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Highlights 

• Establishing phase-field modeling to investigate the fracture behavior of FRC Panels  

• Impact of fiber orientation and hole distribution on FRC fracture behavior 

• It was observed that uniform hole distribution improves their mechanical performance 

• Under thermal shock, the direction of crack propagation does not strictly follow the 

fiber angle but tends to grow towards the hole 

 

Abstract 

Fiber reinforced composite (FRC) with holes have broad applications in various 

fields. In this study, the influence of fiber orientation and hole distribution on the 

fracture behavior of FRC was investigated. A phase-field modeling was established to 

simulate the fracture process of the composite, and the mechanical performance of 

unidirectional fiber reinforced composite and woven fiber reinforced composite were 

analyzed, respectively. Our numerical results showed that fiber orientation and hole 

distribution have a significant impact on the fracture behavior of FRC. We observed 

that aligning the fibers parallel to the loading direction led to an increase in the 

maximum load bearing capacity of the composite. A more uniform hole distribution can 

enhance the overall mechanical performance of FRC. Furthermore, in the presence of 

thermal shock, crack propagation tends to grow towards the hole. These findings are of 

great significance for understanding the fracture behavior of FRC, and for optimizing 

material design and fabrication processes. 
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1. Introduction 

Compared with traditional materials, composite materials have many excellent 

mechanical properties, such as tunable mechanical performance and high specific 

strength. Research has shown that the high elastic modulus of fibers plays an important 

role in enhancing the modulus of composite materials, thereby improving their 

mechanical properties such as high-temperature deformation resistance and crack 

resistance [1]. Carbon fiber (CF) reinforced composites [2] have attracted great 

attention in the aerospace and defense industries due to their outstanding mechanical 

performance, and have been widely used in engineering fields and even in the 

biomedical field. Carbon fiber reinforced pyrolytic carbon (PyC) composites not only 

possess strong mechanical strength and excellent friction performance, but also exhibit 

outstanding anti-ablation performance, making them suitable for applications in fields 

such as automotive engineering, aerospace, environmental protection, and biomedicine 

[3]. 

Fiber reinforced composite (FRC) with holes have significant applications in 

various fields due to their lightweight, high strength, high stiffness, and corrosion 

resistance. In automotive engineering, they can be used for body structures, interior 

components, and powertrain components to achieve lightweight design and improve 

fuel efficiency. In the aerospace field, they can be used for structural components, fuel 

storage and delivery systems, and thermal/acoustic insulation materials to reduce the 

weight of aircraft and improve performance. Additionally, in the environmental 

protection field, they can be used as filtering and separating materials, such as air filters 

and water treatment filters, with excellent filtering performance and efficient resource 

utilization. With the continuous progress of technology and the increasing demand for 

material performance, FRC with holes may find more applications in various fields. 

However, due to the existence of holes, its mechanical property becomes complex. 

Therefore, it is necessary to investigate the fracture behavior of FRC panels with holes 

to improve the reliability and safety of modern engineering structures. 

Fracture simulation of FRC panels has been the focus of recent research in the field 

of composite materials. Significant progress has been made through experimental 
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investigations and numerical simulations. Muhammed et al. [4] proposed a fracture 

toughness model to predict crack initiation and propagation in unidirectional fiber 

reinforced composite panels with holes. Huang et al. [5] conducted experimental testing 

to evaluate the fracture toughness of orthotropic panels with holes. Numerical studies 

by Dan et al. [6] and Wei et al. [7] focused on simulating crack propagation in panels 

with holes, considering factors such as hole size, fiber orientation, and loading 

conditions. Negi et al. [8] developed an anisotropic gradient-enhanced continuum 

damage model to analyze fracture behavior in layered composite panels with holes. 

Granados et al. [9] studied composite material fatigue prediction based on 

series/parallel hybrid theory.  

The regularized crack surface functional, which characterizes phase field methods 

(PFM), helps to overcome operative difficulties for complex crack topologies in 

engineering structures. Therefore, this approach is widely used in the failure analysis 

of structures. Nguyen-Thanh et al. [10] propose a novel higher-order nonlocal operator 

method (NOM) based anisotropic phase-field approach to brittle fractures in rock-like 

materials and polycrystalline materials. Yin et al. [11, 12] proposed innovative 

frameworks, including meshless peridynamics-based methods for simulating fracture 

and progressive failure in fiber reinforced composite panels with holes, and a coupled 

phase-field-adhesive model framework that accurately captures the progressive failure 

and damage behavior of multiphase microstructures and multi-fiber systems. These 

studies collectively contribute to the understanding of fracture simulation in fiber 

reinforced composite panels with holes, providing insights into crack initiation, 

propagation, and fracture behavior under various conditions. Kumar et al. [13] 

developed a novel Multi Phase‐Field (MPF) model, which relies on the Puck theory of 

failure for intra‐laminar failure at ply level and the Cohesive Zone Model (CZM) for 

inter‐laminar cracking. Nguyen-Thanh et al. [14] also presented a novel higher-order 

nonlocal operator theory for the phase-field modeling of brittle fracture in anisotropic 

materials. Incorporating higher order nonlocal operators can enhance the accuracy of 

the phase-field model by effectively capturing long-range interactions that hold 
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significance in several engineering materials. Dean et al. [15] proposed a novel phase 

field model that accounts for the anisotropic response of SFRPs from the theoretical 

and numerical standpoints.  

Furthermore, several researchers have employed alternative approaches to 

investigate fracture problems. For instance, Tian et al. [16] addressed fracture problems 

from a multiscale perspective. Shi et al. [17] conducted fracture analysis of planar 

cracks under chemical-mechanical loading using a linear chemo-elasticity model. Pu et 

al. [18] introduced a crack softening failure model based on two failure criteria to study 

dynamic crack propagation in brittle materials. Li et al. [19] developed a multigrid 

coupling approach of the extended isogeometric–meshfree (XIMF) method and bond-

based peridynamics (PD) for static and dynamic fracture problems. The coupling 

approach exploits the advantages of the XIMF method and PD, including the 

computational efficiency of the XIMF method and the generality of the PD in dealing 

with fracture problems. These studies collectively contribute to understanding fracture 

simulation of composite materials and provide insights into crack initiation, 

propagation, and fracture behavior under various conditions. 

Due to the limitations of manufacturing processes, it is difficult to ensure the 

controllability of straight fibers in actual products. In addition, the functionality of 

unidirectional FRC panels is relatively simple and cannot cope with complex and 

varying external loads. Furthermore, it is necessary to consider the actual bending 

distribution characteristics of FRCs in order to obtain accurate material performance 

prediction. By designing curved fibers with varied angles and combining them with 

various types of matrix, the FRC can be optimized for use in different engineering 

applications such that the use of their anisotropic properties is maximized [20]. 

Therefore, the study of curved FRC panels has universal significance [21]. 

In engineering practice, materials will inevitably be subjected to various forms of 

impact [22] and thermal loads in certain situations. The process of thermal shock 

involves an instantaneous change in temperature, which can result in non-uniform stress 

and strain changes in the material over a short period of time, ultimately leading to 

crack growth or even complete material failure [23]. Pavan et al. [24] developed a 
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thermodynamically consistent coupled thermo-mechanical phase-field model for thin-

walled structures using fully-integrated solid shell finite elements. The proposed 

thermo-mechanical phase-field model is equipped with the Enhanced Assumed Strain 

(EAS) to alleviate Poisson and volumetric locking. This technique is further combined 

with the Assumed Natural Strain (ANS) method leading to a locking-free thermo-

mechanical solid shell phase-field element. Wang et al. [25] implemented a 

thermoelastic coupling phase field model in Abaqus/Explicit to simulate quasi-static 

and dynamic fracture of thermoelastic brittle materials. Pasternak [26] established 

boundary integral equations and a dual boundary element method for fracture in 

anisotropic thermoelastic solids, demonstrating its effectiveness. Nguyen et al. [27] 

conducted numerical studies on the thermal-mechanical crack propagation of 

orthotropic composite materials using the extended finite element method with nodal 

gradients. They proposed an enrichment approximation method for discontinuous 

temperature fields in orthogonal anisotropic media with cracks considering the 

influence of material orientation for the first time. 

This paper investigates the fracture behavior of FRC plates with different hole 

distribution patterns using the phase field method within a finite element 

implementation. Our numerical investigations are intended to offer reliable theoretical 

guidance for the structural design of fiber-reinforced composites (FRC). These new 

insights could facilitate the adoption of FRC panel in practical engineering applications 

such as structural energy storage devices.  

The remainder of the paper is structured as follows. In Section 2, we introduce the 

theoretical model of the phase field method. In Section 3, we describe in detail the finite 

element implementation of the phase field model. In Section 4, we presented a 

parametric study of the FRC panels under different conditions. For this purpose, we 

employ an FE-based implementation of the present formulation in MATLAB. Some 

important conclusions that are significant for the FRC structure design and 

manufacturing are presented in Section 5.  
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2. Computational model 

2.1 Phase-field modeling of fracture 

In 1998, Francfort and Marigo proposed a variational principle based on Griffith's 

theory for brittle fracture [28], using the possible displacement field and set of crack 

surfaces within a structure as independent variables. The total energy of the structure is 

defined as the sum of the deformation energy and fracture energy, and the real 

displacement field and crack surfaces can be obtained by minimizing this energy. In 

2000, Bourdin et al. [29] introduced a phase-field modeling, which uses a continuous 

scalar field to describe cracks. The phase-field modeling transforms the problem of 

crack initiation and evolution within a structure into an optimization problem of 

coupling multiple fields to minimize energy, without the need to track the path of the 

crack. 

 The parameter s  ⊆ [0,1] is introduced to represent the crack state, where s  = 

0 denotes the intact state and s   = 1 represents the complete rupture state. Since 

damage is primarily caused by tension or shear, this study only investigates such kind 

of damage. To simplify the problem, a two-phase field model can be used, where one 

phase field parameter 
fs  represents the fiber damage state and the other parameter 

ms  represents the matrix damage state. 

A solid region 
2R  with a boundary    embedded with an internal fiber 

crack f   and matrix crack m  . The displacement field is denoted as u  , and the 

strain tensor as ε . 

The fracture energy can be approximated as  

 ( )
Γ

dΓ , dΩc cq q s s


    (1) 

where cq  is the critical energy release rate per unit volume, and ( )d, d   is the crack 

surface density function. For isotropic materials, the following form is often adopted: 

 ( ) 21
,

2 2
s s s s s

l

l
  = +    (2) 

The crack surface density function is extended to anisotropic materials by 
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incorporating a second-order structure tensor: 

 
21

( , )
2 2

s s s s s
l

l
  = +   A  (3) 

Here, l   is a length scale parameter that determines the width of the smooth 

transition of the crack. There are primarily two strategies to define l . The first strategy 

treats l  as a material property [30], in terms of 
2

27

256

c

s

E
l

q


=  (where E  represents 

the Young's modulus, and 
s  is the material strength). The second strategy treats l  

as a numerical parameter, and its value should be at least twice the size of the mesh 

length [31]. 

A  is a second-order structure tensor, given by 
m f−= A AΑ , where   is a 

penalty parameter. Two structure tensors based on fiber failure 
fA  and matrix failure 

mA   are introduced. 
1e   represents the main direction 1 of the material with high 

fracture toughness and strength, while 2e  represents the direction perpendicular to 2e . 

 
1 12 2 ,f m = = Ae e e eA  (4) 

Therefore, the crack surface density function can be expressed as follows: 

 ( ) 21
,

2 2

f

f f f f f f f

f

l
s s s s s

l
  = +   A  (5) 

 ( ) 21
,

2 2

f

m m m m f m m

m

l
s s s s s

l
  = +   A  (6) 

The strain energy density can be decomposed into two parts, the contribution 

from the fibers denoted as 
f  and the contribution from the matrix denoted as m  

[32]: 

 ( ) ( ) ( )f m  = +ε ε ε  (7) 

The potential energy density function can be written in the following form: 

 ( ) ( )( ) ( ),

,

, , , , , , ,f m f m f m c i i i i

i f m

s s s s s s d G s s d 
 

=

   = +   εu u  (8) 

The main objective of this study is the fracture behavior of FRC panels, with a 
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focus on their fracture behavior under tension and shear conditions. To avoid mutual 

penetration of crack surfaces and to simulate the degradation of material properties, it 

is necessary to decompose the elastic strain energy density. For isotropic materials, 

two methods have been proposed to decompose the strain tensor, namely spectral 

decomposition [33] and hydrostatic-deviatoric decomposition [34], which can be used 

to address this issue. The elastic potential energy density can be decomposed into 

positive and negative parts based on the sign of the principal strain vector: 

 ( ) ( )
1

,
2

f f f f fs g s  + −= +ε  (9) 

 ( ) ( )
1

,
2

m m m m ms g s  + −= +ε  (10) 

 ( ) ( )
2

1 , ,i i ig s s k i f m= − + =  (11) 

According to the Clausius-Duhem inequality and the fact that 
fs  and ms  are 

independent of each other, a series of derivations lead to the following expressions for 

fs  and ms : 

 ( ) ,2 1 0
f

f f c f f f f f

f

s
s G l s s

l
 +

 
− − −    = 

  

A  (12) 

 ( ) ,2 1 0m
m m c m m m m m

m

s
s G l s s

l
 +  

− − −    = 
 

A  (13) 

The strong form for the phase-field problem can be obtained as follows: 

 ( )
,

2 1 0 in , 0 on ;
f f

f f f f f f

c f f

s
s l s s s

G l

 +  
− − −    =    =  

  

A n  (14) 

 ( )
,

2 1 0 in , 0 onm m
m m m m m m

c m m

s
s l s s s

G l

 +  
− − −    =    =  

 
A n  (15) 

 

 

 

2.2 Coupled phase field modeling of thermal-deformation-fracture 

The deformations in this article are all small deformations, and the strain tensor is 
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represented as the elastic strain tensor e  and the thermal strain tensor  . 

e   = +                          (16) 

Where   is directly proportional to the temperature, that is, 

  =   (17) 

Where   is linear expansion coefficient of the material,   is temperature and  

  is the identity tensor. The heat flux J  is directly proportional to the temperature 

gradient  : 

 
0, ( )k k g s k= −  =J  (18) 

Where k  is thermal conductivity of the material, and  ( )g s  is the degenerate 

function. According to the principle of energy conservation, the energy in the system is 

represented as 

 0k i e h   + − − =  (19) 

where k   is the rate of change of kinetic energy, i   is the rate of change of 

internal energy, e  is the power of external forces, and h  is the power provided by 

the heat source and heat flux. 

Assuming that only the heat generated by the heat source and external heat flux 

contributes to the temperature change of the object, the heat generated by deformation 

and fracture can be ignored. The rate of change of internal energy can be divided into 

the following three parts: 

 i
e  =  + +  (20) 

where e   is the rate of change of elastic potential energy caused by the 

temperature change of the object,   is the rate of change of crack surface energy, 

and   is the rate of change caused by the temperature. 

 ( ) dc V   


 =   (21) 

where   and c  are the material's mass density and specific heat, respectively. 

According to the classical Griffith theory, the crack surface energy can be calculated by 
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the critical energy release rate J integral of the crack surface 

 

2
20

0

0

( ) d d
2 2

d

: 2(1 )

c c

e e

e ee

ls
G S G s V

l

V

s s



   


 



 
  =  +  

 

 =

= − −

 

  (22) 

where 
0e  is represented as 

 
0 0

1
: :

2
e e e  = C  (23) 

Obtain the strong form of the control equation 

 

2 2

0 0

0

 in Ω,

 in Ω,

2(1 ) inΩ,

on Ω ,

 on Ω ,

on Ω ,

 on Ω ,

0 on Ω.

 c
e

c

G
d l s s

l

J

s



    

 

 

  







 

+  =

 =

 − = − 

=

 =

=

 =

 =

J

v

t

J

v

J n

v v

n t

n

σ

σ

 (24) 

The initial conditions are as follows 

 

0

0

0

( , ) ( ) in Ω,

( , ) ( ) in Ω,

( , ) ( ) in Ω.

t

t

t

 =

=

=

x x

u x u x

v x v x

 (25) 

2.3 Modeling the fiber orientation and trajectory in FRCs 

In this paper, we use the periodic form of linear orientation fiber paths [35]. The 

selection of fiber angles follows the mathematical formula below. The fiber trajectory 

is shown in Figure 1.  

 ( )
( )

( )
( )

0 1 0 0

0 1 0 0

2 , + +
2 2

, 0,1,2,

2 ,
2 2

x iL L L
T T T iL x iL

L
x i

x iL L L
T T T iL x iL

L







 −
+ − + −  


= 

+ + − + − −   −


 (26) 

where 0  is the initial local coordinate angle, 0T  is the initial elevation angle of 

the fiber, 
1T  is the final elevation angle, and L  is the projected length of periodic 
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fibers in local coordinates. The material parameters are shown in Table 1. 

 

Figure 1 Schematic illustration of curved fiber trajectory 

 

3. Finite Element Method (FEM) 

The displacement u and damage parameters ,f ms s  are generally expressed using 

interpolation functions and corresponding nodal values of displacement and phase field. 

Each element is defined by its corresponding nodes. 

 
1

qn

u e u e

i i

i=

= =u N u N u  (27) 

 , ,

1

qn

s e s e

f f f i f i

i

s s s
=

= =N N  (28) 

 , ,

1

qn

s e s e

m m m i m i

i

s s s
=

= =N N  (29) 

where u
N   and s

N   are interpolation matrices of shape functions, and in this 

paper, both the displacement and phase field damage parameters are represented by the 

same shape functions. 
e

u  and ,e e

f ms s  are the nodal values of displacement and phase 

field damage parameters within the element, 
pn  represents the number of nodes within 

the element, and 
u

B ( , )i f m=isB  are differential matrices of displacement and phase 

field, respectively. 

 
u e= B u  (30) 
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 fs e

f fs s = B  (31) 

 ms e

m ms s = B  (32) 

The governing equation (Eq. 22) is derived based on the weak form, where t

represents the external force vector. To avoid unphysical crack closure, a maximum 

history function ( , )iM i f m=  is introduced, as described in the reference [36]. 

 u u

u d d
 

= −  R B N t  (33) 

 ( )2 1 fsf s

f f f f f f

f

s
s M l s d

l


   
= − − − −      

    
 AR N B  (34) 

 ( )2 1 mssm
m m m m m m

m

s
s M l s d

l


   
= − − − −      

   
 AR N B  (35) 

The finite element discretization is introduced as described above, where K  

represents the stiffness matrix, 
fsK  and 

ms
K  represent the phase-field matrix. The 

phase-field scalar 
,0fs  ,

,0ms  and the maximum history function ( , )iM i f m=   are 

initialized for each node element, and the node displacement 0 0u =  is set. In each 

iteration, 1n nu u −=  , 
, , 1f n f ns s −=  , and 

, , 1m n m ns s −=   are solved using a staggered 

iteration algorithm to obtain the algebraic equation system as follows: 

 ( ), , 1 , 1, ,n f n m n n u n+ +=K u s s u F  (36) 

 ( )1 , , 1 , 1,
f fs n f n f n s n+ + +=K u s s F  (37) 

 ( )1 , , 1 , 1,
m ms n m n m n s n+ + +=K u s s F  (38) 

Generally, a high degree of precision in discretizing the computing domain is 

required when employing the phase field technique. This paper employs MATLAB 

software to implement the study's code with full quantization. The four nodes 

quadrilateral isoparametric element with a four-point Gauss quadrature rule is used in 

this study. 

 

Algorithm 1: Solution Procedure for the Phase Field Method 
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Initialize u, sf, sm, ueps=10-4, seps=10-3, kmax 

For n = 1 to ntotal (loop loading steps)  

k = 0; 

While ue > ueps or se,f > deps,f or se,m > deps,m or k < kmax 

       Update integration counter: k = k+1; 

       Compute uk using Eq. (27); 

Compute sk,f using Eq. (28); 

Compute sk,m using Eq. (29); 

       Evaluate the residuals ue = uk-uk-1, se,f = sk,f-sk-1,f, se,m = sk,m-sk-1,m; 

End 

Set un = uk, sn,f = sk,f, dn,m = sk,m; 

End 

 

4. Results and discussion 

The presence of circular holes in FRC panels may cause stress concentration and 

fatigue failure, which can affect the safety and stability of the structure. Therefore, 

comprehensive fracture analysis is of practical engineering significance for such FRC 

panels. In practical engineering applications such as structural energy storage devices, 

the number and size of circular holes could affect the stress, strength and integrity of 

the composite structure. For example, the wing surface of an aircraft often has a large 

number of holes, and the number and size of these holes directly affect the weight and 

performance of the aircraft. Performing fracture finite element analysis on FRC panels 

with different numbers and distributions of circular holes can evaluate the structural 

bearing capacity under complex loads and improve their reliability. In detail, based on 

different engineering requirements, the distribution and shape of the holes can be 

optimized to achieve better structural performance and effectiveness. 

 

4.1 Simulation of FRC panels with holes  

Firstly, we conduct convergence analysis to determine the optimal mesh size. Here, 

we use a model of FRC panels with holes. Structure I is a thin plate (5mm × 5mm), 

with 16 holes evenly distributed on the plate (see Figure 2). Each hole has a radius of 

0.2mm, and the horizontal and vertical distances between the centers of the circular 

holes are 1mm. At the bottom edge we apply a fixed constraint on it to limit its 
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displacement, and at the top edge we apply a displacement increment, which value is 

denoted as 41 10 mmu − =  . By dividing the mesh into different sizes, the convergence 

of the algorithm is investigated. 

 

Figure 2 Schematic illustration of structure I 

 

The material parameters are shown in Table 1. 

Table 1 Carbon reinforced epoxy HTA/6376 material parameters [37, 38] 

Parameter Value Unit 

Longitudinal modulus 114.8 GPa 

Transverse modulus 11.7 GPa 

In-plane shear modulus 9.66 GPa 

Major Poisson's ratio 0.21 - 

Longitudinal fracture energy 106.3 N/mm 

Transverse fracture energy 0.2774 N/mm 

In-plane shear fracture energy 0.7879 N/mm 

 

For our mesh convergence study, we employed five different mesh sizes as listed 

in Table 2. 

Table 2 Mesh information 

Type Mesh size for circular hole (mm) Mesh size for edge (mm) 

a 0.1 0.05 
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b 0.05 0.05 

c 0.04 0.05 

d 0.02 0.05 

e 0.01 0.05 

 

Setting the fiber orientation angle to 45°, five sets of results are obtained as shown 

in Figure 3. The results indicate that as the mesh density increases, the displacement-

load curve becomes identical. Groups d and e differ in the number of meshes by almost 

two times, but their curves are almost the same. Based on the crack patterns in Figure 

4, it can be seen that the data from group a is obviously distorted compared to the other 

four groups. Therefore, in subsequent calculations, the mesh division rule of group d 

can be used. 

 

Figure 3 Displacement-load curves at 45°inclination for unidirectional FRC 

panels 
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Figure 4 Fracture diagram of unidirectional FRC panels with 45° inclination 

 

Figure 5 A schematic of the model geometry of the tensile test comparison. All 

dimensions are given in mm. 

 

Table 3 Tensile test model material parameters [39] 

Parameter Value Unit 

Longitudinal modulus 61.4 GPa 

Transverse modulus 61.4 GPa 

In-plane shear modulus 3.782 GPa 

Major Poisson's ratio 0.042 - 

Longitudinal fracture energy 65.4 N/mm 

Transverse fracture energy 65.4 N/mm 

In-plane shear fracture energy 98.1 N/mm 

 

a b c

d e
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To evaluate the accuracy and predictive capability of the proposed phase-field 

model, we employed the isotropic tensile test [39] as a benchmark. The geometric 

parameters of the model are shown in Figure 5, where 

L 68 mm, H 60 mm, r 0.2 mm= = = . The length of the pre-crack is taken as 10 mm. 

Other relevant mechanical parameters are given in Table 3.  

The initial crack region is meshed based on the initial geometry (Figure 5), and 

refinement is performed in the expected crack propagation region. The nodes around 

the lower circular hole are fixed, while the nodes around the upper circular hole are 

subjected to displacement. The value of the displacement increment is adopted as 

53 10 mmu − =  . By comparing the results with experimental data (as shown in Figure 

6), the two curves were found to be consistent, thus demonstrating the effectiveness of 

the proposed algorithm. 

 

Figure 6 Displacement-load curves of experimental data and our phase field 

model 

 

We established three different structures of plates with the same hole area as 

shown in Figure 7: Structure I with 4×4 holes, Structure II with 2×2 holes, and 

Structure III with 1×1 hole. The hole radius in Structure I is 0.2 mm, in Structure II is 

0.4 mm, and in Structure III is 0.8 mm, with a ratio of 1:2:4. The hole number ratios 

are 16:4:1, respectively, ensuring equal hole area and uniform distribution throughout 

the plate for all three structures. The material parameters are shown in Table 1. The 
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boundary conditions are shown in Figure 7. The displacement increment 

41 10  mmu − =  is adopted. 

 

Figure 7 Schematic diagrams of a FRC structure with three different holes 

configurations 

 

To investigate the influence of hole size on the mechanical properties of the FRC 

structures (Figure 7), we performed unilateral tensile loading simulations, with the fiber 

angle set at 45°. As shown in Figure 8, the higher the number of holes, the larger the 

load the unidirectional FRC panels can withstand. For a plate with a fixed total hole 

area, as the number of holes increases, the area of each hole decreases, leading to a 

reduction in the effective cross-sectional area. However, with more holes densely 

distributed on the plate, the load can be more evenly dispersed onto the holes, relieving 

stress concentration around the holes. Moreover, an increase in the number of holes 

increases the surface area of the plate, which enables the load to be better dispersed and 

reduces local stress concentration when bearing the load. Although the area of each hole 

decreases, the maximum load-carrying capacity of the plate increases with an increase 

in the number of holes. 
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Figure 8 Displacement-load curves for three different structures 

 

Furthermore, to compare the effect of different fiber angles on the mechanical 

properties of the plates, we perform uniaxial tensile calculations on unidirectional FRC 

panels with fiber angles θ of 30°, 45°, and 60°. Structure I is chosen for the calculation. 

 

Figure 9 Displacement-load curves for unidirectional FRC panels at different 

inclination angles 

 

Figure 10 Fracture pattern at different fiber angles in unidirectional FRC panels 
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As the fiber angle increases, the angle between the fiber and the loading direction 

decreases. Based on the calculation results shown in Figure 9, we can draw an important 

conclusion that the bearing capacity of unidirectional FRC panels increases with the 

increase of fiber angle at the same displacement. From an energy perspective, as shown 

in Figure 10, when the fiber angle increases, the crack length also increases, resulting 

in more energy consumption. However, due to the higher toughness of the material, it 

can withstand more loads before complete fracture, thus demonstrating a higher load-

bearing capacity. Therefore, it is concluded that the fiber angle has a significant effect 

on the bearing capacity of the material and should be fully considered in the material 

design and application process.  

 

4.2 Simulation of curved FRC panels with holes 

In order to model the curved FRC panels, the fiber orientation description in 

Section 2.3 will be employed. Here, the parameters [ 0T  ,
1T  ] are used to denote the 

properties of curved fibers characteristics. For structure III, two fiber angles, namely 

[45,0] and [60,0], were considered. The boundary conditions are shown in Figure 7. 

Our numerical results, as presented in Figures 11 and 12, show that the maximum load-

carrying capacity of the structure increases with increasing fiber elevation angle. 

However, the load-carrying capacity of the structure is rapidly lost once the structure 

fails. Since the elastic energy is a quadratic function of stress, the elastic energy exhibits 

nonlinear growth with increasing load. As the displacement increases, the elastic energy 

grows faster, while the energy required to generate a crack surface remains constant. 

The release of more energy increases the number of crack surfaces, thereby increasing 

the crack propagation rate. As the crack grows, the stress on the remaining effective 

connecting parts of the material increases. Although the overall elastic energy decreases, 

the elastic energy density increases, requiring the release of more elastic energy. When 

the critical point is reached, even small displacements will generate a large number of 

crack surfaces, which explains why the load drops quickly after reaching its peak. Only 

a few cracks are observed in the crack pattern at the highest load point.  
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Figure 11 Displacement-load curves of curved FRC panels at different angles 

 

Figure 12 Fracture pattern of curved FRC panels under uniaxial loading at 

different inclinations. a crack pattern at the maximum load for [45,0] orientation, b 

crack pattern at complete failure for [45,0] orientation, c crack pattern at the 

maximum load for [60,0] orientation, d crack pattern at complete failure for [60,0] 

orientation 

 

After comparing the displacement-load curves as shown in Figure 13 and crack 

patterns of curved FRC panels with [0,45] and [45,0] angles as shown in Figure 14, it 

was found that under the same elevation angle conditions, the curved FRC panels with 

a larger initial elevation angle and smaller final elevation angle has a higher maximum 

load compared to the plate with a smaller initial elevation angle and larger final 

elevation angle. In addition, cracks propagate in the fiber direction of the plate. 
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Figure 13 Displacement-load curves for curved FRC panels at different 

inclination angles 

 

Figure 14 a Fracture pattern at complete failure of [0,45] orientation, and b 

Fracture pattern at complete failure of [45,0] orientation. 

 

Upon comparing the 45° unidirectional fiber and the [45,0] curved fiber, it was 

observed that the maximum load of the former is greater than that of the latter as shown 

in Figure 15. However, under the same displacement, the load of the curved fiber is 

smaller. As cracks propagate along the fibers, the crack initiation angle in the 

unidirectional fiber is closer to the load direction than that of the curved fiber. This 

means that the 45° unidirectional FRC panels can withstand a larger load due to the 

smaller initial crack angle with respect to the load direction. Additionally, it can be seen 

from the displacement-load curve that the curved FRC panels with [45,0] angle can 

withstand more displacement load than the 45° unidirectional FRC panels. This is 

attributed to the lower elastic modulus of the 45° unidirectional FRC panels, which 

results in lower stress around the circular hole. Consequently, the curved FRC panels 
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with [45,0] angle can withstand more displacement load. Therefore, different FRC 

panels with varying angles can be selected according to the type of load they need to 

bear. 

 

Figure 15 Displacement-load curves of unidirectional FRC panels and curved 

FRC panels 

 

Figure 16 Fracture pattern of unidirectional and woven FRC. a fracture pattern of 

45°unidirectional FRC panels at maximum load, b fracture pattern of 45° 

unidirectional FRC panels at crack extension, c fracture pattern of 45° 

unidirectional FRC panels at ultima failure, d fracture pattern of [45,0] curved FRC 

panels at maximum load, e fracture pattern of [45,0] curved FRC panels at crack 

extension, and f fracture pattern of [45,0] curved FRC panels at ultimate failure 
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4.3 Simulation of curved FRC panel without holes 

The following calculations were performed on a non-perforated curved fiber-

reinforced composite (FRC) panel with a pre-crack, as shown in Figure 17, in order to 

investigate the relationship between their fracture behavior and fiber angles without the 

influence of holes. We applied a fixed constraint at its bottom edge and a displacement 

increment of 41 10 mmu − =  at the top edge; and we added a pre-crack of 0.5 mm at 

the midpoint of the left edge, as shown in Figure 17. The material parameters are shown 

in Table 1.  

 

Figure 17 Curved FRC panels with pre-crack 

 

From Figures 18 and 19, it can be seen that the straight fibers can bear more load 

than the curved fibers. This is because, at the tip of the pre-cracked, the angle of the 

straight fibers is 60°, while the angle of the curved fibers is 0°. Since the difference in 

fiber angle at the crack initiation is greater in this data set, it provides a more intuitive 

representation of the difference in maximum load between the two structures compared 

to the structure with the hole. 
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Figure 18 Displacement-load curves for pre-cracked unidirectional and curved 

FRC panels 

 

Figure 19 Fracture pattern of unidirectional FRC plates and curved FRC plates 

with pre-cracked. a fracture pattern at the maximum load for 60° in unidirectional 

FRC panels, b fracture pattern at crack extension for 60° in unidirectional FRC 

panels, c fracture pattern at complete fracture for 60° in unidirectional FRC panels, d 

fracture pattern at the maximum load for fiber [60,0] orientation, e fracture pattern at 

crack extension for fiber [60,0] orientation, and f fracture pattern at complete failure 

for fiber [60,0] orientation. 
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To further investigate the impact of curved fibers at different angles on load, we 

compared the displacement-load curves at angles of [0,60] and [60,0] in a FRC panels 

reinforced with pre-cracked. As shown in Figures 20 and 21, it was found that there 

exists a plateau in the displacement-load curve, whose length is dependent on the fiber 

angle. In the later stage of crack propagation, i.e., on both sides of the plate, the 

difference between the two angles lies in the difference in fiber angles on both sides of 

the plate. Compared with the [0,60] angle, the [60,0] angle has fibers that are closer to 

the load direction on both sides of the plate. Since cracks propagate along the fiber 

direction, the variation in crack angle causes the effective connection part (i.e., the 

projection length of the remaining connection part of the structure on the x-axis) 

consumed for generating the same length of crack to decrease. Meanwhile, the rate of 

elastic energy growth slows down relative to the initial stage of crack generation. This 

situation prevents the generation of a large number of cracks due to displacement 

changes, thereby providing a buffering effect against structural failure. As the angle 

approaches the edge, the angle between the edge and the load direction decreases, 

making the buffering effect more pronounced. 

 

Figure 20 Displacement-load curves of curved FRC panels with pre-crack 
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Figure 21 Fracture patterns of curved FRC panels with pre- cracked: a fracture 

pattern at the maximum load for fiber [0,60] orientation, b fracture pattern at crack 

extension for fiber [0,60] orientation, c fracture pattern at complete failure for fiber 

[0,60] orientation, d fracture pattern at the maximum load for fiber [60,0] orientation, 

e fracture pattern at crack extension for fiber [60,0] orientation, and f fracture pattern 

at complete failure for fiber [60,0] orientation. 

 

On the other hand, by comparing the load-displacement diagrams of curved fiber 

panels without circular holes in this section 4.2(as shown in Figures 18 and 20), with 

the load-displacement diagrams of curved fiber panels with circular holes in Section 

4.3(as shown in Figures 11, 13, and 15), we find that the displacement-load curve of 

FRC panels containing a circular hole, does not exhibit a clear plateau. This is due to 

the narrow effective connection area caused by the presence of the hole, which leads to 

a small projection length of the remaining connection area on the x-axis after crack 

generation. As a result, the elastic energy near the crack tip increases too quickly, 

making it impossible to achieve balance by generating enough crack surface area, and 

therefore, an excessive zone does not occur. 
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4.4 Simulation of shear tests of curved FRC panels 

In this section, we investigated the fracture behavior of curved FRC panels under 

shear force with a displacement increment of 41 10  mmu − =  . We applied a fixed 

constraints to the bottom edge and employed the model parameters in Table 1. The 

schematic diagram is shown in Fig. 22. 

 

Figure 22 Schematic diagram of the curved FRC plate subject to a shear load 

 

 

Figure 23 Shear tests of FRC fracture: (a) 0 30T = − ;(b) 0 45T = − ;(c) 0 60T = −  

 

We calculate this for the cases T0 = -30°, -45°, and -60°, and the results are shown 
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in Figure 23. Our results are in agreement with the findings of Pan et al. [35]. Similar 

to the results presented in Section 4.3 above, we noted that the cracks are also 

propagated in the direction of the fibers. Interestingly, we observed that, unlike the other 

two angles, at T0 = -60°, the cracks in the FRC panel, in addition to expanding along 

the direction of the fibers, had a tendency to sprout at the right edge of the crack before 

growing across the panel. 

 

4.5 Simulation of fracture of FRC under thermal shock 

This section focuses on the fracture behavior of a glass fiber reinforced composite 

plate with edge crack under thermal shock loading. The boundary conditions and 

loading conditions are shown in Fig. 24. The dimensions of the plate are W × L (L = 

3W) and there is a pre-crack of length a/W = 0.15 at the edge of the plate, where W = 

1mm.  

The thermal shock is simulated in a manner similar to the quenching process. The 

initial temperature is applied to the left edge and allowed to decrease gradually, while 

the temperatures on the rest of the FRC plate surface are maintained at a constant 290 

K throughout the simulation. The initial temperature 290KT =  . Other relevant 

material properties are shown in Table 4. 

 

Figure 24 The geometry and boundary conditions of geometry edge crack in 

rectangular plate:(a) FRC without hole; (b) FRC with hole. All dimensions in mm. 
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Table 4 Glass/epoxy material parameters [37, 38] 

Parameter Value Unit 

Longitudinal modulus 55 GPa 

Transverse modulus 21 GPa 

In-plane shear modulus 9.7 GPa 

Major Poisson's ratio 0.25 - 

Specific heat capacity 106.3 J/KgK 

Thermal conductivity 3.46 N/mm 

Thermal expansion coefficient 6.3×10-6 K-1 

 

We calculated two types of FRC panels under three fiber angle conditions: 0°, 60°, 

and -60°. 

 

Figure 25 The crack propagation path for the angle of 0° under thermal shock: 

(a) FRC without hole; (b) FRC with hole. 
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As shown in Figure 25, it can be seen that at the fiber angle of 0°, the cracks in the 

two types of FRC panels propagate in a manner similar to when only subjected to 

mechanical loads, extending along the horizontal axis. 

 

Figure 26 The crack propagation path for the angle of 60° under thermal shock: 

(a) FRC without hole; (b) FRC with hole. 

 

Figure 26 shows the crack propagation diagram at a fiber angle of 60°. The crack 

propagation in the non-perforated FRC panel is the same as when subjected to 

mechanical loads only, with cracks propagating along the direction of fiber laying. 

However, for the perforated FRC panel at a fiber angle of 60°, cracks no longer strictly 

propagate along the fiber direction. Instead, the cracks extend upwards at an angle of 

52° from the horizontal axis, consistent with the observations by Nguyen et al. [27] 

under constant heat flux boundary conditions, where cracks extend upwards at a 45° 

angle from the horizontal axis. At the angle of -60° (as shown in Figure 27), cracks 
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propagate downwards along the horizontal axis, growing towards the hole at 

approximately 56°. This phenomenon is considered to be influenced by the presence of 

holes guiding the crack propagation. 

 

Figure 27 The crack propagation path for the angle of -60° under thermal 

shock:(a) FRC without hole; (b) FRC with hole. 

 

5. Concluding remarks 

This paper applies the phase-field fracture method to investigate the influence of 

fiber inclination angle, hole size, and other factors on the fracture behavior of FRC. Our 

numerical results show that:  

(a) Regardless of the loading method used or the presence of holes, cracks in fiber-

reinforced composites (FRC) tend to propagate along the direction of fiber placement. 

This is because the stiffness of the fibers exceeds that of the substrate. Consequently, 

when the material's stiffness is dominant in a particular direction, cracks are likely to 

develop along that direction.  

(b) For unidirectional fiber-reinforced composite (FRC) panels subjected to purely 



 

33 
 

mechanical loads, increasing the number of holes within a given area results in an 

enhanced maximum load-carrying capacity of the material plate. This is because an 

increase in the number of holes leads to a more uniform distribution of the load around 

the holes, reducing stress concentration around the holes and enabling the plate to better 

distribute the load when subjected to a load, reducing local stress concentration. 

(c) Additionally, the smaller the angle between the fiber direction and the load 

direction, the higher the load bearing capacity of the FRC structure. 

(d) Compared with unidirectional fibers, curved fibers can slow down the rate of 

structural failure, and do not fail rapidly after the generation of cracks. 

We also observed that the fracture behavior of FRC under thermal shock differs 

from that under purely mechanical loads. Our investigations show that in the absence 

of holes, when only changing the fiber angle, the crack propagation for both loading 

conditions is consistent. However, for perforated FRC panels, after changing the fiber 

angle, crack propagation is influenced by the presence of holes. The direction of crack 

propagation no longer strictly follows the fiber angle but tends to grow towards the hole.  

The overall results indicate that the fiber angle significantly affects the load-

bearing capacity of the material, and the impact of the presence or absence of holes on 

crack propagation in FRC panels should not be overlooked. This can provide theoretical 

references for the design and application of fiber-reinforced composite materials. 

Despite the promising results presented in this paper for regularized structures, further 

studies are required to examine the effect of hole distribution, fiber direction, different 

reinforcement such as graphene [40, 41] and multiple load scenarios on the fracture 

behavior of complex FRC structures that are often encountered in practical engineering 

applications. 
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