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The simultaneous infection of organisms with two or
more co-occurring pathogens, otherwise known as co-
infections, concomitant infections or multiple infections,
plays a significant role in the dynamics and consequences
of infectious diseases in both humans and animals. To
understand co-infections, ecologists and epidemiologists rely
on models capable of accommodating multiple response
variables. However, given the diversity of available
approaches, choosing a model that is suitable for drawing
meaningful conclusions from observational data is not
a straightforward task. To provide clearer guidance for
statistical model use in co-infection research, we conducted a
systematic review to (i) understand the breadth of study goals
and host–pathogen systems being pursued with multi-
response models and (ii) determine the degree of crossover
of knowledge among disciplines. In total, we identified
69 peer-reviewed primary studies that jointly measured
infection patterns with two or more pathogens of humans or
animals in natural environments. We found stark divisions in
research objectives and methods among different disciplines,
suggesting that cross-disciplinary insights into co-infection
patterns and processes for different human and animal
contexts are currently limited. Citation network analysis
also revealed limited knowledge exchange between ecology
and epidemiology. These findings collectively highlight the
need for greater interdisciplinary collaboration for improving
disease management.
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1. Introduction
Simultaneous infection with  multiple  pathogens,  or  co-infections,  holds  significant  importance  in
infectious  disease  research.  The possible  detrimental  effects  of  co-infection on host  health  have
been reported for  many pathogens,  including those  from secondary bacterial  infections  during
the  1918 influenza and the  Coronavirus  disease  2019 (COVID-19)  pandemics  [1,2].  Other  studies
have highlighted their  significance  by observing high frequencies  of  pathogen co-occurrence  in
both animals  [3,4]  and humans [5,6],  suggesting that  co-infections  may be  much more  common
than anticipated in  epidemiological  research and prevention programmes.  As  recognition of  this
has  increased in  recent  years,  so  too has  the  availability  of  multi-pathogen occurrence  data,
offering researchers  vast  opportunities  to  characterize  co-infections,  provide new insights  into
disease  dynamics  and better  explain  pathogen co-occurrence,  which are  essential  to  improving
surveillance  and disease  control.

At  the  host  level,  co-infection risk  is  a  consequence  of  a  complex interplay between the  host
response  to  infection with  a  given pathogen,  and the  invasion and persistence  strategy of  a
second pathogen.  While  some pathogens  do simply co-occur  as  a  result  of  shared environmental
affinities  and stochasticity  (that  is,  simultaneous but  independent  ecological  fitting for  pathogens
invading host  species),  co-infection can also  be  a  product  of  interspecific  pathogen–pathogen
and host–pathogen interactions  [3].  These  interactions  may include direct  or  indirect  processes
within  the  host,  such as  through toxin-mediated competition [7,8]  or  immune modulation [9,10],
which may alter  the  likelihood of  co-infection depending on the  order  of  infection [11–13].
Alternatively,  co-infections  may also  occur  through co-exposure  or  shared vectors  [14].  As
such,  efforts  to  characterize  pairwise  associations  between pathogens  have risen [3,5].  Beyond
pathogen–pathogen interactions,  research has  also  expanded to  account  for  within-host  pathogen
and microbial  community  dynamics  [15,16],  adding additional  layers  of  complexity  to  under-
standing the  drivers  of  co-infection.

Acknowledging the patterns and processes that drive co-infections throughout the diversity of
host–parasite systems and the potential for interspecific pathogen–pathogen and pathogen–microbiota
interactions is paramount, since they can have a cascading, and often detrimental, effect on the
course of disease in a population. This can occur through various mechanisms such as by altering
pathogen shedding patterns and increasing the risk of transmission [17,18], impairing host immunity
and increasing host susceptibility to subsequent illnesses [19,20], or intensifying disease severity [21–
23]. With the multifaced ways changes in climate drive pathogen spread and emergence, evaluating
how environmental drivers may change the frequencies of co-infections across populations and their
geographical distribution is also at the forefront of co-infection research [24–28].

Sound inference for understanding the patterns and processes of when and how co-infections occur
from cross-sectional surveillance data requires statistical modelling approaches capable of handling
multiple response variables. Fortunately, a wide array of methods is already available for these tasks.
Some commonly used methods tailored around classifying infection status as multinomial response
variables, for example, enable the comparison of groups by infection status in order to gain insights
into variation in the relative frequencies of co-infections versus single infections [27,28]. Another
important class of more recently proposed co-infection models include multivariate frameworks that
account for conditional dependencies to deal with the joint occurrences of free-living species (‘joint
species distribution models’) [29,30]. These have also been adapted to study pathogen community
structures [3,31] and microbiome profiles [32,33], as well as to quantify interspecific associations [5,34].

Addressing specific study goals requires careful selection of methods that are well suited to the
data and the intended purpose, as the choice will directly impact the ability to draw inferences or
make predictions. Unfortunately, determining the suitability of methods is not always straightforward,
and this lack of clarity may prevent researchers from making full use of their data’s potential. One
additional hinderance that may contribute to this is limited knowledge exchange about conceptual
and computational advances between different disciplines, particularly ecology and epidemiology
[6,35], which have likely developed largely independently from one another due to differences in
host systems and study objectives. To provide clearer guidance for model use in co-infection research,
this review seeks to (i) understand the breadth of study goals and host–pathogen systems being
pursued with multi-response models and (ii) determine whether there is crossover of knowledge
among disciplines. In doing so, we identify challenges and opportunities for expanding the use of these
models.
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2. Material and methods
2.1. Data collection
We conducted a  systematic  review of  papers  that  used multi-response  statistical  methods to
model  co-infection patterns  in  animal  and human populations  (see  search queries  in  electronic
supplementary material,  file  1).  Systematic  searches  were  conducted on 3  May and 9  August
2022,  across  four  databases:  Embase,  PubMed,  Web of  Science  and Scopus (figure  1).  Duplicates,
as  well  as  papers  classified as  ‘Conference  Abstract’,  ‘Conference  Papers’,  ‘Erratum’,  ‘Preprint’
and ‘Review’  in  ‘Type of  Work’,  were  removed from the  initial  search results,  leaving 746
out  of  1661  papers  for  screening.  Papers  were  screened using seven criteria,  which included
studies  that  (i)  were  peer-reviewed or  primary studies,  (ii)  utilized observational  data,  (iii)
involved multiple  species  or  variants  of  infective  agents,  (iv)  involved two or  more  pathogens,
(v)  measured infection patterns  (i.e.  presence–absence  or  abundance of  infections  with  multiple
pathogens  of  host  individuals  or  populations)  as  the  response  variable,  (vi)  used multi-response
methods for  analysis  and (vii)  focused on pathogens  of  animals  or  humans.  Based on these
criteria,  187  papers  were  retained after  screening titles  and abstracts  only  and a  final  selection
of  69  papers  after  screening the  full  papers.  A full  list  of  these  papers  can be  found in
electronic  supplementary  material,  file  3.

2.2. Data extraction and validation
Data relating to  four  study features  were  extracted from eligible  papers:  (i)  model  type,
(ii)  study goal(s),  (iii)  purpose,  and (iv)  study field  indexing.  Data  on ‘model  type’  were
extracted to  summarize  the  modelling approaches  used to  analyse  co-infection data  with
multiple  outcomes.  This  study feature  encompassed six  analytical  strategies  that  were  not
mutually  exclusive,  and summarized whether  multinomial,  multivariate,  permutation,  classifica-
tion,  network and clustering approaches  were  used.  ‘Study goal’  classified the  primary aims of
studies  for  modelling co-infections,  grouping studies  into  ‘association/interaction’,  ‘risk  factor’,
‘community  structure’,  and ‘spatial  distribution’.  The study feature  describing the  purpose  of
models  was  denoted by a  single  binary variable  called ‘prediction’,  where  a  value  of  1  was
used to  indicate  whether  models  were  used for  prediction in  addition to  inference,  and a  value
of  0  to  indicate  inference  only.  ‘Study field’  classified studies  as  either  ‘Ecology’  or  ‘Epidemiolo-
gy’  based on either  journal  indexing,  study keywords,  author  affiliations  or  terminology within
the  paper.  Definitions  of  variables  for  model  types,  study goals  and purpose  are  described in
table  1.  In  addition,  a  pairwise  citation matrix,  denoting which pair  of  studies  cited each other,
was  computed as  a  proxy for  levels  of  information sharing between included studies.  Citation
records  for  each study were  manually  obtained from the  reference  list  of  each study.

To verify  the  accuracy of  the  data,  both  the  screening phase  and the  data  extraction phase
were  externally  validated by peers  on 40  papers  from the  search results  (approx.  5%),  and 17
papers  from the  eligible  subset  (approx. 25%)  of  papers,  respectively  (see  electronic  supplemen-
tary  material,  file  2).

2.3. Identifying natural study clusters and assessing correlation with study discipline
A primary goal  of  our  review was to  assess  whether  co-infection studies  tend to  be  clustered
with  respect  to  their  study goals  and methods used for  analysis.  To identify  natural  clusters
of  studies  based on the  features,  principal  component  analysis  (PCA) was  conducted.  This
clustering analysis  was  performed using nine  binary variables  related to  model  type,  study goals
and purpose  (i.e.  indexing focal  categories  into  single  binary variables).

In  addition to  PCA,  partitioning around medoids  (PAM) was used to  divide  the  studies  into
two groups,  using Jaccard distance  (dJ)  as  a  dissimilarity  metric  to  assess  whether  clustering
resembles  study field  groupings.  This  metric  was  computed from the  nine  binary variables  to
measure  the  dissimilarity  between any two given studies  (A and B)  such that

dJ A, B =
A ∪ B − |A ∩ B||A ∪ B|
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where  the  intersection ∩  denotes  the  number  of  shared attributes  and the  union ∪  denotes
the  number  of  attributes  present  in  either  A or  B.  The Jaccard distances  with  a  value  approach-
ing 0  represent  studies  with  shared attributes  and those  approaching 1  represent  studies  with
no shared attributes.  This  dissimilarity  metric  was  used in  the  PAM analysis  to  identify  two
clusters  of  minimal  distances.  The two clusters  generated through this  approach were  compared
to the  manual  indexing of  papers  using cross-tabulation and graphical  visualization to  assess
similarities  in  groupings.  All  clustering analyses  were  conducted using the  vegan  [36],  cluster  [37]
and factoextra  [38]  packages  in  R version 4.3.2.

2.4. Quantifying the association between model type and study goals
To better  understand which models  are  favoured among studies  with  different  goals,  we
quantified the  relationships  between study goals  and model  choice,  irrespective  of  cluster
assignment.  To guide variable  selection,  pairwise  correlations  between study goals  and other
predictors  were  examined using the  corrplot  package [39]  prior  to  conducting the  analysis.
The ‘community  structure’  and ‘risk  factor’  study goals  were  negatively  correlated (−0.68),
and therefore  the  ‘risk  factor’  study goal  was  excluded from the  final  multivariable  model.  A
positive  correlation between ‘prediction’  as  the  study purpose  and the  ‘spatial  distribution’  study
goal  was  also  found (0.63),  and so  we removed the  variable  for  prediction from the  final  model.
The final  adjusted model  included three  study goal  variables  (community  structure,  pathogen

co-infect* OR coinfect*

co-occur* OR cooccur OR
co-abundan OR coabundan*
co-distribut* OR codistribut*

OR co-exist* OR coexist*

pathogen* OR infect* OR
parasit*

3 May 2022
Search Sequence 1

9 August 2022
Search Sequence 1

9 August 2022
Search Sequence 2

multi-response OR multiresponse

OR 'joint species distribution' OR

'joint model' OR 'stacked species

distribution' OR 'stacked model'

OR 'species distribution model'

OR (multivariate AND network)

OR (multivarite AND hierarchical)

OR 'community ecology OR

multinomial OR multi-nominal Embase: 379

PubMed: 445

Web of Science: 387

Scopus: 316

Total = 1527

Embase: 15

PubMed: 23

Web of Science: 10

Scopus: 14

Total = 62

Embase: 6

PubMed: 16

Web of Science: 16

Scopus: 34

Total = 72

Removal of duplicates,

conference abstracts, reviews,

conference abstracts, conference

papers, preprints and erratums

Embase: 297

PubMed: 228

Web of Science: 153

Scopus: 22

Total = 700

Embase: 11

PubMed: 10

Web of Science: 2

Scopus: 2

Total = 25

Embase: 6

PubMed: 6

Web of Science: 6

Scopus: 3

Total = 21

Exclusion based on Criteria 1 to

Criteria 6 from Title and Abstract

Exclusion based on Criteria 1 to

Criteria 7 from Full Text

Embase: 106

PubMed: 33

Web of Science: 33

Scopus: 3

Total = 175

Embase: 4

PubMed: 0

Web of Science: 0

Scopus: 0

Total = 4

Embase: 2

PubMed: 0

Web of Science: 3

Scopus: 3

Total = 8

Embase: 52

PubMed: 8

Web of Science: 9

Scopus: 1

Total = 70

concomitant infections OR

multiple infections OR mixed infection[s]

Figure 1. Flowchart of systematic search and filtering process for identifying co-infection studies using multi-response models. Terms
to target co-infection studies are presented in purple boxes, and terms to target multi-response models are presented in the blue box.
Red crosses indicate terms that were excluded in the second search sequence in order to avoid replicates from the first search when
adding the new search terms (in the orange box). To obtain the final paper subset, duplicates were deleted, and papers outside of the
scope were filtered first by title and abstracts and then by full texts. A total of 66 papers were kept for data extraction from the first
search (3 May 2022), and an additional three papers were added after the second search (9 August 2022).
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associations  and spatial  distribution),  in  addition to  the  variable  denoting human (as  opposed
to animal)  hosts.  The outcomes of  the  model  were  classified into  one of  three  categories:
‘multinomial’,  ‘multivariate’  or  ‘other  models’.  One paper  that  included both multinomial  and

Table 1. Definitions of different categories of study features used to distinguish studies in terms of model type, study goals and
purpose.

variable definition

model type

multinomial models where the response variable is categorical and can include two or more categories. One
category is used as a baseline reference category. This model assumes that each category is
independent of each other and that the outcome is influenced only by the predictors in the model

multivariate models where multiple response variables are estimated simultaneously, that is, the infection
statuses of hosts for different pathogens are considered as separate response variables. These
models account for correlations between the outcome variables and seek to understand the effect
of predictors on the entire set of outcome variables

permutation permutation models are methods that use randomization techniques to assess the significance of an
observed pattern in the response variable. In the context of co-infections, they are often used to
understand whether the observed frequencies of co-occurrences among different groups or across
predictor gradients are likely to be due to chance

classification classification models are models that use a statistical or machine learning algorithm to categorize
data into predefined categories. These models use predictors to make decisions about which
category an outcome is most likely to belong to

network network/graphical models are models that are used to characterize the pairwise relationships
between objects of interest. In the case of co-infections, the nodes or vertices in an acyclic graph
would represent individual pathogen species or variants, and the edges the relationships with
each other in terms of co-infection frequencies

clustering clustering models are statistical models that are used to group data points based on similarities

study goals

association/interaction association/interaction refers to the goal of measuring and/or quantifying the relative association
strength of different pathogens in terms of co-infection frequencies given in the cross-sectional
data. Note that, associations refer to the patterns of co-occurrence that are observed, while
interactions refer specifically to the effect that one pathogen has on another and vice versa.
Papers with either objective have been grouped for the purpose of this study, but the terms are
not interchangeable

risk factor risk factor studies seek to measure and/or quantify the relationships between infection status (e.g.
risk of co-infection versus single infection) and predictor such as host or environmental attributes
characterizing all samples from the cross-sectional survey

community structure studies seeking to measure and/or quantify the relationships between pathogen species or variants
within a microbial community or understand the (meta)community composition in which a
pathogen is situated, either within a single host or across an entire host population

distribution distribution studies refer to those seeking to understand the geographical patterns of pathogens and
co-infections

purpose
prediction binary variable to indicate whether the purpose of the model was for prediction in addition to

inference (1) or inference only (0)

study field
ecology study field denoted by (i) journal indexing, (ii) paper keywords, (iii) author affiliations, (iv) related

text or (v) relevant fields

epidemiology study field denoted by (i) journal indexing, (ii) paper keywords, (iii) author affiliations, (iv) related
text or (v) relevant fields
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multivariate  models  was  excluded from the  analysis  (n  =  68).  The key differences  between
multinomial  and multivariate  models  are  described in  Box 1.

Box 1. Key differences between multinomial and multivariate modelling frameworks.

Multinomial Multivariate 

Modelling Framework  Categorization of response variables into 
discrete disease states 

Consider multiple response variables 
simultaneously  

Response Variable  

Representation 

Discrete or nominal categories reflecting 

infection groups (e.g. no infection, 
mono-infection, and co-infection) 

Multiple response variables, where each 

outcome represents the presence/absence 
or abundance of a particular pathogen  

Parameterization Estimates parameters as the probability 
or odds associated with each response 

category, compared to a baseline 
category 

Estimates parameters as the variance-
covariance or correlation structure 

between multiple response variables 

Data Structure Requires response variables that can be 
grouped into mutually exclusive 

categories (i.e. a host categorised with 
co-infection cannot be also categorised 
with mono-infection or no infection) 

Can be used to model data with different 
formats or measurements of the response 

variables, such as presence/absences or 
abundance data for pathogens  

The adjusted Bayesian multinomial  logistic  regression model  was  conducted using the  brms
and cmdstanr  packages  in  R [40,41].  These  models  were  built  using the  ‘categorical’  likelihood
family.  Priors  with  a  normal  distribution with  a  mean of  0  and a  standard deviation of  1  were
specified for  the  regression coefficients  in  the  models.  Odds ratios  were  calculated for  each
variable  in  all  three  models  by taking the  exponential  of  the  coefficient  and confidence as  95%
highest  posterior  density  confidence  intervals.  Additional  information on variable  selection and
the model  equations  can be  found in  electronic  supplementary material,  file  4.

2.5. Citation analysis
To evaluate  the  extent  of  inter-disciplinary collaboration,  a  directed citation network analysis
was conducted using citation record information.  The cluster  groups determined by PAM as
well  as  the  three  variables  for  model  type were  included as  node features  in  the  analysis  to
explore  whether  they were  linked to  network topology.  Eigenvector  centrality  was  calculated
as  an individual-level  centrality  measure  to  quantify  node importance,  and modularity  was
calculated as  a  community-level  metric  to  measure  the  degree  of  clustering within  the  network
with  respect  to  cluster  membership and model  membership.  This  analysis  was  conducted using
the igraph  [42,43]  and ggplot2  [44]  packages  in  R.

All data and code used in the analysis of this study are openly available in the Zenodo repository
(see link in data availability statement).

3. Results
A total  of  69  papers  published between 2005 and 2022 were  eligible  for  the  study [3,5,15,25–
28,31,34,45–104].  A considerable  proportion of  studies  were  published in  2018 or  later  (39
papers),  showcasing that  modelling co-infection is  an emerging research frontier.  The details  for
each paper  and their  identification number  as  referred to  throughout  the  results  can be  found
in electronic  supplementary material,  file  3.

Most  of  these  studies  used cross-sectional  data  (approx.  88%),  quantified pathogen occurren-
ces  using binary data  (approx.  97%)  and studied co-infections  of  human hosts  (approx.  72%).
The subset  of  eligible  papers  in  this  review encompassed a  broad variety  of  study goals,
host  species  and modelling approaches.  For  example,  Mair  et  al.  sought  to  identify  associa-
tions  between pathogens  in  human populations  using only  multivariate  modelling approaches
[75].  Aivelo  & Norberg similarly  sought  to  describe  associations  between pathogens  as  well  as
between pathogens  and other  commensal  species  in  animal  hosts  [15].  In  contrast,  multinomial
models  were  often used to  identify  risk  factors  of  co-infections,  such as  was  done in  an animal
host  by Pigeault  et  al.,  or  to  predict  the  spatial  distribution of  co-infections  [87],  as  was  done
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in  human hosts  by Soares  Magalhães  et  al.  [25].  Additionally,  some studies  explicitly  sought  to
address  multiple  goals,  such as  Dallas  et  al.,  who sought  to  identify  both associations  between
pathogens  and risk  factors  using multivariate  models  in  multiple  animal  host  species  [59].
Others  used a  combination of  methods to  address  a  single  main goal,  such as  Choi  et  al.,
who used a  combination of  network models,  permutation methods and clustering to  understand
the  community  structure  of  pathogens  in  human hosts  [57].

Of  the  69  co-infection studies,  40  (58.0%)  used multinomial  models,  17  (24.6%)  used mul-
tivariate  models  and 13  (18.8%)  used only  other  models.  Of  the  19  studies  that  modelled
co-infections  in  animal  hosts,  3  (15.8%)  used multinomial  models,  10  (52.6%) used multivariate
models  and 6  (31.6%)  used other  models.  In  contrast,  in  the  50  studies  modelling human
co-infections,  36  (72.0%)  used multinomial  models  only,  6  (12.0%)  used multivariate  models
only  and 7  (14.0%)  used other  models.  One study modelling human co-infections  used both
multinomial  and multivariate  models.
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Figure 2. Principal component analysis (PCA) and silhouette plot. This combined plot showcases the cluster groupings obtained
through partitioning around medoids (PAM) analysis applied to the dataset of 69 papers. The two clusters are depicted, with cluster
1 in orange and cluster 2 in blue. (a) PCA plot. This plot shows the two clusters reduced in a two-dimensional space, whereby each
point represents a study according to its PC1 and PC2 values. The cumulative proportion explained by PC1 and PC2 is 65.92% (44.14%
by PC1 and 21.78% by PC2). The text within each cluster indicates the host, indexed discipline and model type of studies within each
cluster scaled by the proportion. Variables with a proportion below 20% are listed in the textbox beside each cluster. (b) Silhouette
plot. This plot depicts the silhouette coefficient of papers as obtained through PAM as a measure of the quality of clustering. Each
paper is depicted as a vertical bar, with the height determined by the silhouette width, indicating the paper’s similarity to its assigned
cluster. Positive silhouette width values approaching 1 indicate well-clustered papers, while negative values approaching −1 suggest
that these papers may be better assigned to a different cluster. The average silhouette widths of clusters 1 and 2 are 0.33 and 0.58,
indicating fair and good cluster matching respectively, while the total average silhouette width is 0.48, depicted by the dotted red line.
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3.1. Current co-infection research diverges into ecology and epidemiology clusters
PCA was conducted using variables  relating to  study goals,  prediction and model  types  to
identify  natural  clusters  in  the  data.  Principal  components  (PCs)  1  and 2  captured the  variance
in  the  data  relatively  well,  with  a  cumulative  proportion explained value  of  65.92%,  showcas-
ing a  strong divide in  multivariate  studies  originating mostly  from the  field  of  ‘Ecology’  and
multinomial  studies  mostly  originating from the  field  of  ‘Epidemiology’ (figure  2a).  The strongest
positive  loading factors  associated with  PC1 with  values  above 0.2  were  for  the  variables
relating to  ‘multinomial’  models  (0.55)  and the  ‘risk  factor’  study goal  (0.47).  The variables  with
the  strongest  negative  factor  loadings  were  the  ‘association/interaction’ (−0.39)  and ‘community
structure’ (−0.39)  study goals,  along with  those  associated with  the  use  of  ‘multivariate’  models
(−0.29)  and ‘other  models’ (−0.26).  For  PC2,  the  variables  with  the  strongest  positive  loading
factors  above 0.2  were  ‘other  models’ (0.47)  and the  ‘community  structure’  study goal  (0.39),
while  the  variables  with  the  strongest  negative  factors  were  ‘multivariate’  models  (−0.56)  and the
‘association/interaction’  study goal  (−0.46).

The resulting PAM clusters  contained 28  (40.6%) and 41  (59.4%)  papers,  respectively.  The
average silhouette  width between both clusters  was  0.48  (0.33  for  cluster  1  and 0.58  for  cluster
2)  (figure  2b).  Notably,  67.9% of  cluster  1  was  comprised of  ‘Ecology’  papers  and 95.1% of
cluster  2  was  comprised of  ‘Epidemiology’  papers  according to  their  study field  attributes
(figure  2a).  In  cluster  1,  57.1% of  studies  dealt  with  animal  hosts  opposed to  7.3% of  studies  in
cluster  2.  In  terms of  model  use,  53.6% of  studies  in  cluster  1  used multivariate  models,  3.6%
used both multivariate  and multinomial  models,  42.9% used other  models.  In  contrast,  95.1%
of  studies  in  cluster  2  used multinomial  models,  2.4% used multivariate  models  and 2.4% used
other  models.

Cluster 1

Other Model

Multivariate

Association/

Interaction

OR Structure

Ecology

Combination

Cluster 2
Multinomial Risk Factor

OR 

Distribution

Epidemiology

Cluster Model Goal Index

Figure 3. Parallel plot visualizing four study features of the 69 papers included in analysis. Alluvia (bands spanning the plot) are
coloured by cluster, with cluster 1 depicted in orange and cluster 2 in blue. The widths of the alluvia correspond to the proportion of
papers that belong to the strata on the right side of the band, given their placement on the axis to its left. The left axis represents the
cluster assigned through partitioning around medoids (PAM), and contains two strata for cluster 1 and cluster 2. The middle-left axis
represents model type, stratified into four categories: ‘other models’, ‘multinomial & multivariate’ (not labelled on plot due to size),
‘multivariate and ‘multinomial’. The middle-right axis represents study goals, grouped and stratified into three categories: (i) those
where ‘association/interaction’ and/or ‘community structure’ were the only study goals, (ii) those where ‘risk factor’ and/or ‘spatial
distribution’ were the only study goals, and (iii) those that combined goals from (i) and (ii). The right axis represents the manual
indexing of papers into disciplines, with two strata for Ecology and Epidemiology.
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3.2. Division between study goals and model types used in each discipline
With regard to  model  type,  all  papers  using multinomial  models  only  were  assigned to  cluster
2  (i.e.  the  ‘Epidemiology’  cluster),  while  12  of  the  13  papers  (92.3%)  that  used other  models
were  assigned to  cluster  1  (i.e.  the  ‘Ecology’  cluster)  (figure  3).  Of  the  16  papers  that  used
multivariate  models  only,  15  (93.8%)  were  assigned to  cluster  1.  The one study that  used
multivariate  models  that  were  assigned to  cluster  2  looked at  risk  factors  or  spatial  distribu-
tion as  a  study goal.  Of  26  papers  that  looked at  either  pathogen associations  or  community
structure  only,  22  (84.6%)  were  grouped into  cluster  1.  Thirty-seven of  the  38  papers  (97.4%)
that  looked either  at  risk  factor  identification or  spatial  distributions  were  assigned to  cluster
2.  All  five  studies  combined both pathogen association or  community  structure  goals  with  risk
factor  identification or  spatial  distribution analysis  assigned to  cluster  1.  Only one paper  used
both multinomial  and multivariate  models,  which was  assigned to  cluster  1  but  was  indexed as
‘Epidemiology’.  Of  the  remaining 47  papers  indexed as  ‘Epidemiology’,  39  (83.0%)  were  assigned
to cluster  2.  Of  the  21  papers  indexed as  ecology,  19  papers  were  assigned to  cluster  1  (90.5%).
Of  the  two that  were  assigned to  cluster  2,  one  used multinomial  models  to  study risk  factors
or  spatial  distributions,  and the  other  used multinomial  models  to  understand associations  or
community  structure.

Independent  from the  discipline  clusters,  the  results  from the  Bayesian multinomial  logistic
regression model  further  suggest  that  the  study goals  are  associated with  model  choice  between
the three  model  types  (table  2).  Specifically,  studies  that  sought  to  detect  pathogen associations
were  more likely  to  use  multivariate  models  over  multinomial  models  (OR =  17.04  [5.42,  56.87]).
Studies  that  sought  to  understand pathogen or  pathogen–microbial  community  structure  were
more likely  to  use  other  models  compared to  multinomial  models  (11.74  [3.52,  41.66]).  No
associations  were  found between host  type and the  spatial  distribution study goal  in  the
final  adjusted model.  Additionally,  studies  that  involved human hosts  were  less  likely  to  use
multivariate  models  over  multinomial  models  (OR =  0.26  [0.07,  0.95]).

3.3. Limited knowledge exchange between disciplines
Of the  69  papers  in  this  review,  39  papers  (56.5%)  cited,  or  were  cited by,  at  least  one other
paper  in  the  eligible  subset,  which are  shown in  figure  4.  Brooker  et  al.  [27],  Raso et  al.  [93],
Clark  et  al.  [5]  and Soares  Magalhães  et  al.  [25]  were  the  most  cited or  citing papers  of  others
within  this  citation network and were  thus  most  central  to  the  citation network,  as  indicated by
eigenvector  centrality  values  of  1.00,  0.89,  0.87  and 0.82,  respectively.

Within  the  citation network,  18  papers  belonged to  cluster  1,  accounting for  64.3% of
papers  within  the  cluster,  while  the  remaining 21  papers  accounted for  51.2% of  cluster  2.  Of
those  papers  that  used multinomial  methods,  21  papers  (52.5%)  were  connected in  the  citation
network,  whereas  15  papers  (88.2%)  that  used multivariate  models,  and four  papers  (30.8%)  that
only  used other  methods were  connected in  the  citation network.

To evaluate  network division based on cluster  membership and model  use,  two modularity
values  were  calculated for  the  subnetwork represented by the  39  papers.  Moderate  network
clustering was  found based on cluster  membership (i.e.  papers  belonging to  either  cluster  1  or

Table 2. The relative use of multinomial versus multivariate or other models for co-infection studies for different goals. Given as
the estimates of odds ratios from Bayesian multinomial logistic regression model using study goals to predict model type with
multinomial models as the baseline (n = 39). Estimates in bold represent 95% confidence intervals that do not include 0.

multivariate (n = 16) other models (n = 13)

OR estimate 95% CI OR estimate 95% CI

study goals

human host 0.26 0.07, 0.95 0.69 0.18, 2.62

associations/interaction 17.04 5.42, 56.87 1.44 0.40, 5.09

community structure 1.24 0.32, 4.65 11.74 3.52, 41.66
spatial distribution 1.12 0.27, 4.58 0.5 0.10, 2.33
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2)  and model  type use  (i.e.  multinomial,  multivariate,  multinomial  and multivariate  or  other
models)  with  modularity  values  of  0.30  and 0.35,  respectively.

4. Discussion
While  a  multitude of  models  exists  for  modelling patterns  in  multiple  response data,  their
applications  in  co-infection research for  understanding different  study goals  and approaches
used across  disciplines  have been unclear  up to  this  point.  This  systematic  review does  not  only
suggest  a  strong link between specific  study goals  and the  choices  between the  most  commonly
used model  types,  but  also  highlights  a  clear  divergence  in  research focus  among ecologists  and
epidemiologists,  calling for  better  cross-disciplinary approaches  in  future  research endeavours.
Specifically,  we found that  the  majority  of  studies  that  sought  to  understand the  role  of  risk
factors  on co-infection,  and those  that  sought  to  model  the  spatial  distribution of  co-infections
were  predominately  linked to  multinomial  models  being the  most  often used in  studies  from
the field  of  epidemiology,  whereas  studies  that  sought  to  understand individual  associations  or
interactions  between pathogens  were  found to  be  linked to  multivariate  model  use,  and those
that  sought  to  understand the  overall  structure  or  composition of  pathogen communities  were
linked to  the  use  of  other  multi-response  models,  as  shown in  table  2.  These  findings  reinforce
the  notion that  specific  and distinct  goals  and methods are  studied between the  two disciplines.

The results  from the  citation analysis  further  suggest  that  cross-disciplinary collaboration and
exchange among epidemiologists  and ecologists  is  currently  limited,  as  summarized in  Box 2.
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These findings corroborate previous calls for increased collaboration between the two disciplines,
which have highlighted the limited overlap between work by epidemiologists and ecologists working
on parasite communities in human and animal hosts [6] and multi-species infection dynamics [35].
Similar findings have previously been documented in other fields, with one study conducting a similar
citation network noted the limited citating practices of researchers of work outside of the discipline [105],
suggesting that the siloing of information within disciplines might be one barrier to cross-disciplinary
collaboration. Moreover, the findings from our citation network also highlighted limited citations
between studies that used multinomial models and multivariate models. These findings could suggest
that a lack of awareness of different model types may drive study objectives, rather than model
choice being driven by the study goals, marking a unique opportunity for the sharing of knowledge
on these methodologies. This is consistent with the growing recognition of interdisciplinary research
and transdisciplinary collaboration for better understanding and control of infectious diseases, with
increasing momentum growing for collaborative approaches, such as the One Health framework, which
recognizes the interconnected nature between the health of humans, animals and the environment [106].
By increasing the sharing of modelling practices between in ecology and epidemiology, researchers have
the potential to instigate more profound discussions on their practical application, embracing a more
holistic framework to contribute to a more resilient and integrated approach for disease management.

A clear preference among epidemiologists for multi-response modelling of co-infections, multinomial
models are an effective tool for capturing risk factors associated with individual-level risk. As highlighted
in this review, this was the most common study goal in studies indexed as epidemiological and is a more
suitable choice over multi-response modelling approaches, such as multivariate models, for this task,
because they enable easy quantification of the difference in disease risk attributable to specific exposures
with commonly used statistical models. This is a particularly useful approach for evaluating behavioural
risk factors associated with particular types of infections, such as sexually transmitted infections (STIs),
such as, for example, Culbreth et al. who explored how engaging in drinking and sexual behaviours is
associated with self-reported HIV–STI co-infection among youths [58], and Fotiou et al. who evaluated the
association between drug injecting behaviours and HCV–HIV co-infection [64]. Alternatively, a similar
modelling approach was used to describe the clinical profiles associated with co-infection in de Souza et
al., who applied these methods for the purpose of associating symptoms for classifying viral and bacterial
respiratory co-infections [60]. Because of the interpretability that these models offer, they also allow for
comparison between multiple models as well, such as Binka et al. who built multinomial models for
different ethnic groups to compare the difference in risks associated with co-infection with hepatitis B,
hepatitis C and HIV co-infection [51].

Besides risk factor identification, another study goal commonly pursued by epidemiologists
included modelling the spatial distributions of co-infections. Among these studies, multinomial
models were also the preferred method for understanding the geographical spread of disease. This
was especially popular among researchers looking at helminth co-infections in human hosts, making
up nine of the 12 studies that sought to model spatial distributions using multinomial models [25–
27,55,63,90,92,93,102]. These methods are effective at capturing the co-infection patterns and detecting
locations associated with no infections, mono-infections and co-infections, allowing researchers to
draw inferences from the data and identify hotspots areas. Of these nine studies, seven also sought
to predict areas associated with higher infection risk at the population level using these models [25–
27,55,63,92,93]. Only two of the 12 studies applied multivariate models to inform predictions [5,96].
Interestingly, one of these studies used both a multinomial model and two-component models: an
independent component model that considered probability of single-infection status, and a shared
component model, which considers conditional dependencies between diseases through location-spe-
cific shared components [96]. While the study found the multinomial model to outperform the other
models across most performance metrics, it was not able to be applied to single-disease survey data.
In these cases, the shared component model showed the best performance over the individual models.
This, therefore, represents an underexplored opportunity for epidemiologists to leverage existing data
from single-disease surveys to formulate better predictions on disease risk by accounting for potential
conditional dependencies between multiple pathogen occurrences.

Clark et al., who utilized a multivariate model for predicting spatial distributions, also demonstrate
the utility of a multivariate network model called conditional random fields, revealing a comparable
performance for predictions of human helminth infections at the individual level between the model
and single-parasite gradient boosted machine models, and higher predictive accuracy at the school
level [5]. These findings highlight the potential of using these models as a way of accounting for
conditional dependencies within the models to generate accurate predictions. While inconsistencies
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Box 2. Summary of modelling frameworks including their current use in ecology and epidemiol-
ogy, and opportunities for cross-disciplinary collaboration.

Current & Future* Avenues for Multi -Response Model Use and Cross-Disciplinary 

Collaboration 

1. The most common modelling framework used by epidemiologists for co-infection modelling are 

multinomial models. They are commonly applied to understand risk factors associated with disease 

states, and are an appropriate model choice for this purpose.  

2. Epidemiologists also use multinomial models to predict spatial distributions of disease states, 

particularly to help guide infection control strategies.  

3. While the second pathway is not necessarily a flawed approach, epidemiologists could benefit from 

multivariate alternatives, which account for co-occurrence dependencies and may provide more precise 

spatial predictions. This application would involve crossing the existing disciplinary boundary.  

4. Ecologists typically rely on multivariate models, which they use primarily to understand statistical 

associations between co-occurring pathogens.  

5. However, few ecological co-infection studies included spatial data. Including this information can lead 

to more accurate inference as well as improve the practical utility of findings. This application would 

involve crossing the existing disciplinary boundary.  

6. Discretising co-infections into carefully considered discrete states could be beneficial for ecologists to 

consider how predictors modify risk of one category versus another, to ask more targeted questions 

about how and why ecological communities change over space and time.  

*Current uses and disciplinary divisions are represented in black, while potential future avenues are represented 
in grey.  

Spatial Distribution

Risk Factor

Biotic Associations

Epidemiology

Multivariate models

1
1

2

2

3

3

Ecology

4

4

5

5

Current division between disciplines

Multinomial models

6

6

12
royalsocietypublishing.org/journal/rsos 

R. Soc. Open Sci. 11: 231589

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

05
 O

ct
ob

er
 2

02
4 



in predictive performances of different multivariate models have been noted [107–116], these models
have been shown to often lead to more accurate predictions of the co-occurrence of free-living species
and plants, particularly for rare species [110,111,115,116]. These models are therefore also worth
considering for modelling the geographical distributions of co-infections, either in place of multinomial
models for predicting high-risk areas, or in addition to multinomial models when also seeking to make
inferences about risk factors. Moreover, these methods provide a useful avenue for utilizing big data
with large numbers of pathogens (and microbiomes) that might be oversimplified if grouped into a few
broader categories, as would be feasible for multinomial modelling.

Accounting for conditional dependencies between pathogens using multivariate modelling was
included more frequently in studies indexed as ecological; however, these models were primarily
used to measure pathogen–pathogen associations as opposed to predicting spatial distributions of
co-infections. One popular method for doing this was the hierarchical modelling of species communi-
ties (HMSC) framework [15,46,53,59,73], a joint species distribution model (JSDM) that accounts for
interspecific associations within a residual variance–covariance matrix [117]. While this method has
been previously applied to incorporate spatial data for free-ranging organisms [118,119], our review
highlights that these models have primarily been used to quantify interactions between pathogens (i.e.
the co-occurrence of pathogens in host individuals, regardless of the spatial context of the infections).
Only one study accounted for conditional dependencies by including information about the spatial
context of sampled host individuals [46], while no study applied this model to predict the geographical
distributions of pathogen co-occurrences. Expanding the study goals and including spatial parame-
ters within these models offer ecologists the opportunity to improve the utility of the models for
practical applications and create an overlap with the research interests of epidemiologists, that may
subsequently help improve collaboration practices between the two disciplines.

In relation to the fourth study goal identified in this review, understanding pathogen com-
munity composition, the findings suggest that other methods, including permutation analyses,
network analyses, clustering and classification methods are preferred by researchers over multino-
mial or multivariate models. Notably, of the 18 studies that sought to understand pathogen com-
munity structure, nine studies also included commensal species in addition to pathogenic species
[15,46,52,57,78,80,83,88,101]. One such example is by Bouillaguet et al., who sought to characterize
the microbiota associated with apical periodontitis using a combination of network, permutation and
clustering methods [52]. Given that the inclusion of these commensals introduces an additional layer of
complexity to understanding co-infections, the choice of methods in these instances may be reflective
of the number of species (i.e. response variables) included in the analyses. However, while we have
included these studies within the scope of this review to showcase the breadth of co-infection research
that is being pursued, further investigation into this subset of studies would be required to provide
guidance on model suitability for the task and discipline-specific recommendations. Moreover, while
the binary indexing categories for disciplines as ‘Ecology’ and ‘Epidemiology’ were utilized here
to describe two common fields concerned with infectious diseases for the purpose of this review,
allowing generalizability of the findings within these two disciplines, these classifications may be
overly simplistic to draw accurate conclusions regarding this subset of studies looking at community
structure and may be better represented under another classification such as ‘Microbiology’.

While the findings from this study have the potential to serve as a guide for the use of multi-
response models for co-infection research and future avenues for cross-disciplinary collaboration, the
limitations of this study should also be noted. First, this study focuses on the use of statistical models
for modelling observational co-infection data and does not consider mechanistic models within its
scope. With regards to the analyses conducted in the review, it should be noted that the odds ratio
values from the Bayesian multinomial logistic regression models are not reliable quantitative measures
but are deemed fit for purpose here to showcase the divergence in model applications. In terms of the
citation network, it should also be noted that there is bias regarding the number of citations pertaining
to each study, and in particular studies containing no citations, given that more recent publications
have had less time to be cited and therefore the number of citations is likely to be correlated to the year
of publication. Thus, cross-collaboration between disciplines within the network cannot be inferred
for more recent studies from the citation network alone. Nevertheless, the citation analysis included
in this study provides a good indication of trends occurring with earlier work. Lastly, while our
systematic approach aimed at providing a comprehensive overview of relevant literature, the degree
of variability in terminology for various modelling approaches means our search is unlikely to be
exhaustive, particularly where methods did not include multinomial and multivariate models.
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5. Conclusion
Selecting statistical models for data analysis can be an arduous task and requires an understanding
of how core research questions can be supported by suitable models fit for purpose. The strong
divide in both study goals and statistical model choice in studies dealing with co-infections from
epidemiological and ecological perspectives highlights that improving communication and sharing of
ideas across disciplines is needed if we aim to understand different model systems to an equal extent
and aim to synthesize ecological and epidemiological insights together into One Health solutions.
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