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ABSTRACT

The process of architectural floor plan generation is a complex task traditionally performed by archi-
tects, requiring a deep understanding of spatial relationships, structural constraints, and aesthetic
principles. In recent years, advances in computational design and Artificial Intelligence (AI) have
enabled the automation of floor plan generation, significantly enhancing efficiency and creativity in
the architectural workflow. In this paper, we explored the integration of traditional architectural
design methods with advanced technology, focusing on the transformative role of Generative Adver-
sarial Networks (GAN) in floor plan generation. In this work, we created a new dataset containing
more than 1200 carefully processed images for the automatic generation of floor plans. These sam-
ples come from different platforms and are processed to become algorithm-friendly types. We will
make the dataset public available. The algorithm we used is the pix2pix network, which is enhanced
with a self-attention mechanism for better spatial understanding and spectral normalization for im-
proved output quality. We demonstrate the versatility of the GAN model in generating complex
floor plans for various architectural needs based on our dataset. It also addresses challenges such
as model stability, detail refinement, and generating non-standard room shapes, offering insights
for future advancements in the field.

Keywords: Deep Learning, GAN, Building Floor Plan Generation, Self-Attention, Spectral Nor-
malization, Multi-unit Building.

1. INTRODUCTION

Architectural floor plans have a rich history that dates back to ancient civilizations. The representa-
tion of architectural design through floor plans can be traced to the Egyptians and Mesopotamians,
who depicted simple layouts of buildings on materials like papyrus or clay tablets. These early
floor plans mainly focused on temples,1 palaces, and residential structures. During the Renais-
sance,2 there was a significant revival of interest in classical architecture, and more detailed floor
plans began to be used in architectural design.3 The use of formal architectural drawings became
more prevalent, and the representation of buildings on paper became more sophisticated.4 How-
ever, it wasn’t until the emergence of Computer-Aided Design (CAD)5,6 that the way architects
and designers worked underwent a transformative shift. With the introduction of CAD technol-
ogy, hand-drawn plans gradually gave way to digital drafting methods.7 Architects and designers
could now use computer software to create precise and detailed representations of architectural
plans. This shift greatly improved efficiency, accuracy, and the ability to make revisions to designs.
Throughout the design process, the dynamic and malleable nature of floor plans necessitates a de-
gree of adaptability. Unforeseen modifications to spatial boundaries may arise, dictated by shifting



needs, changing regulations, or evolving aesthetic considerations. These unexpected changes neces-
sitate extensive reassessment and, in some cases, a complete revision of the entire interior layout.
Consequently, architects and designers are compelled to invest considerable time and effort into
iterative sketching. This iterative and resource-intensive cycle poses a considerable challenge to de-
signers. Not only does it demand substantial manpower and intellectual investment, but it can also
result in significant time inefficiencies. Ultimately, this challenge calls for a more efficient and dy-
namic approach to architectural design—one that can more readily adapt to changing constraints
and evolving project parameters. This is not merely a matter of improving the design process;
it is about fundamentally changing how architects and designers approach their work, enabling
them to create more effective and responsive designs. With the rapid development of Artificial
Intelligence (AI), many methods have been proposed for generating floor plans. House-Generative
Adversarial Network (GAN)8 presents a novel approach to house layout generation using GAN.9

The authors proposed to generate a diverse set of realistic house layouts under the constraints of a
bubble diagram, which is a graph where nodes encode rooms with their types and edges encode their
spatial adjacency. Another work10 presents a novel approach to architectural design. The authors
proposed a method to automate the generation of detailed interior design layouts in the early design
stage, thereby reducing the workload of architects. The methodology is centered around the use of
a GAN. The work11 introduces an approach for the automatic generation of rectangular floor plans
based on existing legacy floor plans with the capability of further improvement and customization.

In the rapidly evolving landscape of AI-Generated Content (AIGC) and AI, this work was
conceived with a clear and ambitious vision.12 The overarching aim was to instigate a transformative
shift in the architectural design process, a domain that has long been characterized by iterative
and resource-intensive cycles. Traditional design methodologies, while integral to the evolution
of architectural concepts, often demand substantial manpower, intellectual investment, and time
inefficiencies. Recognizing these challenges, the work sought to harness the power of innovative Deep
Learning (DL) techniques. Specifically, the focus was on the creation of a dataset and development of
a tool that would equip architects with efficient and creative design solutions right from the project’s
inception. The journey of this work unveiled the untapped potential of GAN in revolutionizing
the architectural design domain. By leveraging GAN, a novel method for floor plan generation
was introduced, holding the promise to redefine design toolkit. The GAN model, through its
intricate algorithms and learning mechanisms, showcased the capability to transform rudimentary
input images, which depicted design boundaries and facade openings, into detailed, functional,
and aesthetically pleasing interior designs. We also created a new dataset containing more than
1200 carefully processed images for the automatic generation of floor plans. These samples come
from different platforms and are processed to become algorithm-friendly types. We will make the
dataset public available. The results, as evidenced by the model’s outputs, were indicative of a
future where computers could autonomously generate designs that were both functional and met
design, structural, environmental and other architectural constraints.

2. RELATED WORKS

Since the inception of GAN,9 there have been significant transformations in various research do-
mains. In the field of image processing, there are several open-source GAN framework mod-
els such as, Conditional GANs (CGAN),13 Deep Convolutional GANs (DCGAN),14 Wasserstein
GANs (WGAN),15 WGAN-Gradient Penalty (WGAN-GP),16 DiscoGAN,17 DTN18 and pix2pix19).
This article major provides pix2pix. It is based on the CGAN model, where the generator adopts



the U-NET architecture, and the discriminator utilizes the PatchGAN classifier. A notable fea-
ture of pix2pix is its ability to achieve pixel-level image transfer, producing highly realistic images.
Additionally, due to a significant reduction in parameters, this model excels in training speed and
efficiency. However, it has stringent dataset requirements, necessitating paired one-to-one datasets.
The model is primarily used for style transfer between paired images, such as style conversion of
maps and generation of real objects with contour diagrams.

House-GAN8 uses a dataset of 117,587 house layouts, which they divide into five groups based
on the number of rooms. For the generation of layouts in each group, they exclude samples in the
same group from the training to ensure that the model cannot simply memorize layouts. After the
train was finished, they evaluated House-GAN using three metrics: realism, diversity, and compati-
bility. Realism is measured by a user study with graduate students and professional architects, who
compare generated layouts with ground truth layouts. Diversity is measured by the Fréchet Incep-
tion Distance (FID)20 score, which quantifies the difference between the distributions of generated
layouts and real layouts. Compatibility is measured by the graph edit distance, which quantifies
the difference between the adjacency graphs of generated layouts and the input bubble diagrams.
House-GAN outperforms competing methods and baselines in all metrics, except for compatibility
against a baseline method with a small margin. This work11 is quite comprehensive and innovative.
The authors have implemented their system, termed GADG. For an input floor plan with dozens of
rooms, GADG generates various alternative layouts within milliseconds. This is demonstrated in a
detailed step-by-step case study, where the input floor plan file is generated using Autodesk Revit.
Customization and generation of floor plans based on graph transformations have enhanced the
shape grammar interpreter by allowing users to import shapes and images and to use colors, among
other enhanced capabilities. The graphical user interface facilitates users in importing sources and
setting rule parameters. In this enhanced interpreter, a dual graph can be generated from any input
according to the adjacency relations of rooms and with transformation rules applied to the graph.
If the graph is a point-to-point graph, GADG maps rooms onto the base layout according to the
improved rectangular dual-finding algorithm. The interpreter is able to accept any parameters for
customization and thus generate layouts to suit a wide range of design requirements. Both GADG
and House-GAN have employed GAN using pix2pix for generating building floor plans. Frequency
features refer to large-scale patterns or changes occurring at a slower rate, capturing overall trends,
global structure, or smooth transitions in the input data. These features are common in diverse
data types, such as images, audio signals, and time-series data. For instance, in image processing,
low-frequency components encompass the overall brightness, gradient, or large-scale texture of an
image. Their research efforts provide valuable insights into leveraging GAN in architectural design
and lay the groundwork for further advancements in this domain.

3. DATASET CONSTRUCTION

In this section, we delve into the process of dataset selection. We provide a detailed explanation
of constructing the dataset. The potential challenges and issues that might be encountered during
this process are also thoroughly discussed.

The significance of controllable parameters in architectural design cannot be overstated. These
parameters, while technical in nature, have profound implications for the aesthetic and functional
outcomes of a design. For instance, the building boundaries, while primarily serving a functional
purpose, also influence the visual appeal and integration of the structure within its environment.
Similarly, the positioning of facade openings can dramatically alter the energy consumption of a



Figure 1. The left column of images represents the locations of building facade exits, the middle column
indicates the positions of fixed interior walls, and the right column corresponds to specific functional area
locations. In the lower right corner of the images, it is a color key for various functional zones.

Figure 2. A legend showing the different functional zoning and color comparisons of building plans

building, impacting its sustainability and environmental footprint. The controllable parameters in
this work are segmented into four critical aspects, each playing a vital role in the architectural design,
as shown in Figure 2. The intricate nature of these parameters necessitated a comprehensive search
for suitable existing datasets. However, the specialized requirements rendered existing datasets
inadequate, leading to the need for a custom solution. These controllable parameters include:

• Building Boundaries articulate the overall geometry and footprint of the structure. The
boundaries must be carefully considered to align with zoning regulations, aesthetic consider-
ations, and functional requirements, forming the foundational architectural silhouette.

• Facade Openings are pivotal in regulating natural lighting and ventilation. The position-
ing and size of windows, doors, and other openings must be optimized to contribute to the
building’s energy efficiency, comfort, and visual appeal.

• Internal Wall Locations facilitate functional zoning and optimal space utilization. The
thoughtful placement of internal walls ensures a harmonious and practical layout, allowing



for efficient movement and usage within the building.

• Specific Functional Areas encompass the strategic alignment of essential zones such as
bedrooms, bathrooms, and staircases. The Facade Openings coordination of these areas is
a crucial aspect of the coherent design of internal plumbing systems, electrical wiring, and
overall flow within the building.

The floor plans sourced from platforms such as ArchDaily and HousePlan are not inherently
compatible with direct application in DL algorithms. To address this limitation, we have imple-
mented a series of modifications to the floor plans. These alterations involve the utilization of
distinct color schemes to symbolize various functional partitions within the layout. The corre-
sponding color swatches, representing each unique functional area, are delineated in Figure 2. To
achieve the desired outcomes in the different generation modes, it is essential to produce different
distinct data types:

• Building Boundaries and Facade Entrances employ a black fill to delineate the building’s
footprint. Additionally, white lines are utilized to indicate the positions of the building’s
internal openings. The dataset for this generation mode consists of 600 distinct image sets.

• Locations of Interior Walls are built based on the foundational data of building boundaries
and facade openings, and orange lines are introduced to specify the desired placement of the
building’s interior walls as determined by the user. The dataset for this generation mode
consists of 600 distinct image sets.

• Position of Functional Zones incorporate color-coded blocks that correspond to distinct
functional zones. The primary objective of this type of data is to facilitate the generation of
floor plans, with an emphasis on the predetermined positioning of specific functional areas.
The dataset for this generation mode consists of 600 distinct image sets.

• Multi-unit Building Plan is derived from the methodologies used in the first three data
types (building boundary, interior and specific position function area). However, while the
initial three focus on single-unit building plans, this dataset encompasses 20 groups of multi-
unit data.

• Multi-storey Building Plan is founded on the first three data types. In this case, the
Ground Floor Plan is presented on the left, while the First Floor Plan is on the right. This
dataset also consists of 20 groups.

4. METHOD

In this section, we first focus on an in-depth introduction and analysis of the algorithmic framework.
Then, we compare the pros and cons of various algorithmic frameworks, thereby clarifying for the
reader why our work performs better. We also present the data obtained in our experiment, laying
the groundwork for subsequent analysis and discussion.

In this paper, the GAN, which amalgamates both convolutional and anti-convolutional ker-
nels, has been employed. This model, as delineated by Goodfellow et al.,9 is lauded for its precise
correspondence between the input and the resultant planar graph, a feature indispensable in in-
tricate image processing tasks where accuracy is paramount. For the practical implementation of



our work, we have opted for the open-source framework, pix2pix.19 This selection was predicated
on the framework’s demonstrated efficacy in image-to-image translation endeavors and its inher-
ent adaptability to a myriad of datasets. The foundational architecture of the pix2pix framework
is characterized by its distinct components. The generator is intricately designed, encompassing
convolutional, residual, and inverse convolutional layers. These layers collaboratively function to
metamorphose the input image, ensuring the preservation of salient features whilst introducing req-
uisite alterations, and continually generating images that resemble the original functional zoning
map of the building. Concurrently, the discriminator serves as an arbiter of quality, juxtaposing
the synthesized image against its original counterpart and furnishing iterative feedback to the gen-
erator for distinguishing between the generated image as well as the original functional zoning map.
This interdependent relationship engenders a cycle of refinement, with the generator perpetually
enhancing its outputs and the discriminator honing its evaluative acumen.

Figure 3. Training a conditional GAN involves mapping edges to photorealistic images. The discriminator D
is designed to distinguish between real images and synthetic ones generated by G. Meanwhile, the generator
G continuously improves to produce increasingly realistic images, aiming to deceive the discriminator.

Through an exhaustive analysis of the operational patterns of designers, we introduce a work-
flow that more closely aligns with the routine practices and proclivities of designers as shown in
Figure 4. Recognizing the challenges designers may encounter in practical implementations, we
have incorporated the GAN technology, aiming to guide and streamline their work. Once the de-
sign outcomes are generated, it is imperative for designers to conduct thorough evaluations, rectify
elements that deviate from architectural standards or exhibit logical inconsistencies, and further
refine the functional zoning.

4.1 Objective

The objective of the pix2pix can be represented as:

Lpix2pix(G,D) = Ex,y[logD(x, y)] + Ex,z[log(1−D(x,G(x, z)))] (1)

where the generator G aims to minimize this objective while the discriminator D seeks to maximize
it, thus, the optimal G∗ can be formulated as:

G∗ = argmin
G

max
D

Lpix2pix(G,D) (2)



To evaluate the impact of conditioning on the discriminator, we also test an unconditional version,
where D does not receive x as input:

LGAN(G,D) = Ey[logD(y)] + Ex,z[log(1−D(G(x, z)))] (3)

Prior research suggests that combining the GAN objective with a traditional loss, like L2 distance,21

can be beneficial. While the discriminator’s role remains focused on classification, the generator is
encouraged not only to deceive D but also to approximate the true output, reducing error in an L2
sense. In our work, we employ L1 distance instead, as it tends to produce sharper results:

LL1(G) = Ex,y,z[∥y −G(x, z)∥1] (4)

Our final objective becomes:

G∗ = argmin
G

max
D

LcGAN(G,D) + λLL1(G) (5)

Without z, the network could map x to y but would yield deterministic outputs, thus failing to
represent diverse outputs. Previous conditional GANs addressed this by introducing Gaussian noise
z alongside x as an input to G.22 However, in our initial tests, this approach proved ineffective, with
the generator learning to disregard the noise—a finding consistent with Mathieu et al.23 Instead, we
inject noise through dropout across multiple layers in the generator, applied both during training
and testing. Despite this, we observe only limited randomness in the outputs.

Figure 4. The comparison of generated images using pix2pix with and without optimization.

5. EXPERIMENTS

In this section, we first compare the pix2pix model without the introduction of the self-attention
module and spectral normalization with the model that incorporates these techniques in terms
of architectural floor plan generation. Through experiments, we verify whether these techniques



can optimize the generation of architectural floor plans and explore the areas they have improved.
Then, we delve into the generation of multi-unit architectural floor plans, examining whether GAN
models can generate multi-unit or multi-layer architectural floor plans.

Both the unmodified pix2pix and the pix2pix with the introduced self-attention module and
spectral normalization were trained for 300 epochs. In this experiment, a batch size of 1 was
utilized to facilitate effective instance normalization, optimizing the model’s performance for small
datasets. The learning rate was set at 0.0002 and applied throughout training with the Adam24

optimizer, using momentum parameters β1 = 0.5 and β2 = 0.999 to stabilize convergence. The
deep learning framework employed was PyTorch,25 leveraging an NVIDIA RTX 3070 Ti GPU
to accelerate computations and improve training efficiency. We also ensured that the data used
for testing was not involved in training to guarantee the accuracy of the experiments. Figure 4.1
illustrates the experimental results for the same set of floor plan data. The left two columns show the
generated results without the introduction of the self-attention module and spectral normalization.
It can be observed that without these techniques, the quality of the generated image is low, especially
in terms of data capture at architectural boundaries. Although there is some color mixing in the
internal functional area division, the overall generation quality is still acceptable. The right two
columns present the results after introducing the self-attention module and spectral normalization.
Although the size of the generated balcony area does not fully match the original, the division of
functional areas within the architectural boundary is satisfactory. This is of great significance for
architects during the initial phase of functional area division. The first row presents a comparison
of results generated with the constraint of elevation entrance locations, the second row shows a
comparison based on the constraint of fixed interior wall positions, and the third row illustrates the
comparison under the constraint of fixed specific functional zoning locations.

Figure 5. The generation results for multi-unit and multi-storey buildings are as follows: the left three
columns displays the results generated with the elevation entrance as a condition for the multi-unit building,
alongside the ground truth for comparison. The right three columns shows the multi-storey results generated
with both the elevation entrance and specific functional areas as conditions, alongside their ground truth
counterparts.

Our in-depth examination of the training mechanisms highlights the meticulous steps undertaken
to optimize the GAN model. The model’s progression, from initial hurdles to producing lucid and
unequivocal floor plans, attests to its viability in real-world scenarios. Merging GANs with CAD
tools could be a game-changer for architectural design. This study sets the stage for a paradigm



where AI-driven tools like GANs collaborate with CAD software, infusing dynamism, efficiency,
and innovation into the design process. In summary, this research’s revelations could redefine the
architectural design domain. By leveraging GAN, we introduce a pioneering method for floor plan
generation, poised to revolutionize design toolkits and methodologies.

The single-unit building floor plan generation was assessed in the previous section. While the
results were discernible to architects, some areas exhibited color blurring. For context, two works8,10

have previously attempted to output single-unit building floor plans using different methodologies.
To determine if GAN can handle more intricate designs like multi-unit or multi-storey buildings,
further experiments were conducted. Figure 5 displays multi-unit output. In the top images, while
the building boundary is accurately captured, some internal functional areas exhibit color mixing.
The generation test for such buildings is categorized into two modes: one without constraints and
the other with fixed locations for stairs and bathrooms. The middle images depicts the generated
plan with only building boundaries and facade openings. Without marked staircase positions in
the input, the output lacks staircases, making it more akin to a multi-unit plan than a multi-
storey one. The bottom images presents the results with marked staircase and bathroom locations.
Unfortunately, the output is subpar and not usable for architectural design.

6. CONCLUSION

This work underscores the transformative potential of GAN in producing high-caliber architectural
floor plans. By automating this initial phase, architects can channel their energies into refining
and personalizing designs, rather than building from the ground up. This streamlines the design
journey, offering a swift visualization of multiple layouts. Furthermore, by embedding controllable
parameters within the GAN model, architects gain a tool that balances functionality with aesthetics,
ensuring the output is both practical and visually appealing. Our in-depth examination of the
training mechanisms highlights the meticulous steps undertaken to optimize the GAN model. The
model’s progression, from initial hurdles to producing lucid and unequivocal floor plans, attests
to its viability in real-world scenarios. Merging GAN with CAD could be a game-changer for
architectural design. This work sets the stage for a paradigm where AI-driven tools like GAN
collaborate with CAD, infusing dynamism, efficiency, and innovation into the design process. In
summary, this work’s revelations could redefine the architectural design domain. By leveraging
GAN, we introduce a pioneering method for floor plan generation, poised to revolutionize design
toolkit and methodology.
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