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Abstract—Airport delay prediction plays a crucial role in
air traffic management practices, including rerouting aircraft,
implementing ground delays, and sequencing arrivals. This task is
challenging due to the inherent nonlinear characteristics in traffic
evolution. The popular deep learning-based traffic prediction
methods lack the in-depth exploration of traffic evolution fea-
tures. In this work, we propose a novel three-channel Temporal
Convolution Network (TCN) framework incorporating temporal
complex network feature information for airport delay predic-
tion. The complex network feature sequence of the temporal
networks can effectively capture the nonlinear dynamic behavior
of airport delays. Firstly, we divide the original time series
of airport delays into three distinct series (current, daily, and
weekly) and feed them into three channels of our model. This
operation allows the model to effectively capture the inherent
characteristics of local proximity and global periodicity in airport
delay time series. Secondly, the complex networks are converted
from airport delay time series using complex network theory,
and the topological features of networks are combined with
three-chamel TCN, to improve the ability of learning short-term
nonlinearity of airport delay evolution. Finally, we incorporate
weather condition and flight schedule information as external
features to further enhance the prediction accuracy. We perform
extensive experiments on a flight dataset at Hartsfield-Jackson
Atlanta International Airport (ATL), and the results demonstrate
the superiority of our approach compared to existing benchmark
methods.

Index Terms—airport delay prediction, deep learning, tempo-
ral convolution network, collective cumulative effect, complex
network

I. INTRODUCTION

THE rapid expansion of the civil aviation industry has
brought attention to the growing disparity between the

rising demand for air traffic and the constrained capacity,
leading to notable flight delays. Based on data from 2019, the
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average flight delay in Europe, the United States, and China
was 13.1 minutes, 12.9 minutes, and 14 minutes, respectively
[1]–[3]. At present, airport delays are increasingly viewed as
indicators of the efficiency of air traffic management. Accurate
prediction of airport delays plays a crucial role in optimizing
flights, airports, and airspace resources. It also provides vital
support for the automation of air traffic management.

Predicting airport delays is a highly challenging task due
to two types of complex factors: transmission factors and
original factors. Transmission factors refer to significant flight
delays experienced in upstream airports, while original factors
encompass human error, adverse weather conditions, mechan-
ical failures, military activities, and other similar factors [4].
These factors are interconnected and interdependent, resulting
in the complex spatiotemporal evolution of airport delays.
Consequently, developing an effective mathematical model
that accurately represents these intricate relationships is no
easy task.

The increasing availability of flight operation data and
advancements in artificial intelligence technology present op-
portunities for data-driven airport delay prediction. Previous
studies have mainly focused on forecasting the delays of indi-
vidual flights within specific areas, such as airports, sectors, or
terminals [5], [6]. However, air traffic managers often require
an understanding of the overall extent of delays that will occur
in the future, rather than solely focusing on individual flight
situations. Therefore, our approach directly predicts airport
delays.

To examine the dynamic nature of airport delays, we demon-
strate the time series of the average flight delay at Hartsfield-
Jackson International Airport in Atlanta, United States. Figure
1(a) illustrates the overall trend of average flight delay over
one week, while Figure 1(b) displays the delays specifically
on weekdays from 5:00 to 21:00. These figures reveal three
distinct patterns in the evolution of airport delays.

1. Local proximity. The airport delay in the later interval
is greatly affected by the delay in the previous interval. The
correlation between different time intervals diminishes as the
temporal distance increases. For instance, the delay conditions
at 8 pm might be influenced by the airport delay appearing at
7 pm, but is less affected by the delay at 5 am of the same
day.

2. Global periodicity. The average departure delay on dif-
ferent weekdays exhibits temporal periodicity, encompassing
both daily and weekly patterns. Delays experienced at the same
time intervals, such as during afternoon rush hours, tend to be
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Fig. 1. Examples of airport delay. (a) Airport delay of ATL during one week. (b) Airport delay of ATL from 5:00 am to 21:00 pm.

consistent on consecutive weekdays. Furthermore, an analysis
of eight weeks’ delay data unveils similarities between the
delays observed on a specific weekday and the corresponding
days in other weeks.

3. Short-term nonlinearity. The nonlinearity of airport de-
lays comes from multiple uncertain factors, including weather
conditions, equipment failures, and more. Smaller time inter-
vals exhibit higher volatility in airport delays, while different
time intervals display distinct fluctuation patterns. Therefore,
quantifying these nonlinear characteristics can contribute to
enhancing prediction accuracy.

The local proximity and periodicity characteristics suggest
that airport delays within a given time interval are influenced
by delays in neighboring intervals on the same day and those
in previous days. Similarly, these features are also present in
ground traffic. Chen et al. developed a deep learning traffic
congestion prediction model that considers these two features,
achieving good predictive performance [7]. The nonlinearity
observed in airport delay time series constitutes a crucial factor
affecting prediction accuracy. To the best of our knowledge,
the short-term nonlinearity indicators in airport delays have not
yet been incorporated into airport delay prediction models. The
primary issue that needs to be addressed is how to measure
this nonlinearity.

Complex network theory has become an important tool for
characterizing complex systems. Its fundamental premise is to
map a real-world system to a network, where nodes represent
the system’s components and edges describe the relationships
among these components [8]. Holme et al. have proposed that
the network structure aids in understanding, predicting, and
optimizing the behavior of dynamical systems [9]. In particu-
lar, complex network theory can effectively extract topological
characteristics from time series. Lacasa et al. (2008) and
Luque et al. (2009) introduced the visibility graph (VG)
and horizontal visibility graph (HVG), which facilitate the
rapid and straightforward mapping of time series to complex
networks [10], [11]. Gao et al. (2016) developed the limited
penetrable visibility graph (LPVG) for analyzing nonlinear
time series [12]. The LPVG exhibits excellent noise resistance,

allowing for the extraction of nonlinear features underlying ex-
perimental measurements. Consequently, the topology features
of complex networks can be applied to discern nonlinearity in
time series.

Moreover, environmental factors, specifically weather con-
ditions, along with the schedule traffic flow, are two essential
factors contributing to flight delays. Therefore, it is impera-
tive for airport delay prediction models to consider weather
variables and schedule traffic flow.

To capture the similar patterns and nonlinear properties
of airport delays, we propose a Temporal Convolution Net-
works (TCN) based airport Delay Prediction considering lo-
cal Proximity, global Periodicity and short-term Nonlinearity
(TDP-PPN). The TDP-PPN model primarily comprises three
essential procedures: a complex network module, a muti-
feature learning module and an attention mechanism module.
By applying the time series of airport delays to the three-
channel TCN, TDP-PPN can effectively capture the inherent
characteristics of local proximity, global periodicity, and short-
term nonlinearity.

Our experiment is implemented using the real flight records
data at U.S. ATL airport. We evaluate the performance of
TDP-PPN by comparing it with baseline time series prediction
methods. The experimental results indicate that TDP-PPN
achieves significantly higher prediction accuracy. Furthermore,
we also compare different variations of TDP-PPN to showcase
its exceptional performance.

The main contributions of this paper can be summarized as
follows:

• We propose a novel complex network-based deep learn-
ing method for airport delay prediction. Time series of
three indicators related to airport delays are mapped
to temporal networks based on LPVG, and the degree
centrality and clustering coefficient sequences of net-
works represent the delay behavior characterization. By
examining the distribution of degree centrality and clus-
tering coefficient, we explore the nonlinear mechanisms
underlying airport delays. To the best of our knowledge,
this study represents the first time of combining complex
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network topology features with deep learning in the
context of airport delay prediction research.

• A three-channel Temporal Convolutional Network (TCN)
model for airport delay prediction is developed. This
model incorporates three channels to model local tem-
poral dependencies, global periodic patterns, and short-
term nonlinearity, effectively capturing immediate past
information, similar historical patterns, and nonlinear
behavior concurrently. Furthermore, the model accounts
for flight schedules and weather conditions, which are
crucial factors affecting airport delays.

• The experimental prediction results reveal that the com-
bined utilization of current situations, day/week based pe-
riodic patterns, and nonlinearity can significantly enhance
the accuracy of predictions.

The remainder of this paper is structured as follows: Sec-
tion II provides a review of studies concerning flight delay
prediction. Section III presents the airport delay indicators.
The TDP-PPN model for airport delay prediction is presented
in Section IV. Section V discusses the experimental results.
Lastly, Section VI presents the conclusion.

II. LITERATURE REVIEW

Air traffic delay prediction is a crucial application in intel-
ligent air transportation systems (IATS). Thus far, extensive
efforts have been dedicated to the exploration of airport
delay prediction, which can be broadly categorized into three
main areas: statistical inference methods, simulation modeling
methods, and machine learning methods.

A. Statistical inference methods

Statistical inference methods analyze the characteristics of
the sample data, primarily historical data, and construct em-
pirical or theoretical statistical models to estimate quantitative
characteristics of the overall data and predict airport delays.
Tu et al. developed a probability model that accounts for daily
and seasonal trends [13]. Mueller and Chatterji found that
departure delays follow a Poisson distribution, while enroute
and arrival delays adhere to a normal distribution [14]. Boswell
et al. employed probability density functions to express delay
categories [15]. Wong and Tsai established a Cox proportional
hazards model for flight delay prediction based on survival
analysis [16].

B. Simulation modeling methods

Simulation modeling methods employ computers to sim-
ulate flight operation models, including aircraft operation
models, delay propagation models, and more. Hansen et al.
developed a straightforward deterministic queuing model to
analyze the externalities of runway delay [17]. Pyrgiotis et
al. utilized queuing models to examine delay propagation
among different airports [18]. Pablo Fleurquin constructed an
agent-based model to identify delay propagation patterns [19].
Baspinar et al. constructed two distinct data-driven epidemic
models to simulate the propagation of air transportation delays
[20].

C. Machine learning methods

Machine learning models for flight delay prediction aim
to identify crucial factors that contribute to flight delays by
analyzing vast quantities of flight data. With the increasing
convenience of data acquisition, machine learning and deep
learning-based flight delay prediction become popular [21],
[22]. Rodrı́guez-Sanz et al. developed a Bayesian network
arrival delay prediction model [23]. Gui et al. built a clas-
sification and regression model for individual flight delays
based on random forest algorithm, and the model took account
of multi-source information (e.g., meteorological conditions,
flight schedules, airport information) [24]. Kim et al. proposed
a long short-term memory (LSTM) architecture for predicting
classified flight delays [25]. Zeng et al. developed a deep graph
neural network-based delay prediction model [26].

This paper focuses on utilizing deep learning techniques
for accurately predicting short-term airport delays. Unlike
previous studies, we simultaneously consider the features
of periodicity, local proximity, and nonlinearity, which have
rarely been examined together.

III. PRELIMINARIES

In general, flight delay is determined by the disparity
between the scheduled and actual departure or arrival times. As
per the guidelines set by the Federal Aviation Administration
(FAA), a flight is classified as delayed if its delay exceeds
15 minutes. It’s important to note that the delay status of an
airport is not specific to a single flight, but rather pertains to the
collective delay situation of the group of flights departing and
arriving within a given time interval. As the delay of arrival
flights may not occur in the airport but at the air route, we use
the delay of departure flights to evaluate the airport delay.

Definition 1 (Flight Delay). The delay of the kth flight in time
interval j of day i,Pi,j,k, is defined as the difference between
the real and the scheduled departure time (T r

i,j,k, T
s
i,j,k). If the

difference is negative, Pi,j,k would be defined as 0. Thus,

Pi,j,k = max(T r
i,j,k − T s

i,j,k, 0) (1)

Definition 2 (Departure Traffic Flow). The departure traffic
flow refers to the quantity of flights departing from an airport.
Higher traffic flow typically results in increased airport delays.
Departure Traffic Flow (DTF):

DTFi,j = Zi,j (2)

where Zi,j is the number of departure flights in time interval
j of day i .

Definition 3 (Airport Delay). In our study, we consider the
average departure delay and departure delay rate as indicators
of airport delays. These metrics are commonly used in the
operational practices of the civil aviation industry.

• Average Departure Delay (ADD):

ADDi,j =
1

Zi,j

Zi,j∑
k=1

Pi,j,k (3)
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• Flight Delay Rate (FDR):

FDRi,j =
Hi,j

Zi,j
(4)

Hi,j =

zi,j∑
k=1

γi,j,k, γi,j,k =

{
1, Pi,j,k ≥ 15min

0, Pi,j,k < 15min
(5)

where Hi,j is the number of delayed flights in time
interval j of day i. The kth flight is considered as a
delayed flight if Pi,j,k ≥ 15min.

IV. METHODOLOGY

In this section, we begin by describing the architecture of the
proposed model for predicting airport delays. Subsequently,
we provide a detailed explanation of each component of the
model.

A. Overview

In this paper, we propose a model called TDP-PPN to
capture the features of local proximity, global periodicity,
and nonlinearity for predicting short-term airport delays. The
architecture of TDP-PPN is shown in Figure 2 and consists
of three main modules: the complex network module, the
multi-feature learning module, and the attention mechanism
module. To begin, as depicted in the left portion of Figure 2,
we consider time intervals of 5 minutes, resulting in a total
of 288 intervals in a day for the raw input data. Initially, we
utilize historical data from the previous p days to generate
time series for ADD, FDR, and DTF. These time series are
then separately inputted into the complex network construction
module and the multi-feature learning module. The complex
network construction module constructs complex networks

using the ADD, DTF and FDR time series and calculates their
corresponding network characteristics. Subsequently, the time
series of network characteristics, along with the ADD, FDR,
and DTF time series, are fed into the multi-feature learning
module which utilizes three-channel TCN to capture current,
periodic, and nonlinear features. Finally, the output of the
TCNs, along with the time series of scheduled traffic flow and
weather indicators, are transmitted to the attention mechanism
module to obtain the predicted values.

B. Complex network module

To investigate the nonlinearity within the time series of
airport delay indicators, we utilize LPVG to transform the
time series of airport delays into complex networks. The
LPVG method is an enhancement of the VG algorithm, which
improves upon the original by mapping a time series onto a
graph that preserves the temporal characteristics of the series.
This approach enables the detection of not only the distinction
between random and chaotic series but also the identification
of the spatial locations of inverse bifurcations within chaotic
dynamical systems. Furthermore, LPVG exhibits a notable
advantage over VG, demonstrating robust performance even
in the presence of noise interference.

We initially employ a sliding window approach to divide the
ADD, FDR, and DTF time series into subsequences with a 5-
minute interval. Given a sliding window of 1 hour, we obtain
hourly ADD, FDR, and DTF subsequences, each with a length
of 12. Subsequently, we convert these hourly subsequences
into complex networks using the LPVG algorithm. The re-
sulting topological feature sequence of the temporal networks
effectively captures the nonlinear dynamic behavior of airport
delays. The methodology is illustrated in Figure 3 (a).
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Fig. 2. Architecture of TDP-PPN
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In the LPVG algorithm, each point in time series is consid-
ered as a node of the network. There is an edge connecting
two nodes if they are visible to each other. There is a critical
parameter, i.e., limited penetrable distance N , determining
whether two points are visible. Consider traffic time series
y(t1), y(t2), . . . , y(tn), two nodes (ta, y(ta)) and (tb, y(tb))
with m nodes between them are visible, if there are k (k ≤ N)
nodes (ti, y(ti)), ta < ti < tb fulfill,

y(ti) > y(tb) + (y(ta)− y(tb))
tb − ti
tb − ta

(6)

And the other m− k nodes (tj , y(tj)) fulfill,

y(tj) < y(tb) + (y(ta)− y(tb))
tb − tj
tb − ta

(7)

Figure 3 (b) exemplifies the conversion of hourly subse-
quences into a network. To illustrate this process, we consider
ADD as an example. We initially represent the points of
the time series as vertical bars, with the height of each bar
corresponding to the value of the time point and its position
identical to that in the time series, as depicted in Figure 3 (b).
Next, we connect every pair of bars if the line of sight between
them is not obstructed (indicated by solid lines), or if the
obstruction is limited to a single bar (the maximum penetrable
distance is set to 1 in our study), as shown by dashed lines.
The corresponding adjacency matrix and network structure are
then obtained, as illustrated in Figure 3 (b). Since we construct
three networks for each hour based on ADD, FDR, and DTF
subsequences, it is necessary to integrate these networks into
a single network. We achieve this by performing a logical
OR operation on the three matrices of ADD, FDR, and DTF.
Consequently, for two nodes to be connected by a line, they
must be interconnected in one of the three networks.

Complex networks possess various topological characteris-
tics, including node degree, clustering coefficient, and average
path length. In this study, we employ degree centrality and
clustering coefficient as metrics to quantify the nonlinearity
within the time series.

1) Degree centrality: Degree centrality quantifies the prox-
imity of each node to the center of the network. The center of
the network corresponds to the node with the highest degree,
which is determined by the number of edges connecting to it.

D(i) =
K(i)

Q− 1
,K(i) =

Q∑
j=1

aij (8)

Here, aij = 1 means there is an edge connecting node i and
node j, otherwise, aij = 0. D(i) is the degree centrality of
node i. Q is the number of nodes in the network and K(i) is
the degree of node i.

2) Clustering coefficient: The clustering coefficient mea-
sures the cliquishness of a node in a network. It is calculated as
the average clustering coefficient for all nodes in the network.

C(i) =
2E(i)

K(i)(K(i)− 1)
(9)

where E(i) is the number of edges between the neighbors of
node i. C(i) is the clustering coefficient of node i.

Multivariate
time series

Sliding window

Temporal
networks……

(D1,C1) (D2,C2) (D12,C12)

Topological
feature
sequence

D={D1,D2,…,D12}
C={C1,C2,…,C12}

(a)

(b)

Fig. 3. Schematic diagram of mapping time series to networks

C. Multi-feature learning module

The multi-feature learning module takes several inputs, in-
cluding time series data of ADD, FDR, DTF, degree centrality,
and clustering coefficient. They are concatenated and trans-
formed into a higher dimensional sequence, denoted as S1.
For daily features, we extract a sequence S2 from S1 within
the same time interval as the near dependencies observed on
the previous day. For weekly features, we extract a sequence
S3 in the designated time interval on the same weekday. For
example, if we want to predict the delay indicators at time
interval t, we have to separately use data from t − m − 24
to t − 1 − 24 intervals and data from t − m − 7 × 24 to
t − 1 − 7 × 24 intervals to capture periodic features, where
m denotes the length of data slice. S1,S2,S3 are the inputs
of each channel, respectively. Consequently, the model can
effectively capture the local proximity, global periodicity, and
short-term nonlinearity within the airport delay time series
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simultaneously.
The TCN algorithm is a novel approach for time-series

prediction and has been successfully applied in various do-
mains such as electroencephalogram [27] and wind power
[28]. TCN employs causal convolution to ensure that the
prediction at time step t+1 is only influenced by the preceding
t time steps. Additionally, the use of dilated convolution allows
for processing input data in jumps, thereby expanding the
network’s receptive field without increasing the depth. This
paper firstly employees TCN network for the task of airport
delay prediction.

The proposed TCN comprises E convolutional layers. The
first layer is a causal convolution, followed by an E − 1
dilated convolution layers. The architecture of the TCN applied
in the proposed model is illustrated in Figure 4. In the eth
convolutional layer, the kernel size is K, and the dilation factor
is d = Ke−1.

Firstly, the sequences S1,S2,S3are utilized as the input to
TCN-1, TCN-2, and TCN-3. Specifically, considering the i−
step operation of Sn = (sn1 , s

n
2 , · · · , snt ),(n = 1, 2, 3) in the

first causal convolutional layer, the detailed operation of the
first causal convolution is as follows:

hn
1 [i] = f(

K∑
k=1

W1[k]s
n
i+k−1 + b1) (10)

where W1[k] is the matrix composed of the elements in the kth
row of the convolution kernel W1, b1is bias,f(·)is activation
function, and hn

1 represents the operation result. The hidden
feature matrix of the first layer is denoted as

H(1) = (h1
1, h

2
1, h

3
1)

T (11)

After the first causal convolution, the hidden features of
S1,S2,S3 undergo (E−1) dilated convolutional layers. Specif-
ically, considering the i − step operation of the Sn hidden
feature in the eth th convolutional layer as an example, the
operation process of dilated convolution is as follows:

hn
e [i] = f(

K∑
k=1

We[k]h
n
e−1[i+ (k − 1)× de] + be) (12)

where We and be represent the kernel and bias term of the eth
convolutional layer. hn

e−1[i + (k − 1) × de] and hn
e [i] are the

input term and output term of the ithth step operation of Sn.
Through the above operation, the hidden feature vector hn

e

of Sn after the eth th convolution is obtained, which is denoted
as

H(e) = (h1
e, h

2
e, h

3
e)

T (13)

The temporal convolutional layers are organized into blocks,
interconnected by residual connections. Each residual block
comprises two dilated convolution layers, followed by a rec-
tified linear unit (ReLU) activation function. Furthermore, the
TCN incorporates regularization through dropout applied to
each residual block after the dilation convolution layers. The
architecture of the residual block is depicted in Figure 4.

It is noted that the flight plan and weather conditions are two
important factors influencing airport delay. Thus, the scheduled
departure traffic flow and important weather indicators are
considered in the prediction model. To enhance the model’s
performance, the output of the three channels, along with
the scheduled departure traffic flow and important weather
indicators, will be concatenated and transformed into a higher
dimensional representation denoted as S4 .

D. Attention mechanism module

The temporal attention mechanism allows for the weighting
of hidden states across different time dimensions, thereby
enhancing the model’s sensitivity to dynamic features in the
temporal dimension. This effectively improves the model’s
performance in extracting time-based features. The attention
mechanism is represented by:

V(F×T ) = (S4
t )

TWt + b

B(F×T ) =
exp(Vij)∑t
t−T (Vij)

, i ∈ [1, F ]

β =

∑F
m=1 Bmn

F
= [βt−T , βt−T+1, · · · , βt−1]

(14)

where V is the non-normalized probability weight matrix
obtained by the inversion of the input matrix S4

t . Wt is the

Fig. 4. Architecture of TCN
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TABLE I
FLIGHT DATA FORMAT

Flight date Origin airport Destination
airport

Scheduled
departure time

Actual
departure time

Scheduled
arrival time

Actual arrival
time

2019/1/1 ATL FLL 1000 955 1155 1143
2019/1/8 ATL TTN 755 746 1002 946
2019/1/17 ATL DEN 2005 2001 2137 2147
2019/1/24 ATL EWR 1245 1637 1500 1855
2019/1/27 ATL IAD 1425 1419 1606 1557

. . . . . . . . . . . . . . . . . . . . .

weight matrix of the neural network. b is the offset vector. B is
the probability weight matrix after the normalization operation,
and the sum of probability weights in each row of the matrix
is 1. β is the final attention vector.

Finally, the weighted hidden state, the original hidden state,
and the auxiliary features are passed through a fully connected
layer to generate the final prediction results.

V. EXPERIMENTS AND RESULTS

The dataset utilized in this paper was provided by the
U.S. Department of Transportation. It consists of all domestic
flights arriving at or departing from ATL between 5 am
and 10 pm from January 1st to December 31st, 2019. Each
flight record includes details such as the flight date, real
and scheduled departure (arrival) times, as well as the origin
and destination airports. Records with missing values were
treated as outliers and subsequently removed. To facilitate
readers’ understanding of the data format, Table I presents the
original information of some flights. And then, we applied the
calculation formulas for ADD, FDR, and DTF, as provided
in the “Preliminaries” section, to the original flight data to
compute the time series values of these indicators at 5-minute
and 1-hour intervals, respectively. Due to space limitations,
Figure 5 presents the calculation results of the airport delay
indicators for one week. To standardize the data within the
range of [0, 1], we apply the max-min normalization method.
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Fig. 5. Airport delay indicators for one week

The meteorological observation data for ATL in 2019 were
obtained from the website of the National Oceanic and Atmo-
spheric Administration (NOAA) of the United States. In this
study, wind speed, wind direction, precipitation and relative
humidity are chosen for the delay prediction.

The explanation of the meteorological data is as follows:
• Wind speed: the hourly average wind speed of airports,

and the unit is km/h.
• Wind direction: the hourly average wind direction of

airports.
• Precipitation: the hourly average precipitation of airports,

and the unit is mm.
• Relative humidity: the average relative humidity of the

airport in each hour.

A. Airport delay analysis
To gain a better understanding of the airport delay data,

we analyze the frequency distribution of ADD as depicted in
Figure 6. It is worth noting that flights with delays exceeding
100 minutes constitute 2.375% of the total, and are considered
abnormal in this study. Evidently, the distribution of airport
delay exhibits a right-skewed pattern.
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Fig. 6. The frequency distribution of average departure delay

B. Weather analysis
Weather conditions have a substantial impact on airport

delays, with longer average delays occurring during severe
weather events. Figure 7 illustrates the measurement of
weather’s influence on airport delays using four indicators:
wind speed, wind direction, precipitation, and relative hu-
midity. Each weather indicator is categorized into six levels,
ranging from low to high. The distributions of airport delays
vary across different weather levels, as indicated by differences
in median and box length. Therefore, it can be inferred that
there exist relationships between airport delays and weather
indicators.
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Fig. 7. The distribution of airport delay under different weather levels

C. Complex network analysis

The LPVG algorithm, discussed in Section IV-B, is em-
ployed to construct a total of 6205 networks. To assess the
variation in network structure across different airport delays,
key statistical characteristics such as degree centrality and
clustering coefficient are computed for each constructed net-
works.

Figure 8 presents the calculated results of degree centrality
and clustering coefficient for 120 networks. These two charac-
teristics display a notable periodicity, with a cycle consisting
of 17 samples. This cycle aligns with the number of samples
considered for each day in this study, which is 17 (from
5 am to 10 pm). Thus, we can deduce that the network
characteristics undergo a one-day cycle.

0 20 40 60 80 100 120
Time (1hour)

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

D
eg

re
e 

ce
nt

ra
lit

y

(a)

0 20 40 60 80 100 120
Time (1hour)

0.60

0.65

0.70

0.75

0.80

0.85

C
lu

st
er

in
g 

co
ef

fic
ie

nt

(b)

Fig. 8. Examples of complex network characteristics. (a) degree centrality,
(b) clustering coefficient

To better understand the relationship between degree cen-
trality (clustering coefficient) and airport delays, the distri-
bution of degree centrality and clustering coefficient under
different delay levels and their box plots are shown in Figure
9. Here, slight delay represents ADD ≤ 20min, moderate
delay represents 20 min < ADD < 40 min, and serious
delay represents ADD ≥ 40 min. It can be found that serious
delay usually has much higher degree centrality and clustering
coefficient, and slight delay has much smaller degree centrality
and clustering coefficient. Thus, complex network features
have some relationship with airport delays. Our method can
effectively characterize the complicated airport delay behavior
and reveal the evolution from slight delay to heavy delay.

D. Airport delay prediction results

To assess the performance and effectiveness of the TDP-
PPN model, we utilize the processed dataset detailed in this
section. This dataset encompasses various fundamental airport
delay properties, complex network characteristics, schedule
traffic flow and weather indicators. We train the TDP-PPN
model with different hyperparameter, identifying the set of
hyperparameter that yield the optimal results. Additionally,
we conduct a comparative analysis of the TDP-PPN model
with other baseline models and present the results of this
comparison.

1) Hyperparameter: The hidden layer dimension, batch
size and input step size of TCN in TDP-PPN model are
determined through multiple trial calculations. For the dataset
used in this paper, the prediction performance reaches the
best when the dimension of hidden layer, the batch size and
the optimal input step are set as 64, 64 and 6, separately.
Parameters in TCN such as the convolution kernel size K is set
to 3, the hidden layers number E is set to 3, the dilated factors
d are set to 1, 3, 9. The ReLU activation function are employed
in TDP-PPN model. The mean absolute error (MAE) is chosen
as the Loss Function. The optimizer is Adam, and the learning
rate is set as 1e-3. The dataset is divided into three subsets:
70% for training, 15% for testing, and the remaining 15% for
validation.

2) Evaluation metrics: To evaluate the performance of
TDP-PPN, the mean absolute error (MAE) and the root-mean-
square error (RMSE) are employed.

MAE =
1

M ×N

M∑
m=1

N∑
n=1

∥ŷm,n − ym,n∥ (15)

RMSE =

[
1

M ×N

M∑
m=1

N∑
n=1

∥ŷm,n − ym,n∥2
] 1

2

(16)

where ŷm,n is the predicted average departure delay, ym,n is
the actual value. M is the number of days in the test set, and
N is the number intervals in each day.

3) Analysis of prediction results: We compare the predic-
tion errors over the whole day. Figure 10 illustrates the delay
prediction results for typical days at ATL. Within this figure,
the prediction errors are represented by a confidence interval.
It can be seen that the predicted value’s overall trend is in line
with the real value. Between 5 am and 6 am, the prediction
error is the smallest, because there are a few delayed flights
and it is easily to predict. The biggest prediction error is
located between 8 am to 9 am. The main reason is that 8
am to 9 am is peak hours with much more random factors,
which makes difficult for accurately prediction.

The performance results of the TDP-PPN model and base-
line methods on the testing dataset are presented in Table
II. Each experiment was independently repeated ten times,
and the mean deviation is reported. Analysis of Table II
yields the following observations: (a) TDP-PPN consistently
demonstrates the superior performance across all statistical
metrics at each prediction step, as evidenced by its smaller
metric values compared to other models. (b) The accuracy of
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Fig. 9. The distribution of complex network characteristics under different delay levels
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Fig. 10. Error bars of airport delay (ADD)

all prediction models tends to decrease as the prediction step
increases, indicating heightened uncertainty associated with
longer forecast periods. (c) In comparison to other models,
the TDP-PPN model exhibits the slowest increase in prediction
errors with an increase in the prediction step. At different pre-
diction steps, TDP-PPN’s MAE decreases by 2.56%, 5.82%,
and 19.47% when compared to the LSTM model, respectively.
This demonstrates the pronounced advantage of the TDP-PPN
model with longer prediction steps.

4) Variant comparison: To further evaluate the performance
of the proposed TDP-PPN model, we compare it with several
variants. The TDP-PPN variants illustrated in the following,
and their corresponding study results are presented in Table
III:

• TDP-PPN-NN: A variant of TDP-PPN without consider-
ing complex network features.

• TDP-PPN-NP: A variant of TDP-PPN without consider-
ing daily and weekly periodicity.

• TDP-PPN-NW: A variant of TDP-PPN without consider-
ing weather impacts.

• TDP-PPN-NA: A variant of TDP-PPN with the attention

TABLE II
PARTIAL INDICATOR DATA PERFORMANCE COMPARISON OF DIFFERENT

METHODS

Model Metric Hours Mean
1 h 2 h 3 h

TDP-PPN MAE 5.8095 6.0428 6.2 6.017433

RMSE 8.5897 8.7599 9.1401 8.8299

XGBoost MAE 5.766 8.673 9.365 7.935

RMSE 9.652 13.17 14.422 12.415

DNN MAE 6.371 7.193 7.614 7.059

RMSE 9.796 10.344 10.524 10.221

LSTM MAE 5.962 6.416 7.699 6.692

RMSE 9.68 10.396 12.335 10.804

mechanism module removed.
From Table III, the discoveries are as follows:
• Table III presents the performance of various models, and

it is evident that TDP-PPN outperforms them all with the
smallest MAE and RMSE. These results indicate that all
four components of TDP-PPN collectively contribute to
enhancing prediction accuracy.

• Across all prediction steps, TDP-PPN-NA consistently
exhibits the highest MAE and RMSE among the five
models, suggesting that the attention mechanism module
plays a significant role in improving prediction perfor-
mance.

• Except for TDP-PPN-NA, TDP-PPN-NN has the highest
errors in 1-hour prediction. This reflects the importance
of complex network features in short-term forecasting,
and the topological characteristics of complex networks
derived from time series data effectively capture the non-
linear dynamics of airport delays.

• Except for TDP-PPN-NA, TDP-PPN-NP has the highest
errors in 3-hour prediction. This reflects the importance
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TABLE III
RESULTS OF COMPARISON AMONG DIFFERENT VARIANTS IN TDP-PPN

M Metrics TDP-PPN-NN TDP-PPN-NW TDP-PPN-NP TDP-PPN-NA TDP-PPN

1 hour
MAE 5.8822 5.8560 5.8169 5.9441 5.8095

RMSE 8.6570 8.6492 8.6188 8.6680 8.5897

2 hour
MAE 6.0990 6.1324 6.2017 6.2761 6.0428

RMSE 8.8388 8.8750 8.9934 9.0293 8.7599

3 hour
MAE 6.2678 6.3279 6.3326 6.3599 6.2000

RMSE 9.2042 9.4554 9.3690 9.4044 9.1401

of daily and weekly periodicity in long-term forecasting,
as the airport delay time series has strong periodicity in
long term.

VI. CONCLUSIONS

In this paper, we investigate the airport delay prediction
problem from a novel perspective and develop a Temporal
Convolution Networks (TCN) based airport Delay Prediction
model considering local Proximity, global Periodicity and
short-term Nonlinearity (TDP-PPN). Specifically, the com-
plex network (converted from airport delay time series using
Limited Penetrable Visibility Graph (LPVG) method) fea-
tures within the airport delay time series are excavated and
employed in TDP-PPN. Moreover, a three-channel TCN is
embedded into the proposed approach to better learn the
long-term and short-term characteristics of delay evolution
simultaneously. Using operational data obtained from U.S.
Department of Transportation, the proposed model is com-
pared with several benchmark approaches in a study case
involving about 40,0000 flights in ATL in 2019. The results
show that our model outperforms the state-of-the-art baselines.
Additionally, we evaluate the performances of TDP-PPN and
its variants, and the results demonstrate the effectiveness of
the components incorporated in our model.

In future work, we plan to investigate the incorporation of
additional complex network features, including k-shell value
and structure entropy, and explore the integration of complex
network theory with other deep learning techniques, such
as Gated Recurrent Units (GRUs) and Graph Convolutional
Networks (GCNs), to enhance prediction accuracy. Moreover,
we intend to incorporate other critical auxiliary features, such
as airway weather and air traffic control information, into our
model.
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