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The time integration schemes, GA-23 and GA-234, recently proposed by the authors for first order problems, are 
extended to solve second-order problems in structural dynamics. The resulting methods maintain unconditional 
stability and user-controlled high-frequency damping. They offer improved accuracy and exhibit less numerical 
damping in the low-frequency regime, outperforming the well-known generalised-𝛼 method. When the high-

frequency damping is maximised the new schemes can be cast in the format of backward difference formulae, 
offering more accurate alternatives to the standard second order formula. The effectiveness of the new time 
integration schemes is validated through a number of numerical examples, including a linear elastic cantilever 
beam, a nonlinear spring pendulum, and wave propagation on a string.
1. Introduction

Time integration schemes are pivotal in computational engineering. 
Typically, these methods are divided into two categories: explicit and 
implicit. While explicit methods are easier to implement, they are re-

stricted by their conditional stability [34]. In contrast, implicit methods 
can be designed to be unconditionally stable, providing a substantial 
advantage for stiff problems or simulations requiring large time steps 
[7].

Hilber and Hughes [15,17] identified several essential criteria for 
an effective numerical scheme in structural dynamics. These include 
unconditional stability for linear problems, efficient equation solving, 
second-order accuracy, controlled algorithmic dissipation, self-starting 
capabilities, and no overshoot behaviour. Extensive research has re-

sulted in the development of various implicit single-step methods with 
these attributes, including but not limited to the Newmark-𝛽 method 
[31], the Wilson-𝜃 method [37], the WBZ-𝛼 method [38], the HHT-𝛼

method [16], and the generalised-𝛼 method [8]. While these methods 
share common characteristics, they differ in critical aspects, such as nu-

merical dissipation and accuracy.

Alongside these methods, multi-sub-step or composite methods have 
been widely adopted. These approaches require the implicit computa-

tion of multiple sets of solution variables. A prominent example is the 
two-sub-step Bathe method [2–4], where the trapezoidal rule is used in 
the first sub-step and the three-point Euler backward scheme BDF-2 in 

* Corresponding author.

the second sub-step. This method is particularly valued for its L-stability 
and improved low-frequency accuracy, which significantly reduces rel-

ative period errors. However, the algorithm is computationally more 
demanding than single sub-step implicit methods due to the necessity 
of solving two sets of implicit systems within each time step. Other com-

posite time integration schemes have been developed, as referenced in 
[6,26,36].

The generalised-𝛼 method has gained significant recognition for 
its unconditional stability, second-order accuracy in time, and user-

controlled high-frequency damping through the parameter 𝜌∞. Al-

though the method was originally developed for structural dynam-

ics [8], it has since been adapted for various fields, including com-

putational fluid dynamics [5,12,18,20,23], fluid-structure interaction 
[11,13,14,19,22,35], biomechanics [24,33], general solid mechanics 
[1,21], and others.

For clarity of the context of the present work, it is necessary to distin-

guish three versions of the generalised-𝛼 method: The method was firstly 
introduced in the context of the second-order problem arising in struc-

tural dynamics in [8]. A related scheme, also known as the generalised-𝛼

method, was proposed in [18] for first-order problems in time and ap-

plied to computational fluid dynamics. Finally, in [21], it was shown 
that the application of the method from [18] to structural mechanics 
by means of the standard procedure based on order reduction and aux-

iliary sets of solution variables renders a scheme that is different from 
[8], but equally efficient and possesses better approximation properties.
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Fig. 1. Spectral radii of GM, GA-2, GA-23 and GA-234 for 𝜉 = 0.
In the present article, an extended version of the generalised-𝛼

method for first-order problems, which was recently proposed by the 
authors in [10], is adopted to structural dynamics by following a pro-

cedure similar to [21]. The resulting schemes offer better performance 
than the methods presented in [8] and [21] for negligible additional 
computational cost. They also compete with the composite scheme pre-

sented in [3].

The remainder of this article is organised as follows: Section 2 revis-

its the extended family of generalised-𝛼 methods for first-order problems 
proposed in [10]. Section 3 details their adaptation to structural dynam-

ics. Section 4 presents a comprehensive analysis of the schemes’ proper-

ties, covering stability, accuracy, numerical dissipation, and dispersion. 
For maximum dissipation, the methods can be cast in the format of back-

ward difference formula. This is shown in Section 5. Comments on the 
comparison between the proposed schemes and the Bathe method are 
provided in Section 6. The performance of the new methods is assessed 
in Sections 7 to 11 for various structural example systems. Conclusions 
are summarised in Section 12.

2. Family of generalised-𝜶 methods for first order problems

In [10], the generalised-𝛼 method for first-order problems has been 
reformulated and extended to include third and fourth-order accurate 
versions, termed GA-𝑝, where 𝑝 = 2, 3, 4 indicates the order of accuracy. 
GA-2 coincides with the generalised-𝛼 method proposed in [18] and 
maintains unconditional stability. The higher-order methods 𝑝 > 2 are 
not unconditionally stable due to the second Dahlquist barrier [17,34]. 
Despite this, it has been demonstrated that linear combinations of these 
higher-order schemes with GA-2 yield unconditionally stable second-

order methods, provided that the contribution of each higher-order 
method remains below a certain critical limit. This has resulted in the 
formulation of two new schemes denoted as GA-23 and GA-234. The for-

mer combines weighted linear combinations of GA-2 and GA-3, while 
the latter also includes GA-4.

The following boxes present a summary of the time integration 
schemes discussed in [10] for first-order initial value problems of the 
2

form
�̇�𝑛+𝛼 − 𝑓 (𝑢𝑛+𝛼, 𝑡𝑛+𝛼) = 0

𝑢𝑛+𝛼 = 𝛼 𝑢𝑛+1 + (1 − 𝛼)𝑢𝑛
�̇�𝑛+𝛼 =

𝑢𝑛+1 − 𝑢𝑛
Δ𝑡

𝛼 = 1
1 + 𝜌∞

Box 1. Summary of GM for first-order problems.

�̇�𝑛+𝛽 − 𝑓 (𝑢𝑛+𝛼, 𝑡𝑛+𝛼) = 0

𝑢𝑛+𝛼 = 𝛼 𝑢𝑛+1 + (1 − 𝛼)𝑢𝑛
�̇�𝑛+𝛽 = 𝛽0 �̇�𝑛+1 + 𝛽1 �̇�𝑛

𝑢𝑛+1 = 𝑢𝑛 +
(
𝛾 �̇�𝑛+1 + (1 − 𝛾) �̇�𝑛

)
Δ𝑡

𝛼 = 𝛾 = 1
1 + 𝜌∞

, 𝛽0 =
3 − 𝜌∞

2(1 + 𝜌∞)
, 𝛽1 = 1 − 𝛽0

Box 2. Summary of GA-2 for first-order problems.

�̇�(𝑡) − 𝑓 (𝑢(𝑡), 𝑡) = 0, with 𝑢(0) = 𝑢0, (1)

where 𝑢 is the solution variable, 𝑡 denotes time, and �̇� = d𝑢∕d𝑡. All 
schemes offer high frequency damping via the single user-controlled pa-

rameter 𝜌∞ which represents the spectral radius of the scheme for an 
infinite time step size, and must be selected such that 0 ≤ 𝜌∞ ≤ 1.

Box 1 presents the generalised midpoint rule GM, which is uncon-

ditionally stable and first-order accurate. For 𝜌∞ = 0, it recovers the 
first-order backward Euler method. For 𝜌∞ = 1, it recovers the second-

order trapezoidal rule, known for the minimal truncation error and 
absence of numerical dissipation [9].

Box 2 presents GA-2, which is equivalent to the generalised-𝛼

method proposed in [18]. By replacing the parameters 𝛼, 𝛽0, and 𝛽1
with 𝛼𝑓 , 𝛼𝑚, and 1 − 𝛼𝑚 respectively, the representation of [18] is re-
covered.
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Fig. 2. Eigenvalues of GM, GA-2, GA-23 and GA-234 for 𝜉 = 0, displayed in the complex plain for a range of time step sizes Δ𝑡.

Fig. 3. Algorithmic damping ratios of GA-2, GA-23 and GA-234 for 𝜉 = 0.
Boxes 3 and 4 present the new schemes GA-23 and GA-234 proposed 
in [10]. For 𝜌∞ < 1, the methods outperform the generalised-𝛼 method, 
offering improved second-order accuracy and reduced low-frequency 
damping at negligible additional computational cost. For 𝜌∞ = 1, they 
recover the trapezoidal rule. For 𝜌∞ = 0, GA-23 and GA-234 recover 
the enhanced versions of the backward difference formula, BDF-23 and 
BDF-234, respectively, as shown in [10].

3. Application to structural dynamics

The methodology outlined in this section follows the procedure 
3

and notation adopted in [21] for applying first-order time integration 
schemes to structural dynamics. The governing equation for linear struc-

tural dynamics is expressed in matrix form as

𝐌�̈� + 𝐂�̇� + 𝐊𝐝 = 𝐅, (2)

where 𝐌, 𝐂, and 𝐊 denote the mass, damping, and stiffness matrices 
respectively, and 𝐅 is the vector of external forces. The vector 𝐝 denotes 
the displacements, while �̇� and �̈� represent the velocity and acceleration 
vectors respectively. The initial conditions are given as 𝐝(0) = 𝐝0 and 
�̇�(0) = �̇�0. The initial acceleration is calculated from Equation (2) as

( )

�̈�0 =𝐌−1 𝐅(0) −𝐂�̇�0 −𝐊𝐝0 . (3)
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Fig. 4. Relative period error of GA-2, GA-23 and GA-234 for 𝜉 = 0.
�̇�𝑛+𝛽 − 𝑓 (𝑢𝑛+𝛼, 𝑡𝑛+𝛼) = 0

𝑢𝑛+𝛼 = 𝛼 𝑢𝑛+1 + (1 − 𝛼)𝑢𝑛
�̇�𝑛+𝛽 = 𝛽0 �̇�𝑛+1 + 𝛽1 �̇�𝑛 + 𝛽2 �̈�𝑛Δ𝑡

𝑢
(𝑖)′
𝑛+1 = 𝑢(𝑖)′

𝑛
+

(
𝛾 𝑢

(𝑖+1)′
𝑛+1 + (1 − 𝛾) 𝑢(𝑖+1)′

𝑛

)
Δ𝑡 for 𝑖= 0, 1

𝛼 = 𝛾 = 1
1 + 𝜌∞

, 𝛽0 =
10 − 5𝜌∞ + 𝜌2∞

6(1 + 𝜌∞)
, 𝛽1 = 1 − 𝛽0, 𝛽2 =

−(1 − 𝜌∞)2

6(1 + 𝜌∞)

Box 3. Summary of GA-23 for first-order problems.

�̇�𝑛+𝛽 − 𝑓 (𝑢𝑛+𝛼, 𝑡𝑛+𝛼) = 0

𝑢𝑛+𝛼 = 𝛼 𝑢𝑛+1 + (1 − 𝛼)𝑢𝑛
�̇�𝑛+𝛽 = 𝛽0 �̇�𝑛+1 + 𝛽1 �̇�𝑛 + 𝛽2 �̈�𝑛Δ𝑡 + 𝛽3 𝑢𝑛Δ𝑡2

𝑢
(𝑖)′
𝑛+1 = 𝑢(𝑖)′

𝑛
+

(
𝛾 𝑢

(𝑖+1)′
𝑛+1 + (1 − 𝛾)𝑢(𝑖+1)′

𝑛

)
Δ𝑡 for 𝑖 = 0,1,2

𝛼 = 𝛾 = 1
1 + 𝜌∞

, 𝛽0 =
35 − 21𝜌∞ + 7𝜌2∞ − 𝜌3∞

20(1 + 𝜌∞)
, 𝛽1 = 1 − 𝛽0,

𝛽2 =
−(1 − 𝜌∞)2(5 − 𝜌∞)

20(1 + 𝜌∞)
, 𝛽3 =

−(1 − 𝜌∞)3

20(1 + 𝜌∞)2

Box 4. Summary of GA-234 for first-order problems.

𝐌�̈�𝑛+𝛼 + 𝐂�̇�𝑛+𝛼 + 𝐊𝐝𝑛+𝛼 = 𝐅𝑛+𝛼
𝐅𝑛+𝛼 = 𝛼𝐅𝑛+1 + (1 − 𝛼)𝐅𝑛
𝐝𝑛+𝛼 = 𝛼 𝐝𝑛+1 + (1 − 𝛼)𝐝𝑛

�̇�𝑛+𝛼 =
𝐝𝑛+1 − 𝐝𝑛

Δ𝑡

�̈�𝑛+𝛼 =
�̇�𝑛+1 − �̇�𝑛

Δ𝑡

�̇�𝑛+1 =
𝐝𝑛+1 − 𝐝𝑛
𝛼Δ𝑡

− 1 − 𝛼
𝛼

�̇�𝑛

Box 5. Summary of GM for structural dynamics. The coefficient 𝛼 is given in 
Box 1.

The second-order Equation (2) is converted into a system of first-order 
equations by introducing the velocities 𝐯 as auxiliary variables

𝐯 = �̇�, (4)
4

resulting in
𝐌�̇�𝑛+𝛽 + 𝐂𝐯𝑛+𝛼 + 𝐊𝐝𝑛+𝛼 = 𝐅𝑛+𝛼
𝐅𝑛+𝛼 = 𝛼𝐅𝑛+1 + (1 − 𝛼)𝐅𝑛
𝐝𝑛+𝛼 = 𝛼 𝐝𝑛+1 + (1 − 𝛼)𝐝𝑛
𝐯𝑛+𝛼 = 𝛼 𝐯𝑛+1 + (1 − 𝛼)𝐯𝑛
�̇�𝑛+𝛽 = 𝛽0 �̇�𝑛+1 + 𝛽1 �̇�𝑛

𝐯𝑛+1 = 1
𝛼

(
𝛽0 �̇�𝑛+1 + 𝛽1 �̇�𝑛 − (1 − 𝛼) 𝐯𝑛

)
�̇�𝑛+1 =

𝐯𝑛+1 − 𝐯𝑛
Δ𝑡 𝛾

− 1 − 𝛾
𝛾

�̇�𝑛

�̇�𝑛+1 =
𝐝𝑛+1 − 𝐝𝑛

Δ𝑡 𝛾
− 1 − 𝛾

𝛾
�̇�𝑛

Box 6. Summary of GA-2 for structural dynamics. The coefficients 𝛼, 𝛽0, 𝛽1 and 
𝛾 are given in Box 2.

Fig. 5. Spectral radii of GA-2, GA-23, GA-234 with 𝜌∞ = 0 and B-Δ𝑡 and B-2Δ𝑡.

𝐌�̇�+𝐂𝐯+𝐊𝐝 = 𝐅. (5)

Equations (4) and (5) represent a first-order system in terms of 𝐝 and 𝐯. 
Any of the time integration schemes GM, GA-2, GA-23, and GA-234 pro-

posed in [10], can be applied for temporal discretisation. Each method 
requires the implicit solution of a single set of variables.

The application of the generalised midpoint rule GM is straightfor-

ward, and the resulting equations are summarised in Box 5. Applying 
GA-2, GA-23, or GA-234 requires storing one, two, or three derivatives 
of the vectors 𝐝 and 𝐯, respectively. Deriving the required equations for 
GA-23 and GA-234 is tedious and lengthy, yet the process is straightfor-

ward and follows a procedure analogous to that used for GA-2, which 
is therefore described in the following. The resulting schemes for GA-2, 
GA-23, and GA-234 are summarised respectively in Boxes 6, 7, and 8. 

Note that the scheme in Box 6, is equivalent to the method described in 
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Fig. 6. Algorithmic damping ratios and relative period error of GA-2, GA-23, GA-234 with 𝜌∞ = 0 and B-Δ𝑡 and B-2Δ𝑡.

Fig. 7. Linear single degree of freedom oscillator; response obtained for 𝜉 = 0.0.
5

Fig. 8. Linear single degree of freedom oscillator; convergence rates.
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Fig. 9. Linear stiff-soft spring system, free oscillation; two-degree-of-freedom system.

Fig. 10. Linear stiff-soft spring system, free oscillation; responses for Δ𝑡 = 0.5; GA-2, GA-23, GA-234 used with different values of 𝜌∞.

Fig. 11. Linear elastic cantilever beam; finite element mesh.
6

Fig. 12. Linear elastic cantilever beam; deformed and undeformed configurations.
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Fig. 13. Linear elastic cantilever beam; displacement over time obtained using 
GA-234, with 𝜌∞ = 0 and Δ𝑡 = 0.1.

Fig. 14. Linear elastic cantilever beam; shear force over time obtained using 
GA-234, with 𝜌∞ = 0 and Δ𝑡 = 0.1.

Fig. 15. Linear elastic cantilever beam; bending moment over time obtained 
using GA-234, with 𝜌∞ = 0 and Δ𝑡 = 0.1.

𝐌�̇�𝑛+𝛽 + 𝐂𝐯𝑛+𝛼 + 𝐊𝐝𝑛+𝛼 = 𝐅𝑛+𝛼
𝐅𝑛+𝛼 = 𝛼𝐅𝑛+1 + (1 − 𝛼)𝐅𝑛
𝐝𝑛+𝛼 = 𝛼 𝐝𝑛+1 + (1 − 𝛼)𝐝𝑛
𝐯𝑛+𝛼 = 𝛼 𝐯𝑛+1 + (1 − 𝛼)𝐯𝑛
�̇�𝑛+𝛽 = 𝛽0 �̇�𝑛+1 + 𝛽1 �̇�𝑛 + 𝛽2 �̈�𝑛Δ𝑡

𝐯𝑛+1 = 1
𝛼

(
𝛽0 �̇�𝑛+1 + 𝛽1 �̇�𝑛 + 𝛽2 �̈�𝑛Δ𝑡 − (1 − 𝛼) 𝐯𝑛

)
𝐯(𝑖+1)

′

𝑛+1 =
𝐯(𝑖)

′

𝑛+1 − 𝐯(𝑖)
′

𝑛

Δ𝑡 𝛾
+ 1 − 𝛾

𝛾
𝐯(𝑖+1)′
𝑛

for 𝑖 = 0,1

𝐝(𝑖+1)
′

𝑛+1 =
𝐝(𝑖)

′

𝑛+1 − 𝐝(𝑖)
′

𝑛

Δ𝑡 𝛾
+ 1 − 𝛾

𝛾
𝐝(𝑖+1)′
𝑛

for 𝑖 = 0,1

Box 7. Summary of GA-23 for structural dynamics. The coefficients 𝛼, 𝛽0, 𝛽1, 𝛽2
and 𝛾 are given in Box 3.

[21]. The schemes presented in Boxes 7 and 8 are new and represent the 
original contributions of this article. For nonlinear problems, the stiff-

ness matrix 𝐊 has to be evaluated in the configuration defined by the 
displacements 𝐝𝑛+𝛼 .

Applying GA-2 to Equations (4) and (5) yields the following

𝐯𝑛+𝛼 = �̇�𝑛+𝛽 (6)
7

𝐌�̇�𝑛+𝛽 + 𝐂𝐯𝑛+𝛼 + 𝐊𝐝𝑛+𝛼 = 𝐅𝑛+𝛼, (7)
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𝐌�̇�𝑛+𝛽 + 𝐂𝐯𝑛+𝛼 + 𝐊𝐝𝑛+𝛼 = 𝐅𝑛+𝛼
𝐅𝑛+𝛼 = 𝛼𝐅𝑛+1 + (1 − 𝛼)𝐅𝑛
𝐝𝑛+𝛼 = 𝛼 𝐝𝑛+1 + (1 − 𝛼)𝐝𝑛
𝐯𝑛+𝛼 = 𝛼 𝐯𝑛+1 + (1 − 𝛼)𝐯𝑛

�̇�𝑛+𝛽 = 𝛽0 �̇�𝑛+1 + 𝛽1 �̇�𝑛 + 𝛽2 �̈�𝑛Δ𝑡 + 𝛽3 𝐯𝑛Δ𝑡2

𝐯𝑛+1 = 1
𝛼

(
𝛽0 �̇�𝑛+1 + 𝛽1 �̇�𝑛 + 𝛽2 �̈�𝑛Δ𝑡 + 𝛽3 𝐝𝑛Δ𝑡2 − (1 − 𝛼) 𝐯𝑛

)
𝐯(𝑖+1)

′

𝑛+1 =
𝐯(𝑖)

′

𝑛+1 − 𝐯(𝑖)
′

𝑛

Δ𝑡 𝛾
− 1 − 𝛾

𝛾
𝐯(𝑖+1)′
𝑛

for 𝑖 = 0,1,2

𝐝(𝑖+1)
′

𝑛+1 =
𝐝(𝑖)

′

𝑛+1 − 𝐝(𝑖)
′

𝑛

Δ𝑡 𝛾
− 1 − 𝛾

𝛾
𝐝(𝑖+1)′
𝑛

for 𝑖 = 0,1,2

Box 8. Summary of GA-234 for structural dynamics. The coefficients 𝛼, 𝛽0, 𝛽1, 
𝛽2, 𝛽3 and 𝛾 are given in Box 4.

where

𝐅𝑛+𝛼 = 𝛼𝐅𝑛+1 + (1 − 𝛼)𝐅𝑛 (8)

𝐝𝑛+𝛼 = 𝛼 𝐝𝑛+1 + (1 − 𝛼)𝐝𝑛 (9)

�̇�𝑛+𝛽 = 𝛽0 �̇�𝑛+1 + 𝛽1 �̇�𝑛 (10)

𝐝𝑛+1 = 𝐝𝑛 +Δ𝑡
(
𝛾 �̇�𝑛+1 + (1 − 𝛾) �̇�𝑛

)
(11)

𝐯𝑛+𝛼 = 𝛼 𝐯𝑛+1 + (1 − 𝛼)𝐯𝑛 (12)

�̇�𝑛+𝛽 = 𝛽0 �̇�𝑛+1 + 𝛽1 �̇�𝑛 (13)

𝐯𝑛+1 = 𝐯𝑛 + Δ𝑡
(
𝛾 �̇�𝑛+1 + (1 − 𝛾) �̇�𝑛

)
. (14)

For convenience, Equations (11) and (14) are rewritten as,

�̇�𝑛+1 =
1
𝛾 Δ𝑡

(
𝐝𝑛+1 − 𝐝𝑛

)
− 1 − 𝛾

𝛾
�̇�𝑛 (15)

�̇�𝑛+1 =
1
𝛾 Δ𝑡

(
𝐯𝑛+1 − 𝐯𝑛

)
− 1 − 𝛾

𝛾
�̇�𝑛. (16)

By equating �̇�𝑛+𝛽 and 𝐯𝑛+𝛼 from Equations (10) and (12), 𝐯𝑛+1 can be 
reformulated as

𝐯𝑛+1 =
𝛽0
𝛼

�̇�𝑛+1 +
𝛽1
𝛼

�̇�𝑛 −
1 − 𝛼
𝛼

𝐯𝑛. (17)

Next, by substituting Equation (15) into Equation (17), 𝐯𝑛+1 is obtained 
as

𝐯𝑛+1 =
𝛽0
𝛼 𝛾 Δ𝑡

(
𝐝𝑛+1 − 𝐝𝑛

)
+
𝛾
(
𝛽0 + 𝛽1

)
− 𝛽0

𝛼 𝛾
�̇�𝑛 −

1 − 𝛼
𝛼

𝐯𝑛. (18)

Subsequently, substituting Equation (18) into Equation (16), �̇�𝑛+1 be-

comes

�̇�𝑛+1 =
𝛽0

𝛼 𝛾2 Δ𝑡2
(
𝐝𝑛+1 − 𝐝𝑛

)
+
𝛾
(
𝛽0 + 𝛽1

)
− 𝛽0

𝛼 𝛾2 Δ𝑡
�̇�𝑛

− 1
𝛼 𝛾 Δ𝑡

𝐯𝑛 −
1 − 𝛾
𝛾

�̇�𝑛. (19)

Finally, Equation (2) can be solved for 𝐝𝑛+1 from

�̂�𝐝𝑛+1 = �̂�, (20)

where �̂� is the effective stiffness matrix

�̂� =
𝛽20

𝛼 𝛾2 Δ𝑡2
𝐌 +

𝛽0
𝛾 Δ𝑡

𝐂 + 𝛼𝐊, (21)

and �̂� is the effective force vector
�̂� = 𝐅𝑛+𝛼 − 𝛽1𝐌�̇�𝑛 − (1 − 𝛼)𝐂𝐯𝑛 − (1 − 𝛼)𝐊𝐝𝑛



Computers and Structures 305 (2024) 107587E. Alhayki and W.G. Dettmer

Fig. 16. Linear elastic cantilever beam; frequency convergence.
Fig. 17. Nonlinear two degree of freedom oscillator.

Fig. 18. Nonlinear two degree of freedom oscillator; evolution of the elastic 
normal force obtained using 𝜌∞ = 0 and Δ𝑡 = 0.3.

+ 𝛼𝐂
[
𝛽0
𝛼 𝛾 Δ𝑡

𝐝𝑛 −
𝛾
(
𝛽0 + 𝛽1

)
− 𝛽0

𝛼 𝛾
�̇�𝑛 + 1 − 𝛼

𝛼
𝐯𝑛

]

+ 𝛽0𝐌
[

𝛽0

𝛼𝛾2Δ𝑡2
𝐝𝑛 −

𝛾
(
𝛽0 + 𝛽1

)
− 𝛽0

𝛼𝛾2Δ𝑡
�̇�𝑛 + 1

𝛼𝛾Δ𝑡
𝐯𝑛 + 1 − 𝛾

𝛾
�̇�𝑛

]
.

(22)

Once 𝐝𝑛+1 is obtained, �̇�𝑛+1, 𝐯𝑛+1, and �̇�𝑛+1 can be computed using Equa-

tions (15), (18), and (19), respectively.

4. Analysis of methods GA-23 and GA-234

This section investigates the numerical properties of the new 
schemes GA-23 and GA-234. The coupled equations of motion are ap-

plied to a single-degree-of-freedom system. The governing equation of 
an unforced system is given by

𝑑 + 2 𝜉 𝜔 �̇� +𝜔2𝑑 = 0, (23)

where 𝜔 is the natural frequency, 𝜉 is the damping ratio, and the oscilla-

tion period is defined as 𝑇 = 2𝜋
𝜔

. The solutions at 𝑡𝑛+1 can be expressed 
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as
𝐧+𝟏 = 𝗔𝐗𝐧, (24)

here

GA-2: 𝐗𝐧 =
{
𝑑𝑛, 𝑣𝑛Δ𝑡, �̇�𝑛Δ𝑡, �̇�𝑛Δ𝑡2

}𝑇
A-23: 𝐗𝐧 =

{
𝑑𝑛, 𝑣𝑛Δ𝑡, �̇�𝑛Δ𝑡, �̇�𝑛Δ𝑡2, 𝑑𝑛Δ𝑡2, �̈�𝑛Δ𝑡3

}𝑇
-234: 𝐗𝐧 =

{
𝑑𝑛, 𝑣𝑛Δ𝑡, �̇�𝑛Δ𝑡, �̇�𝑛Δ𝑡2, 𝑑𝑛Δ𝑡2, �̈�𝑛Δ𝑡3, 𝑑𝑛Δ𝑡3, 𝑣𝑛Δ𝑡4

}𝑇
d 𝗔 is the corresponding amplification matrix. The coefficients of the 
plification matrices depend on 𝜔, 𝜉, Δ𝑡, and the coefficients 𝛼, 𝛽𝑖, 
d 𝛾 . The matrices can be easily derived using symbolic mathematical 
ftware but are omitted here for the sake of brevity. For more details, 
fer to [10]. The spectral radius, 𝜌(𝗔), is defined as

=max(|𝜆1|, |𝜆2|,… , |𝜆𝑑 |), (25)

here 𝜆𝑖 is the 𝑖-th eigenvalue of 𝗔 and 𝑑 = 4, 6, 8 for GA-2, GA-23 and 
-234, respectively. A scheme is unconditionally stable if 𝜌(𝗔) ≤ 1 for 

y Δ𝑡 ≥ 0.

Figs. 1 and 2 show, respectively, the spectral radii versus the time 
ep size and the eigenvalues of the amplification matrices in the com-

ex plane for different values of 𝜌∞. The methods are confirmed to be 
conditionally stable, since all eigenvalues lie within or on the unit cir-

e. The spectral radius does not exceed the value of one for any time 
ep size Δ𝑡. Moreover, Fig. 1 shows that GA-23 and GA-234 shift the 
set of significant numerical damping to larger time steps, which re-

lts in less numerical damping in the low-frequency regime compared 
 GA-2. To evaluate numerical dissipation and dispersion, the algorith-

ic damping ratio and the relative period error are defined as follows

−ln |𝜆|
Ω̄

and
�̄� − 𝑇
𝑇
, (26)

here

= 2𝜋
�̄�
, �̄� = Ω̄

Δ𝑡
, Ω̄ = arg(𝜆). (27)

gs. 3 and 4 display the algorithmic damping ratios and relative period 
rors over the time step size, respectively. Notably, GA-23 and GA-234 
hibit smaller approximation errors compared to GA-2. The scheme 
-234 is more accurate than GA-23.

 Backward difference formulae

For 𝜌∞ = 0, GA-23 and GA-234 can be cast in the format of backward 
fference formulae as shown in [10]. BDF-23 is a linear combination of 
F-2 and BDF-3, while BDF-234 combines BDF-2, BDF-3, and BDF-4. 
r linear problems with correct initial conditions, the BDF methods 
oduce identical results to their GA counterparts for 𝜌∞ = 0. How-

er, they lack time adaptability and user-controlled high-frequency 

damping. Nevertheless, integrating them into existing code based on 
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Fig. 19. Nonlinear two degree of freedom oscillator; solution obtained in 𝑥-direction with 𝜌 = 0.
the standard backward difference formula is straightforward and imme-

diately enhances accuracy at negligible additional storage cost. In the 
examples presented in Sections 7 to 11, BDF-23 and BDF-234 are repre-

sented by GA-23 and GA-234 with 𝜌∞ = 0 (Boxes 9 and 10).

6. Comments on the comparison with the Bathe method

The Bathe method is a well-known composite scheme which com-

bines the trapezoidal rule with the BDF-2 formula. Several variations 
of the Bathe method have been presented [2–4,28–30,32]. Any analy-

sis or numerical results shown in the remainder of this work refer to 
the standard Bathe method with 𝛾 = 2 −

√
2 [3]. The approach taken in 

the development of the GA-23 and GA-234, based on the linear combi-

nation of second order and higher order schemes, is entirely different. 
The following remarks comment on computational cost and implemen-

tation, accuracy and suitability for modelling wave propagation of the 
two strategies.

Computational cost and implementation: Due to its multi-sub-step na-

ture, the implementation of the Bathe method is more intrusive. It re-

quires that two global systems are solved. In many cases the stiffness 
matrices involved are identical or differ only by scalar factors such that 
the matrix factorisation can be reused and the additional computational 
cost is small. For nonlinear problems, each sub-step requires the use of a 
Newton procedure and the computational cost per time step is generally 
more significant.

Accuracy: Fig. 5 shows the spectral radii for GA-2, GA-23, GA-234 
and the Bathe method, while Fig. 6 shows the algorithmic damping ratio 
and the relative period error. Due to the larger computational cost, the 
Bathe method is considered with time step sizes of Δ𝑡 and 2Δ𝑡. These are 
distinguished by using the abbreviations B-Δ𝑡 and B-2Δ𝑡, respectively. 
In the context of the comparison with GA-2, GA-23 and GA-234, the 
schemes B-Δ𝑡 and B-2Δ𝑡, in a sense, represent upper and lower bounds 
of the performance of the Bathe method. In Figs. 5 and 6, it is observed 
that, for 𝜌∞ = 0, GA-23 and B-2Δ𝑡 are of similar quality while GA-234 
lies between B-2Δ𝑡 and B-Δ𝑡. Numerical results obtained with B-Δ𝑡 and 
B-2Δ𝑡 are shown in Section 8.

Modelling wave propagation: The Bathe method has been demon-

strated to be highly effective for solving wave propagation in elastic 
9

solid material [25,27]. Namely, discontinuities in the velocity are re-
∞

𝐌�̈�𝑛+1 + 𝐂�̇�𝑛+1 + 𝐊𝐝𝑛+1 = 𝐅𝑛+1

�̈�𝑛+1 =
10 �̇�𝑛+1 − 15 �̇�𝑛 + 6 �̇�𝑛−1 − �̇�𝑛−2

6Δ𝑡

�̇�𝑛+1 =
10𝐝𝑛+1 − 15 𝐝𝑛 + 6𝐝𝑛−1 − 𝐝𝑛−2

6Δ𝑡

Box 9. Summary of method BDF-23 for structural dynamics.

𝐌�̈�𝑛+1 + 𝐂�̇�𝑛+1 + 𝐊𝐝𝑛+1 = 𝐅𝑛+1

�̈�𝑛+1 =
35 �̇�𝑛+1 − 56 �̇�𝑛 + 28 �̇�𝑛−1 − 8 �̇�𝑛−2 + �̇�𝑛−3

20Δ𝑡

�̇�𝑛+1 =
35𝐝𝑛+1 − 56 𝐝𝑛 + 28 𝐝𝑛−1 − 8 𝐝𝑛−2 + 𝐝𝑛−3

20Δ𝑡

Box 10. Summary of method BDF-234 for structural dynamics.

solved relatively accurately. For GA-23 and GA-234, the combination 
of second order with higher order schemes results in improved accu-

racy but also introduces a requirement for more smoothness. Hence, the 
discontinuities associated with shock waves are dispersed faster than by 
the Bathe method, while smooth wave propagation is reproduced highly 
accurately by GA-23 and GA-234, as shown in Section 11.

7. Example 1: linear single degree of freedom oscillator

To evaluate the performance and accuracy of GA-23 and GA-234, the 
single-degree-of-freedom system defined by Equation (23) is employed. 
The frequency is set to 𝜔 = 1 resulting in an oscillation period of 𝑇 =
2𝜋. The initial displacement and velocity are specified as 𝑑(0) = 1 and 
�̇�(0) = 0.

Fig. 7 presents the responses obtained using the exact solution, the 
GA-2, GA-23, and GA-234 scheme. The responses are displayed for dif-

ferent time step sizes and values of 𝜌∞. For larger time steps, GA-23 and 
GA-234 are substantially more accurate than GA-2, providing reduced 
numerical damping and smaller frequency errors. Notably, GA-234 is 

slightly more accurate than GA-23.
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Fig. 20. Nonlinear two degree of freedom oscillator; phase space trajectories 
obtained with 𝜌∞ = 0.

Fig. 8 displays the convergence of the numerical solutions for dif-

ferent values of 𝜌∞. The error 𝜖 is determined by comparing the exact 
displacement 𝑑 with the numerical displacement 𝑑 from each method, 
i.e.

𝜖(𝑡𝑁 ) =

√√√√ 𝑡𝑁

𝑁

𝑁∑
𝑖=1

||𝑑(𝑡𝑖) − 𝑑(𝑡𝑖)||2, (28)

where 𝑁 is the number of time steps used in the respective computation 
to reach 𝑡𝑁 = 35.

As 𝜌∞ approaches 1, the differences between the methods decrease 
and eventually they all coincide with trapezoidal rule. For 𝜌∞ = 0, the 
improvement in accuracy from GA-2 to GA-234 in the regime of time 
steps around Δ𝑡 = 𝑇 ∕32 is similar to that from the first order accurate 
method GM to the second order accurate scheme GA-2. This is also re-

flected in Fig. 7 where, for 𝜌∞ = 0, GA-234 renders significantly more 
accurate results than GA-2. Hence, the new methods GA-23 and GA-234 
offer substantial benefit in the range of time steps 𝑇 ∕50 < Δ𝑡 < 𝑇 ∕25
10

which is highly relevant for industrial applications.
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Fig. 21. Nonlinear two degree of freedom oscillator; evolution of the total energy 
over time obtained using 𝜌∞ = 0.

Table 1

Linear stiff-soft spring system, free oscillation; 
comparison of frequencies and error.

Method Frequency Error (%)

Analytical 0.1125 -

GA-234 (𝜌∞ = 0) 0.1111 1.27

GA-23 (𝜌∞ = 0) 0.1108 1.54

GA-2 (𝜌∞ = 0) 0.1081 3.94

GA-234 (𝜌∞ = 1∕3) 0.1113 1.13

GA-23 (𝜌∞ = 1∕3) 0.1112 1.19

GA-2 (𝜌∞ = 1∕3) 0.1104 1.91

B-Δ𝑡 0.1116 0.86

B-2Δ𝑡 0.1103 1.95

8. Example 2: linear stiff-soft spring system, free oscillation

A two-degree-of-freedom system is considered which consists of two 
equal point masses, 𝑚1 = 𝑚2 = 1. The masses are supported by two 
springs as shown in Fig. 9. The spring stiffnesses are 𝑘1 = 1 and 𝑘2 = 107. 
The time step size is set to Δ𝑡 = 0.5. Due to the excessive stiffness ra-

tio, the oscillation associated with the high frequency is not of interest 
and will not be resolved. The lower frequency results in an oscillation 
period of 8.897. The initial displacements are set to {0, 1} while both 
initial velocities are zero. Fig. 10 shows the responses obtained from the 
different schemes considered in this work, including the Bathe method. 
The observed oscillation frequencies are summarised in Table 1.

As expected, the initial conditions cause spurious numerical oscilla-

tions for 𝜌∞ = 1 (trapezoidal rule), which are effectively damped out if 
smaller values of 𝜌∞ are used. In Fig. 10(a), for 𝜌∞ = 0, the responses of 
GA-23, GA-234 and the Bathe method are far more accurate in terms of 
dissipation and frequency errors than GA-2. GA-23 is closely matched 
by B-2Δ𝑡, while the quality of the results obtained from GA-234 lies 
between those of B-Δ𝑡 and B-2Δ𝑡. For larger 𝜌∞ > 0, the accuracy of 
GA-2, GA23, and GA234 increases, with even GA-2 performing better 

than B-2Δ𝑡 for 𝜌∞ = 1∕3 in Fig. 10(b).
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Fig. 22. Wave propagation on a string; vertical displacement at the midpoint obtained using 𝜌 = 0 and Δ𝑡 = 4 ms.
Table 2

Linear elastic cantilever beam; fre-

quency comparison obtained with 
𝜌∞ = 0 and Δ𝑡 = 0.2.

Method Frequency Error (%)

Reference 0.2453 -

GA-234 0.2448 0.21

GA-23 0.2431 0.90

GA-2 0.2397 2.29

9. Example 3: linear elastic cantilever beam

In this example, a linear elastic cantilever beam with length 𝐿 = 4, 
height 𝐻 = 0.2, Young’s modulus 𝐸 = 15000, Poisson’s ratio 𝜈 = 0.35
and density 𝜌 = 1, is considered. The thickness in the third direction is 
𝑤 = 1. The beam is fully fixed on the left side and free at the other end. 
The employed mesh consists of 160 nine-noded plane stress elements, 
as shown in Fig. 11.

Initially, a point load 𝑃 = 0.2 is applied at the central node of the 
free end. A steady-state analysis is then performed to obtain the static 
response, which is used as the initial condition for the dynamic analy-

sis. Fig. 12 shows a typical deformed configuration. Fig. 13 displays the 
vertical displacement at the central node of the free end against time, 
obtained using GA-234 with 𝜌∞ = 0 and Δ𝑡 = 0.1. Figs. 14 and 15 re-

spectively show the shear force and bending moment at the clamped 
end.

A mesh-dependent reference solution is computed using GA-234 with 
Δ𝑡 = 0.0005 and 𝜌∞ = 0 and yields a frequency of 𝑓 = 0.24531, which 
deviates slightly from the lowest analytical frequency. Table 2 shows 
the frequency errors obtained with the different methods relative to the 
mesh dependent reference solution. The methods GA-23 and GA-234 
clearly outperform the standard generalised-alpha method GA-2. Fig. 16

illustrates the frequency convergence for different values of 𝜌∞ .

10. Example 4: nonlinear two degree of freedom oscillator

This example assesses the performance of GA-2, GA-23, and GA-234 
11

in a nonlinear setting by investigating the spring pendulum shown in 
∞

Fig. 17. The pendulum has the initial length 𝑙0 = 10, point mass 𝑚 = 1, 
and spring stiffness 𝑘 = 25. The initial conditions are set such that in the 
𝑥-direction, the displacement is 𝑥 = 0 and the velocity is �̇� = 1. In the 
𝑦-direction, the displacement is 𝑦 = −12 with velocity �̇� = 0.

The governing equations of the system can be written as

�̈�𝑚+𝑁 𝑥
𝑙
= 0, �̈�𝑚+𝑁 𝑦

𝑙
= 0, (29)

where 𝑁 = 𝜀𝑘 is the elastic normal force in the spring, and the strain 
is calculated as 𝜀 = ln(𝜆) with 𝜆 = 𝑙∕𝑙0 and 𝑙 being the current length. 
Fig. 18 displays the evolution of the elastic force over time, obtained 
using 𝜌∞ = 0 and Δ𝑡 = 0.3. Fig. 19 illustrates the evolution of displace-

ment, velocity, and acceleration in the 𝑥-direction, while Fig. 20 shows 
phase space trajectories. Both figures depict the results for two time step 
sizes, Δ𝑡 = 0.1 and Δ𝑡 = 0.3, alongside a reference solution obtained us-

ing GA-234 with Δ𝑡 = 0.001. Responses in the 𝑦-direction resemble those 
in Fig. 19 and have thus been omitted. The total energy of the system is 
given by

𝐸total =
1
2
𝑚
(
�̇�2 + �̇�2

)
+ 𝑘 (𝜆 ln(𝜆) − 𝜆+ 1) 𝑙0 . (30)

Fig. 21 shows the total energy for GA-2, GA-23, and GA-234, obtained 
using 𝜌∞ = 0 and time step sizes Δ𝑡 = 0.1 and Δ𝑡 = 0.3. The figure shows 
that GA-23 and GA-234 conserve the total energy in the system far more 
accurately than GA-2.

11. Example 5: wave propagation on a string

A string of length 𝐿 = 20 m, cross-sectional area 𝐴 = 2.0 × 10−4 m2, 
density 𝜌 = 1.14 × 103 kg/m3, and Young’s modulus 𝐸 = 2.7 GPa is con-

sidered. It is fixed at one end, while a constant horizontal force of 540 N
and a prescribed vertical displacement are applied at the other end. The 
string is linear elastic, and the horizontal force causes a strain of 0.1%. 
The string is represented by 1000 two-noded linear elements using mass 
lumping. The resolution of the displacements is geometrically exact, and 
a global Newton-Raphson procedure is employed to obtain the solutions 
at each time step. The prescribed vertical displacement is

𝐷
( ( 2𝜋𝑡))
𝑑(𝑡) =
2
× 1 − cos

100
for 0 < 𝑡 < 100
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Fig. 23. Wave propagation on a string; snapshots of the wave travelling along the string.
and otherwise zero, where the time must be given in milliseconds. Two 
values of 𝐷 are considered, namely, 𝐷 = 1 mm and 𝐷 = 1 m, which re-

sult in linear and nonlinear responses, respectively.

Fig. 22 shows the vertical displacement at the midpoint of the string, 
obtained using GA-2, GA-23, and GA-234 with 𝜌∞ = 0 and Δ𝑡 = 4 ms. 
A reference solution using GA-234 with a time step of Δ𝑡 = 0.01 ms is 
also provided. The results of the simulations are consistent with previ-

ous findings, confirming that GA-23 and GA-234 outperform GA-2 in 
terms of numerical accuracy and reduced numerical dissipation. Fig. 23

captures snapshots of the string at different times. For the small dis-

placement 𝐷 = 1 mm, the wave propagates smoothly along the string, 
demonstrating typical wave motion. The large displacement, 𝐷 = 1 m, 
causes chaotic nonlinear oscillatory behaviour after the wave reflection 
at the fixed end.

12. Conclusions

This paper presents the application of the GA-23 and GA-234 meth-

ods, originally proposed for first-order systems in [10], to the second 
order problem in structural dynamics. The newly formulated meth-

ods retain all characteristics of the original algorithms of [10]; they 
are implicit, unconditionally stable, second-order accurate, and effec-

tively dampen undesired high frequencies. The performance of the 
new schemes is demonstrated in several numerical examples. All exam-

ples consistently demonstrate that GA-23 and GA-234 outperform the 
generalised-𝛼 method as they more effectively capture the desired fre-

quencies and are noticeably more accurate. The differences between the 
proposed methods and the Bathe method are discussed. For 𝜌∞ = 0, the 
methods GA-23 and GA-234 can be expressed as backward difference 
12

formulae, as shown in Section 5. The computer implementation of the 
proposed schemes is straightforward, and the computational cost does 
not exceed that of the standard generalised-𝛼 method.
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