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Abstract 19 

In this paper, a nonlocal strain gradient meshfree model is proposed and developed to 20 

explore the bending and vibration behaviours of a novel trigonometric functionally 21 

graded nanoplates (TFGNPs). Based on the generalized layerwise higher-shear 22 

deformation theory (GL-HSDT) and the nonlocal strain gradient theory (NSGT), a 23 

weak form of governing equations for plate motion is derived, with consideration of a 24 

two-parameter variable elastic foundation. We employed a cosine function to describe 25 

the material gradation of TFGNPs along their thickness while the size-scale effect in 26 

nanoplates was effectively captured through the incorporation of NSGT. The radial 27 

point interpolation method, which possesses high continuum and Kronecker delta 28 

function properties, is employed to develop a meshfree formulation for the discrete 29 

solution of governing equations. By comparing the results of the study with those in 30 

existing literature, the correctness and high accuracy of present model is verified. It is 31 

shown that the material properties of TFGNPs possess high stability and continuous, 32 

smooth stress variations. Moreover, a comprehensive parametric study is conducted to 33 

determine the sensitivity of the bending and vibration responses of TFGNPs to 34 

boundary conditions, geometries, foundation parameters, nonlocal and strain gradient 35 

parameters. 36 

Keyword: Trigonometric functionally graded nanoplates; Nonlocal strain gradient 37 

theory; Size-dependent meshfree model; Radial point interpolation method; Variable 38 

elastic foundation. 39 



1. Introduction 40 

Composite structures are increasingly utilized in civil, mechanical, aerospace, and 41 

medical engineering due to their exceptional mechanical, chemical, and electronic 42 

properties [1,2]. Numerous studies have focused on the design, fabrication, and analysis 43 

of composite materials. He et al. [3] synthesized the LaFeO3/Fe3O4/C perovskite 44 

composites by one-step pyrolysis of 3d-4f metal-organic frameworks (MOFs) at a low 45 

temperature. Dong et al. [4] investigated the mechanical properties of rubberized 46 

concrete enhanced by basalt fiber-epoxy resin composite based on experimental testing 47 

and numerical simulations. For sandwich composite structures, Liu et al. [5] examined 48 

the structural response of the U-type corrugated core sandwich panel used in ship 49 

structures under loading, while Cen et al. [6] optimized the molding process of foam 50 

sandwich wing structures. Further, a recognition and optimisation method of impact 51 

deformation patterns based on point cloud and deep clustering was applied to thin-52 

walled tubes [7]. Functionally graded nanomaterials (FGMs) are a new type of non-53 

homogeneous composites with continuous smooth variation of material properties 54 

along the thickness, which are promising for engineering applications. Many efforts 55 

have been devoted to the static, vibration and buckling analysis of FG structures, such 56 

as shells [8], plates [9], beams [10], etc. Among all, FG sandwich nanoplates have 57 

gained popularity as structural components of significant importance. 58 

In recent decades, a variety of analytical theories for laminated composites and 59 

sandwich plates have been developed, mainly including the equivalent single-layer 60 

model and layerwise model [11,12]. Classical laminate plate theory [13] is 61 

characterized by neglecting transverse shear deformation effect and obtains poor results 62 

when employed to calculate medium and thick plates. First-order shear deformation 63 

theory [14] is applicable to both moderately thick and thin plates, but the shear 64 

correction factor causes significant effect on the accuracy of its solution. Higher-order 65 

shear deformation theory [15,16] has a transverse shear function that describes the 66 

nonlinear variation of the transverse shear stress along the plate thickness, providing 67 

more accurate results for displacement and transverse shear stress. Most of these 68 

deformation theories use the equivalent single-layer model. However, owing to the 69 

variations in material properties between different laminates, equivalent single-layer 70 

model fails to accurately represent the transverse shear stress between the layers. 71 

Therefore, layerwise theories that impose independent degrees of freedom for each 72 

layer were developed. Notably, the generalized layerwise model by Reddy [17] and the 73 

simple linear layerwise theory by Ferreiral [18] have received much attention. Several 74 

other ‘r’  layerwise or zigzag models have been presented by Mau [19], Di Sciuva [20] 75 

and Toledano et al. [21]. Particularly, for the nonlinear layerwise theory, Thai et al. [22] 76 

proposed a generalized layerwise higher-order shear deformation theory (GL-HSDT), 77 

which ensures continuity of the interface layer displacement field and the transverse 78 

shear stress field. Compared with other layerwise theories, Thai’s theory avoids 79 

constant interlayer transverse stresses and retains a minimum number of variables. 80 

Subsequently, Phan-Dao [23] applied this theory in free vibration, static, and buckling 81 

analyses of composite sandwich plates, and the results showed that it could produce 82 

higher accuracy of interlayer shear stresses. 83 



For micro and nanostructures, the behaviours of materials at nanoscale level are 84 

very different from those at the macroscale level. Therefore, improved continuum 85 

mechanics models are needed to account for small-scale effects. For instance, Eringen 86 

[24] proposed a nonlocal elasticity theory for nanostructures that considers higher-order 87 

derivatives of stresses. Mindlin [25] and Aifantis [26] developed a strain gradient theory 88 

by introducing higher order derivatives of strains into the elasticity theory. Additionally, 89 

various theoretical models, including modified coupled stress theory [27] and modified 90 

strain gradient theory [28,29], were employed to simulate the computation of micro and 91 

nanostructures. Phung-Van et al. investigated the nonlinear behaviour of magneto-92 

electro-elastic porous nanoplates [30] and FG piezoelectric porous nanoplates [31] by 93 

combining nonlocal Eringen’s theory and isogeometric analysis. Nguyen et al. [32] 94 

analyzed buckling, bending and free vibration behaviours of metal foam microbeams 95 

based on the modified strain gradient theory. Nevertheless, all of these theories only 96 

consider the nonlocal effects or strain gradient effects individually. In order to integrate 97 

these two effects, Lim et al. [33] proposed the nonlocal strain gradient theory (NSGT).  98 

Thai et al. established an isogeometric analysis model integrating the NSGT and 99 

NURBS basis functions, which was utilized to examined the bending [34], free 100 

vibration [35] and nonlinear dynamic behaviour [36] of nanoplates. Also, they 101 

developed a size-dependent meshfree method based on NSGT for the comparative 102 

study of mechanical behaviour of FG sandwich nanoplates [37]. Recently, Phung-Van 103 

et al. [38,39] applied NSGT to examined the small-scale effect and nonlinear effect in 104 

FG triply periodic minimal surface nanoplates. Additionally, they investigated the size-105 

dependent behaviour of honeycomb sandwich nanoplates [40] and FG graphene 106 

platelet-reinforced composites plates [41]. Based on NSGT, Nguyen-Xuan et al. [42,43] 107 

analysed the effects of parameters such as power index, geometrical parameters, 108 

nonlocal and strain gradients on the magneto-electro-elastic FG nanoplates. Elastic 109 

foundations have a wide range of engineering applications including road bridges, 110 

skyscrapers and pipeline networks [44,45]. Daikh et al. [46] analysed the static bending 111 

of FG beams and plates on the Winkler elastic foundation using a quasi-3D shear 112 

deformation theory. Sobhy [47] studied the bending, buckling and vibration response 113 

of FG nonlocal sandwiched nanoplates subject to Winkler's two-parameter elastomeric 114 

foundations, which utilized the finite element method.  115 

It can be observed that the primary approaches for solving nonlocal strain gradient 116 

nanostructures include analytical and numerical methods. Analytical solution provides 117 

accurate results, but it is confined to simple problems. In contrast to finite element 118 

method and isogeometric analysis method, meshfree methods have no mesh constraints 119 

and enable a computation of displacement and stress at arbitrary points in physical 120 

space [48,49]. Moreover, the approximation function of meshfree method is commonly 121 

high-order continuous, which satisfies the higher-order derivative requirement of 122 

NSGT. In recent years, meshfree method has been successfully applied to a variety of 123 

engineering problems, examples of which include deformation of nanomaterials [50], 124 

static and vibration analysis of nano beams/plates/shells [51–53], biomechanical 125 

problems [54,55], etc. Particularly, the radial point interpolation method (RPIM) may 126 

be convenient as its Kronecker delta function property, which permits the imposition of 127 



essential boundary conditions in the same way as in conventional finite element method.  128 

A review of the above literature shows that researches on composite sandwich 129 

nanoplates mainly focus on how to develop a suitable theoretical model to analyse their 130 

mechanical properties. These explorations involve the application of laminate theory, 131 

the consideration of size-scale effects and the selection of numerical methods. However, 132 

another often overlooked issue is that in conventional FG sandwich nanoplates, the 133 

significant divergence in stiffness between ceramics and metals leads to abrupt 134 

alterations in physical characteristics (e.g., stress-strain) at the interface of the core and 135 

surface layers, which may trigger interfacial debonding. Addressing this, the research 136 

innovatively proposes a novel trigonometric functionally graded nanoplates (TFGNPs). 137 

This design achieves a perfect mixture of ceramics and metals as well as a smooth and 138 

continuous material transitions, effectively mitigating the problem of stress 139 

discontinuities. Furthermore, we combined the GL-HSDT, NSGT and RPIM meshfree 140 

method for the first time to develop a size-dependent model that takes into account the 141 

effects of the variable elasticity foundations. The model describes the nonlocal effect 142 

and strain gradient effect of nanoscale plates by using two relevant scale parameters. 143 

While the model reverts to a classical elasticity theory model when both two scale 144 

parameters are set to zero. Thus, the developed model provides a high precision tool for 145 

a comprehensive observation of the complex mechanical behaviours of nanoplates from 146 

the macroscopic to microscopic level. In this paper, the effects of boundary conditions, 147 

geometry, foundation parameters, nonlocal and strain gradient parameters on TFGNPs 148 

are discussed in detail. Numerical results not only verify the correctness of the model, 149 

but also demonstrate the potential of novel TFGNPs for engineering applications, 150 

highlighting the dual innovation of this research. 151 

2. Theoretical model 152 

2.1 Functionally graded nanoplates 153 

Consider rectangular functionally graded nanoplates of thickness ℎ, length 𝑎 and 154 

width  𝑏, which are located on the elastic foundation, as shown in Fig. 1. The origin of 155 

coordinate system is situated at the corner point of the midplane, and the edges of plates 156 

are parallel to the x-axes and y-axes. Fig. 1(a) is conventional functionally graded 157 

sandwich nanoplates (FGSNPs), which consists of two functionally graded surface 158 

layers and a ceramic core layer. Fig. 1(b) are TFGNPs proposed in this study, including 159 

the trigonometric functionally graded nanoplate of type A "TFGNP-A" and the 160 

trigonometric functionally graded nanoplate of type B "TFGNP-B". The ceramic 161 

volume rate of each layer of TFGNPs is represented by a unified cosine function, 162 

whereas TFGNP-A and TFGNP-B are distinguished by their use of different cosine 163 

functions. The vertical coordinates of plates’ bottom, two interfaces, and top are 164 

denoted by ℎ0, ℎ1, ℎ2, ℎ3 . In this paper, unless specified, all the functionally graded 165 

plates use a 1-1-1 sandwich configuration, that is, the top, core and bottom layers of 166 

plates are of equal thickness. 167 



 168 

Fig. 1 The geometric configuration of functionally graded plates: (a) FGSNPs; (b) TFGNPs. 169 

For the FGSNPs, the ceramic volume rate of each layer 𝑉(𝑘)(𝑧) is expressed by 170 

different power-law functions as [56], 171 
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For the TFGNP-A, the ceramic volume rate of each layer 𝑉(𝑘)(𝑧) is expressed by 173 

the unified cosine function as, 174 
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For the TFGNP-B, the ceramic volume rate of each layer 𝑉(𝑘)(𝑧) is represented 176 

by the unified cosine function as,  177 
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The variation of volume rate for ceramics along the thickness distribution is 179 

plotted in Figs. 2 and 3 for FGSNPs, TFGNP-A and TFGNP-B, respectively. 180 
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 181 

Fig. 2 The variation of the volume fraction for ceramics along the thickness of FGSNPs with different power-law 182 

exponent 𝑝. 183 

 184 

Fig. 3 The variation of the volume fraction for ceramics along the thickness of TFGNPs with different parameter 𝑁: 185 

(a)TFGNP-A; (b)TFGNP-B. 186 

For a better representation of the differences between the proposed TFGNPs and 187 

the conventional FGSNPs, Fig. 4 displays the percentage (%) of ceramic composition 188 

in TFGNPs as well as FGSNPs with various sandwich structures. Here, the total 189 

ceramic content in FGSNPs varies with the power-law exponent 𝑝  and sandwich 190 

configuration. Nevertheless, the TFGNPs have 50% ceramics while the remaining 50% 191 

is metal, regardless of the parameter 𝑁 and sandwich configuration. Moreover, for the 192 

TFGNP-A and TFGNP-B, the percentage of ceramic constituent in each layer is shown 193 

in Fig. 5. Although the total percentage of ceramic components in TFGNPs remains 194 

constant, the ceramic content of each layer changes as 𝑁 varies. 195 



 196 

Fig. 4 Percentage of total ceramic constituent in TFGNP-A, TFGNP-B and FGSNPs with different sandwich 197 

configurations. 198 

 199 

Fig. 5 Percentage of ceramic constituent in each layer of TFGNPs: (a)TFGNP-A; (b)TFGNP-B. 200 

According to a mixture rule [46], the effective material properties of the k-th layer 201 

can be calculated as, 202 

                                    ( )( ) ( )

m c m( ) ( )k kP z P P P V z= + −                                  (4) 203 

where P represents the effective material properties such as Young's modulus E, density 204 

ρ and Poisson's ratio ν. The subscripts ‘m’ and ‘c’ denote the metal and ceramic 205 

compositions, respectively. 206 

2.2 Nonlocal strain gradient theory 207 

Taking into account the effects of both the nonlocal stress field and the strain 208 

gradient stress field, the general nonlocal stress tensor can be expressed as [37], 209 
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where 𝑡𝑖𝑗
(0)
 and 𝑡𝑖𝑗

(1)
 are linear and higher-order nonlocal stress tensors, respectively; 𝐱 213 

is arbitrary point in 𝑉; 𝛼(|𝐱′ − 𝐱|) is a nonlocal kernel function; 𝑙 is the material length 214 

dimension parameter; and 𝜎𝑖𝑗 is a local stress tensor satisfying the following conditions, 215 
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1
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where 𝐶𝑖𝑗𝑘𝑙  is the modulus of elasticity coefficient; 𝜀𝑘𝑙  and 𝑢𝑘  are the strain and 217 

displacement components, respectively. 218 

Using a special Helmholtz averaging kernel [34], the nonlocal instanton relation 219 

in Eq. (6) can be rewritten as, 220 
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where 𝐿 = (1 − 𝜇𝛻2)  is a linear differential operator, 𝛻2 = 𝜕2/𝜕𝑥2 + 𝜕2/𝜕𝑦2  is a 222 

Laplace operator;  𝜆 = 𝑙2 is a strain gradient parameter used to represent the effect of 223 

the strain gradient field; and 𝜇 is a nonlocal parameter determined by the lattice spacing 224 

between individual atoms and the grain size, which describes the interactions between 225 

particles within the material. 226 

Similarly, Eq. (5) can be rewritten as, 227 
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The equation of motion for nonlocal linear elastic solids is expressed as [57], 229 

 ,  in  ij j i it f u V+ =  (10) 230 
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where 𝑡𝑖𝑗 , 𝑓𝑖 , g𝑖, 𝑢̈𝑖 , 𝜌, 𝑛𝑖 , 𝑉  and Γ are the general nonlocal stress vector, force vector, 232 

traction vector, acceleration vector, mass density, normal vector, volume and boundary, 233 

respectively. 234 

According to Eq. (10), the expression for the balance equation can be obtained by 235 

substituting Eq. (8) into Eq. (9), 236 
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Applying the principle of virtual work, the integral form of the balance equation 238 

is expressed as, 239 
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in which 𝛿𝑢𝑖 is the virtual displacement. 241 

Applying the partial integral and the scattering theorem to the first and second 242 

parts of Eq. (13), respectively, yields, 243 
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in which 𝛤𝑔is Neumann boundary condition. 246 

Substituting Eqs. (14) and (15) into Eq. (13), the final integral form of the balance 247 

equation is described as, 248 
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By imposing symmetry conditions, the virtual displacement vector can be written 250 

as, 251 

 ( ), , ,
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In this study, the traction on the Neumann boundary is neglected [34]. Substituting 253 

Eq. (17) into Eq. (16), the final integral form of the balance equation is formulated as, 254 
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2.3 A generalized layerwise higher-shear deformation theory 256 

2.3.1 Displacements, strains and stress in the plates 257 

For a multi-layer laminate structure as shown in Fig.1, according to the generalized 258 

layerwise higher order shear deformation theory presented by Thai et al. [22], the 259 

displacement field at arbitrary point of the 𝑘-th layer can be expressed as, 260 
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where  𝑢(𝑘) and 𝑣(𝑘) are the in-plane displacements at any point  (𝑥, 𝑦, 𝑧) of the 𝑘-th 262 

layer; 𝑢0 , 𝑣0  and 𝑤0  are the displacement components of the mid-plane along the 263 

𝑥, 𝑦, 𝑧 directions; 𝜙𝑥 and 𝜙𝑦 are the rotational inertia of the mid-plane about 𝑦-axis and 264 

𝑥-axis, respectively. 265 

Imposing continuity conditions within the interfacial surfaces of the layers yields 266 

the parameters 𝐴(𝑘)and𝐶(𝑘), 267 
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in which the parameters  𝐵(𝑘)and  𝐷(𝑘)are determined later. 269 

The displacement field of Eq. (19) can be written in compact form as follows, 270 
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In classical lamination theory, the shear stress does not satisfy the condition of 274 

vanishing on the upper and lower surfaces of the plate, so a nonlinear displacement 275 

term is introduced in Eq. (19) to solve this problem by a shape function 𝑓(𝑧) in the 276 

thickness direction of the laminate. In this study,  𝑓(𝑧) = 𝑧 − 4𝑧3/(3ℎ
2) proposed by 277 

Reddy [58] is adopted. 278 

The displacement-strain relations for layer 𝑘 can be written as, 279 
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 (24) 282 

By neglecting  𝜎𝑧
(𝑘)

= 𝜎3
(𝑘)
 for each orthogonal layer in the laminate structure, the 283 

constitutive equation for the 𝑘-th orthogonal layer of laminate can be expressed as, 284 
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 (25) 285 



where 𝑄𝑖𝑗
(𝑘)
 is calculated as follows, 286 
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in which 𝐸1
(𝑘)

(𝑧)  and 𝐸2
(𝑘)

(𝑧)  are Young's moduli varying along the thickness, 𝐺12
(𝑘)
 , 288 

𝐺23
(𝑘)
 and 𝐺13

(𝑘)
 are shear moduli; 𝜈12

(𝑘)
 and 𝜈21

(𝑘)
 are Poisson's ratios. Subscripts 1, 2 and 289 

3 correspond to the 𝑥, 𝑦 and 𝑧 directions. The FG nanoplates in this study consist of 290 

isotropic elastic layers that can be written as, 291 
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 (27) 292 

According to Eqs. (19) and (25), the transverse shear stress in each layer can be 293 

rewritten as, 294 
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Applying the continuity condition to the transverse shear stresses at the interfaces 296 

of layers yields, 297 
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Eq. (29) can be rewritten as, 299 
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Note that the parameters for the first layer of symmetric laminates are defined by, 301 
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2.3.2 Weak form of the governing equation 303 



Considering Winkler elastic foundation and uniform sinusoidal transverse loads, 304 

the governing equations for static bending of the k-th layer plate are obtained by 305 

substituting Eqs. (23) - (25) into Eq. (18) as follows, 306 
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with 309 
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 (33) 311 

Similarly, the governing equation for free vibration can be expressed as, 312 
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with 315 
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in which 𝐈3×3 is 3 × 3 unit matrix. 317 

In Eqs. (32) and (34), 𝑘w is Winkler foundation stiffness coefficient. In this paper, 318 

ignoring the effect of shear layer, two parameters 𝜅 and 𝜉 are considered for Winkler 319 

foundations as follows, 320 
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Additionally, the dimensionless foundation parameter  is defined as, 322 

4

w w

a
K k

D
=                                                         (37) 323 

in which 𝐷 =
ℎ

3𝐸c

12(1−𝜈2)
. 324 

3. Numerical solution of RPIM 325 

3.1 RPIM shape function 326 

 Let us consider a support domain 𝛺𝑠 that has a set of arbitrarily distributed nodes 327 

as shown in Fig 6. The approximation function 𝑢ℎ(𝒙) can be estimated for all node 328 

values within the support domain based on radial point interpolation method (RPIM) 329 

by using radial basis function 𝑅𝑖(𝒙) and polynomial basis function 𝑝𝑗(𝒙) [59]. Nodal 330 

value of approximate function evaluated at the node 𝒙𝑖  inside support domain is 331 

assumed to be 𝑢𝑖. 332 

 333 

Fig. 6 Supporting domain and supporting nodes of the meshfree method. 334 
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where 𝒑(𝒙) is a polynomial basis function that can be written as, 336 

  
T
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1 2

p x  (39) 337 

For the two-dimensional problem, the second-order polynomial basis functions are 338 

taken as, 339 
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T

2 2( )  1          x y x xy y =  p x  (40) 340 

therefore, we have 𝑚 = 6. And the radial basis functions 𝑹(𝒙) is defined as, 341 

  
T

n( ) ( ), ( ), , ( )R x R x R x=
1 2

R x  (41) 342 

where the number of terms 𝑛 is the number of support nodes in supporting domain 𝛺𝑠. 343 

There are various commonly used radial basis functions (RBF), in this paper 344 

Multi-quadratic (M ) radial basis function is adopted and its expression is as follows, 345 

 2 2( ) ( )iR x r h


 = +   (42) 346 

where 𝑟 denotes the distance function, and for a two-dimension problem we have 𝑟 =347 

√(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2 ; ℎ  is the average node spacing; 𝛼  and 𝛽  are the shape 348 

coefficients, and they are set to 1 and 1.03 respectively according to [60]. 349 

The following generic function is constructed from the set of dispersed nodes 350 

{𝑥𝑖}𝑖=1
𝑛 (∀𝑥𝑖 ∈ Ωs) on the local support domain Ωs at the computation point 𝒙, 351 
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Let 𝐽1 = 0,  𝐽2 = 0, Eq. (43) can be changed to the following matrix form: 354 
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 (45) 355 

where 𝑼̂𝑠 is the vector of all the support node displacements; 𝑹𝑛 and 𝑷𝑚 are express 356 

as: 357 
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Solving equation (45) yields, 360 
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thus, Eq. (38) can be rewritten as, 363 
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in which the shape function is defined, 365 
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The first two orders of derivatives of the form function in Eq. (51) are expressed 367 

as, 368 

 

T T

, , ,

T T

, , ,

( ) ( ) ( )

( ) ( ) ( )

i i a i b

ij ij a ij b





Φ x = R x G + p x G

Φ x = R x G + p x G
 (52) 369 

Another important issue that must be considered in meshfree methods is the 370 

selection of the radius of the support domain. As shown in Fig 6, for a computational 371 

node 𝒙Q, the radius 𝑑𝑚 of its support domain is determined by [59], 372 

 m c cd d=  (53) 373 

where 𝑑𝑐 is a characteristic length related to the nodal spacing while 𝛼𝑐 denotes the 374 

scale factor. According to conclusions from the literature [61], the optimal value of 𝛼𝑐 375 

is 2.4. 376 

3.2 NSGT formulation based on RPIM 377 

According to the RPIM shape function, the displacement field can be expressed 378 

as, 379 

 

0

0

0

h

1

1

( , ) 0 0 0 0 0 0

0 ( , ) 0 0 0 0 0

0 0 ( , ) 0 0 0 0

( , ) 0 0 0 ( , ) 0 0 0

0 0 0 0 ( , ) 0 0

0 0 0 0 0 ( , ) 0

0 0 0 0 0 0 ( , )

( , )

ii

ii

ii
n

xii

i

yii

xii

yii

n

i i

i

ux y

vx y

wx y

x y x y

x y

x y

x y

x y















=

=

=

=

  
  
  
  
  
  
  
  
  
  

   





u

q380 



 (54) 381 

where 𝒒𝑖 is a displacement vector containing 𝑛 support nodes and 𝜓𝑥𝑖 = 𝜕𝑤0/𝜕𝑥，  382 

𝜓𝑦𝑖 = 𝜕𝑤0/𝜕𝑦 . 383 

Substituting Eq. (54) into Eq. (24), the bending and shear strains can be expressed 384 

in compact form as, 385 
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where 387 
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Similarly, substituting Eq. (54) into Eq. (22), the displacement component is 391 

expressed as, 392 

 

0

0

1

1

1 12

2

in n

i i i i

i i

i

= =

  
  

= = =   
   
   

 

u

u u q q

u



 



 (57) 393 

where 394 
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 (58) 396 

Substituting Eqs. (55) and (57) into Eqs. (32) and (34), respectively, the discrete 397 

forms of the governing equations for bending and free vibration of the plate can be 398 

expressed as, 399 
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 ( )2− = 0K M q  (60) 401 

where 𝑲 , 𝑴 and 𝒇 denote the global stiffness matrix, mass matrix and force vector, 402 

respectively; 𝜔 is intrinsic frequency. 𝑲m is the stiffness matrix for the deformation of 403 

the functional gradient plate, and 𝑲wis the stiffness matrix for the elastic foundation, 404 

which are computed as, respectively, 405 
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with 408 

  w 0 0 0 0 0 0i=B  (63) 409 

General mass matrix is computed as: 410 
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Force vector is computed as: 412 
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To compute the integrals, boundary conditions are imposed on governing 414 

equations. Owing to the Kronecker delta function property of RPIM, the essential 415 

boundary conditions in present model are imposed easily and directly as in standard 416 



finite element method. In this paper, the boundary condition of simple four-sided 417 

support (SSSS) is taken as the main object of study. In contrast, the boundary condition 418 

of four-sided solid support (CCCC) and two-side free two-sided solid support (SCSC 419 

or CSCS) are taken as an additional object of study, as shown in Table 1. 420 

Table 1. The boundary conditions for plates. 421 

Type Conditions Values 

SSSS 
At  𝑦 = 0, 𝑏  (S) 
At  𝑥 = 0, 𝑎  (S) 

𝑢 = 𝑤0 = 𝜓𝑥 = 𝜙𝑥 = 0 

𝑣 = 𝑤0 = 𝜓𝑦 = 𝜙𝑦 = 0 

CCCC At all edges  (C) 𝑢 = 𝑣 = 𝑤0 = 𝜓𝑥 = 𝜓𝑦 = 𝜙𝑥 = 𝜙𝑦 = 0 

SCSC 
At  𝑦 = 0, 𝑏  (C) 
At  𝑥 = 0, 𝑎  (S) 

𝑢 = 𝑣 = 𝑤0 = 𝜓𝑥 = 𝜓𝑦 = 𝜙𝑥 = 𝜙𝑦 = 0 

𝑣 = 𝑤0 = 𝜓𝑦 = 𝜙𝑦 = 0 

CSCS 
At  𝑦 = 0, 𝑏  (S) 
At  𝑥 = 0, 𝑎  (C) 

𝑢 = 𝑤0 = 𝜓𝑥 = 𝜙𝑥 = 0 

𝑢 = 𝑣 = 𝑤0 = 𝜓𝑥 = 𝜓𝑦 = 𝜙𝑥 = 𝜙𝑦 = 0 

4. Numerical examples and discussions 422 

In this study, the functionally graded materials are mixtures of aluminium (Al) as 423 

a metal and zirconium oxide (ZrO2) as a ceramic. Unless otherwise specified, the 424 

material parameters utilized for subsequent examples are set to: 𝐸m = 70 GPa, 𝐸c =425 

151 GPa , 𝜌m = 2700 kg/m3 , 𝜌c = 5680 kg/m3 , 𝜈m = 𝜈c = 0.3 . In addition, the 426 

normalisation parameters for all numerical results analysis are evaluated in the 427 

following form: 428 

• Dimensionless central deflection: 429 
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• Dimensionless axial stress: 432 
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• Dimensionless shear stress: 434 
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• Dimensionless frequency: 437 
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4.1 Verification and comparison 439 

Initially, to verify the correctness of RPIM in combination with GL-HSDT, 440 

nonlocal and strain gradient effects are ignored. A simply supported sandwich square 441 

plate proposed by Srinivas [62] under a uniform transverse load 𝑞0 is considered, which 442 

has a ratio of face layer thickness hf to core layer thickness hc as ℎf/ℎc = 1/8. The 443 

material properties of face and core layers are determined as follow, 444 

 
core
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 445 

 face coreQ RQ=  446 

In this example, the square plate is modeled by a set of 17 × 17 , 21 × 21  and 447 

25 × 25 nodes, and the normalized displacements and stresses are as follows, 448 
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Table 2 provides a comparison between the present solution and the exact solution 450 

reported by Srinivas [60], HSDT-based finite element solution of Pandya and Kant [61], 451 

the HSDT-based meshless solution of Ferreira et al. [62] and the closed-form solution 452 

based on inverse hyperbolic shear deformation theory (iHSDT) by Grover et al. [63]. It 453 

can be seen that the present results are nearly identical to the exact solution reported by 454 

Srinivas. Particularly, for the case of R =15, the accuracy of our solution significantly 455 

surpasses that of other HSDT-based solutions, which highlights the advantages of GL-456 

HSDT in dealing with sandwich structures. Moreover, it can be observed that the 457 

accuracy of computed results improves as the node density increases, successfully 458 

demonstrating the convergency of present model using the RPIM. Considering the 459 

balance between computational cost and accuracy, a set of 21 × 21 nodes is used for 460 

subsequent analysis and comparison. 461 

 Next, the nonlocal parameter 𝜇 and strain gradient parameter 𝜆 are introduced by 462 

NSGT to validate the effectiveness of developed model in examining size-scale effects. 463 

By referring to the parameter values recommended in existing literature, we choose 464 

those utilized by Daikh et al. [46], applying them to the model for computation. As 465 

shown in Table 3, the dimensionless central deflections of FGSNPs are computed for 466 

the nonlocal effect and strain gradient effect, which are compared with the results 467 

reported by Daikh et al. It is clear that the present results are in good agreement with 468 



those of the reference solution. This further demonstrates the correctness of the model 469 

to provide reliable predictions for microscopic effects.   470 

Table 2. Dimensionless displacement and stresses of the sandwich square plate under uniform load. (SSSS, 𝑎/ℎ =471 

10, 𝜇 = 𝜆 = 0) 472 

R Method 𝑤̄ 𝜎̄𝑥𝑥
(1)

 𝜎̄𝑥𝑥
(2)

 𝜎̄𝑥𝑥
(3)

 𝜎̄𝑦𝑦
(1)

 𝜎̄𝑦𝑦
(2)

 𝜎̄𝑦𝑦
(3)

 

5 FEM-HSDT [63] 256.13 62.38 46.91 9.382 38.93 30.33 6.065 

 Meshfree-HSDT [64] 257.11 60.366 47.003 9.401 38.456 30.242 6.048 

 CFS-iHSDT [65] 255.644 60.675 47.055 9.411 38.522 30.206 6.041 

 Exact [62] 258.97 60.353 46.623 9.34 38.491 30.097 6.161 

 Present (17×17) 257.2691 59.7455 46.5821 9.0121 37.8472 29.7463 5.8838 

 Present (21×21) 257.9246 60.0124 47.1356 9.3543 38.3561 30.0355 6.1613 

 Present (25×25) 258.3055 60.2156 47.3237 9.3872 38.5218 30.1474 6.2467 

         

10 FEM-HSDT [63] 152.33 64.65 51.31 5.131 42.83 33.97 3.397 

 Meshfree-HSDT [64] 154.658 65.381 49.973 4.997 43.24 33.637 3.364 

 CFS-iHSDT [65] 154.55 65.741 49.798 4.979 43.4 33.556 3.356 

 Exact [62] 159.38 65.332 48.857 4.903 43.566 33.413 3.5 

 Present (17×17) 157.7876 64.6521 47.8846 4.5251 43.0457 33.0146 3.1025 

 Present (21×21) 158.4561 65.2872 48.6543 4.8103 43.5374 33.4051 3.5465 

 Present (25×25) 158.6233 65.3136 48.7127 4.9857 43.5788 33.5141 3.6451 

         

15 FEM-HSDT [63] 110.43 66.62 51.97 3.465 44.92 35.41 2.361 

 Meshfree-HSDT [64] 114.644 66.919 50.323 3.355 45.623 35.167 2.345 

 CFS-iHSDT [65] 115.82 67.272 49.813 3.321 45.967 35.088 2.339 

 Exact [62] 121.72 66.787 48.299 3.238 46.424 34.955 2.494 

 Present (17×17) 120.7152 66.0548 47.8463 3.0542 46.0725 34.6497 2.1024 

 Present (21×21) 121.2054 66.4671 48.2334 3.2136 46.4231 34.8526 2.4673 

 Present (25×25) 121.5437 66.5137 48.4103 3.3357 46.5332 34.9543 2.5451 

Table 3. Comparison of dimensionless central deflections of square FGSNPs for several nonlocal and strain gradient 473 

parameters. (SSSS, 𝑎/ℎ = 10, 𝑝 = 2). 474 

𝜇 𝜆 Type 

1-1-1  1-2-1  2-2-1 

Daikh [46] Present  Daikh [46] Present  Daikh [46] Present 

0 0 0.29777 0.29789  0.27308 0.27051  0.28494 0.27756 

1 0.24868 0.24742  0.22806 0.22468  0.23797 0.23468 

2 0.21349 0.20723  0.19579 0.18817  0.20429 0.19656 

1 0 0.35655 0.35394  0.32698 0.32130  0.34119 0.33566 

1 0.29777 0.29789  0.27308 0.27051  0.28494 0.27756 

2 0.25563 0.25415  0.23443 0.23079  0.24462 0.24106 

2 0 0.41533 0.41484  0.38089 0.37658  0.39743 0.39342 

1 0.34686 0.34903  0.31810 0.31712  0.33192 0.33111 

2 0.29777 0.29789  0.27308 0.27051  0.28494 0.27756 

4.2 Parametric study 475 

In this section, firstly, the macroscopic mechanical behaviours of TFGNPs are 476 

examined for various condition parameters through bending and vibration analysis. 477 

Here, the nonlocal and strain gradient parameters are set to zero to make the present 478 

model revert to a classical elasticity theory model, which is utilized to obtain results for 479 

the macroscopic counterparts. Then considering the size-scale effects of nanostructures, 480 

the influence of the nonlocal and strain gradient parameters on the static bending and 481 

free vibration of TFGNPs was investigated.  482 



4.2.1 Static bending analysis 483 

In order to show the advantages of TFGNPs, we compare their stress variations 484 

with those of conventional FGSNPs.  As shown in Fig. 7, the axial and shear stresses 485 

of FGNPs along the thickness vary with the power-law exponent p. It is observed that 486 

when p = 5, there is a significant abrupt change in stress at the interface between the 487 

core and surface layers. The situation is further aggravated when p = 10. Fig. 8 displays 488 

the variation of dimensionless axial and shear stresses along the thickness of TFGNP-489 

A, with the parameter 𝑁 ranging from 1 to 3. Similarly, the variation of dimensionless 490 

stresses in TFGNP-B is presented in Fig. 9. It is clear that the proposed TFGNPs 491 

possesses extreme continuous and smooth stress variation over the entire thickness, 492 

which is attributed to its material gradation in each layer described by a unified cosine 493 

function.  494 

 495 

Fig. 7 Dimensionless stresses along the thickness of square FGSNPs. (SSSS, 𝑎/ℎ = 10, 𝑘w = 𝜇 = 𝜆 = 0).  496 

 497 

Fig. 8 Dimensionless stresses along the thickness of square TFGNP-A. (SSSS, 𝑎/ℎ = 10, 𝑘w = 𝜇 = 𝜆 = 0). 498 



 499 

Fig. 9 Dimensionless stresses along the thickness of square TFGNP-B. (SSSS, 𝑎/ℎ = 10, 𝑘w = 𝜇 = 𝜆 = 0).  500 

Fig. 10 displays the dimensionless central deflection of TFGNPs as affected by the 501 

parameter 𝑁. It can be seen that for TFGNP-A, the maximum deflection occurs at N = 502 

1 and then decreases sharply up to N = 2. Continuing to increase N, the decrease in 503 

deflection slows down until it eventually remains constant. Reviewing Fig. 5(a), we 504 

find that the content of ceramic in core layer of TFGNP-A far exceeds that of the surface 505 

layers at N = 1, while things are reversed at N = 2. When N increases to 3, the ceramic 506 

content becomes equal among the layers, although the ceramic contents of surface 507 

layers are less than that at N = 2. The opposite is true for TFGNP-B in Fig. 5(b). 508 

Combining Figs. 5 and 10, we can explain this by noting that the higher elastic modulus 509 

of ceramics compared to metals means that when ceramics are concentrated in the 510 

surface layers of TFGNPs, it leads to enhanced bending stiffness of the plate, resulting 511 

in lower deflection. In addition, achieving a uniform distribution of ceramics among 512 

the layers further enhances the overall stiffness of the plate, thereby reducing deflection. 513 

 514 

Fig. 10 Effect of parameter 𝑁 on the dimensionless central deflection of square TFGNPs. (SSSS, 𝑎/ℎ = 10, 𝑘w =515 

𝜇 = 𝜆 = 0).  516 



Table 4 presents dimensionless stresses for various values of parameter 𝑁. It is 517 

obvious that the effect of increasing or decreasing N on the stresses of TFGNPs is 518 

significantly weakened when N is above 1. In combination with Fig. 10, a stable 519 

material property of TFGNPs can be demonstrated. Further, Table 5 offers insights into 520 

the influence of boundary conditions and width-to-thickness ratio on their central 521 

deflection. It can be seen that TFGNPs achieve minimum deflection with four-sided 522 

clamped, while an increase in width-to-thickness ratio serves to raise the deflection of 523 

plates. 524 

Table 4. Dimensionless stresses of square TFGNPs for several parameters 𝑁. (SSSS, 𝑎/ℎ = 10, 𝑘w = 𝜇 = 𝜆 = 0). 525 

       𝑁 TFGNP-A  TFGNP-B 

𝜎̄𝑥𝑥(ℎ/2) 𝜏̄𝑥𝑦(−ℎ/2) 𝜏̄𝑥𝑧(0)  𝜎̄𝑥𝑥(ℎ/2) 𝜏̄𝑥𝑦(−ℎ/2) 𝜏̄𝑥𝑧(0) 

1 1.61279 0.68656 0.05703  1.13248 0.48545 0.82978 

2 1.33210 0.58012 0.13386  1.26060 0.54061 0.56583 
3 1.31503 0.58822 0.42145  1.24481 0.54941 0.32472 

4 1.27530 0.55627 0.12937  1.32446 0.56786 0.65624 

Table 5. Dimensionless centre deflection of square TFGNPs with different boundary conditions edge-to-thickness 526 

ratios and parameters 𝑁. (𝑘w = 𝜇 = 𝜆 = 0).  527 

Table 6 examines the effect of foundation parameters on the centre deflection of 528 

TFGNPs, which show that an increase in both 𝜅 and 𝜉 leads to a reduction in deflection, 529 

but the impact of 𝜅  is greater as compared to 𝜉 . Furthermore, Fig. 11 portrays the 530 

deflection curves of TFGNPs with various foundations. The incorporation of elastic 531 

foundations is evident in reducing plate deflection, with minimal variation observed 532 

across different foundation types. This can be understood that although foundations 533 

enhance the stiffness of plates, their contribution to stiffness is considerably minor 534 

when compared to the inherent stiffness of TFGNPs, resulting in almost identical 535 

effects caused by different foundations. 536 

Table 6. Effect of several Winkler foundation parameters on the central deflection of square TFGNPs (SSSS, 𝑁 =537 

1, 𝑎/ℎ = 10, 𝜇 = 𝜆 = 0)  538 

Type 𝜅 𝜉 Linear Parabolic Reverse Parabolic Sinusoidal Reverse Sinusoidal 

TFGNP-A 10 10 0.31730 0.32038 0.31428 0.31480 0.31983 

100 0.26519 0.28839 0.24542 0.24871 0.28406 

1000 0.10223 0.14945 0.07754 0.08120 0.13903 
100 10 0.22745 0.22904 0.22589 0.22616 0.22876 

100 0.19936 0.21223 0.18795 0.18987 0.20987 

1000 0.09058 0.12585 0.07062 0.07363 0.11834 

1000 10 0.05937 0.05948 0.05926 0.05928 0.05946 

100 0.05726 0.05830 0.05625 0.05643 0.05811 

BCs 𝑎/ℎ TFGNP-A  TFGNP-B 

𝑁 = 1 𝑁 = 2 𝑁 = 3 𝑁 = 4  𝑁 = 1 𝑁 = 2 𝑁 = 3 𝑁 = 4 

SSSS 10 0.33966 0.28193 0.27594 0.27211  0.23410 0.26061 0.26262 0.27054 
20 1.32106 1.08977 1.05828 1.04418  0.85856 0.98356 1.00716 1.02489 

30 2.95573 2.43530 2.36125 2.33274  1.89824 2.18745 2.24718 2.27841 

CCCC 10 0.13006 0.10963 0.10913 0.10559  0.10078 0.10643 0.10392 0.11143 

20 0.47815 0.39638 0.38694 0.38025  0.32347 0.36351 0.36835 0.37919 

30 1.05597 0.87231 0.84786 0.83609  0.69165 0.78953 0.80708 0.82273 

SCSC 10 0.18201 0.15286 0.15158 0.14710  0.13734 0.14677 0.14433 0.15356 

20 0.67848 0.56175 0.54763 0.53872  0.45442 0.51309 0.52129 0.53508 
30 1.50339 1.24109 1.20552 1.18937  0.97971 1.12107 1.14748 1.16807 

CSCS 10 0.18199 0.15285 0.15156 0.14709  0.13732 0.14674 0.14431 0.15354 

20 0.67845 0.56173 0.54761 0.53870  0.45439 0.51306 0.52127 0.53505 

30 1.50334 1.24105 1.20548 1.18933  0.97967 1.12103 1.14744 1.16803 



1000 0.04242 0.04894 0.03740 0.03822 0.04771 

TFGNP-B 10 10 0.22326 0.22478 0.22175 0.22202 0.22451 

100 0.19611 0.20853 0.18507 0.18693 0.20625 
1000 0.08969 0.12394 0.07016 0.07310 0.11661 

100 10 0.17470 0.17563 0.17377 0.17394 0.17547 

100 0.15762 0.16557 0.15039 0.15162 0.16412 

1000 0.08062 0.10732 0.06446 0.06693 0.10175 

1000 10 0.05503 0.05512 0.05493 0.05495 0.05510 

100 0.05321 0.05410 0.05234 0.05249 0.05394 

1000 0.04013 0.04591 0.03563 0.03636 0.04482 

 539 

Fig. 11 Effect of different Winkler foundations on the central deflection of square TFGNPs: (a)TFGNP-A; 540 

(b)TFGNP-B. (SSSS, 𝜅 = 100, 𝜉 = 10, 𝑁 = 1, 𝑎/ℎ = 10, 𝜇 = 𝜆 = 0) 541 

4.2.2 Free vibration response 542 

In this subsection, we investigate the free vibration response of TFGNPs under 543 

various parameters. Fig. 12 illustrates the effect of parameter N on the first 544 

dimensionless frequency, where the maximum frequency of TFGNPs occurs in 545 

TFGNP-B at 𝑁 = 1. Referring to Fig. 5(b), it is observed that the ceramic content of 546 

surface layers of TFGNP-B far exceeds that of the core layer at N = 1, which leads to 547 

an enhanced stiffness of the plate and hence a higher vibration frequency. This further 548 

supports our previous analysis. Moreover, in combination with Figs. 10 and 12, we can 549 

conclude that TFGNP-B has higher stiffness than TFGNP-A. 550 

 551 

Fig. 12 Effect of parameter 𝑁 on the first dimensionless frequency of square TFGNPs. (SSSS, 𝑎/ℎ = 10, 𝑘w = 𝜇 =552 



𝜆 = 0). 553 

Considering two types of boundary conditions, simply supported (SSSS) and four-554 

sided clamped (CCCC), the first six dimensionless frequencies for several aspect ratios 555 

are presented in Table 7. It is shown that higher frequency occurs for the CCCC while 556 

increasing the aspect ratio of plates lowers the frequency, which is consistent with the 557 

results reported by Phan-Dao [23] and Thai [22] et al. This is attributed to the fact that 558 

the clamped approach imposes finer constraints on TFGNPs, consequently boosting the 559 

stiffness of the plate. In contrast, an increase in the aspect ratio causes bending stiffness 560 

of the longer side in the plate to decrease, resulting in a lower frequency. 561 

Table 7. The first six dimensionless vibration frequency of TFGNPs with different boundary conditions and aspect 562 

ratios. (𝑁 = 1, 𝑎/ℎ = 10, , 𝑘w = 𝜇 = 𝜆 = 0) 563 

Bcs Type 𝑏/𝑎 𝜔1 𝜔1 𝜔1 𝜔1 𝜔1 𝜔1 

SSSS TFGNP-A 1 0.05110 0.12390 0.12390 0.19153 0.19339 0.19339 

2 0.03223 0.05111 0.08236 0.09679 0.10615 0.12336 

3 0.02869 0.03707 0.05114 0.06449 0.07100 0.09648 

TFGNP-B 1 0.06143 0.14186 0.14186 0.19339 0.19339 0.21128 

2 0.03932 0.06144 0.09679 0.09683 0.12288 0.14127 

3 0.03511 0.04504 0.06147 0.06449 0.08412 0.11236 

CCCC TFGNP-A 1 0.08915 0.17386 0.17386 0.24560 0.29455 0.29707 

2 0.06197 0.07955 0.11126 0.15331 0.15607 0.16835 
3 0.05856 0.06490 0.07705 0.09587 0.12119 0.15005 

TFGNP-B 1 0.10021 0.18531 0.18531 0.25440 0.29842 0.30141 

2 0.07115 0.09056 0.12467 0.16488 0.17104 0.18037 

3 0.06736 0.07443 0.08797 0.10860 0.13571 0.16156 

Fig. 13 reveals the correlation between the Winkler dimensionless foundation 564 

parameter 𝐾w  and the first four vibration frequencies of TFGNP-A with CCCC 565 

boundary condition. As shown, the effects of foundation parameters on the first four 566 

vibration frequencies are in growth as log(𝐾w) equal to 2 and 3, while continuing to 567 

increase 𝐾w has no effect on the vibration frequencies when log(𝐾w) equals to 5. Fig. 568 

14 shows the first six vibration modes of TFGNP-A for CCCC boundary conditions 569 

with log(𝐾w) equal to 2, 3 and 5. It is clear that when the  log(𝐾w) increased to 5, a 570 

chaotic vibration mode emerges in the plate structure. The findings derived from Figs. 571 

13 and 14 lead to the conclusion that when increasing 𝐾w reaches a certain critical value, 572 

further increments in 𝐾w  do not alter the frequency amplitude. On the contrary, 573 

excessive foundation stiffness will lead to vibration mode failure. 574 

 575 



Fig. 13 Effect of Winkler foundation parameters on the first four dimensionless frequencies of square TFGNP-A 576 

with different CCCC boundary condition.  (𝑁 = 1, 𝑎/ℎ = 10, 𝜇 = 𝜆 = 0). 577 

 578 

(a)  log(𝐾w) = 2 579 

 580 

(b)  log(𝐾w) = 3 581 

 582 



(c)  log(𝐾w) = 5 583 

Fig. 14 Effect of Winkler foundation parameters on the first six vibration modes of square TFGNP-A with CCCC 584 

boundary condition. (𝑁 = 1, 𝑎/ℎ = 10, 𝜇 = 𝜆 = 0). 585 

It can be understood that when the foundation stiffness is excessive, the physical 586 

response of structures drastically varies on a very small scale. This non-uniform 587 

variation leads to an increase in the condition number of stiffness matrix, making the 588 

matrix pathological. As a result, the solved vibration modes are pseudo-modes that have 589 

no physical meaning. However, this challenge could be addressed by increasing the 590 

density of nodes in the computational domain and adjusting the weights to avoid 591 

pathological matrix during the solving process. 592 

4.2.3 Size-scale effect 593 

In this step, a study is dedicated to examining the impacts of nonlocal and strain 594 

gradient effects on the bending and free vibration of TFGNPs. Tables 8 and 9 provide 595 

the dimensionless central deflections and the first dimensionless vibration frequency 596 

for several sets of nonlocal and strain gradient parameters, respectively. It is obvious 597 

that the nonlocal and strain gradient parameters have a strong influence on the stiffness 598 

of plates and thus an important effect on the mechanical responses of plates.  599 

Table 8. Dimensionless central deflection of square TFGNPs for several nonlocal and strain gradient parameters. 600 

(SSSS, 𝑎/ℎ = 10, 𝑘w = 0).  601 

𝜇 𝜆 TFGNP-A  TFGNP-B 

𝑁 = 1 𝑁 = 2 𝑁 = 3 𝑁 = 4  𝑁 = 1 𝑁 = 2 𝑁 = 3 𝑁 = 4 

0 0 0.33966 0.28193 0.27594 0.27211  0.23410 0.26061 0.26262 0.27054 

1 0.28108 0.23424 0.23027 0.22499  0.19951 0.21919 0.21926 0.22908 

2 0.24531 0.20434 0.20079 0.19626  0.17354 0.19102 0.19112 0.19958 

1 0 0.40435 0.33562 0.32849 0.32393  0.28416 0.31024 0.31263 0.32206 

1 0.33987 0.28323 0.27844 0.27204  0.23544 0.26512 0.26503 0.27700 

2 0.28024 0.23344 0.22937 0.22420  0.19825 0.21822 0.21833 0.22799 

2 0 0.46211 0.38356 0.37541 0.37020  0.33242 0.35456 0.35729 0.36807 

1 0.39757 0.33131 0.32571 0.31823  0.28220 0.31013 0.31003 0.32402 

2 0.34270 0.28546 0.28049 0.27416  0.24243 0.26686 0.26699 0.27880 

Table 9. The first dimensionless nature frequency of square TFGNPs for several nonlocal and strain gradient 602 

parameters. (SSSS, 𝑎/ℎ = 10, 𝑘w = 0). 603 

𝜇 𝜆 TFGNP-A  TFGNP-B 

𝑁 = 1 𝑁 = 2 𝑁 = 3 𝑁 = 4  𝑁 = 1 𝑁 = 2 𝑁 = 3 𝑁 = 4 

0 0 0.05110 0.05602 0.05662 0.05717 0.06143 0.05825 0.05802 0.05802 0.05110 

1 0.06989 0.07643 0.07703 0.07795 0.08247 0.07884 0.07893 0.07715 0.06989 

2 0.08868 0.09684 0.09744 0.09873 0.10350 0.09943 0.09984 0.09628 0.08868 

1 0 0.04108 0.04504 0.04552 0.04596 0.04938 0.04683 0.04664 0.04584 0.04108 

1 0.05616 0.06142 0.06190 0.06264 0.06624 0.06334 0.06342 0.06199 0.05616 

2 0.07125 0.07780 0.07828 0.07932 0.08310 0.07986 0.08020 0.07813 0.07125 

2 0 0.03530 0.03871 0.03912 0.03950 0.04344 0.04025 0.04009 0.03940 0.03530 

1 0.04826 0.05278 0.05319 0.05383 0.05691 0.05443 0.05450 0.05326 0.04826 

2 0.06122 0.06685 0.06725 0.06815 0.07137 0.06860 0.06890 0.06712 0.06122 

For a better presentation of these effects, Figs. 15 and 16 show the variation of 604 

bending and vibration with nonlocal and strain gradient parameters, respectively. In Fig. 605 

15, the nonlocal dimensionless deflection ratio and dimensionless frequency ratio are 606 

defined as the ratios of the deflection and frequency predicted by nonlocal results (𝜇 ≠607 



0, 𝜆 = 0)  to the corresponding values predicted by the local results (𝜆 = 𝜇 = 0) , 608 

respectively. It is observed that the deflection ratio is over 1 while the frequency ratio 609 

is below 1. This means that the local theory underestimates the deflection and 610 

overestimates the intrinsic frequency of the TFGNPs compared to nonlocal theory. 611 

Particularly, the deflection and frequency further increase and decrease with increasing 612 

𝜇 , respectively. Moreover, it can be seen that the nonlocal effects perform more 613 

dramatically for the CCCC boundary condition, and that the deflection ratio varies 614 

nonlinearly with nonlocal parameters. Similarly, the strain gradient dimensionless 615 

deflection ratios and dimensionless frequency ratios are defined as the ratios of the 616 

deflections and frequencies obtained only by considering the strain gradient effect (𝜇 =617 

0, 𝜆 ≠ 0) to the corresponding values obtained by neglecting the size-scale effect (𝜆 =618 

𝜇 = 0), and that results are plotted in Fig. 16. It can be noticed that the effect of strain 619 

gradient effect on both deflection and frequency is exactly opposite to the conclusion 620 

drawn by considering the nonlocal effect.  621 

 622 

Fig. 15 Effect of nonlocal parameter on the dimensionless deflection and vibration frequency ratios for square 623 

TFGNPs. (𝑁 = 1, 𝑎/ℎ = 10, 𝑘w = 0). 624 

 625 



Fig. 16 Effect of strain gradient parameter on the dimensionless deflection and vibration frequency ratios for square 626 

TFGNPs. (𝑁 = 1, 𝑎/ℎ = 10, 𝑘w = 0).  627 

Fig. 17 shows the effect of nonlocal and strain gradient parameters on the axial 628 

stresses of TFGNPs. It can be seen that the axial stresses along the thickness distribution 629 

exhibit decrease and increase with increasing 𝜇 and 𝜆, respectively. Also, the results on 630 

the shear stress of TFGNPs as affected by nonlocal and strain gradient parameters are 631 

posed in Fig. 18. The results demonstrate that the shear stresses along the thickness 632 

distribution increase with both 𝜇 and 𝜆 increasing. Our numerical findings demonstrate 633 

that through the modification of both parameters 𝜇  and 𝜆  using our proposed model 634 

based on NSGT, it is possible to unveil the mechanisms of plate stiffness softening and 635 

stiffness hardening. 636 

 637 

Fig. 17 Effect of nonlocal and strain gradient parameters on dimensionless axial stresses in square TFGNPs: 638 

(a)TFGNP-A; (b)TFGNP-B. (SSSS, 𝑁 = 1, 𝑎/ℎ = 10, 𝑘w = 0) 639 



 640 

Fig. 18 Effect of nonlocal and strain gradient parameters on dimensionless shear stresses in square TFGNPs: 641 

(a)TFGNP-A; (b)TFGNP-B. (SSSS, 𝑁 = 1, 𝑎/ℎ = 10, 𝑘w = 0)  642 

5. Conclusion 643 

In this paper, the governing equations for FG plates are derived employing the GL-644 

HSDT and weak-form NSGT. Then an effective size-dependent meshfree model is 645 

developed in combination with RPIM.  In addition, we propose a novel trigonometric 646 

functionally graded nanoplates (TFGNPs) for the first time and consider the role of 647 

variable elastic foundations. The numerical results show that: 648 

• Compared with finite element and meshfree models based on HSDT, the present 649 

model employing the generalized layerwise theory achieves more accurate 650 

computation for sandwich structures. Furthermore, in combination with NSGT, the 651 

physical behaviour of structures at micro and nano scales can be investigated 652 

effectively. The proposed TFGNPs achieve a perfect mixture between ceramics 653 

and metals for stable material properties compared to the traditional FGSNPs. 654 

Moreover, a continuous and smooth variation of axial and shear stresses along the 655 

thickness distribution shows its superior mechanical properties. 656 

• Variation in parameter N affects the ceramics distribution along the thickness of 657 

TFGNPs. Increasing the ceramic content of surface layers leads to an increase in 658 

the stiffness of plates, and achieving a uniform distribution of ceramics across the 659 

layers further enhances the overall stiffness of plates. 660 

• Increasing the nonlocal parameter decreases the stiffness of TFGNPs, therefore 661 

decrement in frequencies and an increment in deflections, while the opposite is 662 

found when increasing strain gradient parameter. 663 



• The size-scale effects of TFGNPs show that the axial stresses along the thickness 664 

distribution decrease and increase with the growth of nonlocal and strain gradient 665 

parameters, respectively, but shear stresses along the thickness distribution adjust 666 

in direct proportion to the variations in the nonlocal and length scale parameters. 667 

Notably, the model has certain limitations, primarily related to the distribution of 668 

nodes and the selection of weights, both of which can affect its numerical stability. For 669 

instance, excessive foundation stiffness induces numerical instability during 670 

computation and hence failure of vibration models. However, this challenge can be 671 

addressed by increasing the node density and adjusting the weights for the model. 672 

In conclusion, despite some flaws, the model developed in this paper provides a 673 

high precision tool for a comprehensive observation of the complex mechanical 674 

behaviour of nanoplates across both macroscopic to microscopic scales. Additionally, 675 

the proposed TFGNPs possess excellent mechanical properties, demonstrating their 676 

potential for engineering applications. 677 

 678 
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