Downloaded from https://www.pnas.org by SWANSEA UNIVERSITY - SERIALS ACQ; INFORMATION SERVICES & SYSTEMS on January 16, 2025 from |P address 137.44.100.1.

PNAS

ECOLOGY

L)

Check for
updates

Optimization of swim depth across diverse taxa during

horizontal travel

Kimberley L. Stokes® (), Nicole Esteban®’
Holly J. Stokes® (2, and Graeme C. Hays'

. Paolo Casale®, André Chiaradia®

. Yakup Kaska®, Akiko Kato®

. Paolo Luschi®@ van Ropert-Coudert®,

Edited by M. Koehl, University of California Berkeley, Berkeley, CA; received July 10, 2024; accepted October 28, 2024

Semiaquatic taxa, including humans, often swim at the air—water interface where they
waste energy generating surface waves. For fully marine animals however, theory predicts
the most cost-efficient depth-use pattern for migrating, air-breathing species that do
not feed in transit is to travel at around 2 to 3 times the depth of their body diameter,
to minimize the vertical distance traveled while avoiding wave drag close to the surface.
This has rarely been examined, however, due to depth measurement resolution issues
at the surface. Here, we present evidence for the use of this strategy in the wild to the
nearest centimeter and document the switch to shallow swimming during naturally
occurring long-distance migrations. Using high-resolution depth-accelerometry and
video data for little penguins (Eudyptula minor) and loggerhead turtles (Caretta caretta),
satellite-relayed data for green turtles (Chelonia mydas), and literature data for further
sea turtle, penguin, and whale species, we show that near-surface swimming is likely
used broadly across nonforaging diving animals to minimize the cost of transport.

behavioural allometry | dive behaviour | locomotion | movement ecology | optimal migration

Regardless of whether animals are walking, flying, or swimming, optimization of move-
ment is important so that animals do not expend more energy than necessary (e.g., 1, 2).
One important consideration for marine species when undertaking long-distance move-
ments is their swim depth, which can impact energy expenditure (3, 4). Theoretical work
has shown that travel through water at the surface is energetically costly owing to increased
drag resistance, which arises due to the creation of waves and associated dissipative energy
at the air—water boundary (Fig. 14). Experiments have demonstrated that for a streamlined
object, this wave drag is at its peak when the traveling object is just submerged and atten-
uates to minimal drag (comprising friction drag and form drag) once the object is at a
depth of 2 to 3 times its maximal diameter (3; Fig. 1B). Subsequent experimental towing
of frozen animal carcasses (e.g., 5, 6), model animals and mannequins (e.g., 7), and live
humans and seals (8) has confirmed that travel at the surface incurs far greater drag forces
than when submerged (Fig. 1 B-C). Measurements of oxygen consumption rates of aquatic
animals swimming inside experimental flumes further demonstrate that swimming at
depth is far more efficient than swimming at the surface at the same speed (6, 9). It might
be expected that migratory species that do not feed pelagically or are traveling between
prey patches should optimize their swim depth by avoiding the zone of high wave drag
just under the surface, as well as unnecessary further travel caused by diving significantly
deeper than three times their maximal body diameter.

Despite these extensive considerations, there are few datasets from free-living animals to
examine predictions of optimum swim depths during directed travel. Certainly, humans
generally swim at the surface, which is very inefficient (7), and the same pattern of inefficient
surface swimming is sometimes seen in semiaquatic animals such as American mink (Mustela
vison) (5). Data for free-living marine animals traveling near the surface are harder to obtain.
Satellite-relayed data lacks the resolution to precisely define near-surface swimming. Archival
tracking devices can provide this resolution but must be retrieved in order to download data
directly, a feat not usually possible for long-distance marine migrants dispersing to disparate
end points. To examine near surface depth-use during open-water travel across taxa, diving
animals with high re-encounter probability were tracked using high-resolution data loggers,
allowing physical retrieval of data. Penguins and sea turtles were selected despite their diver-
gent thermoregulatory strategies and consequent swim speeds, as they are both fore-flipper
swimmers with an inflexible body and therefore hydrodynamically comparable to the inflex-
ible streamlined object in Hertel’s experiments (3) (the results of which should apply regard-
less of speed of travel). Little penguins traveling to offshore foraging sites were equipped
with high-resolution depth-accelerometers or video cameras that could be recovered when
they returned to land. Loggerhead turtles were experimentally displaced away from their
nesting beaches so that they migrated across the open ocean in order to return, thus enabling

PNAS 2024 Vol.121 No.52 2413768121

https://doi.org/10.1073/pnas.2413768121

Significance

Three-dimensional tracking of
animals has become an integral
part of the study of their
movement ecology, but the top
few meters of depth data for
diving animals are often routinely
disregarded and so shallow diving
is rarely recorded. We show that
near-surface travel may be a
conservative trait across diverse
marine taxa and follows an
allometric pattern with body size
across various reptilian, avian,
and mammalian species. We
match theory with empirical data
from animal tracking to present a
common principle of energetic
optimization during oceanic
travel, with implications for the
protection and conservation of
migratory species.
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Fig. 1. Theoretical considerations. (A) Ahuman swimmer. Even Olympic swimmers are swimming inefficiently because they generate wave drag. (B) Trials towing
a spindle-shaped object and a mannequin at varying depths have shown that wave drag reaches a minimum value once the object is moving at a depth of around
2 to 3 times its body thickness (3, 7). (C) This has been confirmed by towing live seals and humans at different depths to show the increased drag when traveling
at the surface (dashed lines vs. solid lines: submerged) (8). These theoretical considerations suggest that ocean swimmers including marine mammals, birds
and reptiles should swim just below the surface, not at the surface or very deep, if their only goal is to travel horizontally as efficiently as possible rather than
to achieve other goals such as looking for prey en route. Relative depth in experimental conditions refers to submersion depth to the central axis (h) divided
by the maximal body diameter (d), while in animal tracking depth is often measured to the dorsal surface (field-measured relative depth being 0.5 body depths
less than experimental relative depth).

recovery of high-resolution depth loggers and triaxial accelerometers into proportion of time spent in surface waters (0 to 5 m) to enable
when the turtles renested. In both cases, archival logging allowed ~ remote transmission of data.

depth measurement at a very fine scale (resolution: 0.2 cm, sampling

rate: 1's, accuracy: 1.5 cm; accelerometry sampling rate: 25 Hzlittle A pehival Tracking: Little Penguins

penguins, 10 Hz loggerhead turtles). To test for this pattern in

naturally migrating animals, green turtles were tracked using  Ten little penguins were tracked from Phillip Island, Australia, using
depth-enabled satellite tags, which compressed depth information ~  high-resolution GPS-depth-accelerometers, each for the duration
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Fig. 2. 3D movements during a little penguin foraging trip in south-east Australia—a representative example. (A) GPS fixes obtained over the foraging trip,
including parts of the commute (Upper locations, from nest box at “x") and foraging area (Lower locations). Panels (B) and (C) show the penguin’s depth use
for the 10-min commute period shown in red in panel (A), during which time average speed of horizontal travel was 1.37 m s™'. Panels (D-G) show depth and
accelerometry traces for a 16 s period within this timeframe. Active swimming is characterized by regular cycles in the surge and heave axes corresponding to
flipper-beat frequency. Rising to the surface creates a peak in surge acceleration, followed by a drop on reaching the surface. See also S/ Appendix, Figs. S1-S3.
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of a single foraging trip, and later intercepted for data retrieval
having returned to their nest box. All individuals with sufficient
data quality (n = 9) had a clear commute period at the start of the
journey consisting of shallow active travel dives (Figs.2 and
SI Appendix, Figs. S1-S3) varying from 9 to 90 min in duration,
before commencing deep foraging dives for the majority of the trip.
Mean bottom depth of dives during commute periods averaged
0.17 + 0.05 m (range of means: 0.11 to 0.25 m), and average dive
duration was 8 + 3 s (range of means: 4 to 13 s). Average depths for
each penguin were 1.1 to 2.5 times the estimated body diameter
for little penguins (SI Appendix, Table S1), giving an estimated 75
to 100% reduction in wave drag (3; adjusted to account for depth
measurement to dorsal surface). Accelerometry data recorded during
these shallow commute dives show regular cycles in the surge and
heave axes, indicating flipper strokes (Fig. 2, S Appendix, Figs. S1—
$2). Active swimming during shallow diving is further demonstrated
via video footage taken using a head-mounted camera deployed at
the same colony (Movie S1).

Archival Tracking: Loggerhead Turtles

Loggerhead turtles were experimentally displaced offshore from
their nesting beach in Tiirkiye (10), tracked using Argos telemetry
and high-resolution archival loggers on their journey back to the
shore, and reintercepted on the nesting beach for data retrieval hav-
ing returned to lay subsequent nests. Depth and accelerometry data
from four individuals are analyzed here as examples of animals trav-
eling to reach a target endpoint. Turtles traveled back toward the
coastline during daylight hours using shallow, active travel dives,
interspersed with fewer longer, deeper dives, typically considered
midwater resting dives (e.g., 11) (Fig. 3, SI Appendix, Fig. S4).
Accelerometry traces for the shallow dives demonstrate active swim-
ming, with clear and regular surges in forward propulsion indicating
flipper strokes (Fig. 3, SI Appendix, Fig. S5). Turtles made between
115 and 562 of these shallow “travel” dives during the 7 h period
after reorientation and before dark (mean 337 + 191 dives), to mean
bottom depths averaging 1.00 + 0.28 m (range of means: 0.71 to
1.38 m), of 69 + 29 s average duration (range of means: 40 to 107
s). The average depths of these dives equated to between 2.5 and
4.6 times the estimated body diameter for each individual logger-
head (S7 Appendix, Table S2). The turtles therefore largely avoided
the wave drag zone while not wasting energy traveling further than
necessary from the surface. Turtles traveled at average horizontal
speeds of around 0.5 m s™' over this time.

Satellite Tracking: Green Turtles

In order to observe this pattern in naturally migrating animals, we
satellite-tracked six postnesting green turtles from the Chagos
Archipelago in the Indian Ocean over a total distance of 18,185 km
(range: 512 to 4,422 km). Five were tracked to foraging grounds
spread across the Western Indian Ocean, in Kenya, Madagascar,
Seychelles, and on the Pitt Bank within the Chagos Archipelago
(Fig. 44). Depth was recorded every 10 s (0.5 m resolution, + 1.01
m accuracy at 1 m depth), incorporating 1,266 h of oceanic migra-
tion (defined as portions of track in water depths > 1,000 m), and
compressed into depth and duration summaries per dive when dives
were > 5 m, or per shallow period when dives were < 5 m.
Depth-use during pelagic crossings was markedly different from
that during coastal migration or pre- and postmigratory tracking
(Fig. 4B). When crossing deep water, all tracked turtles switched
from mainly deeper diving day and night to shallow dive depths
during the day (time spent < 5 m: 73.5 + 5.7%) and deeper dive
depths at night (time spent > 5 m: 73.6 + 3.9) (S] Appendix,

PNAS 2024 Vol.121 No.52 2413768121

€
9]
©
2
(5]
el
c
=]
=
a
a
4- T T T T T T |
13:00 14:00 15:00 ' 16:00 17:00 18:00 19:00 20:00
| Local time on day of release
|
BAO.O-
E0.21
£ 0.4+
20.6
8081
C 1.0-
67
n 4
= Z'M
[CRE
[l
S 21
D 4 :
15:10:15 15:10:45
Local time on day of release

Fig. 3. Loggerhead turtles in the Mediterranean travel at around 1 m depth
when not feeding. Diurnal depth use for experimentally displaced loggerhead
turtles en route back to the coast in Turkiye—a representative example. Turtles
performed shallow active travel dives (n = 115 to 562) interspersed with varying
amounts of deeper, longer dives (n = 2 to 8). Depth taken every 1s; darker areas
in panel (A) show denser clusters of depth readings. Depth and accelerometry
for a single dive are shown in panels (B) and (C). Rising to the surface to breathe
causes a peak followed by a trough in surge acceleration. Flipper strokes
are evident as regular forward thrusting in the surge axis, indicating active
swimming during these dives. For all individuals, see S/ Appendix, Figs. S4-S5.

Table S3). Collectively, the tracked turtles spent 80% of diurnal
time < 5 m (Fig. 4C). Coastal migratory depth-use, in contrast,
resembled pre- and postmigratory depth use, with the majority
of time spent at depths = 5 m both diurnally and nocturnally. This
dichotomy in depth-use patterns indicates a clear preference for
shallow travel when crossing open water as predicted.

Allometry of Swim Depth

To compare our results for sea turtles and penguins with other
marine taxa, we searched for studies describing marine vertebrate
depth use during traveling, nonforaging dives. Animals traveling
in shallow water and data on juveniles were not included owing
to the potential use of ground effects (12) and drafting (13),
which could influence depth choice. Articles and theses were
included where depth recorders had been set to record shallow
as well as deep dives, and sensor resolution was adequate. Only
a handful of studies could be found, owing to the routine dis-
regard of depth data within the top few meters—a result of tag
design prioritizing capture of deep dives over resolution close to
the surface. Studies that adequately described dive depth in
transiting, nonforaging animals either recovered archival pop-off
tags using radio or GPS tracking (North Atlantic right whales
Eubalaena glacialis, Bay of Fundy: (14); pygmy blue whale
Balaenoptera musculus brevicauda, southwest coast of Australia:
(15)) or recovered tags directly from animals they were able to
predictably re-encounter (Magellanic penguins Spheniscus magel-
lanicus, Argentina: (16); Adélie penguins Pygoscelis adeliae,
Antarctica: (17); experimentally displaced green turtles returning
to nest on Ascension Island: (11); a green turtle migrating within
Hawaii: (18)). In all these examples, animals traveled at relative
depths of around 3 body thicknesses when migrating or com-
muting and not foraging (Fig. 5). Smaller bodied animals
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Fig. 4. Green turtles switch to shallow diving when crossing deep water. Diel depth use varied with stage of migration for six postnesting green turtles tracked
from Diego Garcia, Chagos Archipelago, Indian Ocean (A). Colors distinguish individual turtles, and diamonds show where turtles reached their foraging ground. (B)
Percent depth use of shallow water (0 to 5 m: white) vs. deeper water (= 5 m: black), splitinto premigratory, pelagic migratory, coastal migratory, and postmigratory
stages, and by diel phase (D: diurnal, N: nocturnal), for all turtles. During the pelagic migratory stage, there is a consistent diel difference in depth use, with 80%
of collective diurnal travel time in shallow water <5 m and nocturnal travel typically at greater depths (67% > 5 m) (see S/ Appendlix, Table S3 for mean + SE per

stage and diel phase). (C) Further breakdown of depth use during the pelagic

migratory stage: diurnal travel occurs largely at subsurface depths (white), while

at night there is increased use of greater depths (black). Gray sections indicate overlap between diurnal and nocturnal depth use.

traveled within the top 2 m, with little penguins at 0.1 to 0.25
m (current study), Magellanic penguins at 0.2 to 0.5 m (16),
Adélie penguins at 0.6 to 0.9 m (17), and sea turtles between
0.7 and 1.9 m (current study, 11, 18) (S Appendix, Tables S1,
S2, and S4). Larger-bodied animals traveled further down the
water column, with North Atlantic right whales traveling at
around 8 m (14) and a pygmy blue whale traveling at 13 m when
not feeding (15) (SI Appendix, Table S4). Linear regression of
the current available data presents striking similarity with the
predicted 2 to 3 x body diameter allometric relationship with
optimized swim depth (travel dive depth = 0.04 + 3.01 x body
diameter, F (53 ,4 = 658, P < 0.0001, * = 0.97; Fig. 5 G-H).
Furthermore, salmonids on their upstream migrations have been
shown to swim far enough away from the riverbank to gain the
depth required to avoid wave drag, with larger fish swimming
more centrally where it is deeper despite having to swim against
faster-flowing water (19). Optimization of swim depth may be
a common principle underpinning vertical movement patterns
of air-breathing marine vertebrates during travel-only dives,
making wave drag avoidance a key driver (20) of vertical move-
ment in diving animals. This pattern is expected to be particu-
larly important during long-distance migrations.

Some variability in the relationship between swim depth and
body size might be expected (21). For example, sea state should
also be important in dictating near-surface swim depth, with ani-
mals swimming slightly deeper in choppy conditions, when waves
passing overhead will mean animals must travel at greater relative
depths in order to benefit from the same avoidance of wave drag.

40f 6 https://doi.org/10.1073/pnas.2413768121

Consistent with this prediction, the pygmy blue whale migrating
through exposed waters west of Australia traveled slightly below
its calculated optimal depth, while adult North Adantic right
whales in the sheltered Bay of Fundy traveled at 2.5 x their esti-
mated body diameter—the minimum depth for zero wave drag
according to Hertel's experiments (3) once differences between
depth measurement to the central axis and to the dorsal surface
are accounted for. Differences in sea state between coastal and
pelagic environments might also impact the tendency for animals
to swim at a depth of around three body thicknesses. Tracking
animals across different sea states might help to answer this
question.

Other factors might often drive the depth of swimming animals
aside from minimization of energy expenditure, such as foraging or
avoidance of predators. Seals forage opportunistically when traveling
and so this kind of shallow “travel-only” dive behavior is not
expected in this group. Elephant seals, for example, have a typical
diving pattern of very deep V-shaped dives (22), and have been
shown to consume prey en route during these dives (23). Leatherback
turtles (Dermochelys coriacea) have a similar “deep V” diving pattern
(24) as they search the water column for zooplankton prey as they
travel. A modelling study using parameters taken from elephant seal
tracking found that horizontal swimming beneath the surface would
be more energetically efficient despite the energy savings made dur-
ing gliding descent, concluding that other factors such as feeding
and predator avoidance are more likely drivers of their deep migra-
tory diving pattern (25). Indeed, elephant seals are a favorite prey
species for white shark (Carcharodon carcharias) owing to their
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Fig. 5. Marine reptiles, birds, and mammals travel at optimized swim depths when not feeding en route. Loggerhead (A) and green turtles (B-C) travel at depths
that minimize wave drag and vertical distance traveled during daylight hours, homing to the nesting beach in the Mediterranean Sea (A) or migrating in the
Atlantic (B, 11) and Pacific Oceans (C, 18). Little penguins avoid the zone of highest wave drag when commuting to a prey patch (D). North Atlantic right whales
in the Bay of Fundy travel at predicted optimal depths (£, 14). A pygmy blue whale consistently dived to depths just below 3 x body diameter while migrating
along the southwest coast of Australia (F, 15). (G-H) Travel dive depth depends on body size and is around three times estimated body diameter (dashed lines;
see S/ Appendix, Tables S1, S2, and S4). Panel G shows a close-up of the detail for the smaller-bodied animals, while panel H zooms out to all species to show that
this scaling relationship persists across the full size range of these animals. Left to Right: little penguins (orange; n = 9), Magellanic penguins (yellow; n = 2, 16),
Adélie penguins (yellow; n = 2 datapoints, 4 individuals, 17), loggerhead turtles (brown; n = 4), green turtles (green; Hawaii, n = 1, 18; Ascension Island, n =5, 11),
north Atlantic right whales (light blue; n = 1 datapoint, 9 individuals, 14), pygmy blue whale (dark blue; n =1, 15).

abundant fat stores, and it has been suggested that their deep diving
pattern even when crossing the continental shelf to reach the
deep-water prey fields beyond serves to reduce the proportion of
time spent visible to sharks scanning for prey against light from the
surface (26, 27). Sharks are another notable exception as they have
sometimes been observed traveling at the very surface, this kind of
swimming pattern being their most energetically expensive (28).
Drivers for this behavior could include thermoregulation (29), sur-
face feeding behaviors [e.g., whale shark Rbincodon typus: (30), white
shark: (31)], and even navigation (32). Nevertheless, our findings
suggest that when the primary purpose of movement is for animals
to travel horizontally to a distant target, swimming at subsurface
depths to reduce energy expenditure seems to be a strategy that is
widely used across diverse taxa. A similar strategy in humans would
provide a major energetic advantage at the Olympics, but subsurface
swimming at competitive events is highly regulated to protect ath-

lete safety (33).
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Like formation flight in birds (34), use of wind energy in soar-
ing flight (35), and swim-and-glide strategies in deep diving ani-
mals (1, 36), our findings provide compelling evidence that
swimming at optimal near-surface depths to reduce the energetic
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