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Abstract Physics-based fluid simulation has played
an increasingly important role in the computer graphics
community. Recent methods in this area have greatly
improved the generation of complex visual effects and its
computational efficiency. Novel techniques have emerged
to deal with complex boundaries, multiphase fluids,
gas–liquid interfaces, and fine details. The parallel
use of machine learning, image processing, and fluid
control technologies has brought many interesting and
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novel research perspectives. In this survey, we provide
an introduction to theoretical concepts underpinning
physics-based fluid simulation and their practical
implementation, with the aim for it to serve as a
guide for both newcomers and seasoned researchers
to explore the field of physics-based fluid simulation,
with a focus on developments in the last decade.
Driven by the distribution of recent publications in
the field, we structure our survey to cover physical
background; discretization approaches; computational
methods that address scalability; fluid interactions
with other materials and interfaces; and methods for
expressive aspects of surface detail and control. From
a practical perspective, we give an overview of existing
implementations available for the above methods.

Keywords computer graphics; physical simulation;
fluid simulation; fluid coupling

1 Introduction

Given their ubiquitous existence in natural environ-
ments, fluids are a crucial element in visual simu-
lations. Their versatile motion and complex behavior
make them an attractive but also difficult to describe
and compute target for graphics simulations. As
such, the simulation of fluids has long been one of
the most important subjects in computer graphics.
The development of computer technology has made it
possible to simulate complex fluid phenomena directly
using the governing equations of fluid dynamics.
Many physics-based methods and techniques have
been proposed to this end, ranging from simple but
inaccurate models to progressively refined, complex
techniques that capture increasingly challenging
dynamics of the interacting media. The diversity
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of such methods, with widely varying assumptions,
modeling power, and underlying implementation
techniques, has made understanding the current state-
of-the-art challenging, especially for practitioners and
newcomers.

This survey aims to address the above under-
standing challenge by covering the major research
topics of physics-based fluid simulation in computer
graphics and new trends in those topics over the
last decade. It discusses the different goals of
fluid simulation, techniques proposed to address
such goals, challenges of such techniques, and key
findings in the field. We structure our survey in
a top–down manner as follows: Section 2 presents
our methodology used to collect relevant work from
the literature (with a focus on the last decade)
and proposes a classification of fluid simulation into
seven main topics. Section 3 introduces the physical
background and discretization approaches used by
fluid simulation required to understand the remainder
of the survey. Sections 4–10 discuss the papers found in
each of the above-mentioned seven topics as follows.
Section 4 presents the various classes of advanced
adaptive, parallel, and data-driven computational
approaches used to accelerate the implementation of
the simulation models outlined in Section 3. The next
three sections detail more specific and challenging
simulation contexts: fluid interaction with different
materials (Section 5), multiphase simulation (Section 6),
and gas–liquid interfaces (Section 7). Sections 8 and 9
discuss artistic measures for improving the quality by
controlling the appearance and motion, respectively, of
the simulated fluids. Section 10 considers special fluids.
Finally, Section 11 concludes our survey by identifying
key directions for future research. The Appendix
presents and discusses software implementations of fluid
simulation covering numerical simulation, modeling, and
rendering aspects.

2 Survey construction methodology

Physics-based fluid simulation is a research area
that has been active for many decades, with input
from a diverse range of fields, including engineering,
physics, mathematics, and computer science. A fluid
simulation survey covering the scope of all these
fields would be too extensive for a single paper.
Furthermore, we believe that the interests of typical
researchers and practitioners in computer graphics

focus on a subset of the above aspects, and we
structure our survey accordingly as follows.

As main information sources, we selected articles
published in ACM Transactions on Graphics (TOG),
IEEE Transactions on Visualization and Computer
Graphics (TVCG), and Computer Graphics Forum
(CGF), which are arguably the three most influential
and representative computer graphics journals. As
our survey aims to cover recent tendencies, we
included all relevant papers from these journals
published in the last decade (2012–2022). We further
included some papers presented at key graphics
conferences like the ACM SIGGRAPH / Eurographics
Symposium on Computer Animation (SCA), ACM
SIGGRAPH (SIGGRAPH), and ACM SIGGRAPH
Asia (SIGGRAPH Asia). Finally, we included earlier
papers that have significantly impacted recent
research. In total, we collected and further analyzed
327 papers meeting the above criteria.

The origins of physics-based fluid simulation
in computer graphics can be traced back to the
1970s with the development of “particle systems” [1].
However, a fully-developed, reasonably stable physics-
based system for fluid animation was not achieved
until the end of the last century [2]. In the decade
following, various simulation strategies continued to
evolve, focusing on improving stability, accuracy,
and efficiency in fluid simulations. We discuss early
development progress in this regard in Section 3.3.
Subsequently, research on specific fluid phenomena
and the tailoring of simulated effects began to emerge
and gain momentum.

As we entered the 2010s, which is the primary
focus of this survey paper, the main research interests
in fluid simulation shifted towards addressing
specific effects that are challenging to achieve using
conventional fluid simulation methods. Alongside this
shift, advances in machine learning technologies have
opened up new ways to integrate neural networks
with simulation algorithms, pushing the boundaries
of what can be accomplished in fluid simulations. As
this survey aims to discuss the current advancements
in this area comprehensively, we classify the collected
papers into seven relevant topics that span the past
decade based on our detailed analysis of these papers.
We then selected a subset of representative papers
within each topic and discuss these in greater detail.

Figure 1 shows the seven identified topics at the first
level of a hierarchy depicting our survey’s structure.
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Fig. 1 Overview of the survey structure (see Section 2).

Further levels refine these into sub-topics. The seven
main topics are as follows:
• Advanced computational approaches: (Sec-

tion 4) Methods that aim to make full use of
powerful parallel computing resources for fluid
simulation.

• Fluid coupling with multi-materials: (Sec-
tion 5) Methods that model the interaction
between fluid and solid objects of various shapes
and textures.

• Multiphase liquids: (Section 6) Methods for
the simulation of liquid–liquid interaction effects
of various phases.

• Gas–liquid interfaces: (Section 7) Methods
dealing with scenarios where forces on gas–liquid
interfaces dominate the fluid motion.

• Fine detail enhancement: (Section 8) Methods
that concentrate on preserving/enhancing fluid
motion on a detailed level.

• Fluid control: (Section 9) Methods that allow
visual designers to control the appearance and
style of fluid simulations.

• Special fluids: (Section 10) Methods that
simulate non-conventional fluids, e.g., highly
viscous/thin, sensitive to magnetic fields, or
targeting materials that are, strictly speaking,
not fluids but behave like fluids.

Our seven-topic classification aims first and foremost
to identify salient trends in the past decade. As such,
the emergence of these topics is based on a significant
portion of the found papers that can be grouped
within each topic; in other words, the topics reflect
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a “data-driven organization” of how research on fluids
proceeded in the past decade. This is in contrast with
other surveys that group works based on a predefined,
model-driven taxonomy proposed by their authors.

It is insightful to analyze the distribution of topics
in the found papers and how these topics evolve over
time. Figure 2 shows the numbers of papers found
for each of the seven identified topics. We see that
while variations exist (some topics being more popular
than others), each topic has a significant number of
papers, with 4–8 top-tier papers per year on average,
thereby supporting the claim that our identified topics
are a good way to organize the research. Figure 3
refines the above insight, showing the number of
articles per topic and per year. We see that while
some topics show an increase in publications (e.g.,
advanced computational approaches or red curve in
Fig. 3), all identified topics have been “alive” over
the past decade—another indication that they are
suitable for the organization of our survey.

Fig. 2 Number of studied papers per identified topic. For each topic,
the top (pure color) bar segment represents papers published in TOG,
CGF, and TVCG. The bottom (shadowed) bar segment represents
other key papers considered in our survey.

Fig. 3 Trends in number of papers published per topic over the past
decade.

3 Fluid simulation overview

The development of fluid simulation in computer
graphics is deeply rooted in the history of physics. In
the 19th century, scientists such as Sir Isaac Newton
and Claude-Louis Navier contributed significantly to
the understanding of fluid mechanics, paving the way
for the Navier–Stokes equations. These equations,
which govern fluid motion, form the foundation of
modern fluid simulation algorithms.

This section offers a basic introduction to fluid
simulation and provides background knowledge
for the remainder of the survey. For a more
comprehensive understanding of fluid simulation,
we refer to Bridson’s book [3]. For more specific
knowledge about Lagrangian-based smoothed particle
hydrodynamics and material point methods, we refer
to the surveys of Koschier et al. [4] and Jiang et
al. [5], respectively. Readers less familiar with this
field are highly encouraged to read this section
before reading onwards. We first introduce relevant
physical principles behind fluid simulation, such as
the continuum hypothesis (Section 3.1) and Navier–
Stokes equations (Section 3.2). We next present
the early development of this area (Section 3.3),
including a brief overview of the ideas behind different
discretization strategies.

Table 1 summarizes the main notations used in
our survey. We use these notations, accompanied

Table 1 Common notations (and their descriptions) used in this
paper. For vectors and tensors, the “Unit” column shows the unit of
their norm values

Symbol Description Unit

p Pressure Pa
m Mass kg
ρ Density kg·m−3

µ Dynamic viscosity Pa·s
γ Surface tension coefficient N·m−1

S Area m2

V Volume m3

c Fraction —

f Force density N·m−3

F Force N
u Velocity m·s−1

n Normal vector —
x Position vector m
g Gravitational acceleration m·s−2

ω Angular velocity rad·s−1

T Stress tensor Pa
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by subscripts, superscripts, and parentheses, with
parameters to denote these quantities under various
conditions, as explained further in context.

3.1 Fluid mechanics

Matter in nature is built up of atoms and molecules
that are discrete and separated by space. Simulating
fluid at the microscopic level to describe macroscopic
phenomena is only possible on supercomputers with
weeks, if not months, of computing time. Computer
graphics pursues a balance between efficiency and
fidelity. For this, fluid mechanics based on a
continuum hypothesis is the level at which physical
properties are modeled.

Fluid mechanics models an object with matter
continuously distributed over its body, an
approximation called the continuum hypothesis. This
means that any infinitely small volume element in
the fluid is seen as a continuous medium, also called
a fluid parcel. As Landau and Lifshitz stated [6], a
fluid parcel is “very small compared with the volume
of the body under consideration, but large compared
with the distances between molecules”.

In fluid mechanics, the continuity equation
describes the transportation of physical properties in
space and time as Eq. (1):

∂A (x, t)
∂t

+∇ · (A (x, t) u (x, t)) = s (x, t) (1)

where A can be an arbitrary scalar, vector, or tensor
physical property, u is the velocity, and s is the source
term for A, all described at time t and location x.
Eq. (1) states that the change rate of any physical
property at a fixed position ∂A/∂t depends on the
variation brought by the flux of Au and source term s.

Lagrangian and Eulerian viewpoints. Consi-
dering the physical attribute A in Eq. (1), a flow
field can be analyzed from a Lagrangian or Eulerian
viewpoint as follows.

The Eulerian viewpoint studies the physical field
using fixed positions. The change rate of the physical
value A at a given position x is the ∂A (x, t)/∂t
term in Eq. (1), which comes from both the flux
and source terms. While intuitive, this does not
explicitly express the motion of the fluid parcel in the
continuum hypothesis, as parcels constantly travel
through fixed locations at all time.

In contrast, the Lagrangian viewpoint studies the
change rate of physical attributes with respect to the
fluid parcel by recasting Eq. (1) as



∂A (x, t)
∂t

+ (u (x, t) · ∇)A (x, t)︸ ︷︷ ︸
DA(x,t)

Dt

+A (x, t)∇ · (u (x, t)) = s (x, t)
DAι (t)

Dt +Aι (t)∇ · uι (t) = sι (t)

(2)

where D (·) /Dt, the so-called material derivative, is
the change rate of A within a fluid parcel. In Eq. (2),
u and s are the velocity and source term of a specific
fluid parcel, respectively. Hence, all positions x can
be substituted with the parcel identifier ι. For brevity,
hereafter, we omit the explicit mention of (x, t), (t),
and ι unless required by the context.
3.2 Navier–Stokes equations

Numerous methods for calculating fluid motion
have been developed, spanning from Lagrangian
to Eulerian perspectives. However, the underlying
physical principles for almost all of these approaches
are rooted in the Navier–Stokes equations, which
govern the dynamics of fluid flow and serve as a
fundamental foundation for fluid simulations. Thus,
we describe these briefly next.

Mass conservation. In a closed system, fluid
mass is conserved over time. This principle is
represented by the continuity equation (Eq. (1)).
Letting A be the fluid density and setting s ≡ 0,
Eq. (1) can be rewritten as

Dρ
Dt + ρ∇ · u = 0 (3)

For the case of incompressible flow, the density
variation within the flow is conserved, i.e., Dρ/Dt =
0. This condition further implies a divergence-free
velocity field, as expressed by

∇ · u = 0 (4)
Navier–Stokes momentum equation. To further

describe the motion of incompressible fluid flow, one
can analyze the momentum of each fluid parcel. By
introducing a momentum term ρu in Eq. (1) and next
using Eq. (3), we obtain

∂ρu

∂t
+∇ · (ρu⊗ u) = ρ

Du

Dt = sm (5)
where sm is the momentum source altering the speed
of each fluid parcel, and ⊗ represents the outer
product operation. Following this, a basic form of
the Navier–Stokes momentum equation for viscid
compressible flow further specifies sm into three
separate terms as

ρ
Du

Dt = −∇p+ µ∇2u + ρg (6)
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where p is the pressure, g is the gravitational
acceleration, and µ is the dynamic viscosity coefficient
describing how viscous a fluid is. Eq. (6) states that
the velocity change rate for a fluid parcel is affected by
three force terms: pressure (−∇p), viscosity (µ∇2u),
and gravity (ρg).

3.3 Simulation strategies

3.3.1 Early developments
As computer technology advanced in the 20th century,
numerical methods became popular for solving partial
differential equations, including the Navier–Stokes
equations. With the advent of powerful computer
hardware and software, computer graphics began to
incorporate these physics-based algorithms, enabling
increasingly realistic fluid simulations.

Dating back to the 1970s, William T. Reeves, a
member of Lucasfilm’s Computer Division, Computer
Graphics Group, pioneered the development of
particle systems [1, 7]. These systems enabled the
realistic depiction of elements such as smoke and
fire in films, as seen in “Star Trek II: The Wrath of
Khan”. This breakthrough laid the foundation for
early fluid simulation techniques in computer graphics.
In the 1990s, physics-based fluid simulation began
to gain traction. Wejchert and Haumann [8] used a
simplified version of the Navier–Stokes equations to
animate irrotational, incompressible linearized fluid
flow, providing a physics-based foundation for their
fluid animations. Subsequently, Stam and Fiume [9]
incorporated the complete Navier–Stokes equations
to create turbulent wind effects.

On the Lagrangian side, Desbrun and Gascuel
[10] introduced Smoothed Particle Hydrodynamics
(SPH) to the computer graphics field for simulating
highly deformable bodies. On the Eulerian side,
Foster and Metaxas [11] used the Navier–Stokes
equations on fixed grids to simulate fluid motion. The
study of fluid simulation reached a significant
milestone at the end of the 20th century with Stam’s
Stable Fluids method [2]. This finally made stable,
three-dimensional, physics-based fluid simulation
an attainable goal, producing realistic fluid effects.
It was the first unconditionally stable method for
fluid simulation and introduced the concept of semi-
Lagrangian advection, and it was one of the earliest
works to apply the idea of hybrid simulation in the
field.

Hybrid methods in fluid simulation merge

the strengths of both Lagrangian and Eulerian
approaches, yielding more versatile and robust
systems. Two foundational principles that underpin
hybrid fluid simulation are Harlow’s [12] particle-
in-cell (PIC) method and the refined fluid implicit
particle (FLIP) method of Brackbill and Ruppel [13].
These techniques have contributed significantly to
the widespread success and adoption of hybrid fluid
simulation in the 21st century. The field also saw
a major advancement when Zhu and Bridson [14]
applied the FLIP method to incompressible flow
simulation. This moved hybrid fluid simulation to
new heights as it enabled the exploration of complex
fluid dynamics with enhanced precision and stability.
The continuous evolution of hybrid fluid simulation
techniques has had a profound impact on computer
graphics, facilitating the creation of realistic and
visually stunning effects.
3.3.2 Discretization strategies
As fluid simulations in computer graphics have evolved
since the early development in the 20th century, the field
has branched out in three distinct directions: Eulerian,
Lagrangian, and hybrid schemes. Each of these
approaches offers unique advantages and challenges,
contributing to the comprehensive understanding of
fluid dynamics in computer graphics.

Eulerian schemes. These simulation methods use
the Eulerian viewpoint introduced in Section 3.1,
i.e., compute property values at fixed points in
the simulation domain. For this, the domain is
typically divided into evenly-distributed cells. In
a traditional collocated grid structure (Fig. 4(a)), all
physical values are evaluated at the center of each
cell. To derive a continuous flow field with values
at arbitrary positions, e.g., the grey dot in Fig. 4(c),
one can use a weighted interpolation of neighboring
cell values. The staggered grid (Fig. 4(b)) stores
physical values at cell edges and centers separately.
Compared with collocated grids, staggered grids are
currently more popular for simulating incompressible
fluids given their higher stability. It is noteworthy
that staggered grids are related to the marker-and-
cell (MAC) method [15], which was used in the
early days of computational fluid dynamics to solve
incompressible flow problems.

Lagrangian schemes. In the Lagrangian frame-
work, domain discretization is based on a set
of particles moving with the fluid flow, each
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Fig. 4 Schematic diagram of Eulerian grids. (a) Collocated grid
where physical quantities are stored in the cell centers (yellow points).
(b) Staggered grid where different variables are stored at different
locations; in this example, pressure is stored at the cell centers (black
points), while velocity is split into its two Cartesian components
and stored at the centers of the vertical cell edges (red and blue
points). Subscripts I and J denote spatial indices. (c) Using bilinear
interpolation to obtain the value of a physical quantity at any position.

approximating the physical values of a fluid parcel.
Hence, Lagrangian schemes conserve mass by
construction. Because particle locations can be
much more freely distributed over the computational
domain compared to covering the same domain with
a grid, Lagrangian schemes are also good at modeling
complex free surface details.

Currently, SPH is one of the most popular
Lagrangian methods for fluid simulation, with
origins in the works by Lucy [16] and Gingold and
Monaghan [17]. SPH has evolved significantly over
time, with various advancements and improvements.

Figure 5 shows how SPH performs interpolation,
where the physical value A at location xi of particle
i is computed using a smoothing kernel W as Eq. (7):

A (xi) =
∑
j

VjAjW (xi − xj , h) (7)

where h is called the smoothing length, V is the
volume of (the parcel of) each particle, and j

indicates all particles closer to i than the distance
h. To compute higher-order quantities, e.g., pressure
gradients, one can simply replace the kernel function

Fig. 5 Schematic diagram of Lagrangian-based smoothed particle
hydrodynamics.

W in Eq. (7) with its higher-order counterpart
(gradient in our example).

Initially, the weakly-compressible SPH (WCSPH) [18]
approach was introduced, where pressure computa-
tion was performed explicitly. Later, the Predictive-
Corrective Incompressible SPH (PCISPH) [19]
method was proposed, which introduced a prediction–
correction scheme for implicit pressure computation.
This technique improved the stability and accuracy
of fluid simulations by enforcing incompressibility
more effectively. Further developments led to
the introduction of Implicit Incompressible SPH
(IISPH) [20], which provided a more strictly
incompressible simulation with increased compu-
tational efficiency. Most recently, the Divergence-Free
SPH (DFSPH) [21] method has been developed,
which further enforces the divergence-free condition
within a simulation.

Position-based Dynamics (PBD) is a versatile and
efficient simulation method for handling various
physical phenomena, including fluids, deformable
solids, and cloth. PBD was first introduced by
Müller et al. [22] as an alternative to traditional force-
based dynamics, focusing on the direct manipulation
of object positions instead of computing forces and
accelerations. In the context of fluid simulation, the
Position-based Fluids (PBF) method was proposed by
Macklin and Müller [23], building upon the principles
of PBF and enforcing incompressibility by iteratively
adjusting particle positions.

Hybrid schemes. These schemes combine the
advantages of Lagrangian and Eulerian schemes
by representing the motion of the fluid flow with
Lagrangian particles while computing dynamics
(forces) on a Eulerian grid.

As Fig. 6 shows, to combine particles and grids,
physical values must be separately mapped from
particles to grids (P2G) and from grids to particles
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Fig. 6 Hybrid scheme of the Particle-In-Cell method. This example
uses a cell-centered grid, where information is stored at the yellow
points. During simulation, momentum and weight (which can be used
to obtain the velocity ut

I on the grid) are transferred from particles to
the cell centers. In the next step, forces are applied to grid nodes to
compute the new velocity ut+1

I . Finally, the velocity is re-transferred
from the grid to particles. When particles get their new velocities, the
new positions can be easily found by forward Euler integration.

(G2P) before and after the dynamic simulation. A so-
called shape function, similar to the kernel function
W for the SPH method, performs these mapping
procedures.

In the original PIC [24], only the momentum term
is transferred between P and G. The later proposed
FLIP [13] transfers the differential of momentum to
obtain better dynamic effects at the cost of stability.
The Material Point Method (MPM) introduced by
Sulsky et al. [25] is another extension of the original
PIC. It adds a new dimension to fluid simulation
by considering the deformation gradient information
along with the momentum term, making it suitable
for simulating a wide range of materials, including
fluids, granular materials, and deformable solids.

Throughout the development of the PIC, FLIP,
and MPM methods, these techniques have evolved
and merged to form more advanced approaches. The
Affine Particle-In-Cell (APIC) method [26] extends
the MPM framework by incorporating affine velocity
fields, which reduces numerical dissipation and
offers improved stability compared to both PIC and
FLIP. The Polynomial Particle-In-Cell (PolyPIC) [27]
method takes the MPM framework one step further by

incorporating higher-order polynomial velocity fields,
building upon the advancements made by the APIC
method. Finally, the Moving Least Squares Material
Point (MLS-MPM) [28] method utilizes moving least
squares for grid interpolation and differentiation in
MPM simulations, further enhancing the accuracy and
robustness of the approach.

4 Advanced computational approaches

Fluid simulation requires a high discretization
resolution to reach high visual quality. However,
more discrete particles or denser grids demand more
computing resources. This section surveys recent
approaches for improving computational efficiency.
We organize these into approaches that use adaptive
time and/or space sampling (Section 4.1), GPU or
CPU parallelization (Section 4.2), and the more
recent data-driven approaches (Section 4.3). For a
more extensive survey of this area, we refer to the
work of Manteaux et al. [29].
4.1 Adaptive solutions

A stable, sufficiently accurate, and detailed simulation
requires adequate temporal and spatial resolution.
Time steps must be short enough to ensure stability,
and high-resolution grids or dense particles are needed
to capture fine details. However, computational cost
increases with both spatial and temporal resolution,
and an overall high resolution is not always needed.
For example, time steps must be small for violent
motion but can be longer when the overall movement
is slow; high spatial resolution is needed to capture
delicate splashes and sprays, but it is less important
deep inside the fluid, where such detail is not visible.

As such, adaptivity uses high resolution only
at necessary time and space instances and uses
low resolution elsewhere to reduce computing costs.
Figure 7 illustrates this strategy with particles as an
example. Adaptive methods can be categorized into
temporal and spatial adaptivity. Temporal adaptivity
dynamically changes the time step, either globally or
locally, for different parts of the fluid. Spatial adaptivity
adjusts the resolution for different fluid regions or
changes the method of discretization for a similar effect.
These two approaches are described next.
4.1.1 Temporal adaptivity
Temporal adaptivity adjusts the time step length
dynamically. A straightforward strategy is to adapt
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Fig. 7 Schematic diagram of particle-based adaptivity. Particle-
based adaptivity adjusts particle size dynamically to reduce cost and
preserve detail simultaneously.

the time step globally, i.e., use the same time step
for the entire simulation domain. The time step
size is determined dynamically at each time step
under a restriction. For further performance gains,
different time steps can be used for different spatial
domain zones, thereby reducing the total number of
integration steps needed.

Global time step. The Courant–Friedrichs–
Lewy (CFL) condition [31] is a well-known method
for determining the time step size. Most current
simulation methods compute a global time step
according to the CFL condition at each time step.
Generally, the CFL condition takes the form

C ≡ ‖uc‖∆t∆x 6 Cmax (8)

where ‖uc‖ is the speed of information propagation,
∆x is the grid-cell size for Eulerian and hybrid
simulations or smoothing length for Lagrangian ones,
Cmax is a constant based on the size of discrete
operators, and C is the CFL or Courant number. In
practice, ‖uc‖ typically represents the speed of sound
in the material or maximum velocity in the simulation.
The time step length ∆t is usually chosen so that C
is in the range of [0, 1]. The choice of the maximum

Courant number Cmax is generally dictated by the
type of simulation algorithm being used, but it should
not exceed 1. Methods such as PIC or MPM tend
to offer greater flexibility in choosing Cmax compared
to SPH. Using the same method with an implicit
time integration scheme allows for larger Cmax values
while maintaining simulation stability.

Determining an optimal value for Cmax often
involves an extensive trial-and-error process tailored
to a specific scenario. Sun et al. [32] addressed
this issue by considering metrics related to the
stability of MPM simulations, such as the deformation
gradient. By using these metrics, they were able to
more effectively identify the performance limits and
improve the overall stability of simulations.

Asynchronous time integration. When dealing
with scenarios involving both intense waves and calm
regions, implementing a global time step restriction
can be inefficient and wasteful. To address this,
the concept of regional time stepping was initially
introduced to the SPH method by Goswami and Batty
[33]. This approach subdivides the simulation space
into smaller regions, allowing each region to have its
own independent time step. Recognizing the grid-
based nature of the subdivided regions, Fang et al. [34]
extended this idea to the MPM method. In their
technique, a scheduler determines the order in which
blocks are updated, while a buffer block is employed
to handle boundaries between blocks with different
time steps. This resulted in significant performance
improvements, achieving speed-ups of 9.8× compared
to traditional synchronous MPM implementations.
Inspired by Fang et al. [34], Koike et al. [30] proposed
an asynchronous time integrator for Eulerian liquid
simulation, with an interpolation strategy to deal with
boundaries between different-time-step zones and an
advection scheme to prevent seams at the boundaries.
While the abovementioned methods effectively enable

Fig. 8 Schematic diagram of the asynchronous time integration scheme. Boxes refer to discretized variables, such as velocity, and color
represents the time step. A simulation (a) is first advanced with the largest time step (b). Next, smaller time steps are used (c, d). If values
needed for computation are calculated using a larger time step, they are interpolated to match the current step size. Once the smallest time step
is reached, it is used to overwrite previous results (e). This procedure is applied recursively to update all variables. Reproduced with permission
from Ref. [30], c© The Author(s) Computer Graphics Forum 2020 c© The Eurographics Association and John Wiley & Sons Ltd. 2020.
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the time step to be asynchronized for separate regions,
they still necessitate synchronization for all regions
at simulation time barriers. Reinhardt et al. [35]
presented a fully asynchronous time integration model
for SPH fluid animation, where each particle has an
individual time step and is processed using a priority
queue.
4.1.2 Spatial adaptivity
These methods change the spatial resolution or
discretization method in different spatial regions to
keep fine detail in some regions but use coarser (and
faster to compute) detail in less important regions.
Spatial adaptivity methods are heavily dependent
on the underlying discretization. We next detail
different spatial adaptive approaches for the Eulerian,
Lagrangian, and hybrid approaches.

Eulerian grids. Grid-based Eulerian methods
use adaptive grid structures to achieve dynamic
spatial resolution. However, compared to uniformly
distributed Eulerian grids, it is challenging to design
a stencil on an adaptive grid for pressure solving to
attain high-order accuracy and form a symmetric
positive-definite linear system that can be efficiently
solved on non-symmetric adaptive grids.

The octree data structure is one grid adaptivity
approach that allows the resolution of axis-aligned
structured grids to be changed. As shown in Fig. 9,
each cell is divided into eight equal children by cutting
it in half along each axis. Octrees have the advantage
of regularity, supporting fast discretization and simple
implementation. However, on the transition between
different grid levels, octrees have T-junctions, which
cause challenging numerical issues.

Losasso et al. [36] proposed the first octree-based
liquid solver using a set of symmetric differential
operators, which enables the Poisson equation to
be solved on unrestricted octree grids. In the octree,
velocity is stored on cell faces, while pressure is stored

Fig. 9 Schematic diagram of an octree represented in 2D, where
each cell has four children. 3D octrees have eight children per cell.

at cell centers. The velocity divergence ∇ · u at cell
centers is computed considering all cell faces f as

∇ · u = 1
Vc

∑
f

(uf · nf )Sf (9)

where Vc is the cell volume, and nf , uf , and Sf are
the outward-pointing normal, velocity, and area of
face f , respectively. The pressure gradient on each
face is computed from the pressure of the two adjacent
cells using

∂p

∂x
= p2 − p1

(∆x1 + ∆x2)/2 (10)

where ∆x denotes the cell size, and subscripts 1 and
2 denote the adjacent cells to that face.

Dynamically adjusted octree grids also present
challenges in terms of modifying and accessing data.
Setaluri et al. [37] proposed a sparse paged grid
(SPGrid) data structure that constructs the octree
as a hierarchy of sparsely populated regular grids
instead of a standard pointer-based tree. Goldade et
al. [38] recognized the limitations of the first-order
accuracy of the velocity field for octrees and applied
a variational finite difference discretization method
to it, enabling a more efficient viscous simulation.
Ando and Batty [39] focused on using octree grids to
enhance surface detail exclusively. This approach
further reduces implementation complexity while
retaining the benefits of octrees. While the particular
attention to maintaining data order for efficient
computation is advantageous, it also presents a
challenge in system design. Shao et al. [40] noted
this issue and identified an underutilized potential
within the regular Cartesian grid structure. They
ingeniously integrated the single instruction, multiple
data (SIMD) approach with a multigrid structure,
aiming to streamline and minimize the required
number of multiplications. Their method showed
significant speed-ups of (2.0–14.6)× compared to
contemporary adaptive octree solvers found in
commercial software for large-scale simulations.

Several approaches have been inspired by and
extended from the octree grid concept. These
works aim to improve efficiency and accuracy in
various ways. Ferstl et al. [41] proposed a hexahedral
finite element discretization multigrid solver on
adaptive octree grids. By specially treating boundary
conditions on the free surface, they achieved second-
order accuracy on the surface. Aanjaneya et al. [42]
focused on enhancing pressure projection on octrees.
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They used a finite volume power diagram to accurately
recover irregular embedded boundaries that cross grids,
satisfying both second-order accurate and symmetric
positive definite (SPD) conditions. Xiao et al. [43]
introduced an adaptive staggered-tilted (AST) grid
for conducting adaptive fluid simulations on a regular
discretization. By adding a tilted grid to an octree
structure, they avoided T-junctions and further
improved the adaptivity of the simulation.

Some fluid simulation methods employ multiple
grids with different resolutions or structures to
simulate various parts of the fluid, later compositing
these elements together. This approach contrasts
with using a single adaptive grid for the entire
fluid domain. Gao et al. [44] devised a technique
that divides the domain into nested partitions
with different resolutions, effectively handling multi-
resolution fluid behavior. English et al. [45] used
overlapping Cartesian grids with varying scales and
rotations to represent the fluid domain, constructing
a local Voronoi diagram for managing pressure
projection near grid interfaces. Li et al. [46] introduced
an adaptive relaxation method for kinetic approaches,
enabling fluid sampling at arbitrary overlapping
resolutions and providing efficient representation of
fluid behavior across a wide range of scales.

While many adaptive methods that use single or
multiple grid structures can disrupt the uniform
data structure of the original Cartesian grid, some
works have found a balance between maintaining
uniformity and introducing adaptivity. Zhu et al. [47]
used a uniform grid within a cubic region of interest,
extending the grid into the far-field by stretching cells
along an axis. This approach retains the benefits of
a uniform grid while providing adaptivity in specific
areas. Ibayashi et al. [48] proposed a technique for
dynamically warping uniform grids, combining the
advantages of both unstructured and structured grids.

Lagrangian methods. Particle-based Lagrangian
approaches, such as SPH, achieve spatial adaptivity
by defining a desired resolution for each particle with
a sizing function. By adjusting particle sampling
through local merging or splitting of particles
(as shown in Fig. 7), these methods are able to
dynamically change the resolution, offering more
efficient and accurate simulations while focusing on
areas of interest.

The early study of adaptive SPH can be traced

back to the work of Adams et al. [49]. They
introduced a sizing function based on geometric
local feature size that allows computational resources
to be focused on geometrically complex regions.
However, adaptive particles yield density errors due
to different resolution scales, which can lead to
instabilities. To address this issue, Orthmann and
Kolb [50] proposed a temporal blending technique
to limit the rate of temporal resolution change,
thereby significantly reducing the error. With the
advent of more strictly incompressible implicit SPH
approaches, the size difference between neighboring
particles must be minimized to avoid instability.
Winchenbach et al. [51] achieved this by forming a
continuous transition of particle resolution by tuning
the splitting and merging pattern and introducing
mass redistribution between particles. A simplified
version of temporal blending was also incorporated.
In their method, splitting supports arbitrary 1 : n
patterns. Merging uses an (n + 1) : n pattern,
where one particle is merged into the others. Mass
redistribution divides the excessive mass mex of one
particle i equally among n particles. The physical
attributes A of the mass-receiving particles j are
updated to A∗j by

A∗j =
mex
n Ai +mjAj
mex
n +mj

(11)

Zhai et al. [52] took inspiration from this method
to propose an adaptive scheme for Power Particles.
Winchenbach et al. [53] proposed a semi-analytic
boundary handling approach to solving the problem
that particle-based boundary representation is
difficult to couple with fluid particles with very
different sizes. Recently, Winchenbach and Kolb [54]
introduced optimized refinement for splitting patterns
with a discretized objective function that models
the error, thereby significantly improving stability.
Neighbor search for adaptive particles also needs to
be specifically optimized. A particle in an adaptive
simulation can have a widely varying number of
neighbors within a given distance h, which are costly
to compute. To solve this, Winchenbach et al. [55]
proposed constrained neighbor lists to determine
the neighbors in a user-specified range. To further
accelerate the neighbor search process, Winchenbach
and Kolb [56] introduced a sparse data structure for
efficient neighbor search and ray tracing for adaptive
SPH based on hash-maps.
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Among vortex methods, ways to solve the Poisson
problem efficiently with adaptive data structures have
also been studied. The Poisson problem is an N -body
problem, where the interaction between each object
and the remaining objects is considered. Naively
solving this problem requires O(N2) computations, so
adaptive methods are used to reduce this complexity.
The Fast Multipole Method (FMM) [57] uses an
octree to approximately solve the N -body problem
in O(N logηN), where η ∈ {0, 1} by approximating
interactions between far-away bodies by the body
centers instead of computing all pairwise interactions.
Zhang and Bridson [58] proposed a novel Particle–
Particle Particle–Mesh method, which is easier to
implement and parallelize on GPUs, and applied it
to a vortex segment solver. Angelidis [59] used FMM
with added support for non-uniform particle sampling
to simulate incompressible smoke with vortices.

Hybrid methods. Hybrid methods offer greater
flexibility in implementing adaptive schemes due
to their intrinsic combination of Lagrangian and
Eulerian representations for fluid simulation. Ando et
al. [63] applied the particle splitting–collapsing
scheme, similar to traditional Lagrangian adaptive
mechanisms, to adjust the granularity of fluid
representation in relation to the distance to the fluid
surface for FLIP. They used the finest particles to
represent splashes and sheets. Ando et al. [64] later
introduced an adaptive liquid solver on tetrahedral
meshes, which combined a variant of FEM with FLIP
advection, adapting the sizes of both the particles
and tetrahedral meshes coherently for more efficient
simulation. For highly stable situations, Yue et al. [65]
explored the possibility of simulating the interior area
as soft continuum materials to reduce computational
costs at the solver level.

To further save computational costs, more recent
hybrid approaches aimed to “hollow” the inner area of
the simulated fluid by using Eulerian simulation only,
with particles applied near the surface. Chentanez et
al. [66] proposed coupling pure Lagrangian and
Eulerian methods to simulate single fluid bulks,
addressing the issue of fluid representation transition
and coupling stability between two different fluid
solvers. However, coupling two different solvers can
still be prone to instability, so Ferstl et al. [67] later
returned to adaptive FLIP simulation using FLIP
particles within a narrow band of the fluid surface.

Nakanishi et al. [60] focused on constructing a proper
data structure to adaptively merge and split octree
grids for FLIP, adapting the size of the background
grid only near the fluid surface (Fig. 10).

Sato et al. [68] took adaptivity to the extreme by
extending Ferstl et al.’s work [67] to replace some
of the fluid surface using level set surfaces via an
introduced transition function. This idea represents
a breakthrough in the field, enabling a seamless
merging of physical simulation details and large-
scale representations. To address the setback of
inefficient, highly-dissipative wave propagation during
the transition of surface representation, Huang et
al. [69] employed hybridization of volumetric and
surface-based advection-projection discretizations,
with the Boundary Element Method (BEM) applied
for long-lasting waves.

4.2 Parallelization

Parallelization of simulation algorithms offers a
promising pathway to augment fluid simulation speed
by capitalizing on the existing parallel computation
capacities of modern GPUs and CPUs. We divide
such methods into three classes: parallelization on a
single processing unit (multi-core CPU or a GPU);
parallel techniques with multiple processing units,
especially multiple GPUs; and using distributed
systems (see also Fig. 13).
4.2.1 Single processing unit
Parallelization can be most easily achieved on a
single processing unit, such as a multicore CPU
or GPU. Pure Eulerian and Lagrangian simulation
techniques can be readily parallelized under these
conditions. However, hybrid methods necessitate
meticulous measures due to their composite nature
of particles and grids. The Voxel Data Block

Fig. 10 Adaptive fluid simulation combining non-graded octrees
and adaptively sampled particles. Reproduced with permission from
Ref. [60], c© ACM 2020.
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(VDB) method pioneered by Museth [70] offers a
robust framework for manipulating sparse volumetric
data. Wu et al. [61] successfully integrated this
approach into the FLIP method by resolving
the parallel particle-to-grid rasterization problem
inherent in hybrid methods (Fig. 11). Gao et al. [71]
accomplished a similar integration for MPM based
on the SPGrid structure [37], wherein the particle-
to-grid transfer mechanism was a crucial aspect to
be solved. Furthermore, Chu et al. [72] applied
and optimized the Schur complement theory for
FLIP simulations. They divided the simulation
domain into multiple subdomains with face edges
and cross-points to establish a parallel-friendly data
structure. Aiming to streamline the development
of parallel programs, Hu et al. [73] proposed a
new data-oriented programming language—Taichi.
This language facilitates efficient authorship, access,
and maintenance of sparse data structures and is
accompanied by a compiler designed to automatically
optimize and parallelize code on CPU or GPU
platforms. Subsequently, Hu et al. [74] enhanced
Taichi to include bit-level memory control over
numerical data types.
4.2.2 Multiple processing units
Multi-GPU techniques are the approach of choice
for scaling up the simulation size. In this case,
multiple GPUs cooperate with the CPU(s), together
forming a heterogeneous computing structure. The
most challenging aspect of this structure is to reduce
both the frequency and amount of data exchange
between CPU–GPU and GPU–GPU, which is very

Fig. 11 A massive and sparse FLIP scene simulated using an
efficient parallel GPU implementation, achieving one frame/s on
an NVIDIA R© Quadro GP100 GPU with 2 million particles and
a 3360 × 160 × 2272-cell grid. Reproduced with permission from
Ref. [61], c© The Author(s) Computer Graphics Forum 2018 c© The
Eurographics Association and John Wiley & Sons Ltd. 2018.

expensive. Liu et al. [75] initially introduced the Schur
complement method to the graphics community as a
strategy to tackle this issue. As previously outlined,
the Schur complement method has the significant
benefit of segmenting the entire simulation domain
into several regions. Each region can be efficiently
computed using a single GPU, with the interaction
boundary between these regions elegantly managed by
the CPU(s). This setup eliminates the need for data
transmission from a GPU to CPU and subsequently
to another GPU. Meanwhile, Wang et al. [76] took
a different approach by directly adapting the MPM
algorithm structure to fit a multi-GPU framework.
They accomplished this by developing a particle data
structure to encourage coalesced memory access and
circumvent atomic operations during particle-to-grid
data writing. Additionally, they proposed a kernel
fusion strategy to reduce the number of GPU kernel
launches and global memory requirements. Chen et
al. [62] further optimized kinetic methods for scenarios
containing complex solids (Fig. 12). They introduced
a multi-kernel launch methodology for parallelism
enhancement and a parametric cost model to improve
performance optimization. This exploration of fluid
simulation parallelization demonstrates the richness
and versatility of strategies within this domain.
4.2.3 Distributed systems
In the pursuit of scalability in fluid simulation,
the potential of distributed platforms is harnessed
to delegate tasks across multiple computing
nodes. These distributed simulations frequently
utilize automatic task allocation to ensure efficient
processing. Biddiscombe et al. [77] laid a crucial
groundwork by providing a GUI-based interface
and analysis system for high-performance computing
(HPC). Their innovative approach involved sub-
stituting the I/O layer in the Hierarchical Data
Format Version 5 (HDF5) with a parallel data transfer
driver, thereby enabling parallel simulation, analysis,
and GUI operation concurrently on one or multiple

Fig. 12 GPU parallel computing accelerates complex large-scale
high-resolution scene simulation. Reproduced with permission from
Ref. [62], c© IEEE 2021.
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Fig. 13 Schematic diagrams of different parallelization types. A single processing unit can be a multicore-CPU or GPU. A CPU has few but
high-processing-power cores. A GPU has weaker but many more cores, which can result in better performance for repetitive operations.

devices. Mashayekhi et al. [78] developed a system
that automatically distributes tasks across many
multi-core cloud computing nodes to dynamically
manage fluid partitions. Shah et al. [79] proposed a
load-balancing scheme for sparse fluid simulations.
Qu et al. [80] outlined a simple yet effective solution
to accelerate distributed fluid simulations, which uses
micro-partitioning to greatly improve load balance
and communication performance.

4.3 Data-driven approaches

Although great progress has been made in space–
time adaptive and parallel computing in recent
years, the simulation of fluid by traditional physical
methods still requires high computational resources.
Strictly limited time steps are needed to ensure
simulation stability when solving governing equations
in a discretized space. Implementing efficient and
accurate end-to-end fluid simulation pipelines is also
technically highly challenging. Data-driven approaches
provide an alternative solution for real-time interactive
fluid simulation, which we outline next.
4.3.1 Model reduction
Model reduction is achieved by precomputing a set
of simulation sequences to obtain a low-dimensional
representation of fluid motion, allowing for efficient
and fast re-simulation. Treuille et al. [81] first
introduced model reduction to fluid simulation
via Galerkin projection. They constructed vector
field basis functions for fluid dynamics based on
principal component analysis (PCA) to generate real-
time fluids. For this, they computed the Galerkin
projection of the following differential equation F
onto a reduced-dimensional space:

F(r) = P ◦ F(v) ◦ P−1 (12)
The high-dimensional space vector v ∈ Rn and low-
dimensional space vector r ∈ Rm are transformed
by the projection operator P (v) = r and its inverse

P−1(r) = v.
Later, improvements, such as the extension of the

Galerkin projection to non-polynomial systems [82]
and a multidimensional cubature method supporting
semi-Lagrangian advection [83], were proposed. De
Witt et al. [84] used Laplace eigenfunctions instead
of PCA eigenvectors. The method performs a
Galerkin projection of the vorticity form of the
Navier–Stokes equations and is therefore not data-
driven but physically driven. Liu et al. [85] further
stabilized the method using a variational integrator,
providing structure coefficients without artifacts.
Zhai et al. [86] proposed a model reduction method
based on empirical modal decomposition (EMD),
which can decompose the flow field into various
frequency components as the basis vectors for model
reduction. This method can extract the characteristic
parameters of the original fluid to achieve inverse
modeling. To reduce the memory requirement to
store basis functions, Cui et al. [87] generalized
the dynamics to Neumann boundary conditions
using analytic eigenfunctions and the Fast Fourier
Transform (FFT). This approach allows the use
of thousands of basis functions to produce more
convincing and fine-grained fluid dynamics. Using
this, they proposed an analytical extension of
the Laplace eigenfunction method [88]. This spiral–
spectral fluid simulation method is capable of
producing realistic turbulent effects over a variety of
radial domains, both surface and bulk. Mercier and
Nowrouzezahrai [89] constructed an anisotropic vector
field basis function that can accommodate curved
boundaries and coupling with dynamic obstacles. The
method sacrifices a physically accurate solution for
a visually plausible simulation. A reduced model
for fluids based on incompressible polynomial vector
fields was proposed by Panuelos et al. [90] to reduce
the computational cost of highly viscous fluids.
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4.3.2 Machine learning
Machine learning methods have brought about a
revolution in physics-based fluid simulation. In
particular, deep learning techniques have proven the
possibilities of data-driven approaches. Ladický et
al. [91] expressed physics-based fluid simulation as
a regression problem and used a regression forest
algorithm to approximate the dynamic behavior of
fluid particles. This method strongly generalizes to
simulating large-scale scenes in real time. Raveendran
et al. [92] used interpolation on existing fluid
simulations to rapidly generate a large number of
new simulation results. Thuerey [93] improved this
method using a signed distance function to fully
automate the matching process. Recently, Oh and
Lee [94] proposed a temporal interpolation network
based on optical flow and forward advection that
can derive high-frame-rate smoke simulations from
low-frame-rate simulations.

With the development of deep learning, Convo-
lutional Neural Networks (CNNs) [96] and Artificial
Neural Networks (ANNs) [95] have been introduced
to solve pressure calculations in fluid simulations
and accelerate the pressure projection step (Fig. 14).
Wiewel et al. [97] proposed an LSTM architecture
to predict the evolution of fluids over time. They
used CNNs to map the 3D fluid simulation to a
low-dimensional latent space, greatly speeding up
the simulation. They further improved the method
using latent space subdivision [98], allowing for
more stable predictions of complex long-term series.

Fig. 14 Using Artificial Neural Networks (ANNs) to solve the
pressure projection [95]. The network inputs feature vectors extracted
from training data to output a pressure that is as close as possible to
the ground-truth.

Takahashi and Lin [99] proposed a framework capable
of extracting physical parameters from real fluid
videos and applying them to new scenarios to generate
the user’s ideal fluid behavior (Fig. 15). Eckert et
al. [100] created ScalarFlow, the first large-scale
volumetric dataset for real smoke reconstruction using
computer graphics and machine learning. ScalarFlow
also makes an important contribution by providing
reliable benchmark data and evaluation criteria.

Fig. 15 Position information of the fluid extracted from example
videos as a reference (left). 3D simulation projected onto the screen
space (middle). The difference between the two is then iteratively
reduced (right). Reproduced with permission from Ref. [99], c© ACM 2019.

5 Multi-material fluid coupling

A key topic frequently mentioned in fluid simulation is
the coupling of fluids with their environment, which is
composed of different materials. Indeed, in computer
graphics, fluids are mostly attractive due to the
way they interact with their surroundings, as the
attention of the spectator is arguably attracted by
the interfaces, or boundaries, between fluids and the
rest of the virtual world. Moreover, the behavior of
fluid is strongly affected by how these surrounding
factors themselves evolve. In this section, we explore
this topic with a focus on recent works that aim
to accurately and efficiently model coupling with
multiple complex materials. We split the discussion
into three separate subtopics: meshless methods
(Section 5.1), mesh-based methods for handling fluid
boundary conditions in the case of solid boundaries
(Section 5.2), and solutions designed to model
more complex couplings with multiple boundaries
(Section 5.3).
5.1 Meshless methods

Particle-based boundaries. For most Lagrangian
simulation approaches, the solid boundary sampled
by so-called boundary particles is the main enabler
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of inter-particle interactions between fluid and
other objects (Fig. 16). To couple fluid with solid
boundaries, early methods used various approaches
such as collision detection and ghost particles.
Becker et al. [101] computed the contact point
between the fluid and solid particles and controlled
the normal and tangential velocities to impose
boundary conditions. Yang et al. [102] facilitated the
interaction between an SPH fluid and nonlinear FEM
deformable solid by sampling proxy particles across
the boundary, and they handled fluid–solid coupling
with momentum-conserving collisions. Schechter and
Bridson [103] used the ghost particle method to
generate a thin layer of ghost particles in the nearby
solid and air, reducing numerical errors caused by
non-uniform particle distributions near boundaries.
He et al. [104] generated staggered particles between
neighboring particles to resolve the problem of shape
functions losing the Kronecker delta property, thereby
supporting various slip boundary conditions.

To further reduce computation time and numerical
errors, Akinci et al. [105] proposed a versatile and
efficient method for SPH boundary handling without
the need for collision detection or generating extra
particles. The method resolved to directly handle the
problem of uneven boundary sampling by evaluating a
relative contribution of each boundary particle using
Shepard interpolation (Fig. 17), given by

ρfi = mfi

∑
j

Wij +
∑
k

Θsk
(ρ0i)Wik (13)

Θsi (ρ0) = ρ0Vsi (14)

to compute the correct density without depending
on boundary sampling. The subscripts f and s

Fig. 16 Schematic diagram of fluid–solid coupling using meshless
methods. Left: Discretization of the SPH approach in coupling with
materials. Fluid and solid particles both contribute to the boundary
handling. Ω denotes the domain, f denotes fluid, s denotes solid,
and ∂Dx denotes the surrounding spherical neighborhood. Right:
Solid domain in the neighborhood of a fluid particle representing the
contribution of the boundary density value at the particle position.

Fig. 17 Large-scale fluid–solid interaction. A boat with ragdolls
sails under a bridge (left). As the flow rate increases and the bridge
is released, a second boat impacts the bridge. Reproduced with
permission from Ref. [105], c© ACM 2012.

represent fluid and solid particles, respectively, ρ0
denotes the fluid rest density, and Θs computes the
contributions of a boundary particle according to its
volume. Compared to the volume of fluid particles
with the same size Vf , the volume of solid particles Vs
varies based on the local solid sampling distribution.
Denser sampled regions have smaller solid volumes
to maintain interaction stability. At the mere cost of
a one-time evaluation of the above procedure, thin
boundary geometries with only one layer of particles
and non-manifold geometries can be supported.

The method of Akinci et al. [105] has gained
widespread popularity due to its simplicity and
efficiency. Macklin et al. [106] applied this method
to unify various physical behaviors using a single-
particle system for real-time applications built on
the PBD. Cornelis et al. [107] used the concept of
Ref. [105] to couple high-resolution FLIP with a low-
resolution implicit SPH method. Peer et al. [108]
built an implicit formulation for the simulation of
incompressible linearly elastic solids embedded in
the ISPH pressure solver, which further enables a
pressure-based boundary treatment using the method
of Ref. [105]. Takahashi et al. [109, 110] integrated the
approach of Ref. [105] into their multilevel particle-
based solver, in which they adaptively assigned
various roles to the particles to guarantee the
solvability of the linear system in a unified manner
regardless of the arrangements of the particles.

Although Akinci et al. [105] eliminated a variety
of artifacts of particle-based fluid–rigid coupling,
numerical issues, such as penetration across the
boundary, and the lack of higher-order accuracy of
pressure due to the mirroring scheme of physical
values from fluid to boundary particles, still limit the
time step size and stability under drastic scenarios.
Shao et al. [111] treated surface and inner boundary
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particles differently to prevent particle deficiency
and penetration issues. Instead of using the state
of density compression to denote the magnitude
of the pressure force, Band et al. [112] introduced
the notion of “volume compression” into coupling
problems, where the rest volumes rather than the
mass of boundary particles are applied to derive a
continuous pressure force:

F p
fi

= −Vfi

∑
j

Vj (pfi + pj)∇Wfij (15)

which considers fluid samples fi with all fluid and
boundary neighbours j of the fluid sample fi in
the same way. The results of their experiments
showed a significant improvement of stability and
a wider range of possible time step sizes. Gissler et
al. [113] resolved the stability issue in Ref. [105] by
interlinking an artificial pressure solver for boundary
particles with the fluid pressure, achieving a fully
dynamic two-way coupling (Fig. 18). Truong et
al. [114] prevented penetration by treating particle
collisions with particle merging and splitting.

Unsampled boundaries. The influence of a solid
model on the surrounding fluid particles can also
be handled carefully using a mesh-based (Eulerian)
solid representation for a stable and effective coupling.
Vines et al. [115] coupled Lagrangian vortex particles
to mesh-based solids by generating vorticity at the
solid boundary. Fujisawa and Miura [116] considered
the influence of triangle mesh boundaries on the
integration of a kernel function for SPH without
the need for boundary particles. However, the
method cannot handle solid boundaries with complex
geometry and is computationally expensive compared
to the method of Ref. [105]. Chang et al. [117]
extended Ref. [116] to support arbitrarily shaped
solid boundaries by converting the volume integral

Fig. 18 SPH fluid (43.8M particles) in a terrain (50M static rigid
particles) is two-way coupled with a water wheel that is connected to
a gate via gears and a chain. The gears, chain, and water gate are
modeled with 2.3M dynamic rigid particles. Up to 90k simultaneous
rigid–rigid contacts are handled. Reproduced with permission from
Ref. [113], c© ACM 2019.

inside the solid boundary to a surface integral.
Koschier and Bender [118] presented the “density
maps” method, precomputing a continuous boundary
density field to efficiently handle arbitrary boundary
geometries. Bender et al. [119] also targeted the
expensive renormalization process in Ref. [116] by
storing the volume contribution from the boundary on
a spatial grid that can be efficiently queried at runtime.

5.2 Mesh-based methods

Another mainstream approach for fluid simulation
is to use Eulerian and Lagrangian meshes, as shown
in Fig. 19. However, loss of mass and difficulties
in handling drastic deformations often limit the
practicability of these approaches. We organize mesh-
based methods into several classes as follows.

Lagrangian/Eulerian meshes. Early on, Clausen
et al. [120] used fully Lagrangian tetrahedral meshes to
significantly reduce numerical viscosity in simulations
with relatively low resolutions and long time
steps. Azevedo and Oliveira [121] proposed a semi-
Lagrangian method that introduced curvilinear grids
and achieved more accurate boundary conditions in
simulations with moderate resolutions. Besides these
Lagrangian-meshed methods, Teng et al. [122] later
incorporated previous work into an Eulerian fluid
solver and resolved complex contact scenarios between
multiple solids and fluids. Recently, Takahashi and
Lin [123] formulated implicit viscosity integration as a
minimization problem in which the volume fractions
are consistently evaluated to handle sub-grid details.

Focusing on the poor boundary conditions for
irregular boundaries defined under coarse grids, the
cut-cell approach became a major trend to improve
convergence for Neumann boundary conditions. Fluid

Fig. 19 Schematic diagram of fluid–solid coupling using mesh-based
methods. Left: A sample MAC grid used in the fluid–solid coupling.
Grey dots denote nodes of the solid regions. Fluid pressure values are
stored at cell centers. Fluid velocity components are stored on cell
faces. Right: A coupled solid–fluid system with the MPM method,
which allows the system with particles to be discretized on a Cartesian
grid and the pressure to be updated based on DOFs on the grid.
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grid cells are clipped against the solid boundary
represented by a triangle mesh, forming several
distinct polyhedral sub-cells at each time step,
allowing small details to be handled without refining
or rotating the grid. Based on the multigrid scheme
proposed by Chentanez and Mueller-Fischer [124]
with a variational discretization compatible on
all levels, Weber et al. [125] presented a cut-cell-
based multigrid scheme on staggered grids that is
second-order accurate for Neumann boundaries. To
better capture the flow across thin solids and gaps,
Azevedo et al. [126] further proposed a topology-
preserving pressure projection scheme on cut-cell
meshes. Following this, Zarifi and Batty [127] used
cut-cell discretization for two-way fluid-deformable
interaction, enforcing the free-slip boundary condition
at the actual interface. Their method computed the
pressure based on the MAC grid of three dimensions
x,y, and z as∫

∂Ωf

∇pdn ≈

∑
β∈{x,y,z}

(
S (Ωβ) ∂p

∂β
(Ωβ) + S (Ω−β) ∂p

∂β
(Ω−β)

)
(16)

where Ω contributes to the domain region, and
S(Ω) is the area of the domain region. The cut-
cell was further extended by Chen et al. [128] to
represent sub-grid structures on the free surface of
the liquid, with a new iso-surface Poisson solver with
desirable properties, such as second-order accuracy
and symmetric positive definiteness. Tao et al. [129]
introduced an algorithm based on VEM for simulating
fluid flow on cut-cell meshes, which effectively handles
complex geometries and accurately captures intricate
features, including thin tubes and extremely thin
walls.

Material point method. Since its introduction
to computer graphics, the Material Point Method
(MPM) has garnered significant attention. By inte-
grating features of Lagrangian particle representation
and Eulerian grid representation, MPM offers a
powerful technique for coupling fluid and solid
simulations. However, conventional MPM solvers
have drawbacks, such as computational inefficiency
and limited capability to handle self-contact
collisions, despite their physical realism and geometric
convenience. To improve upon these, Gao et al. [130]
presented an adaptive Generalized Interpolation

Material Point (GIMP) method with extensively
optimized particle–grid transfer memory efficiency
and parallelism. Hu et al. [28] proposed Compatible
Particle-In-Cell (CPIC), which enables the handling
of discontinuous material points and infinitely thin
boundaries by leveraging the relative positions of grid
nodes and particles. They also embedded the Moving
Least Squares (MLS) method into MPM to double the
computation speed. However, such MPM approaches
do not address the inconsistent tangential velocities
at the interface between multiple materials, leading to
visually unpleasant artificial stickiness. To alleviate
this, Fang et al. [131] presented a ghost matrix
operator-splitting scheme for monolithic coupling
between incompressible fluids and elastic solids
and designed a novel interface quadrature cut-cell
MPM formulation for free-slip boundary conditions.
Subsequently, Cao et al. [132] extended some ideas of
Ref. [131] from incompressible to compressible flow.

Monolithic schemes. Monolithic solvers simulate
various materials and their interactions within a
unified system that includes boundary conditions.
These schemes naturally ensure a more robust
interface of large density ratios and enable large time
steps. They not only occur in SPH methods [113] but
also in mesh-based (e.g., MPM) methods [131, 132].
Aanjaneya [133] proposed a monolithic solver for
efficiently simulating the interaction between rigid
bodies and incompressible fluids. The solver remains
robust even in poorly conditioned scenarios with
large density ratios between the solid objects and
fluid. Lai et al. [134] introduced a V-cycle of the
Full Approximation Scheme (FAS) multigrid method
to solve the linear complementary problems to
achieve better scalability and efficiency compared
to previous methods. Takahashi and Batty [135]
proposed a monolithic pressure–viscosity–contact
solver to simulate the complex interactions between
rigid bodies and liquids, efficiently managing
incompressibility and offering the option for implicit
viscosity integration in liquids. The method also
addresses contact resolution for rigid bodies and
handles mutual coupling.

Partitioned schemes. Compared to the mono-
lithic scheme, partitioned schemes can deal more
flexibly with multiple co-existing solvers by alter-
nating between the solid and fluid while applying
suitable boundary conditions. Akbay et al. [137]
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employed fluid and solid solvers as independent
components with restricted interfaces, promoting
modularity and facilitating code reusability. Lee et
al. [138] used a partitioned methodology to connect
a coarse-background Eulerian grid with a fine ALE
mesh in their simulation framework for character–
and hair–water interactions.

Recently, several coupling approaches for the
special treatment of fluid have emerged. Brandt et
al. [139] modeled fluids and deformable objects as
incompressible media, avoiding expensive operations
such as interface tracking and boundary condition
handling. Ruan et al. [136] used a three-way coupling
method, employing a thin liquid membrane to model
contact between solid objects and fluid driven by
strong surface tension (Fig. 20).

5.3 Coupling with complex boundaries

Besides interacting with the dynamic or static
boundaries of surroundings composed of rigid or
elastoplastic materials, fluids often interact with
other solid matter with complex and diverse physical
attributes. Such cases require intricate boundary
models and corresponding solvers. Next, we discuss
recent advances in fluid coupling with thin film
surfaces and/or porous materials, including hair,
cloth, sponges, and sand.

Strands and cloths. Coupling between hairs and
fluid is complex due to the wetting of hairs. Such
phenomena are shown in Fig. 21. Rungjiratananon et
al. [140] used an Eulerian approach to capture hair
porosity and wetting effects and a Lagrangian
approach to simulate individual hair strands and
their interactions, resulting in a detailed and dynamic
hair simulation. Chen et al. [141] proposed a real-
time painting system that aimed to generate realistic
paintings by simulating the interactions among the
brush bristles, paint, and canvas. Fei et al. [142]
proposed a multi-component framework to model
wet hair. PIC and Kirchhoff Rods were applied to

Fig. 20 Three-way coupling method to simulate surface-tension-
dominant solid–liquid contact. Reproduced with permission from
Ref. [136], c© ACM 2021.

Fig. 21 Schematic diagram of wet hairs. Left: Wet hairs with a thin
liquid layer flowing over their surface; their motion is influenced by
the surrounding liquid flow. Middle: Proximity and collision between
wet hairs cause adhesive and contact forces between hairs. Right:
Cohesion of wet hair. Surface tension creates liquid bridges between
closely positioned wet hairs.

model fluid and hair separately. A height-field was
introduced to represent the liquid volume around
each hair strand, considering the wet condition.
Fei et al. [143] next extended the fluid attributes to
compressible, shear-dependent liquids. A modified
second-order Coulomb cone model was also designed
to capture cohesion and friction during strand
collisions. Lee et al. [144] used a tetrahedral volume
mesh to embed hair, enabling the hairs to adhere to
their embedded positions and facilitating simulations
with millions of hairs during water–hair interactions.

For the interaction between cloths and fluid,
Huber et al. [145] proposed an efficient method for
two-way interaction between particle-based fluid and
thin triangular meshes, enabling cloth–fluid coupling
even under large time steps. Jiang et al. [146] created
an anisotropic hyperelastic model that distinguishes
the response to manifold strain, shearing, and
compression in orthogonal directions. This model
facilitates the coupling of various materials, such
as elastic surfaces, curves, fluids, and granular
materials. Fei et al. [147] introduced a method
for simulating the intricate dynamics of woven or
knitted fabrics, both partially and fully saturated,
interacting with liquids, using the method of Jiang et
al. [146] to deal with contact and collisions. To
simulate stain formation and evolution on cloths,
Wang et al. [148] developed a pigmented solution by
utilizing a homogenization process that combines
inhomogeneous and/or anisotropic properties with
bulk anisotropic diffusion tensors. Zheng et al. [149]
formalized the spreading of stains in woven fabric
as in-yarn diffusion and cross-yarn diffusion and
introduced a triple-layer model to manage wetting
and wicking calculations.
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Sponge-like porous materials. Patkar and
Chaudhuri [150] simulated liquid flow within a porous
object with a deforming unstructured mesh and
modeled liquid diffusion based on saturation, as well
as allowing the liquid to be absorbed by, or leave, the
solid.

Thin film surfaces. Real-life situations often
involve surface flow phenomena, such as rainwater
cascading down a tree trunk or the gradual
progression of a water front in a shower room. For
such flows, Vantzos et al. [151] proposed a triangle
mesh model for simulating the motion of a thin
viscous fluid film on a curved surface. The model
includes discretization for curvature and advection
operators to ensure accurate simulation results. Ren
et al. [152] expanded the standard shallow-water flow
model to accommodate general triangle meshes. They
introduced a feature-based bottom friction model,
allowing non-viscous flow motion to be captured along
edges and creases on detailed 3D meshes.

Granular materials. Such materials, e.g., sand,
can themselves exhibit flow-like behavior. In addition
to their porous behavior, simulating dissolution of
granular materials has also attracted much attention.
Yan et al. [154] combined a hypoplastic model with
SPH to simulate granular materials diffusing into
fluid. Yang et al. [153] integrated the phase-field
method to simulate liquids and multiple types
of solids, with dissolution achieved by evolving
the granular particle’s concentration and phase
(Fig. 22). Tampubolon et al. [155] used continuum
mixture theory to simulate water–sand coupling
in MPM, where different phases are coupled by
momentum exchange. Gao et al. [156] modeled the

Fig. 22 Soluble and insoluble materials show different phenomena
when coupled with fluid. Soluble and wettable granular materials.
Reproduced with permission from Ref. [153], c© ACM 2017.

motion of solid sediment particles inside fluids with
MPM. Sediment was modeled by Drucker–Prager
elastoplasticity, achieving two-way coupling between
sediment and fluid. He et al. [157] proposed position-
based constraints for granular flows, using cohesion
and friction models that vary across space, with
cohesion affected by water saturation. Takahashi and
Batty [158] simulated two-way coupling between rigid
bodies and continuum granular materials or liquids
with a monolithic solver that combines pressure,
friction, and contact interactions. Gao et al. [159]
used a hybrid scheme to accurately simulate the
behavior of discontinuous fluid-like substances. This
approach integrated an affine particle-in-cell solver
with density fields, enabling transformations across
granular particles, dust clouds, powders, and their
mixtures within a unified framework.

6 Multiphase liquids

The real world is replete with complex fluid
phenomena, including dissolution, dispersion, and
Rayleigh–Taylor instabilities, all of which are closely
related to multiphase environments. The study
of multiphase fluid simulation, a distinct subject
within Computational Fluid Dynamics (CFD), has
garnered significant attention in the realm of
computer graphics. We next give an overview of
this topic, focusing on liquid–liquid interactions. We
group various phenomena and their corresponding
simulations into non-mixing (Section 6.1) and mixing
fluids (Section 6.2) based on whether a clear
immiscible interface can be formed between two
different phases. For non-mixing fluids, we classify
their simulations according to the discretization
methods used. We also survey recent methods by
grouping them into two categories: mixture models
where phase velocities are separately calculated
and non-trivial-diffusion based models where phase
velocities are considered equally.
6.1 Non-mixing fluids

Recent methods for simulating non-mixing fluids
include particle-based methods, e.g., SPH [160],
PBF [161], MPM [162], and mesh-based methods
[163–166]. Phases in non-mixing fluids typically
do not merge together. Non-mixing fluid phases
inherently resist fusion, creating challenges in (a)
tracking the interfaces between different phases and
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(b) accurately calculating force interactions between
phases at liquid–liquid or liquid–solid interfaces.
The unique properties of gas–liquid interfaces are
discussed separately in Section 7.

SPH simulations of multiple fluids, particularly
those with high density ratios, can produce erroneous
interface tension and non-physical separation between
the fluids. In response to this issue, Solenthaler and
Pajarola [160] modified the standard SPH equations
to account for the density discontinuity across the
interface. They used an SPH density interpolation
formulation, ρi = mi

∑
jW (xi − xj , h), instead of

the standard one, ρi =
∑
jmjW (xi − xj , h).

Alduán et al. [161] proposed a versatile simulation
framework based on PBF methods designed to
address VFX production demands. On the phase
interface, they used an SPH density interpolation
formulation, which is similar to the method in
Ref. [160]. Subsequent PBF calculations were also
modified using this uniform-density formulation.
High viscosity was handled by breaking the XSPH
calculation into multiple lower-viscosity stable
iterations. The surface tension effect was bounded
for stable artistic controls.

Yan et al. [162] extended the MPM method to cope
with interacting solid–fluid simulations. Upon the
detection of a solid–fluid collision along the phase
boundary, an anti-penetration force is applied to both
the fluid and solid particles in opposite directions
along the surface normal. The same strategy was
used to simulate non-mixing fluids, where the anti-
penetration force is calculated between each distinct
phase and all other phases collectively (Fig. 23).

Mesh-based methodologies offer the advantage
of explicit interface tracking using high-resolution

Fig. 23 Schematic diagram of non-mixing fluids. The lower-left part
shows the anti-penetration force (Fanti), which is applied to particles
in opposite directions along the surface normal. The embedding 3D
fluid mesh can be re-tessellated to accommodate vertex displacement
and produce changes in the interface topology.

geometric structures. Da et al. [164] considered a
special emphasis on topological change handling in
2D surface tracking for non-mixing fluid simulations
(Fig. 23). They constructed highly distorted interfaces
featuring thin sheets and tiny regions. Meanwhile,
Misztal et al. [163] aimed to prevent mismatches
between phase occupancy regions and the simulation
quantity storage grid; they achieved this by
discretizing each phase region using unstructured
3D tetrahedral grids and tracking the deformation
of the tetrahedra. They managed topology changes
and mesh quality enhancements using a modified 3D
deformable simplicial complex method. In contrast,
Li et al. [165] avoided complex remeshing operations
by combining mesh-based tracking and surface
reconstruction from distance fields (Fig. 24). They
reconstructed the surface meshes between each phase
using an unsigned distance function and indicator
function. The mesh was stored as later interpolation
reference in a semi-Lagrangian update of the two
functions in the next time step. This approach was
extended in Ref. [166] for surface tracking of more
than three phases. In this method, special care
is taken to handle mesh penetrations and ensure
consistency between meshes and the regional level-set
functions on the multi-fluid interfaces. An extended
triangulation template strategy was also proposed
to handle triple junctions, which standard marching
cube algorithms fail to reproduce.

6.2 Mixing fluids

Another category of multiple-fluid flows involves
miscible or dispersed fluid mixtures, for which

Fig. 24 Rayleigh–Taylor instability appearing at the interface
between a high-density medium atop a low-density medium due to
gravity. Reproduced with permission from Ref. [165], c© IEEE 2016.
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interfaces can be challenging to track continuously
or may not exist at all. In contrast to the non-
mixing case (Section 6.1), different phases now always
co-exist at the same spatial position (Fig. 25). A
key problem is to calculate how the local volume
fractions cVk of each phase k change during the
simulation, i.e., solving the multiphase continuity
equations. Other challenges include simulating
diffusive behavior, incompressibility enhancements,
and stability improvements. We summarize several
typical methods that can be integrated into the
SPH [167, 168], PBF [153, 169], and MPM [170]
solvers.

Mixture model. Ren et al. [167] used a multi-
phase mixture model for complex multiphase mixing
and unmixing effects. Their SPH-based approach
(called WCSPH) solves the mixture continuity and
momentum equations for each particle as Eq. (17):

∂

∂t
ρm +∇ · (ρmum) = 0 (17)

∂

∂t
(ρmum) +∇ · (ρmumum) = −∇pm

+ρmg +∇ · (Tm + TDm) (18)
where ρm =

∑
k c

V
k ρk is the mixture density, um =

1
ρm

∑
k c

V
k ρkuk is the mixture velocity, pm is the

mixture pressure, and Tm,TDm are the mixture
viscous stress and diffusion tensors, respectively.
Phase velocities are assumed to be different from
each other. For each phase k, a drift velocity umk =
uk−um is analytically computed at the start of each
time step. These phase-wise drift velocities are used
to calculate the phase volume fraction change DcVk /Dt
as well as the mixture diffusion tensor TDm. Following
this, the aggregate particle motion, individual phase
velocities, and phase volume fraction changes on the

Fig. 25 Schematic diagram of mixing fluids. The lower-left
part shows the fractions ci (volume fraction, mass fraction, or
concentration) of different phases in each particle during the diffusion
process. The upper-right part shows the 3D fluid grid; black arrows
represent grid forces due to diffusion.

particles during the simulation are solved. Yan et
al. [154] extended this mixture model to cope with
solid phases. Ren et al. [171] further introduced a
virtual phase concept for multiphase simulations
containing porous solids, considering the absorbed
and non-absorbed parts of a single phase as two
virtual phases that can be universally handled by the
mixture model. The result was a unified algorithm
framework for multiphase flows inside and outside
porous solids. To alleviate the incompressibility issue
of the WCSPH framework [167], Jiang et al. [168] used
volume-weighted mixture velocities um =

∑
k c

V
k uk

to ensure a divergence-free mixture velocity field
solvable by an iterative incompressible SPH solver for
the single-fluid case. To capture multiphase fluids
with highly dynamic relative motions, Jiang and
Lan [172] presented a dynamic mixture model that
abandoned the local equilibrium condition. This
method also allowed for fluid control in the multiphase
environment by solving the Navier–Stokes equations
for each phase flexibly. In contrast, Ren et al. [173]
used the deformation gradient to construct a set
of linear equations that match the local volume
change resulting from the momentum-equation-
solved velocities, which resulted from the continuity-
equation-solved fraction changes, and solved these
equations for enhanced incompressibility.

Non-trivial diffusion. Traditionally, phase-mixing
effects in fluid simulation have been modeled using
the diffusion equation Dc/Dt = α∇2c, where α is the
diffusion coefficient and c is the concentration, which
assumes uniform phase velocities and movement in
accordance with the aggregate motion. This approach
has been employed in various works, such as Im
et al.’s [174] diffusive dissolved air transfer model
for calculating bubble distribution in freezing ice
blocks and He et al.’s [175] two-phase diffusive model
for simulating diffusive appearances with varying
sharpness in materials like ink and bubbles.

Other researchers have advanced this field with
more sophisticated models. Yang et al. [169] inte-
grated the Cahn–Hilliard equation into multiphase
simulation using an energy-based model to capture
complex multiphase effects, such as unmixing and
extraction. They computed the change of the mass
fraction cmk of each phase k as

Dcmk
Dt = ∇ · (M∇φk) (19)
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where M is a degenerate mobility constant and φk
is the k-th phase’s chemical potential relying on the
derivative of a case-specified Helmholtz free energy
function at the current concentration composition.
This model was able to capture complex multiphase
effects, such as unmixing and extraction (Fig. 26).
Yang et al. [153] extended this model using a unified
Helmholtz free energy form to handle both solid
and liquid phases, thereby expanding the capacity
of the PBF multiphase solver. Chen et al. [170]
proposed a moving least square reproducing kernel
particle method for better precision and stability
of particle-based simulations. Using an advanced
interpolation scheme, they integrated the Cahn–
Hilliard equations into MPM solvers and achieved
good mass conservation, stability, and sub-grid details
in multiphase fluids.

Xue et al. [176] modeled anisotropic diffusive effects
using non-Fourier diffusion, which was integrated into
a phase field formulation using an MPM solver. The
resulting constitutive model is given by

q = qC + qF

qC + τ q̇C = − (1−GT)α∇X
qF = −GTα∇X

(20)

where q is the associated diffusion flux, qC and qF
represent Cattaneo and Fourier diffusion, respectively,

Fig. 26 Fluid extraction. We see the change of solution due to
greater solubility of the green liquid within the blue liquid compared
to the red liquid. (a) At the beginning, the blue liquid and yellow
mixture are put in a separating funnel. (b) The funnel is toppled.
(c) Shaking vigorously mixes the fluids. (d) Turning the funnel upright
results in a clear interface between the red liquid and cyan mixture.
Reproduced with permission from Ref. [169], c© ACM 2015.

τ is the relaxation time with respect to the flux, α
is the diffusion coefficient, and X is the quantity
being diffused. GT is an non-dimensional parameter
that represents the weight between Cattaneo-type
and Fourier-type diffusion. Their method reproduced
complex folding effects of poroelastic materials during
wetting and also directional diffusive transportation
effects. Su et al. [177] adopted the anisotropic diffusive
model in Ref. [176] for temperature transport in an
extended MPM phase change solver, allowing the
simulation of richer phenomena. They also introduced
an integration scheme that provides second-order
accuracy with only first-order algorithmic overhead.

In recent years, additional works have studied other
mixing-related phenomena. Stomakhin et al. [178]
proposed an MPM approach to solve heat-induced
phase change of various materials. A carefully
designed projection solver allowed them to simulate
nearly incompressible phase-changing materials in
MPM. Hochstetter and Kolb [179] presented an SPH
method to simulate evaporation and condensation of
liquids. Their technique utilized particles to signify
the liquid phase, while the grid primarily served as a
medium for simulating the air phase and facilitating
water vapor transport. This method used Fourier’s
law as a basis for heat transfer between grid cells
and particles, thereby advancing the understanding
of multiphase heat and mass transfer phenomena.

7 Gas–liquid interfaces

In fluid simulations, the influence of gas is
often ignored. However, numerous real-world fluid
phenomena, including the formation of water droplets
and bubbles, cannot be accurately represented
without considering the role of gases. The phenomena
formed by gas–fluid interactions are complex and
diverse. In this section, we discuss gas–liquid interface
phenomena by grouping them into three categories:
free surface fluids (Section 7.1), bubbles, foam, and
glugging (Section 7.2), and spray and splashing
(Section 7.3).

In free surface fluid simulation, the emphasis is
typically placed on calculating the fluid surface and
accounting for surface tension, rather than explicitly
modeling the presence of air or gases. Here, we
introduce some typical methods, such as contact
angle, surface tracking, and continuous surface force.
We then discuss bubbles, foam, and glugging together
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because of their similar characteristics, i.e., they are
the result of a small amount of gas being wrapped
by the closed fluid. The bubbles we are discussing
here are those formed by air gathering in water, while
foam is formed by bubbles rising to the surface of the
fluid (Fig. 27). Glugging occurs, e.g., when a liquid is
rapidly poured from a bottle with a narrow opening
(Fig. 28) and is a multiphase phenomenon where
bubbles are generated automatically. Finally, spray
and splashing are formed by free liquids in the gas.
These are usually produced by violent collisions of
fluids and require more accurate simulation methods.
7.1 Free surface fluids

Physically correct or at least plausible gas–liquid
interface modeling is challenging. This is largely due
to the fact that while scalar fields such as pressure
can be approximated well using particles or grids
at macroscopic scales, surface tension (and similar)
effects are the result of microscopic inter-molecular
forces (Fig. 29). This makes introducing surface
tension effects into standard Lagrangian and Eulerian
solvers (see Section 3.3) non-trivial.

Wang et al. [181] introduced the contact angle to
calculate surface tension. This angle exists at the
junction of solid, liquid, and gas, which indicates the
hydrophilicity and hydrophobicity of solid materials
(Fig. 30). They used signed distance fields to

Fig. 27 Schematic diagram of bubbles and foam. Gas accumulates
under water and forms bubbles. As bubbles rise to the water surface,
their volume increases due to a pressure decrease. When reaching the
surface, bubbles may form foam.

Fig. 28 The glugging effect. Reproduced with permission from
Ref. [180], c© IEEE 2021.

Fig. 29 Schematic diagram of surface tension. Liquids have
forces between the same-kind molecules (cohesion) and different-kind
molecules (adhesion). The molecular force on the liquid surface is
unbalanced, resulting in surface tension effects.

Fig. 30 Schematic diagram of stable contact angle θs. γsa, γla,
and γls are the interfacial tension coefficients for solid–air, liquid–air,
and liquid–solid surfaces, respectively. When a drop of liquid rests
on a solid surface in equilibrium, the angle between the solid–liquid
interface and gas–liquid interface is called the stable contact angle.

represent such surfaces and constructed a virtual
surface below the solid one to replace the real solid–
fluid interface. The distance field can be modified
by the virtual surface. Following this, the stable
contact angle θs can be obtained to estimate the
surface tension from

γsa − (γla cos θs + γls) = 0 (21)
where γsa, γla, and γls are the interfacial tension
coefficients for the solid–air, liquid–air, and liquid–
solid surfaces, respectively. However, this method
uses a grid to represent the internal volume of
the fluid, which requires significant memory and
computation time.

Water drop animation was the main focus of
Zhang et al. [182]. The crucial part of their Lagrangian
system that allows efficient simulations of water drop
motions is the reduction of volumetric fluid dynamics
over the whole liquid volume to a deformable surface
model. While also using the contact angle method
like Ref. [181], their model focuses only on the surface,
and as such, it is more computationally efficient.

Da et al. [183] proposed a surface-only model that
avoids dealing with degrees of freedom inside liquids
and (often) far away from their surface. This is the
first such model for 3D liquids with the first advection–
projection scheme for surface-based liquids, albeit
partly limited to bodies dominated by surface tension
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and inertia, although still capable of modeling effects
such as crown splashing.

Akinci et al. [184] employed SPH to model surface
tension and adhesion forces. Theirs is the first
method that correctly handles large surface tension
(and adhesion) without the need for ghost particles
or artificial pressure forces. The cohesion force is
described as

F coh
i←j = −γmimjB (||xi − xj ||)

xi − xj
||xi − xj ||

(22)

where γ represents the surface tension coefficient and
B denotes a spline function. The method is simple to
integrate with existing SPH solvers and can simulate
effects such as water crown formation and rolling
water droplets.

By assigning each particle a value corresponding to
an estimate of its surface area, leading to an implicit
definition of the free surface of the fluid, Orthmann et
al. [185] achieved conservative transport within and
between surfaces, including correct handling of thin
sheets and other singularities. This allows for effective
simulations of detergents, cleansing, and coating.

Yang et al. [186] used a pairwise-force model called
PF-SPH, which relies on larger support radii than
traditional SPH. The method improves the accuracy
of the surface tension calculation by using anisotropic
filtering to scale neighboring particle interaction
forces.

Energy-based methods have also been used to
simulate free surface fluids. He et al. [187] modified
earlier surface tension and air pressure formulations
for SPH-based free surface flows, building on the
diffuse interface model. They introduced a modified
surface tension energy formulation Es as

Es =
∫
V

κ

2 ‖∇l‖
2dV (23)

where V represents the volume of the liquid, κ is a
coefficient associated with squared gradient energy,
and l denotes the condensation field. The surface
tension energy Es is directly related to the surface
area of a fluid interface. Its gradient can be computed
to determine the surface tension force acting on the
interface. This improves the robustness of the model
vs. particle sparsity and in turn leads to increased
stability. The model can simulate delicate surface
tension effects, such as water/milk crowning.

Classical methods often struggle with relatively
high coefficient/parameter values, such as those
controlling surface energy. To address this, Hyde et al.

[188] developed an implicit Lagrangian formulation
that specifically targets liquids with significant surface
energy, such as liquid metals (Fig. 31). By treating
discrete forces as gradients of the potential energy
that are proportional to the surface area of the
liquid, this approach enables more accurate and stable
simulations. Chen et al. [189] proposed an MPM
approach that generalizes the work of Ref. [188] by
improving resampling via new types of temporary
“balance” particles, achieving the perfect conservation
of grid linear and angular momenta.

7.2 Bubbles, foam, and glugging

Indeed, the influence of gas on fluid simulation
extends beyond just the free surface of the fluid. It
encompasses the behavior of the fluid interior and
involves more intricate interaction processes. Single-
phase liquid simulations typically struggle to capture
phenomena like bubbles, foam, and glugging effects,
which necessitates the modeling of gas and liquid as
two-phase flows.

Patkar et al. [190] presented a hybrid Lagrangian–
Eulerian scheme for converting between small (i.e.,
sub-grid and under-resolved) Lagrangian bubbles and
larger well-resolved bubbles modeled with an Eulerian
approach based on level sets. Their framework
includes a bubble seeding mechanism to realistically
simulate fluid structure interaction with complex
(moving) objects. Cho and Ko [191] combined the
volume of fluid (VOF) with sub-grid refinement of
the level set method to simulate moving interfaces in
two-phase flows.

Goldade et al. [192] developed a model for immersed
bubble simulation, which avoids advection and
projection inside bubbles. The method is based on
constraint-based incompressible bubbles (with zero
density) and affine fluid regions (to account for non-
zero density coefficients). The simulation region is
divided into a fluid region Ωf , solid region Ωs, and
air region Ωa. Any enclosed and continuous region

Fig. 31 Simulation of high-surface-energy liquids, including shape
change and two-way coupling with solids. Reproduced with permission
from Ref. [188], c© Owner/Author 2020.
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filled with air is treated as a bubble. Linear velocity
constraints are imposed on each bubble viax

Ωf∩∂Ωai

uf · nf da+
x

Ωs∩∂Ωai

us · ns da = 0 (24)

where Ωai is the continuous region of bubble i. nf
and ns are the fluid’s normal and solid boundary’s
normal, respectively.

Additional special bubble simulations have been
conducted. Paddilla et al. [193] modeled bubble
rings via vortex filaments of variable thickness,
assuming that advective inertial forces are small
compared to viscous forces. Filaments are expressed
as a configuration manifold on which the equations
of motion are geodesic. Langlois et al. [194]
introduced a set of techniques aimed at generating
sound representations for intricate two-phase liquid
animations. They extended the open-source Gerris
solver [195] (a finite-volume-based multigrid solver) to
achieve audio–visual fluid (and bubble) simulations.

Although some of the above methods can handle
foam to some extent, specialized methods exist
for this. Busaryev et al. [196] animated bubble
interactions in liquid foams by treating (small) bubble
particles as sites of Voronoi cells in a weighted
diagram. Their framework handles bubble–bubble,
bubble–liquid, and also bubble–solid interactions,
giving rise to foam simulations with bursting and
coalescing. Kim et al. [197] modeled foam waves using
the FLIP solver. Foam particles projected to 2D
give rise to depth and acceleration maps, making the
method efficient. The method provides the option to
art-direct the foam effects using sketches and level-
of-detail controls.

Recently, Wretborn et al. [198] presented a realistic
model for white-water simulation (Fig. 32). Their
method enhances simulations with (tiny) bubble and

Fig. 32 River. A river flowing around sharp creases of a winding
canyon creates a combination of calm and dynamic regions, including
waterfalls and backdrafts. Reproduced with permission from Ref. [198],
c© ACM 2022.

foam detail by a stable coupling scheme between
bubbles and water, a novel bubble emission scheme,
and manifold advection for accurate foam tracking.

For the simulation of glugging, Boyd and Bridson
[199] proposed the MultiFLIP method, which
extended the FLIP method to two-phase flows. They
treated not only liquid but also air as incompressible
phases, both modeled via particles. This (re)produces,
among other effect, the glugging effect.

Ando et al. [200] introduced a stream function-
based solver as an FLIP variant. In this approach,
the stream function ψ is used to determine the
divergence-free velocity field u, given by u = ∇× ψ.
Interestingly, their work shows that solvers based on
stream functions are just as viable as regular pressure
solvers. The method is able to simulate glugging
without modeling the second phase (air) explicitly.

7.3 Spray and splashing

Spray and splashing are very common phenomena
in fluid scenes (Fig. 33). For scenes with intense
collisions like turbulence, the final visual effect largely
depends on the fidelity of the spray and splash
simulation.

Nielsen and Østerby [201] modeled spray as a
two-way coupled two-continua with different volume
fractions to achieve realistic spray motion. However,
a grid-based density field cannot capture the
motion of a single droplet. In contrast, Jones and
Southern [202] focused on efficient physics-based
droplet interaction. They introduced coalescence,
separating, and fragmenting collision outcomes into a
novel particle interaction model to simulate droplets.
This provides a ballistic particle system for liquid
droplets and spray.

Yang et al. [203] focused on spray simulation,
such as that arising from high-speed/violent liquid
streams. Similar to Ref. [190], they also used a hybrid
Lagrangian–Eulerian model (with FLIP components

Fig. 33 Schematic diagram of spray and splashing. Spray and
splashing are different in simulation scale. Compared with splashing,
spray is composed of finer droplets.
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in their case) to model mixture phenomena with high
fidelity. Their efficient CUDA implementation allows
droplet and spray effects, such as those arising in
waterfall and fountain simulations, to be modeled.

Guo et al. [204] addressed the stability challenges
encountered in the two-phase lattice Boltzmann
model (TP-LBM) by introducing a novel density-
aware sub-grid-scale model. Their approach can
uniformly simulate different gas–liquid phenomena,
allowing for realistic and visually compelling
representations of gas–liquid flow dynamics.

Li et al. [180] proposed a multiphase flow method to
simulate complex effects, such as bubbling, glugging,
wetting, and splashing. A single model captures
all these effects by building on the kinetic-based
Lattice Boltzmann Phase-Field (LBM-PF) method.
The interface motion is governed by the conservative
phase-field equation:
∂cΦ
∂t

+∇·(cΦu) = ∇·
[
M
(
∇cΦ−

4
ξ
cΦ(1−cΦ)ninter

)]
(25)

where the phase field cΦ represents the percentage
of the flow phase, the mobility M controls the
degree of interface splitting, ξ denotes the interface
width, and ninter corresponds to the interface normal.
This method is highly general and versatile and
can produce results comparable to industry-standard
CFD simulations.

In a similar vein, Li et al. [205] introduced a
kinetic approach to multiphase fluids. Their scheme
incorporates an accurate collision model and is able
to robustly capture intricate and visually-appealing
behaviors, such as the injection of gas into the liquid
(Fig. 34).

Fig. 34 Injection of gas into a glass of water. Reproduced with
permission from Ref. [205], c© ACM 2022.

8 Fine detail enhancement

Capturing high-frequency details of fluid surfaces,

such as vortices, waves, and turbulence, is key
to enhancing the realism or artistry of fluid
simulations. The use of higher-order advection
numerical methods or finer discretization can alleviate
the numerical dissipation problems inherent in fluid
simulation. However, this creates very high memory
and computation time costs. To cope with this,
in the last decade, several methods have been
designed to specifically add fine details to a coarse
fluid simulation. We group these into three classes:
reduced-dimensional simulation on the fluid surface
only (Section 8.1), dynamic methods to combat
numerical dissipation (Section 8.2), and data-driven
methods (Section 8.3).

8.1 Reduced-dimensional simulation on the
fluid surface only

These techniques decouple the surface simulation
from the volume simulation, allowing a secondary
model with high-resolution surface features to be
added to a coarse (thus fast to compute) volume fluid
model. We further split methods in this class into
embedding techniques, 2D water wave simulation,
and surface tracking and reconstruction as follows.

Embedding techniques. The Closest Point
Method (CPM) [206] is a numerical method for
solving PDEs on surfaces. Unlike 2D surface
parametrization, CPM typically uses a 3D Cartesian
grid to discretize narrow spatial bands around the
surface, which allows it to scale according to the
complexity of the surface rather than the volume.

Auer et al. [207] used CPM to simulate fluid
effects on static surfaces in real time. Auer and
Westermann [208] followed up with a semi-Lagrangian
CPM that alleviated some technical limitations of
previous applications of CPM to deformed surfaces.
Their method is unconditionally stable for surface
deformation. Kim et al. [209] used CPM to explicitly
perform high-resolution wave simulations on the
liquid surface. They used the iWave algorithm [210]
to produce more realistic water waves than the
traditional wave equation, which can be expressed as

∂2H

∂t2
= −g

√
−∇2H (26)

where H is the fluid height, g is the gravity constant,
and
√
−∇2 is a fractional Laplacian operator.

Mercier et al. [211] added a sub-grid wave model
to particle-based liquid simulations to enhance such
simulations with additional turbulence. Goldade et
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al. [212] worked to eliminate sub-grid errors in
underlying surfaces and reduced artifacts in narrow
bands around surfaces. Morgenroth et al. [213]
used CPM to efficiently compute high-resolution 2D
simulations on rough surfaces. Their method is similar
to that of Ref. [208] but adds mass and momentum
conservation and can produce interesting effects, such
as oil films on water surfaces and thermal convection
on a hemisphere.

2D water wave simulation. To reduce com-
putational complexity while retaining surface detail,
some researchers have investigated the simulation of
water waves on fluid surfaces. Water wave simulations
are independent of degrees of freedom, so high-
frequency visual detail can be created without
increasing the simulation resolution.

In response to the inability of the shallow water
equations (SWE) to capture motion details such as
wakes, Pan et al. [214] used a 2D discrete vortex
method to capture the wake behind a moving rigid
body. Their method requires only a small number
of wake particles and is sufficiently fast for real-
time applications. However, this method fails to
handle the complex wake patterns caused by vortex
stretching and tiling in 3D flow. Azencot et al. [215]
used a scalar vorticity function on 2D domains
to describe the vortex behavior of fluid surfaces,
greatly simplifying the analysis and simulation of
fluids. Later, Azencot et al. [216] simulated the
complex behavior between multiple waves, including
annihilation, recreation, splitting, and merging, by
solving the EPDiff [217] on arbitrary triangle meshes
using an explicit structure-preserving numerical
scheme.

A key challenge in wave simulation is handling the
coupling between waves and obstacles. Canabal et
al. [218] generated rich water waves using a dispersion
kernel as the spatially variant filter and further
simulated interactions between waves and static or
moving obstacles by modulating this dispersion kernel.
The dispersion relation under the Airy wave theory
[219] defines the propagation speed of each wave uc
as

uc =

√(
g

w
+ γ

ρ
w

)
tanh(wH) (27)

where w is the wave number, g is the gravitational
constant, ρ and γ are the density and surface tension
of the fluid, respectively, and H is the fluid height.

Jeschke and Wojtan [220] simulated the movement
and interaction of a large amount of waves by
a wavefront tracking algorithm with multivalued
function interpolation. Their method can model the
dispersion, refraction, reflection, and diffraction of
waves well, but it only handles scenes with static
obstacles. Later, they introduced the concept of
wave packets [221], which can handle the interaction
of water waves and moving objects. They used an
improved Lagrangian particle method to simulate
the diffusion of water waves to add more visual
detail. However, this method cannot be extended
to moving 3D fluid simulations of surfaces. The same
problem was addressed by Skrivan et al. [222], who
decoupled the wave resolution from the simulated
resolution using Lagrangian wave packets. This
method significantly increases the visible detail on
the fluid surface as a post-processing step.

Creating large open-water animations and adding
wave detail is a common requirement for a variety of
interactive and offline applications. Implementing
this requires visual quality vs. computational
resources to be carefully balanced. Nielsen et al. [223]
proposed a wave synthesis technique based on the
Fourier transform to enhance the details of wave
animation. However, wave–obstacle interactions are
difficult to incorporate into the spectral solver. Keeler
and Bridson [224] proposed an efficient surface-only
simulation of deep ocean waves and used a new
indirect boundary integral equation to deal with
wave–solid boundary interactions. The Method of
Fundamental Solutions (MFS) was also used to
generate realistic waves behind moving obstacles.
Schreck et al. [225] proposed a novel discretization for
MFS using wavelets and achieved naturally-looking
wave interactions with complex boundaries (Fig. 35).
Their method achieved impressive results on a
large-scale ocean scene. Jeschke et al. successively
developed two interactive systems for the simulation
of large ocean scenes that can handle detailed wave
features [226] and coupled interactions with complex
terrain [227], respectively. Recently, Schreck and
Wojtan [228] proposed a coupled method of 3D liquid
simulation and 2D wave propagation to simulate
infinitely large bodies of water and fine surface wave
detail. An empirically-driven error compensation
method was also used to remove coupling errors
from the simulation to achieve a seamless transition
between 2D and 3D.
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Fig. 35 Water waves can accurately interact with complex boundaries.
Reproduced with permission from Ref. [225], c© ACM 2019.

Surface tracking and reconstruction. Tracking
and reconstructing fluid surfaces is important for
generating realistic animation effects. This is difficult
to achieve due to the complex shapes and frequent
topological changes of fluids.

For Eulerian fluid simulations, robust handling
of surface triangle mesh splitting and merging can
remove visual artifacts to preserve important surface
features. Bojsen-Hansen et al. [229] proposed a
method for tracking the topological evolution of
surfaces that can solve the wave equations on lower-
resolution fluid surfaces to synthesize high-frequency
details. Later, Bojsen-Hansen and Wojtan [230]
presented a novel physics-based surface fairing
method that solved the physical and topological
artifacts arising from coupling high-resolution surface
trackers with low-resolution fluid simulations by
introducing an error metric and surface correction
force. Edwards and Bridson [231] presented a
new approach to adaptive fluid simulation. They
tracked explicit triangulated mesh surfaces and
used the p-adaptive Discontinuous Galerkin (DG)
method [232] within detailed cut-cells near the
surface. By using coarse-grid fluid simulations,
the treatment of dynamics is guaranteed to be
physically consistent while reducing computational
costs. Chentanez et al. [233] devised a grid-free surface
tracking method that deals with topological changes
by removing overlapping triangles and performing
effective triangulation of the generated holes. This
method can be used in both mesh-based and particle-
based simulations.

Inaccurate detection of free surface particles in
particle-based fluid simulations can lead to unrealistic
artifacts. Also, irregularly distributed particles can
make the reconstructed surface bumpy. To address

the fact that particles do not keep connectivity
information, Yu et al. [234] proposed periodically
projecting surface meshes to match implicit surfaces
defined by fluid particles. This method allows the
simulation of high-resolution surface waves without
the limitation of particle resolution. Later, Yu and
Turk [235] proposed a method for reconstructing
surfaces in particle-based fluid simulations. They
utilized a stretched anisotropic smooth kernel to
represent each simulated particle, resulting in a
greatly improved surface quality (Fig. 36). Sandim et
al. [236] proposed a fast free surface detection method
that only requires the positions of particles to identify
surface particles without using kernel functions
or normal vectors. This method is applicable to
cases with non-uniform particle distributions and
complex free surface deformations. Dagenais et
al. [237] used an explicit mesh projection method
based on signed distance fields to preserve surface
detail and introduced a new topology matching
operation to maintain consistency between explicit
surface and particle behavior.

8.2 Dynamical methods for reducing nume-
rical dissipation

The advective-projection method leads to numerical
dissipation, which results in kinetic energy decay
and suppression of motion, such as vortices and
turbulence. Bulk enhancement methods aim to
improve the whole fluid volume rather than only
its free surface. We further group such methods
that aim to improve system energy conservation and
detail preservation by reducing numerical dissipation
in vorticity confinement, vortex-based methods, and
various variants of dynamics solvers, as described
next.

Vorticity confinement methods. Such methods
are based on the principle of vorticity conservation,
which adds a vorticity control term to restrain
the diffusion of vortices, thus simulating fluid
dynamics problems, such as turbulence and vortex
streets, without dissipation. Fedkiw et al. [238] first

Fig. 36 Schematic diagram of isotropic and anisotropic particles. In
contrast to isotropic particle fluids (left), anisotropic particle fluids
(right) have a smoother surface.
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applied the vorticity confinement method to smoke
simulations by adding an additional force field to
maintain the airflow vorticity. Second-order vorticity
confinement (VC2) further improved this method by
ensuring momentum conservation. The confinement
term of VC2, Fconf , is given by

Fconf = −∆x∇× (αω − ζm) (28)
where ∆x is the grid size, α and ζ are the positive
and negative diffusion coefficients, respectively, ω
is the angular velocity, and m is the harmonic
mean of the local vorticity stencil. Lentine et
al. [239] improved the vorticity confinement model
by allocating global momentum to ensure momentum
conservation. Jang et al. [240] applied the multi-
level vorticity confinement method to simulate water
turbulence to capture large- and small-scale vortices
and complex flow details. He and Lau [241] proposed
adaptive adjustment of the positive diffusion term
to balance constraints, which broadened the stability
conditions of the VC2 method and made it capable
of generating highly turbulent flows. However, the
vorticity constraint method can only enhance existing
vortices or turbulence and may not be effective for
other types of flows, such as laminar flow. Moreover,
computational costs can increase significantly due
to additional constraints, especially for large-scale
complex fluid scenarios.

Vortex-based methods. The potential vorticity
field can be effectively modeled using vortex-based
methods. These methods simulate the vorticity of
the velocity field rather than the velocity field itself,
so this automatically guarantees a divergence-free
velocity field and removes numerical dissipation. Most
such methods are Lagrangian and model the vorticity
form ωv of the Navier–Stokes equations as

∂ωv

∂t
+ (u · ∇)ωv = (ωv · ∇)u + µ∇2ωv (29)

∇ · ωv = 0 (30)

This formulation represents the vorticity distribution
as a superposition of singularities.

Zhang et al. [242] proposed a new scheme named
IVOCK, which aims to solve the errors and energy
loss caused by the self-advection step through
compensating for vorticity error. However, this
method is only applicable to fluid simulation on
uniform grids. Liu et al. [243] extended this idea to
particle-based turbulent detail simulation (Fig. 37).
Recently, Xiong et al. [244] proposed a vortex segment

Fig. 37 Schematic diagram of the causes of vorticity dissipation and
methods of refinement.

method to simulate flows with strong anisotropic
vortical features. Compared with existing Lagrangian
vortex particle methods, this method can more vividly
model complex phenomena, such as the splitting and
reconnection of two vortex tubes or vortex shedding
near a solid boundary.

The main challenge of vortex methods is the
handling of fluid–solid coupling and creating vortices
at this coupling boundary. For this, Golas et al. [245]
proposed a combination of Eulerian simulation
and vortex singularity bases. By using Lagrangian
vortex elements inside the fluid and enforcing
boundary conditions in the Eulerian mesh, robust
interaction of free surfaces and non-rigid obstacles
can be achieved. Zhang et al. [246] used an FLIP
approach to solve the Navier–Stokes equation using
viscous particle strength exchange, handling the
momentum transformation at the solid boundary
effectively. Liao et al. [247] proposed a new
wall-bounded turbulent smoke simulation method,
which introduced particle–particle interactions to
traditional vortex filament mesh calculations to
accurately capture the vortices and thin turbulence
generated by smoke–obstacle interactions.

Variants of dynamics solvers. Additional
methods improve on current advection–projection
solvers or extend classical dynamical methods
to achieve detail enhancement. In the advection–
projection step, detail and energy preservation are
greatly improved by the introduction of detail
capture and shape correction techniques [248], the use
of energy-preserving reflection operators [249], and
feature mapping with convectors [250].
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Yang et al. [251] first introduced the Clebsch wave
function as a system scaling variable to evolve
Eulerian flow fields, which significantly improved the
ability to generate and sustain vorticity in simulations
of various gases and liquids. Later, to solve
the numerical instability of Clebsch’s method near
dynamic interfaces, Xiong et al. [252] proposed a new
wave function correction scheme and extrapolation
algorithm, which achieved detailed simulation of
various vortex structures on free surfaces. Recently,
Feng et al. [253] proposed a numerical method for
solving the Navier–Stokes equations based on the
pulse gauge transformation, which can generate rich
vortical details by treating the fluid pulse as an
auxiliary variable.

Liu et al. [254] and Li et al. [255] created two
turbulence simulation methods using an adaptive
multi-relaxation scheme and statistical mechanics,
respectively. Later, Lyu et al. [256] further improved
the boundary treatment of dynamic solids, enabling
the simulation of fluid–solid coupling between thin
structures and turbulent fluids (Fig. 38).

The micropolar fluid model is an extension of
the classical Navier–Stokes equation, which takes
into account not only the linear but also angular
velocities of the fluid particles, thus enhancing the
eddy and turbulence details of the fluid. Bender et
al. [257] first used the micropolar fluid model to
simulate the turbulence phenomenon of non-viscous
fluids. Subsequently, they post-processed the foam
phenomenon on this basis to significantly improve
the realism of the visual effect.

8.3 Data-driven methods for detail enhance-
ment

Texture synthesis. Geared toward the production

Fig. 38 Airflow over the delta wing of an aircraft showing a realistic
and complex vortex distribution. Reproduced with permission from
Ref. [256], c© ACM 2021.

of artistic effects based on fluid elements, texture
synthesis is the technique of choice for adding detail
to surfaces. As a post-processing method, texture
synthesis achieves detailed surface features through
patch or style transfer based on deep learning.

Patch-based texture synthesis maps image textures
or simulated features to the target flow field,
improving the appearance of the source simulation
by matching the target dataset features. Jamrǐska et
al. [258] used per-pixel best-fit search to achieve rich
visual effects through 2D input image appearance
transfer. However, this method is limited to image
space synthesis and is difficult to extend to 3D fluid
surfaces. Gagnon et al. [259] proposed a temporally
coherent patch-based texture synthesis method to
handle scenes with significant deformation and
topological changes. This approach aims to maintain
a Poisson disk distribution of patches on a free surface
to find the optimal parameter values and locations
of time-varying patches. For the ghosting problem of
overlapping patches in Ref. [259], Gagnon et al. [260]
followed up with a solution scheme based on patch
erosion. They used feature-aware erosion to remove
patch distortion textures to ensure realism of the
mapping.

In contrast to surface texture synthesis, deep
neural networks perform various stylization tasks
on volumetric data by extracting 2D image features.
Sato et al. [261] proposed a style transfer method
that migrates high-resolution turbulent details to low-
resolution flow fields, which speeds up the fine surface
detail simulation almost 30-fold. In addition, they
used an optimized texture synthesis method to solve
the problem of discontinuity at the patch boundary.
Kim et al. [262] first proposed a transport-based
neural style transfer algorithm that enables automatic
conversion of the semantic structure of 2D images
into 3D smoke simulations. The method achieves
complex artistic effects by optimizing the transport
of smoke to the desired stylized velocity field at each
time step. However, this method cannot handle the
transfer of color information. Therefore, the authors
further redefined the method in a Lagrangian setting
to ensure better temporal consistency and support
for color stylization [263]. Unlike stylization methods
that focus on fluid simulation shapes, Guo et al. [264]
proposed a Stylizing Kernel Prediction Network
(SKPN) aimed at stylizing physical color appearances.



834 X. Wang, Y. Xu, S. Liu, et al.

Fig. 39 Using TempoGAN to generate high-resolution smoke
volumes from low-resolution inputs. Reproduced with permission
from Ref. [265], c© ACM 2018.

The method can easily generate the user’s desired
color appearance without complex parameter tuning.

Upsampling methods generating super-
resolution. Generating super-resolution simulations
from low-resolution inputs is challenging. With
the popularity of machine learning techniques,
recovering fine details of fluids through super-
resolution reconstruction techniques or upsampling
methods has received increasing attention.

Ten years ago, Zhang and Ma [266] proposed a
spatio-temporal extrapolation technique that enables
high-resolution flow features on coarse grids. Chu
and Thuerey [267] enhanced the turbulence detail of
the smoke simulation on the coarse grid by using local
patch descriptors. Um et al. [268] proposed a deep
neural network to capture small-scale splashed droplet
details from low-resolution liquid simulations. Xie et
al. [265] used a conditional generative adversarial
network with a temporal discriminator to directly
generate advected quantities with highly detailed and
temporally coherent features for smoke simulation
(Fig. 39). CNNs have been used to create matching
models to correct the shape of low-resolution smoke
simulations [269] and estimate physical parameters to
guide the reconstruction of high-resolution velocity
fields [270]. Bai et al. [271] used a dictionary-based
neural network for fluid upsampling. However, the
choice of training set was somewhat limited, and
the spatial and temporal consistency of the results
could not be guaranteed. They next significantly
improved the prediction quality of the network by
adding filtering to the training process [272]. With
the development of Deep Neural Networks (DNNs) in
recent years, Roy et al. [273] proposed a DNN-based
method for improving the resolution of coarse particle
liquid simulations.

9 Fluid control

The wealth of methods for fluid simulation surveyed

so far leads to a key question: How do we control
such simulations? Although a method can technically
produce highly accurate results, its ultimate target
is to enable its users to steer the method toward
the desired results. We next group and discuss fluid
control methods in three classes using different control
perspectives: scenario editing (Section 9.1), artificial
effects (Section 9.2), and media-directed formation
(Section 9.3).
9.1 Scenario editing

Scenario editing steers the fluid by generating new
simulation scenarios based on existing simulation
results without losing the characteristics of the
original simulations (Fig. 40). On the positive side,
such control is technically the closest to how a
simulation works, so it can steer the fluid most
directly. On the negative side, this control requires
the end users’ advanced skills and understanding
of the underlying simulation and overall fluid flow
technicalities. We further divide scenario editing
into three sub-types based on the implementation
approach: target-guided editing, adjustable editing,
and camera-based editing.

Target-guided editing. Such methods modify
an existing fluid simulation to match a given
target, e.g., a higher resolution. Gregson et al. [274]
connected low-resolution smoke capture with its
velocity field. They treated the pressure projection
as a proximal operator and tracked the fluid by
estimating its velocity. Through advection, their
method obtained a high-resolution re-simulated
smoke. Forootaninia and Narain [275] successfully
guided high-resolution smoke flow by replacing its
low-frequency component with a given guiding field.
Generally, the guiding task is seen as an optimization
problem that minimizes errors. This optimization

Fig. 40 Schematic diagram of scenario editing based on changing
an existing simulation to achieve desired effects.
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problem was solved efficiently by using a fast primal-
dual method [276]. To achieve a more desirable
artistic effect, it is essential to guide smoke animation
in such a way that it aligns with one or multiple
target density keyframes provided by the artist. To
address this control problem, Pan and Manocha
[277] formulated it as a space–time optimization.
They employed an Alternating Direction Method of
Multipliers (ADMM) optimizer [278] to derive a dense
sequence that forces the smoke to meet the desired
target shape. Tang et al. [279] proposed an advanced
method that effectively addresses both the issues of
unconstrained optimization and high-dimensionality
of the parameter space simultaneously.

Adjustable editing. These methods aim to
control, edit, or resize fluid simulations during
implementation. Raveendran et al. [280] focused on
control with an emphasis on the liquid surface
and proposed a method for creating high-quality
fluid animations that provides the animator with
multiple control levels. Later, Raveendran et al. [92]
proposed a smooth blending method to interpolate
between two or more existing pre-computed liquid
simulations. With their method, one can generate
hundreds of different plausible results at interactive
rates with potential applications in games and virtual
reality. Sato et al. [281] proposed a smoke blending
method to help animators synthesize the desired
fluid animation. Velocities at the boundaries are
interpolated by minimizing an energy function. This
approach significantly reduces computational costs by
reusing existing flow data instead of creating realistic
fluid animations by numerical simulation. Fluid
carving is another way to edit fluid simulations. By
utilizing seam carving, efficient and effective resizing
of 4D fluid simulation data can be achieved [282].
Flynn et al. [283] proposed a lattice-guided seam
computation method that can overcome the limitation
of rectangular boundary and reduced calculation
time.

Camera-based editing. In the context of large-
scale scene simulation, due to computational cost
considerations, it is often necessary to perform
coarse-grained simulations of the entire world
and subsequently integrate finer-grained details
into the scene. To integrate two simulated fluid
scenes seamlessly, Bojsen-Hansen and Wojtan [284]
presented a fluid modification approach with “non-

reflecting” boundary handling. They extended the
simple Perfectly-Matched Layers (PMLs) method
to handle coupling inflow/outflow boundaries with
varying spatial and temporal conditions. The
boundary can be modified easily during the
simulation, and it handles the multi-resolution
combination. Stomanuykhin and Selle [285] intro-
duced the Flow-Animated Boundary (FAB) method,
in which the boundary can have a custom shape and
vary over time, with materials outside the boundary
dynamically removed using volume flux.

9.2 Artificial effects

One often needs to artificially edit and control
fluids to achieve specific artistic effects. Different
from scenario editing, artificial effects add new
characteristics to a simulation by artificially guiding
the formation of fluid shapes or movements during the
process (Fig. 41). Due to the complex motion of fluids,
keyframe animation, which involves controlling the
flow of fluids to match keyframes, is a commonly used
method for fluid control to reduce unrealistic effects
in simulations. However, manually designed frames
often lack volume preservation and exhibit excessive
smoothness, resulting in the loss of simulation details.

Pan et al. [286] proposed a local control method
instead of globally manipulating the entire fluid,
allowing users to edit and control fluid shapes in
specific regions using a brush-like tool. However,
controlling the simulation process between keyframes
is challenging. To address this issue, Lu et al. [287]
drew inspiration from skeletal animation techniques.
They introduced a method that controls fluid
motion by manipulating a point cloud with rigid
body motion and incompressible deformations,
subsequently performing skinning operations on the
point cloud. Similar to Ref. [287], Yan et al. [288]
applied conditional generative adversarial networks
to generate fluid splashes based on simple user-
defined sketch input (Fig. 42). Control particles with

Fig. 41 Schematic diagram of artificial effects: Artist-directed control
to achieve non-physical effects.
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Fig. 42 Example of artificial effects: Fluid splashed on a butterfly
shape generated by user sketching. Reproduced with permission from
Ref. [288], c© ACM 2020.

attractive forces provide an efficient way to reproduce
complex motion using pre-computed templates [289].
In this work, a set of shape-constraint particles were
seeded and a repulsion force field was computed to
control the shape of the final result.

9.3 Media-directed formation

Pure physics simulations often suffer from significant
computational time requirements, making them
impractical for real-world production applications.
Media-directed formation aims to set up simulation
scenarios based on real-life videos or images of the
fluid, reproducing real-world scenes (Fig. 43). These
methods estimate fluid properties such as volume,
density, motion, and style from visual data.

Okabe et al. [290] focused on reconstructing a
detailed 3D model of a fluid volume, such as smoke or
liquid, from sparse multi-view images. This involved
sparse reconstruction and appearance transfer to
capture the underlying structure and enhance the
visual fidelity of the reconstructed fluid volume.
Unlike Ref. [290], Eckert et al. [291] estimated both
the density and motion of a fluid from a single
view or sequence of images without the need for
multiple views. Nie et al. [292] proposed a fluid
reconstruction and editing model to generate particle-
based simulations based on monocular videos. Using
the SPH method with external forces, they could
obtain a simulated fluid volume under the guidance
of a pre-processed water surface.

Fig. 43 Schematic diagram of media-directed formation; images or
videos are used to reproduce real-world scenes.

10 Special fluids

10.1 Highly viscous fluids

Viscosity is an attribute that measures the ability of
a fluid to resist deformation at a given rate. With
viscosity, moving fluids will generate internal stress
responding to the deformation, which causes energy
dissipation of the fluids and affects their behavior.
For low-viscosity fluids like water, inertial forces are
dominant. For high-viscosity fluids like molasses and
chocolate sauce, viscosity leads to special phenomena
like bulking and coiling. Moreover, for different
kinds of fluids, the viscous characteristics can vary
significantly with their shear rate (see Fig. 44). The
simulation of high-viscosity fluids has attracted recent
interest in computer graphics.

Newtonian fluids. Following Newton’s viscosity
law, the viscosity of a Newtonian fluid (incompressible
and isotropic) can be expressed by a material
parameter µ called dynamic viscosity. Using this,
the inner viscous stress tensor Tvis is computed as

Tvis = 2µE (31)

Fig. 44 Diagrams illustrating the relationship between shear rate
and shear stress, as well as shear rate and viscosity, for various highly
viscous fluids, with design inspiration taken from Ref. [293]. (a) Plots
of shear stress versus shear rate for different highly viscous fluids.
(b) Plots of viscosity versus shear rate for different highly viscous
fluids.
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where E is a symmetric strain rate tensor that
describes the shear strain rate. This equation
indicates that the viscous stresses of Newtonian fluids
are linearly correlated to the local strain rate at every
point. Using the spatial derivatives of the velocity
field, the strain rate tensor E can be defined as

E = 1
2(∇u + (∇u)T) (32)

Substituting Eq. (31) and Eq. (32) into the viscosity
force field formulation fvis = ∇ · Tvis and adding the
incompressible condition ∇·u = 0, the viscosity force
field fvis can be computed as

fvis = µ∇2u (33)
This gives the viscosity term in the momentum
equation, corresponding to the viscosity term in the
form of kinematic viscosity in Eq. (6).

Discretizing the viscosity term is a challenging
problem for SPH-based methods. Takahashi et
al. [294] proposed an implicit Euler integration to
solve the viscosity term separately, using two SPH
first derivatives to discretize the strain tensor and
the divergence of the stress tensor, respectively. This
method supports a larger range of viscosity and time
step values, but a second-ring neighbor computation
is required, which impacts efficiency. Peer et al.
[295] decomposed the velocity gradient into three
tensors: spin rate, expansion rate, and shear rate. A
user-defined viscosity parameter modifies the shear
component, which describes the dissipation due to
viscosity. This leads to a target velocity gradient
that is used to reconstruct the final velocity field
with a first-order Taylor approximation. Because
the velocity gradient field is decomposed, the linear
system of the velocity field can be solved separately.
However, shear viscosity does physically affect the
rotation component in the velocity gradient because
of the tangential component in rotation. Peer et
al. [296] extended this method using a vorticity
diffusion scheme. The spin rate tensor in the target
velocity gradient is modified by solving a vorticity
diffusion process, which uses the viscosity parameter
in Ref. [295] such that vorticity damping is introduced
to achieve more realistic effects. Instead of using
the strain rate, Weiler et al. [297] introduced an
implicit viscosity solver based on the Laplacian of
the velocity field in Eq. (33). With a symmetric form
of the approximation discretization of the viscosity
term [298], an implicit linear system for a new velocity
field can be obtained.

The above-mentioned solvers separate the solving
of pressure and viscosity, which reduces accuracy
and cannot generate free surface details. Larinov et
al. [299] introduced a unified pressure–viscosity solver
based on implicit variational unsteady Stokes flow
problems for grid-based methods, where the inertial
force is considered to improve accuracy and achieve a
wider viscosity range (Fig. 45). Combining the semi-
implicit equation of correlation pressure (SIMPLE)
method with SPH, Liu et al. [300] used the result of
the pressure Poisson equation to improve the pressure
in the viscosity solver in an iterative process, which
converges to a globally optimal solution (Fig. 46).

Even with a stable solver, mimicking the viscosity
coefficient of the target fluid is essential to realistically
simulate highly viscous fluids. Takahashi and Lin [99]
proposed a framework to find the required viscosity
parameter from real videos of highly viscous fluids
by minimizing an objective function that evaluates
the difference between the silhouettes extracted from
video frames and those obtained from the simulation.

Non-Newtonian fluids. Such fluids do not follow
Newton’s viscosity law but rather show a non-
linear relation between shear stress and strain rate.
For example, the viscosity of a shear-thickening or
dilatant fluid (e.g., starch paste) increases when the

Fig. 45 Coiling and bulking effects of highly viscous fluids.
Reproduced with permission from Ref. [299], c© ACM 2017.

Fig. 46 Changing the viscosity to achieve the effect of different
viscous fluids, such as cream, jam, and chocolate sauce. Reproduced
with permission from Ref. [300], c© IEEE 2021.
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shear rate increases; the opposite happens for a shear-
thinning or pseudoplastic fluid (e.g., ketchup). Some
non-Newtonian fluids have properties of solids, such
as Bingham plastic fluids like toothpaste. Hence,
it is impossible to use a constant viscosity for
non-Newtonian fluids, and appropriate constitutive
models are required to simulate such fluids.

The Carreau–Yasuda model is a well-known method
to simulate non-Newtonian fluids by defining a shear-
rate-related viscosity µ as

µ = µ∞ + (µ0 − µ∞)[1 + (Rε̇)a](n−1)/a (34)
where µ0 is the zero-shear viscosity, µ∞ is the infinite
viscosity, ε̇ is the shear rate, R is the relaxation time
that scales the shear rate, n is a power law index,
and a models the transition smoothness between the
Newtonian plateau and power law regime. When
n = 1, this model becomes a Newtonian fluid with
dynamic viscosity µ0. For shear-thinning fluids (n <
1), as the strain rate increases, viscosity will vary
from µ0 to µ∞. For shear-thickening fluids (n > 1),
the viscosity increases as the shear rate increases.

Bingham plastic fluids are another typical non-
Newtonian fluid that behaves as a rigid body at low
stress but flow as a Newtonian viscous fluid once
the yield stress is exceeded. For many viscoplastic
fluids, the stress curve of the flowing part is nonlinear
when the shear rate exceeds a critical value. To
capture shear thickening/thinning, µ is modeled by
the Herschel–Bulkley model given by

µ(ε̇) =
{

kε̇n−1 + σ0
y ε̇
−1, ε̇ > ε̇0

µ0, ε̇ 6 ε̇0
(35)

where k is the consistency coefficient, σ0
y is the yield

stress, and ε̇0 is the critical shear rate. Similar to
Eq. (34), when n = 1, this model describes the
ideal Bingham plastic n > 1 models shear thickening
Bingham plastic, and n < 1 models shear thinning
Bingham plastic fluid.

Recent work used the above two models to simulate
non-Newtonian fluids. Zhu et al. [293] simulated
various co-dimensional features of different non-
Newtonian fluids, e.g., shear thinning and thickening
for Bingham plastics, and elastoplastics. The Carreau–
Yasuda model for non-Newtonian fluids was used on
a multi-level-set model; semi-implicit methods were
used for elasticity and variable viscosity. On the
rims of thin fluid sheets, viscosity had an improved
treatment to yield twisting motion. Yue et al. [301]
used the non-Newtonian Herschel–Bulkley model

to simulate dense foams composed of microscopic
bubbles using MPM. They also proposed a particle
resampling method for MPM and a tearing model to
simulate tearing/connectivity recovery by explicitly
handling the weakening regions detected from space.
Mixtures of non-Newtonian fluids were studied by
Nagasawa et al. [302]. Using the Herschel–Bulkley
model, a nonlinear blending model that satisfies the
five blending laws [303], along with mass conservation,
was proposed to capture non-Newtonian fluid
mixture behavior. For viscoelastoplastic materials,
a constraint-based method [304] extended position-
based dynamics to simulate elastoplastic and highly
viscous fluids by recasting a constitutive model of
viscoelasticity, which defined governing equations for
a conforming tensor.

10.2 Ferrofluids

The dynamic interactions of ferrofluids—liquid
media responsive to external magnetic fields—have
emerged as an area of considerable interest within
the computer graphics research community. These
magnetically active fluids, originally conceived by
NASA to facilitate fuel transfer in spacecraft
under microgravity conditions, derive their magnetic
properties from the incorporation of nanoscale
magnetic particles. Upon exposure to an external
magnetic field, these dispersed particles within the
ferrofluid polarize, thereby generating a distinct
internal magnetic field. This induced magnetic
field, working synergistically with the external one,
is pivotal to the magnetization process of the
ferrofluid, as shown in Fig. 47. The computer graphics
simulation of these captivating fluids, however, had
not received significant attention until the very recent
pioneering work of Michels et al., which directed
attention towards this specialized field [305]. We
reference several key insights from their contributions
in the subsequent discussion.

The interrelationships of these spatial magnetic
fields, both internally produced and externally
imposed, conform to the well-established principles
outlined in Maxwell’s equations:

∇ ·B = 0

∇×H = J + ∂D

∂t

(36)

where B is the magnetic flux density describing the
spatial magnetic field, H is the total magnetic field
intensity, J is the free current density, and D is the
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Fig. 47 Schematic representation of ferrofluids in interaction with a
magnetic field. (a) Superposition of a uniform vertical magnetic field
and the magnetic field originating from an ellipsoid magnetization.
There is a pronounced discontinuity in the magnetic field on the surface,
most significantly at the extremities where there is a sharp escalation
in the field strength. (b) A surface perturbation in the magnetized
ferrofluid, resulting in a localized concentration of magnetic induction
lines. The ferrofluid is drawn towards this bump due to a heightened
field strength, which consequently enhances the gradient, amplifying
the perturbation and leading to the formation of a spike.

electric displacement field. The ferrofluids further
discussed in this section comply with the model in
Eq. (37): {

B = µE0 (H + ME)

H = Hext + Hint
(37)

where µE0 is the vacuum permeability, ME is the
magnetization field describing the density of the
magnetic moment induced by the total magnetic
field, Hext is the external magnetic field, and Hint
is the internal magnetic field generated by the
ferrofluid. The magnetization field is a function
of the known external magnetic field and internal
magnetic field, and the current internal magnetic field
can be obtained by solving Poisson’s equation with
the assumptions of ∇ ×Hext = J and ∂D/∂t = 0
in Eq. (36), as the free current density J is not
influenced by Hint, and the electric displacement
produced by the flow of ferrofluid is not strong enough
to influence the system.

Under the effect of magnetic force, fluid particles
gather on tiny bumps near the surface where the
synthesized magnetic field is stronger and pull the
fluid to form spikes with attractive visuals. The spike

shapes are also influenced by gravity and surface
tension.

The past few years have witnessed the proposal
of various methods for simulating ferrofluids within
the field of computer graphics. Huang et al. [305]
presented the smooth magnets method, which
utilizes Lagrangian particles embedded with magnetic
nanoparticles to discretize fluids, as shown in
Fig. 48. This method was the first in the field of
computer graphics to address the first-principles-based
macroscopic simulation of ferrofluids. Their proposed
magnetization model, along with the magnetic field’s
Poisson equation, can be discretized using a smooth
kernel function akin to that used in SPH.

Approaching from a Lagrangian perspective,
the volumetric Kelvin force model is utilized
to characterize the magnetic force interactions
between particles. Standard Smoothed Particle
Hydrodynamics (SPH) computations employ particles,
enabling the enforcement of incompressibility and
surface tension within ferrofluids. However, the
implementation of a Kelvin force model engenders an
unanticipated outward-directed force on the surface,
prompting particles to exhibit levitation near this
surface. To address this phenomenon, Shao et
al. [306] introduced a modification, replacing the
Kelvin force model with a current loop model, thereby
creating an inward force. This alteration permitted
the integration of the magnetic model into Implicit
SPH models. Consequently, it enhanced system
stability and facilitated the use of larger time-step
increments.

From a Eulerian perspective, Ni et al. [307]
presented a level-set method for simulating various
magnetic bodies, including ferrofluids. The interplay
between the magnetic field and mechanical system
was addressed as an interfacial issue, and a weighted
average of the internal and external magnetic

Fig. 48 A ferrofluid climb up a steel helix under a strong external
upward magnetic field to create surface spikes. Reproduced with
permission from Ref. [305], c© Owner/Author 2019.
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fields was calculated to manage discontinuities. The
resulting magnetic force, coupled with surface tension,
was integrated into the Navier–Stokes equations to
direct the dynamics of the ferrofluids.

Advancing the research further, Huang and
Michels [308] introduced the concept of surface-
only ferrofluids, a singular study to date, tested
successfully against real ferrofluids. Unlike previous
approaches that incorporated magnetic force as
an additional term in the momentum equation,
their method infuses the discontinuity of magnetic
pressure into the Dirichlet boundary condition within
the pressure-projection of the Galerkin Boundary
Element Method (BEM)-based surface-only liquid
solver [183], specifically at the fluid–air interface. This
pioneering surface scheme enhances the Helmholtz
decomposition step in surface-only fluid solvers
via a more precise analytic integration process.
Additionally, it augments the accuracy of the pressure
projection step within surface-only fluid solvers
through a Galerkin BEM.

From the hybrid discretization perspective, Sun et
al. [309] utilized the MPM structure to further
simulate nonlinear magnetic substances in pursuit
of a more general magnetic description. They
used the physically-realistic Langevin’s nonlinear
magnetization model to bound the magnetic force
between magnetic micro elements without additional
numerical approximation. Following the concept of
MPM, this method uses particles to carry microscopic
magnetic quantities and solves Poisson’s equation of
the magnetic fields and Kelvin force on Cartesian
grids. Without integrating the surface tension, this
method cannot form stable spikes when simulating
ferrofluids. However, thanks to the versatility of
MPM, it can achieve a unified simulation and coupling
of different magnetic materials.

10.3 Thin films

Thin films and bubbles are fascinating phenomena
that have received special attention. A common
example is a soap bubble floating in air. Bubbles
produced from pure water are usually few, small, and
disappear quickly due to gravity, pressure, and strong
surface tension. To produce more, larger, and longer-
lasting bubbles, surfactants are added to the water,
e.g., fatty acids common in soaps. With surfactants
interspersed among water molecules, surface tension
is reduced so that larger bubbles appear. The tensile

deformation of the film will recover due to the
difference in surface tension working like elasticity—
the so-called Marangoni effect (Fig. 49). While
the Marangoni effect models the resilience given
by inconsistent surface tension, the Young–Laplace
equation describes the capillary pressure difference
∆p caused by surface tension between air and the
fluid as

∆p = −γ∇ · n (38)

where γ is the surface tension, and n is the surface
outward-pointing normal. Eq. (38) relates the
pressure difference to film shape.

Batty et al. [310] developed discrete viscous sheets
by building on (Lagrangian) elastic thin shells. This
reduced-dimensional technique describes the sheets
using triangular meshes with local thickness and
used the area-based surface tension derived from the
mid-surface of the (thin) shell. Wang et al. [311]
enhanced this to capture the surface tension flow
using moving-least-squares particles. The mixed
Lagrangian–Eulerian approach models not only
volumetric phenomena (3D) but also those arising
from thin shells (2D), filaments (1D), and even
individual points (0D). Surface tension (and other
forces) are handled in a unified way across all
(co)dimensions, including codimensional transitions.
This enables complex scenarios requiring careful
(surface) tension treatment, such as two water jets
colliding and forming a thin sheet, to be simulated.
Similarly to Ref. [311], the codimensional surface
tension flow of Zhu et al. [312] also relies on simplicial
complexes and transitions between elements of
different (co)dimensions, covering thin fluid sheets,
filaments, and surface tension effects.

Fig. 49 Schematic diagram of thin film. Surfactants gather on
both sides of the film. The tensile deformation yields an inconsistent
surfactant concentration, which leads to the surface tension gradient
shown in the figure. The film recovers its shape due to this gradient.
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Wang et al. [313] extended the work of Ref. [311]
to yield a thin-film SPH fluid model (Fig. 50). Films
are modeled as (surface) particles of codimension one
with local thickness estimates. This particle setup
interacts with a Lagrangian flow simulation using a
thin film shape description. This physically couples
aggressive surface deformations and strong tangential
flows. A process of transformation from codimension
one to codimension zero is used to simulate rupture.

Focusing on viscous thin films, Vantzos et al. [314]
proposed a numerical scheme to simulate the thin
film equation (modeled as a height function) on a
planar domain, including gravity and other forces.
They added a novel quadratic term to the governing
equation to stabilize flow while maintaining visual
fidelity. Their scheme is fully local; thus, it allows an
efficient GPU implementation that leads to real-time
simulations, such as that of honey flowing through
honeycombs.

Da et al. [315] studied soap films and foams whose
dynamics are captured by a Lagrangian vortex sheet
model with an emphasis on circulation. Surfaces are
represented using multi-material triangular meshes
supporting topological changes, and their tension
forces lead to a circulation update rule based on
mean curvature.

By Plateau’s laws, a steady-state film consists of
constant mean curvature parts and minimal surfaces
(vanishing mean curvature). Ishida et al. [316] used
this to model evolving foams via hyperbolic geometric
flow, a type of mean curvature flow (Fig. 51).

Most existing soap film models [315, 316] assume
that a film is infinitesimally thin and has no influence
on its evolution. Ishida et al. [317] extended such
methods to use film thickness, modeled on non-
manifold meshes, as a reduced degree of freedom
in the Navier–Stokes equations and derive the motion

Fig. 50 Film catenoid formed between two rings connected with
soap film. Reproduced with permission from Ref. [313], c© ACM 2021.

Fig. 51 Cluster of bubbles. After the top-left bubble bursts at frame
21, the geometry of the remaining bubbles gradually transitions to
the next equilibrium state, following Plateau’s laws. Reproduced with
permission from Ref. [316], c© ACM 2017.

equations. This provides an incompressible fluid solver
for 2.5D films.

In addition to dynamic effects, bubbles also produce
rich color effects due to the light interference caused
by uneven film thickness. Besides soap bubbles, other
fluid dynamics simulations are also possible on a thin
film for additional visual effects.

Two further methods focused on spherical
bubbles and the fluid around them. Hill and
Henderson [318] efficiently simulated fluids on a
spherical surface. They handled poles/singularities
of spherical coordinates, which would otherwise
render the motion equations complex if used naively
on the sphere. Their method also enables vector
and scalar controls for art-directed spherical flows.
Huang et al. [319] focused on the chemical–mechanical
simulation of soap film flows on spherical bubbles
using lubrication theory. Considering the Marangoni
effect and the capillary pressure difference, the stress
condition at the film surface is given by

Tc · n = (−γ∇ · n− pa)n +∇sγ (39)
where Tc is Cauchy’s stress tensor, n is the outward
unit normal vector at the surface, pa is the air
pressure, and ∇s is the 2D gradient operator. The
surface tension γ is defined by a linear model:

γ(Γ) = γ0 − γrΓ (40)
where γ0 is the surface tension of pure water, Γ is
the surfactant concentration, and γr is a constant
that describes the Marangoni elasticity of the film.
The surfactant concentration Γ is advected by an
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advection-diffusion equation. Huang et al.’s advection
scheme used spherical coordinates, using local frames
removed some artifacts of Ref. [318]. This last method
also proposed a physically accurate shader for real-
time rendering under environmental lighting.

Recently, Deng et al. [320] introduced MELP
(Moving Eulerian–Lagrange Particles), a novel mesh-
free method for incompressible fluids on moving foams
and thin films. Their approach, including multi-
MELP for interfacial flow, is able to model both
large-scale surface deformations and detailed flows.

11 Conclusions

Physics-based fluid simulation has been successful
in games, film, and animation. Current advances
enable high levels of control in production and have
shown increasing acceptance and potential in virtual
and augmented reality and other real-time graphics-
intensive applications. Recent advances in physics-
based fluid simulation methods rely on a complex mix
of computational efficiency, realism, controllability,
and ability to simulate diverse scenarios. This survey
presented an in-depth overview of these methods over
the last decade. We discussed the different goals in
this field, techniques proposed to address these goals,
and challenges of these techniques.

Our survey found seven major themes present in
approximately 300 fluid simulation papers from the
computer graphics community in the last decade:
advanced computational approaches, interaction
with materials, multiphase simulations, gas–liquid
interfaces, enhancing fine details, simulation control,
and special fluids. These themes formed the structure
of our survey to outline important developments
in this period and community. We also surveyed
existing implementations used to compare and assess
the quality of fluid simulations of various types; see
also the Appendix.

Several open challenges and directions for future
work have emerged while analyzing the above seven
themes, as outlined next.

Advanced computational approaches. Adaptive
solutions and GPU parallelization are ubiquitous
in computer graphics, but there is much room
for developing such new methods for physics-based
fluids. For instance, adaptivity usually makes an
implementation complex and difficult to apply to
GPU hardware. Spatial and temporal resolution

are often related aspects. In space discretization,
interactions between grids or particles at different
scales may cause instability and fidelity loss,
which can also create energy diffusion. Hence, in
addition to improving computational efficiency and
reducing overhead, proposing methods to reduce such
unwanted effects on a wide range of resolution scales is
important for future research. Using neural networks
to learn fluid dynamic behavior will be a hot research
topic in the future, as it has strong prospects for
real-time simulation and industrial control. However,
only summarizing physical laws from a large amount
of training data lacks underlying logical support. As
such, more attention is likely to be paid next to how to
inject physical prior knowledge into deep learning models.

Fluid coupling with multi-materials. The key
challenge for such simulations is to keep accuracy,
stability, and efficiency when coupling multiple
materials in one scenario at one time. Using different
solvers vs. materials limited the diversity of fluid
animation in the past. Current research has moved
from merging multiple solvers to developing monolithic
ones. Monolithic solvers can simulate different
materials and their interaction in a single framework,
which can eliminate stability issues. However, such
solvers currently demand high computational resources.
Thus, an open challenge is to mix hardware and
algorithm designs to better support such solvers.

Multiphase liquids. Future work can explore
many interesting aspects. One challenge is that
current methods for incompressible fluid simulation
do not handle high-density ratios well. Linear
systems become ill-conditioned under high-density
contrasts, and Jacobi-like solvers fail to converge.
Currently, many parameters of mixed-fluid are
manually adjusted. How to control parameters more
intuitively to achieve the desired visual results is
worth further study. Modeling temperature, chemical
reactions, elasticity blending, and optical blending
are equally important open aspects in this area.

Liquid–gas interaction. Challenges for liquid–
gas interaction include simulating the gas–liquid
phase transition and modeling its effect on
surface tension, supporting non-manifold thin film
structure, handling the transition between different
codimensionalities, producing realistic surface colors
for bubbles, reducing the simulation complexity while
preserving accuracy for liquid–air coupling, and
adding fine splash details that are not limited by
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particle size. Achieving richer gas–liquid interaction
phenomena while ensuring stability and efficiency is
a subject of ongoing and future long-term research.

Fine detail enhancement. Many existing detail
enhancement techniques can achieve detailed fluid
surfaces without using high-resolution discretization.
Realistic and fine-grained appearance representations
are the primary pursuit in this direction. Energy
conservation and detail preservation in accordance
with physical laws are also important goals. How
to improve the efficiency and scalability of detail
enhancement is an open challenge for the end goal
of providing real-time, interactive, and generalizable
tools for artists. Future work will likely use deep
learning techniques with innovative explorations in
style transfer, high-resolution reconstruction, and
detail generation.

Fluid control. Issues still exist in fluid control:
high memory and computation costs, sensitive
parameters, and manual feature labeling. A key
difficulty of control methods is to achieve precise
control. Achieving precise control, along with high
accuracy and efficient computation, is—regarding the
other topics studied in this survey—one of the grand
challenges of fluid simulation research.

Special fluids. The challenge of simulating fluids
with special forms lies in unifying governing equations
and other physical characteristics in a consolidated
system, which means integrating different solvers
together. The targeted formulation of a monolithic-
style solver is required to perform high-performance
simulation results.

We hope this survey helps to introduce the
theoretical concepts underpinning physics-based fluid
simulation and their practical implementation to
serve as a guide for researchers and practitioners
as well as facilitate future works to exploit on the
basis of recent developments.

Appendix Practical resources

For beginners, how to quickly build their own fluid
models and achieve convincing rendering results may
be of the most concern and interest. In this appendix,
we recommend several popular libraries, frameworks,
and other software tools to help beginners get their
foot in the door and get excited about learning. In
addition, these resources are also useful to benchmark
third-party fluid simulations.

A.1 Focus on simulation

OpenMaelstrom is an open-source library for the
simulation and rendering of fluids based on the SPH
method. It provides many pressure solvers (IISPH,
DFSPH, and Interlinked SPH for strong fluid–rigid
coupling) and boundary handling methods. Moreover,
it features spatial adaptation and full GPU support.

MantaFlow includes a wide range of Navier–Stokes
solver variants, and its parallelized C++ solver
core, Python scene definition interface, and plugin
system allow for quick prototyping and testing of new
algorithms. An advantage of MantaFlow is that it can
be easily integrated into Blender for end-to-end fluid
simulation and rendering. In addition, MantaFlow
can be coupled with TensorFlow, which helps
the development of traditional physical simulation
combined with deep learning techniques.

PhysIKA (Physics-based Interactive Kinematics
Architecture) is a node-based architecture targeted
at real-time simulation of versatile physical materials.
Currently, it supports the simulation of a wide
range of physical phenomena, including fluids, elastic
objects, and fractures. PhysIKA is highly modularized
and can also help the research community develop
novel algorithms.

PositionBasedDynamics supports the physically-
based simulation of mechanical effects for elastic
rods, deformable solids, rigid bodies, and
fluids. SPlisHSPlasH, by the same author as
PositionBasedDynamics, simulates complex fluid
effects based on SPH methods. It includes several
SPH solvers (including WCSPH, PCISPH, IISPH,
and DFSPH) and provides different methods to
simulate viscosity, surface tension, vorticity, and
multiphase fluid interaction.

PhysBAM is a multiphysics simulation library
capable of simulating rigid and deformable bodies,
compressible and incompressible fluids, coupled
solids and fluids, fracture, fire, smoke, hair, cloth,
muscles, and many other natural phenomena. The
PhysBAM library has a component called OpenGL
Viewer, which displays and analyzes 1D, 2D, and 3D
simulation data generated from PhysBAM projects
to facilitate the fast verification and debugging of
simulation methods.

SOFA is an open-source framework targeting
real-time simulation, with an emphasis on medical
simulation. It is based on approximately 15 years of
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research in physics simulation. SOFA is being used
in many different projects, such as solid mechanics
for the simulation of brain, ear, bones, heart, and
liver, as well as fluid dynamics for the simulation of
fat filling and blood flow in aneurysms.

FleX is a particle-based simulation technique for
real-time visual effects. It uses a unified particle
representation for all object types and enables new
effects in which different simulated substances can
interact with each other seamlessly. It supports the
simulation of rigid bodies, deformable objects, phase
transitions, fluids, gases, and other phenomena. The
goal of FleX is to use the power of GPUs to bring
the capabilities of offline applications to real-time
computer graphics.

Realflow is a professional commercial fluid
dynamics simulation software. It can be well
connected with other 3D software, such as Maya,
3ds MAX, and Cinema 4D. It is powerful enough
to simulate the fluid effects typically seen in high-
speed macro photography and to simulate viscous
liquids, such as cream, chocolate, oil, honey, and
many others. Moreover, it allows the simulation of
sand, snow, ice, and many other materials. It also
provides a highly-optimized CPU and GPU particle
solver where different types of materials are simulated
within the same framework and are able to interact
with each other.

A.2 Focus on modeling and rendering

Highly accurate fluid simulation results require highly
accurate rendering to convey the obtained simulation
details. End-to-end systems cover most aspects of a
graphics pipeline, including modeling, animation, and
actual rendering. Below are some commonly used
software for modeling and rendering.

Houdini is a flexible node-based workflow following
a dataflow computing model and allowing users to
reuse computing nodes or even entire (sub)networks.
Houdini has its own programming language, VEX,
to deal with geometry for free development. The
downside of Houdini is slow rendering.

Blender is an efficient 3D modeling, rendering,
and animation software. Its key advantages are
hundreds of open-source add-ons and extensive
Python API. Every tool is available for scripting
and customization.

Both MAYA and 3ds MAX are Autodesk products
that enable modeling, mapping, binding, animation,

rendering, and more. MAYA’s strength lies in
animation and its special effects, mostly used for
film and television animation; 3ds MAX has the
advantage of being easy to learn and model with.
Both Maya and 3ds MAX are highly professional,
accelerate workflows, and provide stunning visuals.

With the rise of the metaverse concept, the
NVIDIA Omniverse simulation platform is poised
to launch the next wave of digitalization. NVIDIA
Omniverse is an extensible open platform built for
virtual collaboration and physically accurate real-
time simulation. The advantage of Omniverse is
that it facilitates real-time collaboration between
users and applications, simplifying workflows by
updating, iterating, and changing in real time without
having to prepare data. It could change the way
designers around the world collaborate and become
the foundation of the metaverse.
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for real-time fluids. ACM Transactions on Graphics
Vol. 25, No. 3, 826–834, 2006.

[82] Stanton, M.; Sheng, Y.; Wicke, M.; Perazzi, F.; Yuen,
A.; Narasimhan, S.; Treuille, A. Non-polynomial
Galerkin projection on deforming meshes. ACM
Transactions on Graphics Vol. 32, No. 4, Article
No. 86, 2013.

[83] Kim, T.; Delaney, J. Subspace fluid re-simulation.
ACM Transactions on Graphics Vol. 32, No. 4, Article
No. 62, 2013.

[84] De Witt, T.; Lessig, C.; Fiume, E. Fluid simulation
using Laplacian eigenfunctions. ACM Transactions
on Graphics Vol. 31, No. 1, Article No. 10, 2012.

[85] Liu, B.; Mason, G.; Hodgson, J.; Tong, Y.; Desbrun,
M. Model-reduced variational fluid simulation. ACM
Transactions on Graphics Vol. 34, No. 6, Article No.
244, 2015.

[86] Zhai, X.; Hou, F.; Qin, H.; Hao, A. M. Inverse
modelling of incompressible gas flow in subspace.
Computer Graphics Forum Vol. 36, No. 6, 100–111,
2017.

[87] Cui, Q. D.; Sen, P.; Kim, T. Scalable Laplacian
eigenfluids. ACM Transactions on Graphics Vol. 37,
No. 4, Article No. 87, 2018.

[88] Cui, Q. D.; Langlois, T.; Sen, P.; Kim, T. Spiral-
spectral fluid simulation. ACM Transactions on
Graphics Vol. 40, No. 6, Article No. 202, 2021.

[89] Mercier, O.; Nowrouzezahrai, D. Local bases for
model-reduced smoke simulations. Computer Graphics
Forum Vol. 39, No. 2, 9–22, 2020.

[90] Panuelos, J.; Goldade, R.; Batty, C. Efficient unified
Stokes using a polynomial reduced fluid model.
In: Eurographics/ACM SIGGRAPH Symposium on
Computer Animation – Posters. Michels, D. L. Ed.
The Eurographics Association, 2020.
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