, P on a

finite sample space S for which it is assumed that

∀v∈SP(v) ≥ 0 and ∑
v∈S

P(v) = 1.

The definition of entropy for P is often formulated as follows:

H(P) = − ∑
s∈S

(P(s) · log2 P(s)).

Alternately, it can be formulated as

H(P) = ∑
s∈S

(P(s) · log2
1

P(s)
).

A closely related concept is cross-entropy defined for two probability mass functions,
say P and Q, by

H(P, Q) = − ∑
s∈S

(P(s) · log2 Q(s)).

Alternately, it can be formulated as

H(P, Q) = ∑
s∈S

(P(s) · log2
1

Q(s)
).
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In the formulae, there are partial functions, i.e., functions that are not defined for all
the values required: neither log2(x) nor 1

x are defined for x = 0. However, a mass function
with P(s) = 0 is a valid argument in both formulae.

Correct mathematical writing practice typically guards against partiality by expressing
conditions that rule out arguments or break up formulae into different cases. Another
technique, one which aims to preserve uniformity, is to invent conventions for applying the
formulae, which may or may not have plausible justifications. Consider the first formula.
Commonly, an additional convention often prescribed is that

0 · log2 0 = 0.

This has an underlying argument that

lim
x↓0

x · (log2 x) = 0

to which we will return to shortly.
The convention to adopt 0 · log2 0 = 0 may seem unproblematic [1]. But, from an

algebraic and logical perspective in pure mathematics, and especially from the precisely
formalised logical perspectives of computer science and software engineering, introducing
a convention that allows one to calculate as if 0 · log2 0 = 0 is not at all straightforward as it
raises questions about the effects such an identification. There are two issues in need of
attention: first,

(i) What is the scope of the assumption 0 · log2 0 = 0? Is it only local to the definitions of
entropy and cross-entropy or is the scope more extensive.
If the assumption is made more generally, for calculations in theoretical work on entropy,
one may wonder about the value of other expressions, such as 0 · log2

2 0, 0 · log3
2 0, etc.

(ii) If 0 · log2 0 = 0, then what is the status of the log term log2 0?
The question applies to the equally relevant term 1

0 just as well, of course. Now, these
formulae have long been very widely used in computing; however, of theoretical interest
for programming is the question:

(iii) What are the effects of the inherent partiality of the formulae being disguised?
Partial operators on inputs that sometimes return no output are to be avoided in program-
ming, and logical reasoning about programs becomes hugely more complicated than with
total operators.

In this paper, we will adopt a foundational approach and explore the partiality of
these entropy formulae—and of several derived information-theoretic formulae—in order
to develop some new algebraic structures for real number arithmetic that can provide
single uniform expressions that are well founded because they are based not on ad hoc
conventions but on the algebra of the number systems that underpin the formulae.

To accomplish this, we will need to examine technique(s) for making partial functions
total and detecting their effect on calculations. In pursuing one technique, that of using
infinities, we develop an arithmetic algebra of real numbers customised to our problem
and hence called entropic transreals. In the entropic transreals, the convention 0 · log2 0 = 0
becomes an authentic algebraic property, derivable from the algebra of entropic transreals.

1.1. Gauging the Problem

In addition to addition, subtraction and multiplication (which are total operations),
the algebra of real numbers we aim to construct will also have division x

y and log2 x (which
are partial operations that will need to be made total). What factors shape the design of the
new algebra? For example, the ubiquitous presence of summation over a sample space, as
in the definitions of entropy, suggests the requirement that addition is associative.
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Consider how the convention 0 · log2 0 = 0 could be a valid equation in such an algebra.
If one relies on an justification of the value of 0 · log2 0 by way of limits, as mentioned
earlier, then applying the multiplication rule for limits we deduce

0 = lim
x↓0

(x · (log2 x)) = lim
x↓0

(x) · lim
x↓0

(log2 x) = 0 · −∞.

Thus, we have another rather basic identity, 0 = 0 · −∞, to consider and the idea that
log2 0 = −∞.

Turning to cross-entropy, in some cases one expects it to take a positive infinite +∞
value, and so an arithmetic equipped with both signed infinities ±∞ is needed.

Example 1. Consider a sample space S with elements a and b and probability mass functions P
and Q over S such that

P(a) = 1, P(b) = 0, Q(a) = 0, Q(b) = 1.

Now, for the cross-entropy H(P, Q), as it was defined above, we expect to find value +∞.
Calculation of H(P, Q) yields:

H(P, Q) = P(a) · log2
1

Q(a)
+ P(b) · log2

1
Q(b)

= 1 · log2
1
0
+ 1 · log2

1
1
= log2

1
0

.

So, to obtain the expected value +∞ in this case, we can adopt the identity 1
0 = +∞,

in combination with log2(+∞) = +∞; this seems plausible, if not necessary.
Thus, with these and other requirements in mind, in the course of the paper, the

field of real numbers will be enriched with new operations and elements to make a new
algebra. In particular, we will extend it with a suitable pair of signed infinite ‘values’
±∞—elements outside the conventional range of numbers. On adopting log2 0 = −∞
and enabling 0 · ∞ = 0 · (−∞) = 0 to hold, the desired convention 0 · log2 0 can derive an
algebraic property of the underlying arithmetical data type.

1.2. Structure of the Paper

In Section 2, we prepare the ground with some background and methods for treating
partiality that have been developed for division. In Section 3, we continue to explore
and select algebraic properties customised to the task of rebuilding the entropic formulae.
In Section 4, we apply the new entropic transreals to a series of formulae for entropy,
cross-entropy, Kullback–Leibler divergence, and Shannon divergence. In Section 5, we
summarise the construction of the algebra. In Section 6, we reflect on the exercise and point
out some next steps and problems.

2. Peripheral Numbers, Fracterms, Fracterm Calculus
Technically, we are concerned with the use of expressions 1

0 and log2 0 that have no
values and finding ways to give them meaning for the purpose of improving calculating
and reasoning. The tools we employ are made from a variety of logical concepts and
methods concerning equations and related formulae that make up the theory of abstract
data types in computer science [2]. However, to keep focussed on entropy, we will limit the
use of this background knowledge that informs our investigation.
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2.1. Peripherals

Our methods benefit from an elementary knowledge of syntax, namely signatures,
which list names for constants and operators of an algebra, and the terms that are made by
composing operators and applying them to constants and variables.

The constants ⊥ and ∞ are new syntax, from a conventional point of view, though ∞
is used quite often in an informal manner, and these constants at the same time represent
values outside the conventional number system, so-called peripheral numbers. We will
consider arithmetical structures, or arithmetics for short, which feature three peripheral
values: ∞, −∞ and ⊥. We will sometimes write +∞ for ∞ to emphasize that positive
infinity is meant.

In introducing new infinity constants ∞, −∞ we generate the need for meaning for
infinitely many new expressions:

∞ + ∞, ∞ · ∞, ∞ − ∞,
∞
∞

, . . . , log2 +∞, log2 −∞, . . .

Some seem easy to resolve with identities, such as

∞ + ∞ = ∞, ∞ · ∞ = ∞,

while others suggest options, such as

∞ − ∞ =?,
∞
∞

=?,

and the choices and the algebras they determine ramify. In our case, we will use ⊥ in
identities to resolve the matter.

Following [3], we use the word fracterm for a fractional expression. We avoid the noun
“fraction” because its meaning is rather ambiguous, ranging between an expression and its
number value. Whereas for constants making a distinction between expression and value
is rather uninformative, for fractional expressions it matters a lot. We adopt 1

0 as a fracterm
without hesitation. We use fracterm calculus loosely for “how to calculate with fracterms”.
Different fracterm cacluli may be distinguished and axiomatised using formulae based on
equations, for instance.

2.2. Models for Division by Zero

In this paper, we start from a series of thorough studies of the case of division: what
can be done about x

0 ? There are several options that have been analysed.

(i) Suppes-Ono fracterm calculus. This is based on the assumption x
0 = 0 and makes no

use of ⊥. For information on Suppes-Ono fracterm calculus, we refer to [4–8].
(ii) Common meadows fracterm calculus. This uses x

0 = ⊥ and makes no use of ∞ and
−∞. We refer to [9–11] for common meadows.

(iii) Transreal fracterm calculus. This uses Φ (instead of ⊥ and named nullity), ∞ and
−∞. See [12–17].

(iv) Fracterm calculus for symmetric transreals. This involves peripherals for signed
infinitesimals, as well as for signed infinities. See [18].

(v) Fracterm calculus for wheels. This makes use of ⊥ while identifying ∞ and −∞ and
maintaining ∞ + ∞ = ⊥. See [19].

Below, we will propose an adaptation of transreal fracterm calculus by introducing ⊥
besides Φ and adopting log2 p = ⊥ rather than log2 p = Φ for negative p, in order to find a
better alignment between different fracterm calculi. This leads us to our Fracterm calculus
for entropic transreals.
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Entropic transreals are an approach to enlargement of arithmetic with peripheral
numbers (which will be introduced below) that is designed specifically to meet the objective
to provide a precise meaning for defining expressions for entropy and cross-entropy. We
will speak of entropic transreals—to emphasise their motivation. Arguably, the entropic
transreals embody somewhat arbitrary assumptions, e.g., the combination of 0 · ∞ = 0 and
∞ − ∞ = ⊥ may be called rather ad hoc.

2.3. Indicating Partiality

We will adopt these conventions: instead of “ f (a1, . . . , an) is undefined” we write
f (a1, . . . , an) = ⊥. Thus, ⊥ is considered an element of the domain of values. So ⊥ plays a
conventional role as an element of the domain in the setting of equational logic with the
effect that, for instance, ⊥ = ⊥ and ⊥ ̸= 0. We often refer to ⊥ as an “error value”, but its
role as a token for partiality need not be understood as signalling an error.

We assume that log2 is undefined for negative arguments, though following the
approach of [9] and adopting the mechanism of quasi-partiality we prefer to work with total
functions writing f (a) = ⊥ in case one thinks of f (−) as being undefined for argument
a, a consideration which leads to log2 p = ⊥ for any real number p < 0, as well as to
log2(−∞) = ⊥.

When making use of a square root function
√

x we will adopt
√

p = ⊥ for negative
real p as well as

√
−∞ = ⊥. Adopting f (a) = ⊥ only indicates that no proper value is

assigned to f (a) in the setting at hand, while it may be the case that in a larger structure
(such as a field of complex numbers) such values may be easily found. With the use of ⊥ in
these cases we deviate from transreals (as in [12]) where log2(−1) = Φ is assumed.

3. Entropic Transreals
In various floating point systems for computer arithmetic one finds 1

0 = +∞ and
−1
0 = −∞. Remarkably, however, within theoretical computer science these ubiquitous

conventions have not lead to any systematic research on versions of arithmetic with pe-
ripheral numbers for signed infinities. We are unaware of any occurrence of ∞ with the
properties of entropic transreals (perhaps with another name or symbol) in the literature.
The design and elaboration of transreal arithmetic stands out as a rather singular example.

3.1. The Fracterm Calculus of Transreals Fails to Match Our Requirements

The best-known instance of a version of arithmetic providing peripheral numbers ±∞
is the system of transreals as defined in [13]. Transreals contain an absorptive constant Φ,
named nullity, that satisfies

0 · ∞ = 0 · (−∞) = x + Φ = x · (−∞) = Φ.

It follows that, upon adopting log2 0 = −∞, one obtains for the convention

0 · log2 0 = 0 · Φ = Φ

instead of the desired 0 · log2 0 = 0. Thus, transreal arithmetic will not support the
definition of entropy in its conventional form.

Moreover, for any probability mass function P on S which vanishes on at least one
sample s ∈ S, one finds H(P) = Φ when adopting the conventional definition of entropy
in combination with the conventions of transreal arithmetic.

Transreal arithmetic was designed with the IEEE 754 standard in mind (see also [14]),
and maintaining definitions from probability theory without any modification has been no
requirement on the design of the fracterm calculus of transreals.
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3.2. The Fracterm Calculus of Entropic Transreals

We will adopt entropic transreals, an enlargement of reals with different periperhal
numbers ±∞ such that

0 · ∞ = 0 · (−∞) = 0.

The simplification with respect to transreals lies in the fact that the familiar identity
0 · x = 0 is maintained to a greater extent. In other words, the role of nullity (Φ) is reduced,
and in fact so much reduced that its remaining role is played by the partiality indicator ⊥.
Notice that with the error element ⊥, we will be using 0 · ⊥ = ⊥ rather than 0 · ⊥ = 0, so
that the familiar equation 0 · x = 0 is again compromised in entropic transreals, though to a
lesser extent than in transreals where 0 · ∞ = 0 · (−∞) = Φ is adopted.

With ±∞ available, we will follow the design of transreals as in [12] and adopt the
following equations: log2 0 = −∞ and log2 ∞ = ∞. Finding a value for log2 −1 and for
log2 −∞ is another matter, however.

In Section 5, we will summarise in full detail the domain, the constants, and the
various operators of entropic transreals.

3.3. The Role of ⊥
The peripheral value ⊥ is needed for entropic transrationals in order to evaluate the

sumterm ∞ + (−∞). We will adopt for entropic transrationals the identity ∞ + (−∞) =

∞ − ∞ = ⊥, an equation which is already valid for transrationals. This assumption is
consistent with the requirement that addition and multiplication are associative. We notice
that both associativity and commutativity of addition are needed for generalized addition
over a finite domain to have a plausible interpretation. Generalized addition occurs in the
definition of entropy and of expected value in general.

Although ⊥ is not included in transreals, we consider entropic transreals with ⊥ for
quasi-partiality is still to be a simplification of transreals. In transreals, Φ is not supposed
to play the role of ⊥, and therefore Φ is not supposed to model partiality in general: in the
design of transreals, Φ is instead the meaningful value of 0 · ∞. In our case, log2(−3) is not
supposed to have a meaningful value, so that we consider it plausible to set log2(−3) = ⊥
in transreals, as well as in entropic transreals.

3.4. Dealing with Non-Distributivity

Just as with the transreals, the entropic transreals are not distributive. For transreals,
assuming distributivity leads to the following inconsistency:

∞ = 1 · ∞ = (1 + 0) · ∞ = 1 · ∞ + 0 · ∞ = ∞ + Φ = Φ.

For entropic transrationals, upon assuming distributivity, one finds an inconsistency
as well:

⊥ = ∞ + (−∞) = (1 + (−1)) · ∞ = 0 · ∞ = 0.

Although failure of distributivity is unpleasant, it appears not to constitute a fun-
damental obstacle for the use of a particular arithmetical data type. Using condi-
tional equations, several useful versions of distiributivity can be found, for instance:
0 · x = 0 → x · (y + z) = x · y + x · z.

The lack of distributivity can be expressed without making use of constants for pe-
ripheral numbers (i.e., ∞ or ⊥) and it is the following well-known rule that fails for x = 1,
y = −1, z = 0:

x
z
+

y
z
=

x + y
z

.
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4. Application to Entropy, Cross Entropy and Other Concepts
We consider a series of formulae and make some calculations using the entropic

transreals as examples.

4.1. An Expression for Entropy

The second expression for entropy in the Introduction introduces an issue of division
by zero:

H(P) = ∑
s∈S

(P(s) · log2
1

P(s)
).

In case for some s ∈ S, P(s) = 0, for this expression it is plausible to follow the
conventions of transreals as follows:

1
0
= +∞,

−1
0

= −∞,
1

+∞
=

1
−∞

= 0.

For a summand coming from a sample s with P(s) = 0 we find:

P(s) · log2
1

P(s)
= 0 · log2

1
0
= 0 · log2 ∞ = 0 · ∞ = 0,

an outcome which we consider to be adequate for the definition of entropy.
We begin a series of running examples as a simple check and illustration of calculating

with the formulae.

Example 2. Consider S = {a, b} and P(a) = P(b) = 1
2 while Q(a) = 1 and Q(b) = 0. We find

for P and Q, in this case:

H(P) = P(a) · log2
1

P(a) + P(b) · log2
1

P(b) =
1
2 · log2

1
( 1

2 )
+ 1

2 · log2
1

( 1
2 )

=

1
2 · log2 2 + 1

2 · log2 2 = 1

and

H(Q) = Q(a) · log2
1

Q(a) + Q(b) · log2
1

Q(b) = 1 · log2
1
1 + 0 · log2

1
0 =

1 · 0 + 0 · log2(+∞) = 0 + 0 · (+∞) = 0.

Evaluating H(P) and H(Q) with the first definition of entropy will produce the same
value because we are working with the native equality in an algebra on entropic transreals.

4.2. Cross-Entropy

Cross-entropy is defined for two probability mass functions, say P and Q, as follows:

H(P, Q) = ∑
s∈S

(P(s) · log2
1

Q(s)
)

Example 3. Again, take S = {a, b} and P(a) = P(b) = 1
2 while Q(a) = 1 and Q(b) = 0. We

calculate:
For H(P, Q), we find:

H(P, Q) = P(a) · log2
1

Q(a) + P(b) · log2
1

Q(b) =
1
2 · log2

1
1 + 1

2 · log2
1
0 =

1
2 · log2 1 + 1

2 · log2 ∞ = 1
2 · 0 + 1

2 · ∞ = 0 + ∞ = ∞.

For H(Q, P), we find:
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H(Q, P) = Q(a) · log2
1

P(a) + Q(b) · log2
1

P(b) = 1 · log2
1

( 1
2 )

+ 0 · log2
1

( 1
2 )

=

1 · log2 2 + 0 · log2 2 = 1 · 1 + 0 · 1 = 1.

Notice that H(P, Q) ̸= H(Q, P).

4.3. Alternative Expression for Cross-Entropy

The other definition of cross entropy reads:

H(P, Q) = − ∑
s∈S

(P(s) · log2 Q(s))

This definition depends on the basic assumptions of entropic transreal arithmetic,
though in a different manner, now making use of log2 0 = −∞.

Example 4. Again, take S = {a, b} and P(a) = P(b) = 1
2 while Q(a) = 1 and Q(b) = 0. We

calculate:

H(P, Q) = −P(a) · log2 Q(a)− P(b) · log2 Q(b) = − 1
2 · log2 1 − 1

2 · log2 0 =

− 1
2 · log2 1 − 1

2 · (−∞) = − 1
2 · 0 + 1

2 · ∞ = 0 + ∞ = ∞,

and

H(Q, P) = −Q(a) · log2 P(a)− Q(b) · log2 P(b) = −1 · log2
1
2 − 0 · log2

1
2 =

−1 · log2 −1 − 0 · 1 = 1.

We obtain the same values.

4.4. A Modification of the Example

The running example above can be modified by adding a new sample element c:

Example 5. We consider S′ = S ∪ {c} = {a, b, c} and extend the definitions of P and Q with
values on c. Define P′(a) = P′(b) = 1

2 , P′(c) = 0 while Q′(a) = 1 and Q′(b) = Q′(c) = 0.
Now, we find:

H(P′) = H(P) + P′(c) · log2
1

P′(c) = 1 + 0 · log2
1
0 = 1 + 0 · log2 ∞ = 1 + 0 · ∞ = 1 + 0 = 1,

H(Q′) = H(Q) + Q′(c) · log2
1

Q′(c) = 0 + 0 · log2
1
0 = 0 · log2 ∞ = 0 · ∞ = 0.

and for cross entropy

H(P′, Q′) = H(P, Q) + P′(c) · log2
1

Q′(c)
= ∞ + 0 = ∞.

4.5. Kullback–Leibler Divergence

Kullback–Leibler divergence is not symmetric on the above example for P and Q:

DKL(P||Q) = H(P, Q)− H(P) = ∞ − 1 = ∞

and
DKL(Q||P) = H(Q, P)− H(Q) = 1 − 0 = 1.

We find, as is well known, that already on probability mass functions that vanish
nowhere, DKL(−,−) is asymmetric.

Example 6. Here is a new probability mass function R given by R(a) = 1
3 and R(b) = 2

3 . We find:
H(R) = − 1

3 · log2
1
3 − 2

3 · log2
2
3 = 1

3 · log2 3 + 2
3 · log2 3 − 2

3 log2 2 = log2 3 − 2
3 .
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H(P, R) = −P(a) · log2 R(a)− P(b) · log2 R(b) = − 1
2 · log2

1
3 −

1
2 · log2

2
3 = 1

2 · log2 3+
1
2 · log2 3 − 1

2 · log2 2 = log2 3 − 1
2 , and so

DKL(P||R) = H(P, R)− H(P) = log2 3 − 1
2
− 1 = log2 3 − 3

2
.

Moreover, we have: H(R, P) = −R(a) · log2 P(a)− R(b) · log2 P(b) = − 1
3 · log2

1
2 − 2

3 ·
log2

1
2 = 1 and so

DKL(R||P) = H(R, P)− H(R) = 1 − (log2 3 − 2
3
) =

5
3
− log2 3.

4.6. Mutual Information

An instance of Kullback–Leibler divergence is so-called mutual information, where
S = U × V, and R is a probability mass function on S with marginals P and Q, i.e.,

P(u) = ∑
v∈V

R(u, v) and Q(v) = ∑
u∈U

R(u, v).

Now,

I(R) = DKL(R||P · Q) = ∑
u∈U,v∈V

R(u, v) · log2
R(u, v)

P(u) · Q(v)

We notice that a probability mass function cannot have values ∞, −∞ or ⊥, and, moreover,
if either P(u) · Q(v) = 0 then necessarily also R(u, v) = 0 so that I(R) is guaranteed to be
finite, i.e., have no peripheral value.

That 0
0 = 0 is the only nontrivial property needed of the underlying arithmetic for the

above definition of I(R) to be adequate.

4.7. Jensen–Shannon Divergence

Given probability mass functions P and Q on S, the Jensen–Shannon divergence is
as follows:

DJS(P||Q) =
DKL(P||M) + DKL(Q||M)

2

where M = P+Q
2 . We notice that for all P and Q, DJS(P||Q) ̸= ∞. Otherwise, for some

s ∈ S, M(s) = 0 must hold together with either P(s) ̸= 0 or P(s) ̸= 0 (or both), which is
impossible given the definition of M.

4.8. Expected Value

Both entropy and cross-entropy are instances of an expected value, obtained upon
choosing a suitable function on the sample space. Defining an expected value operator,
given a probability mass function and a function from the sample space to (real) numbers,
requires an additional definition, however.

For a function F from a finite sample space S to reals (or rather to entropic transreals)
and a probability mass function P, the following definition of an expected value ÊS

P,F
is plausible:

ÊS
P(F) = ∑

x∈S,P(x) ̸=0
P(x) · F(x)

The virtue of this form is that unlike ES
P(F) = ∑x∈S P(x) · F(x) it works well (i.e.,

avoids result ⊥) in case for some a ∈ S, P(a) = 0 while F(a) = ⊥.
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However, in fact, we prefer that latter property of an expected value operator, i.e.,
whenever F(a) = ⊥ for some a ∈ S, then the expected value of F on S equals ⊥, indepen-
dently of the probability mass function at hand. For that reason, we will adopt

ES
P(F) = ∑

x∈S
P(x) · F(x)

as an appropriate definition of expected value and so that ES
P(F) = ⊥ whenever for some

a ∈ S, F(a) = ⊥. Adopting a convention of this kind expresses the idea that an event with
probability 0 is not altogether impossible, its probability is merely extremely low. We refer
to [20] for an exposition on this somewhat unconventional position regarding the status of
zero-probability events.

Now, we may reformulate the defining expressions for entropy, cross-entropy and
Kullback–Leibler divergence as follows:

H(P) = ES
P(

1
P(s)

)

H(P, Q) = ES
P(

1
Q(s)

)

DKL(P||Q) = ES
P(

P(s)
Q(s)

)

5. Entropic Transreals in Detail
We will now describe entropic transreals in minute detail in order to prevent any

confusion. The starting point is a field R of reals with constants 0 an 1 and functions
addition, additive inverse, and multiplication. To this field we add operators x

y for division
and and log2 x for logarithm. (We only discuss functions which play a role in the paper,
other functions such as exponentiation and square root might be included as well.) We also
assume the presence of an ordering which we handle using a sign operator s(x) defined for:

x > 0, s(x) = +1, x = 0, s(x) = 0, x < 0, s(x) = −1.

The domain R of real numbers is enlarged by extending the domain with three new
elements: ∞, −∞ and ⊥. Thus, the form of the algebra is:

(R∪ {+∞,−∞,⊥}| 0, 1,+∞,−∞,⊥,+,−, ·,÷, log2, s(x))

Let R⊥,±∞ = R∪ {+∞,−∞,⊥} denote the domain.
We now have to define the operations on the three peripherals.
As ⊥ is absorptive, the value of any operation on arguments at least one of which

equals ⊥ is ⊥. So, we need not specify in detail values of operators in case one of the
arguments is ⊥. We turn to the infinities, which can be subtle.

Sign function. This is easily extended to the larger domain R⊥±∞ as follows:

s(∞) = 1, s(−∞) = −1, s(⊥) = ⊥.

Addition. This is extended as follows: for p ∈ R:

∞ + p = ∞ and −∞ + p = −∞;
∞ + ∞ = ∞ and (−∞) + (−∞) = −∞;

∞ + (−∞) = (−∞) + ∞ = ⊥.



Entropy 2025, 27, 31 11 of 13

Multiplication. This is extended as follows: for p ∈ R,

0 · ∞ = 0;
p > 0, p · ∞ = ∞ and p · (−∞) = −∞;
p < 0, p · ∞ = −∞ and p · (−∞) = ∞.

Multiplication is taken to be commutative.
Division. This is defined by:

x
y = x · 1

y ;
1
0 = ∞;

1
∞ = 1

−∞ = 0.

Logarithm. This works for p ∈ R:

p < 0, log2(p) = ⊥;
log2 ∞ = ∞;

log2(−∞) = ⊥.

Some Properties of Entropic Transreals

The algebra of entropic transreals has several properties that are worth mentioning
and are easy to prove:

Proposition 1. (i) Addition and multiplication are associative and commutative,
(ii) x + 0 = x,
(iii) x · 1 = 1,
(iv) x ̸= ⊥ → 0 · x = 0,
(v) x

y = x · 1
y ,

(vi) (x ̸= ∞ ∧ x ̸= −∞) → x + (−x) = 0 · x,
(vii) x + (−x) ̸= ⊥ → x + (−x) = 0.

6. Concluding Discussion
The question we have raised is, Can we design algebras that enlarge the real numbers so

that some information theoretic formulae do not require conventions or special conditions to guard
against partiality? Such a question is particularly relevant to computing as such algebras
are needed to design data types for programming. That partiality needs to be avoided or
managed is essential in programming to avoid unwanted semantic behaviour and enable
formal logical and automated tools for reasoning about programs.

Starting with an algebraic structure called the transreals (Section 3.1), a modification
has been proposed for our purposes that we have named the entropic transreals. We have
shown that the entropic transreals allows us to provide a suitable algebra for real arithmetic
so that the formuale that arise in the conventional definitions of entropy and cross-entropy
for probability mass functions on finite sample spaces are well defined.

6.1. On Conventions and the ‘Legality’ of Texts

Following the convention that we refer to an arithmetical expression with division as
its leading symbol as a fracterm, we may refer to a expression with log2(−) as its leading
function symbol as a logterm, or when more detail is needed a logterm with base 2. Explana-
tions of the definition of entropy often mention the convention that the expression 0 · log2 0
is understood to take value 0 to complete the formula. Upon supposing 0 · log2 0 = 0, we
asked what to think of the logterm log2 0. There seems to be no principled impediment
against writing expression that contain log2 0 as a subterm, which is in remarkable contrast
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with the fracterm 1
0 . This textual point is the subject of an investigation in [21] of conven-

tions for notions of legality, where a text about or involving elementary arithmetic is illegal
if it makes use of division by zero. Although the logterm log2 0 makes no more sense than
the fracterm 1

0 , both seemingly meaningless expressions are treated rather differently. We
have no convincing explanation for such differences.

Entropic transreals demonstrate the consistency of the assumption 0 · log2 = 0 by
assigning the value −∞ to log2 0 and adopting 1

−∞ . These assumptions hold for transreals.
Providing a grounding for the definition of transreals, however, requires the assumption
that 0 · ∞ = 0, which leads to a deviation from the design of transreals, leading to what we
call entropic transreals.

6.2. Probability Theory in the Context of Entropic Transreals

Entropric transreals are of use when dealing with definitions in connection with
entropy. Perhaps the scope of the entropic transreals may extended to become a point of
departure for a systematic formal logical analysis of the basics of probability. To illustrate
the idea, consider a precise formulation of the well-known Bayes–Price theorem on inverse
probability, which contains a possible division by zero in the formula.

Using the fracterm calculus of entropic transreals, the equation

P(x|y) = P(y|x) · P(x)
P(y)

(⋆)

is valid under all conditions. Indeed, if P(y) = 0, then P(x ∧ y) = 0 and

P(x|y) = P(x ∧ y)
P(y)

=
0
0
= 0

and if P(y) ̸= 0, even including the case that P(y) = ⊥ then (⋆) follows trivially.
So, how division by zero is handled generates conditions that need to be imposed on

the formula. These can depend upon the details of the fracterm calculus that is used. For
instance, in Suppes-Ono arithmetic (i.e., working with x

0 = 0), the equation (⋆) can be stated
without conditions such as P(x) ̸= 0 and/or P(y) ̸= 0. For an application of Suppes-Ono
fracterm calculus to probability theory, we refer to [22]. In fact, the results of [22] can be
developed almost without modification when making use of entropic transreals instead of
reals with Suppes-Ono division.

6.3. Potential Applications

Entropic transreals may be useful when formalizing calculations and proofs involv-
ing entropy with an eye on subsequent automated proof checking. We feel that any
systematic approach to logical reasoning about entropy and cross-entropy requires a
level of precision concerning the status of problematic expressions beyond the nowadays
customary conventions.

Outside probability theory, entropic transreals may be helpful for designing alternative
approaches to floating-point arithmetic just as transreals may be helpful for that purpose.
When understanding ±∞ as overflow values, the axiom/convention of entropic transreals
that 0 · ∞ = 0 · −∞ = 0 is at least as plausible as the assumption 0 · ∞ = 0 · −∞ = Φ of
transreal arithmetic which models the currently popular floating-point standard.

In the introduction, we qualify certain conventions as used in many expositions on
entropy and cross-entropy as ad hoc. Undeniably, some design decisions made for the
design of entropic transreals may also be qualified as being ad hoc. The difference is,
however, that the latter design decisions are made in the systematic framework of the
design of abstract datatypes, i.e., algebra in the framework of universal algebra.
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