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ABSTRACT
Aim: Biogenic structural complexity increases mobile animal richness and abundance at local, regional and global scales, yet an-
imal taxa vary in their response to complexity. When these taxa also vary functionally, habitat structures favouring certain taxa 
may have consequences for ecosystem function. We characterised global patterns of epifaunal invertebrates in eelgrass (Zostera 
marina) beds that varied in structural and genetic composition.
Location: North America, Europe and Asia.
Time Period: 2014.
Major Taxa Studied: Peracarid crustaceans and gastropod molluscs.
Methods: We sampled epifaunal invertebrate communities in 49 eelgrass beds across 37° latitude in two ocean basins con-
currently with measurements of eelgrass genetic diversity, structural complexity and other abiotic and biotic environmental 
variables. We examined how species richness, abundance and community composition varied with latitude and environmental 
predictors using a random forest approach. We also examined how functional trait composition varied along with community 
structure.
Results: Total species richness decreased with latitude, but this was accompanied by a taxonomic shift in dominance from pera-
carid crustaceans to gastropods, which exhibited different sets of functional traits. Greater eelgrass genetic diversity was strongly 
correlated with both richness and abundance of peracarids, but less so for gastropods.
Main Conclusions: Our results add to a growing body of literature that suggests genetic variation in plant traits influences their 
associated faunal assemblages via habitat structure. Because peracarids and gastropods exhibited distinct functional traits, our 
results suggest a tentative indirect link between broad-scale variation in plant genetic diversity and ecosystem function.
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1   |   Introduction

Structurally complex foundation species create a variety of mi-
crohabitats that can have important influences on diversity in 
animal communities in both marine and terrestrial systems 
(Loke and Chisholm  2022; MacArthur and MacArthur  1961). 
Different animal taxa may coexist by physically partitioning 
space in these habitats, based on the utility of microhabitats 
for feeding, avoiding predators or optimising physiological 
performance (Lindo and Winchester  2013; Lürig, Best, and 
Stachowicz  2016; Navarro-Mayoral et  al.  2020; Schmitz and 
Suttle  2001). At global scales, these properties of foundation 
species may contribute to latitudinal diversity gradients, en-
hancing patterns underlaid by biogeographic history, resource 
availability and other factors (Gaston  2000; Pianka  1966). In 
habitats composed of monospecific stands of foundation species, 
intraspecific trait variation can influence foundation species' 
structural complexity and suitability as habitat for numerous 
organisms (Crutsinger et al. 2006; Johnson and Agrawal 2005).

Yet, not all taxa respond equally to the same aspects of structural 
complexity. Diverse trophic guilds in many ecosystems are often 
composed of distinct lineages of taxa that have converged upon 
similar diets, despite separate origins (Lefcheck and Duffy 2015; 
Scheltema  1997). Despite their similarity in one dimension of 
trait space (e.g., diet), these lineages have distinct morpholo-
gies or other traits that may be favoured by different aspects of 
structural complexity (e.g., Montalbetti et al. 2022). Thus, func-
tionally similar species may differ in being restricted to certain 
parts of habitat or only facilitated by certain types of foundation 
species (Lasley-Rasher et al. 2011; da Silva Bomfim et al. 2021). 
For lineages that are deeply diverged in time, these filters play 
out on a background of differences in biogeographic or phylo-
genetic history, differential responses to abiotic environmental 
filters and other factors that can influence how they are distrib-
uted across broad spatial scales (Sanford  2013; Vermeij  1991; 
Weber et al. 2017). A fuller understanding of the drivers of dif-
ferences in distributions among otherwise functionally similar 
taxa should improve our ability to generalise how trait and phy-
logenetic differences affect species distributions, abundance and 
community composition.

Worldwide, habitats formed by submerged marine angiosperms 
(seagrasses) are often composed of clonal individuals of just 
one or a few species (Duffy et  al.  2022; Hughes, Stachowicz, 
and Williams 2009; Leopardas, Uy, and Nakaoka 2014; Reusch 
et  al.  2005). In these systems, variation in the number and 
identity of clonal genotypes and associated variation in shoot 
density, number of leaves, canopy height and other aspects of 
structural complexity can affect the composition of epifau-
nal invertebrate communities (Abbott et  al.  2017; Hughes, 
Stachowicz, and Williams 2009; Reusch et al. 2005). Gastropod 
molluscs and peracarid crustaceans form an important compo-
nent of these epifaunal communities around the world (Ha and 
Williams  2018; Jernakoff and Nielsen  1997; Navarro-Mayoral 
et  al.  2023; Valentine and Duffy  2006). Both are typically in-
cluded in the ‘mesograzer’ guild, feeding primarily on epiphytic 
micro- and macroalgae that foul seagrass blades, as well as detri-
tus, and live seagrass tissue itself (Fong et al. 2018; Jernakoff and 
Nielsen 1997; Murray, DuBois, and Stachowicz 2024). Yet, gas-
tropods and peracarids are phylogenetically distinct, separated 

by more than 550 million years of evolutionary history, and 
often differ distinctly in their grazing function (Eklöf et al. 2012; 
Jernakoff and Nielsen 1997; Råberg and Kautsky 2007). In some 
seagrass systems, they are also differentially susceptible to pre-
dation, with peracarids being much more vulnerable to con-
sumption than gastropods at the same sites (Eklöf et al. 2012; 
Reynolds et  al.  2018). Direct development is common to pera-
carids and when coupled with short generation times can lead 
to rapid population increases compared to gastropods, which 
have slower individual growth and more diverse developmen-
tal modes. Whether global seagrass communities dominated by 
gastropods or peracarids are distinct in other ways, including 
their responses to the structural complexity underlaid by sea-
grass genetic diversity, can have major implications for under-
standing their broader patterns of distribution and the ability 
of whole epifaunal communities to promote seagrass growth by 
suppressing algae (Hughes et al. 2004) and support higher tro-
phic levels (McDevitt-Irwin, Iacarella, and Baum 2016).

Here, using a global dataset of epifaunal invertebrate commu-
nities associated with the world's most widespread seagrass 
species (eelgrass, Zostera marina), we investigate how epifau-
nal community composition, richness and abundance vary with 
biotic and abiotic environmental predictors including eelgrass 
habitat structure and genetic diversity, on broad biogeographic 
scales. We were specifically interested in whether spatial varia-
tion in eelgrass habitat structure might correlate with variation 
in community structure. Given what has been observed relating 
the genetic diversity of foundation species to associated commu-
nity structure and ecological interactions (Barbour et al. 2015; 
Hughes et al. 2008; Whitham et al. 2006), we additionally chose 
to test the hypothesis that eelgrass genetic diversity predicts the 
abundance and diversity patterns of its associated epifauna. 
While the mechanistic explanations remain unresolved, dif-
ferences among plant genotypes in food value or habitat char-
acteristics can improve performance of individual species by 
providing diet diversity and habitat complexity and/or enhance 
diversity by allowing the partitioning of food or habitat resources 
among species (Abbott et al. 2017; Hughes et al. 2008; Whitham 
et al. 2006). We focused on spatial shifts in dominance between 
two major taxonomic groups (peracarid crustaceans and gastro-
pod molluscs) and additionally examined whether communities 
that differed in their dominant taxon were also distinct in their 
mean functional traits.

2   |   Methods

2.1   |   Study Design and Sample Collection

Between May and September 2014, we sampled 49 sites across 
the range of Z. marina, spanning 37° of latitude along the Pacific 
and Atlantic coasts of Eurasia and North America (30.4°N to 
67.3°N; Figure 1; Table S1, Figure S1) to characterise the biolog-
ical and physical structure of eelgrass beds using standardised 
measurements. Each site had 20 plots, for a total of 980 plots 
sampled as part of the Zostera experimental network (ZEN). 
Plots were 1 m2 and spaced 2 m apart at each site. We sampled 
eelgrass biomass and quantified eelgrass habitat structure at 
the plot level as described by Gross et  al.  (2022)—briefly, we 
quantified eelgrass aboveground biomass, shoot density, canopy 
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height and leaf nitrogen, as well as macroalgal biomass from 
20-cm-diameter cores in each plot. We quantified epiphyte load 
by scraping fouling microalgae from four eelgrass shoots per 
plot and drying to a constant weight. We additionally quanti-
fied eelgrass genotypic richness as the standardised number of 
genotypes (based on 8, 16 or 24 loci) between 0 (all individuals 
identical) and 1 (all individuals the same), and allelic richness as 
the average number of alleles per locus, normalised to 7 genets 
(Duffy et al. 2022).

2.2   |   Abiotic Environmental Variables

To characterise the abiotic environment experienced by epi-
fauna across the range of eelgrass, we measured in situ tem-
perature and salinity at each site at the time of sampling. To 
characterise the overall abiotic environment of each site, we 
also retrieved estimates of annual mean sea surface tempera-
ture (SST), photosynthetically active radiation (PAR), surface 
chlorophyll a (Chl a), salinity and pH from the surrounding 
region, available in the Bio-ORACLE data set (Tyberghein 
et  al.  2012). These data were taken from monthly readings 
of the Aqua-MODIS and SeaWiFS satellites at a 9.6 km2 spa-
tial resolution from 2002 to 2009. We used the raster package 

in R v. 3.6.3 (Hijmans and Etten  2020; R Development Core 
Team 2022) to extract the annual mean SST, SST range, PAR 
and Chl a from all cells within 10 km of each site and aver-
aged these cell-level estimates to generate site-level predictors. 
Other water quality parameters, including dissolved nitrate 
and other nutrients, were spatially interpolated based on sur-
face measurements in the World Ocean Database 2009 (Garcia 
et al. 2010).

2.3   |   Measuring Predation Intensity

To examine how predation intensity related to epifaunal com-
munity structure, we used prey tethering units (PTUs)—locally 
collected prey (shelled gastropods and ‘gammarid’ amphipods) 
as well as standardised prey types (dried squid and kale) teth-
ered in each plot for 24 h. Data and methods for amphipod and 
gastropod prey are reported in detail in Reynolds et al. (2018). 
Standardised squid prey were 1 cm2 pieces of dried squid at-
tached by monofilament line to one acrylic rod in each plot 
(Duffy et al. 2015). Pieces of organic curly leaf green kale mea-
suring approximately 5 × 3 cm were wrapped around acrylic 
rods to measure macroherbivory pressure at each site. Each 
PTU type was deployed in each of the four corners of each plot. 

FIGURE 1    |    Latitudinal clines in estimated species richness for all epifauna (A), peracarids (B) and gastropods (C) across global eelgrass sites. 
Plots show asymptotic bias-minimised estimates of richness calculated by modelling how abundances across 20 plots in each site affect observed 
richness. There was a significant relationship between latitude and estimated species richness for all epifauna (F1,47 = 9.91, p = 0.0029, R2 = 0.16) and 
peracarids (F1,45 = 11.40, p = 0.0015, R2 = 0.18) across the Atlantic and Pacific Oceans. Gastropods showed no significant latitudinal richness gradient. 
Note the logarithmic scale on the y-axes. Peracarid image (Apherusa cirrus) by first author, and gastropod image by Dieter Tracey, Waters and Rivers 
Commission (ian.umces.edu/media-library), used under an Attribution-ShareAlike 4.0 International licence.
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After 24 h, we removed the stakes and scored prey as present 
(uneaten) or absent (eaten); partially consumed prey were con-
sidered eaten, and moulted prey were excluded from analyses. 
We calculated site-level consumption of each prey type by aver-
aging scores across plots.

2.4   |   Epifaunal Community Composition

To sample the epifauna associated with the eelgrass blades, 
we carefully placed an open-mouthed fine-mesh drawstring 
bag (500 μm mesh, 18 cm diameter) over a clump of shoots in 
the centre of the plot so that the mouth of the bag was flush 
with the sediment surface. We then cut the shoots where they 
emerged from the sediment and quickly closed the drawstring 
to capture the shoots and associated animals. We transferred 
shoots to the lab on ice, rinsed and hand-inspected to dislodge 
the epifauna. We preserved all epifauna that remained on a 
1-mm sieve in 70% ethanol and then identified them to the 
lowest possible taxonomic level (typically species). We sepa-
rated epifaunal species into seven coarse taxonomic groups, 
including peracarid crustaceans (amphipods, isopods, tanaids 
and mysids), gastropod molluscs, polychaete annelids, bivalve 
molluscs, decapod crustaceans, anemones and others (includ-
ing but not limited to barnacles, nemertean worms, echino-
derms, ostracods and chironomid midge larvae). Together, 
peracarids and gastropods comprised the majority of indi-
viduals and species in these global epifaunal communities 
(comprising 32.10% and 56.65% of individuals and 36.34% and 
25.11% of species, respectively), and have known functional 
roles as grazers of eelgrass and associated epiphytes, so we 
chose to focus subsequent analyses on these taxa, but a full list 
of species at each site is provided in Table S2.

We scored all peracarid and gastropods identified to species 
for a common series of functional traits based on informa-
tion available in the literature, including maximum body 
size, parental care, developmental mode, tolerance of brack-
ish and freshwater (as our sites spanned a range of salinities), 
grazer diet components (fresh eelgrass tissue, eelgrass detri-
tus, macroalgae, and microalgae) and alternate nongrazing 
feeding modes (suspension feeder and carnivore/parasite/
scavenger). We also used a series of nested sieves to group in-
dividual epifauna into size classes and used these to approx-
imate mean, mode, median and maximum observed sizes 
for each identified species. We additionally estimated each 
species' latitudinal range as the difference between the two 
most extreme point observations regardless of hemisphere 
(to account for introduced species and others that span the 
equator), and latitudinal mean as the mean absolute latitude 
value of point observations, available online from the Ocean 
Biodiversity Information System (OBIS; Intergovernmental 
Oceanographic Commission of UNESCO 2023) and the Global 
Biodiversity Information Facility (GBIF; GBIF 2023). Here, we 
define functional traits according to the definition provided 
by Violle et  al.  (2007): morphological, physiological and be-
havioural traits that impact organismal fitness, which may 
also incidentally impact higher-level ecosystem functions. A 
more detailed discussion of traits including how we defined 
and measured each, and any transformations we applied prior 
to analysis is included in Table S3.

2.5   |   Functional Trait Ordination and Clustering

To examine how communities dominated by peracarids and 
gastropods varied across trait space, we calculated continuous 
community-weighted mean values (CWMs) for traits in each 
site-level community across its peracarid and gastropod compo-
nents. For binary and discrete categorical traits (11 traits with 24 
categories), continuous CWMs were the average relative abun-
dances of each trait level, while for continuous traits (6 traits), it 
was the average value—in total, each site had 30 CWM values. 
We then calculated Bray–Curtis distances among sites based on 
the CWM-by-site matrix, and visualised sites in trait space using 
an NMDS ordination.

To examine any geographic signal in the trait composition of 
these communities, we hierarchically clustered communities 
in trait space based on average Bray–Curtis distances, separat-
ing clusters into discrete groups based on a minimum average 
distance of 0.1. We then recalculated group-level CWMs by 
considering individuals from all sites within a group to be part 
of one community to see how average traits differed across 
groups.

2.6   |   Data Analyses

We first examined how species richness varied across latitude, 
both for the entire epifaunal community and separately for 
gastropods and peracarids. Because richness estimates may 
be biased due to patchy distributions and low abundances, 
we used asymptotic bias-minimised estimates of richness in 
our models (Tekwa et  al.  2023). Briefly, this method models 
how abundance and occupancy of species across the 20 plots 
in each site affect observed richness by estimating the species-
level probability of observation across all 20 plots. We addi-
tionally examined how the relative abundance per sample bag 
of each of these two groups varied across latitudes and ocean 
basins.

We modelled the response of relative abundance of gastropods 
or peracarids to latitude in generalised linear models as the 
total proportion of ‘successes’ (i.e., whether an individual is a 
gastropod or peracarid vs. other) in each site's pooled sample of 
individual epifauna with a quasibinomial error distribution and 
a logit link function, which accounts for overdispersion and un-
even epifaunal abundances (van der Kolk et al. 2024; Reynolds 
et  al.  2018). We log-transformed estimated richness as a re-
sponse to latitude in linear models. We assessed model predictor 
significance using the Anova() function in the car package (Fox 
and Weisberg 2019).

To identify candidate predictors of the relative abundance 
of peracarids and gastropods across sites, we used the log-
transformed ratio of peracarid relative abundance to gastropod 
relative abundance (hereafter log ratio) as the response vari-
able in a random forest model that incorporated both abiotic 
and biotic environmental predictor variables. Our full list of 
predictors included ocean basin; the first two principal compo-
nents of eelgrass morphology (including sheath length, sheath 
width, longest leaf length, shoot density and aboveground 
biomass; Figure S2); predation on squid, kale, gastropods and 
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peracarids; eelgrass genetic diversity; eelgrass morphology; 
algal abundance; temperature and salinity; light availability, 
epiphyte load and water column chlorophyll; and water col-
umn nutrients (Table S4). We included ocean basin as a cate-
gorical predictor that captures broad and difficult-to-capture 
differences between the Atlantic and Pacific oceans, includ-
ing age, phylogenetic history and connectivity within basins. 
When two variables showed a pairwise Kendall's τ correlation 
value of greater than 0.6, only one was included in the predic-
tor pool (Figure  S3). To minimise error rates and maximise 
computing efficiency, we tuned our random forest model by 
visually inspecting mean-squared error across all trees in the 
model and adjusted the number of trees to the smallest number 
for which error was consistently low. We also used the train 
function in the R package caret (Kuhn 2008) to find the opti-
mal number of variables tried at each split in each regression 
tree in the forest. We identified the top 10 predictors of rela-
tive abundance from each forest by the degree to which they 
increased MSE when removed from the model and the total 
increase in node impurities when removed from the model.

We then performed a model selection procedure to determine 
the best predictor of the log ratio of peracarids to gastropods. 
First, we created a set of 10 a priori linear models of the log ratio 
against the top 10 predictors, which were transformed as ap-
propriate to conform to a normal distribution (Table  1). From 
here, we selected eight predictors for which the 85% confidence 
limit of the standardised effect size did not overlap zero, an ap-
proach consistent with selection by AICc that permits additional 
predictors to be tested that may otherwise not be considered 
(Sutherland et al. 2023). Finally, we included these eight predic-
tors (eelgrass allelic and genotypic richness, in situ temperature, 
mean eelgrass leaf % C, herbivory, ocean and eelgrass morphol-
ogy PC1 and PC2) in a full model along with interactions with 
ocean basin (to account for unmeasured factors that may influ-
ence the behaviour of continuous predictors in each ocean—a 

total of 16 parameters) and performed automated model selec-
tion based on AICc using the dredge function in the MuMIn 
package (Bartoń  2020). Where two models had a ΔAICc less 
than 2 units, we selected the model with the fewest parameters 
for interpretation.

To specifically examine the responses of gastropods and 
peracarids to aspects of eelgrass habitat composition and 
structural complexity, we modelled the richness and total 
abundance of gastropods and peracarids as a function of eel-
grass allelic richness, genotypic richness and the first two 
principal components of eelgrass morphology. To confirm the 
effect of genetic diversity on the diversity of habitat structure 
in eelgrass, we examined the significance of modelled rela-
tionships between genetic diversity and among-plot variation 
(as standard deviation) in eelgrass morphology along the first 
two principal components.

To test whether gastropods and peracarids contributed dis-
tinct, nonoverlapping suites of traits to epifaunal communi-
ties, we asked whether the log ratio of the two taxa determined 
the clustering of sites in trait space. We performed a permuta-
tional multivariate ANOVA (PERMANOVA) with log ratio as 
a predictor on the Bray–Curtis distances of CWMs between 
sites, using 9999 permutations in the vegan package in R 
(Oksanen et al. 2022). We also investigated whether the vol-
ume of trait space occupied by gastropod-dominated (nega-
tive log ratio) or peracarid-dominated (positive log ratio) sites 
differed significantly from each other by measuring the aver-
age dissimilarity from individual sites to their group centroid 
(Anderson, Ellingsen, and McArdle 2006). Because this pro-
cedure requires discrete categories across which to compare 
variances, we assigned sites with positive and negative log ra-
tios to separate groups and compared between them. All sta-
tistical analyses were conducted in R v.4.2.2 (R Development 
Core Team 2022).

TABLE 1    |    Top 10 predictors in a random forest model that explained 21.52% of variation in the log ratio of peracarid relative abundance to 
gastropod relative abundance across global eelgrass sites. Bolded rows indicate predictors included in an initial combined model of log ratio; italicised 
rows indicate predictors included in the best model selected from the initial combined model.

Predictor Transformation
% Increase 

in MSE
% Increase in 

node impurity

Ocean None 14.44 12.71

Eelgrass morphology PC1 (62.09%) None 10.39 16.08

Mean eelgrass leaf % C None 9.70 13.58

In situ temperature (°C) None 8.44 11.10

Eelgrass allelic richness (avg. number of alleles 
per locus, normalised to 7 genets)

Richness2 8.43 14.62

Herbivory (mean presence/absence of kale) logit 7.66 12.26

Eelgrass morphology PC2 (24.34%) None 6.50 11.85

Salinity (ppt) Salinity4/100,000 6.38 9.10

Mean Water Column Chl a log 6.05 10.40

Genotypic Richness (effective number of 
distinct genotypes)

None 5.03 6.72

Note: Richness2 represents allelic richness squared, and Salinity4 represents salinity raised to the fourth power.
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3   |   Results

3.1   |   Latitudinal Clines in Diversity 
and Abundance

As is typical for many marine and terrestrial systems, estimated 
epifaunal species richness declined with increasing latitude 
(F1,45 = 10.06, p = 0.0027, R2 = 0.17; Figure 1A), and there was no 
difference in the richness gradient between oceans (F1,45 = 0.33, 
p = 0.57), although we note that our sampling region includes 
only temperate latitudes. Peracarid species richness showed 
a similar latitudinal cline in both ocean basins (F1,45 = 11.40, 
p = 0.0015, R2 = 0.18; Figure 1B). Gastropods showed no signif-
icant latitudinal clines in species richness (Figure 1C). Species 
richness increased with total abundance for peracarids, but not 
for gastropods (Figure S2).

We found striking clines in the relative abundance of both pe-
racarids and gastropods across the 37° of latitude surveyed in 
our study—at high latitudes, gastropods dominated (χ2

1 = 60.55, 
p < 0.001; Figure 2B), while at lower latitudes, peracarids dom-
inated (χ2

1 = 47.56, p < 0.001; Figure 2A). For peracarids, these 
patterns also differed by ocean basin—in the Pacific, peracarids 
dominated (66.42% of epifauna on average) and declined more 
slowly with increasing latitude than in the Atlantic (27.97% on 
average; χ2

1 = 7.72, p = 0.0055; Figure  2A). Gastropods did not 
show significant differences in abundance or latitudinal clines 
between oceans, but their proportion in the Atlantic (52.70%) 
was larger on average than in the Pacific (19.43%). There were 
few sites dominated by other epifaunal taxa, including anem-
ones, mussels and polychaete worms. While this dominance of 
other taxa did not vary significantly by latitude or ocean basin 
(Figure 2C), we did find that the relative abundance of decapods 
declined with latitude (χ2

1 = 26.98, p < 0.001; Figure S5).

3.2   |   Predictors of Taxonomic Structure

Our random forest model employed to predict the log ratio of 
peracarids to gastropods across sites used 3000 trees, testing 
two variables at each node with an average of 12.03 nodes per 
tree and explaining 21.52% of the variance in log ratios. Top 
predictors in this model included eelgrass morphology PC1 
and PC2 (positively correlated with shorter leaf lengths and 
narrower sheath widths, and higher aboveground biomass and 
shoot density, respectively; Figure S2), ocean basin, eelgrass leaf 
carbon content, herbivory, in situ temperature, eelgrass allelic 
and genotypic richness, mean water column Chl a and salinity 
(Table 1, Table S5). In particular, ocean basin, allelic richness, 
herbivory and genotypic richness had the strongest effects (1.49, 
0.47, 0.46 and 0.41 predictor standard deviations per standard 
deviation of log ratio, respectively; Figure 3A, Table S5), indicat-
ing increases in peracarids with increasing genotypic and allelic 
richness, herbivory and in the Pacific Ocean.

The log ratio of peracarids to gastropods was best explained by 
an additive model including only eelgrass allelic richness and 
ocean basin (F2,43 = 13.77, R2 = 0.36, p < 0.001), although the 
model with the lowest AICc additionally included eelgrass PC2 
(F3,42 = 10.94, R2 = 0.40, p < 0.001; Table S5). Log ratios increased 
(more peracarids relative to gastropods) with eelgrass allelic 
richness (Figure 3B) and were greater in the Pacific than in the 
Atlantic Ocean (Figure  3C). Eelgrass allelic richness declined 
with increasing latitude, while eelgrass allelic richness and mor-
phological variation were greater on average in the Pacific than 
in the Atlantic (Figure S2, see also Duffy et al. 2022).

Peracarid abundance and richness showed significant responses 
to eelgrass allelic richness, genotypic richness and the first two 
principal components of eelgrass morphology—sites with more 

FIGURE 2    |    Latitudinal clines in the dominance of peracarid crustaceans (A) and gastropods (B) across global epifaunal communities (C). 
The relative abundance of each taxon changed significantly with latitude (peracarids χ2

1 = 47.56, p < 0.001; gastropods χ2
1 = 60.55, p < 0.001). For 

peracarids, the latitudinal clines varied significantly between ocean basins (χ2
1 = 7.72, p = 0.0055). Point sizes in Panels A and B represent the total 

number of individuals pooled across 20 plots in a site. Site labels in C are coloured according to ocean basin as in Panel A, and arranged from lowest 
(on the left) to highest latitude (on the right); site locations are shown in Figure S1 and Table S1.
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genetically diverse eelgrass, eelgrass with wider, longer blades 
(negative PC1 scores) and higher shoot density and greater abo-
veground biomass (positive PC2) scores, had more peracarid 
species and individuals (Tables S6 and S7, Figures S6 and S7). 
Gastropod species richness showed no positive responses to 
eelgrass structural complexity or genetic diversity (Table  S6, 
Figure  S6), and abundance responded positively only to PC1 
(Table  S7, Figure  S7). Increased eelgrass allelic and genotypic 
richness was associated with increased eelgrass morphological 
variation along PC1and PC2 (p = 0.0050 and p = 0.068, respec-
tively) and to a lesser extent PC1 (p = 0.095 and p = 0.13, respec-
tively; see Table S8 for full analysis).

3.3   |   Gastropod and Peracarid Effects on Site-Level 
Trait Structure

Gastropod-dominated epifaunal communities (those with a 
negative log ratio) occupied a distinctive area of ordination 
space from peracarid-dominated communities (positive log 
ratio; pseudo-F1,44 = 14.70, p < 0.001, R2 = 0.25; Figure  4A). 
Gastropod and peracarid species also occupied distinct regions 
of trait space (Figure  S8). The proportion of other epifaunal 
taxa did not significantly affect a community's trait assemblage 
(pseudo-F1,44 = 0.31, p = 0.79, R2 = 0.00697). Despite taxonomic 

differences, gastropod-dominated and peracarid-dominated 
sites did not occupy significantly different volumes of functional 
trait space (F1,47 = 0.15, p = 0.70, R2 = 0.0032).

Our hierarchical clustering scheme produced five distinct 
groups of sites with different mean trait values for both pe-
racarids and gastropods (Figure  4B). The first group (‘cold 
Pacific’) consisted of cool-temperate Northeast Pacific sites 
in British Columbia, the outer coast of Washington State 
(Willapa Bay), Oregon and Northern California, as well as 
sites in Japan (Hokkaido), South Korea, New York, Portugal 
and one site in Mediterranean France. The second group con-
sisted of one site in Croatia, where we only found the snails 
Bittium reticulatum and Hydrobia acuta neglecta. The third 
group (‘warm sites’) consisted of warm-temperate to subtrop-
ical sites in Southern California, Mexico (Baja California), 
Virginia and North Carolina, as well as one site in the Salish 
Sea (Dabob Bay). The fourth group (‘cold Atlantic’) consisted 
of cold temperate sites on both sides of the Atlantic, including 
New York, Massachusetts, Quebec, France, Ireland, Wales, 
Sweden, Finland, Norway and Russia (White Sea). The fifth 
group (‘Asia’) included sites in Japan and South Korea as well 
as one site in Southern California (San Diego Bay). Groups 
varied mostly by mean maximum body length (from the litera-
ture; group 1: 24.63 mm; group 5: 11.50 mm), latitudinal range 

FIGURE 3    |    Predictors of the log-transformed ratio of peracarid relative abundance to gastropod relative abundance in epifaunal communities 
across sites. Of the top 10 predictors identified by an initial random forest model (A), we selected the eight whose 85% confidence interval did not 
overlap 0 (in bold) for further testing. Log ratios were best explained by an additive model (F2,43 = 13.77, R2 = 0.36, p < 0.001), including eelgrass 
allelic richness (B) and ocean basin (C); panels show residual variation in log ratio after accounting for the other factor. Communities shifted from 
being dominated by gastropods to peracarids as eelgrass allelic richness (avg. number of alleles per locus, normalised to seven genets; B; F1,43 = 8.75, 
p = 0.005) increased. Communities in the Pacific were more peracarid dominated than those in the Atlantic, which were more gastropod dominated 
(C; F1,43 = 18.80, p < 0.001). In A, thick lines indicate 85% confidence limits for standardised predictor effects, while thinner lines indicate 95% 
confidence limits. In B and C, the horizontal dashed line indicates a 1:1 ratio of gastropods to peracarids.
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(group 2: 68.47°; group 5: 21.64°) and mean latitude (group 4: 
52.47°; group 3: 36.32°), while all groups were dominated by 
microalgal grazers and marine species (Table 2).

4   |   Discussion

We found a prominent latitudinal gradient in the species rich-
ness of epifaunal invertebrates inhabiting eelgrass, with greater 
richness at lower latitudes (Figure  1A). Peracarid crustaceans 
followed this same trend (Figure 1B), but the pattern was not ob-
served for gastropods (Figure 1C). While the decline in species 
richness with latitude is typical for many terrestrial systems and 
some marine systems (Gaston 2000; Pianka 1966), evidence in-
creasingly shows that for most marine taxa, richness peaks at mid-
latitudes, with a dip near the equator (Arfianti and Costello 2020; 
Chaudhary, Saeedi, and Costello 2016; Thyrring and Peck 2021). 
Furthermore, previously published analyses place peaks in gas-
tropod species richness between 25°N and 30°N and peracarid 
(amphipod) richness between 50°N and 60°N in the northern 
hemisphere (Arfianti and Costello  2020; Chaudhary, Saeedi, 
and Costello 2016), in direct contrast with our results. However, 
those analyses pooled species across multiple nearshore habitat 
types, including seagrasses, coral reefs, rocky shores and soft 
sediments. In contrast, our observed peaks in richness at lower 
latitudes for total epifauna and peracarids are based on a stan-
dardised sampling protocol within a single, widespread habitat 
type. Thus, they likely reflect the responses of these taxa specifi-
cally to unique characteristics of eelgrass habitat that overwhelm 
the influence of broader drivers of species richness.

The composition of epifaunal communities shifted from being 
peracarid dominated to gastropod dominated at high latitudes, 

especially in the Atlantic (Figure 2A,B). As far as we are aware, 
this latitudinal gradient in taxonomic composition has not 
been documented elsewhere in the literature, although there 
is some limited evidence that gastropods may be more abun-
dant in high-latitude seagrass beds than in low-latitude beds 
(Barnes and Ellwood  2011). This shift in relative abundance 
appears to derive solely from an increase in peracarid species 
richness (and abundance) with decreasing latitude (Figure  1B 
and Figure S4A)—gastropods did not show any latitudinal gra-
dient in species richness (Figure 1C), nor a relationship between 
species richness and abundance (Figure S4B). The contrast in 
latitudinal gradients between these taxa, coupled with the con-
sistent effects of eelgrass genetic diversity and habitat structure 
(Figure 3A, Table S5), suggests that these gradients in richness 
and relative abundance are not likely driven by processes thought 
to generate latitudinal diversity gradients, such as temperature. 
Although we note a positive effect of in situ temperature on the 
log ratio of peracarids to gastropods, it is overshadowed by the 
effects of ocean basin and genetic diversity (Figure 3A).

Despite differences in the relative abundances of peracarids 
and gastropods between the Pacific and Atlantic (Figure  3C), 
we still observed significant increases in gastropod dominance 
relative to peracarids with increasing latitude in Pacific sites, 
suggesting additional mechanisms acting within ocean basins 
to drive the latitudinal pattern. Notably, relative dominance of 
peracarids increased with eelgrass allelic richness, an effect that 
persisted after accounting for ocean basin (Figure 3B). Eelgrass 
genetic diversity and variation in morphology are both greater 
in the Pacific than in the Atlantic, the result of bottlenecks that 
occurred during its colonisation of the Atlantic via the Arctic 
(Duffy et al. 2022; Olsen et al. 2004; Yu et al. 2023; Figure S2A). 
The response of epifaunal communities to structural complexity 

FIGURE 4    |    NMDS ordinations of eelgrass epifaunal communities in trait space. Points represent individual sites, and points that fall more closely 
together are more similar in community-weighted mean trait values. In (A), sites are coloured by the log ratio of the relative abundance of peracarids 
and gastropods; positive log ratios indicate more peracarids than gastropods, while negative log ratios indicate more gastropods than peracarids. Log 
ratios significantly predicted sites' positions in trait space (pseudo-F1,44 = 14.70, p < 0.001, R2 = 0.25). In (B), the same sites are coloured according to 
membership to one of five groups created by hierarchical clustering based on similarities in community-weighted mean trait values; Group 2 circled 
for visibility. In (A), Site WA.A had no gastropods; Sites RU.A and RU.B had no peracarids. Inset map shows the geographic locations of groups.
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in eelgrass is well characterised (Carr, Boyer, and Brooks 2011; 
Lürig, Best, and Stachowicz  2016; Orth  1992), particularly as 
refuge from predators. Experimental studies within a single lo-
cation show that eelgrass genetic diversity affects the abundance 
and richness of epifaunal mesograzers and that genetic diver-
sity is associated with eelgrass trait diversity (Abbott et al. 2017; 
Hughes, Stachowicz, and Williams  2009; Reusch et  al.  2005; 
Figure  S2B,C). We did find some evidence that genetic diver-
sity (especially allelic richness) was associated with variation 
in eelgrass morphology in our dataset (Table S8), suggesting a 
potential link between genetic variation and structural complex-
ity. Differences in shoot density, width and length as a result of 
genetic differentiation may potentially create a greater variety 
of microhabitats that support more peracarid species and indi-
viduals—for example, longer leaves create horizontal ‘canopies’ 
that are distinct from vertical ‘stem’ habitats (Lürig, Best, and 
Stachowicz 2016; Navarro-Mayoral et al. 2023).

Eelgrass PC2 and PC1 were top predictors of peracarid domi-
nance in our random forest model, indicating that aspects of eel-
grass morphology, notably shoot density, leaf length and sheath 
width are also associated with epifaunal log ratios (Table  1). 
Our previous work found that these (and other) aspects of plant 
morphology are associated with genetic composition rather 
than diversity, suggesting a link among eelgrass genetics, struc-
tural complexity and animal communities (Duffy et al. 2022). 
Furthermore, genetic measures here are from noncoding mi-
crosatellite DNA markers, and thus any link between plant ge-
netics and function is necessarily correlative only (although we 
note that we recover similar patterns of geographic variation in 
genetics with whole-genome sequencing, albeit at fewer loca-
tions [compare Duffy et al. 2022 and Yu et al. 2023]). Eelgrass 
genetic diversity thus may be correlated with other factors that 
could drive differences in log ratios, whether through plant mor-
phology or other pathways, but we did not recover these in our 
analyses.

Log ratios showed a significant positive relationship with pe-
racarid species richness, but no relationship with gastropod 
richness (Figure  S4). If peracarid species are functionally 
distinct, the greater richness and abundance of peracarids 
at lower latitudes suggest that they occupy a greater volume 
of trait space in these sites and may competitively exclude 
gastropods, particularly if peracarids are also facilitated by 
greater eelgrass structural complexity (Figure  S6, Table  S6). 
Yet, our ordinations (Figure 4, Figure S8) point to distinctions 
between the traits of gastropods and peracarids, rather than 
overlap. However, the limited number of comparable traits we 
were able to assemble for both gastropods and peracarids may 
reflect niche differences that promote stabilising coexistence 
rather than fitness differences (sensu Chesson 2000; Mayfield 
and Levine  2010), obscuring potential interactions between 
these two taxa that may lead to competitive exclusion. For ex-
ample, in many cases, gastropods and peracarids differ in their 
feeding rates on microalgae, macroalgae or detritus (Graça, 
Newell, and Kneib 2000; Råberg and Kautsky 2007; Sampaio 
et al. 2017), which may lead to competitive exclusion if multiple 
species focus on the same food source. Peracarids tend to be 
more selective grazers than gastropods, and greater richness 
of peracarid species with nonoverlapping diets may contrib-
ute to the exclusion of gastropods (Duffy and Harvilicz 2001; T
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Jernakoff and Nielsen  1997). An increase in herbivory with 
increasing dominance of peracarids (Figure  3A) could indi-
cate that peracarids are monopolising algal food sources to 
the detriment of gastropods. Peracarids may also dislodge or 
even prey upon small molluscs (Lefcheck et al. 2014). It seems 
unlikely that these behaviours would have a major effect on 
global distributions of the two taxa, but this remains to be 
tested.

Latitudinally, our network is notably biased in its sampling of 
eelgrass epifauna in the Atlantic and Pacific Oceans. Our 29 
Atlantic sites span nearly 33° of latitude—nearly the full lati-
tudinal range of eelgrass in the Atlantic (Green and Short 2003; 
den Hartog 1970)—and include 14 of our highest-latitude sites 
(Figure  2C). In the Pacific, the remaining 20 sites span 18.6° 
of latitude, excluding higher-latitude areas in Alaska, British 
Columbia and the Sea of Okhotsk where eelgrass is known to 
occur. The latitudinal shift in dominance from peracarids to 
gastropods thus seems to be in part driven by high-latitude 
gastropod-dominated Atlantic sites at one extreme, and low-
latitude peracarid-dominated Pacific sites at the other (Figures 2 
and 3C). However, the trend, while weaker, is still observable in 
the limited latitudinal range of our Pacific sites (Figure 2), and 
we have anecdotal evidence to support that gastropods are more 
abundant than peracarids in Pacific sites up to 59°N (Duffy 
et al. 2015a; Aoki et al. 2024).

In many of the high-latitude Northeast Atlantic sites that 
strongly contribute to the latitudinal dominance pattern, we 
observed that peracarids have declined dramatically in abun-
dance because of overfishing and mesopredator release (Baden 
et  al.  2012; Synnes et  al.  2023). The dominance pattern may 
instead reflect geographic variation in human impacts more 
than a legacy effect of eelgrass range expansion and genetic 
diversity. Of note here is the fact that the mean and maximum 
observed sizes of epifauna (gastropods and peracarids) are the 
smallest in the ‘Cold Atlantic’ group of sites, which contrasts 
with the general trend for increased body size in colder envi-
ronments (Atkinson and Sibly  1997), but might be expected 
under heavy predation pressure. However, past work (Reynolds 
et al. 2018) shows that even if predation on peracarids has in-
creased recently in these northern sites, it is still lower than 
those at the southern end of Z. marina's distribution, and that 
the recent reductions in peracarid abundance in the north may 
strengthen the underlying pattern of taxonomic dominance. 
Furthermore, the effects of fishing are hardly limited to one 
geographic region.

Regardless of the proximate mechanisms behind the latitu-
dinal shift of taxonomic composition we observed, they ul-
timately contribute to significant, large-scale differences in 
the functional trait structure of global eelgrass communities. 
Gastropod-dominated sites were not only geographically dis-
tinct but also occupied a distinct area of trait space from com-
munities dominated by peracarids (Figure 4A). Sites with ally 
similar mesograzers appeared to group according to similar 
latitudes within but rarely between ocean basins (Figure 4B), 
emphasising the role of distinct ocean basins as well as cor-
related aspects of eelgrass habitat structure in affecting the 
structure of epifaunal communities (Figure 3A,C). Epifaunal 
mesograzer communities in seagrass beds play a critical role in 

linking the primary production of algae and seagrass to popu-
lations of larger predators, including juveniles of economically 
important fishery species (Blandon and zu Ermgassen  2014; 
Heck, Hays, and Orth  2003; McDevitt-Irwin, Iacarella, and 
Baum 2016). Because epifauna vary in their ability to consume 
fouling epiphytes, feed directly on seagrass tissue and their 
palatability to predators (Jernakoff and Nielsen  1997; Lewis 
and Anderson 2012; Reynolds et al. 2018), understanding the 
functional consequences of variation in taxonomic structure 
across broad biogeographic regions may help us begin to pre-
dict the otherwise idiosyncratic and geographically variable 
dynamics of seagrass ecosystem function (Duffy, Hughes, and 
Moksnes 2014).
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