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Abstract6

Purpose: This study aims to assess the accuracy of degree adaptive7

strategies in the context of incompressible Navier-Stokes flows using8

the high order hybridisable discontinuous Galerkin (HDG) method.9

Design/methodology/approach: The work presents a series of nu-10

merical examples to show the inability of standard degree adaptive11

processes to accurate capture aerodynamic quantities of interest, in12

particular the drag. A new conservative projection is proposed and the13

results between a standard degree adaptive procedure and the adaptive14

process enhanced with this correction are compared. The examples in-15

volve two transient problems where flow vortices or a gust needs to be16

accurately propagated over long distances.17

Findings: The lack of robustness and accuracy of a standard degree18

adaptive processes is linked to the violation of the free-divergence con-19

dition when projecting a solution from a space of polynomials of a20

given degree to a space of polynomials with a lower degree. Due to the21

coupling of velocity-pressure in incompressible flows, the violation of22

the incompressibility constraint leads to inaccurate pressure fields in23

the wake that have a sizeable effect on the drag. The new conserva-24

tive projection proposed is found to remove all the numerical artefacts25

shown by the standard adaptive process.26

Originality/value: This work proposes a new conservative projection27

for the degree adaptive process. The projection does not introduce a28

significant overhead because it requires to solve an element-by-element29

problem and only for those elements where the adaptive process lowers30

the degree of approximation. Numerical results show that with the31

proposed projection non-physical oscillations in the drag disappear and32

the results are in good agreement with reference solutions.33

Keywords: degree adaptivity; hybridisable discontinuous Galerkin;34

incompressible flows; Navier-Stokes; high-order35
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1 Introduction36

The accurate simulation of transient incompressible fluid flows is a central37

challenge in many computational fluid dynamics (CFD) applications, in-38

cluding areas such as civil, aerospace, chemical and biomedical engineering.39

From a numerical point of view, several difficulties arise when solving the in-40

compressible Navier-Stokes equations due to their non-linear nature and the41

intricate coupling between velocity and pressure fields [1]. When unsteady42

phenomena are of interest an extra difficulty is to accurate propagate vor-43

tices over long distances.44

High-order methods are attractive for the simulation of transient flows45

due to the lower dissipation and dispersion errors, when compared to low or-46

der methods [2, 3, 4]. Continuous and discontinuous Galerkin (DG) methods47

have their own advantages and disadvantages and have both been success-48

fully applied to a variety of problems in CFD [5, 6, 7, 8, 9, 10, 11, 12, 13].49

Two properties that make DG a preferred option in some cases is the ability50

to easily handle a variable degree of approximation and the easier defini-51

tion of the required stabilisation for convection dominated flows [14, 15, 16].52

The main disadvantage of DG methods is commonly attributed to the du-53

plication of degrees of freedom [17, 18], which in turns is the property that54

facilitates the implementation of variable degree of approximation.55

The hybridisable discontinuous Galerkin (HDG) method, originally pro-56

posed by Cockburn and co-workers [19, 20] employs hybridisation to reduce57

the number of coupled degrees of freedom and has become popular for CFD58

applications. With HDG, it is possible to use approximations of equal order59

for both velocity and pressure, circumventing the Ladyzhenskaya-Babuška-60

Brezzi (LBB) condition. From a computational perspective, the size of the61

global problem only involves the mean value of the pressure in each element62

even for high-order approximations, reducing even further the size of the63

global system of equations to be solved. Furthermore, an important advan-64

tage of HDG is the ability to build a super-convergent velocity field [21].65

The development and application of HDG methods to incompressible flows66

include the solution of Stokes flows [22, 23, 24, 21, 25] and the incompressible67

Navier-Stokes equations [26, 27, 28, 29].68

To accurately and efficiently capture transient flow phenomena, mesh69

adaptation techniques are traditionally employed in a low order context.70

For high-order methods the use of degree adaptivity offers a new alternative71

to provide the required accuracy only in the regions of the domain where72

is needed, minimising the computational overhead of high-order approxi-73

mations and circumventing the need to modify the mesh topology. In the74

context of HDG, the use of mesh and degree adaptivity has been considered75

for a variety of problems, including incompressible flows [27, 30]. In HDG76

methods, the ability to build a super-convergent solution can be used to77

devise a cheap error indicator to drive the adaptivity. This strategy was78
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first exploited in [31] for wave propagation problems.79

This work considers the solution of the incompressible Navier-Stokes80

equations using a degree adaptive HDG method. First, it is shown that a81

degree adaptive process can lead to unphysical oscillations in aerodynamic82

quantities of interest, especially the drag, if the adaptive process reduces83

the degree of approximation during the time marching process. This phe-84

nomenon is linked to the violation of the free-divergence condition during85

the projection of the solution from a space of polynomials of degree r to86

a space of polynomials of degree s, with s < r. Second, this work pro-87

poses a conservative projection to guarantee mass conservation during the88

projection stage. The proposed projection does not introduce a significant89

overhead because it induces the solution of an element-by-element problem90

and only for those elements where the adaptive process lowers the degree91

of approximation. Numerical examples are used to illustrate the benefits of92

the proposed conservative projection using two dimensional examples.93

The remainder of the paper is organised as follows. Section 2 briefly94

summarises the numerical solution of the incompressible Navier-Stokes us-95

ing the HDG method. In Section 3 the degree adaptive strategy proposed96

in this work is outlined, including the proposed conservative projection to97

guarantee mass conservation. Section 4 present numerical examples to il-98

lustrate the effect of using a standard adaptive process that violates the99

free-divergence condition during the projection stage and the benefits of the100

proposed conservative projection. Finally, the conclusions of the work are101

presented in Section 5.102

2 HDG solution of the incompressible Navier-Stokes103

equations104

This section summarises the HDG formulation employed to numerically solve105

the transient incompressible Navier-Stokes equations. Except from the ad-106

dition of the transient term, the formulation follows the work in [32], so107

only the main ingredients required to present the proposed degree adaptive108

strategy are considered here.109

2.1 HDG formulation110

The strong form of the transient incompressible Navier-Stokes equations in111

an open bounded domain Ω ⊂ Rnsd , where nsd is the number of spatial112
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dimensions, is written as113 

ut −∇ · (2ν∇su− pI) +∇·(u⊗ u) = s in Ω× (0, T ],

∇·u = 0 in Ω× (0, T ],

u = uD on ΓD × (0, T ],(
(2ν∇su− pI)− (u⊗ u)

)
n = t on ΓN × (0, T ].

u = u0 in Ω× {0},

(1)

where the u is the velocity vector, p is the pressure, ν is the kinematic114

viscosity, ∇su := (∇u +∇Tu)/2 is the strain-rate tensor, s is the source115

term, uD is the imposed velocity on the Dirichlet part of the boundary, ΓD,116

t is the imposed traction on the Neumann part of the boundary, ΓN , n is117

the outward unit normal vector to the boundary, u0 is the initial condition118

and T denotes the final time.119

The HDG method uses a mixed formulation leading to a rewriting of the120

momentum equation as a first-order partial differential equation, namely121

ut +∇·(
√
2νL+ pI) +∇·(u⊗ u) = s in Ω× (0, T ], (2)

where L = −
√
2ν∇su is the so-called mixed variable.122

After discretising the domain in a set of nel non-overlapping elements123

Ωe, the mixed problem is written in each element and interface conditions124

to enforce the continuity of the solution and the continuity of the fluxes are125

introduced [32]. A distinctive feature of the HDG method is the introduction126

of the trace of the velocity, also called hybrid velocity, as an independent127

variable on the mesh skeleton, defined as128

Γ :=
[ nel⋃
e=1

∂Ωe

]
\ ∂Ω. (3)

The resulting problem is then solved in two stages. First the element-129

by-element local problems define a pure Dirichlet problem130 

L+
√
2ν∇su = 0 in Ωe,

ut +∇·(
√
2νL+ pI) +∇·(u⊗ u) = s in Ωe,

∇·u = 0 in Ωe,

u = uD on ∂Ωe ∩ ΓD,

u = û on ∂Ωe \ ΓD,
u = u0 in Ωe × {0},

⟨p, 1⟩∂Ωe = ρe,

(4)

where the last equation is required to remove the indeterminacy of the pres-131

sure, ⟨·, ·⟩S denotes the classical L2 inner product for vector-valued functions132

on S ⊂ Γ ∪ ∂Ω and û is the hybrid velocity.133
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Second, the global problem is given by134 
q(
(
√
2νL+ pI) + (u⊗ u)

)
n

y
= 0 on Γ,(

(
√
2νL+ pI) + (u⊗ u)

)
n = −t on ΓN ,

⟨û · ne, 1⟩∂Ωe\ΓD + ⟨uD · ne, 1⟩∂Ωe∩ΓD = 0,

(5)

where the last equation is induced by the free-divergence condition in the135

local problems. It is worth noting that there is no need to impose the136

continuity of the solution in the global problem due to the unique definition137

of the hybrid velocity in each face of the mesh skeleton and the imposition138

of u = û in the local problems (4).139

2.2 Weak forms and the HDG stabilisation140

For each element, the weak formulation of local problems can be written as141

is as follows: find (Le,u, p) ∈ [H(div; Ω); S]×
[
H1(Ω)

]nsd ×H1(Ω) such that142 

−
(
G,L

)
Ωe

+
(
∇·(
√
2νG),u

)
Ωe

= ⟨Gn,
√
2ν uD⟩∂Ωe∩ΓD + ⟨Gn,

√
2ν û⟩∂Ωe\ΓD ,(

w,ut

)
Ωe
+
(
w,∇·(

√
2νL)

)
Ωe
+
(
w,∇p

)
Ωe

+
〈
w, (
√
2νL+pI
∧

)n−(
√
2νL+pI)n

〉
∂Ωe

−
(
∇w,u⊗ u

)
Ωe
+⟨w, (÷u⊗ u)n⟩∂Ωe =

(
w, s

)
Ωe
,(

∇q,u
)
Ωe

= ⟨q,uD · n⟩∂Ωe∩ΓD + ⟨q, û · n⟩∂Ωe\ΓD ,

⟨p, 1⟩∂Ωe = ρe,

(6)

for all (G,w, q) ∈ [H(div; Ωe);S]×
[
H1(Ωe)

]nsd×H1(Ωe), where [H(div; Ωe);S]143

denotes the space of square-integrable symmetric tensors S of order nsd with144

square-integrable row-wise divergence.145

Similarly, the weak form of the global problem reads: find û ∈
î
H

1
2 (Γ ∪ ΓN )

ónsd
146

and ρ ∈ Rnel that satisfies147 

nel∑
e=1

{〈“w, (
√
2νL+pI
∧

)n+(’u⊗u)ne

〉
∂Ωe\∂Ω

+
〈“w, (

√
2νL+pI
∧

)n+(’u⊗u)ne+t
〉
∂Ωe∩ΓN

}
=0,

⟨û · ne, 1⟩∂Ωe\ΓD = −⟨uD · ne, 1⟩∂Ωe∩ΓD for e = 1, . . . , nel,

(7)

for all “w ∈ [L2(Γ ∪ ΓN )]nsd .148

Following [33, 34, 32], the numerical traces appearing in the local and149

global problems are defined as150

(
√
2νL+pI
∧

)n:=

®
(
√
2νL+pI)n+τd(u−uD) on ∂Ωe ∩ ΓD,

(
√
2νL+pI)n+τd(u−û) elsewhere,

(8a)
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151

(÷u⊗ u)ne :=

®
(û⊗ uD)n+ τa(u− uD) on ∂Ωe ∩ ΓD,

(û⊗ û)n+ τa(u− û) elsewhere,
(8b)

where τd and τa are the diffusive and convective stabilisation parameters,152

respectively, which in this work are defined as153

τd = 10ν/ℓ, τa = max
x
∥u(x)∥2, (9)

where the factor 10 in the diffusive stabilisation is taken following previous154

work on HDG methods [25, 32] and the maximum in the convective stabil-155

isation is taken over all the mesh nodes. Other options for the convective156

stabilisation, not considered here, have been recently proposed in [35].157

The selected parameters ensure the satisfaction of the admissibility con-158

dition introduced in [33] to guarantee stability and well-posedness,159

min
x∈∂Ωe

¶
τd + τa − û · n

©
≥ γ > 0 (10)

for some constant γ.160

2.3 HDG solution algorithm161

Introducing the numerical traces (8) into the local problems leads to the162

following residuals163

Re
1 : =

(
G,Le

)
Ωe
−
(
∇·(
√
2νG),ue

)
Ωe
−⟨Gne,

√
2ν uD⟩∂Ωe∩ΓD

+⟨Gne,
√
2ν û⟩∂Ωe\ΓD ,

Re
2 : =

(
w,ut

)
Ωe
+
(
w,∇·(

√
2νL)

)
Ωe
+
(
w,∇p

)
Ωe
−
(
∇w,u⊗ u

)
Ωe

+⟨w, τu⟩∂Ωe −
(
w, s

)
Ωe
−⟨w, (τ−û·n)uD⟩∂Ωe∩ΓD

−⟨w, (τ−û·n)û⟩∂Ωe\ΓD ,

Re
3 : =

(
∇q,ue

)
Ωe
−⟨q,uD · ne⟩∂Ωe∩ΓD−⟨q, û · ne⟩∂Ωe\ΓD ,

Re
4 : = ⟨pe, 1⟩∂Ωe − ρe,

(11)

where τ = τd + τa. Similarly, the global problem leads to the residuals164

R5 : =

nel∑
e=1

{
⟨“w, (

√
2νLe+peI)ne⟩∂Ωe\ΓD+⟨“w, τue⟩∂Ωe\ΓD

−⟨“w, τ û⟩∂Ωe∩Γ−⟨“w, (τ−û·ne)û⟩∂Ωe∩ΓN+⟨“w, t⟩∂Ωe∩ΓN

}
,

Re
6 : = ⟨û · ne, 1⟩∂Ωe\ΓD = −⟨uD · ne, 1⟩∂Ωe∩ΓD .

(12)

In this work, the spatial discretisation is performed using isoparametric165

elements, including curved elements in the vicinity of curved boundaries.166
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The approximation for the velocity u, pressure p, mixed variable L is defined167

in a reference element, with polynomials of order k ≥ 1. Similarly, the168

approximation of the hybrid velocity û is defined on a reference face, with169

polynomials of order k̂ ≥ 1. The focus of this work is on degree adaptivity170

and, therefore, the current implementation supports an arbitrary order of171

approximation on each element. When two neighbouring elements use two172

different orders, the approximation of the hybrid velocity on the shared face173

between the two elements takes the maximum of the orders used on each174

element. This choice for the order of approximation of the hybrid velocity175

guarantees the optimal convergence properties of the HDG method with176

variable degree of approximation [36, 37].177

The temporal discretisation is performed using high-order explicit first178

stage singly diagonal implicit Runge-Kutta (ESDIRK) integration meth-179

ods. More precisely the fourth-order six-stage (ESDIRK46) scheme pro-180

posed in [38] is utilised in all the numerical examples. ESDIRK methods181

retain the stability properties of implicit Runge-Kutta methods and provide182

improved performance when compared to singly-diagonal implicit Runge-183

Kutta methods. In addition ESDIRK methods have been found to be more184

computationally efficient than other single-stage low order implicit schemes185

such as backward differentiation formulae (BDF) methods [39].186

To strongly enforce the symmetry of the stress tensor, the present work187

considers the so-called Voigt notation, which has been shown [40, 25, 32] to188

provide the super-convergent properties described in the next section and189

extra efficiency when compared to formulations where the symmetry is not190

strongly enforced.191

As usual in an HDG context [20, 41, 42, 43], hybridisation is used and192

in each Newton-Raphson iteration, a global problem is solved to obtain the193

hybrid velocity and the mean pressure, followed by the solution of multiple194

local problems, element-by-element, to obtain the velocity, pressure and195

mixed variable in each element.196

For a more detailed presentation of the HDG formulation and its im-197

plementation, the reader is referred to [34, 32, 44, 45]. For a more detailed198

description of the Newton-Raphson linearisation strategy the reader is re-199

ferred to [46, 35].200

3 Degree adaptive strategy201

This works exploits the ability of the HDG method to build a cheap error202

indicator using the a super-convergent approximation of the velocity field.203

In this section the strategy to build the super-convergent velocity and the204

error indicator are briefly recalled, before presenting the proposed correction205

to guarantee conservation in a transient degree adaptive process.206
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3.1 Super-convergent postprocess of the velocity207

An attractive property of HDG methods is the possibility to construct a208

super-convergent approximation of the velocity field, also called the post-209

processed velocity and denoted by u⋆, by solving the element-by-element210

problem defined as211 
∇·
Ä√

2ν∇su⋆
ä
= −∇·L, in Ωe,Ä√

2ν∇su⋆
ä
n = −Ln, on ∂Ωe,

(u⋆, 1)Ωe = (u, 1)Ωe ,

(∇× u⋆, 1)Ωe = ⟨uD · τ , 1⟩∂Ωe∩ΓD
+ ⟨û · τ , 1⟩∂Ωe\ΓD

,

(13)

where τ is the tangential direction to the boundary.212

The first equation in (13) is obtained after applying the divergence op-213

erator to the equation that defines the mixed variable and the boundary214

condition imposes equilibrated fluxes on the boundary of each element. The215

two last equations in (13) are introduced to remove the indeterminacy asso-216

ciated with the translational and rotational modes.217

Previous work on HDG methods [47] have proved that if the velocity,218

pressure and mixed variable are approximated with polynomials of degree219

k ≥ 1, their respective errors, measured in the L2(Ω) norm, converge with220

order k + 1 whereas the postprocessed velocity has an error that converges221

with order k + 2, at least in diffusion dominated areas.222

3.2 Error indicator223

The possibility to build a super-convergent velocity in HDG method was224

first exploited in [31] to devise a cheap error indicator to drive a degree225

adaptive process in wave propagation problems. This strategy has also been226

used for incompressible Navier-Stokes flows [27], Stokes flows [48] and linear227

elastic problems in [49].228

The main idea consists of approximating the error in the velocity field,229

u, in an element, Ωe, as230

Ee =

ï
1

|Ωe|

∫
Ωe

(u− u⋆) · (u− u⋆) dΩ

ò1/2
, (14)

where the normalisation using the element measure is crucial for meshes231

with large variation in element size [50].232

The procedure to adapt the degree of approximation aims at ensuring233

that the error in each element is below a user-defined tolerance ε [51]. The234

degree is iteratively adapted as kre = kr−1
e +∆ke where r denotes the degree235

adaptive iteration and the increment is given by236

∆ke =

°
log10

Å
ε

Ee

ã§
, (15)

8



where ⌈·⌉ denotes the ceiling function. The base 10 in the logarithm base237

has been selected to minimise the number of iterations required in the degree238

adaptive process, but higher values can be used for a less aggressive adapta-239

tion [52, 27]. The user defined tolerance ε could be selected to be a piecewise240

constant function with different values in different elements/regions, but for241

simplicity, a constant value is used in this work and detailed for each exam-242

ple.243

3.3 Conservative projection for transient problems244

For steady problems the adaptive process starts computing the solution for245

a given degree of approximation, commonly k = 1 in all elements. After246

the solution is computed, the postprocessed velocity and the error indicator247

are evaluated element-by-element using (13) and (14), respectively. With248

this information, a new elemental degree map is defined (15). The process249

is repeated with the new elemental degree map until the error provided by250

the error indicator in each element is below the user-defined tolerance.251

A solution computed with a given degree map can be used to build252

a better initial guess of the Newton-Raphson scheme by interpolating the253

solution at the new nodal distribution within each element. Let us consider254

that the solution in one element has been computed using a polynomial255

approximation of degree r and the new degree to be used in the element is256

s. The solution is initially approximated as257

ur(ξ) =

nren∑
j=1

ur
jN

r
j (ξ), (16)

where nren denotes the number of element nodes, uj are the nodal values of258

the solution and N r
j are the polynomial shape functions of degree r defined,259

on a reference element, from the set of nodes {ξr}i=1,...,nren . The interpolation260

in the new set of nodes associated to a degree s, {ξs}, can be written as261

us(ξ) =

nsen∑
j=1

us
jN

s
j (ξ), (17)

where us
j = ur(ξsj).262

A crucial difference of a degree adaptive process for transient problems,263

compared to the steady case, is that the projection of the solution at time tn264

to the desired degree map is required to compute the solution at time tn+1
265

and the projection is not just used as an initial guess of the Newton-Raphson266

scheme. Let us consider the case where the solution in one element at time267

tn is computed with a degree r and the degree adaptive process changes268

the required degree in the element to be s. The projection given by (17)269

does not generally guarantee that the projected velocity field at time tn is270
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divergence-free. More precisely, if s ≥ r, i.e. if the adaptive process increases271

or maintains the degree of approximation in the element, the projection does272

not change the velocity field at time tn because the space of polynomials of273

degree r is a subset of the space of polynomials of degree s. However, if274

s < r, i.e. if the adaptive process decreases the degree of approximation275

in the element, the projection changes the velocity field at time tn and the276

incompressibility constraint is, in general, violated.277

To avoid this problem, this work proposes a new projection based on the278

constrained minimisation problem279 
min
us
j

∫
Ωe

(us − ur) · (us − ur) dΩ

s.t.

∫
∂Ωe

us · n dΓ = 0

(18)

The discrete version of the minimisation problem is a classical L2(Ωe)280

projection of the solution, whereas the constraint is imposed using a La-281

grange multiplier. The resulting system of linear equations to be solved in282

an element where the adaptive process decreases the degree of approximation283

can be written as284 M 0 D1

0 M D2

DT
1 DT

2 0

Us
1

Us
2

λ

 =

F1

F2

0

 , (19)

in two dimensions, where Us
a is the vector containing the nodal values of285

the a-th component of the projected free-divergence velocity field, λ is the286

Lagrange multiplier,287

Mij :=

∫
Ωe

NiNj dΩ, (Da)i :=

∫
∂Ωe

Nina dΓ, (Fa)i :=

∫
Ωe

Niu
r
a dΩ,

(20)
and ura is the a-th component of the original velocity field, approximated288

with polynomials of degree r.289

It is worth emphasising that the minimisation problem, i.e. the solution290

of the linear system (20), is only required on those elements where the291

adaptive process decreases the degree of approximation and the size of the292

linear system in two dimensions is 2nen+1 where nen is the number of element293

nodes. In addition, the problem is solved independently on each element so294

it can be trivially parallelised to minimise the computational overhead.295

Algorithm 1 describes the degree adaptive process, including the pro-296

posed conservative projection, where nsteps is the number of time steps,297

nadaptivity is the number of times the adaptivity is repeated each time step298

and nNR is the maximum number of iterations used in the Newton-Raphson299

scheme. In the current implementation the maximum number of iterations300
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Algorithm 1 Degree adaptive HDG method

1: Initialise polynomial degree map {ke}e=1,...,nel

2: Set desired error ε
3: for is ← 1 to nsteps do
4: for ia ← 1 to nadaptivity do
5: for iNR ← 1 to nNR do
6: Solve global problem, linearising the residuals of Equation (12)
7: Solve local problem, linearising the residuals of Equation (11)
8: end for
9: for iel ← 1 to nel do

10: Compute super-convergent velocity using Equation (13)
11: Compute error indicator using Equation (14)
12: Update the degree using Equation (15)
13: if ∆ke < 0 then
14: Compute conservative projection using Equation (19)
15: end if
16: end for
17: end for
18: end for

of the Newton-Raphson scheme is five, but given the quadratic convergence301

only an average of three iterations are needed to reach the desired tolerance,302

set to 10−10 for all the residuals of the global and local problems. Given the303

large time steps used in the time marching process, numerical examples will304

be used to show that two adaptive iterations per time steps are required to305

obtain a converged solution with the desired error in each time step.306

4 Numerical Results307

This section presents four numerical examples. The first two examples are308

used to verify the optimal convergence properties of the method in terms of309

both the spatial and temporal discretisation. The last two examples illus-310

trate the benefits of the proposed conservative projection within a degree311

adaptive process. The proposed approach is compared to a standard degree312

adaptive process and to an adaptive process where the degree of approx-313

imation is not allowed to be lowered during the time marching. In both314

examples, reference solutions using a uniform degree of approximation are315

used to quantify the extra accuracy provided by the proposed conservative316

projection.317
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

Figure 1: Triangular meshes of the domain Ω = [0, 1]2 used to test the
optimal convergence properties of the HDG method.

4.1 Kovasznay flow318

The first example considers the Kovasznay flow [53], which provides an ana-319

lytical solution of the incompressible Navier-Stokes equations. The compu-320

tational domain is a unit square, Ω = [0, 1]2, and the analytical solution is321

given by322

u(x) =

ß
1− exp(2λx1) cos(2πx2)
λ
2π exp(2λx1) sin(2πx2)

™
, p(x) = −1

2
exp(4λx1) + C, (21)

where λ =
Re

2
−

 
Re2

4
+ 4π2 and C =

1

8

ï
1 + exp(4λ)− 1

2λ
(1− exp(4λ))

ò
.323

A Neumann boundary condition, corresponding to the exact solution, is324

imposed on the bottom part of the boundary, whereas Dirichlet boundary325

conditions, corresponding to the exact velocity, are imposed on the rest of326

the boundary.327

Four uniform meshes are considered, with 16, 64, 256, and 1,024 trian-328

gular elements, respectively. The first three meshes are shown in Figure 1.329

330

Figure 2 shows the L2(Ω) norm of the error of the velocity, pressure, ve-331

locity gradient and postprocessed velocity as a function of the characteristic332

element size h for a degree of approximation ranging from k = 1 up to k = 4.333

For any degree of approximation, the expected k+1 convergence rate can be334

observed for the velocity, pressure and velocity gradient, whereas the super-335

convergent velocity shows the k + 2 convergence rate. The extra accuracy336

of the super-convergent velocity that allows building an error indicator can337

be observed.338
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(a) u (b) p

(c) L (d) u⋆

Figure 2: Kovasznay Flow: L2(Ω) norm of the error for the velocity, u,
pressure, p, mixed variable, L and postprocessed velocity, u⋆, as a function
of the characteristic element size h, for different degrees of approximation.

4.2 Manufactured transient solution339

The second example, considered to verify the correct implementation of the340

high-order ESDIRK46 time integrator, considers the manufactured solution341

u(x) =

ß
sin(x1 + ωt) sin(x2 + ωt)
cos(x1 + ωt) cos(x2 + ωt)

™
, p(x) = sin(x1 − x2 + ωt), (22)

where ω = 10 is used to define a fast variation of all flow quantities in342

time. The final time used in these examples is T = 0.25 and the mesh of343

Figure 1(b) is used with k = 4 to ensure that the error due to the spatial344

discretisation is below the error induced by the temporal discretisation.345

Figure 3 shows the L2(Ω) norm of the error for the velocity, pressure,346

velocity gradient and postprocessed velocity as a function of the time step347

∆t.348

The observed convergence rates generally align with the theoretical fourth349

order of accuracy for the ESDIRK46 method. The slightly lower rate ob-350
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Figure 3: Manufactured transient solution: L2(Ω) norm of the error for the
velocity, pressure, velocity gradient and postprocessed velocity, as a function
of the time step ∆t.

served for the pressure is associated to the so-called order reduction of ES-351

DIRK methods [54] often observed when non-homogeneous boundary con-352

ditions are considered.353

4.3 Flow around two circular cylinders354

The next example considers the laminar flow, at Re = 100, around two355

circular cylinders on tandem. The far field is made of a circle of diameter356

100 centred at the origin, whereas the two circular cylinders have diameter357

1 and are centred at (−20, 0) and (10, 0), respectively.358

An unstructured mesh of 2,712 triangles is employed for this example.359

Curved elements are generated near the cylinder using the elastic analogy360

presented in [55]. Given the low Reynolds number considered, the size of361

the elements in the normal direction to the wall is relatively large and only362

the first two layers of elements around the cylinders are curved. More pre-363

cisely, the size of the first element around the circular cylinders is 0.01 and364

the growing factor in the normal direction is 1.4. Two point sources are365

introduced to prescribe a mesh size of 0.2 near the cylinders, whereas a line366

source with size 0.75 is placed in the path of the von Karman vortex street.367

A detailed view of the mesh near the cylinders is shown in Figure 4.368

The ESDIRK46 time marching algorithm [38] is used with a time step369

∆t = 0.2 and the solution is advanced until the final time T = 200.370

As no analytical solution is available for this problem, a reference solution371

is computed by employing a uniform degree of approximation k = 6. Further372

numerical experiments, not reported here for brevity, were performed to373

ensure that k = 6 is the minimum degree that is required for this problem374

to get a converged solution. Figure 5 shows the reference pressure and375

magnitude of the velocity at t = 200.376
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Figure 4: Flow around two circular cylinders: detail of the unstructured
triangular mesh near the circular cylinders.

(a) Pressure

(b) Velocity

Figure 5: Flow around two circular cylinders: Pressure and magnitude of
the velocity fields at t = 200 with a uniform degree of approximation k = 6.

The high-order spatial approximation is crucial in this problem to accu-377

rate capture the von Karman vortex street generated by the first cylinder378

and its influence on the second cylinder. If a low order (k = 1) approxima-379

tion is used on the same mesh, the intensity of the vortices is not captured,380

as shown in Figure 6, clearly illustrating the low dissipative properties of381

a high-order approximation scheme. The low order results also display a382

larger dispersion when compared to the high order approximation as the383

vortices appear in different positions.384

The results shown in Figure 5 suggest that a uniform degree of approx-385

imation is not required and a degree adaptive approach is an attractive386

approach to increase the resolution only where is needed. The next experi-387

ments compare different degree adaptive strategies where the desired error,388

as detailed in Section (3.2), is taken as ε = 10−4 in all experiments, unless389

otherwise stated. Given the large time step used, the adaptive process is390

repeated twice per time step to ensure that flow features are properly cap-391

tured as the solution progresses. The effect of not repeating the adaptive392

process is also illustrated in this example.393
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(a) Pressure

(b) Velocity

Figure 6: Flow around two circular cylinders: Pressure and magnitude of
the velocity fields at t = 200 with a uniform degree of approximation k = 1.

A standard degree adaptive approach, i.e. without the proposed correc-394

tion, is first considered, where at each time step the solution in each element395

is projected using the desired degree of approximation map according to the396

error indicator provided by the HDG method. The results at t = 200 are397

shown in Figure 7, including the degree used in each element. The velocity398

field is in good agreement with the reference solution, with only a minor399

loss of intensity of the vortices behind the circular cylinders. However, the400

pressure field shows some important numerical artefacts when compared to401

the reference solution, which are related to the violation of the incompress-402

ibility constraint when projecting the velocity field from a given degree map403

to another degree map, in particular when the degree of approximation is404

decreased, as explained in Section 3.3.405

To quantify the accuracy of the simulations, the lift and drag are con-406

sidered the quantities of interest. Figure 8 shows the lift and drag on the407

first cylinder using a standard degree adaptive approach, i.e. without the408

proposed correction, and the result is compared to the reference solution.409

The results clearly display non-physical oscillations of the drag, whereas the410

lift is accurately computed. Similar results for the quantities of interest for411

the second cylinder are shown in Figure 9.412

Further experiments have been performed to confirm that the apparent413

more accurate results on the lift are due to the cancellation of errors and the414

symmetry of the lift with respect to a zero mean value. To corroborate this415

a mesh convergence analysis has been performed for the steady flow around416

a cylinder at Re = 30, measuring the lift and drag on the upper and lower417

parts of the cylinders. The results show that the values of the lift and drag,418

measured separately on the upper and lower parts of the cylinder, converge419
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(a) Degree map

(b) Pressure

(c) Velocity

Figure 7: Flow around two circular cylinders: Pressure and magnitude of
the velocity fields at t = 200 with degree adaptivity.

(a) Lift (b) Drag

Figure 8: Flow around two circular cylinders: lift and drag over the first
cylinder using degree adaptivity compared to the reference solution.

to reference values as the mesh is refined. However, when the error of the420

total lift and total drag are measured, only the drag shows the expected421

reduction of the error as the mesh is refined, whereas the lift exhibits a very422

small error, even on coarse meshes, due to the addition of the upper and423

lower contributions, which have opposite sign.424
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(a) Lift (b) Drag

Figure 9: Flow around two circular cylinders: lift and drag over the second
cylinder using degree adaptivity compared to the reference solution.

Cylinder 1 Cylinder 2

Standard Conservative Standard Conservative
adaptivity projection adaptivity projection

Lift error 8.1× 10−2 6.8× 10−3 1.8× 10−1 1.5× 10−2

Drag error 3.7× 10−2 1.0× 10−3 1.8× 10−1 4.6× 10−3

Table 1: Flow around two circular cylinders: maximum error in lift and drag
for the two cylinders using the standard adaptivity and the adaptivity with
the proposed conservative projection.

Next, the degree adaptive procedure is enhanced by introducing the cor-425

rection proposed in Section 3.3. To illustrate the benefits of the proposed426

approach, Figure 10 shows the degree map, pressure and magnitude of the427

velocity at t = 200. It can be observed that all the artefacts on the pressure428

field are not present and an excellent agreement with the reference solution429

is obtained.430

To better quantify the accuracy of the simulation with the proposed con-431

servative projection, Figure 11 shows the lift and drag on the first cylinder.432

The results demonstrate that the proposed correction completely removes433

the non-physical oscillations shown in the previous simulations and provide434

a lift and drag which are in excellent agreement with the reference solu-435

tion. The results for the second cylinder are shown in Figure 12, showing436

again that no oscillations are observed and a very good agreement with the437

reference solution is obtained.438

To further illustrate the benefit of the proposed conservative projection,439

Table 1 reports the maximum error of the lift and drag for both cylinders.440

The results clearly show the extra accuracy provided by the conservative441

projection. More precisely the error in the lift is more than 10 times lower442

using the conservative projection, whereas the error in the drag is almost 40443
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(a) Degree map

(b) Pressure

(c) Velocity

Figure 10: Flow around two circular cylinders: Pressure and magnitude of
the velocity fields at t = 200 with degree adaptivity and the conservative
projection.

(a) Lift (b) Drag

Figure 11: Flow around two circular cylinders: lift and drag over the first
cylinder using degree adaptivity and the proposed correction compared to
the reference solution.

times lower.444

To conclude this example, further numerical experiments are performed445

to illustrate that the conservative projection is only needed when the degree446
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(a) Lift (b) Drag

Figure 12: Flow around two circular cylinders: lift and drag over the second
cylinder using degree adaptivity and the proposed correction compared to
the reference solution.

(a) Object 1 (b) Object 2

Figure 13: Flow around two circular cylinders: Drag on the two cylinders
using degree adaptivity and not allowing the degree to be decreased during
the adaptive process.

of approximation is allowed to decrease during the adaptive process. In447

addition, the effect of the desired error during the degree adaptive process448

is illustrated.449

Figure 13 shows the drag on the first and second cylinders using a stan-450

dard degree adaptivity where the degree of approximation is not allowed to451

decrease. It can be observed that a very good agreement with the reference452

solution is obtained, without the oscillatory behaviour that was observed453

when the degree was allowed to decrease during the adaptive process. How-454

ever, the main drawback of this approach is the obvious increase of compu-455

tational cost because if an element reaches a high degree of approximation456

at one time step, the degree will be maintained at such degree for the rest of457
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(a) Object 1 (b) Object 2

Figure 14: Flow around two circular cylinders: Drag on the two cylinders
using degree adaptivity and not allowing the degree to be decreased during
the adaptive process with ε = 10−3.

Figure 15: Flow around two circular cylinders: Degree of approximation at
t = 200 not allowing the degree to be decreased during the adaptive process.

the simulation, even if there is no need to capture any features at that region458

for the remaining of the simulation. In this example, due to the impulsive459

start and the low desired error in each element ε = 10−4, all elements of460

the mesh require, at some instant, a degree of approximation k = 6, so this461

approach leads to the same solution as the reference solution with the extra462

cost of computing the error indicator and projecting the solution at each463

time step.464

If a less restrictive tolerance is used in the adaptive process, namely465

ε = 10−3, the quantities of interest are obtained without oscillations, as466

shown in Figure 14, providing evidence that the cause for the oscillations467

in the drag is the violation of the incompressibility condition during the468

projection of the solution to a lower degree. Some discrepancies in the drag469

of the second cylinder are visually observed due to the use of a less restrictive470

tolerance.471

The degree map at t = 200 when the adaptive process is implemented472

without allowing the degree of approximation to be decreased and with ε =473

10−3 is shown in Figure 15. Compared to the degree map of the adaptivity474

process with the proposed correction, shown in Figure 10, it can be observed475
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Figure 16: Flow around two circular cylinders: Number of degrees of freedom
of the global problem for two different adaptive approaches and for two
different values of the desired error.

that the majority of elements in the wake of the two cylinders is kept to476

a higher degree when the adaptivity process is not allowed to lower the477

degree. It is also noticeable that when the degree is not allowed to decrease,478

a number of elements in the wake of the two cylinders end up using a degree479

of approximation k = 6 whereas if the adaptivity is allowed to decrease the480

degree, this high degree of approximation is not required at the final time.481

To quantify the reduction of degrees of freedom induced by allowing482

the adaptive process to decrease the degree of approximation is shown in483

Figure 16 The results clearly illustrate the advantage of using the proposed484

projection to enable the adaptive process to lower the degree during the485

time marching procedure. It is also worth noting that the lower the desired486

error, the more advantageous is to allow the degree to be lowered.487

In terms of computational cost, the simulation with the proposed con-488

servative projection is almost two times faster than the simulation with a489

uniform degree of approximation k = 6. The simulation with the conser-490

vative projection is more than three times faster than the simulation not491

lowering the degree. The simulation not lowering the degree is actually492

more expensive than computing the reference solution because the majority493

of elements end up having the maximum degree of approximation but the494

cost of computing the error indicator and projecting the solution twice every495

time step becomes important. This shows that the reduction in degrees of496

freedom translates in an important reduction in computational time.497

Finally, the need to repeat the adaptive process twice at each time step is498

also illustrated using a numerical experiment. The simulation of Figure 14 is499

repeated but performing the degree adaptivity only once per time step. Due500

to the large time step used with a high order time integrator, the computed501

drag shows a significant loss of accuracy, as shown in Figure 17.502
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(a) Object 1 (b) Object 2

Figure 17: Flow around two circular cylinders: Drag on the two cylinders
using degree adaptivity, not allowing the degree to be decreased during the
adaptive process with ε = 10−3 and performing the adaptivity only once per
time step.

4.4 Gust impinging on a NACA0012 aerofoil503

The last example, inspired by [46], considers the simulation of a gust im-504

pinging on a NACA0012 aerofoil immersed in an incompressible flow at505

Re = 1, 000. Following [56], the gust is introduced via a localised source506

term. The source term in (2) is given by507

s(x, t) =


®
βKg(x1)λ(x2) cos (ωt− αxg1)

Kg′(x1)λ(x2) sin (ωt− αxg1)

´
if t ∈ [50, 51]

0 otherwise

(23)

where (xg1, 0) denotes the centre of the rectangle of dimension a × b where508

the gust is generated, the wave number is given by α = ω/v∞ and v∞ the509

magnitude of the free-stream velocity. The constant K is defined as510

K =

(
α2 − â2

)
v2∞

â2 sin
Ä
απ
â

ä
where â defines the region where the gust is generated, namely â = 2π/a.511

Finally, the functions512

λ(x2) =
1

2

(
tanh

(
2π(x2 + b/2)

)
− tanh

(
2π(x2 − b/2)

))
(24)

and513

g(x1) =

®
1
2

(
1 + cos(â(x1 − xg1))

)
if |x1 − xg1| ≤ a

2

0 otherwise
(25)
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Figure 18: Gust impinging on a NACA0012 aerofoil: detail of the unstruc-
tured triangular mesh near the aerofoil.

are used to guarantee a smooth transition of the flow field in the boundary514

of the gust region. In the current example, the parameters that define the515

gust are taken as a = 1, b = 4, xg1 = 1.52 and ω = 4π.516

An unstructured mesh of 2,784 triangles is employed for this example.517

Curved elements are generated near the aerofoil using the elastic analogy518

presented in [55]. The size in the normal direction of the first element around519

the aerofoil is 0.01 and the growing factor in the normal direction is 1.2. Two520

point sources are introduced to prescribe a mesh size of 0.1 near the leading521

and trailing edges of the aerofoil, another point source is placed at the centre522

of the aerofoil to prescribe a size of 0.1 in the vicinity of the aerofoil, whereas523

a line source with size 0.4 is placed in the path of the gust. A detailed view524

of the mesh near the cylinders is shown in Figure 18.525

Given the more complex flow dynamics of this problem, a time step526

∆t = 0.1 and the solution is advanced using the ESDIRK46 method until527

a final time T = 64. As commonly done when simulating gust around528

aerodynamic obstacles [56, 46] the initial condition is taken as the steady529

state solution of the flow around the aerofoil, in this case for Re = 1, 000.530

The gust is then introduced via the source term and advanced until the531

final time, selected so that the gust effect in the aerodynamic forces on the532

aerofoil disappears.533

As in the previous example, a reference solution is computed by using a534

uniform degree of approximation k = 6. The degree of approximation k = 6535

is selected after performing a convergence study on the fixed mesh of Fig-536

ure 18. The magnitude of the velocity at some selected instants is displayed537

in Figure 19, showing the initial steady state solution, the perturbation of538

the velocity arriving and impinging on the aerofoil, the complex transient539

effects induced by the gust and the recovery of the steady state solution540

after the gust effects disappear.541

The need for adaptivity in this example is even more obvious than in the542

previous example because the perturbation of the velocity is very localised543

and using a high-order approximation in the whole domain is clearly unnec-544

essary. Next, the standard adaptive process and the adaptivity enhanced545

with the proposed conservative projection are considered. To remove the546

effect of the gust generation, when the source term that generates the gust547
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(a) t = 50 (b) t = 52

(c) t = 54 (d) t = 56

(e) t = 58 (f) t = 60

(g) t = 62 (h) t = 64

Figure 19: Gust impinging on a NACA0012 aerofoil: Magnitude of the
velocity fields at different instants with a uniform degree of approximation
k = 6.

is active, i.e. for t ≤ 10, a constant degree of approximation k = 6 is used548

in both cases. After that time the corresponding adaptive calculation is549

activated. This ensures that the differences in the adaptive process are not550

caused by a different representation of the gust. In this example, a desired551

error of ε = 10−3 is utilised during the adaptive process.552

Figure 20 shows the lift and drag on the aerofoil using a standard degree553

adaptivity and the results are compared to the reference solution. As in the554

previous example the results show non-physical oscillations. The oscillations555

are more pronounced on the drag but can also be observed on the lift in556

this example due to the lack of symmetry introduced by the gust. During557

the transient simulation, a maximum error of 2.3 × 10−1 and 3.8 × 10−2 is558

observed in the lift and drag respectively, clearly not providing the required559

accuracy for this simulation. It is worth noting that from t = 50 to t = 51560

a constant degree of approximation, k = 6, is used and as soon as the561

adaptivity is activated, a strong overshoot in the drag is observed.562

When the proposed correction is introduced, an excellent agreement is563
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(a) Lift (b) Drag

Figure 20: Gust impinging on a NACA0012 aerofoil: lift and drag using
degree adaptivity compared to the reference solution.

(a) Lift (b) Drag

Figure 21: Gust impinging on a NACA0012 aerofoil: lift and drag using
degree adaptivity and the proposed correction compared to the reference
solution.

again observed between the computed lift and drag and the reference solu-564

tion, as shown in Figure 21. For this example, the maximum error in the lift565

and drag during the whole transient process is 5.4 × 10−2 and 6.2 × 10−3,566

respectively, showing the extra accuracy provided by the conservative pro-567

jection of the solution during the adaptive process.568

To further quantify the extra accuracy provided by the proposed projec-569

tion the L2([51, 64]) norm of the relative lift and drag error is computed for570

both adaptive approaches. Without the proposed correction the errors in571

lift and drag are 6.3 × 10−2 and 1.4 × 10−3 respectively, whereas when the572

conservative projection is used the errors in lift and drag are more than 40573

times lower, namely 1.5× 10−3 and 2.9× 10−5.574

To illustrate the ability of the degree adaptive process to accurately575
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(a) Velocity, t = 52 (b) Degree map, t = 52

(c) Velocity, t = 54 (d) Degree map, t = 54

(e) Velocity, t = 56 (f) Degree map, t = 56

(g) Velocity, t = 58 (h) Degree map, t = 58

(i) Velocity, t = 60 (j) Degree map, t = 60

Figure 22: Gust impinging on a NACA0012 aerofoil: Magnitude of the ve-
locity fields (left) and map of the degree of approximation (right) at different
instants with the proposed degree adaptive approach.

capture the complex flow features of this problem, lowering the degree on576

the elements where accuracy is no longer required, Figure 22 shows the577

magnitude of the velocity and the degree map at some selected instants.578

Comparing the results with the reference solution of Figure 19, it can be579

observed that the adaptive process captures all the flow features. The degree580

map clearly reflects the regions where the complexity of the solution requires581

a higher degree of approximation to provide the desired accuracy.582

In this example, the ability to lower the degree of approximation is criti-583

cal to gain the benefits of a degree adaptive process, without compromising584

the accuracy. As the gust introduces a localised perturbation of the velocity,585
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Figure 23: Gust impinging on a NACA0012 aerofoil: Map of the degree of
approximation at t = 64 with an adaptive process not allowing the degree
to be lowered.

Figure 24: Gust impinging on a NACA0012 aerofoil: Number of degrees of
freedom of the global problem for two different adaptive approaches.

without lowering the degree the final degree map shows that a high order586

polynomial approximation is used in many areas where the flow does not587

show any feature. The degree map for such an approach is displayed in588

Figure 23. To quantify the benefit of the proposed conservative projection,589

Figure 24 show the number of degrees of freedom of the global problem as590

a function of the non-dimensional time for the proposed approach and an591

adaptive process where the degree is not allowed to be decreased during the592

time marching process. With the proposed projection the number of de-593

grees of freedom at t = 64 is 23,518 whereas for the approach not lowering594

the degree of approximation the number of degrees of freedom at t = 64595

reaches 45,908. The results with the conservative projection show that the596

most complex dynamics happen at around t = 54, which, according to Fig-597

ure 22, is precisely when the gust impinges on the aerofoil. At this point598

the number of degrees of freedom of the global problem reaches a maximum599

and then decreases because the degree of approximation can be lowered in600

many elements in the vicinity of the aerofoil where the transient effects are601

no longer relevant.602

In terms of computational cost, the simulation with the proposed con-603
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servative projection is more than three times faster than the simulation with604

a uniform degree of approximation k = 6. The extra performance compared605

to the previous example is due to the localised effect of the gust. In this ex-606

ample, the degree adaptive clearly offers a major advantage by introducing607

high order approximation only where needed.608

5 Concluding remarks609

A new conservative projection has been proposed and tested within the con-610

text of degree adaptivity for the solution of transient incompressible Navier-611

Stokes flows. Without this projection, a standard degree adaptive process612

leads to non-physical oscillations in the aerodynamic quantities of interest613

when the degree of approximation is lowered during the time marching pro-614

cess. These oscillations are linked to the violation of the incompressibility615

condition when the degree of approximation is lowered, leading to oscilla-616

tions in the pressure field. To provide further evidence about the nature of617

these oscillations, an adaptive process where the degree of approximation is618

not allowed to be lowered during the time marching has been implemented,619

leading to correct solutions. However, the extra cost of this approach makes620

the adaptivity not an efficient choice, especially in problems where localised621

transient effects travel along the domain.622

The proposed conservative projection completely removes the non-physical623

oscillations in the aerodynamic quantities of interest and enables the degree624

to be lowered in regions where accuracy is no longer required, leading to a625

more efficient use of high order approximations, only where needed.626

Two examples have been used to illustrate the benefits of the proposed627

approach and to quantify the extra accuracy and the lower computational628

requirements compared to a standard degree adaptive approach and to an629

adaptive strategy where the degree is not allowed to be lowered.630
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method for compressible flow problems using a goal-based error indica-687

tor,” Computers & Structures, vol. 181, pp. 55–69, 2017.688

[16] M. Paipuri, S. Fernández-Méndez, and C. Tiago, “Comparison of high-689

order continuous and hybridizable discontinuous Galerkin methods for690

incompressible fluid flow problems,” Mathematics and computers in691

simulation, vol. 153, pp. 35–58, 2018.692

[17] R. M. Kirby, S. J. Sherwin, and B. Cockburn, “To CG or to HDG: a693

comparative study,” Journal of Scientific Computing, vol. 51, pp. 183–694

212, 2012.695

[18] S. Yakovlev, D. Moxey, R. M. Kirby, and S. J. Sherwin, “To CG or to696

HDG: A comparative study in 3D,” Journal of Scientific Computing,697

pp. 1–29, 2015.698

[19] B. Cockburn and J. Gopalakrishnan, “Incompressible finite elements via699

hybridization. I. The Stokes system in two space dimensions,” SIAM700

Journal on Numerical Analysis, vol. 43, no. 4, pp. 1627–1650, 2005.701

[20] B. Cockburn and J. Gopalakrishnan, “The derivation of hybridizable702

discontinuous Galerkin methods for Stokes flow,” SIAM Journal on703

Numerical Analysis, vol. 47, no. 2, pp. 1092–1125, 2009.704

[21] B. Cockburn and K. Shi, “Conditions for superconvergence of HDG705

methods for Stokes flow,”Mathematics of Computation, vol. 82, no. 282,706

pp. 651–671, 2013.707

[22] B. Cockburn, N. C. Nguyen, and J. Peraire, “A comparison of HDG708

methods for Stokes flow,” Journal of Scientific Computing, vol. 45,709

no. 1-3, pp. 215–237, 2010.710

[23] N. C. Nguyen, J. Peraire, and B. Cockburn, “A hybridizable discontin-711

uous Galerkin method for Stokes flow,” Computer Methods in Applied712

Mechanics and Engineering, vol. 199, no. 9-12, pp. 582–597, 2010.713

31



[24] B. Cockburn and K. Shi, “Devising HDG methods for Stokes flow: an714

overview,” Computers & Fluids, vol. 98, pp. 221–229, 2014.715

[25] M. Giacomini, A. Karkoulias, R. Sevilla, and A. Huerta, “A supercon-716

vergent HDG method for Stokes flow with strongly enforced symmetry717

of the stress tensor,” Journal of Scientific Computing, vol. 77, no. 3,718

pp. 1679–1702, 2018.719

[26] N. C. Nguyen, J. Peraire, and B. Cockburn, “An implicit high-order720

hybridizable discontinuous Galerkin method for the incompressible721

Navier-Stokes equations,” Journal of Computational Physics, vol. 230,722

no. 4, pp. 1147–1170, 2011.723

[27] G. Giorgiani, S. Fernández-Méndez, and A. Huerta, “Hybridizable724

discontinuous Galerkin with degree adaptivity for the incompressible725

Navier–Stokes equations,” Computers & Fluids, vol. 98, pp. 196–208,726

2014.727

[28] S. Rhebergen and G. N. Wells, “A hybridizable discontinuous Galerkin728

method for the Navier–Stokes equations with pointwise divergence-free729

velocity field,” Journal of Scientific Computing, vol. 76, no. 3, pp. 1484–730

1501, 2018.731

[29] C. Gürkan, M. Kronbichler, and S. Fernández-Méndez, “eXtended hy-732

bridizable discontinuous Galerkin for incompressible flow problems with733

unfitted meshes and interfaces,” International Journal for Numerical734

Methods in Engineering, vol. 117, no. 7, pp. 756–777, 2019.735

[30] H. Leng, “Adaptive HDG methods for the steady-state incompress-736

ible Navier–Stokes equations,” Journal of Scientific Computing, vol. 87,737

no. 1, p. 37, 2021.738

[31] G. Giorgiani, S. Fernández-Méndez, and A. Huerta, “Hybridizable dis-739

continuous Galerkin p-adaptivity for wave propagation problems,” In-740

ternational Journal for Numerical Methods in Fluids, vol. 72, no. 12,741

pp. 1244–1262, 2013.742

[32] M. Giacomini, R. Sevilla, and A. Huerta, “Tutorial on hybridizable dis-743

continuous Galerkin (HDG) formulation for incompressible flow prob-744

lems,” in Modeling in Engineering Using Innovative Numerical Methods745

for Solids and Fluids (L. De Lorenzis and A. Düster, eds.), vol. 599,746
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