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We develop a bottom-up holographic model that provides the dual description of a strongly coupled field
theory, in which the spontaneous breaking of an approximate global symmetry yields the SOð5Þ=SOð4Þ
coset relevant to minimal composite-Higgs models. The gravity background is completely regular and
smooth, and has an end of space that mimics confinement on the field theory side. We add to the gravity
description a set of localized boundary terms, that introduce additional symmetry-breaking effects,
capturing those that would result from coupling the dual strongly coupled field theory to an external,
weakly coupled sector. Such terms encapsulate the gauging of a subgroup of the global SOð5Þ symmetry of
the dual field theory, as well as additional explicit symmetry-breaking effects. We show how to combine
spurions and gauge fixing and how to take the appropriate limits, so as to respect gauge principles and
avoid violations of unitarity. The interplay of bulk and boundary-localized couplings leads to the breaking
of the SOð5Þ symmetry to either its SOð4Þ or SOð3Þ subgroup, via vacuum misalignment. In field theory
terms, the model describes the spontaneous breaking of a SOð4Þ gauge symmetry to its SOð3Þ subgroup.
We expose the implications of the Higgsing phenomenon by computing the spectrum of fluctuations of the
model, which we interpret in four-dimensional field-theory terms, for a few interesting choices of
parameters. We conclude by commenting on the additional steps needed to build a realistic composite
Higgs model.
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I. INTRODUCTION

The discovery of the Higgs boson [1,2] provides a
compelling argument for the study of composite Higgs
models (CHMs) [3–5]: they extend the standard model
(SM) of particle physics and can be tested by Large Hadron
Collider (LHC) experiments. In this context, Higgs fields
emerge as composite pseudo-Nambu-Goldstone bosons
(PNGBs), in the weakly coupled effective field theory
(EFT) description of a more fundamental theory. Reviews
can be found in Refs. [6–8], and the summary tables in
Refs. [9–11] provide an interesting classification of pos-
sible fundamental field theory origins for CHMs, amenable
(in principle) to nonperturbative numerical studies with
lattice gauge theory.
The literature on model-building and phenomenologi-

cal studies (see, e.g., Refs. [12–56]), is complemented by
an expanding body of numerical lattice calculations, in

theories with gauge group SUð2Þ [57–66], Spð4Þ [67–84]
and SUð4Þ [85–93]. Results for the SUð3Þ theory
with Nf ¼ 8 Dirac fermions [94–101] have been reinter-
preted in terms of new CHMs, embedded in the dilaton
EFT framework [102,103]—see also Refs. [104–106].
But the microscopic origin of CHMs with minimal
SOð5Þ=SOð4Þ coset is more obscure—see for instance
Ref. [107].
Central to the CHM model-building programme is the

absence of new physics signals in direct and indirect
searches, indicating that the scale of new phenomena, f,
is higher than the electroweak scale, v. This little hierarchy
originates in the strong-coupling dynamics, as a conse-
quence of small destabilizing perturbations of the vacuum,
due to perturbative, weak interactions with an external
sector. Rephrasing the title of the classical work in
Ref. [108], the electroweak scale is suppressed by what
is called the vacuum misalignment angle, θ ∼ v=f ≪ 1—
see, e.g., Sec. 2.2.1 of Ref. [8], and references therein. In
practical terms, phenomenological constraints can be sat-
isfied with a rather modest suppression of θ, and only a
moderate tuning of parameters, which adds to the appeal of
CHMs. Yet, computing θ from first principles requires
nonperturbative methods.
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A new alternative avenue for the study of nonpertur-
bative phenomena opened within the context of string
theory and supergravity, with the discovery of gauge-
gravity dualities (holography) [109–112]. The strongly
coupled regime of special field theories admits an equiv-
alent description as a weakly coupled gravity theory in
higher dimensions. For example, type-IIA supergravity
backgrounds, in which the geometry includes a shrinking
internal circle, provide a holographic description of linear
confinement in Yang-Mills theories [113], allowing to
study glueball spectra [114], chiral symmetry breaking
[115,116], and masses of mesons [117–121].1 Also within
type IIB supergravity, backgrounds exist in which a whole
portion of internal space, the base of the conifold [124],
shrinks to zero size, giving rise to a rich phenomenology
[125–130], including the possibility of a light dilaton
[131–135]. Simpler bottom-up holographic models dis-
pense with the microscopic origin of the gravity theory,
complementing lattice explorations of CHMs [136–141].
It is indeed in this context that CHMs based on the
minimal SOð5Þ=SOð4Þ coset have been first developed
[142–149].
A holographic CHM derived from a fundamental

gravity theory more accurately predicts the properties
of composite states. A step toward such a construction
was pursued in Ref. [150], by exploiting the classical
work on S4 compactifications of maximal supergravity in
D ¼ 11 dimensions [151–158], its reductions to D ¼ 7
dimensions, and its symmetry-breaking backgrounds
[159,160], which lead to the appearance of the minimal
SOð5Þ=SOð4Þ coset. Reference [150] is the first explor-
atory work, in the larger space of supergravity theories,
that features a variety of different coset structures and
gauge symmetries—a useful review on gauged super-
gravities is Ref. [161].
In this paper, we present the next stage of development

of the minimal realization of holographic CHMs. Our
motivation for embarking on this task is that the ambitious
programme of embedding a holographic CHM within the
fully rigorous context of top-down holography requires
additional preliminary work on the formalism, before
making contact with model-building and phenomenologi-
cal aspects. In the next subsection, we elaborate on why
this is so, and clarify what are the objectives of the present
investigation, in which we focus on developing and testing
the formalism with a semi-realistic bottom-up model.
The simpler construction we propose captures much
of the physically interesting aspects of the CHM
program and is interesting and useful in itself, as a
stand-alone model.

A. A road map toward top-down
holographic composite Higgs

The complete construction of a top-down holographic
CHM would involve the following steps.
(1) Identify a fundamental gravity theory (the low

energy description of which may be given by
supergravity), providing the dual description of a
field theory in which spontaneous symmetry break-
ing involves the G=H coset relevant to a CHM of
interest.

(2) Find regular gravity solutions that holographically
describe confinement in the dual four-dimensional
field theory.

(3) Compute the (holographically renormalized) free
energy, and the spectrum of fluctuations, dual to the
bound states of the field theory. Verify the absence
of tachyons or other signals of instability.

(4) Extend the gravity theory so that in the field-
theory interpretation a subgroup of the global
symmetry is gauged, with coupling strength weak
enough to allow for the perturbative treatment to be
viable.

(5) Extend the gravity theory to implement explicit
breaking of the field-theory global symmetry, com-
patibly with gauge principles and unitarity. Addi-
tional auxiliary fields (spurions) may be needed.

(6) Perform a vacuum alignment analysis, within the
gravity theory, to determine the field-theory vacuum
structure.

(7) Verify that no pathologies emerge in the mass
spectrum in the presence of symmetry-breaking
terms.

(8) Couple the theory to standard-model fields, and
identify viable regions of parameter space. This step
might also involve the introduction of top partial
compositeness [162] (see also the discussions in
Refs. [14,18,163–165]).

Points (1), (2), and (3) are addressed in Ref. [150];
the minimal SOð5Þ=SOð4Þ coset, relevant to CHMs,
emerges within maximal supergravity in D ¼ 7 dimen-
sions, which lifts to type-IIA supergravity in D ¼ 10
dimensions. The spectrum of fluctuations of bosons, upon
compactification on a 2-torus, is computed [150] for
backgrounds dual to a confining, four-dimensional field
theory, by exploiting the formalism in Refs. [166–170]—
see also Refs. [133–135,171–174].
A simpler bottom-up model, written in D ¼ 6 dimen-

sions [175,176], readdresses points (1), (2), and (3),
with several technical advantages: the spectrum is
simpler, the action contains only essential fields, with
canonical normalizations and minimal interactions. The
model is free from the complexities descending from1See also the critical discussions in Refs. [122,123].
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supersymmetry in higher dimensions, while retaining the
essential features of interest (confinement and symmetry
breaking).2

In this paper, we address points (4), (5), (6), and (7) for
the bottom-up model in Refs. [175,176], in a way that can
be generalized to more complicated cosets and geometries.
The SOð4Þ subgroup of the (field-theory) global symmetry
is gauged weakly, and a spurion field introduces explicit
breaking of SOð5Þ to SOð4Þ. We discuss how to implement
gauge-fixing within this setting. Both new features are
controlled by a boundary-localized action in the gravity
theory. The interplay with the background dynamics—
vacuum (mis)alignment—determines whether the mass
spectra display SOð5Þ → SOð4Þ breaking [and unbroken
gauged SOð4Þ] or SOð5Þ → SOð3Þ breaking [with the
gauged SOð4Þ subgroup Higgsed to SOð3Þ].
In contrast to the earliest bottom-up models [148], the

smooth and regular geometry deviates substantially from
AdS, and the mass gap is due to the existence of an
endpoint of the radial (holographic) direction [113], while
symmetry breaking is triggered by bulk fields, similar to so-
called soft-wall models previously considered in the
literature [147,192,193]. For these reasons, some formal
developments warrant special attention, and are the main
topic of this paper. The consequences of holographic
vacuum (mis)alignment can be illustrated within this
simple model to highlight general results that apply to a
large variety of holographic realizations of CHMs. We
detail necessary, unconventional yet rigorous elements of
the formalism, and subtleties in the (weak) gauging of the
symmetry that generalize holographic renormalization
[194–196]. We defer the construction of a realistic
bottom-up holographic CHM, obtained by gauging the
standard-model SUð2ÞL×Uð1ÞY ⊂ SOð4Þ×Uð1ÞB−L—the
Abelian factor is related to baryon, B, and lepton, L,
quantum numbers—and by adding fermions, either in the
bulk or localized at the boundary.

The paper is organized as follows. In Sec. II, we
introduce the six-dimensional bottom-up gravity model
of interest and its SOð5Þ gauge symmetry. The profile of a
bulk scalar field breaks such symmetry. A shrinking circle
in the geometry mimics confinement on the field theory
side. We introduce the elements needed to make the
exposition self-contained, and fix notation and conven-
tions, but dispense with details, that may be found in
Refs. [175,176]. We digress in Sec. III, to discuss a rather
general description, in effective field theory terms, of
nonlinear sigma models based on the SOð5Þ=SOð4Þ coset,
in particular in order to clarify the subtle differences
between gauge and global symmetries, and explicit and
spontaneous symmetry breaking. In Sec. IV, we return to
the gravity theory. In order to weakly gauge, in the dual
field theory, an SOð4Þ subgroup of the SOð5Þ global
symmetry, we add appropriate boundary terms to the
gravity description. We discuss the implications for the
vacuum of the theory, and the resulting symmetry breaking
pattern, in Sec. V. In Sec. VI, we display the mass spectrum
of fluctuations of the gravity theory, which we interpret as
bound states of the dual field theory. We outline further
work that we leave for future investigations in Sec. VII. We
relegate to the Appendix extensive amounts of technical
details.

II. THE GRAVITY MODEL

The bottom-up holographic model of interest [176] is
built by coupling gravity in D ¼ 6 dimensions to a bulk
scalar field, X , transforming in the vector, real representa-
tion, 5, of a gauged SOð5Þ symmetry. One of the non-
compact space-time dimensions, denoted as ρ, is
interpreted as the holographic direction. We restrict atten-
tion to background solutions with asymptotically AdS6
geometry, for large values of the holographic direction—
the ultra-violet (UV) regime of the (putative) dual field
theory. Another one of the space-like dimensions is
compactified on a circle that shrinks smoothly to zero size
at a finite value, ρ ¼ ρo, of the holographic direction—
the infrared (IR) regime. The presence of an end to the
space introduces a mass gap in the dual field theory
interpretation, mimicking the effect of confinement in
the four-dimensional field theory. A subclass of back-
grounds exists in which X acquires a nontrivial profile,
breaking spontaneously the SOð5Þ gauge symmetry of the
gravity theory to its SOð4Þ subgroup.

A. Six-dimensional action

We review the essential features of the model to keep the
presentation self-contained and explain the notation—see
Table I—without discussing details that can be found in
Ref. [175], in respect to which we rescale the action in
D ¼ 6 dimensions by an overall factor of 1

2π, to lighten the
notation in matching it to lower dimensions:

2Themodel presented in this paper is a development of the one in
Ref. [175], which, in turn, is the bottom-up holographic realization
of amechanismqualitatively similar to the onediscovered in the top-
down constructions in Refs. [172,177,178]. Yet, the CHM context
of interest here is profoundly different, and so is the range of
parameters in the model that is relevant for current physics
considerations. To be more explicit, conversely to what is done
in Ref. [175], we are not going to further explore the relation
between the emergence of a classical instability in some range of the
parameter space of the model with the ideas of Ref. [179] (nor the
more general arguments in Refs. [180,181]), related to unitarity
bounds, operator dimensions, walking dynamics, complex fixed
points, and spontaneous breaking of scale invariance—see the
extensive discussions in Refs. [182–191]. In the numerical exam-
ples to appear later in the paper, we focus attention on regions of
parameter space where the background solutions of interest are
stable, and pass both local as well as global stability tests. In
particular, in the regions of parameter space of interest, there is no
light dilaton (the PNGB associated with dilatations) in the spectrum
of bound states of the dual field theory.
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SðbulkÞ
6 ¼ 1

2π

Z
d6x

ffiffiffiffiffiffiffiffi
−ĝ6

p �
R6

4
−
1

2
ĝM̂ N̂ðDM̂XÞTDN̂X

− V6ðXÞ − 1

2
Tr½ĝM̂ P̂ĝN̂ Q̂F M̂ N̂F P̂ Q̂�

�
: ð1Þ

The six-dimensional space-time indexes are denoted by
M̂ ¼ 0, 1, 2, 3, 5, 6. The six-dimensional metric, ĝM̂ N̂ ,
has determinant ĝ6, and signature mostly þ. The six-
dimensional Ricci scalar is denoted as R6.
The components, Xα, of the scalar transforming in the 5

of SOð5Þ, are labeled by Greek indexes, α ¼ 1;…; 5. The
SOð5Þ gauge field is denoted by AM̂. The covariant
derivatives are defined as follows:

ðDM̂XÞα ≡ ∂M̂Xα þ igAM̂α
βXβ; ð2Þ

and the field-strength tensors are

F M̂ N̂ α
β ≡ 2ð∂½M̂AN̂�α

β þ igA½M̂α
γAN̂�γ

βÞ; ð3Þ

where antisymmetrization is defined as ½n1n2� ≡
1
2
ðn1n2 − n2n1Þ. The bulk gauge coupling, g, is a free

parameter. One can, equivalently, write covariant deriva-
tives and field-strength tensors in terms of the generators,
tA (A ¼ 1;…; 10) of SOð5Þ, normalized so that
TrðtAtBÞ ¼ 1

2
δAB. We exhibit an explicit basis for these

generators in Appendix A.
The bulk scalar potential, V6ðXÞ, is manifestly SOð5Þ in-

variant, as it depends only on the combination ϕ≡ ffiffiffiffiffiffiffiffiffiffiffi
XTX

p
.

With the convenient choice of superpotential, W6, adopted
in Ref. [176]

TABLE I. Field content of the model, organized in terms of irreducible representations of the symmetries in D ¼ 6 dimensions (SOð5Þ
multiplets), as well as D ¼ 5 dimensions (SOð4Þ multiplets, assuming hXi ≠ 0), and D ¼ 4 dimensions (SOð3Þ multiplets, assuming
hπ⃗i ≠ 0). In the case of the language in D ¼ 4 dimensions, we indicate the field content in terms of the massive representations of the
Poincaré group, and keep into account the degrees of freedom of gauge-invariant combinations only. The irreducible representations for
which we leave theNdof entries empty refer to cases where the degrees of freedom have been included in propagating degrees of freedom of
other fields, to build gauge invariant combinations—for explanations, see the body of the paper. For space-time indexes, M̂ ¼ 0, 1, 2, 3, 5,
6, whileM ¼ 0, 1, 2, 3, 5, and μ ¼ 0, 1, 2, 3. For indexes of the internal symmetry, α; β ¼ 1;…; 5, while A ¼ 1;…; 10, Â ¼ 1;…; 4, and
Ā ¼ 6;…; 10. When the SOð4Þ symmetry is broken to SOð3Þ, we use indexes Â ¼ 1, 2, 3, Ã ¼ 5, 6, 7, and Ā ¼ 8, 9, 10.

D ¼ 6, SOð5Þ, massless irreducible
representations

D ¼ 5, SOð4Þ, massless irreducible
representations

D ¼ 4, SOð3Þ, massive irreducible
representations

Field SOð5Þ Ndof Field SOð4Þ Ndof Field SOð3Þ Ndof

ĝM̂ N̂ 1 9 gMN 1 5 gμν 1 5
gμ5 1
g55 1

χM 1 3 χμ 1 3
χ5 1

χ 1 1 χ 1 1

Xα 5 5 ϕ 1 1 ϕ 1 1
πÂ 4 4 πÂ 3 3

π4 1 1

AM̂α
β 10 40 AM

Â 4 12 Aμ
Â 3 9

Aμ
4 1 3

A5
Â 3

A5
4 1

A6
Â 4 4 A6

Â 3 3

A6
4 1 1

AM
Ā 6 18 Aμ

Ã 3 9

Aμ
Ā 3 9

A5
Ã 3

A5
Ā 3

A6
Ā 6 6 A6

Ã 3 3

A6
Ā 3 3

P5α 5 5 P5Â 4 4 P5Â 3 3
P54 1 1

P55 1 1 P55 1 1
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W6 ≡ −2 −
Δ
2
XTX ¼ −2 −

Δ
2
ϕ2; ð4Þ

one finds the potential to be the following:

V6≡1

2

X
α

�
∂W6

∂Xα

�
2

−
5

4
W2

6¼−5−
Δð5−ΔÞ

2
ϕ2−

5Δ2

16
ϕ4;

ð5Þ

We adopt this form of the potential, V6, for its simplicity,
and note that its origin in terms of a superpotential, W6,
does not make the model supersymmetric: there are no
fermionic fields, nor do the backgrounds discussed in this
paper originate from solving first-order equations derived
from W6.
The general configuration of the scalar field, X , can be

parametrized as

X ≡ exp
�
2i
X
Â

πÂtÂ
�
X0ϕ; where X 0 ≡ ð0; 0; 0; 0; 1ÞT;

ð6Þ

with Â ¼ 1;…; 4, labeling the generators of the
SOð5Þ=SOð4Þ coset. If hϕi ≠ 0, one can also write X
explicitly, as

X ¼ ϕ

�
sinðjπ⃗jÞ π⃗

jπ⃗j ; cosðjπ⃗jÞ
�

T
; ð7Þ

in terms of the four PNGBs, π⃗ ¼ ðπ1; π2; π3; π4Þ, spanning
the SOð5Þ=SOð4Þ coset.

B. Dimensional reduction and background solutions

We find it convenient to write the background solutions
of interest by first dimensionally reducing the theory to
D ¼ 5 dimensions. The sixth dimension is a circle, para-
metrized by an angle, 0 ≤ η < 2π. The metric ansatz is

ds26 ¼ e−2χds25 þ e6χðdηþ χMdxMÞ2; ð8Þ

where the five-dimensional space-time index is M ¼ 0, 1,
2, 3, 5, and the five-dimensional metric is

ds25 ¼ dr2 þ e2AðrÞdx21;3 ¼ e2χðρÞdρ2 þ e2AðρÞdx21;3: ð9Þ

In the background, the warp factor, A, as well as the scalars,
Xα and χ, depend only on the holographic coordinate, ρ,
whereas A6 ¼ 0, and AM ¼ 0 ¼ χM. The background
equations of motion for XαðρÞ, χðρÞ, and AðρÞ are
given by

∂
2
ρXα þ ð4∂ρA − ∂ρχÞ∂ρXα ¼

∂V6

∂Xα
; ð10Þ

∂
2
ρχ þ ð4∂ρA − ∂ρχÞ∂ρχ ¼ −

V6

3
; ð11Þ

3ð∂ρAÞ2 −
1

2
∂ρXα∂ρXα − 3ð∂ρχÞ2 ¼ −V6: ð12Þ

In Refs. [175,176], radial profiles of the background
fields, ϕðρÞ, χðρÞ, and AðρÞ, satisfying Eqs. (10)–(12), and
resulting in regular geometries, are identified and referred
to (with some abuse of language) as confining solutions.3

We repeat here their IR expansions, that can be used to
construct the full solutions numerically, by setting up the
boundary conditions in the vicinity of the coordinate,
ρ ¼ ρo, at which the space ends, and by expanding in
powers of the small difference, ρ − ρo

ϕðρÞ ¼ ϕI −
1

16
ΔϕIð20þ Δð5ϕ2

I − 4ÞÞðρ − ρoÞ2

þOððρ − ρoÞ4Þ; ð13Þ

χðρÞ ¼ χI þ
1

3
logðρ − ρoÞ

þ 1

288
ð−80þ 8ðΔ − 5ÞΔϕ2

I − 5Δ2ϕ4
I Þðρ − ρoÞ2

þOððρ − ρoÞ4Þ; ð14Þ

AðρÞ ¼ AI þ
1

3
logðρ − ρoÞ

þ 7

576
ð80þ Δϕ2

I ð40þ Δð5ϕ2
I − 8ÞÞÞðρ − ρoÞ2

þOððρ − ρoÞ4Þ: ð15Þ

Here, ϕI, χI , and AI are integration constants, and we set
χI ¼ 0 to avoid a conical singularity in the plane described
in polar coordinates by ðρ; ηÞ. In those solutions, hπ⃗i ¼ 0.
In this paper, we adopt the same solutions for ϕðρÞ, χðρÞ,
and AðρÞ, but we allow for hπ⃗i ≠ 0, as we shall see
in Sec. IV.
We also reproduce here the UV expansions for

the background solutions, written in terms of z≡ e−ρ.
These depend nontrivially on the value of Δ. Defining
ΔJ ¼ min ðΔ; 5 − ΔÞ, and ΔV ¼ 5 − ΔJ, they take the
generic form

ϕðzÞ ¼ ϕJzΔJ þ � � � þ ϕVzΔV þ � � � ; ð16Þ

χðzÞ ¼ χU −
1

3
logðzÞ þ � � � þ ðχ5 þ � � �Þz5 þ � � � ; ð17Þ

AðzÞ ¼ AU −
4

3
logðzÞ þ � � � : ð18Þ

3In contrast with Ref. [113], we work within the context of
bottom-up holography, and our model does not contain strings.
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The integration constants, ϕJ and ϕV , appear at leading and subleading order, respectively. Another integration constant, χ5,
is related to the radial dependence of the size of the compactified circle. Finally, AU and χU only appear trivially, as overall
factors, and in the following, we set them to zero without loss of generality—see Ref. [177].
The circle reduction of the six-dimensional model leads to the following five-dimensional bulk action [176]:

SðbulkÞ
5 ¼

Z
d5x

ffiffiffiffiffiffiffiffi
−g5

p �
R
4
− 3gMN

∂Mχ∂Nχ −
gMN

2
ðDMXÞTðDNXÞ − gMNe−6χTr½DMA6DNA6�

− e−2χV6 −
1

2
g2e−8χXTA2

6X −
1

16
e8χgMPgNQFðχÞ

MNF
ðχÞ
PQ −

1

2
e2χTr½gMPgNQFMNFPQ�

− iggMNχMXTA6DNX − 2e2χgMNgOPχMTrðFNODPA6Þ −
1

2
g2gMNχMχNXTA2

6X

þ e2χgMPgNQχMχNTrðDPA6DQA6Þ − e2χgMNgPQχMχNTrðDPA6DQA6Þ
�
: ð19Þ

We exhibit this action purely in the interest of completeness,
and anticipate that, in Sec. IV, we will rewrite it, in a form
more suitable for the computation of spectra, by expanding it
in powers of small fluctuations, and approximating it by
retaining only quadratic order in said fluctuations.

III. EFFECTIVE FIELD THEORY

The purpose of this section is to clarify, within the
language of four-dimensional effective field theories, the
role of explicit and spontaneous breaking of internal
continuous symmetries. In particular, we want to expose
differences and commonalities between the treatment of
global and local symmetries. We occasionally recall def-
initions and notational conventions introduced earlier on in
such a way that this short section is self-contained. It should
be stressed that this section does not provide the precise
EFT, low-energy description of the theory of interest in the
rest of the paper, and we do not attempt to match the two, as
doing so would go beyond current purposes.
We start by writing the nonlinear sigma-model

Lagrangian density capturing the long distance dynamics
associated with the spontaneous breaking of a gauged
SOð5Þ symmetry to its SOð3Þ subgroup. The field content
consists of two (real) fields, Σ and Ξ, both transforming in
the 5 of SOð5Þ, so that, under the action of a symmetry
transformation:

ðΣ;ΞÞ → ðUΣ; UΞÞ; ð20Þ

whereU∈ SOð5Þ is a group element (a special, orthogonal,
real matrix). We represent this pictorially in the moose
diagram of Fig. 1.

As stated in Sec. II, we denote as tA the generators of
SOð5Þ, normalized so that TrðtAtBÞ ¼ 1

2
δAB, and use, where

appropriate, the choice of basis in Appendix A. We gauge
the SOð5Þ symmetry, by defining Aμ ≡PA A

A
μ tA, so that

the covariant derivatives are

DμΣ≡ ∂μΣþ igAμΣ; ð21Þ

DμΞ≡ ∂μΞþ igAμΞ; ð22Þ

Fμν ≡ ∂μAν − ∂νAμ þ ig½Aμ; Aν�; ð23Þ

with g the (weak) gauge coupling strength. The SOð5Þ-
invariant Lagrangian density is the following4:

LSOð5Þ≡f2

2
½ðDμΣÞTðDμΣÞ�þκ2f2

2
½ðDμΞÞTðDμΞÞ�

−
1

2
Tr½FμνFμν�þð1− κ̃2ÞΞTFμνFμνΞ

−λΣf4ðΣTΣ−1Þ2−λΞf4ðΞTΞ−1Þ2−VSOð5ÞðΣ;ΞÞ;
ð24Þ

where f is the scale of the theory, and the couplings are
denoted by κ, κ̃, λΣ, and λΞ. We will return to the SOð5Þ-
invariant potential, VSOð5ÞðΣ;ΞÞ, and the important physi-
cal parameters it encodes, in due course.
We require the divergence of the couplings λΣ → þ∞

and λV → þ∞, hence enforcing the nonlinear constraints
ΣTΣ ¼ 1 ¼ ΞTΞ. Both these vacuum expectation values
(VEVs) break SOð5Þ to a SOð4Þ subgroup, which may
differ in the two cases. We conventionally adapt our

FIG. 1. Moose diagram representing the SOð5Þ=SOð4Þ EFT—
figure generated with AXODRAW2 [213].

4An interaction term of the form ΣTFμνFμνΣ has been omitted
for simplicity. As it changes cubic and quartic interactions in a
nontrivial way, it must be added in a complete analysis, more
general than the one discussed here.
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choice of basis for SOð5Þ so that we denote as tĀ, with
Ā ¼ 5;…; 10, the generators that obey the relation
tĀhΞi ¼ 0, and generate an SOð4Þ subgroup of SOð5Þ,
while tÂ, with Â ¼ 1;…; 4, are the four generators describ-
ing the corresponding SOð5Þ=SOð4Þ coset. We then define
ς ¼PÂ ς

ÂtÂ and ϱ ¼PÂ ϱ
ÂtÂ, to parametrize the two

scalar fields as

Σ ¼ e
2i
fς

0
BBBBBB@

0

0

0

0

1

1
CCCCCCA
; and Ξ ¼ e

2i
fϱ

0
BBBBBB@

0

0

0

0

1

1
CCCCCCA
: ð25Þ

If the VEVs are aligned, the SOð4Þ symmetry is unbroken.
If otherwise, an SOð3Þ symmetry is left intact, and it
can be used to show that the most general vacuum can be
written as

hΣi ¼

0
BBBBBBBBB@

0

0

0

sin
	
v
f



cos
	
v
f




1
CCCCCCCCCA
; and hΞi ¼

0
BBBBBB@

0

0

0

0

1

1
CCCCCCA
: ð26Þ

General values of the misalignment angle, v
f, lead to the

breaking of SOð4Þ to SOð3Þ. The vacuum in Eq. (26)
is given by the choice of parameters hϱi ¼ 0 and
hςi ¼ vt4.
With all of the above in place, by imposing the non-

linear constraints, the first two lines of Eq. (24) provide
the leading-order, two-derivative terms of the EFT that
determines all the two-point functions involving gauge
fields. We ignore higher-derivative terms, that give small
corrections to observable quantities computed at small
energy. To make any further progress, we discuss the
properties expected of the last potential term in Eq. (24),
VSOð5ÞðΣ;ΞÞ, that controls vacuum (mis)alignment and
spontaneous breaking of SOð4Þ to SOð3Þ. For current
purposes, the only two quantities of interest are the
position of the minimum of the potential, and its second
derivative at said minimum. The former controls the
vacuum misalignment angle, the latter the mass of scalar
excitations. As we ignore all interaction terms and higher-
order interactions, rather than worrying about power-

counting and other subtleties, we adopt a simplified,
illustrative choice, in the remainder of this section. (We
will discuss more realistic, physically motivated choices
in Sec. III A.) We write the potential as

VSOð5Þ ¼ λ
f4

2
ðΞTΣ − cos θÞ2; ð27Þ

where θ and λ are treated as free parameters, that
can be traded for the VEV and mass. To this purpose,
we replace the parametrization of the vacuum in
Eq. (26), to study, as a function of v, the resulting static
potential:

Vstatic ¼ −LSOð5Þjϱ¼0¼Aμ;ς¼vt4 ¼
λf4

2

�
cos

�
v
f

�
− cos θ

�
2

:

ð28Þ

The minimum of the potential is at v ¼ θf, and the second
derivative evaluated at the minimum yields

∂
2Vstatic

∂v2

����
v¼θf

¼ λf2 sin2 θ > 0 ðfor λ > 0Þ: ð29Þ

The mass matrix, M2
0, of the spin-0 states, evaluated at

the minimum, v ¼ θf, is

M2
0 ¼ λf2 sin2 θ

0
BBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 − 1
κ

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 − 1
κ 0 0 0 1

κ2

1
CCCCCCCCCCCCCCCA

; ð30Þ

written in the basis ðς1; ς2; ς3; ς4; ϱ1; ϱ2; ϱ3; ϱ4Þ. The
dependence on κ comes from the noncanonical normali-
zation of the kinetic terms in LSOð5Þ. For θ ≠ 0, the seven
resulting massless states are exact Nambu-Goldstone
bosons associated with the breaking SOð5Þ → SOð4Þ →
SOð3Þ, while one scalar has mass squared given
by m2

π ¼ 1þκ2

κ2
λf2 sin2ðθÞ.

The mass matrix for the gauge fields, M2
1, evaluated at

the minimum, v ¼ θf, obeys
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4M2
1

g2f2
¼

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

cosð2θÞþ2κ2þ1

2κ̃2
0 0 0

sinð2θÞ
2κ̃ 0 0 0 0 0

0
cosð2θÞþ2κ2þ1

2κ̃2
0 0 0

sinð2θÞ
2κ̃ 0 0 0 0

0 0
cosð2θÞþ2κ2þ1

2κ̃2
0 0 0

sinð2θÞ
2κ̃ 0 0 0

0 0 0 κ2þ1
κ̃2

0 0 0 0 0 0

sinð2θÞ
2κ̃ 0 0 0 sin2ðθÞ 0 0 0 0 0

0
sinð2θÞ
2κ̃ 0 0 0 sin2ðθÞ 0 0 0 0

0 0
sinð2θÞ
2κ̃ 0 0 0 sin2ðθÞ 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

; ð31Þ

written in the basis ðA1
μ; A2

μ; A3
μ; A4

μ; A5
μ; A6

μ; A7
μ; A8

μ; A9
μ; A10

μ Þ.
The factors of κ̃2 descend from the fact that the
kinetic terms for the gauge bosons, in the vacuum
with hΞi ≠ 0, are normalized by the kinetic matrix
diagðκ̃2; κ̃2; κ̃2; κ̃2; 1; 1; 1; 1; 1; 1Þ. The three massless states,
A8
μ; A9

μ, and A10
μ , are associated with the unbroken SOð3Þ.

For θ ¼ 0, only ðA1
μ; A2

μ; A3
μ; A4

μÞ are massive. But for
v ¼ fθ ≠ 0, seven gauge fields acquire a mass, and the
seven massless pions provide the longitudinal polarizations
necessary for the Higgs mechanism. Only one massive real
scalar remains in the physical spectrum. The gauge fixing
condition, defining the unitary gauge, is ς1 ¼ ς2 ¼ ς3 ¼
0 ¼ ϱ1 ¼ ϱ2 ¼ ϱ3, and ς4 þ κϱ4 ¼ 0.
So far, all the symmetries are local, and only sponta-

neous symmetry breaking is present. Yet, this scenario is of
general validity, and encompasses also the case of global
symmetries, and their explicit breaking. We show in the
remainder of this section how to take appropriate limits and
recover more general symmetry-breaking patterns. In
particular, we want to describe the case in which only
the SOð4Þ subgroup of SOð5Þ is gauged, and there is an
additional, independent source of explicit breaking of
SOð5Þ to SOð4Þ. Their combined effect is to trigger,
via vacuum misalignment, the further spontaneous break-
ing to SOð3Þ. We proceed as follows, in reference to
Eq. (24).

(i) The limits λΣ; λΞ → þ∞ impose the nonlinear con-
straints, ΣTΣ ¼ 1 ¼ ΞTΞ. We also find it convenient
to redefine the constant κ, by the rescaling κ ≡ aκ̃.

(ii) When κ̃ ≫ 1, the coefficients of kinetic terms of A1
μ,

A2
μ, A3

μ, and A4
μ are large, hence the couplings of

these four fields are small, and the mass matrices are
approximately diagonal. We take a second limit,
κ̃ → þ∞, to find

M2
0 → λf2sin2θ diagð0; 0; 0; 1; 0; 0; 0; 0Þ; ð32Þ

M2
1 →

g2f2

4
diagða2; a2; a2; a2;

sin2ðθÞ; sin2ðθÞ; sin2ðθÞ; 0; 0; 0Þ: ð33Þ

The unitary gauge is defined by setting
ς1 ¼ ς2 ¼ ς3 ¼ 0 ¼ ϱ1 ¼ ϱ2 ¼ ϱ3 ¼ ϱ4 ¼ 0, while
ς4 remains in the theory as a physical spin-0 field.

(iii) Holding fixed g and f (besides λ and θ), for very
large choices of a ≫ 1, the four gauge bosons, AÂ

μ ,
that live in the SOð5Þ=SOð4Þ coset, decouple from
the physical scalar, ς4, and become parametrically
heavy. They can be trivially integrated out of the
EFT. We hence take the third limit a → þ∞. The
EFT field content now consists of the scalar ς4, with
mass m2

π ¼ λf2 sin2ðθÞ, three massive gauge fields,
with mass 1

4
g2f2 sin2ðθÞ, corresponding to the spon-

taneous breaking SOð4Þ → SOð3Þ, and denoted as
A5
μ, A6

μ, and A7
μ (their longitudinal components are

provided by ς1, ς2 and ς3), and, finally, the massless
gauge bosons A8

μ, A9
μ, and A10

μ .
The result of this process is equivalent to adopting the

following Lagrangian density:

LSOð4Þ≡f2

2
½ðD̃μΣÞTðD̃μΣÞ�−1

4

X10
A¼5

FμνFμν−λΣf4ðΣTΣ−1Þ2

−VSOð4ÞðΣÞ; ð34Þ

which has been obtained by replacing the second field, Ξ,
with a spurion field, P5 ¼ ð0; 0; 0; 0; 1Þ. The covariant
derivative is now restricted to SOð4Þ

D̃μΣ≡ ∂μΣþ ig
X10
A¼5

AA
μ tAΣ; ð35Þ
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as are the kinetic kinetic terms for the gauge field. By
taking λΣ → þ∞ one imposes the nonlinear constraint
ΣTΣ ¼ 1. From the choice in Eq. (27), one finds that

VSOð4Þ ¼ λ f4

2
ðPT

5Σ − cos θÞ2. This potential term leads to
vacuum misalignment, and also provides a mass for ς4. In
this Lagrangian, the global SOð5Þ symmetry is broken
explicitly, both by the gauging of an SOð4Þ subgroup, and
by the coupling to the spurion, P5.
In summary, as is well known, in the presence of an

admixture of explicit and spontaneous breaking of a set of
continuous global symmetries, one must pay attention to
gauge only unbroken subgroups, as prescribed by the Higgs
mechanism. Yet, one may be able to elegantly describe the
whole system in terms of only gauge symmetries, under-
going spontaneous breaking, without ever referring to
explicit symmetry breaking. If this can be arranged, the
case of interest can then be recovered by taking the
appropriate limits in the space of parameters. Caution must
be applied to the order of limits one takes for the
parameters, in such a way that no violation of unitarity
ensues, no ghosts or negative norm states remain, and the
theory is weakly coupled, at all stages of the analysis.

A. External fields, Coleman-Weinberg potential, and
vacuum misalignment

The choice of potential in Eq. (27) has a certain appeal,
both for its simplicity, and for the fact that it induces
vacuum misalignment, while also suppressing the mass of
the associated scalar field, ς4. But it is not realistic. As
anticipated, since we are interested only in the vacuum
misalignment angle and the mass of the scalar, and only in
the two-point functions, not in interaction terms, the
detailed functional form of the potential is not important
for our purposes. Yet, it may be instructive to demonstrate
how a more realistic potential may emerge dynamically. We
devote this short subsection to demonstrating one simple
example of such a potential.
To build such an example, we couple the EFT to external

fermions, by borrowing some ideas from the discussion of
Eq. (116) in Ref. [148], but with major simplifications.
First, we write the couplings in such a way as to preserve an
SOð4Þ ∼ SUð2ÞL × SUð2ÞR subgroup of SOð5Þ. Second, as
we are not attempting here to implement a version of top

partial compositeness, we do not couple the external
fermions to bulk fermions, that would represent baryons
in the strongly coupled dual field theory. In its stead, we
realize a simpler mechanism for fermion mass generation,
reminiscent at the algebraic level of the one adopted in the
literature on technicolor [197,198], extended technicolor
theories [199,200], and walking technicolor [201–203] (see
also the reviews in Refs. [204–208]), by coupling directly a
fermion bilinear to a scalar composite operator of the
strongly coupled theory (a meson). As we are interested
only in the symmetry and symmetry-breaking patterns
emerging, rather than in controlling the dynamics and
predicting the natural magnitude of the couplings involved,
this simpler approach is adequate for our current purposes.5

We start from the local identification SOð5Þ ∼ Spð4Þ. We
introduce a convenient basis of 4 × 4 matrices defining the
adjoint, 10, and the antisymmetric, 5, irreducible repre-
sentations of Spð4Þ. We borrow the latter, with some
adjustments, from Refs. [67,70]—see also Appendix A.
We write the symplectic matrix, Ω, as follows:

Ωαβ ≡

0
BBBBB@

0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

1
CCCCCA; ð36Þ

and define the matrices, TA, that satisfy

ΩTA þ TATΩ ¼ 0; for A ¼ 1;…; 10; ð37Þ

as the 10 generators of Spð4Þ. We also introduce the
Hermitian and traceless matrices ΓB that satisfy the relation

ΩΓB − ΓBTΩ ¼ 0; for B ¼ 1;…; 5; ð38Þ

hence identifying them with the 5 generators of the coset
SUð4Þ=Spð4Þ, so that we have a complete basis of the
natural embedding of Spð4Þ in SUð4Þ. We adopt the
normalization TrðTATBÞ ¼ 1

4
δAB ¼ TrðΓAΓBÞ.

The components of Σ, that can be read off Eq. (25), are
recombined to define the Hermitian matrix

Σα
β ≡ 4

X5
A¼1

ΣAðΓAÞαβ ¼

0
BBBBB@

Σ5 Σ1 − iΣ2 0 −iΣ3 þ Σ4

Σ1 þ iΣ2 −Σ5 iΣ3 − Σ4 0

0 −iΣ3 − Σ4 Σ5 Σ1 þ iΣ2

iΣ3 þ Σ4 0 Σ1 − iΣ2 −Σ5

1
CCCCCA: ð39Þ

5In a more refined and realistic model, one would want to gauge the standard-model SUð2ÞL ×Uð1ÞY ⊂ SOð4Þ ×Uð1ÞB−L symmetry,
and possibly introduce bulk fermion fields transforming in the appropriate representations of the symmetry groups.We defer such steps to
future work, with particular reference to the interplay of fermion partial compositeness and vacuum misalignment [139,148,209].
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Similarly, the components of Ξ are used to define
Ξα

β ≡ 4
P

5
A¼1 ΞAðΓAÞαβ. Both these matrix-valued fields

transform in the adjoint representation

ðΣ;ΞÞ → ðŨΣŨ†; ŨΞŨ†Þ; ð40Þ

where Ũ ¼ expðiP10
A¼1 α

ATAÞ are 4 × 4 unitary matrices
describing Spð4Þ transformations. The combination Σ̃≡
ΣΩ is a 4 × 4 antisymmetric matrix transforming as the 5 of
Spð4Þ. The same applies to Ξ̃≡ ΞΩ

ðΣ̃; Ξ̃Þ → ðŨ Σ̃ ŨT; Ũ Ξ̃ ŨTÞ: ð41Þ

We introduce chiral fermions, ψLα and ψRα, formally
transforming in the 4 of Spð4Þ, which is also the spinorial
representation of SOð5Þ. We break explicitly the symmetry
by writing the fermions as incomplete multiplets

ψL¼

0
BBB@

tL
0

bL
0

1
CCCA; and ψ̃R¼Ω−1ψR¼ΩT

0
BBB@

tR
0

bR
0

1
CCCA¼

0
BBB@
−bR
0

tR
0

1
CCCA:

ð42Þ

Each of the entries is itself a 2-component chiral spinor.
The notation is suggestive of the fact that in an extension of
the standard model they would represent the top and bottom

quarks, respectively, but notice the absence of QCD color
quantum numbers.
Finally, we add to the Lagrangian density a set of

couplings between scalars and fermions, written as

LY ¼ −yfψLðΣ̃ − Ξ̃Þψ̃R þ H:c:; ð43Þ

where y is a Yukawa coupling. In the vacuum,
hΣ̃i ≠ 0 ≠ hΞ̃i, one finds

LY ¼ −tL
�
yf

�
cos

�
v
f

�
− 1

��
tR

− bL

�
yf

�
cos

�
v
f

�
− 1

��
bR þ H:c:þ � � � ; ð44Þ

where we omit interactions with the PNGBs. The resulting
Dirac mass matrices break SUð2ÞL × SUð2ÞR ∼ SOð4Þ, but
preserves the diagonal subgroup, SUð2Þ ∼ SOð3Þ. The
fermion mass is M1=2 ¼ yfðcosðvfÞ − 1Þ. It vanishes when
the vacuum is aligned, hΣ̃i ¼ hΞ̃i.
Perturbatively, at the one-loop level, the presence

of the symmetry-breaking terms, encoded in the Yukawa
coupling and in the gauging of SOð4Þ, induces a
divergent contribution (à la Coleman-Weinberg [210]) to
the static effective potential, VCW. Defining the matrix
T ≡ diagð1; 0; 1; 0Þ, the naive result for VCW takes the form

VCW ¼ Λ2

32π2
STrM2 ð45Þ

¼ Λ2

32π2

�
3g2f2

X10
A¼5

ΣTtAtAΣ − 4y2f2Tr½ðΣ̃ − Ξ̃ÞTðΣ̃ − Ξ̃Þ†T�
�����

Σ̃;Ξ̃¼hΣ̃i;hΞ̃i
: ð46Þ

This potential depends explicitly on the divergent cutoff, Λ, of the theory, which requires the introduction of counter-
terms and a choice of subtraction prescription. Doing so requires two free parameters, controlling the overall size of the
terms proportional to g2 and y2, respectively. By denoting these two free parameters as Cg; Ct ∼Oð1Þ [and estimating
Λ ∼Oð4πfÞ], we conclude that in the Lagrangian density in Eq. (24) one should include the potential

VSOð4Þ ¼
3

2
g2f4Cg

X10
A¼5

ΣTtAtAΣ − 2y2f4CtTr½ðΣ̃ − Ξ̃ÞTðΣ̃ − Ξ̃Þ†T�
����
Σ̃;Ξ̃¼hΣ̃i;hΞ̃i

ð47Þ

¼ 9

8
g2f4Cg sin2

�
v
f

�
− 4y2f4Ct

�
cos

�
v
f

�
− 1

�
2

: ð48Þ

While the resulting potential in Eq. (47) is different from Eq. (27), it is not difficult to convince oneself that a potential with
the structure in Eq. (47)will ultimately lead to vacuummisalignment, and yield the same leading-order, long distance features
as they emerge from Eq. (27)—as we are interested only in the vacuum and in the mass of the scalar excitation around the
vacuum, not in the interactions or the details of the potential away from its minimum. Furthermore, there are other possible
choices for fermion sector that one canmake, that lead to different 1-loop potentials. As anticipated, it is also possible tomarry
this model with fermion partial compositeness, in which case the divergencies can be milder, or even absent, depending on
details that vary between different models. We close here this digression, and return to the gravity theory.
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IV. BOUNDARY TERMS AND ACTION TO
QUADRATIC ORDER

We return in this section to the higher-dimensional
gravity model of interest and to its dual field theory
interpretation. We want to build a holographic model such
that its long-distance behavior reproduces the qualitative
features of the EFT described in Sec. III, at least at the
level of low-momentum two-point functions and light
particle spectrum. We implement the (weak) gauging of an
SOð4Þ subgroup of the SOð5Þ global symmetry of the
four-dimensional field theory. The further explicit break-
ing of SOð5Þ to SOð4Þ is realized through the addition of a
set of interaction terms that are localized at the boundary
of the five-dimensional gravity geometry obtained in
Sec. II B. We do not specify the short-distance origin
of such terms, neither in field-theory, nor in higher-
dimensional gravity terms, and leave such tasks for
future work. In particular, we keep our treatment of the
explicit symmetry breaking terms general, rather than
specifying the external sector and performing a perturba-
tive effective potential analysis a la Coleman-Weinberg
[210]. As discussed in Sec. III A, we are interested in the
misalignment angle and mass for the lightest scalar
excitation, while the shape of the effective potential
and the higher-order couplings are beyond the scope of
this paper.
In the gravity description, the SOð5Þ symmetry is

gauged, and hence one is not allowed to write terms that
explicitly break it. As illustrated in Sec. III, this difficulty
can be overcome if one writes the full action in a manifestly
SOð5Þ-invariant way, by introducing a new field, P5—
transforming in the 5 of SOð5Þ and localized at the UV
boundary. Explicit breaking of SOð5Þ to SOð4Þ is recov-
ered (without violating unitarity or introducing other
pathologies) by taking the appropriate limits, that decouple
the additional degrees of freedom.
The boundary terms added to the gravity theory are

necessary in order to gauge a subgroup of the correspond-
ing global symmetry in the dual field theory interpretation.
They also introduce explicit breaking of global symmetries
in the way that triggers vacuum misalignment and sponta-
neous breaking of the SOð4Þ gauge symmetry in the dual
field theory down to its SOð3Þ subgroup. The gravity
background solutions of interest break (spontaneously)
the SOð5Þ symmetry to SOð4Þ, due to the radial profile
of the bulk scalar field, ϕ. The boundary conditions for the
background fields select a (constant) value of πÂ, which
further breaks (spontaneously) SOð4Þ to SOð3Þ. The radial
profiles of all other background fields have been discussed
in Sec. II, and remain the same as in Ref. [176]. We end this
section by expanding the action of the model to quadratic
order around the new background solutions, and writing it
in a form suitable to the computation of the spectrum of
fluctuations in Sec. VI.

A. Boundary-localized interactions

In the five-dimensional theory, we introduce boundaries
at finite values of the radial directions, ρ ¼ ρi, with i ¼ 1,
2, to serve as regulators; our calculations are performed
within the restricted range ρ1 < ρ < ρ2, yet physical results
are obtained by taking the limits ρ1 → ρo and ρ2 → ∞. As
in Table I, we denote boundary space-time indexes by

μ ¼ 0, 1, 2, 3. We add to the bulk action, SðbulkÞ
5 , several

boundary terms—denoted as SGHY;i, Sλ;i, SP5;2, SV4;2,
SA;2, Sχ;2, and SX ;2—in order to obtain the complete
five-dimensional action, S5:

S5 ¼ SðbulkÞ
5 þ

X
i¼1;2

ðSGHY;i þ Sλ;iÞ þ SP5;2

þ SV4;2 þ SA;2 þ Sχ;2 þ SX ;2: ð49Þ

The boundary actions with subscript i ¼ 1, 2 are localized
at ρ ¼ ρi. We now proceed to discuss each of these terms,
in both gravity and field-theory language.
The Gibbons-Hawking-York boundary actions, SGHY;i,

take the following form:

SGHY;i ¼ ð−Þi
Z

d4x
ffiffiffiffiffiffi
−g̃

p K
2

����
ρ¼ρi

; ð50Þ

where g̃MN is the induced metric on the boundaries, g̃
is its determinant, and K is the extrinsic curvature—see
Appendix B 1. Boundary-localized scalar potentials,
λiðX ; χ;A6Þ, that are SOð5Þ invariant, enter the action as

Sλ;i ¼ ð−Þi
Z

d4x
ffiffiffiffiffiffi
−g̃

p
λiðX ; χ;A6Þ

����
ρ¼ρi

: ð51Þ

These two types of boundary terms are needed to make the
variational problem well-defined, and ultimately ensure
that the background solutions can be consistently truncated
at the boundaries, ρ ¼ ρi, in the holographic direction.
Details about the structure of the potentials can be found in
Ref. [170], but play a marginal role in the following.
The UV-localized actions, SP5;2 and SV4;2, involve the

bulk scalar, X , and a new, boundary-localized field, P5,
transforming as the 5 of SOð5Þ. We refer to P5 as a spurion,
because its dynamics is frozen (in the appropriate limit).
These terms have the same qualitative structure and
implications as the second, sixth, and seventh terms of
the Lagrangian density in Eq. (24). Explicitly, we write
them as follows:

SP5;2 ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
−
1

2
K5g̃μνðDμP5ÞDνP5

− λ5ðPT
5P5 − v25Þ2

�����
ρ¼ρ2

; ð52Þ
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SV4;2 ¼ −
Z

d4x
ffiffiffiffiffiffi
−g̃

p
V4ðX ; χ; P5Þ

����
ρ¼ρ2

; ð53Þ

where K5, λ5, and v5 are free parameters. The potential,
V4ðX ; χ; P5Þ, is SOð5Þ invariant. It depends (besides χ) on
two invariants, ϕ≡ ffiffiffiffiffiffiffiffiffiffiffi

XTX
p

and ψ ≡ XTP5.
The background equation for a boundary-localized,

constant P5 is

4λ5ðPT
5P5 − v25ÞP5α þ

∂V4

∂ψ
Xα ¼ 0: ð54Þ

We take the limit λ5 → ∞, so that jP5j ¼ v5, freezing one
component of the spurion, P5. In the next section, we will
further discuss a limit that involves K5, and which
decouples the four remaining spurion degrees of freedom.
Because of SOð5Þ invariance, without loss of generality, we

fix the background value of P5 to be along its fifth
component

P5 ≡ ð0; 0; 0; 0; v5ÞT: ð55Þ

We assume there exists a value of ψ with ∂ψV4 ¼ 0. Since
V4 is a function of SOð5Þ invariants, ϕ and ψ , then
V4ðχ;X ; P5Þ ¼ V4ðχ;ϕ; jπ⃗jÞ is SOð4Þ invariant. Hence,
SV4

effectively serves as a UV boundary-localized potential
for X (and χ), that captures the explicit breaking of SOð5Þ
to SOð4Þ, due to an external sector.6 All of these steps
realize, in the context of the five-dimensional gravity theory
with boundaries, the mechanism discussed in Sec. III.
Next, the boundary-localized action, SA;2, realizes in the

gravity theory the (weak) gauging of an SOð4Þ ⊂ SOð5Þ
subgroup of the global symmetry of the dual field theory.
We write

SA;2 ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
−
D̂2

v25
g̃μρg̃νσPT

5F μνF ρσP5 −
1

4
D̄2g̃μρg̃νσ

�
FA

μνFA
ρσ −

4

v5
PT
5F μνF ρσP5

������
ρ¼ρ2

; ð56Þ

which, after fixing the spurion to its background value, P5 ¼ P5, becomes

SA;2jP5¼P5
¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
−
1

4
D̂2g̃μρg̃νσF Â

μνF Â
ρσ −

1

4
D̄2g̃μρg̃νσF Ā

μνF Ā
ρσ

�����
ρ¼ρ2

: ð57Þ

We shall show how the choice of coefficients, D̂2 and D̄2,
relates to the SOð4Þ gauge coupling in field theory. We
anticipate here that the two terms appearing in this localized
action are closely related to the third and fourth terms in the
Lagrangian density of Eq. (24).
The circle reduction also left an Abelian symmetry in the

five-dimensional gravity theory, which requires the intro-
duction of the corresponding boundary action for the Uð1Þ
gauge field

Sχ;2 ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
−
1

4
Dχ;2g̃μρg̃νσF

ðχÞ
μν F

ðχÞ
ρσ

�����
ρ¼ρ2

; ð58Þ

with Dχ;2 a (possibly divergent) constant required by
holographic renormalization. This term will not play a
crucial role in the following, but is needed for completeness.
By contrast, the next term is needed for holographic

renormalization and will play an important role in the
following, consisting of a boundary-localized action for the
bulk scalar, X

SX ;2¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
−
1

2
KX ;2g̃μνðDμXÞTDνX

�����
ρ¼ρ2

: ð59Þ

Finally, the complete action of the model also contains
gauge-fixing terms that realize the Rξ gauge. We relegate
their explicit form toAppendixB, as there are no substantive
elements of novelty to this technical part, and we follow the
formalism in Ref. [174], adapted to include the treatment of
the additional, boundary-localized spurion.

B. Boundary conditions for the background solutions

The bulk equations of motion for the background fields,
Eqs. (10)–(12), are not affected by the addition of localized
terms to action. The boundary conditions differ from
Ref. [176], and read as follows:

�
∂rXα−

∂λ1
∂Xα

�����
ρ1

¼0;

�
∂rXα−

∂λ2
∂Xα

þ ∂V4

∂Xα

�����
ρ2

¼0;

�
6∂rχ−

∂λ1
∂χ

�����
ρ1

¼0;

�
6∂rχ−

∂λ2
∂χ

þ∂V4

∂χ

�����
ρ2

¼0;

�
3

2
∂rAþλ1

�����
ρ1

¼0;

�
3

2
∂rAþλ2−V4

�����
ρ2

¼0: ð60Þ

6In the following, we will assume that V4 has been chosen such
that, when evaluated on P5 ¼ P5, it does not depend on v5.
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Recalling that ψ ¼ XTP5, and replacing P5 ¼ P5 ¼
ð0; 0; 0; 0; v5ÞT , we can write the second of these
equations, evaluated at the UV boundary, ρ ¼ ρ2, as
follows:

0 ¼
��

∂rϕ −
∂λ2
∂ϕ

þ ∂V4

∂ϕ

�
Xα

ϕ

þ 2i∂rπÂðtÂÞαβX β þ
∂V4

∂ψ
P5α

�����
ρ2

: ð61Þ

This is solved by imposing the following algebraic con-
straints:

∂rϕjρ2 ¼
�
∂λ2
∂ϕ

−
∂V4

∂ϕ

�����
ρ2

; ∂rπ
Âjρ2 ¼0;

∂V4

∂ψ
¼0: ð62Þ

The boundary conditions for ϕ, χ, and A are only trivially
modified by the presence of V4, in a way that can be
absorbed into a redefinition of the boundary potentials, λi,
hence there is no element of novelty in this respect, and
the solutions are those displayed in Sec. II B.7 The only
significant difference is that the third of the conditions
(62) is satisfied by choosing π⃗ so that jπ⃗j ¼ v, where the
parameter v is related to the vacuum misalignment angle,
and governs the spontaneous breaking to SOð3Þ. Without
loss of generality, we assume that only the fourth compo-
nent of π⃗ is nonzero on the background solutions, i.e.,
π4 ¼ v—in analogy with Sec. III.

C. Truncation of the action to quadratic order

Besides identifying interesting gravity backgrounds,
associated with the field-theory vacuum, the main objective
of this paper is to compute the mass spectrum of their
fluctuations, which correspond to the field-theory bound
states. We hence simplify the action by expanding it in
powers of the fields that vanish in the background and
truncating the resulting action to quadratic order. This
approximation retains all the information needed to

compute two-point functions.8 We retain full functional
dependence of the action on fields having nontrivial
profiles: ϕ, χ, and gMN .
As anticipated, we set the background value of the

spurion, P5 ¼ P5, by taking the limit λ5 → ∞, so that the
fluctuation of its fifth component has infinite mass. We
hence only retain its first four components, treating them as
perturbations. We write the resulting five-dimensional
action, truncated at the quadratic order, as follows:

Sð2Þ
5 ¼ Sðbulk;2Þ

5 þ Sð2Þ
P5;2

þ Sð2ÞV4;2
þ
X
i¼1;2

Sð2Þ
4;i ; ð65Þ

where Sðbulk;2Þ
5 is the bulk part of the action, the boundary

actions Sð2Þ
P5;2

and Sð2ÞV4;2
are localized at ρ ¼ ρ2, while Sð2Þ

4;i

are localized at ρ ¼ ρi (i ¼ 1, 2). In the remainder of this
subsection, we display the explicit form of these terms.
In the backgrounds, the nonzero value of π4 ¼ v breaks

spontaneously SOð4Þ to SOð3Þ. It is convenient to use
indices adapted to the SOð3Þ language, namely Â ¼ 1, 2, 3,
Ã ¼ 5, 6, 7, and Ā ¼ 8, 9, 10, chosen so that tĀ are the
unbroken generators of SOð3Þ. We parametrize the fluc-
tuations of the fourth component of πÂ by writing
π4 ¼ vþ Π4. We note that the physical (mass eigen-)states
in the spin-1 sector of the theory result from mixing of the
two triplets labeled by the Â and Ã indexes. To simplify the
resulting equations, we define the linear combinations

BÂ
6 ¼ cosðvÞAÂ

6 þ sinðvÞAÂþ4
6 ; ð66Þ

BÃ
6 ¼ − sinðvÞAÃ−4

6 þ cosðvÞAÃ
6 ; ð67Þ

BM
Â ¼ cosðvÞAM

Â þ sinðvÞAM
Âþ4; ð68Þ

BM
Ã ¼ − sinðvÞAM

Ã−4 þ cosðvÞAM
Ã: ð69Þ

We hence adopt the following choice of basis for the fields
(other than the metric) that we allow to fluctuate over the
backgrounds9

Φa ¼ fϕ; χg; ð70Þ

Φð0Þa ¼ fBÂ
6 ;A

4
6;B

Ã
6 ;A

Ā
6 g; ð71Þ

VM
A ¼ fχM;BM

Â;AM
4;BM

Ã;AM
Āg; ð72Þ

7Suppose that one has obtained background solutions ϕð0Þ,
χð0Þ, Að0Þ to the system without V4, as in Sec. II, and that these
satisfy the boundary conditions following from a boundary
potential λð0Þ2 . Then, after including V4, one may choose

λ2ðϕ; χ;A6Þ ¼ λð0Þ2 ðϕ; χ;A6Þ þ V4ðϕð0Þ; χð0Þ; jπ⃗j ¼ vÞ ð63Þ

þ ðϕ − ϕð0ÞÞ ∂V4

∂ϕ
ðϕð0Þ; χð0Þ; jπ⃗j ¼ vÞ

þ ðχ − χð0ÞÞ ∂V4

∂χ
ðϕð0Þ; χð0Þ; jπ⃗j ¼ vÞ; ð64Þ

such that the same background profiles of ϕ, χ, and A again
satisfy the updated boundary conditions. Hence, the background
solutions for ϕ, χ, and A are exactly the same as in Sec. II B,
irrespectively of the addition of V4 at the boundary.

8One has to take extra care that the gauging of SOð4Þ is
sufficiently weak. We will return to this point later, and in
Appendix C.

9For v ¼ 0, this basis coincides with the one used in Ref. [176]
(up to a trivial reordering of the fields).
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Hð1ÞA
M ¼

�
0;
sinðvÞ
v

∂Mπ
Â þ g

2
BM

Â; ∂MΠ4 þ g
2
AM

4; 0; 0

�
: ð73Þ

We write explicitly the action, starting from the bulk part, which takes the form

Sðbulk;2Þ
5 ¼

Z
d5x

ffiffiffiffiffiffiffiffi
−g5

p �
R
4
−
1

2
gMNGab∂MΦa

∂NΦb − V5ðΦaÞ

−
1

2
gMNGð0Þ

ab ∂MΦð0Þa
∂NΦð0Þb −

1

2
mð0Þ2

ab Φð0ÞaΦð0Þb

−
1

2
gMNGð1Þ

ABH
ð1Þ
M

AHð1ÞB
N −

1

4
gMOgNPHð1Þ

ABFMN
AFOP

B

�
: ð74Þ

In this expression, the field strengths are FMN
A ≡ 2∂½MVN�A, and the scalar potential is V5ðϕ; χÞ ¼ e−2χV6ðϕÞ. For

completeness, we reproduce here all the entries of the sigma-model matrices, that are independent of v [176]

Gab ¼ diagð1; 6Þ; Gð0Þ ¼
 
e−6χ14×4

e−6χ16×6

!
;

mð0Þ2

g2
¼
 

1
4
ϕ2e−8χ14×4

06×6

!
;

Gð1Þ ¼

0
B@

0

ϕ214×4
06×6

1
CA; Hð1Þ ¼

0
B@

1
4
e8χ

e2χ14×4
e2χ16×6

1
CA: ð75Þ

We now turn attention to the boundary-localized actions, Sð2ÞP5;2
, Sð2ÞV4;2

, and Sð2Þ
4;i . After defining the variables

Pð1ÞÂ
5μ ¼

�
∂μP

Â
5 þ gv5

2
Aμ

Â; ∂μP4
5 þ

gv5
2

Aμ
4

�

¼
�
∂μP

Â
5 þ gv5

2
ðcosðvÞBμ

Â − sinðvÞBμ
Âþ4Þ; ∂μP4

5 þ
gv5
2

Aμ
4

�
; ð76Þ

we find that we can write

Sð2ÞP5
¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
−
1

2
g̃μνK5δÂ B̂P

ð1ÞÂ
5μ Pð1ÞB̂

5ν

�����
ρ¼ρ2

: ð77Þ

The expansion of V4 to quadratic order can be written formally as

Sð2ÞV4;2
¼ −

Z
d4x

ffiffiffiffiffiffi
−g̃

p
fVð0Þ

4 ðϕ; χ; vÞ þ Vð2Þ
4 ðϕ; χ; v; P4

5;Π4Þg
�����
ρ¼ρ2

; ð78Þ

where the zeroth-order contribution, Vð0Þ
4 , is evaluated on the background solutions, while at second order

Vð2Þ
4 ¼ 1

2
∂
2
vV4

�
Π4 −

P4
5

v5

�
2

; with ∂
2
vV4 ¼ sin2ðvÞϕ2v25

∂
2V4

∂ψ2
: ð79Þ

The final contributions to the boundary actions, Sð2Þ
4;i , take the form

Sð2Þ
4;i ¼ ð−Þi

Z
d4x

ffiffiffiffiffiffi
−g̃

p �
K
2
þ λi −

1

2
g̃μνKX ;i∂μϕ∂νϕ −

1

2
g̃μνCð1Þ

iABH
ð1ÞA
μ Hð1ÞB

ν −
1

4
g̃μσ g̃νγDð1Þ

iABFμν
AFσγ

B

�����
ρ¼ρi

; ð80Þ

with Cð1Þ
1 ¼ 0, Dð1Þ

1 ¼ 0, while
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Cð1Þ
2 ¼ KX ;2ϕ

2

0
BBBBBBBBB@

0

13×3
1

03×3
03×3

1
CCCCCCCCCA
; ð81Þ

and

Dð1Þ
2 ¼

0
BBBBBBBB@

Dχ;2
1
2
½D̄2þD̂2þcosð2vÞðD̂2−D̄2Þ�13×3 1

2
sinð2vÞðD̄2−D̂2Þ13×3

D̂2

1
2
sinð2vÞðD̄2−D̂2Þ13×3 1

2
½D̄2þD̂2þcosð2vÞðD̄2−D̂2Þ�13×3

D̄213×3

1
CCCCCCCCA
: ð82Þ

V. FLUCTUATION EQUATIONS AND THE
PARAMETERS OF THE MODEL

In this section, we discuss the fluctuations of all the
fields in the backgrounds of interest, and summarize the
salient features of the gauge-invariant formalism that we
use to compute the mass spectrum reported in Sec. VI (for
further details, including our use of the ADM formalism
[211] and the introduction of gauge-invariant combinations
of the fluctuations, see Appendix B). We find it convenient
to switch between the SOð4Þ language (the SOð4Þ indices
are Â ¼ 1;…; 4 and Ā ¼ 5;…; 10), and the SOð3Þ lan-
guage (with indices Â ¼ 1, 2, 3, Ã ¼ 5, 6, 7, and Ā ¼ 8, 9,
10). We denote the original fields in the action and the
gauge-invariant combinations of fluctuations correspond-
ing to them with different symbols, summarizing the
correspondences in Table II.
We apply the gauge-invariant formalism of Refs. [133–

135,166–170] to the treatment of tensor, eμν, and scalar
fluctuations of fields carrying no SOð4Þ quantum numbers,
aϕ and aχ . Scalar fluctuations associated with nontrivial

SOð3Þ irreducible representations, denoted as fBÃ
6 ;A

Ā
6 g

and fBÂ
6 ;A

4
6g, form SOð4Þ multiplets transforming in the

adjoint and fundamental representations, respectively—see
Table II. We treat them in the same way as aϕ and aχ ,
although they do not mix with components of the metric,
and they do not introduce significant elements of novelty in
the paper—see Appendix B 1 and Refs. [175,176].
The vector fluctuations, vμ (v in the following), asso-

ciated with the Uð1Þ gauge field, χM, complete the set of
SOð4Þ singlets in the model. Their treatment requires gauge
fixing, but ultimately the study of the mass spectrum is
carried out by focusing on the (gauge-invariant) transverse

part of the fluctuations, which obeys the differential
equation [175]

0 ¼ ½∂2ρ þ ð2∂ρAþ 7∂ρχÞ∂ρ − e2χ−2Aq2�v; ð83Þ

subject to the UV boundary condition

0 ¼ ½e7χ∂ρ þDχ;2e−2Aq2�vĀjρ¼ρ2
; ð84Þ

TABLE II. Summary table associating the fields in five-
dimensional language (left) to their fluctuations in the four-
dimensional, ADM formalism (right). Notice the existence of
mixing in the physical states denoted by the parenthesis: the mass
eigenstates for ðaϕ; aχÞ and ðvμÃ; vμÂÞ are admixtures of the
original fluctuations in the theory. For some of the spin-0
fluctuations, mass degeneracies survive even after the spontaneous
breaking SOð4Þ → SOð3Þ, hence the eigenstates can be grouped
together in the SOð4Þ language.

Field Fluctuation

gMN eμν
χM vμ
ðϕ; χÞ ðaϕ; aχÞ
BÂ
6

A4
6

�
aÂ ¼

�
aÂ

a4

BÃ
6

AĀ
6

�
aĀ ¼

�
aÃ

aĀ

ðBM
Â;BM

ÃÞ ðvμÂ; vμÃÞ
AM

4 vμ4

AM
Ā vμĀ

πÂ

Π4

�
pÂ ¼

�
pÂ

p4
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together with the Neumann boundary condition,
∂ρvjρ¼ρ1

¼ 0, in the IR. The mass spectrum is given by
those M2 ≡ −q2 for which solutions exist that satisfy both
the bulk equations of motion and boundary conditions
above. In the following, we make the choice Dχ;2 ¼ 0, as
this Uð1Þ is a global symmetry in the field theory dual.
We devote central attention to the fluctuations that are

affected by SOð5Þ and SOð4Þ symmetry breaking, given by
the vectors vÃ, vĀ, vÂ, and v4, associated with the fields
defined in Eq. (72) (except χM), together with the pseu-

doscalars pÂ and p4, associated with Hð1ÞÂ
M and Hð1Þ4

M
defined in Eq. (73). The treatment of these vector and
pseudoscalar states requires adding appropriate gauge-
fixing terms. We adopt the Rξ-gauge, and report details
of the procedure in Appendix B 2. The (gauge-invariant)
bulk equations of motion associated with the transverse
polarizations of the spin-1 fluctuations in the symmetry-
breaking backgrounds, as well as the pseudoscalar ones,

are manifestly SO(4) invariant, and can be written as
follows [176]:

0 ¼ ½∂2ρ þ ð2∂ρAþ ∂ρχÞ∂ρ − e2χ−2Aq2�vĀ; ð85Þ

0 ¼
�
∂
2
ρ þ ð2∂ρAþ ∂ρχÞ∂ρ −

g2ϕ2

4
− e2χ−2Aq2

�
vÂ; ð86Þ

0 ¼
�
∂
2
ρ −
�
2∂ρAþ ∂ρχ þ

2∂ρϕ

ϕ

�
∂ρ −

g2ϕ2

4
− e2χ−2Aq2

�
pÂ:

ð87Þ

The UV boundary conditions, at ρ ¼ ρ2, induce sponta-
neous symmetry breaking to SOð3Þ ⊂ SOð4Þ. The vectors
that transform as triplets, 3, of SOð3Þ, but live along the
SOð5Þ=SOð3Þ broken directions, are denoted as vÃ and vÂ.
They mix and obey the following boundary conditions:

0 ¼
�
eχ∂ρ þ

g2

4
sinðvÞ2K5v25 þ

1

2
ðD̄2 þ D̂2 þ cosð2vÞðD̄2 − D̂2ÞÞe−2Aq2

�
vÃ
����
ρ¼ρ2

þ sinð2vÞ
2

�
−
g2

4
K5v25 þ ðD̄2 − D̂2Þe−2Aq2

�
vÂ
����
ρ¼ρ2

; ð88Þ

0 ¼
�
eχ∂ρ þ

g2

4
ðKX ;2ϕ

2 þ cosðvÞ2K5v25Þ þ
1

2
ðD̄2 þ D̂2 þ cosð2vÞðD̂2 − D̄2ÞÞe−2Aq2

�
vÂ
����
ρ¼ρ2

þ sinð2vÞ
2

�
−
g2

4
K5v25 þ ðD̄2 − D̂2Þe−2Aq2

�
vÃ
����
ρ¼ρ2

: ð89Þ

The boundary conditions for the other vectors, vĀ and v4, are given by

0 ¼ ½eχ∂ρ þ D̄2e−2Aq2�vĀjρ¼ρ2
; ð90Þ

0 ¼
�
eχ∂ρ þ

g2

4
ðKX ;2ϕ

2 þ K5v25Þ þ D̂2e−2Aq2
�
v4
����
ρ¼ρ2

: ð91Þ

The presence of the spurion, P5, does not affect the boundary conditions for the pseudoscalar triplet, pÂ

0 ¼ ½KX ;2e−χ∂ρ þ 1�pÂjρ¼ρ2
; ð92Þ

yet, it modifies the boundary condition for the SOð3Þ singlet, p4, that at ρ ¼ ρ2 obeys

0 ¼
��

KX ;2 þ
K5v25
ϕ2

þ K5v25
∂
2
vV4

KX ;2e−2Aq2
�
e−χ∂ρ þ

�
1þ K5v25

∂
2
vV4

e−2Aq2
��

p4
����
ρ¼ρ2

: ð93Þ

In the IR, the boundary conditions obeyed by the fluctuations at ρ ¼ ρ1 are significantly simpler. They reduce to

Neumann boundary conditions for the vectors, with ∂ρvÃðρ1Þ ¼ ∂ρvÂðρ1Þ ¼ ∂ρvĀðρ1Þ ¼ ∂ρv4ðρ1Þ ¼ 0, and to Dirichlet

boundary conditions for the pseudoscalars, with pÂðρ1Þ ¼ p4ðρ1Þ ¼ 0. The IR boundary conditions do not introduce
additional symmetry breaking, and could be recast, equivalently, in terms of SOð4Þ multiplets.
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A. Model parameters and SOð4Þ gauging
It is instructive to compute someof the two-point functions,

in particular hAĀ
μ ðqÞAĀ

ν ð−qÞi and hA4
μðqÞA4

νð−qÞi, and
exhibit their structure. We separate the transverse and
longitudinal polarizations, and write the results in terms of

the projectors, Pμν ¼ ημν −
qμqν
q2 and qμqν

q2 , highlighting the

dependence on gauge-fixing parameters, M̄2 andM4
2 (defined

in Appendix B 2), in the longitudinal part of the propaga-
tors only

hAĀ
μ ðqÞAĀ

ν ð−qÞi¼ð−iÞ lim
ρ2→∞

�
e−2A

�
D̄2e−2Aq2þeχ

∂ρvĀ

vĀ

�
−1
����
ρ¼ρ2

Pμνþe−2A
�

1

M̄2

e−2Aq2þeχ
∂ρv

Ā
L

vĀL

�
−1
����
ρ¼ρ2

qμqν
q2

�
; ð94Þ

hA4
μðqÞA4

νð−qÞi ¼ ð−iÞ lim
ρ2→∞

�
e−2A

�
D̂2e−2Aq2 þ

g2

4
K5v25 þ

g2

4
KX ;2ϕ

2 þ eχ
∂ρv4

v4

�
−1
����
ρ¼ρ2

Pμν

þ e−2A
�

1

M4
2

e−2Aq2 þ g2

4
K5v25 þ

g2

4
KX ;2ϕ

2 þ eχ
∂ρv4L
v4L

�
−1
����
ρ¼ρ2

qμqν
q2

�
: ð95Þ

Here, v4;ĀL stand the longitudinal (L) parts of the corre-
sponding gauge fields. They appear in the unphysical,
longitudinal parts of the two-point functions, that contain
gauge-fixing parameters. We include them for complete-
ness, and their bulk equations of motion and boundary
conditions can be found in Appendix B 2.
A careful analysis of the (UV) expansions in powers

of small z≡ e−ρ, shows that A ≃ 4χ ≃ − 4
3
logðzÞ and

ϕ ≃ ϕJzΔJ—see Eqs. (16)–(18). The second and third terms
contribute to hA4

μðqÞA4
νð−qÞi, if we impose the scalings

K5 ¼
k5
v25

z8=3; KX ;2 ¼ kXz8=3−2ΔJ ; ð96Þ

where we introduced new parameters, k5 and kX , that do
not depend on z.
In order to see how to fix D̄2 and D̂2, we work out the

example of Δ ¼ ΔJ ¼ 2—the generalization to any Δ
requires a case-by-case analysis, but is straightforward.
By building upon the small-z expansions reported in
Appendix B 3, one sees that in order to cancel divergences
one must choose

D̄2 ¼ −z−1 þ 1

ε̄2
; D̂2 ¼ −z−1 þ 1

ε̂2
; ð97Þ

with ε̄2 and ε̂2 two free parameters, independent of z. With
these replacements, one can take the z → 0 limit, to find

PμσPνγhAĀ
μ ðqÞAĀ

ν ð−qÞi ¼ −i
�
q2

ε̄2
−
3vĀ3
vĀ0

�
−1
Pσγ; ð98Þ

PμσPνγhA4
μðqÞA4

νð−qÞi

¼ −i
�
q2

ε̂2
−
3v43
v40

þ g2k5
4

þ g2kXϕ2
J

4

�
−1
Pσγ: ð99Þ

Choosing the values of ε̄ and ε̂ corresponds to choosing the
strength of the (weak) gauge couplings.10 After rescaling
the normalization of the fields, we set ε̂ → 0. Only the
SOð4Þ subgroup is gauged in the dual field theory, with
coupling strength that, for small ε̄, is approximately equal
to g4 ≡ ε̄g.11 These expressions are valid for small q2 and ε̄;
we discuss how to improve these results, and obtain the
physical two-point function valid for all q2, in Appendix C.
Finally, in order to obtain a nontrivial contribution to

Eq. (93), from ∂
2
vV4, for any Δ, we must impose the scaling

∂
2
vV4 ¼ m2

4z
16=3; ð100Þ

which introduces the parameter m2
4. This parameter is the

analog of the combination λf2 sin2 θ, in Eq. (27).
For any choices of the free parameters discussed above,

one is describing the spontaneous breaking of an exact,
gauge symmetry in the dual field theory (as in Sec. III),
without violating the gauge principle (and unitarity). But let
us now summarize the order of limits that allows to make
contact with phenomenological requirements, along the
lines of what we did in Sec. III. Table III may help to follow
this process. By first taking the limit λ5 → ∞, which
introduces an infinite mass term in the action SP5

of
Eq. (52), the absolute value of P5 is frozen. Next, we
remove the IR and UV regulators by taking the limits ρ1 →
ρo and ρ2 → ∞. The parameter k5 survives this limiting
procedure, and by further taking the limit k5 → ∞, the

10If one sets ε̄ ¼ ε̂≡ ε, then the full SOð5Þ is (weakly) gauged
in the dual field theory, and, provided ε is small, the gauge
coupling in four dimensions, measured at q2 ≃ 0, is approx-
imately given by g4 ≡ εg.

11This choice could also be implemented by picking D̂2 ¼ 0,
and letting ε̂ → 0 as a function of z → 0. Either choice is
analogous to the limit κ̃ → ∞, discussed in Sec. III.
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couplings of the remaining degrees of freedom in P5 vanish
as well. At this point, P5 is a genuine spurion: although we
introduced it as a field, obeying its characteristic trans-
formation rules under a symmetry transformation, it has
been reduced to a vector of real numbers. Finally, the limit
ε̂ → 0 incorporates the gauging of the SOð4Þ subgroup,
by effectively freezing the gauge bosons along the
coset SOð5Þ=SOð4Þ.12
We conclude by providing an explicit example of how to

set up the UV boundary conditions for the vector and
pseudoscalar modes. We specify to the particular case of
Δ ¼ 2; other cases requiring a case-by-case analysis. We
make use of the UV expansions for the fluctuations, as
reported in Appendix B 3, which we replace into the
boundary conditions given in Eqs. (88)–(93), and obtain
relations between the leading and subleading coefficients
appearing in the general solution of the bulk second-order
linearized equations. This results in the following relations13:

0 ¼ q2

ε̄2
vĀ0 − 3vĀ3 ; ð101Þ

0 ¼ cosðvÞvÂ0 − sinðvÞvÃ0 ; ð102Þ

0 ¼ −3 cosðvÞvÃ3 þ sinðvÞ
�
g2

4
kXϕ2

Jv
Â
0 − 3vÂ3

�

þ q2

ε̄2
ðcosðvÞvÃ0 þ sinðvÞvÂ0 Þ; ð103Þ

0 ¼ v40; ð104Þ

0 ¼ pÂ0 − kXp
Â
1 ; ð105Þ

0 ¼ p40 −
�
kX þ m2

4

q2ϕ2
J

�
p41: ð106Þ

The body of our numerical study, exemplified by the
plots in Sec. VI, consists of an extensive study of the
parameter space of the model, in which we studied in detail
the dependence of the whole spectrum of fluctuations on
the remaining free parameters of the model, which we
summarize as follows.

(i) The background functions are determined by the
parameters Δ (associated with the dimension of
the dual operator inducing SOð5Þ breaking) and
ϕI (the parameter in the IR expansion that controls
the profile for ϕ, including how much it departs from
0). We restrict the former to lie in the range
3
2
≤ Δ ≤ 7

2
, and the latter to choices that lie along

the stable branch of background solutions, as iden-
tified in Ref. [175], by requiring that ϕI ≤ ϕIðcÞ,
with ϕIðcÞ the critical value at which a first-order
phase transition is taking place.

(ii) The SOð4Þ gauge coupling in the dual field theory
interpretation is approximately given by g4 ≡ ε̄g,
where g is the bulk coupling. We require the
renormalization constant ε̄ to be small enough to
apply perturbation theory.

(iii) The vacuum misalignment angle, v, and the param-
eter, m2

4, that encodes the explicit breaking of SOð5Þ
after the appropriate limits have been taken, are both
dialed to produce an appreciable separation of mass
scales between parametrically light states and towers
of heavy resonances.

(iv) The constant kX deserves further discussion, and we
devote the short Sec. V B to it.

(v) In presenting numerical results, we specify the
values of ρ1 − ρo and ρ2 − ρo used in generating
them. We verified that the results do not depend on
these choices, within the set numerical accuracy of
our study.

We highlight again that we adopt boundary conditions
for the gauge fields along the unbroken SOð3Þ that contain
additional terms, in respect to earlier literature, and allow to
remove the cutoff dependence. The boundary conditions
for other modes are more complicated, though, as a result of
the symmetry-breaking effects and Higgs phenomena. One
of the important differences between this study and the
literature is indeed the implementation of the gauging and
symmetry-breaking related phenomena directly in the
gravity calculation.
We conclude with two clarifications. First of all, the bulk

equations and boundary conditions we discussed here are

TABLE III. Summary table of boundary terms and parameters
appearing in our model. The first column contains the list of
boundary terms added to the theory, and the second the
parameters appearing in them before specifying the limits needed
for holographic renormalization and gauging. The free param-
eters affecting the observables are reported in the third column.
The last column references where the relevant terms and
quantities appear for the first time in the text.

Boundary
term Parameters

Free
parameters Definition

SGHY;i (50)
Sλ;i m2

X ;i (51), text after (108)
Sχ;2 Dχ;2 (58)
SP5;2 K5ðk5Þ; λ5; v5 (52) and (96)
SV4;2 ∂

2
vV4ðv;m2

4Þ v;m2
4

(53), text after (62) and
(100)

SA;2 D̄2ðε̄Þ; D̂2ðε̂Þ ε̄ (56) and (97)
SX ;2 KX ;2ðkX Þ kX (59) and (96)

12One may verify that these two limits, k5 → ∞ and ε̂ → 0,
commute, and that, moreover, the results are consistent with
putting D̂2 ¼ 0.

13The substitution q2 → e2χU−2AUq2 reinstates the dependence
on AU and χU in these expressions. In order for this to be the case,
one needs to also have properly reinstated AU and χU in Eqs. (96)
and (97).
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used to identify the eigenstates withM2 ¼ −q2 ≠ 0. For the
massless modes, we already have the spectrum: the
multiplicity is determined by the symmetries of the system.
For example, the unbroken SOð3Þ leads to three massless
vector states. Secondly, the gauging process we outlined,
in the presence of a nontrivial bulk profile for ϕ in a
D-dimensional gravity background that is asymptotically
AdS, hence reproducing the lines of thought of Sec. III,
relies on the value of Δ lying in the range D−3

2
≤ Δ ≤ Dþ1

2
.

In this range of Δ, the scalar field in the gravity description
admits more than one interpretation in terms of operators in
the dual field theory [212]. Indeed, in the numerical
examples we will display, we choose Δ ¼ 2, with
D ¼ 6. We elaborate further on this point in the next,
short subsection.

B. More on the gauging of SOð4Þ and the role of kX
We find it useful to pause and digress, in order to clarify

the role of the parameter kX. In the gravity theory, the action
is SOð5Þ gauge-invariant, but the background solutions
have Xα ≠ 0, breaking (spontaneously) the SOð5Þ sym-
metry to SOð4Þ. The standard field-theory interpretation
invokes an admixture of explicit and spontaneous breaking
of a global SOð5Þ symmetry, encoded in the two non-
vanishing parameters, ϕJ and ϕV , appearing in the UV
expansion of the background solutions in Eqs. (16)–(18).
The (asymptotic) boundary values of the bulk fields
become (up to normalizations) the sources for composite
operators on the field theory side, appearing as a deforma-
tion of the formZ

d5xX ð0Þ
α Oα; where X ð0Þ

α ≡ lim
z→0

ðz−ΔJXαÞ; ð107Þ

where Oα is the (composite) operator dual to Xα.
The gauged SOð4Þ subgroup of SOð5Þ is not the same

SOð4Þ preserved by the aforementioned deformation. But
explicitly broken symmetries cannot be gauged. This

obstruction requires turning the boundary value, X ð0Þ
α , into

a dynamical field, to restore the full SOð5Þ invariance of the
field theory. One can then take the appropriate limits
to turn the field is a nondynamical spurion. But, to do so,
the field/spurion (before freezing) must admit a (unitary)
field theory description, which restricts its scaling dimen-
sion to lie above the unitarity bound. This is possible only if

D − 3

2
≤ Δ ≤

Dþ 1

2
; ð108Þ

with D ¼ 6 in the present case.
The boundary-localized potentials of the sigma-model

fields, λi, include mass terms, and we take the limit of
infinite boundary masses, m2

X ;i → ∞, when setting up the
boundary conditions for the corresponding fluctuations, to
freeze the modulus of Xα at the boundaries. This is

analogous to the limit λ5 → þ∞ for the spurion P5, but
also related to the limit λΣ → þ∞ discussed in Sec. III.
Similarly, the parameter kX is analogous to k5. In
Ref. [176], the boundary conditions were chosen such that
the limit kX → þ∞ was implemented, leading the four
extra massless degrees of freedom (the PNGBs associated
with the spontaneous breaking of SOð5Þ to SOð4Þ due to

the VEVof X ð0Þ
α ) to decouple. Here, instead, we keep kX as

a (finite) free parameter. Three of the massless components
of the scalar are eaten by the Higgs mechanism, and
become the longitudinal components for the massive gauge
fields along the SOð4Þ=SOð3Þ coset. The fourth component
(morally corresponding to the Higgs boson in a CHM
implementation of these ideas) acquires a mass, due to the
explicit breaking encoded in m2

4 ≠ 0.

FIG. 2. Mass spectrum, M2

jMj, of pseudoscalar fluctuations, p
Â

(lines) and p4 (crosses), as a function of the parameterm2
4, for two

representative choices, kX ¼ 1 (top panel) and kX ¼ 5 (bottom
panel). The spectrum shown is that of the theory prior to gauging

the SOð4Þ subgroup, hence the pÂ sector contains massless
modes, Higgsed away in the gauged case. All plots have Δ ¼ 2,
g ¼ 5, ϕI ¼ ϕIðcÞ ≈ 0.3882, and the values of the IR and UV
cutoffs are, respectively, ρ1 − ρo ¼ 10−9 and ρ2 − ρo ¼ 5.
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The essential elements of novelty discussed in this
subsection can be summarized as follows. As a result of
the fact that we made X ð0Þ

α dynamical, the standard
quantization interpretation dictates that the breaking of
SO(5) associated with the bulk scalar field is, in field theory
terms, spontaneous, and not explicit—unlike in our pre-
vious work [175,176]. Hence, we can gauge a (sponta-
neously) broken subgroup. Nevertheless, we find that this is
admissible only in the window of Δ in which both standard
and alternative quantizations are allowed, as this is a

necessary requirement to allow X ð0Þ
α to be dynamical.

VI. SPECTRUM

In this section, we present examples of the numerical
results we obtained for the complete mass spectrum of
fluctuations, and its dependence on the model parameters.

For concreteness, we set Δ ¼ 2, ϕI ¼ ϕIðcÞ ≈ 0.3882,
ρ2 − ρo ¼ 5, and ρ1 − ρo ¼ 10−9, throughout the section.
Figures 2–5 illustrate the spectrum dependence on the
residual freedom encoded in the choices of ε̄, g, v, m2

4, and
kX . All spectra, except for Fig. 5, are normalized so that the
lightest of the SOð3Þ-singlet spin-2 fluctuations, eμν, has
unit mass.
Figure 2 displays the dependence of the mass spectrum

of the pseudoscalar fluctuations, pÂ and p4, as a function of
the parameterm2

4, for two representative choices of kX . The
spectra in these two sectors do not depend on ε̄ or v. Several
interesting features are worth commenting about. We notice

that the spectrum of pÂ contains three exactly massless
states, that disappear when the SOð4Þ subgroup is gauged,
and we work in unitary gauge, as they provide the
longitudinal components for three of the vector bosons.

FIG. 3. Mass spectrum, M, of fluctuations, including pseudo-

scalar, p4 (purple crosses), pÂ (purple diamonds), vectors vĀ

(black diamonds), v4 (black crosses), vÂ and vÃ (green crosses),
scalars aĀ (blue diamond), and aÂ (blue crosses), active scalars,
aϕ; aχ (blue dots), graviphoton v (black dots), and spin-2 tensors,
e (red dots), as a function of the misalignment angle, v, for fixed
values of kX ; m2

4, and ε̄. The bottom panel is a detail of the top
one. All plots have Δ ¼ 2, g ¼ 5, and ϕI ¼ ϕIðcÞ ≈ 0.3882, and
the values of the IR and UV cutoffs are, respectively, given by
ρ1 − ρo ¼ 10−9 and ρ2 − ρo ¼ 5.

FIG. 4. Mass spectrum, M, of fluctuations, including pseudo-

scalar, p4 (purple crosses), pÂ (purple diamonds), vectors vĀ

(black diamonds), v4 (black crosses), vÂ and vÃ (green crosses),
scalars aĀ (blue diamond), and aÂ (blue crosses), active scalars,
aϕ; aχ (blue dots), graviphoton v (black dots), and spin-2 tensors,
e (red dots), as a function of the parameter ε̄2, for fixed values of
kX ; m2

4, and v. The bottom panel is a detail of the top one. All
plots have Δ ¼ 2, g ¼ 5, ϕI ¼ ϕIðcÞ ≈ 0.3882, and the values of
the IR and UV cutoffs are, respectively, given by ρ1 − ρo ¼ 10−9

and ρ2 − ρo ¼ 5.
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(a) (b)

(c)

FIG. 5. Mass spectrum, M, of fluctuations, normalized to the mass, mH , of the lightest p4 state, including pseudoscalars, pÂ (purple),

p4 (purple dashed), vectors, vÂ and vÃ (green), vĀ (black), v4 (black dashed), v (black dotted), scalars, aϕ; aχ ; aĀ; aÂ (blue) and
spin-2 tensors, e (red), for three values of the coupling g: (a) g ¼ 2; v ¼ 0.15; g4 ¼ 0.7; m2

4 ¼ 0.1852, (b) g ¼ 5;
v ¼ 0.1724; g4 ¼ 0.7; m2

4 ¼ 0.192, (c) g ¼ 8; v ¼ 0.17; g4 ¼ 0.7; m2
4 ¼ 0.1852. All plots have Δ ¼ 2, ϕI ¼ ϕIðcÞ ≈ 0.3882, and

kX ¼ 1. The IR and UV cutoffs are given by ρ1 − ρo ¼ 10−9 and ρ2 − ρo ¼ 5, respectively.
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A tachyonic mode appears in p4 if one chooses m2
4 < 0,

which is hence forbidden. Positive, but small values of m2
4,

close to zero, lead to a small mass for the physical state
corresponding to the PNGB responsible for SOð4Þ sponta-
neous symmetry breaking. (If this were a composite Higgs
model, such a state would be identified with the Higgs
boson.)
Figures 3 and 4 show the complete spectra, for represen-

tative choices of g, kX ,Δ, ϕI , andm2
4, as a function of v and

ε̄2, respectively. Superficially, the spectra appear to be quite
complicated, due to the large number of states, and details
depend on the choices of parameters. Yet, the figures display
a few important general features. First, only a small number
of states are light: themassless vectors corresponding to zero
modes in the unbroken, gauged SOð3Þ sector, the lightest of
thep4 pseudoscalars, and the lightest combination of vectors
in the SOð4Þ=SOð3Þ coset. All other states have masses that
are of the order of the typical scale in the theory, that we
identify with the mass of the lightest spin-2 state. A small
hierarchy emerges between these two groups of states.
Furthermore, as expected on general grounds, the mass of
the lightest vector states growswhen either of v or ε̄2 is small
and growing, and vanishes when either of these two
parameters vanishes, which are the natural expectations
for vector bosons associated with the Higgs mechanism for
spontaneous breaking of a weakly coupled gauge theory.
In Fig. 5, we show three numerical examples of the

spectrum, aimed at illustrating how a semirealistic imple-
mentation of this model as a CHM would look like. We set
aside the differences with the standard model, purely for
illustration purposes, and interpret the lightest state in the p4

fluctuations as theHiggs boson. For the sole purposes of this
exercise, we call its massmH, and measure the other masses
in units of mH. We fix Δ ¼ 2 and ϕI ¼ ϕIðcÞ ≈ 0.3882,
impose the requirement that g4 ¼ ε̄g ¼ 0.7—of the order of
the SUð2ÞL coupling in the standard model—and adjust the
other parameters so that the ratio of mass between

the lightest fluctuation in the spin-1 (vÂ and vÃ) sector,
and the spin-0 (p4) sector, be approximately given by
MZ=mH ≃ 0.73—the ratio between the experimental values
of the mass of the Z and Higgs bosons.
This model is not realistic, and this final exercise should

be taken with a grain of salt. Yet, it meets its purpose, and
demonstrates that it is possible, within this model, to
produce a small hierarchy between the Higgs and Z mass
on one side, and, on the other side, the towers of new bound
states predicted by the theory. It is also worth noting that the
next-to-lightest states appear to be the spin-0 states, with
spin-1 states and spin-2 states significantly heavier.

VII. OUTLOOK

In summary, we demonstrated how to build a bottom-up,
holographicmodel that, at low energies, can be interpreted in
dual field theory terms as a sigma-model with SOð5Þ global

symmetry broken to SOð4Þ. An SOð4Þ subgroup is gauged.
The presence of explicit SOð5Þ symmetry-breaking inter-
actions leads to vacuum misalignment and to the sponta-
neous breaking of the gauged SOð4Þ to its SOð3Þ gauge
group. Much of this paper is devoted to the nontrivial
development of the formalism, showing that symmetry
breaking can be consistently triggered by a bulk scalar field
in the gravity theory, in which the SOð5Þ is gauged.
It is worth noticing that this can be done without violating
the gauge principle, despite the presence of explicit sym-
metry breaking in the dual field theory. But this can be done
consistently only if the bulk field triggering symmetry
breaking corresponds in the dual field theory to an operator
with scaling dimension restricted to the range D−3

2
≤

Δ ≤ Dþ1
2
, for reasons described in the body of the paper.

A significant distinctive feature of this proposal is that
the gravity background is completely smooth, in a way that
mimics confinement in the dual field theory and leads to the
introduction of a mass gap. Although more sophisticated
holographic descriptions of confinement may require
further extensions, and although we did not yet implement
a realistic realization of the electroweak model, the study of
the spectrum we performed and reported here indicates that
the phenomenology is quite simple, as expected in CHMs
based on the SOð5Þ=SOð4Þ coset. All the new particles are
parametrically heavy in respect to the bosons that play the
role of the Z, W, and Higgs boson. Because a (custodial)
SOð4Þ symmetry is built into the model, one expects a
realistic realization of a CHM based on this model to have
escaped indirect detection although a detailed calculation of
all precision on electroweak parameters is needed.
To build a fully realistic model, that might be detectable

in direct collider searches, requires additional nontrivial
steps. First, the model has a gauged SOð4Þ symmetry, while
the SM gauge symmetry is SUð2ÞL ×Uð1ÞY , and, further-
more, the quantum assignments of the standard-model
fermions require identifying an additional Uð1Þ global
symmetry, related to baryon and lepton number, so that
hypercharge assignments are realistic. We leave this task
for future work.
Second, this theory does not contain fermions. We

anticipated in the body of the paper that we could proceed
in two ways toward their introduction: either by assuming
that all fermions are localized on the UV boundary, or that
there are additional bulk fermions, transforming in the
spinorial representation, 4, of SOð5Þ. These ingredients
would then determine the mechanism for mass generation
for the SM fermions, and in turn the contribution of the
fermions to the effective potential triggering spontaneous
symmetry breaking of the gauge symmetry via vacuum
misalignment. Also this task is left for future investigations.
Finally, the techniques illustrated in this paper can be

applied to a large class of holographic models in which
bulk scalar fields implement symmetry breaking. In par-
ticular, there are clear similarities between the gravity set up
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we discussed here and the one in Ref. [150], which is based
on maximal supergravity in D ¼ 7 dimensions, and has
bulk SOð5Þ gauge symmetry. As discussed in the
Introduction, it is still an open challenge to identify a
UV-complete CHM model based on the SOð5Þ=SOð4Þ
coset, in which the gravity theory is embedded into a
known supergravity. The results of this paper provide a
major step in this direction.
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APPENDIX A: BASIS OF SOð5Þ GENERATORS

Wepresent here an example of a basis ofSOð5Þ generators,
used in the body of the paper, taken from Ref. [176].

t1 ¼ i
2

0
BBBBBB@

0 0 0 0 −1
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

1
CCCCCCA
; t2 ¼ i

2

0
BBBBBB@

0 0 0 0 0

0 0 0 0 −1
0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

1
CCCCCCA
; t3 ¼ i

2

0
BBBBBB@

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −1
0 0 0 0 0

0 0 1 0 0

1
CCCCCCA
; t4 ¼ i

2

0
BBBBBB@

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −1
0 0 0 1 0

1
CCCCCCA
;

t5 ¼ i
2

0
BBBBBB@

0 0 0 −1 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

1
CCCCCCA
; t6 ¼ i

2

0
BBBBBB@

0 0 0 0 0

0 0 0 −1 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

1
CCCCCCA
; t7 ¼ i

2

0
BBBBBB@

0 0 0 0 0

0 0 0 0 0

0 0 0 −1 0

0 0 1 0 0

0 0 0 0 0

1
CCCCCCA
;

t8 ¼ i
2

0
BBBBBB@

0 0 −1 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1
CCCCCCA
; t9 ¼ i

2

0
BBBBBB@

0 0 0 0 0

0 0 −1 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

1
CCCCCCA
; t10 ¼ i

2

0
BBBBBB@

0 −1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1
CCCCCCA
; ðA1Þ

We find it convenient to present also a basis of SUð4Þ, adapted from Ref. [67], written in terms of 4 × 4 Hermitian
matrices. The adjoint representation of SUð4Þ decomposes as 15 ¼ 5 ⊕ 10 in Spð4Þ ∼ SOð5Þ, both being used in the body
of the paper. We order the basis so that ΓA, for A ¼ 1;…; 5, spans the coset SUð4Þ=Spð4Þ, and hence can be used to describe
the 5 of Spð4Þ, while the generators of Spð4Þ are denoted TA, with A ¼ 1;…; 10. We conventionally normalize
TrðTATBÞ ¼ 1

4
δAB ¼ TrðΓAΓBÞ, for all the SUð4Þ matrices. The ΓA matrices are

Γ1 ¼ 1

4

0
BBB@

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

1
CCCA; Γ2 ¼ 1

4

0
BBB@

0 −i 0 0

i 0 0 0

0 0 0 i

0 0 −i 0

1
CCCA; Γ3 ¼ 1

4

0
BBB@

0 0 0 −i
0 0 i 0

0 −i 0 0

i 0 0 0

1
CCCA;

Γ4 ¼ 1

4

0
BBB@

0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0

1
CCCA; Γ5 ¼ 1

4

0
BBB@

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

1
CCCA: ðA2Þ
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The generators of Spð4Þ, the 10 of Spð4Þ ∼ SOð5Þ are

T1 ¼ 1

4

0
BBBBB@

0 i 0 0

−i 0 0 0

0 0 0 i

0 0 −i 0

1
CCCCCA; T2 ¼ 1

4

0
BBBBB@

0 1 0 0

1 0 0 0

0 0 0 −1
0 0 −1 0

1
CCCCCA; T3 ¼ 1

4

0
BBBBB@

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

1
CCCCCA;

T4 ¼ 1

4

0
BBBBB@

0 0 0 i

0 0 i 0

0 −i 0 0

−i 0 0 0

1
CCCCCA; T5 ¼ 1

4

0
BBBBB@

0 0 i 0

0 0 0 −i
−i 0 0 0

0 i 0 0

1
CCCCCA; T6 ¼ 1

4

0
BBBBB@

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

1
CCCCCA;

T7 ¼ 1

4

0
BBBBB@

−1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1

1
CCCCCA; T8 ¼ 1

4

0
BBBBB@

0 0 1 0

0 0 0 −1
1 0 0 0

0 −1 0 0

1
CCCCCA T9 ¼ 1

4

0
BBBBB@

0 0 −i 0

0 0 0 −i
i 0 0 0

0 i 0 0

1
CCCCCA

T10 ¼ 1

4

0
BBBBB@

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

1
CCCCCA: ðA3Þ

They can be written as commutators of two ΓA matrices.
For example, T1 ¼ −2i½Γ1;Γ5�. Similar relations hold for
the other generators.

APPENDIX B: FIVE DIMENSIONAL
FORMALISM

In this appendix, we report technical details on the
treatment of gauge-invariant fluctuations. Most of this
material is borrowed from the literature, but we find it
useful to summarize it here, to make the exposition self-
contained, and the notation coherent and self-consistent.

1. Scalars coupled to gravity

We report here the salient features of the gauge-invariant
formalism developed in Refs. [133–135,166–170].
Borrowing from Refs. [167,170], consider n real scalars,
Φa, with a ¼ 1;…; n; the action, SD, is written in general
as follows:

SD ¼
Z

dDx
ffiffiffiffiffiffi
−g

p �
R
4
−
1

2
GabgMN

∂MΦa
∂NΦb − VðΦaÞ

�
:

ðB1Þ

(In this paper, the relevant scalars are denoted as

fχ;ϕ;BÃ
6 ;A

Ā
6 ;B

Â
6 ;A

4
6g, hence n ¼ 12, and the

dimensionality of the system is D ¼ 5.) The backgrounds
are described by the ansatz

ds2D ¼ dr2 þ e2AðrÞημνdxμdxν; ðB2Þ

Φa ¼ ΦaðrÞ; ðB3Þ

in which the background functions depend only on the
radial direction, r. The connection symbols are

ΓP
MN ≡ 1

2
gPQð∂MgNQ þ ∂NgQM − ∂QgMNÞ; ðB4Þ

while the Riemann tensor is

RMNP
Q ≡ ∂NΓQ

MP − ∂MΓQ
NP þ ΓS

MPΓQ
SN − ΓS

NPΓQ
SM;

ðB5Þ

the Ricci tensor is

RMN ≡ RMPN
P; ðB6Þ

and the Ricci scalar is

R≡ RMNgMN: ðB7Þ
The conventions are such that the (gravity) covariant
derivative for a (1,1)-tensor takes the form
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∇MTP
N ≡ ∂MTP

N þ ΓP
MQTQ

N − ΓQ
MNTP

Q; ðB8Þ

and generalizes to any ðm; nÞ-tensors.
Because of the presence of boundaries, at which the five-

dimensional manifold ends on two four-dimensional mani-
folds, one must introduce the induced metric, g̃MN , for
which we adopt the following conventions:

g̃MN ≡ gMN − NMNN; ðB9Þ

where NM is the ortho-normalized vector to the boundary,
which satisfies the defining properties

gMNNMNN ¼ 1; and g̃MNNN ¼ 0: ðB10Þ

It is conventional to orient the orthonormalized vector so
that it points outside of the space. Yet, in the body of the
paper, we use a definition of NM which aligns it along
the holographic direction, so that it points outward from the
boundary at the UV, but inside the space at the IR boundary.
For this reason, different signs appear in front of the terms
localized at the two boundaries in Eq. (50). The extrinsic
curvature, K, is given by K ≡ g̃MNKMN, in terms of the
symmetric tensor

KMN ≡∇MNN ¼ ∂MNN − ΓQ
MNNQ: ðB11Þ

In parallel to the space-time, in the internal space, the
sigma-model connection descends from the sigma-model
metric, Gab, and the sigma-model derivative, ∂b ¼ ∂

∂Φb, to
read

Gd
ab ≡ 1

2
Gdcð∂aGcb þ ∂bGca − ∂cGabÞ: ðB12Þ

The sigma-model Riemann tensor is

Ra
bcd ≡ ∂cGa

bd − ∂dGa
bc þ Ge

bdGa
ce − Ge

bcGa
de; ðB13Þ

while the sigma-model covariant derivative is

DbXd
a ≡ ∂bXd

a þ Gd
cbXc

a − Gc
abXd

c: ðB14Þ

The equations of motion, satisfied by the background
scalars, are the following:

∂
2
rΦa þ ðD − 1Þ∂rA∂rΦa þ Ga

bc∂rΦb
∂rΦc − Va ¼ 0;

ðB15Þ

where the sigma-model derivatives are given by
Va ≡Gab

∂bV, and ∂bV ≡ ∂V
∂Φb. The Einstein equations

reduce to

ðD − 1Þð∂rAÞ2 þ ∂
2
rAþ 4

D − 2
V ¼ 0; ðB16Þ

ðD−1ÞðD−2Þð∂rAÞ2−2Gab∂rΦa
∂rΦbþ4V¼0: ðB17Þ

a. Tensor and scalar fluctuations

Following Refs. [166–170], the scalar fields can be
written as

Φaðxμ; rÞ ¼ ΦaðrÞ þ φaðxμ; rÞ; ðB18Þ

where φaðxμ; rÞ are small fluctuations around the back-
ground solutions, ΦaðrÞ. The metric fluctuations are
decomposed with the ADM formalism [211]:

ds2D ¼ ðð1þ νÞ2 þ νσν
σÞdr2 þ 2νμdxμdr

þ e2AðrÞðημν þ hμνÞdxμdxν; ðB19Þ

where

hμν¼ eμνþ iqμϵνþ iqνϵμþ
qμqν
q2

Hþ 1

D−2
δμνh: ðB20Þ

Here, νðxμ; rÞ, νμðxμ; rÞ, eμνðxμ; rÞ, ϵμðxμ; rÞ, Hðxμ; rÞ, and
hðxμ; rÞ are small fluctuations around the background
metric, of which eμν is transverse and traceless (while ϵμ

is transverse), and gauge invariant.
The other (diffeomorphism) gauge-invariant combina-

tions are

aa ¼ φa −
∂rΦa

2ðD − 2Þ∂rA
h; ðB21Þ

b ¼ ν − ∂r

�
h

2ðD − 2Þ∂rA
�
; ðB22Þ

c ¼ e−2A∂μνμ −
e−2Aq2h

2ðD − 2Þ∂rA
−
1

2
∂rH; ðB23Þ

dμ ¼ e−2APμ
νν

ν − ∂rϵ
μ: ðB24Þ

The algebraic nature of the equations for b and c allows us
to decouple the equations and solve them.
The tensor fluctuations eμν obey the equation of motion

½∂2r þ ðD − 1Þ∂rA∂r − e−2AðrÞq2�eμν ¼ 0; ðB25Þ

with boundary conditions given by

∂reμνjr¼ri ¼ 0: ðB26Þ

The equation of motion for dμ is algebraic and does not lead
to a spectrum of states. The equations of motion for aa obey
the following equations of motion:
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0 ¼ ½D2
r þ ðD − 1Þ∂rADr − e−2Aq2�aa

−
�
Vajc −Ra

bcd∂rΦb
∂rΦd þ 4ð∂rΦaVb þ Va

∂rΦbÞGbc

ðD − 2Þ∂rA
þ 16V∂rΦa

∂rΦbGbc

ðD − 2Þ2ð∂rAÞ2
�
ac; ðB27Þ

while the boundary conditions are given by

2e2A∂rΦa

ðD − 2Þq2∂rA
�
∂rΦbDr −

4V∂rΦb

ðD − 2Þ∂rA
− Vb

�
ab − aa

����
ri

¼ 0: ðB28Þ

The background covariant derivative is Draa ≡ ∂raa þ Ga
bc∂rΦbac, and Vajb ≡ ∂Va

∂Φb þ Ga
bcVc.

2. Vectors, pseudoscalars, and spurions

In this appendix, we provide the gauge fixing terms and equations of motion for the spin-1 and spin-0 fluctuations
introduced in Sec. IV. The resulting equations for the fields defined in Eq. (72) (except for χM) and other fields interacting
with them are distributed in the following subsections. Appendix B 2 a reports the equations of motion and boundary

conditions for BM
Ã and BM

Â, and for the associated spin-0 states. Appendix B 2 b discusses AM
4 and Appendix B 2 c

focuses on AM
Ā, respectively.

a. The BM
Â and BM

Ã sectors

Following the procedure in Ref. [174], we choose the gauge fixing terms for BM
Â and BM

Ã to be

Sð1Þ
ξ̂

¼
Z

d4qdr

�
−
Hð1Þ

Â Â

2ξ̂

�
iqμBμ

Âð−qÞ − g sinðvÞ
2v

ξ̂

Hð1Þ
Â Â

Gð1Þ
Â Â

e2AπÂð−qÞ − ξ̂

Hð1Þ
Â Â

∂rðHð1Þ
Â Â

e2AB5
Âð−qÞÞ

�

×

�
−iqνBν

ÂðqÞ − g sinðvÞ
2v

ξ̂

Hð1Þ
Â Â

Gð1Þ
Â Â

e2AπÂðqÞ − ξ̂

Hð1Þ
Â Â

∂rðHð1Þ
Â Â

e2AB5
ÂðqÞÞ

��
; ðB29Þ

and

Sð1Þ
ξ̃

¼
Z

d4qdr

�
−
Hð1Þ

ÃÃ

2ξ̃

�
iqμBμ

Ãð−qÞ− ξ̃

Hð1Þ
ÃÃ

∂rðHð1Þ
ÃÃ

e2AB5
Ãð−qÞÞ

��
−iqνBν

ÃðqÞ− ξ̃

Hð1Þ
ÃÃ

∂rðHð1Þ
ÃÃ

e2AB5
ÃðqÞÞ

��
; ðB30Þ

where ξ̂ and ξ̃ are gauge-fixing parameters. The boundary-localized gauge fixing terms at r ¼ r2 are

Sð1Þ
M̂

¼
Z

d4qdrδðr − r2Þ
�
−

1

2M̂2

�
iqμBμ

Âð−qÞ þ M̂2H
ð1Þ
Â Â

e2AB5
Âð−qÞ − M̂2K5

gv5
2

e2A cosðvÞPÂ
5 ð−qÞ

−
g sinðvÞ

2v
M̂2C

ð1Þ
2Â Â

e2AπÂð−qÞ
�
½ðq → −qÞ�

�
; ðB31Þ

and

Sð1Þ
M̃

¼
Z

d4qdrδðr − r2Þ
�
−

1

2M̃2

�
iqμBμ

Ãð−qÞ þ M̃2H
ð1Þ
Ã Ã

e2AB5
Ãð−qÞ þ M̃2K5

gv5
2

e2A sinðvÞPÂ
5 ð−qÞ

�
½ðq → −qÞ�

�
:

ðB32Þ

The boundary-localized gauge fixing parameters, M̂2 and M̃2, are independent of the bulk dynamics. Gauge fixing
at r ¼ r1 can be done in a similar manner. Gathering terms from the action Eq. (65) and gauge fixing terms in

Eqs. (B29)–(B32), the equations of motion and boundary conditions for Bμ
Â and Bμ

Ã read
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0 ¼
�
q2Hð1Þ

Â Â
− ∂rðHð1Þ

Â Â
e2A∂rÞ þ

�
g
2

�
2

Gð1Þ
Â Â

e2A
�
PμνBμ

Âðq; rÞ; ðB33Þ

0 ¼
�
q2Dð1Þ

2Â Â
þHð1Þ

Â Â
e2A∂r þ e2A

�
g
2

�
2

Cð1Þ
2Â Â

þ e2A
�
gv5
2

�
2

K5 cosðvÞ2
�
PμνBν

Âðq; rÞ
����
r¼r2

þ
�
q2Dð1Þ

2Â Ã
− e2A

�
gv5
2

�
2

K5 cosðvÞ sinðvÞ
�
PμνBν

Ãðq; rÞ
����
r¼r2

; ðB34Þ

0 ¼
�
q2

ξ̂
Hð1Þ

Â Â
− ∂rðHð1Þ

Â Â
e2A∂rÞ þ

�
g
2

�
2

Gð1Þ
Â Â

e2A
�
qμqν

q2
Bμ

Âðq; rÞ; ðB35Þ

0 ¼
�
q2

M̂2

þHð1Þ
Â Â

e2A∂r þ e2A
�
g
2

�
2

Cð1Þ
2Â Â

þ e2A
�
gv5
2

�
2

K5 cosðvÞ2
�
qμqν

q2
Bν

Âðq; rÞ
����
r¼r2

−
�
e2A
�
gv5
2

�
2

K5 cosðvÞ sinðvÞ
�
qμqν

q2
Bν

Ãðq; rÞ
����
r¼r2

; ðB36Þ

0 ¼ ½q2Hð1Þ
Ã Ã

− ∂rðHð1Þ
Ã Ã

e2A∂rÞ�PμνBμ
Ãðq; rÞ; ðB37Þ

0 ¼
�
q2Dð1Þ

2Ã Ã
þHð1Þ

Ã Ã
e2A∂r þ e2A

�
gv5
2

�
2

K5 sinðvÞ2
�
PμνBν

Ãðq; rÞ
����
r¼r2

þ
�
q2Dð1Þ

2Ã Â
− e2A

�
gv5
2

�
2

K5 cosðvÞ sinðvÞ
�
PμνBν

Âðq; rÞ
����
r¼r2

; ðB38Þ

0 ¼
�
q2

ξ̃
Hð1Þ

Ã Ã
− ∂rðHð1Þ

Ã Ã
e2A∂rÞ

�
qμqν

q2
Bμ

Ãðq; rÞ; ðB39Þ

0 ¼
�
q2

M̃2

þHð1Þ
Ã Ã

e2A∂r þ e2A
�
gv5
2

�
2

K5 sinðvÞ2
�
qμqν

q2
Bν

Ãðq; rÞ
����
r¼r2

−
�
e2A
�
gv5
2

�
2

K5 cosðvÞ sinðvÞ
�
qμqν

q2
Bν

Âðq; rÞ
����
r¼r2

: ðB40Þ

Equations (B33), (B34), (B36), and (B38) can be compared to Eqs. (85), (86), and (88) in the body of the paper.

For pseudoscalar and spurion fields, the equations are obtained from the variation with respect to B5
Ã, B5

Â, πÂ in the

bulk and boundary and PÂ
5 in the boundary, respectively

0 ¼
�
q2 − ∂r

�
ξ̃

Hð1Þ
Ã Ã

∂rðHð1Þ
Ã Ã

e2AÞ
��

B5
Ãðq; rÞ; ðB41Þ

0 ¼
�
ξ̃
e−2A

Hð1Þ
Ã Ã

∂rðHð1Þ
Ã Ã

e2AÞ þ M̃2H
ð1Þ
Ã Ã

�
B5

Ãðq; rÞ
����
r¼r2

þ
�
gv5
2

M̃2K5 sinðvÞ
�
PÂ
5 ðqÞ

����
r¼r2

; ðB42Þ

0 ¼
�
q2Hð1Þ

Â Â
−Hð1Þ

Â Â
∂r

�
ξ̂

Hð1Þ
Â Â

∂rðHð1Þ
Â Â

e2AÞ
�
þ g2

2
Gð1Þ

Â Â
e2A
�
B5

Âðq; rÞ

þ g sinðvÞ
2v

�
Gð1Þ

Â Â
e2A∂r −Hð1Þ

Â Â
∂r

�
ξ̂
Gð1Þ

Â Â
e2A

Hð1Þ
Â Â

��
πÂðq; rÞ; ðB43Þ
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0 ¼
�
e−2Aξ̂

Hð1Þ
Ã Ã

∂rðHð1Þ
Â Â

e2AÞ þ M̂2H
ð1Þ
Â Â

�
B5

Âðq; rÞ −
�
gv5
2

M̂2 cosðvÞK5

�
PÂ
5 ðqÞ

����
r¼r2

þ g sinðvÞ
2v

�
ξ̂
Gð1Þ

Â Â

Hð1Þ
Ã Ã

− M̂2C
ð1Þ
2Â Â

�
πÂðq; rÞ

����
r¼r2

; ðB44Þ

0 ¼ sinðvÞ
v

�
∂rðGð1Þ

Â Â
e4A∂rÞ −Gð1Þ

Â Â
e2Aq2 −

�
g
2

�
2 ξ̂

Hð1Þ
Â Â

e4AðGð1Þ
Â Â

Þ2
�
πÂðq; rÞ

þ g
2

�
∂rðGð1Þ

Â Â
e4AÞ − ξ̂

Hð1Þ
Â Â

e2AGð1Þ
Â Â

∂rðHð1Þ
Â Â

e2AÞ
�
B5

Âðq; rÞ; ðB45Þ

0 ¼ sinðvÞ
v

�
Cð1Þ
2Â Â

e−2Aq2 þ M̂2

�
g
2

�
2

ðCð1Þ
2Â Â

Þ2 þ Gð1Þ
Â Â

∂r

�
πÂðq; rÞ

����
r¼r2

þ
�
M̂2v5

�
g
2

�
2

cosðvÞK5C
ð1Þ
2Â Â

�
PÂ
5 ðqÞ

����
r¼r2

−
�
g
2
M̂2ðCð1Þ

2Â Â
ÞHð1Þ

Â Â
−
g
2
Gð1Þ

Â Â

�
B5

Âðq; rÞ
����
r¼r2

; ðB46Þ

0 ¼
�
K5e−2Aq2 þ

�
gv5
2

�
2

K2
5ðcosðvÞ2M̂2 þ sinðvÞ2M̃2Þ

�
PÂ
5 ðqÞ

����
r¼r2

þ
�
M̂2K5v5

�
g
2

�
2 cosðvÞ sinðvÞ

v
Cð1Þ
2Â Â

�
πÂðq; rÞ

����
r¼r2

−
�
K5v5 cosðvÞ

g
2
M̂2H

ð1Þ
Â Â

�
B5

Âðq; rÞ
����
r¼r2

þ
�
K5 sinðvÞ

gv5
2

M̃2H
ð1Þ
Ã Ã

�
B5

Ãðq; rÞ
����
r¼r2

: ðB47Þ

We introduce convenient redefinitions

B5
Â ≡ XÂ

e4AGð1Þ
Â Â

−
2

g
sinðvÞ
v

∂rπ
Â; ðB48Þ

πÂ ≡ v
sinðvÞ

�
YÂ þ ðg=2Þ∂rXÂ

q2e2AGð1Þ
Â Â

�
; ðB49Þ

to separate the physical states from the gauge-dependent ones. The equations for the gauge-independent scalar fields, XÂ,

and gauge dependent, non physical YÂ are

0 ¼
�
∂
2
r þ

�
−2∂rAðrÞ −

∂rG
ð1Þ
Â Â

Gð1Þ
Â Â

�
∂r þ

�
−q2e−2AðrÞ −

g2Gð1Þ
Â Â

4Hð1Þ
Â Â

��
XÂðq; rÞ; ðB50Þ

0 ¼
�
∂
2
r þ

�
2∂rAðrÞ þ

∂rH
ð1Þ
Â Â

Hð1Þ
Â Â

�
∂r þ

�
−
q2e−2AðrÞ

ξ̂
−
g2Gð1Þ

Â Â

4Hð1Þ
Â Â

��
YÂðq; rÞ: ðB51Þ

For the boundary terms we only mention the physical XÂ boundary condition:
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0 ¼
�
∂r þ

Gð1Þ
Â Â

Cð1Þ
2Â Â

�
XÂðq; rÞ

����
r¼r2

: ðB52Þ

Equations (B50) and (B52) can be compared to Eqs. (87) and (92).

b. The AM
4 sector

Appropriate gauge fixing terms for AM
4 in the bulk are the following:

Sð1Þ
ξ ¼

Z
d4qdr

�
−
Hð1Þ

44

2ξ

�
iqμAμ

4ð−qÞ − g
2

ξ

Hð1Þ
44

Gð1Þ
44 e

2AΠ4ð−qÞ − ξ

Hð1Þ
44

∂rðHð1Þ
44 e

2AA5
4ð−qÞÞ

�

×

�
−iqνAν

4ðqÞ − g
2

ξ

Hð1Þ
44

Gð1Þ
44 e

2AΠ4ðqÞ − ξ

Hð1Þ
44

∂rðHð1Þ
44 e

2AA5
4ðqÞÞ

��
; ðB53Þ

where ξ is the gauge-fixing parameter. The boundary-localized, gauge-fixing terms at r ¼ r2 are

Sð1Þ
M ¼

Z
d4qdrδðr − r2Þ

�
−

1

2M2

�
iqμAμ

4ð−qÞ þM2H
ð1Þ
44 e

2AA5
4ð−qÞ −M2K5

gv5
2

e2AP4
5ð−qÞ

−
g
2
M2C

ð1Þ
244e

2AΠ4ð−qÞ
�
× ½ðq → −qÞ�

�
; ðB54Þ

with M2 a free parameter. Thus, the equations of motion and boundary conditions for Aμ
4 read as

0 ¼
�
q2Hð1Þ

44 − ∂rðHð1Þ
44 e

2A
∂rÞ þ

�
g
2

�
2

Gð1Þ
44 e

2A

�
PμνAμ

4ðq; rÞ; ðB55Þ

0 ¼
�
Hð1Þ

44 e
2A
∂r þ q2Dð1Þ

244 þ e2A
�
g
2

�
2

Cð1Þ
244 þ

�
gv5
2

�
2

K5e2A
�
PμνAν

4ðq; rÞ
����
r¼r2

; ðB56Þ

0 ¼
�
q2

ξ
Hð1Þ

44 − ∂rðHð1Þ
44 e

2A
∂rÞ þ

�
g
2

�
2

Gð1Þ
44 e

2A

�
qμqν

q2
Aμ

4ðq; rÞ; ðB57Þ

0 ¼
�
Hð1Þ

44 e
2A
∂r þ

q2

M2

þ e2A
�
g
2

�
2

Cð1Þ
244 þ

�
gv5
2

�
2

K5e2A
�
qμqν

q2
Aν

4ðq; rÞ
����
r¼r2

: ðB58Þ

Equations (B55) and (B56) are restated in Eqs. (86) and (91).
For the pseudoscalars and the spurion, the equations are obtained from the variation with respect to A5

4 and Π4 in bulk
and boundary and P4

5 in the boundary, respectively. They are the following:

0 ¼
�
q2Hð1Þ

44 −Hð1Þ
44 ∂r

�
ξ

Hð1Þ
44

∂rðHð1Þ
44 e

2AÞ
�
þ
�
g
2

�
2

Gð1Þ
44 e

2A

�
A5

4ðq; rÞ þ g
2

�
Gð1Þ

44 e
2A
∂r −Hð1Þ

44 ∂r

�
ξGð1Þ

44 e
2A

Hð1Þ
44

��
Π4ðq; rÞ;

ðB59Þ

0 ¼
�
ξ
e−2A

Hð1Þ
44

∂rðHð1Þ
44 e

2AÞ þM2H
ð1Þ
44

�
A5

4ðq; rÞ
����
r¼r2

þ g
2

�
ξ

Hð1Þ
44

Gð1Þ
44 −M2C

ð1Þ
244

�
Π4ðq; rÞ − ½M2

g
2
K5v5�P4

5ðqÞ
����
r¼r2

; ðB60Þ

0 ¼
�
∂rðGð1Þ

44 e
4A
∂rÞ − Gð1Þ

44 e
2Aq2 −

�
g
2

�
2 ξ

Hð1Þ
44

e4AðGð1Þ
44 Þ2

�
Π4ðq; rÞ þ g

2

�
∂rðGð1Þ

44 e
4AÞ − ξ

Hð1Þ
44

e2AGð1Þ
44 ∂rðHð1Þ

44 e
2AÞ
�
A5

4ðq; rÞ;

ðB61Þ

HOLOGRAPHIC VACUUM MISALIGNMENT PHYS. REV. D 111, 015040 (2025)

015040-29



0 ¼
�
Cð1Þ
244e

−2Aq2 þM2

�
g
2

�
2

ðCð1Þ
244Þ2 þ ∂

2
vV4 þ Gð1Þ

44 ∂r

�
Π4ðq; rÞ

����
r¼r2

þ g
2
½Gð1Þ

44 −M2C
ð1Þ
244H

ð1Þ
44 �A5

4ðq; rÞ þ
�
g2v5
4

M2K5C
ð1Þ
244 −

1

v5
∂
2
vV4

�
P4
5ðqÞ

����
r¼r2

; ðB62Þ

0 ¼
�
K5e−2Aq2 þM2

�
gv5
2

�
2

K2
5 þ

1

v25
∂
2
vV4

�
P4
5ðqÞ

����
r¼r2

−
�
M2

gv5
2

K5H
ð1Þ
44

�
A5

4ðq; rÞ þ
�
g2v5
4

M2K5C
ð1Þ
244 −

1

v5
∂
2
vV4

�
Π4ðq; rÞ

����
r¼r2

: ðB63Þ

By applying the convenient definition

A5
4 ≡ X4

e4AGð1Þ
44

−
2

g
∂rΠ4; ðB64Þ

one can derive the equations for gauge invariant field X4

0 ¼
�
∂
2
r þ

�
−2∂rA −

∂rG
ð1Þ
44

Gð1Þ
44

�
∂r þ

�
−q2e−2A −

g2Gð1Þ
44

4Hð1Þ
44

��
X4ðq; rÞ; ðB65Þ

0 ¼
�
∂r þ Gð1Þ

44

�
∂
2
vV4e2AðrÞ þ K5v25q

2

∂
2
vV4K5v25e

2AðrÞ þ Cð1Þ
244∂

2
vV4e2AðrÞ þ K5C

ð1Þ
244v

2
5q

2

��
X4ðq; rÞ

����
r¼r2

: ðB66Þ

Equations (B65) and (B66) are restated in Eqs. (87) and (93).

c. The AM
Ā sector

The gauge fixing terms for AM
Ā in the bulk are chosen to be

Sð1Þ
ξ̄

¼
Z

d4qdr

�
−
Hð1Þ

Ā Ā

2ξ̄

�
iqμAμ

Āð−qÞ − ξ̄

Hð1Þ
Ā Ā

∂rðHð1Þ
Ā Ā

e2AA5
Āð−qÞÞ

�

×

�
−iqνAν

ĀðqÞ − ξ̄

Hð1Þ
Ā Ā

∂rðHð1Þ
Ā Ā

e2AA5
ĀðqÞÞ

��
; ðB67Þ

where ξ̄ is the gauge fixing parameter. The boundary-localized gauge fixing terms at r ¼ r2 reads

Sð1Þ
M̄ ¼

Z
d4qdrδðr−r2Þ

�
−

1

2M̄2

½iqμAμ
Āð−qÞþM̄2H

ð1Þ
ĀĀ

e2AA5
Āð−qÞ�× ½−iqνAν

ĀðqÞþM̄2H
ð1Þ
ĀĀ

e2AA5
ĀðqÞÞ�

�
; ðB68Þ

with M̄2, the boundary gauge fixing parameter.
Similar to the previous sections, the equations of motion and boundary conditions for Aμ

Ā are

0 ¼ ½q2Hð1Þ
Ā Ā

− ∂rðHð1Þ
Ā Ā

e2A∂rÞ�PμνAμ
Āðq; rÞ; ðB69Þ

0 ¼ ½Hð1Þ
Ā Ā

e2A∂r þ q2Dð1Þ
2Ā Ā

�PμνAν
Āðq; rÞj

r¼r2
; ðB70Þ

0 ¼
�
q2

ξ̄
Hð1Þ

Ā Ā
− ∂rðHð1Þ

Ā Ā
e2A∂rÞ

�
qμqν

q2
Aμ

Āðq; rÞ; ðB71Þ
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0 ¼
�
q2

M̄2

þHð1Þ
Ā Ā

e2A∂r

�
qμqν

q2
Aν

Āðq; rÞ
����
r¼r2

: ðB72Þ

Equations (B69) and (B70) are restated in Eqs. (85) and (90). The fifth component of the gauge field is pure gauge in
this case.

3. Asymptotic expansions of the fluctuations

We present here some of the asymptotic expansions for the fluctuations, see also Ref. [176].

a. IR expansions

For convenience, we put ρo ¼ 0 and AI ¼ 0 in this subsection,14 while χI ¼ 0 in order to avoid a conical singularity.
For the fluctuations of the scalars, we have

aϕ ¼ aϕI;0 þ aϕI;l logðρÞ þ
1

4
ρ2
�
−
1

4
ΔðaϕI;0ðΔð15ϕ2

I − 4Þ þ 20Þ þ 6ϕIðaχI;0 − aχI;lÞðΔð5ϕ2
I − 4Þ þ 20ÞÞ

þ q2ðaϕI;0 − aϕI;lÞ −
1

48
aϕI;lðΔð25Δϕ4

I þ 20ð10 − 11ΔÞϕ2
I þ 48ðΔ − 5ÞÞ þ 400Þ

þ logðρÞ
�
aϕI;l

�
−
15Δ2ϕ2

I

4
þ ðΔ − 5ÞΔþ q2

�
−
3

2
aχI;lΔϕIðΔð5ϕ2

I − 4Þ þ 20Þ
��

þOðρ4Þ; ðB73Þ

aχ ¼ aχI;0 þ aχI;l logðρÞ þ
1

4
ρ2
�
−
1

4
ΔϕIðaϕI;0 − aϕI;lÞðΔð5ϕ2

I − 4Þ þ 20Þ þ q2ðaχI;0 − aχI;lÞ

−
3

8
aχI;0ðΔϕ2

I ðΔð5ϕ2
I − 8Þ þ 40Þ þ 80Þ þ 13

48
aχI;lðΔϕ2

I ðΔð5ϕ2
I − 8Þ þ 40Þ þ 80Þ

þ logðρÞ
�
−
5

4
aϕI;lΔ2ϕ3

I þ aϕI;lðΔ − 5ÞΔϕI þ aχI;l

�
−
15

8
Δ2ϕ4

I þ 3ðΔ − 5ÞΔϕ2
I þ q2 − 30

���
þOðρ4Þ; ðB74Þ

aĀ ¼ aĀI;0 þ ρ2
�
1

2
aĀI;0q

2 logðρÞ þ aĀI;2

�
þOðρ4Þ; ðB75Þ

aÂ ¼ aÂI;0 þ ρ2
�
1

2
aÂI;0

�
q2 þ g2ϕ2

I

4

�
logðρÞ þ aÂI;2

�
þOðρ4Þ: ðB76Þ

For the pseudoscalar fluctuations, we have

pÂ ¼ pÂI;0 þ ρ2
�
pÂI;2 þ

1

2
pÂI;0

�
q2 þ g2

4
ϕ2
I

�
logðρÞ

�
þOðρ4Þ: ðB77Þ

For the vector fluctuations, we have

v ¼ vI;−2ρ−2 þ
1

2
q2vI;−2 logðρÞ þ vI;0 þ

1

12288
ρ2½1536q2vI;0 þ 80Δ2vI;−2ϕ4

I ð2ð8Δ2 − 50Δþ 75Þ − 3q2Þ
þ 128ðΔ − 5ÞΔvI;−2ϕ2

I ð−3ðΔ − 5ÞΔþ 3q2 − 50Þ − 64ð9q4 þ 60q2 − 500ÞvI;−2 þ 125Δ4vI;−2ϕ8
I

− 1000ðΔ − 2ÞΔ3vI;−2ϕ6
I þ 768q4vI;−2 logðρÞ� þOðρ4Þ; ðB78Þ

vĀ ¼ vĀI;0 þ vĀI;l logðρÞ þ
1

96
ρ2½24q2ðvĀI;0 − vĀI;lÞ þ vĀI;lð−5Δ2ϕ4

I þ 8ðΔ − 5ÞΔϕ2
I − 80Þ

þ 24q2vĀI;l logðρÞ� þOðρ4Þ; ðB79Þ

14The dependence on ρo and AI can be reinstated by making the substitutions ρ → ρ − ρo and q2 → e−2AI q2 in the expressions for the
IR expansions.
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vÂ ¼ vÂI;0 þ vÂI;l logðρÞ þ
1

96
ρ2½ð24q2 þ 6g2ϕ2

I ÞvÂI;0 þ ð−80 − 24q2 − 6g2ϕ2
I − 40Δϕ2

I þ Δ2ð8ϕ2
I − 5ϕ4

I ÞÞvÂI;l
þ ð24q2 þ 6g2ϕ2

I Þ logðρÞvÂI;l� þOðρ4Þ: ðB80Þ

For the tensor fluctuations, we have

e ¼ eI;0 þ eI;l logðρÞ þ
1

192
ρ2½48q2ðeI;0 − eI;lÞ − 25Δ2eI;lϕ4

I þ 40ðΔ − 5ÞΔeI;lϕ2
I − 400eI;l þ 48eI;lq2 logðρÞ� þOðρ4Þ:

ðB81Þ

b. UV expansions

In this subsection, we put Δ ¼ 2, and AU ¼ 0 ¼ χU.
15 We write the expansions in terms of z≡ e−ρ.

For the fluctuations of the scalars, we have

aϕ ¼ aϕ2 z
2 þ aϕ3z

3 þ 1

2
aϕ2q

2z4 þ 1

6
aϕ3q

2z5 þ 1

24
aϕ2 ðq4 − 12ϕ2

VÞz6 þOðz7Þ; ðB82Þ

aχ ¼ aχ0 −
1

6
aχ0q

2z2 þ 1

24
aχ0q

4z4 þ aχ5z
5 þ 1

144
aχ0q

2ðq4 − 14ϕ2
VÞz6 þOðz7Þ; ðB83Þ

aĀ ¼ aĀ0 −
1

2
aĀ0q

2z2 þ aĀ3 z
3 −

1

8
aĀ0q

4z4 þ 1

10
aĀ3q

2z5 −
1

144
aĀ0q

2ðq4 þ 10ϕ2
VÞz6 þOðz7Þ; ðB84Þ

aÂ ¼ aÂ0 −
1

2
aÂ0q

2z2 þ aÂ3 z
3 þ 1

16
aÂ0 ðg2ϕ2

J − 2q4Þz4 þ 1

20
ðaÂ0 g2ϕJϕV þ 2aÂ3q

2Þz5

−
1

288
aÂ0 ð2q6 þ ð20þ g2Þq2ϕ2

J − 4g2ϕ2
VÞz6 þOðz7Þ: ðB85Þ

For the pseudoscalar fluctuations, we have

pÂ ¼ pÂ0 þ pÂ1 zþ
�
pÂ0q

2

2
þ pÂ1ϕV

ϕJ

�
z2 þ 2pÂ0q

2ϕJϕV þ pÂ1q
2ϕ2

J þ 2pÂ1ϕ
2
V

6ϕ2
J

z3 þOðz4Þ: ðB86Þ

For the vector fluctuations, we have

v ¼ v0 −
1

6
q2v0z2 þ

1

24
q4v0z4 þ v5z5 þ

1

144
q2v0ðq4 − 14ϕ2

VÞz6

þ 1

350
q2ð350v0χ5 − 38v0ϕVϕJ þ 25v5Þz7 þOðz8Þ; ðB87Þ

vĀ ¼ vĀ0 −
1

2
q2vĀ0 z

2 þ vĀ3 z
3 −

1

8
q4vĀ0 z

4 þ 1

10
q2vĀ3 z

5 −
1

144
q2vĀ0 ðq4 þ 10ϕ2

VÞz6

þ 1

280

�
q4vĀ3 þ 6q2vĀ0

�
15χ5 −

26

5
ϕVϕJ

�
þ 45vĀ3ϕ

2
V

�
z7 þOðz8Þ; ðB88Þ

vÂ ¼ vÂ0 −
1

2
q2vÂ0 z

2 þ vÂ3 z
3 −

1

8
vÂ0

�
q4 −

g2

2
ϕ2
J

�
z4 þ 1

10

�
q2vÂ3 þ g2

2
vÂ0ϕJϕV

�
z5 þOðz6Þ: ðB89Þ

15The dependence on χU and AU can be reinstated by making the substitution q2 → e2χU−2AUq2 in the expressions for the UV
expansions.
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For the tensor fluctuations, we have

e ¼ e0 −
1

6
e0q2z2 þ

1

24
e0q4z4 þ e5z5 þOðz6Þ: ðB90Þ

APPENDIX C: OF TWO-POINT FUNCTIONS

In this short appendix, we perform an exercise to
demonstrate the relation between mass spectra of vector
fluctuations and holographically renormalized two-point
functions. To this purpose, we digress and analyse a
simplified system, in which analytical calculations can
be carried out, and symmetries are manifest. We consider a
new Uð1Þ gauge theory living in a new six-dimensional
spacetime, yet adopt the same ansatz as in Eqs. (8) and (9).
At variance with the body of the paper, we consider
solutions for which A ¼ 4χ ¼ 4ρ=3, resulting in an
AdS6 geometry. To introduce a scale, we hold the IR
cutoff, ρ1 ¼ 0, fixed, and interpret it as a confinement scale,
as in hard-wall models in the AdS/QCD literature
[215,216]. The (reduced) five-dimensional action for the
new Uð1Þ gauge field, AM, is

16

S ¼
Z

dρ
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

4
e2χgMPgNQFMNFPQ

�

þ
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
−
1

4
D2g̃μρg̃νσF μνF ρσ

�����
ρ¼ρ2

; ðC1Þ

where FMN ¼ ∂MAN − ∂NAM, and AM has trivial back-
ground profile. After Fourier transforming in the
Minkowski directions, the transverse part of the gauge
field satisfies an equation of motion that can be written as
follows:

½∂2ρ þ 3∂ρ − e−2ρq2�PμνAνðq; ρÞ ¼ 0: ðC2Þ

In the following, we call vðq; ρÞ the solutions to this linear
equation, which depend on the four-momentum, qμ, and on
the radial direction, ρ. In the IR, we impose Neumann
boundary conditions, ∂ρvðq; ρÞjρ¼ρ1

¼ 0.
The presence of the boundary-localized term, propor-

tional to D2, introduces (weak) gauging of the global Uð1Þ
symmetry of the dual field theory. The transverse part of the
two-point function (propagator) is

PμσPνγhAμðqÞAνð−qÞi ¼ lim
ρ2→þ∞

−iPσγ

q2
1

Πðq2; ρ2Þ
; ðC3Þ

where we anticipated that we will take the limit ρ2 → þ∞,
and where

Πðq2; ρÞ≡D2 þ
1

q2
e3ρ

∂ρvðq; ρÞ
vðq; ρÞ : ðC4Þ

To remove a divergence, that appears when ρ2 → þ∞, we
require that

D2 ≡ −eρ2 þ 1

ε2
; ðC5Þ

where ε is a renormalization constant. The transverse part
of the propagator in the background has the closed form

PμσPνγhAμðqÞAνð−qÞi ¼
−iPσγ

q2
ε2

1þ ε2Πoðq2Þ
; ðC6Þ

and the physical q2-dependence is encoded in

Πoðq2Þ ¼ −
ffiffiffiffiffiffiffiffi
−q2

p
tanð

ffiffiffiffiffiffiffiffi
−q2

p
Þ
: ðC7Þ

The poles in Eq. (C6) identify the mass spectrum.
Equivalently, one can solve Eq. (C2), subject to Neumann
boundary condition in the IR, ∂ρvðq; ρÞjρ¼ρ1

¼ 0, impose in
the UV the constraint ∂ρvðq;ρÞþq2D2e−3ρvðq;ρÞjρ¼ρ2

¼0,
hence identifying the discrete spectrum in q2, and afterward
take the limit ρ2 → þ∞ to recover the physical spectrum.
As long as ε2 and jq2j are small, the process discussed

after Eq. (C6) yields sensible physical results. However, if
one considers large values of jq2j, an unphysical tachyonic
mode appears, with q2 ≃ ðε2Þ−2, which is due to having
taken the limit ρ2 → 0.
If one, conversely, chooses D2 to be non-negative, and

retains a large, but finite, value for ρ2, there are no tachyons
while the rest of the spectrum is shifted only by small effects.
The appearance of the tachyon is, hence, truly unphysical,
and it should be ignored. Is there a way to write a two-point
function that does not depend explicitly on the (unphysical)
cutoff, ρ2, nor leads to the appearance of an (unphysical)
tachyon? We devote these final paragraphs to propose a
simple and elegant solution to this puzzle.
As in ordinary perturbation theory, the presence of large

hierarchies between the renormalization scale and physical
scales of interest may lead to difficulties, which can be
overcome by applying the renormalization group to
improve perturbation theory. Inspired by the work on the
holographic Wilsonian renormalization group [217,218]
(see also Refs. [139,219–221]), we proceed as follows.
Suppose one computes the spectrum with a finite cutoff,

ρ2 ¼ ρΛ, for a given choice of D2. One can ask how to
changeD2 into a function that depends on q2 and ρ2 so that
the same spectrum is reproduced for any choice of the finite
cutoff, ρ2. This can be achieved by requiring that
D2ðq2; ρ2Þ satisfies the first-order differential equation

∂ρ2D2 − e−3ρ2q2D2
2 þ eρ2 ¼ 0; ðC8Þ

with boundary condition D2ðq2; ρΛÞ ¼ D2;Λ.
16This action closely resembles the one for AĀ

M, in the body of
the paper.
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For concreteness, we set D2;Λ ¼ 0. From Eq. (C5),
we see that if one identifies ε2 ¼ e−ρΛ , then the new D2

matches the previous expression at ρ2 ¼ ρΛ. The solution is
given by

D2ðq2; ρ2Þ ¼ −
eρ2

1þ e−ρ2
ffiffiffiffiffiffiffiffi
−q2

p
cot ð

ffiffiffiffiffiffiffiffi
−q2

p
ðε2 − e−ρ2ÞÞ

;

ðC9Þ

and we can replace it into Eq. (C4). One may verify that, for
any q2 such that the resulting Πðq2; ρ2Þ ¼ 0, one also has
∂ρ2Πðq2; ρ2Þ ¼ 0. The zeroes of the new Πðq2; ρ2Þ do not
change as a function of ρ2, leaving the spectrum invariant.
We may now take the limit ρ2 → ∞, evolvingD2ðq2; ρ2Þ

toward the UV by using Eq. (C9), after which the
renormalized two-point function is given by

PμσPνγhAμðqÞAνð−qÞi

¼ ð−iÞ
�

1

− 1
ε2
Πoðq2ðε2Þ2Þ þ Πoðq2Þ

�
1

q2
Pσγ: ðC10Þ

Equation (C10) is approximately equal to Eq. (C6) for
small ε2 and q2, which validates the approximation used in
the body of the paper. Furthermore, the (unphysical)
tachyon is no longer present, while the physical states
are retained. Finally, by expanding hAμðqÞAνð−qÞi in
powers of small q2, one finds a normalization factor for
the gauge fields, so that the four-dimensional gauge
coupling is

g24 ¼
ε2

1 − ε2
g2 ≈ ε2g2: ðC11Þ
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