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1 Introduction

Perturbative scattering amplitudes are a key component for comparing theory to experiment
and with increasing experimental data there is an insatiable demand for more accurate
theoretical predictions [1]. Amplitudes are also of interest both for comparing theory to
experiment and for viewing symmetries that may not be obvious from the perspective of the
Lagrangian. Since the Standard Model of Particle Physics is a gauge theory, amplitudes in
gauge theories are of particular interest. There has been great progress in the methodology
of computing scattering amplitudes but they remain challenging.

In Yang-Mills theory, we can expand the scattering amplitude of n-gluons in terms of
the gauge coupling constant, g,

An = gn−2∑
ℓ≥0

aℓA(ℓ)
n (1.1)

where a = g2e−ϵγE /(4π)2−ϵ (we use dimensional regularisation and work in d = 4 − 2ϵ

dimensions). The A(ℓ)
n are the ℓ-loop amplitudes. These depend both upon kinematic

information of the particles but also their gauge content. It has proven useful to separate,
if possible, the kinematic and color information by expanding the amplitude in terms of
color structures,

A(ℓ)
n =

∑
λ

A
(ℓ)
n:λCλ . (1.2)

We will use a color trace expansion where external states are labelled by matrices in the
SU(Nc) or U(Nc) algebra. The Cλ then contain traces over the SU(Nc) or U(Nc) matrices of
the color symmetry, as well as factors of Nc [2–4]. The A

(ℓ)
n:λ are known as partial amplitudes.

The An are fully crossing symmetric but the A
(ℓ)
n:λ only possess symmetries related to Cλ.

They can be arranged according to the accompanying power of Nc with the partial amplitude
accompanying N ℓ

c is often referred to as “leading in color”, with other partial amplitudes
being “sub-leading in color”, “sub-sub-leading in color” etc.

The form of an amplitude is also dependent on the helicities of the gluons involved. Some
helicity configurations, such as all same (we take as positive), lead to simpler amplitudes due
to the increased symmetry. The calculation of the two-loop all-plus amplitude is made easier
because the tree-level all-plus amplitudes vanish and then consequentially the one-loop is
purely rational. This helicity amplitude was the first to be computed for all-n at one loop [5].
The one-loop all-plus being related both to the N = 4 supersymmetric MHV amplitude by
dimension shifting [6] and also is equal to that for self-dual Yang-Mills [7, 8].

There has been significant progress on calculating tree and one-loop gluon scattering
amplitudes however for two-loop amplitudes, work is ongoing with results only available for
a small number of external legs and/or helicities. The situation is much better in theories
with enhanced symmetry such as maximal N = 4 supersymmetric Yang-Mills.

First we summarise existing results. The four gluon amplitude was the first scatter-
ing amplitude to be computed with full-color and for all helicity configurations. This was
performed in various dimensional regularisation schemes [9, 10] and to all orders of the
regulator [11]. Beyond four points progress has been incremental and all partial ampli-
tudes of the five gluon amplitude have now been calculated: the all-plus leading in color
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partial amplitude was first calculated using a generalised unitarity procedure [12, 13] then
presented more compactly in [14]. It was re-derived using a simpler method of four di-
mensional unitarity and augmented recursion in [15], which is the method we use. Later,
the remaining all-plus color structures were calculated in [16, 17], completing the all-plus
amplitude. The single-minus helicity leading in color partial amplitude was obtained in [18]
and the remaining leading in color helicity configurations were obtained in [19], both us-
ing finite field numerical methods. Recently, the remaining color structures have been
computed [20, 21].

For six gluons, only the all-plus amplitude has been computed (leading in color [22], then
full-color [23]), using four dimensional unitarity and augmented recursion. The seven gluon
all-plus leading in color partial amplitude has also been calculated using this methodology [24].
An n-point expression for the all-plus single color trace, N0

c partial amplitude was conjectured
in [25] using various consistency conditions. and verified in [26] up to eight points. satisfying
various consistency conditions.

This paper presents a compact analytic form of the two-loop seven gluon all-plus am-
plitude, at full color, A(2)

7 (1+, 2+, 3+, 4+, 5+, 6+, 7+). This involves re-deriving the leading
color piece and confirming the structure of the single trace Nc-independent piece, as well
as deriving the remaining partial amplitudes for the first time. We use the method of four
dimensional unitarity cuts to obtain the polylogarithmic parts of these results in a simple
way. Recursion is used to obtain the rational terms however due to the presence of double
poles in momenta, augmented recursion [27] must be used.

The results we present can be used as a test for possible linear relations among the
partial amplitudes. Any relation independent of helicity must hold for the all-plus although
obviously the reverse is not true. As such we can definitively rule out possible relations
and leave remaining potential relation. We use a decomposition of the partial amplitudes
under the symmetric group which allows us to categorise all possible relations satisfied
by the full seven point amplitude and also the polylogarithmic part of the eight and nine
point amplitudes. The nine-point triple trace partial amplitude satisfies relations beyond
those obtained by decoupling although this is only verified for the all-plus amplitude and
its polylogarithmic part.

We will structure the paper as follows: The next section sets out conventions and
background on full color amplitudes. The following section describes the separation into
pieces to be treated with differing techniques. The method of four dimensional unitarity will
be presented, followed by the polylogarithmic results. Augmented recursion will be presented,
followed by rational results. (with details of the new currents in an appendix). We then
use the full results for n = 7 and the polylogarithmic parts of n = 8, 9 as a probe to search
for linear relations amongst the partial amplitudes.
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2 Full color amplitudes

2.1 Color decomposition

We first review the color decomposition of the n-gluon amplitude at tree and one-loop level.
At tree-level, the color decomposition is

A(0)
n (1, 2, · · · , n) =

∑
Sn/Pn:1

T[Ta1 · · ·Tan ]A(0)
n:1(a1, · · · , an) (2.1)

in a color trace basis [2–4, 28]. While we are generally interested in amplitudes with gluons
in a pure SU(Nc) theory, it can be useful to calculate those structures that occur in a U(Nc)
theory, so we allow for either. The T a are generators in the fundamental representation of
SU(Nc) or U(Nc). The partial amplitudes A

(0)
n:1(a1, · · · , an) are gauge invariant and cyclicly

symmetric and hence the Sn/Pn:1 sum is over the (n − 1)! permutations of (1, · · · , n) up
to this cyclic symmetry.

At one-loop level, the decomposition is [29]

A(1)
n (1,2, · · · ,n) = Nc

∑
Sn/Pn:1

T[Ta1 · · ·Tan ]A(1)
n:1(a1, · · · ,an) (2.2)

+
⌊n/2⌋+1∑

r=2

∑
Sn/Pn:r

T[Ta1 · · ·Tar−1 ]T[Tbr · · ·Tbn ]A(1)
n:r(a1, · · · ,ar−1;br, · · · ,bn)

where the A
(1)
n:r(a1, · · · , ar−1; br, · · · , bn) partial amplitudes have cyclic symmetry to match

their accompanying traces. Where the two traces have the same length, the partial amplitude
also has an additional Z2 symmetry upon interchanging these sets of legs. The Sn/Pn:r sum
is over permutations of external legs up to these symmetries, so that every possible color
trace structure occurs exactly once in the overall sum.

At two-loop level [17],

A(2)
n (1, 2, · · · , n) = N2

c

∑
Sn/Pn:1

T[Ta1 · · ·Tan ]A(2)
n:1(a1, · · · , an)

+Nc

⌊n/2⌋+1∑
r=2

∑
Sn/Pn:r

T[Ta1 · · ·Tar−1 ]T[Tbr · · ·Tbn ]A(2)
n:r(a1, · · · , ar−1; br, · · · , bn)

+
⌊n/3⌋∑
s=1

⌊(n−s)/2⌋∑
t=s

∑
Sn/Pn:s,t

T[Ta1 · · ·Tas ]T[Tbs+1 · · ·Tbs+t ]T[Tcs+t+1 · · ·Tcn ]

×A
(2)
n:s,t(a1, · · · , as; bs+1, · · · , bs+t; cs+t+1, · · · , cn)

+
∑

Sn/Pn:1

T[Ta1 · · ·Tan ]A(2)
n:1B(a1, · · · , an) (2.3)

with three-trace partial amplitudes and a new single-trace Nc-independent amplitude A
(2)
n:1B

appearing. The symmetry factors Pn:1, Pn:r and Pn:s,t in each case describe the symmetries
of cycling the arguments of the trace structures, or interchanging two or three trace structures
when they are of equal length. The partial amplitudes themselves are invariant under
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the relevant Pn:1, Pn:r or Pn:s,t. For example, A
(2)
7:2,2(1, 2; 3, 4; 5, 6, 7) is invariant under

P7;2,2 = Z2(1, 2)×Z2(3, 4)×Z3(5, 6, 7)×Z2({1, 2}, {3, 4}). The sum is then over permutations
of the legs up to this symmetry, Sn/Pn. Additionally, amplitudes are flip-invariant under
reflection, where the order within each trace is reversed together with a (−1)n. That is,

A
(2)
n:s,t(a1, · · · , as;bs+1, · · · , bs+t; cs+t+1, · · · , cn)

= (−1)nA
(2)
n:s,t(as, · · · , a1; bs+t, · · · , bs+1; cn, · · · , cs+t+1) . (2.4)

In the SU(Nc) theory, factors of T[Ta] vanish, so terms A
(2)
n:2 and A

(2)
n:1,t would not appear

in the above expansions.
For tree and one-loop amplitudes other color decompositions exist. Specifically the

decomposition [30] exists for tree amplitudes which reduces the number of independent
amplitudes to (n − 2)!. This has implications for relations amongst the amplitudes which
we will look at later. Although, this decomposition also extends to one-loop it is less well
developed beyond and so we will work in the color trace formalism and accept the redundancy
as a usefull consistency check.

2.2 Decoupling identities

The partial amplitudes solely associated with a U(Nc) symmetry, A
(2)
n:2 and A

(2)
n:1,t still play a

role in our calculations. Specifically, there are decoupling identities which allow us to express
the A

(2)
n:2,2 and A

(2)
n:2,3 in terms of the A

(2)
n:1,t. Further decoupling identities then relate these

to the sub-leading partial amplitudes A
(2)
n:2,2 r > 2. The first triple trace amplitude which

is not obtainable via decoupling identities is the nine point A
(2)
9:3,3.

Letting a gluon lie in the U(1) part of U(Nc), we would expect the amplitude to vanish.
Choosing, say, T 1 → T 1

U(1) = N
−1/2
c In, we see T[T1

U(1)] = N+1/2
c and T[T1

U(1)T2 · · · · · ·Tr] =
N−1/2

c T[T2 · · ·Tr]. Examining the coefficient of a given trace structure, and equating to
zero we find relations between partial amplitudes known as decoupling identities. These
allow the U(Nc) partial amplitudes to be related to SU(Nc) partial amplitudes and include
relations among the SU(Nc) partial amplitudes.

The two-loop seven-point amplitude possesses five SU(Nc) partial amplitudes: A
(2)
7:1, A

(2)
7:3,

A
(2)
7:4, A

(2)
7:2,2 and A

(2)
7:1B , together with four purely U(Nc) partial amplitudes: A

(2)
7:2, A

(2)
7:1,1, A

(2)
7:1,2

and A
(2)
7:1,3. These are related by the decoupling identities:

A
(2)
7:1(1, 2, 3, 4, 5, 6, 7) + A

(2)
7:1(1, 3, 4, 5, 6, 7, 2) + A

(2)
7:1(1, 4, 5, 6, 7, 2, 3)

+A
(2)
7:1(1, 5, 6, 7, 2, 3, 4) + A

(2)
7:1(1, 6, 7, 2, 3, 4, 5) + A

(2)
7:1(1, 7, 2, 3, 4, 5, 6)

+A
(2)
7:2(1; 2, 3, 4, 5, 6, 7) = 0 (2.5)

A
(2)
7:1,1(1; 2; 3, 4, 5, 6, 7) + A

(2)
7:2(2; 1, 3, 4, 5, 6, 7) + A

(2)
7:2(2; 1, 4, 5, 6, 7, 3)

+A
(2)
7:2(2; 1, 5, 6, 7, 3, 4) + A

(2)
7:2(2; 1, 6, 7, 3, 4, 5) + A

(2)
7:2(2; 1, 7, 3, 4, 5, 6)

+A
(2)
7:3(1, 2; 3, 4, 5, 6, 7) = 0 (2.6)
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A
(2)
7:1,2(1; 2, 3; 4, 5, 6, 7) + A

(2)
7:3(2, 3; 1, 4, 5, 6, 7) + A

(2)
7:3(2, 3; 1, 5, 6, 7, 4)

+A
(2)
7:3(2, 3; 1, 6, 7, 4, 5) + A

(2)
7:3(2, 3; 1, 7, 4, 5, 6) + A

(2)
7:4(1, 2, 3; 4, 5, 6, 7)

+A
(2)
7:4(1, 3, 2; 4, 5, 6, 7) = 0 (2.7)

A
(2)
7:1,3(1; 2, 3, 4; 5, 6, 7) + A

(2)
7:4(2, 3, 4; 1, 5, 6, 7) + A

(2)
7:4(2, 3, 4; 1, 6, 7, 5)

+A
(2)
7:4(2, 3, 4; 1, 7, 5, 6) + A

(2)
7:4(5, 6, 7; 1, 2, 3, 4) + A

(2)
7:4(5, 6, 7; 1, 3, 4, 2)

+A
(2)
7:4(5, 6, 7; 1, 4, 2, 3) = 0 (2.8)

A
(2)
7:1,1(2; 3; 1, 4, 5, 6, 7) + A

(2)
7:1,1(2; 3; 1, 5, 6, 7, 4) + A

(2)
7:1,1(2; 3; 1, 6, 7, 4, 5)

+A
(2)
7:1,1(2; 3; 1, 7, 4, 5, 6) + A

(2)
7:1,2(2; 1, 3; 4, 5, 6, 7) + A

(2)
7:1,2(3; 1, 2; 4, 5, 6, 7) = 0 (2.9)

A
(2)
7:1,2(2; 3, 4; 1, 5, 6, 7) + A

(2)
7:1,2(2; 3, 4; 1, 6, 7, 5) + A

(2)
7:1,2(2; 3, 4; 1, 7, 5, 6)

+A
(2)
7:1,3(2; 1, 3, 4; 5, 6, 7) + A

(2)
7:1,3(2; 1, 4, 3; 5, 6, 7) + A

(2)
7:2,2(1, 2; 3, 4; 5, 6, 7) = 0 (2.10)

A
(2)
7:2,2(2, 3; 4, 5; 1, 6, 7) + A

(2)
7:2,2(2, 3; 4, 5; 1, 7, 6) + A

(2)
7:2,2(2, 3; 6, 7; 1, 4, 5)

+A
(2)
7:2,2(2, 3; 6, 7; 1, 5, 4) + A

(2)
7:2,2(4, 5; 6, 7; 1, 2, 3) + A

(2)
7:2,2(4, 5; 6, 7; 1, 3, 2) = 0 (2.11)

A
(2)
7:1B(1, 2, 3, 4, 5, 6, 7) + A

(2)
7:1B(1, 3, 4, 5, 6, 7, 2) + A

(2)
7:1B(1, 4, 5, 6, 7, 2, 3)

+A
(2)
7:1B(1, 5, 6, 7, 2, 3, 4) + A

(2)
7:1B(1, 6, 7, 2, 3, 4, 5) + A

(2)
7:1B(1, 7, 2, 3, 4, 5, 6) = 0 . (2.12)

Our calculational strategy has been to independently calculate all nine U(Nc) partial
amplitudes, then use the above decoupling identities as a consistency check on the results.
The decoupling identities would allow us to express A

(2)
7:2,2 in terms of the A

(2)
7:1,2 and A

(2)
7:1,1

which then can be expressed in terms of the sub-leading A
(2)
7:3 and A

(2)
7:4. This works for any

A
(2)
n:2,r but not for A

(2)
n:r,s where r > 2.

The decoupling identities do not fully exhaust the relations between structures in this
color decomposition. Further relations have been derived explicitly at four-, five-, and
six-point [31–33]. We will use our results to explore possible identities later.

3 Functional structure of the amplitude

3.1 IR singular pieces

We present our result as an unrenormalised amplitude, calculated in the four-dimensional
helicity scheme [34]. As the singular structures of these partial amplitudes are known in
general [35], we subdivide the amplitude into terms that contain divergences as ϵ→ 0, U

(2)
n:λ,

and those that are finite, F
(2)
n:λ,

A
(2)
n:λ = U

(2)
n:λ + F

(2)
n:λ +O(ϵ), (3.1)

where λ labels the various color structures. In a general two-loop amplitudes we would
expect to see UV divergences, soft IR divergences and collinear IR divergences appearing
in U

(2)
n:λ, with contributions up to 1/ϵ4 [35]. However, due to the all-plus tree amplitude

vanishing, the UV and collinear IR divergences cancel, leaving only soft IR singularities [36],
which have at most 1/ϵ2. The vanishing of the tree amplitude also leads to regularisation
scheme-independence in the two-loop all-plus amplitude [35].
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The form of the IR singular structure for the all-plus two-loop amplitude was presented in
a color trace basis in [17], which we reproduce here (with modified notation) for completeness.
First, defining

Ii,j ≡ −
(sij)−ϵ

ϵ2 , (3.2)

and for lists S1 = {a1, a2, · · · , as} and S2 = {b1, b2, · · · , bt}

Ir[S1] = Ir[{a1, a2, · · · , as}] ≡
s∑

i=1
Iai,ai+1 ,

Ij [S1, S2] = Ij [{a1, a2, · · · , as}, {b1, b2, · · · , bt}] ≡ (Ia1,as + Ib1,bt − Ia1,b1 − Ias,bt)
Ik[S1, S2] = Ik[{a1, a2, · · · , as}, {b1, b2, · · · , bt}] ≡ (Ia1,bt + Ib1,as − Ia1,b1 − Ias,bt) (3.3)

where Ias,as+1 ≡ Ias,a1 . With these definitions there is the identity

Ir[S1 ⊕ S2] = Ir[S1] + Ir[S2] + Ik[S1, S2]− Ij [S1, S2] , (3.4)

where {a1, a2, · · · , as} ⊕ {b1, b2, · · · , bt} = {a1, a2, · · · , as, b1, b2, · · · , bt}.
With these definitions, the IR singular pieces of the two-loop all-plus partial amplitudes

are [17]:

U
(2)
n:1(S) = A

(1)
n:1(S)× Ir[S]

U (2)
n:r(S1; S2) = A(1)

n:r(S1; S2)× (Ir[S1] + Ir[S2])

+
∑

S′
1∈C(S1)

∑
S′

2∈C(S2)
A

(1)
n:1(S′

1 ⊕ S′
2)× Ij [S′

1, S′
2]

U
(2)
n:s,t(S1; S2; S3) =

∑
S′

2∈C(S2)

∑
S′

3∈C(S3)
A(1)

n:r(S′
1; S′

2 ⊕ S′
3)× Ij [S′

2, S′
3]

+
∑

S′
1∈C(S1)

∑
S′

3∈C(S3)
A(1)

n:r(S′
2; S′

1 ⊕ S′
3)× Ij [S′

1, S′
3]

+
∑

S′
1∈C(S1)

∑
S′

2∈C(S2)
A(1)

n:r(S′
3; S′

1 ⊕ S′
2)× Ij [S′

1, S′
2]

U
(2)
n:1B(S) =

∑
U(S)

A(1)
n:r(S′

1; S′
2)× Ik[S′

1, S′
2] (3.5)

where C(S) is the set of cyclic permutations of S and U(S) is the set of all distinct pairs
of lists (S′

1, S′
2) such that S′

1 ⊕ S′
2 = S and the size of S′

i is greater than one. For example,
at seven-point:

U({1,2,3,4,5,6,7}) =
{

({1,2},{3,4,5,6,7}), ({1,2,3},{4,5,6,7}),

({2,3},{4,5,6,7,1}), ({2,3,4},{5,6,7,1}), ({3,4},{5,6,7,1,2}), ({3,4,5},{6,7,1,2}),
({4,5},{6,7,1,2,3}), ({4,5,6},{7,1,2,3}), ({5,6},{7,1,2,3,4}), ({5,6,7},{1,2,3,4}),

({6,7},{1,2,3,4,5}), ({6,7,1},{2,3,4,5}), ({7,1},{2,3,4,5,6}), ({7,1,2},{3,4,5,6})
}

.

(3.6)
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3.2 Polylogarithmic and rational pieces

We further separate the finite pieces into polylogarithmic terms, P
(2)
n:λ, and rational terms, R

(2)
n:λ:

F
(2)
n:λ = P

(2)
n:λ + R

(2)
n:λ. (3.7)

The polylogarithmic pieces are determined using four-dimensional unitarity and the rational
pieces using augmented recursion. In many approaches these two parts of the amplitude
are closely tied together although in a Dimensional reduction methodology where Unitarity
is used in multiple integer dimensions and integrands are reconstructed as a polynomial in
(D − 2) there can also be a separation. In [37] is was shown the rational terms in a five
and six point computation of the all-plus arise solely from the leading (D − 2)2 term. In [26]
dimensional constructions was used to obtain the rational term for the all-plus amplitude for
the six point and the leading in color for the seven-point together with the sub-sub-leading
for seven and eight points. These different methods have given results in agreement with
those computed using our methodology.

4 Polylogarithmic terms

We use unitarity techniques [38–40] to determine the polylogarithmic terms. In particular,
we use four-dimensional unitarity [41], where the cut legs are taken to be four-dimensional.
Cutting three propagators can yield a product of two tree amplitudes. In four dimensions
all such triple cuts of an all-plus amplitude vanish, as there are insufficient negative helicity
legs to form two MHV tree amplitudes. Cuts that yield the product of a one-loop amplitude
and tree amplitudes can be obtained by considering diagrams where the one-loop all-plus
amplitudes is inserted as a vertex [24, 42]. Figure 1 illustrates this process with the insertion
of the one-loop amplitude into a box configuration. Such ‘two mass easy’ box configurations
have non-vanishing quadruple cuts and contribute polylogarithms to the amplitude. Both
box and triangle configurations contribute to U

(2)
n:λ, while bubble configurations were shown

to have zero coefficient in [41].
To compute the Unitary cuts we need the one-loop partial amplitudes in closed form.

These are [5, 17],

A
(1)
n:1(1+, 2+, 3+, · · · , n+) = −1

3

∑
i<j<k<l Tr−(ijkl)
⟨1 2⟩ ⟨2 3⟩ · · · ⟨n 1⟩

A
(1)
n:2(1+; 2+, 3+, · · · , n+) = −

∑
i<j [1|ij|1]

⟨2 3⟩ ⟨3 4⟩ · · · ⟨n 2⟩ (4.1)

A
(1)
n:3(1+, 2+; 3+, · · · , n+) = 2 [1 2]2

⟨3 4⟩ ⟨4 5⟩ · · · ⟨n 3⟩

A(1)
n:r(1+, 2+, · · · , r − 1+; r+, · · · , n+) = −2 (P 2

1...r−1)2

(⟨1 2⟩ ⟨2 3⟩ · · · ⟨(r − 1) 1⟩)(⟨r (r + 1)⟩ · · · ⟨n r⟩
,

where we are using a spinor helicity formalism as defined in appendix A.

4.1 Full color results at n-point

We express the results for the partial amplitudes in terms of “box functions” containing the
polylogarithms together with rational coefficients. The full box integral function contains
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j

k

l

i

A
(1)
n�r

+

+

+

+

b+

+

+

+

+

a+

•
•
•

K 4

•
••K 2

A
(0)
2+r

Figure 1. The quadruple cut of the two-loop all-plus amplitude involving an all-plus one-loop vertex
(shown in grey). K2 may be null but K4 must contain at least two external legs. ka and kb are single
legs and all external legs are positive helicity.

both IR singular terms and finite terms which we separate,

I2me
4 (S, T, K2

2 , K2
4 ) = I2me

4

∣∣∣∣∣
IR

− 2
ST −K2

2K2
4

F 2m(S, T, K2
2 , K2

4 ) (4.2)

where F 2m is a dimensionless function of polylogarithms. Combining the IR singular terms
from the box and triangle configurations yields the required IR singular term, but truncated
to O(ϵ0) [17, 42]. Promoting this to its all-ϵ form yields the full singularity structure (3.5).
The IR finite piece of the two mass easy box integral is

F 2m(S, T, K2
2 , K2

4 ) = Li2
(

1− K2
2

S

)
+ Li2

(
1− K2

2
T

)
+ Li2

(
1− K2

4
S

)
+ Li2

(
1− K2

4
T

)

− Li2
(

1− K2
2K2

4
ST

)
+ 1

2 ln2
(

S

T

)
(4.3)

and when K2
2 = 0,

F 2m(S, T, 0, K2
4 ) = Li2

(
1− K2

4
S

)
+ Li2

(
1− K2

4
T

)
+ 1

2 ln2
(

S

T

)
+ π2

6 , (4.4)

with S = (K2 + ka)2 = (K4 + kb)2 and T = (K2 + kb)2 = (K4 + ka)2 as in figure 1.
It is convenient to move to a notation which focusses on the legs attached to each corner

of the box. If the massive corners are described by the sets of external legs A and B and
the null corners by the single legs a and b we define,

F (a, b; A; B) = F 2m[K2
a,A, K2

A,b, K2
A, K2

B],
and F (a, b; {}, B) = F (a, b; A, {}) = 0, (4.5)

where K2
a,A = (ka + kA1 + kA2 + · · · + kAs)2, etc.
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The coefficients of the integral functions are obtained using quadruple cuts [40] and are
the products of on-shell amplitudes evaluated on the cut. The different, partial amplitudes
give rise to a small set of coefficient functions given in the following. For a box with the
one-loop corner having nT external legs and the opposite corner whose tree amplitude has
nS external legs, firstly a term when the one-loop amplitude is the leading in color A

(1)
nT +2:1,

C1(a, b, S1, S2, T1, T2)

= A
(0)
nS+2(k−, S1, l−, S2)A(0)

3 (a+, k+, j−)A(0)
3 (l+, b+, i−)A(1)

nT +2:1(i+, T1, j+, T2)

= 1
3 ⟨a b⟩2 CP T (a, S1, b, S2)CP T (b, T1, a, T2)

×
(
⟨b|T1T2|b⟩⟨a|T1T2|a⟩

⟨a b⟩2
+

∑
u<v<w<x∈K4

tr−[uvwx] +
∑

u<v∈T1

K2
4 ⟨b|uv|a⟩+ ⟨a|T2uvK4|b⟩

⟨b a⟩

+
∑

u<v∈T2

⟨b|K4uvT2|a⟩
⟨b a⟩

+
∑

u<v<w∈K4

⟨b|uvwK4|a⟩
⟨a b⟩

+
∑

u<v<w∈T1

⟨b|K4uvw|a⟩
⟨a b⟩

+
∑

u<v<w∈T2

⟨a|uvwK4|b⟩
⟨b a⟩

)
× F (a, b; K2 = S1 ⊕ S2; K4 = T1 ⊕ T2), (4.6)

where |S1 ⊕ S2| = nS and |T1 ⊕ T2| = nT and the “Parke-Taylor” factor CP T is

CP T (a1, a2, · · · ar) = 1
⟨a1 a2⟩ ⟨a2 a3⟩ · · · ⟨ar−1 ar⟩ ⟨ar a1⟩

. (4.7)

For A
(1)
n:r with r > 2 there are two cases,

C2(a, b, S1, S2, T1, T2, T3)

= A
(0)
nS+2(k−, S1, l−, S2)A(0)

3 (a+, k+, j−)A(0)
3 (l+, b+, i−)A(1)

nT +2:r(i+, T1, j+, T2; T3)

= 2 ⟨a b⟩2 CP T (b, T1, a, T2) CP T (T3)CP T (a, S1, b, S2)×
(
K2

T3

)2

× F (a, b; S1 ⊕ S2; T1 ⊕ T2 ⊕ T3) (4.8)

where |T3| = r − 1 and

C3(a, b, S1, S2, T1, T2)

≡ A
(0)
nS+2(k−, S1, l−, S2)A(0)

3 (a+, k+, j−)A(0)
3 (l+, b+, i−)A(1)

nT +2:r(i+, T1; j+, T2)
= 2⟨a|KT2KT1 |b⟩2CP T (a, S1, b, S2)CP T (b, T1)CP T (T2, a).
× F (a, b; S1 ⊕ S2; T1 ⊕ T2) (4.9)

where |T2| = r − 2. For the case where we have a A
(1)
n:2 corner there is

C4(a, b, S1, S2, T1, T2, t3)

≡ A
(0)
nS+2(k−, S1, l−, S2)A(0)

3 (a+, k+, j−)A(0)
3 (l+, b+, i−)A(1)

nT +2:2(t3 ; i+, T1, j+, T2)
= ⟨a b⟩2 CP T (a, S1, b, S2)CP T (b, T1, a, T2)

×
(

[t3|K4|a⟩[t3|(KT1 −KT2)|b⟩
⟨a b⟩

+ 2[t3|T2T1|t3] +
∑

v<w∈K4

[t3|vw|t3]
)

× F (a, b; S1 ⊕ S2; T1 ⊕ T2 ⊕ t3) (4.10)

where t3 is a single leg within K4 so K4 = KT1 + KT2 + k3 = −i − j.
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The coefficient of a box function will be sums of these kinematic terms which we now
obtain by color dressing the two-mass boxes

4.2 Leading in color term

Defining the sets

Uab = {a + 1, a + 2, · · · , b− 1} and Vab = {b + 1, · · · , a− 1} . (4.11)

That is split the list {1, 2, · · · , n} into {a, Uab , b, Vab} where a is cycled to the front we have

P
(2)
n:1(1+, 2+, · · · , n+) =

∑
1≤a<b≤n

(
C1(a, b, Uab , 0, Vab , 0) + C1(a, b, 0, Vab , 0, Uab)

)
. (4.12)

This is alternate form of the previous result [24].

4.3 SU(Nc) double trace terms

Considering terms Tr[X]Tr[Y ] =Tr[x1, x2, · · · , xr−1]Tr[y1, y2, · · · , yn+1−r], if a and b are
within the same trace we define Uab and Vab as before with respect to the elements of this
trace, and define new lists Xi, Yj = X − {i} and Y − {j} respectively. The ordering of these
sets matters and Xi is defined to start with the (i + 1)th element,

X = {1, 2, · · · , r} → {i, i + 1, · · · , i− 1} → Xi = {i + 1, i + 2, · · · , i− 1}. (4.13)

We also need to define Spl2 as the set of splits of a list into two lists maintaining list order.
So if U = {u1, u2, · · · , ur}

Spl2(U) = {U i} = ({u1, u2, · · · , ui}, {ui+1, · · · , ur}). (4.14)

This includes splits involving the empty set ({}, U) and (U, {}) and counts them separately. For
later convenience we will define the sum over Spl2(Ua) as the sum over the sets {(Ai

1, Ai
2)} ∈

Spl2(Ua) and similarly for leg b, {(Bi
1, Bi

2)} ∈ Spl2(Ub), where legs a and b are the legs on
the massless corners of the two-mass box.

Finally it will also be useful to define the following double sum∑
CSpl2(U)

≡
∑

V ∈Z(U)

∑
Spl2(V )

, (4.15)

which is a sum over the splits of all cycles of the set U . We can now write the amplitude as

P (2)
n:r (1+, 2+, · · · (r − 1)+; r+, · · · , n+) = P (2)

n:r (X; Y )

=−
∑
a∈X

∑
b∈Y

∑
Spl2(Xa)

∑
Spl2(Yb)

[
C1(a, b, Bj

2, Ai
2, Bj

1, Ai
1) + C1(a, b, Ai

1, Bj
1, Ai

2, Bj
2)
]

+
∑

Z2(X,Y )

∑
a<b∈X

([
C2(a, b, 0, Vab, 0, Uab, Y ) + C2(a, b, Uab, 0, Vab, 0, Y )

]

+
∑

(Ai
1,Ai

2)∈CSpl2(Y )

[
C1(a, b, Uab, Ai

1, Vab, Ai
2) + C1(a, b, Ai

1, Vab, Ai
2, Uab)

])
, (4.16)
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where we have suppressed notation such as the sum over Z2 meaning swapping X and Y

within that sum and a < b ∈ X being in terms of the ordering of X. This expression works for
r = 2 with the suitable U(1) modification. When |Y | = 1 we replace C2(a, b, 0, Vab, 0, Uab, Y )
with C4(a, b, 0, Vab, 0, Uab, Y ) and many of the above sums become trivial.

4.4 SU(Nc) triple trace terms

We now consider terms Tr[X]Tr[Y ]Tr[Z] using obvious generalisations of previously de-
fined sets.

P
(2)
n:s,t(1+, · · · , s+; (s+1)+, · · · , (s+ t)+; (s+ t+1)+, · · · ,n+) = P

(2)
n:s,t(X;Y ;Z)

=
∑

Z3(X,Y,Z)

( ∑
Z2(X,Y )

∑
a<b∈X

∑
(Ai

1,Ai
2)∈CSpl2(Y )

[
C2(a, b,Uab,A

i
1,Vab,A

i
2,Z)

+C2(a, b,Ai
1,Vab,A

i
2,Uab,Z)

]
−
∑
a∈X

∑
b∈Y

∑
Spl2(Xa)

∑
Spl2(Yb)

[
C2(a, b,Bj

2,Ai
2,Bj

1,Ai
1,Z)+C2(a, b,Ai

1,Bj
1,Ai

2,Bj
2,Z)

])
. (4.17)

Again if s = 1 or s = t = 1 we simply replace C2 with C4 in the sum where appropriate.

4.5 Nc-independent single trace term

Finally, completing the A
(2)
n:1B all-plus amplitude, we have

P
(2)
n:1B(1+,2+,3+, · · · ,n+)

=
∑
a<b

(
−

∑
(U i

1:U i
2)∈Spl2(Uab)

∑
(V i

1 :V i
2 )∈Spl2(Vab)

[
C3(a,b,U i

2,V i
2 ,V i

1 ,U i
1)+C3(a,b,U i

1,V i
1 ,U i

2,V i
2 )
]

+
∑

(V i
1 ,V i

2 ,V i
3 )∈Spl3(Vab)

C3(a,b,Uab,V
i

2 ,V i
1 ,V i

3 )+
∑

(U i
1,U i

2,U i
3)∈Spl3(Uab)

C3(a,b,U i
2,Vab,U

i
3,U i

1)
)

.

(4.18)

4.6 Checks

Although not manifest, these expressions have the correct cyclic and flip symmetries. Addi-
tionally, the following decoupling identities have been tested up to 10-points:

P
(2)
n:2(1;2,3, · · · ,n)+

∑
σ1

P
(2)
n:1(σ1) = 0 , (4.19)

P
(2)
n:3(1,2;3,4, . . . ,n)+P

(2)
n:1,1(1;2;3,4, . . . ,n)−

∑
σ∈OP{2,1}{3,...,n}

P
(2)
n;1(σ) = 0 , (4.20)

P
(2)
n:1,s(1;2,3, . . . ,s+1;s+2, . . . ,n)+

∑
σ2

P
(2)
n:s+2(σ2;s+2, . . . ,n)+

∑
σ3

P
(2)
n:s+1(2, . . . ,s+1;σ3) = 0

(4.21)

where the sums over σ1,2,3 are the sums over the different ways of inserting 1 into {2, 3, . . . , n},
{2, 3, . . . , s + 1} and {s + 2, . . . , n} respectively.
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5 Rational terms

The remaining rational pieces of the partial amplitudes, R
(2)
7:λ, are calculated using augmented

recursion [24, 27, 43].
Tree amplitudes are fully rational and Britto, Cachazo, Feng and Witten showed how

these can be obtained recursively from lower-point amplitudes by treating the amplitude as a
function of complex momenta and investigating its pole structure [44]. For BCFW recursion,
a complex shift is applied to two of the gluon momenta, p1 and p2, shifting the spinors as

λ̄1 → λ̄1̂(z) = λ̄1 − zλ̄2 , λ2 → λ2̂(z) = λ2 + zλ1 (5.1)

where z is a new complex variable. The momenta p̂1(z) and p̂2(z) remain on-shell and
overall momentum conservation is preserved. The rational amplitude can now be considered
a complex function, R(z).

Applying Cauchy’s theorem to R(z)/z over a contour at infinity, and assuming that
R(z) vanishes at large |z|, gives

R(0) = −
∑

zij ̸=0
Res

[
R(z)

z

] ∣∣∣
zij

(5.2)

where zij are the positions of poles in R(z). R(0) is the original function that we wish to
find. For tree amplitudes a Feynman diagram decomposition shows that only simple poles
arise and that these appear as a result of propagators going on shell:

1
p̂2

ij(z) ≡
1

(pi + · · ·+ p̂1(z) + · · ·+ pj)2

= 1
p2

ij − z⟨2|pij |1] = 1
z − zij

(−1)
⟨2|pij |1] (5.3)

where

zij =
p2

ij

⟨2|pij |1] . (5.4)

When a particular propagator goes on-shell, the structures on either side can be written
as lower-point amplitudes,

lim
z→zij

A(tree)(z) = (−1)
⟨2|pij |1]

∑
h=±1

A
(tree):h
L (zij) 1

z − zij
A

(tree):−h
R (zij) (5.5)

where A
(tree)
L and A

(tree)
R are tree amplitudes and the superscript ±h is shorthand for the

helicity on the pij leg entering the propagator. This specifies the residues in these amplitudes
and eq. (5.2) becomes

A(tree) =
∑

zij ̸=0

∑
h=±1

A
(tree):h
L (zij) 1

p2
ij

A
(tree):−h
R (zij) , (5.6)

which determines the tree amplitude on the left entirely in terms of lower point amplitudes.
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There are alternatives to the BCFW shift (5.1) that also introduce a complex parameter
whilst maintaining momentum conservation. Different shifts can generate different behaviours
as |z| becomes large. A particularly useful example is the “Risager” shift [45]:

λ1 → λ1̂(z) = λ1 + z[23]λη ,

λ2 → λ2̂(z) = λ2 + z[31]λη ,

λ3 → λ3̂(z) = λ3 + z[12]λη (5.7)

where λη is some spinor chosen such that ⟨i η⟩ ̸= 0 for i ∈ {1, 2, · · · , n}. That the final result
should be independent of λη is a powerful consistency check.

For loop amplitudes, the situation is more complicated. Eq. (5.2) can still be applied to
the rational part of the amplitude, but there is now the possibility of double poles occurring.
The complex analysis remains straightforward: given a Laurent expansion of the rational piece,

R
(2)
n:λ(z) =

∑
zij

(
a

(ij)
−2

(z − zij)2 +
a

(ij)
−1

(z − zij) +O((z − zij)0)
)

, (5.8)

the residues in eq. (5.2) are

Res
[

R(z)
z

] ∣∣∣
zij

= −a−2
z2

ij

+ a−1
zij

. (5.9)

However, only the residue of the leading pole can be found by straightforward factorisation.
The sub-leading pole receives non-factorising contributions, meaning we must find these
through other means. The method we follow is that of “augmented recursion” [15].

For the all-plus amplitude the BCFW shift does not lead to R(z) vanishing as |z| becomes
large [15], therefore we make use of the Risager shift. Applying the Risager shift to R

(2)
7:λ

excites three types of pole structure:

• Tree to two-loop factorisations

• One-loop to one-loop factorisations with at least three external momenta on either side

• One-loop to one-loop factorisations with two external legs on one side

The first two cases as shown in figure 2. These contain only simple poles and so can
be treated with simple recursion.

The third case introduces double poles. Naively, we may wish to consider the one-loop
to one-loop factorisation with the propagator 1/sab as shown in figure 3. However, if the
momenta are complex, the one-loop three-point all-plus vertex itself contains a factor of
1/ ⟨a b⟩, giving a double pole overall. Only the leading term can be obtained from the
factorisation and, as discussed above, both the leading and sub-leading poles are needed
to evaluate the residue in eq. (5.2).

We adopt the augmented recursion procedure [15, 24, 27, 43] and focus on the loop
integral that yields the three-point one-loop all-plus vertex. The diagram of interest is shown
in figure 4. The loop momentum integration is to be performed, so the propogators ℓ, α

and β can be off-shell and τ
(1)
7:λ is a current with α and β off-shell. As we are only interested
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Figure 2. The tree to two-loop and one-loop to one-loop factorisations. These give rise to simple poles
in sab and tabc respectively [general momentum labels {a, b, c, d, e, f, g} are used to avoid confusion
with the shifted set {1̂, 2̂, 3̂, 4, 5, 6, 7}].

Figure 3. The one-loop to one-loop factorisation that gives rise to double poles in ⟨a b⟩.

in terms with poles as sab → 0, τ
(1)
7:λ does not need to be exact the arbitrary α2 and β2,

instead it only needs to match certain limits [15, 43]. This allows the τ
(1)
7:λ to be systematically

generated from the known A
(1)
7:λ.

The color dressed current contains multiple configurations of the external legs, includ-
ing new currents that have not been required previously. The leading in color rational
piece R

(2)
7:1 required only τ

(1)
7:1 (α−, β+, c+, d+, e+, f+, g+) for its derivation [24]. Exploiting

symmetries and decoupling identities allows us to reduce the number of distinct currents
appearing the full color problem, leaving two new currents, τ

(1)
7:1 (α−, c+, β+, d+, e+, f+, g+)

and τ
(1)
7:1 (α−, c+, d+, β+, e+, f+, g+), to consider. Performing the loop integration then yields

the leading and sub-leading poles as ⟨a b⟩ → 0.
The currents we use together with details of their construction are given in appendix B.

5.1 Results and consistency checks

Summing all of the recursive contributions for each color trace structure gives the rational
pieces of the partial amplitudes, R

(2)
7:λ. The augmented recursion procedure involves combining

a large number of contributions at the seven-point level, leading to results with many terms,
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Figure 4. Augmented recursion diagram containing the poles in sab. Thick lines indicate off-shell
propagators, over which the loop momentum integration is performed.

many of which depend on η. Nonetheless, the results are independent of the choice of Risager
shift spinor λη, which is strong evidence that the procedure was successful and that an
appropriate shift was chosen: if R(z) did not vanish as |z| became large, as eq. (5.2) requires
it to, then a λη dependence would likely remain [15]. The R

(2)
7:λ also have the correct cyclic

symmetries P7:λ in their arguments as well as satisfying all decoupling identities.
Compact, explicitly η independent expressions for the R

(2)
7:λ are obtained by fitting to

the raw recursion result guided by the factorisation structure of the amplitude. For some
of the color structures it is convenient to base the analytic result on a decoupling identity,
i.e. some results are quoted as the combination of other color structures appearing in a
decoupling identity. We emphasis that all the color structures were calculated independently
and all of the decoupling identities are satisfied by our raw forms, with none of the decoupling
identities being assumed to hold.

5.2 R7:1

We confirm the result of [24] and reproduce that form here for completeness,

R7:1(a, b, c, d, e, f, g) = i

9
∑
P7:1

G1
7:1 + G2

7:1 + G3
7:1 + G4

7:1 + G5
7:1 + G6

7:1 + G7
7:1

⟨a b⟩ ⟨b c⟩ ⟨c d⟩ ⟨d e⟩ ⟨e f⟩ ⟨f g⟩ ⟨g a⟩
, (5.10)

where

G1
7:1 = ⟨ga⟩

tabctefg

(
⟨cd⟩[eg][d|kabc|e⟩[a|kabc|e⟩[c|kabc|f⟩

⟨ef⟩
−⟨de⟩[ca][d|kefg|c⟩[g|kefg|c⟩[e|kefg|b⟩

⟨bc⟩

+ ⟨ef⟩⟨cd⟩[ca][f g][e|kefg|a⟩[d|kefg|b⟩
⟨ab⟩

−⟨bc⟩⟨de⟩[eg][ab][c|kabc|g⟩[d|kabc|f⟩
⟨f g⟩

)
, (5.11)

G2
7:1 = 1

tabctefg
scdsde⟨ga⟩[g|kefgkabc|a], (5.12)
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G3
7:1 = 1

tcde

(
sce

(
sef ⟨c|kabkfga|d⟩

⟨cd⟩
−sbc⟨e|kfgkgab|d⟩

⟨de⟩

)
+ ⟨ef⟩⟨bc⟩[f b][c|kcde|g⟩[e|kcde|a⟩

⟨ga⟩

+ ⟨bc⟩[c|kcde|b⟩[e|kcde|a⟩[b|kfg|e⟩
⟨ab⟩

+ ⟨ef⟩[e|kcde|f⟩[c|kcde|g⟩[f |kab|c⟩
⟨f g⟩

)
, (5.13)

G4
7:1 = [ga]

⟨ga⟩
⟨ge⟩⟨ae⟩

( [de]
⟨de⟩
⟨dg⟩⟨da⟩+ [ef ]

⟨ef⟩
⟨f g⟩⟨f a⟩

)
, (5.14)

G5
7:1 = 1

tcde

(
[ce](⟨ef⟩[df ]⟨c|kabkfga|d⟩+⟨bc⟩[db]⟨e|kfgkgab|d⟩)

+⟨bc⟩⟨ef⟩(2⟨ga⟩[ce][f g][ab]+[bf ][e|kabkfg|c])
)
, (5.15)

G6
7:1 = 1

⟨ga⟩
(⟨g|fkbc|a⟩tefg−⟨a|bkef |g⟩tabc) (5.16)

and

G7
7:1 = s2

bf − 2s2
ga − 3sdbsdf + 4sdasdg − 6sacseg + 7(sebsfc + seasgc) + sabsfg

+ 3sfasgb + sce
(
scf + seb − 4(sab + sfg + sga) + 5(sdg + sad)

)
+ 4[e|bcf |e⟩ − 2[f |gab|f⟩+ 3[g|baf |g⟩+ 2[g|cea|g⟩. (5.17)

5.3 R7:2

Expressed in terms of the leading in color partial amplitude, via a decoupling identity, we have

R7:2(a; b, c, d, e, f, g) =−R7:1(a, b, c, d, e, f, g)−R7:1(a, c, d, e, f, g, b)
−R7:1(a, d, e, f, g, b, c)−R7:1(a, e, f, g, b, c, d)
−R7:1(a, f, g, b, c, d, e)−R7:1(a, g, b, c, d, e, f)

=−
∑

Z6(bcdefg)
R7:1(a, b, c, d, e, f, g). (5.18)

5.4 R7:3

The first new SU(Nc) rational piece to be calculated is R7:3. Using the decoupling identity,
we can express it in terms of the previously defined partial amplitude and the new R7:1,1,

R7:3(a, b; c, d, e, f, g) =−R7:1,1(a; b; c, d, e, f, g)−R7:2(b; a, c, d, e, f, g)
−R7:2(b; a, d, e, f, g, c)−R7:2(b; a, e, f, g, c, d)
−R7:2(b; a, f, g, c, d, e)−R7:2(b; a, g, c, d, e, f)

=−R7:1,1(a; b; c, d, e, f, g)−
∑

Z5(cdefg)
R7:2(b; a, c, d, e, f, g). (5.19)

We make this choice because R7:1,1 contains only simple poles whereas R7:3 also contains
double poles, so the former can be stated more compactly.

5.5 R7:4

The second new SU(Nc) partial amplitude to be calculated is R7:4. The result obtained
from augmented recursion is analytic, however the manifestly symmetric form presented here
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required some additional work to obtain in such a compact form.

R7:4(a, b, c; d, e, f, g) =
∑
P7:4

B7:4(a, b, c, d, e, f, g), (5.20)

where the basis

B7:4(a, b, c, d, e, f, g) = B
(ts)
7:4 + B

(t1)
7:4 + B

(t2)
7:4 + B

(t3)
7:4 + B

(t4)
7:4 + B

(s1)
7:4 + B

(s2)
7:4 (5.21)

can be divided into various denominator structures:

B
(ts)
7:4 = 2i

9
sdf

⟨f g⟩2 tfgd

[d e]2

⟨a b⟩ ⟨b c⟩ ⟨c a⟩
− 2i

9
sef

⟨f g⟩2 tefg

[e d]2

⟨a b⟩ ⟨b c⟩ ⟨c a⟩
, (5.22)

B
(t1)
7:4 = −1

9
i

tabc

1
⟨b c⟩ ⟨c a⟩

1
⟨d e⟩ ⟨e f⟩ ⟨f g⟩ ⟨g d⟩

× ([a|kabc|e⟩[b|kabc|d⟩ [d e] + [a|kabc|e⟩sfg [b e]
+ [b|kfg|d⟩sfg [a d] + sfg ⟨f g⟩ [a g] [b f ]
+ ⟨e f⟩ ⟨f g⟩ [a f ] [b f ] [e g]), (5.23)

B
(t2)
7:4 = 1

9
i

tabc

[a b]
⟨a b⟩ ⟨b c⟩ ⟨c a⟩

1
⟨d e⟩ ⟨d g⟩ ⟨e f⟩ ⟨f g⟩

× ([f |kabc|b⟩ ⟨a g⟩ ⟨e f⟩ [e g]− [f |kabc|b⟩ ⟨a d⟩ ⟨e f⟩ [d e]
+ [g|kabc|b⟩sef ⟨a g⟩ − [d|kabc|a⟩[g|kabc|b⟩ ⟨d g⟩), (5.24)

B
(t3)
7:4 = 1

9
i

tefg

1
⟨e f⟩ ⟨f g⟩

×
(

([e|kefg|b⟩[g|kefg|c⟩ [b c] + [e|kefg|a⟩[g|kefg|d⟩ [d a])
⟨a b⟩ ⟨b c⟩ ⟨c d⟩ ⟨d a⟩

+ ([e|kefg|a⟩[g|kefg|c⟩ [c a] + [e|kefg|b⟩[g|kefg|d⟩ [d b])
⟨a d⟩ ⟨b c⟩ ⟨c a⟩ ⟨d b⟩

+ ([e|kefg|a⟩[g|kefg|b⟩ [a b] + [e|kefg|c⟩[g|kefg|d⟩ [d c])
⟨a b⟩ ⟨b d⟩ ⟨c a⟩ ⟨d c⟩

)
, (5.25)

B
(t4)
7:4 = 2i

9
1

tefg

1
⟨a b⟩ ⟨b c⟩ ⟨c a⟩

(
[f g] [d e]2

⟨f g⟩
+ 2[e g] [d g] [d e] ⟨e g⟩

⟨e f⟩ ⟨f g⟩

)
, (5.26)

B
(s1)
7:4 = − i

3
[a b]
⟨a b⟩2

1
⟨c d⟩ ⟨d e⟩ ⟨e f⟩ ⟨f g⟩ ⟨g c⟩

× (−⟨b|c|g|a⟩+ ⟨b|d|e|a⟩+ ⟨b|d|f |a⟩+ ⟨b|e|f |a⟩) (5.27)

and

B
(s2)
7:4 =− 2i

3
1
⟨f g⟩2

G1
7:4

⟨a b⟩ ⟨b c⟩ ⟨c a⟩
1

⟨d e⟩ ⟨e f⟩ ⟨g d⟩
1
⟨a d⟩

− i

72
1
⟨f g⟩2

G2
7:4 + G3

7:4 + G4
7:4

⟨a b⟩ ⟨b c⟩ ⟨c a⟩
1

⟨d e⟩ ⟨e f⟩ ⟨g d⟩
1
⟨a e⟩

. (5.28)
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The numerators in the latter piece can be written

G1
7:4 = ⟨a f⟩ ⟨b d⟩ ⟨b f⟩ ⟨d g⟩ [b d] [b f ] + ⟨a f⟩ ⟨b d⟩ ⟨c g⟩ ⟨d f⟩ [b f ] [c d]

+ ⟨a f⟩ ⟨b f⟩ ⟨c d⟩ ⟨d g⟩ [b d] [c f ] + ⟨a f⟩ ⟨c d⟩ ⟨c f⟩ ⟨d g⟩ [c d] [c f ]
+ 2 ⟨a f⟩ ⟨b f⟩ ⟨d e⟩ ⟨d g⟩ [b f ] [d e]− ⟨a f⟩ ⟨b e⟩ ⟨d f⟩ ⟨d g⟩ [b f ] [d e]
+ 2 ⟨a e⟩ ⟨c g⟩ ⟨d f⟩2 [c f ] [d e]− ⟨a f⟩ ⟨c e⟩ ⟨d f⟩ ⟨d g⟩ [c f ] [d e]
− ⟨a f⟩ ⟨b f⟩ ⟨d e⟩ ⟨d g⟩ [b e] [d f ]− ⟨a e⟩ ⟨c g⟩ ⟨d f⟩2 [c e] [d f ]
+ ⟨a e⟩ ⟨d f⟩ ⟨d g⟩ ⟨e f⟩ [d e] [e f ] , (5.29)

G2
7:4 = −12 ⟨a g⟩ ⟨b d⟩ ⟨b f⟩ ⟨c e⟩ [b c] [b d] + 44 ⟨a g⟩ ⟨b d⟩ ⟨b f⟩ ⟨e d⟩ [b d]2

− 32 ⟨a f⟩ ⟨b d⟩2 ⟨e g⟩ [b d]2 + 138 ⟨a g⟩ ⟨b e⟩ ⟨b f⟩ ⟨c e⟩ [b c] [b e]
− 138 ⟨a g⟩ ⟨b e⟩ ⟨b f⟩ ⟨e d⟩ [b d] [b e]− 740 ⟨a f⟩ ⟨b d⟩ ⟨b e⟩ ⟨e g⟩ [b d] [b e]
− 70 ⟨a f⟩ ⟨b e⟩2 ⟨e g⟩ [b e]2 + 12 ⟨a f⟩ ⟨b d⟩ ⟨b f⟩ ⟨e g⟩ [b d] [b f ]
+ 646 ⟨a f⟩ ⟨b e⟩ ⟨b f⟩ ⟨e g⟩ [b e] [b f ] + 8 ⟨a g⟩ ⟨b f⟩ ⟨b g⟩ ⟨e d⟩ [b d] [b g]
− 32 ⟨a g⟩ ⟨b d⟩ ⟨b g⟩ ⟨e f⟩ [b d] [b g] + 36 ⟨a g⟩ ⟨b d⟩ ⟨b f⟩ ⟨e g⟩ [b d] [b g]
− 138 ⟨a g⟩ ⟨b e⟩ ⟨b f⟩ ⟨e g⟩ [b e] [b g] + 8 ⟨a g⟩ ⟨b d⟩ ⟨c f⟩ ⟨e d⟩ [b d] [c d]
− 12 ⟨a f⟩ ⟨b d⟩ ⟨c g⟩ ⟨e d⟩ [b d] [c d] + 36 ⟨a d⟩ ⟨b d⟩ ⟨c g⟩ ⟨e f⟩ [b d] [c d]
− 32 ⟨a f⟩ ⟨b d⟩ ⟨c d⟩ ⟨e g⟩ [b d] [c d]− 54 ⟨a f⟩ ⟨b d⟩ ⟨c e⟩ ⟨e g⟩ [b e] [c d]
− 8 ⟨a f⟩ ⟨b f⟩ ⟨c g⟩ ⟨e d⟩ [b f ] [c d]− 24 ⟨a g⟩ ⟨b d⟩ ⟨c f⟩ ⟨e f⟩ [b f ] [c d]
+ 32 ⟨a f⟩ ⟨b d⟩ ⟨c g⟩ ⟨e f⟩ [b f ] [c d]− 40 ⟨a f⟩ ⟨c d⟩ ⟨c g⟩ ⟨e d⟩ [c d]2

+ 40 ⟨a d⟩ ⟨c d⟩ ⟨c g⟩ ⟨e f⟩ [c d]2 + 24 ⟨a g⟩ ⟨b f⟩ ⟨c e⟩2 [b c] [c e]
− 48 ⟨a g⟩ ⟨b e⟩ ⟨c f⟩ ⟨e d⟩ [b d] [c e]− 106 ⟨a f⟩ ⟨b e⟩ ⟨c g⟩ ⟨e d⟩ [b d] [c e]
+ 690 ⟨a d⟩ ⟨b e⟩ ⟨c g⟩ ⟨e f⟩ [b d] [c e]− 710 ⟨a f⟩ ⟨b d⟩ ⟨c e⟩ ⟨e g⟩ [b d] [c e]
+ 40 ⟨a e⟩ ⟨b e⟩ ⟨c g⟩ ⟨e f⟩ [b e] [c e]− 70 ⟨a f⟩ ⟨b e⟩ ⟨c e⟩ ⟨e g⟩ [b e] [c e]
− 40 ⟨a g⟩ ⟨b e⟩ ⟨c f⟩ ⟨e f⟩ [b f ] [c e] + 560 ⟨a f⟩ ⟨b e⟩ ⟨c g⟩ ⟨e f⟩ [b f ] [c e] , (5.30)

G3
7:4 = 54 ⟨a f⟩ ⟨b f⟩ ⟨c e⟩ ⟨e g⟩ [b f ] [c e]− 24 ⟨a g⟩ ⟨b g⟩ ⟨c e⟩ ⟨e f⟩ [b g] [c e]

− 108 ⟨a f⟩ ⟨b e⟩ ⟨c g⟩ ⟨e g⟩ [b g] [c e]− 104 ⟨a f⟩ ⟨c e⟩ ⟨c g⟩ ⟨e d⟩ [c d] [c e]
+ 108 ⟨a e⟩ ⟨c f⟩ ⟨c g⟩ ⟨e d⟩ [c d] [c e] + 664 ⟨a d⟩ ⟨c e⟩ ⟨c g⟩ ⟨e f⟩ [c d] [c e]
− 24 ⟨a f⟩ ⟨c d⟩ ⟨c e⟩ ⟨e g⟩ [c d] [c e]− 14 ⟨a e⟩ ⟨c e⟩ ⟨c g⟩ ⟨e f⟩ [c e]2

+ 706 ⟨a f⟩ ⟨b f⟩ ⟨c e⟩ ⟨e g⟩ [b e] [c f ] + 44 ⟨a f⟩ ⟨c f⟩ ⟨c g⟩ ⟨e d⟩ [c d] [c f ]
+ 8 ⟨a f⟩ ⟨c d⟩ ⟨c g⟩ ⟨e f⟩ [c d] [c f ]− 52 ⟨a d⟩ ⟨c f⟩ ⟨c g⟩ ⟨e f⟩ [c d] [c f ]
+ 536 ⟨a f⟩ ⟨c e⟩ ⟨c g⟩ ⟨e f⟩ [c e] [c f ]− 652 ⟨a e⟩ ⟨c f⟩ ⟨c g⟩ ⟨e f⟩ [c e] [c f ]
− 16 ⟨a f⟩ ⟨c e⟩ ⟨c f⟩ ⟨e g⟩ [c e] [c f ] + 8 ⟨a g⟩ ⟨b g⟩ ⟨c f⟩ ⟨e d⟩ [b d] [c g]
− 8 ⟨a g⟩ ⟨b g⟩ ⟨c d⟩ ⟨e f⟩ [b d] [c g]− 4 ⟨a f⟩ ⟨c g⟩2 ⟨e d⟩ [c d] [c g]
+ 4 ⟨a d⟩ ⟨c g⟩2 ⟨e f⟩ [c d] [c g] + 54 ⟨a e⟩ ⟨c g⟩2 ⟨e f⟩ [c e] [c g]
− 108 ⟨a f⟩ ⟨c e⟩ ⟨c g⟩ ⟨e g⟩ [c e] [c g]− 32 ⟨a f⟩ ⟨b f⟩ ⟨d g⟩ ⟨e d⟩ [b d] [d f ]
− 32 ⟨a f⟩ ⟨b f⟩ ⟨d g⟩ ⟨e f⟩ [b f ] [d f ] + 32 ⟨a f⟩ ⟨b f⟩ ⟨d f⟩ ⟨e g⟩ [b f ] [d f ]
− 8 ⟨a f⟩ ⟨b f⟩ ⟨d g⟩ ⟨e g⟩ [b g] [d f ]− 231 ⟨a f⟩ ⟨c g⟩ ⟨d f⟩ ⟨e d⟩ [c d] [d f ]
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+ 8 ⟨a f⟩ ⟨c f⟩ ⟨d g⟩ ⟨e d⟩ [c d] [d f ] + 183 ⟨a d⟩ ⟨c g⟩ ⟨d f⟩ ⟨e f⟩ [c d] [d f ]
+ 32 ⟨a f⟩ ⟨c d⟩ ⟨d f⟩ ⟨e g⟩ [c d] [d f ]− 24 ⟨a f⟩ ⟨c g⟩ ⟨d f⟩ ⟨e f⟩ [c f ] [d f ]
− 16 ⟨a f⟩ ⟨c f⟩ ⟨d g⟩ ⟨e f⟩ [c f ] [d f ] + 40 ⟨a f⟩ ⟨c f⟩ ⟨d f⟩ ⟨e g⟩ [c f ] [d f ]
+ 16 ⟨a f⟩ ⟨c g⟩ ⟨d g⟩ ⟨e f⟩ [c g] [d f ]− 16 ⟨a f⟩ ⟨c g⟩ ⟨d f⟩ ⟨e g⟩ [c g] [d f ]
− 8 ⟨a f⟩ ⟨c f⟩ ⟨d g⟩ ⟨e g⟩ [c g] [d f ] + 32 ⟨a f⟩ ⟨d f⟩2 ⟨e g⟩ [d f ]2

+ 8 ⟨a g⟩ ⟨b f⟩ ⟨d g⟩ ⟨e d⟩ [b d] [d g]− 32 ⟨a f⟩ ⟨b d⟩ ⟨d g⟩ ⟨e g⟩ [b d] [d g]
+ 32 ⟨a g⟩ ⟨b g⟩ ⟨d f⟩ ⟨e f⟩ [b f ] [d g]− 24 ⟨a f⟩ ⟨b f⟩ ⟨d g⟩ ⟨e g⟩ [b f ] [d g]
− 24 ⟨a f⟩ ⟨c g⟩ ⟨d g⟩ ⟨e f⟩ [c f ] [d g] + 32 ⟨a f⟩ ⟨c g⟩ ⟨d f⟩ ⟨e g⟩ [c f ] [d g]
+ 32 ⟨a f⟩ ⟨d f⟩ ⟨d g⟩ ⟨e g⟩ [d f ] [d g]− 506 ⟨a f⟩ ⟨b d⟩ ⟨e d⟩ ⟨e g⟩ [b d] [e d]
− 180 ⟨a d⟩ ⟨b d⟩ ⟨e f⟩ ⟨e g⟩ [b d] [e d]− 491 ⟨a f⟩ ⟨b e⟩ ⟨e d⟩ ⟨e g⟩ [b e] [e d]
+ 334 ⟨a d⟩ ⟨b e⟩ ⟨e f⟩ ⟨e g⟩ [b e] [e d] + 832 ⟨a f⟩ ⟨b f⟩ ⟨e d⟩ ⟨e g⟩ [b f ] [e d] (5.31)

and

G4
7:4 = 6 ⟨a f⟩ ⟨b d⟩ ⟨e f⟩ ⟨e g⟩ [b f ] [e d] + 54 ⟨a f⟩ ⟨b d⟩ ⟨e g⟩2 [b g] [e d]

− 203 ⟨a e⟩ ⟨c g⟩ ⟨e d⟩ ⟨e f⟩ [c e] [e d]− 87 ⟨a d⟩ ⟨c e⟩ ⟨e f⟩ ⟨e g⟩ [c e] [e d]
− 199 ⟨a f⟩ ⟨c g⟩ ⟨e d⟩ ⟨e f⟩ [c f ] [e d] + 167 ⟨a d⟩ ⟨c g⟩ ⟨e f⟩2 [c f ] [e d]
+ 40 ⟨a f⟩ ⟨c f⟩ ⟨e d⟩ ⟨e g⟩ [c f ] [e d]− 24 ⟨a f⟩ ⟨c d⟩ ⟨e f⟩ ⟨e g⟩ [c f ] [e d]
− 668 ⟨a d⟩ ⟨c g⟩ ⟨e f⟩ ⟨e g⟩ [c g] [e d] + 24 ⟨a f⟩ ⟨c d⟩ ⟨e g⟩2 [c g] [e d]
+ 48 ⟨a d⟩ ⟨d f⟩ ⟨e f⟩ ⟨e g⟩ [d f ] [e d] + 48 ⟨a f⟩ ⟨d g⟩ ⟨e d⟩ ⟨e g⟩ [d g] [e d]
− 48 ⟨a d⟩ ⟨d f⟩ ⟨e g⟩2 [d g] [e d] + 16 ⟨a g⟩ ⟨e d⟩2 ⟨e f⟩ [e d]2

− 192 ⟨a f⟩ ⟨e d⟩2 ⟨e g⟩ [e d]2 + 89 ⟨a d⟩ ⟨e d⟩ ⟨e f⟩ ⟨e g⟩ [e d]2

− 682 ⟨a f⟩ ⟨b f⟩ ⟨e d⟩ ⟨e g⟩ [b d] [e f ]− 764 ⟨a f⟩ ⟨b d⟩ ⟨e f⟩ ⟨e g⟩ [b d] [e f ]
− 70 ⟨a f⟩ ⟨b e⟩ ⟨e f⟩ ⟨e g⟩ [b e] [e f ] + 78 ⟨a f⟩ ⟨b f⟩ ⟨e f⟩ ⟨e g⟩ [b f ] [e f ]
− 658 ⟨a f⟩ ⟨b f⟩ ⟨e g⟩2 [b g] [e f ] + 32 ⟨a d⟩ ⟨c g⟩ ⟨e f⟩2 [c d] [e f ]
+ 32 ⟨a f⟩ ⟨c f⟩ ⟨e d⟩ ⟨e g⟩ [c d] [e f ]− 48 ⟨a f⟩ ⟨c d⟩ ⟨e f⟩ ⟨e g⟩ [c d] [e f ]
+ 195 ⟨a e⟩ ⟨c g⟩ ⟨e f⟩2 [c e] [e f ]− 740 ⟨a f⟩ ⟨c g⟩ ⟨e f⟩ ⟨e g⟩ [c g] [e f ]
+ 160 ⟨a f⟩ ⟨c f⟩ ⟨e g⟩2 [c g] [e f ]− 24 ⟨a f⟩ ⟨d g⟩ ⟨e f⟩2 [d f ] [e f ]
− 24 ⟨a f⟩ ⟨d g⟩ ⟨e f⟩ ⟨e g⟩ [d g] [e f ]− 87 ⟨a d⟩ ⟨e f⟩2 ⟨e g⟩ [e d] [e f ]
− 740 ⟨a f⟩ ⟨b d⟩ ⟨e g⟩2 [b d] [e g]− 70 ⟨a f⟩ ⟨b e⟩ ⟨e g⟩2 [b e] [e g]
+ 736 ⟨a f⟩ ⟨b f⟩ ⟨e g⟩2 [b f ] [e g]− 601 ⟨a f⟩ ⟨c g⟩ ⟨e d⟩ ⟨e g⟩ [c d] [e g]
+ 1269 ⟨a d⟩ ⟨c g⟩ ⟨e f⟩ ⟨e g⟩ [c d] [e g]− 24 ⟨a f⟩ ⟨c d⟩ ⟨e g⟩2 [c d] [e g]
+ 1175 ⟨a e⟩ ⟨c g⟩ ⟨e f⟩ ⟨e g⟩ [c e] [e g] + 692 ⟨a f⟩ ⟨c g⟩ ⟨e f⟩ ⟨e g⟩ [c f ] [e g]
− 112 ⟨a f⟩ ⟨c f⟩ ⟨e g⟩2 [c f ] [e g]− 87 ⟨a d⟩ ⟨e f⟩ ⟨e g⟩2 [e d] [e g]
+ 32 ⟨a f⟩ ⟨d f⟩ ⟨e g⟩ ⟨f g⟩ [d f ] [f g]− 48 ⟨a f⟩ ⟨e g⟩2 ⟨f g⟩ [e g] [f g] . (5.32)
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5.6 R7:1,1

The first new exclusively U(Nc) partial amplitude to be calculated is R7:1,1. Although it is
a structure not present in the SU(Nc) theory, we chose to reference it in the statement of
the R7:3 rational piece because it is the simpler of the two structures. As with the other
partial amplitudes, the result produced by augmented recursion was analytic, and after
simplifying manipulations takes the form:

R7:1,1(a; b; c, d, e, f, g) =
∑
P7:1,1

B7:1,1(a, b, c, d, e, f, g), (5.33)

with a basis function

B7:1,1(a, b, c, d, e, f, g) = B
(tt)
7:1,1(a, b, c, d, e, f, g) + B

(ts)
7:1,1(a, b, c, d, e, f, g)

+ B
(s)
7:1,1(a, b, c, d, e, f, g) (5.34)

containing the structures

B
(tt)
7:1,1(a, b, c, d, e, f, g) = i

taef tbcd

G1
7:1,1

⟨a e⟩ ⟨a f⟩ ⟨a g⟩ ⟨b c⟩ ⟨c d⟩ ⟨e f⟩

+ i

taef tbcd

[a|kef |b⟩[g|kbcd|d⟩ [a e] [b d]
⟨b c⟩ ⟨b d⟩ ⟨c d⟩ ⟨e f⟩ ⟨f g⟩

, (5.35)

B
(ts)
7:1,1(a, b, c, d, e, f, g) = i

taef

G2
7:1,1

⟨a e⟩ ⟨a f⟩ ⟨a g⟩ ⟨b c⟩ ⟨b d⟩ ⟨b g⟩
1

⟨c d⟩ ⟨c g⟩ ⟨e f⟩ ⟨f g⟩
(5.36)

and

B
(s)
7:1,1(a, b, c, d, e, f, g) = i

3
G3

7:1,1 + G4
7:1,1 + G5

7:1,1
⟨c d⟩ ⟨d e⟩ ⟨e f⟩ ⟨f g⟩ ⟨g c⟩

1
⟨b c⟩ ⟨b d⟩

1
⟨a e⟩ ⟨a f⟩

. (5.37)

The numerators are

G1
7:1,1 = −[b|kbcd|a⟩[d|kbcd|a⟩[g|kbcd|e⟩ [a e]− [e|kbcd|g⟩sag ⟨a e⟩ [b g] [d g] , (5.38)

G2
7:1,1 = −[a|kaef |a⟩[b|kbcd|a⟩[d|kbcd|c⟩ ⟨b d⟩ ⟨b g⟩ ⟨f g⟩

+ [b|kbcd|a⟩[d|kaef |a⟩ ⟨b d⟩ ⟨b g⟩ ⟨c e⟩ ⟨f g⟩ [a e]
+ [a|kaef |b⟩[f |kaef |d⟩ ⟨a f⟩ ⟨a g⟩ ⟨b g⟩ ⟨c f⟩ [b d]
+ [b|kbcd|a⟩ ⟨a f⟩ ⟨b c⟩ ⟨b d⟩ ⟨b g⟩ ⟨f g⟩ [a f ] [b d]
+ [a|kaef |b⟩[f |kaef |g⟩ ⟨a f⟩ ⟨a g⟩ ⟨b c⟩ ⟨f g⟩ [b g]
+ [d|kaef |a⟩ ⟨a g⟩ ⟨b d⟩ ⟨b g⟩ ⟨c g⟩ ⟨f g⟩ [a g] [b g]
+ ⟨a e⟩ ⟨a g⟩ ⟨b d⟩ ⟨b g⟩ ⟨c g⟩ ⟨f g⟩ [a g] [b g] [d e]
+ [b|kaef |c⟩ ⟨a f⟩ ⟨a g⟩ ⟨b d⟩ ⟨b g⟩ ⟨f g⟩ [a g] [d f ]
+ [a|kaef |c⟩[f |kaef |b⟩ ⟨a f⟩ ⟨a g⟩ ⟨d g⟩ ⟨f g⟩ [d g]
− [a|kaef |b⟩[f |kaef |c⟩ ⟨a f⟩ ⟨a g⟩ ⟨d g⟩ ⟨f g⟩ [d g]
− [b|kbcd|a⟩ ⟨a e⟩ ⟨b d⟩ ⟨b g⟩ ⟨c g⟩ ⟨f g⟩ [a e] [d g]
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+ ⟨a f⟩ ⟨a g⟩ ⟨b d⟩ ⟨b g⟩ ⟨c d⟩ ⟨f g⟩ [a g] [b d] [f d]
+ ⟨a f⟩ ⟨a g⟩ ⟨b d⟩ ⟨b g⟩ ⟨c d⟩ ⟨f g⟩ [a d] [b d] [f g]
+ [a|kaef |d⟩[f |kaef |c⟩ ⟨a f⟩ ⟨a g⟩ ⟨b g⟩ ⟨f g⟩ [g d]
− [a|kaef |c⟩[f |kaef |d⟩ ⟨a f⟩ ⟨a g⟩ ⟨b g⟩ ⟨f g⟩ [g d]
+ [f |kaef |c⟩ ⟨a f⟩ ⟨a g⟩ ⟨b d⟩ ⟨b g⟩ ⟨f g⟩ [a b] [g d] , (5.39)

G3
7:1,1 = 123

10 ⟨a c⟩ ⟨a d⟩ ⟨b e⟩ ⟨b f⟩ [a b]2 + 27
10 ⟨a b⟩ ⟨a e⟩ ⟨b c⟩ ⟨d f⟩ [a b]2

− 11
5 ⟨a b⟩ ⟨a d⟩ ⟨b c⟩ ⟨e f⟩ [a b]2 − 3

2 ⟨a c⟩2 ⟨b e⟩ ⟨d f⟩ [a b] [a c]

− 3
2 ⟨a c⟩ ⟨a d⟩ ⟨b c⟩ ⟨e f⟩ [a b] [a c]− 17

2 ⟨a c⟩2 ⟨b d⟩ ⟨e f⟩ [a b] [a c]

+ 29
2 ⟨a c⟩ ⟨a d⟩ ⟨b e⟩ ⟨d f⟩ [a b] [a d]− 7

2 ⟨a c⟩ ⟨a d⟩ ⟨b d⟩ ⟨e f⟩ [a b] [a d]

+ 29
2 ⟨a c⟩ ⟨a d⟩ ⟨b e⟩ ⟨e f⟩ [a b] [a e]− 9

2 ⟨a c⟩ ⟨a e⟩ ⟨b f⟩ ⟨d f⟩ [a b] [a f ]

− 84
5 ⟨a b⟩ ⟨b d⟩ ⟨c e⟩ ⟨c f⟩ [a b] [b c] + 9

5 ⟨a b⟩ ⟨b c⟩ ⟨c f⟩ ⟨d e⟩ [a b] [b c]

+ 21
2 ⟨a b⟩ ⟨b c⟩ ⟨c e⟩ ⟨d f⟩ [a b] [b c]− 29

2 ⟨a b⟩ ⟨c d⟩ ⟨c e⟩ ⟨c f⟩ [a c] [b c]

− 15
2 ⟨a b⟩ ⟨c d⟩ ⟨c e⟩ ⟨e f⟩ [a e] [b c] + 51

2 ⟨a b⟩ ⟨b d⟩ ⟨c e⟩ ⟨d f⟩ [a b] [b d]

− 33
2 ⟨a b⟩ ⟨b c⟩ ⟨d e⟩ ⟨d f⟩ [a b] [b d] + 33

2 ⟨a b⟩ ⟨c d⟩ ⟨d e⟩ ⟨d f⟩ [a d] [b d]

− 39
2 ⟨a b⟩ ⟨c d⟩ ⟨d f⟩ ⟨e f⟩ [a f ] [b d]− 33

2 ⟨a b⟩ ⟨c d⟩ ⟨d f⟩ ⟨e g⟩ [a g] [b d]

− 11
5 ⟨a b⟩ ⟨b e⟩ ⟨c e⟩ ⟨d f⟩ [a b] [b e] + 36

5 ⟨a b⟩ ⟨b d⟩ ⟨c e⟩ ⟨e f⟩ [a b] [b e]

+ 19
5 ⟨a b⟩ ⟨b c⟩ ⟨d e⟩ ⟨e f⟩ [a b] [b e]− 9

2 ⟨a c⟩ ⟨b d⟩ ⟨c e⟩ ⟨e f⟩ [a c] [b e]

− 9
2 ⟨a c⟩ ⟨b d⟩ ⟨d e⟩ ⟨e f⟩ [a d] [b e] + 47

2 ⟨a b⟩ ⟨c e⟩ ⟨d e⟩ ⟨f g⟩ [a g] [b e]

+ 19
5 ⟨a b⟩ ⟨b e⟩ ⟨c f⟩ ⟨d f⟩ [a b] [b f ]− 9

2 ⟨a c⟩ ⟨b d⟩ ⟨d f⟩ ⟨e f⟩ [a d] [b f ]

+ 29
2 ⟨a b⟩ ⟨c e⟩ ⟨d f⟩ ⟨f g⟩ [a g] [b f ]− 11

5 ⟨a b⟩ ⟨b e⟩ ⟨c f⟩ ⟨d g⟩ [a b] [b g]

+ 29
2 ⟨a b⟩ ⟨c e⟩ ⟨d g⟩ ⟨f g⟩ [a g] [b g] + 3

2 ⟨a c⟩ ⟨b d⟩ ⟨c f⟩ ⟨d e⟩ [a b] [c d]

− 21
2 ⟨a c⟩ ⟨b c⟩ ⟨d e⟩ ⟨d f⟩ [a b] [c d]− 3

2 ⟨a c⟩ ⟨b d⟩ ⟨c f⟩ ⟨e f⟩ [a b] [c f ] , (5.40)

G4
7:1,1 = 16 ⟨a c⟩ ⟨a d⟩ ⟨b e⟩ ⟨c f⟩ [a b] [a c]− 6 ⟨a d⟩2 ⟨b c⟩ ⟨e f⟩ [a b] [a d]

+ 3 ⟨a d⟩2 ⟨c e⟩ ⟨c f⟩ [a c] [a d]− 3 ⟨a c⟩ ⟨a d⟩ ⟨c e⟩ ⟨d f⟩ [a c] [a d]
+ 6 ⟨a c⟩2 ⟨d e⟩ ⟨d f⟩ [a c] [a d] + 3 ⟨a c⟩ ⟨a d⟩ ⟨c d⟩ ⟨e f⟩ [a c] [a d]
− 6 ⟨a d⟩2 ⟨c e⟩ ⟨d f⟩ [a d]2 + 6 ⟨a c⟩ ⟨a d⟩ ⟨d e⟩ ⟨d f⟩ [a d]2

+ 6 ⟨a d⟩2 ⟨c d⟩ ⟨e f⟩ [a d]2 − 9 ⟨a c⟩ ⟨a e⟩ ⟨b e⟩ ⟨d f⟩ [a b] [a e]
+ 3 ⟨a d⟩ ⟨a e⟩ ⟨c e⟩ ⟨c f⟩ [a c] [a e]− 3 ⟨a c⟩ ⟨a e⟩ ⟨c e⟩ ⟨d f⟩ [a c] [a e]
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+ 3 ⟨a c⟩ ⟨a d⟩ ⟨c e⟩ ⟨e f⟩ [a c] [a e]− 3 ⟨a c⟩2 ⟨d e⟩ ⟨e f⟩ [a c] [a e]
− 6 ⟨a d⟩ ⟨a e⟩ ⟨c e⟩ ⟨d f⟩ [a d] [a e] + 6 ⟨a c⟩ ⟨a e⟩ ⟨d e⟩ ⟨d f⟩ [a d] [a e]
+ 6 ⟨a d⟩2 ⟨c e⟩ ⟨e f⟩ [a d] [a e]− 6 ⟨a c⟩ ⟨a d⟩ ⟨d e⟩ ⟨e f⟩ [a d] [a e]
+ 3 ⟨a d⟩ ⟨a e⟩ ⟨c f⟩2 [a c] [a f ]− 3 ⟨a c⟩ ⟨a e⟩ ⟨c f⟩ ⟨d f⟩ [a c] [a f ]
− 4 ⟨a b⟩ ⟨c d⟩ ⟨c f⟩ ⟨d e⟩ [a d] [b c] + 6 ⟨a b⟩ ⟨c e⟩ ⟨c f⟩ ⟨d f⟩ [a f ] [b c]
+ 4 ⟨a b⟩ ⟨c d⟩ ⟨c f⟩ ⟨e f⟩ [a f ] [b c] + 4 ⟨a b⟩ ⟨c d⟩ ⟨c g⟩ ⟨e f⟩ [a g] [b c]
− 18 ⟨a b⟩ ⟨b d⟩ ⟨c f⟩ ⟨d e⟩ [a b] [b d] + 6 ⟨a c⟩ ⟨b d⟩ ⟨c f⟩ ⟨d e⟩ [a c] [b d]
− 3 ⟨a c⟩ ⟨b d⟩ ⟨c e⟩ ⟨d f⟩ [a c] [b d]− 3 ⟨a c⟩ ⟨b d⟩ ⟨d e⟩ ⟨d f⟩ [a d] [b d]
+ 6 ⟨a b⟩ ⟨c d⟩ ⟨d e⟩ ⟨e f⟩ [a e] [b d] + 3 ⟨a b⟩ ⟨c e⟩ ⟨d f⟩2 [a f ] [b d]
− 3 ⟨a c⟩ ⟨b e⟩ ⟨d e⟩ ⟨e f⟩ [a e] [b e]− 6 ⟨a b⟩ ⟨c e⟩ ⟨d e⟩ ⟨e f⟩ [a e] [b e]
− 9 ⟨a b⟩ ⟨c e⟩ ⟨d f⟩ ⟨e f⟩ [a f ] [b e] + 6 ⟨a b⟩ ⟨c d⟩ ⟨e f⟩2 [a f ] [b e]
− 9 ⟨a b⟩ ⟨c e⟩ ⟨d f⟩ ⟨e g⟩ [a g] [b e] + 6 ⟨a b⟩ ⟨c d⟩ ⟨e f⟩ ⟨e g⟩ [a g] [b e] (5.41)

and

G5
7:1,1 = 7 ⟨a b⟩ ⟨b d⟩ ⟨c f⟩ ⟨e f⟩ [a b] [b f ]− 6 ⟨a c⟩ ⟨b d⟩ ⟨c f⟩ ⟨e f⟩ [a c] [b f ]

− 6 ⟨a b⟩ ⟨c f⟩ ⟨d f⟩ ⟨e f⟩ [a f ] [b f ]− 6 ⟨a b⟩ ⟨c f⟩ ⟨d f⟩ ⟨e g⟩ [a g] [b f ]
+ 12 ⟨a c⟩ ⟨b d⟩ ⟨c e⟩ ⟨d f⟩ [a b] [c d] + 6 ⟨a d⟩ ⟨c f⟩2 ⟨d e⟩ [a f ] [c d]
− 6 ⟨a c⟩ ⟨c g⟩ ⟨d e⟩ ⟨d f⟩ [a g] [c d]− 3 ⟨a c⟩ ⟨b c⟩ ⟨d e⟩ ⟨e f⟩ [a b] [c e]
− 3 ⟨a d⟩ ⟨c e⟩ ⟨c f⟩ ⟨d e⟩ [a d] [c e] + 3 ⟨a c⟩ ⟨c f⟩ ⟨d e⟩2 [a d] [c e]
+ 3 ⟨a d⟩ ⟨c e⟩2 ⟨d f⟩ [a d] [c e]− 3 ⟨a c⟩ ⟨c e⟩ ⟨d e⟩ ⟨d f⟩ [a d] [c e]
+ 3 ⟨a d⟩ ⟨c e⟩2 ⟨e f⟩ [a e] [c e]− 3 ⟨a c⟩ ⟨c e⟩ ⟨d e⟩ ⟨e f⟩ [a e] [c e]
+ 6 ⟨a c⟩ ⟨b e⟩ ⟨c f⟩ ⟨d f⟩ [a b] [c f ]− 6 ⟨a c⟩ ⟨c f⟩ ⟨d e⟩ ⟨d f⟩ [a d] [c f ]
+ 3 ⟨a d⟩ ⟨c e⟩ ⟨c f⟩ ⟨e f⟩ [a e] [c f ]− 3 ⟨a c⟩ ⟨c f⟩ ⟨d e⟩ ⟨e f⟩ [a e] [c f ]
− 3 ⟨a d⟩ ⟨c e⟩ ⟨c f⟩ ⟨c g⟩ [a c] [c g] + 3 ⟨a c⟩ ⟨c f⟩ ⟨c g⟩ ⟨d e⟩ [a c] [c g]
+ 6 ⟨a d⟩ ⟨c f⟩ ⟨c g⟩ ⟨d e⟩ [a d] [c g] + 9 ⟨a c⟩ ⟨b d⟩ ⟨d e⟩ ⟨e f⟩ [a b] [d e]
+ 3 ⟨a d⟩ ⟨c e⟩ ⟨c f⟩ ⟨d e⟩ [a c] [d e]− 3 ⟨a c⟩ ⟨c f⟩ ⟨d e⟩2 [a c] [d e]
+ 6 ⟨a c⟩ ⟨c e⟩ ⟨d e⟩ ⟨d f⟩ [a c] [d e]− 6 ⟨a d⟩ ⟨c f⟩ ⟨d e⟩2 [a d] [d e]
− 6 ⟨a e⟩ ⟨c d⟩ ⟨d e⟩ ⟨d f⟩ [a d] [d e] + 6 ⟨a d⟩ ⟨c e⟩ ⟨d e⟩ ⟨d f⟩ [a d] [d e]
+ 6 ⟨a c⟩ ⟨b e⟩ ⟨d f⟩2 [a b] [d f ] + 3 ⟨a d⟩ ⟨c e⟩ ⟨c f⟩ ⟨d f⟩ [a c] [d f ]
+ 9 ⟨a c⟩ ⟨c f⟩ ⟨d e⟩ ⟨d f⟩ [a c] [d f ]− 6 ⟨a d⟩ ⟨c f⟩ ⟨d e⟩ ⟨d f⟩ [a d] [d f ]
− 6 ⟨a e⟩ ⟨c d⟩ ⟨d f⟩2 [a d] [d f ] + 6 ⟨a d⟩ ⟨c e⟩ ⟨d f⟩2 [a d] [d f ]
+ 6 ⟨a e⟩ ⟨c f⟩ ⟨d e⟩ ⟨d f⟩ [a e] [d f ]− 6 ⟨a e⟩ ⟨c e⟩ ⟨d f⟩2 [a e] [d f ]
− 6 ⟨a d⟩ ⟨c f⟩ ⟨d e⟩ ⟨e f⟩ [a e] [d f ] + 6 ⟨a d⟩ ⟨c e⟩ ⟨d f⟩ ⟨e f⟩ [a e] [d f ] . (5.42)
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5.7 R7:1,2

The second new exclusively U(Nc) rational piece can be expressed in terms of the new SU(Nc)
structures via a decoupling identity,

R7:1,2(a; b, c; d, e, f, g) = −R7:3(b, c; a, d, e, f, g)−R7:3(b, c; a, e, f, g, d)
−R7:3(b, c; a, f, g, d, e)−R7:3(b, c; a, g, d, e, f)
−R7:4(a, b, c; d, e, f, g)−R7:4(a, c, b; d, e, f, g)

= −
∑

Z4(defg)
R7:3(b, c; a, d, e, f, g)−

∑
Z2(bc)

R7:4(a, b, c; d, e, f, g). (5.43)

5.8 R7:1,3

From the decoupling identity, the new U(Nc) rational piece R7:1,3 can be expressed solely
in terms of R7:4,

R7:1,3(a; b, c, d; e, f, g) = −R7:4(b, c, d; a, e, f, g)−R7:4(b, c, d; a, f, g, e)
−R7:4(b, c, d; a, g, e, f)−R7:4(e, f, g; a, b, c, d)
−R7:4(e, f, g; a, c, d, b)−R7:4(e, f, g; a, d, b, c)

= −
∑

Z3(efg)
R7:4(b, c, d; a, e, f, g)−

∑
Z3(bcd)

R7:4(e, f, g; a, b, c, d). (5.44)

5.9 R7:2,2

The final new SU(Nc) rational piece can be expressed in terms of the previous two U(Nc)
structures,

R7:2,2(a, b; c, d; e, f, g) = −R7:1,2(b; c, d; a, e, f, g)−R7:1,2(b; c, d; a, f, g, e)
−R7:1,2(b; c, d; a, g, e, f)−R7:1,3(b; a, c, d; e, f, g)
−R7:1,3(b; a, d, c; e, f, g)

= −
∑

Z3(efg)
R7:1,2(b; c, d; a, e, f, g)−

∑
Z2(cd)

R7:1,3(b; a, c, d; e, f, g).

(5.45)

5.10 R7:1B

Lastly is R7:1B, the SU(Nc) partial amplitude that appears with a single color trace and no
factors of Nc in the color decomposition. (This differs from R7:1, which appears multiplied
by N2

c and a single trace.) The augmented recursion result calculated here finds agreement
with the n-point form postulated in [25]. We reconstruct a version matching that form.
The function has cyclic symmetry in the momenta, but unlike other color structures does
not appear with an explicit P7:λ sum.

For compactness, the Parke-Taylor denominator is defined with

CP T (a, b, c, d, e, f, g) = 1
⟨a b⟩ ⟨b c⟩ ⟨c d⟩ ⟨d e⟩ ⟨e f⟩ ⟨f g⟩ ⟨g a⟩

. (5.46)
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Also useful is the epsilon function

ϵ(a, b, c, d) = [a|b|c|d|a⟩ − ⟨a|b|c|d|a]
= [a b] ⟨b c⟩ [c d] ⟨d a⟩ − ⟨a b⟩ [b c] ⟨c d⟩ [d a] , (5.47)

with a further compact notation

ϵ({a1, . . . , ar}, b, c, {d1, . . . , ds}) =
r∑

i=1

s∑
j=1

ϵ(ai, b, c, dj). (5.48)

With these identifications, the partial amplitude can be written in two pieces,

R7:1B(a, b, c, d, e, f, g) = RA
7:1B(a, b, c, d, e, f, g) + RB

7:1B(a, b, c, d, e, f, g), (5.49)

where

RA
7:1B(a, b, c, d, e, f, g) = −2iCP T (a, b, c, d, e, f, g)

×
(
ϵ({a, b, c}, d, f, g) + ϵ({a, b}, c, e, {f, g}) + ϵ({a, b}, c, f, g)

+ ϵ(a, b, d, {e, f, g}) + ϵ(a, b, e, {f, g}) + ϵ(a, b, f, g)
)

(5.50)

and

RB
7:1B(a, b, c, d, e, f, g) =

+4i
(
CP T (a, b, c, e, f, d, g)ϵ({a, b, c}, e, d, g)− CP T (a, b, c, f, e, d, g)ϵ({a, b, c}, f, d, g)

+ CP T (a, b, c, f, d, e, g)ϵ({a, b, c}, f, e, g) + CP T (a, b, d, e, c, f, g)ϵ({a, b}, d, c, {f, g})
+ CP T (a, b, d, e, f, c, g)ϵ({a, b}, d, c, g)− CP T (a, b, e, d, c, f, g)ϵ({a, b}, e, c, {f, g})
− CP T (a, b, e, d, f, c, g)ϵ({a, b}, e, c, g)− CP T (a, b, e, f, d, c, g)ϵ({a, b}, e, c, g)
+ CP T (a, b, e, c, d, f, g)ϵ({a, b}, e, d, {f, g}) + CP T (a, b, e, c, f, d, g)ϵ({a, b}, e, d, g)
+ CP T (a, b, e, f, c, d, g)ϵ({a, b}, e, d, g) + CP T (a, b, f, e, d, c, g)ϵ({a, b}, f, c, g)
− CP T (a, b, f, c, e, d, g)ϵ({a, b}, f, d, g)− CP T (a, b, f, e, c, d, g)ϵ({a, b}, f, d, g)
+ CP T (a, b, f, c, d, e, g)ϵ({a, b}, f, e, g) + CP T (a, c, d, b, e, f, g)ϵ(a, c, b, {e, f, g})
+ CP T (a, c, d, e, b, f, g)ϵ(a, c, b, {f, g}) + CP T (a, c, d, e, f, b, g)ϵ(a, c, b, g)
− CP T (a, d, c, b, e, f, g)ϵ(a, d, b, {e, f, g})− CP T (a, d, c, e, b, f, g)ϵ(a, d, b, {f, g})
− CP T (a, d, e, c, b, f, g)ϵ(a, d, b, {f, g})− CP T (a, d, c, e, f, b, g)ϵ(a, d, b, g)
− CP T (a, d, e, c, f, b, g)ϵ(a, d, b, g)− CP T (a, d, e, f, c, b, g)ϵ(a, d, b, g)
+ CP T (a, d, b, c, e, f, g)ϵ(a, d, c, {e, f, g}) + CP T (a, d, b, e, c, f, g)ϵ(a, d, c, {f, g})
+ CP T (a, d, e, b, c, f, g)ϵ(a, d, c, {f, g}) + CP T (a, d, b, e, f, c, g)ϵ(a, d, c, g)
+ CP T (a, d, e, b, f, c, g)ϵ(a, d, c, g) + CP T (a, d, e, f, b, c, g)ϵ(a, d, c, g)
+ CP T (a, e, d, c, b, f, g)ϵ(a, e, b, {f, g}) + CP T (a, e, d, c, f, b, g)ϵ(a, e, b, g)
+ CP T (a, e, d, f, c, b, g)ϵ(a, e, b, g) + CP T (a, e, f, d, c, b, g)ϵ(a, e, b, g)
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− CP T (a, e, b, d, c, f, g)ϵ(a, e, c, {f, g})− CP T (a, e, d, b, c, f, g)ϵ(a, e, c, {f, g})
− CP T (a, e, b, d, f, c, g)ϵ(a, e, c, g)− CP T (a, e, b, f, d, c, g)ϵ(a, e, c, g)
− CP T (a, e, d, b, f, c, g)ϵ(a, e, c, g)− CP T (a, e, d, f, b, c, g)ϵ(a, e, c, g)
− CP T (a, e, f, b, d, c, g)ϵ(a, e, c, g)− CP T (a, e, f, d, b, c, g)ϵ(a, e, c, g)
+ CP T (a, e, b, c, d, f, g)ϵ(a, e, d, {f, g}) + CP T (a, e, b, c, f, d, g)ϵ(a, e, d, g)
+ CP T (a, e, b, f, c, d, g)ϵ(a, e, d, g) + CP T (a, e, f, b, c, d, g)ϵ(a, e, d, g)
− CP T (a, f, e, d, c, b, g)ϵ(a, f, b, g) + CP T (a, f, b, e, d, c, g)ϵ(a, f, c, g)
+ CP T (a, f, e, b, d, c, g)ϵ(a, f, c, g) + CP T (a, f, e, d, b, c, g)ϵ(a, f, c, g)
− CP T (a, f, b, c, e, d, g)ϵ(a, f, d, g)− CP T (a, f, b, e, c, d, g)ϵ(a, f, d, g)

− CP T (a, f, e, b, c, d, g)ϵ(a, f, d, g) + CP T (a, f, b, c, d, e, g)ϵ(a, f, e, g)
)
. (5.51)

The rational terms are available in analytic form in the linked Mathematica file R7terms.m.

6 Relations between the partial amplitudes

In this section we will look at possible linear relations amongst the partial amplitudes. We
will examine these for specific six and seven point all-plus amplitudes. Many of these are
contained within the decoupling identities however, as shown in refs. [31, 32] there are relations
beyond those the decoupling identities. For two loop amplitudes it is these relationships
which are probably the most interesting.

To do so, following [31, 32, 46] we find the content of the six and seven point partial
amplitudes in terms of the irreducible representations of the symmetric groups S6 and S7
and look for relations amongst these combinations. This approach has also been used to
look at higher loop relations for four and five point amplitudes [46–49]. The six-point is
a review. These are of course, only guaranteed to be satisfied for the all plus amplitude
but are probes for the possible relationships satisfied by all amplitudes. There can be no
further possible linear relations valid for all helicities beyond these. To be clear, we are
looking for relations of the form∑

cx,iA
(2)
7:x(σi(1, 2, 3, 4, 5, 6, 7)) (6.1)

where the cx,i are constant coefficients independent of kinematics and helicity. At tree level,
these are well understood. At tree level there are relations beyond linear where the coefficients
are functions of the kinematic variable [50]. These are a consequence of the color-kinematic
duality [51]. Our study will focus however upon linear relations.

The irreducible representations of Sn can be described by Young diagrams containing
exactly n boxes. There are 11 such diagrams for S6 and 15 for S7. The partial amplitudes
of Yang-Mills form a representation of Sn which satisfy cyclic symmetry and are for n = 6
flip symmetric and flip antisymmetric for n = 7. As such they decompose into a limited
set of irreducible representations of Sn. For example, the single trace representation A

(2)
7:1

has irreducible representation content

3× + + 2× + + 3× + 3× + + 2× +
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This is the group theory decomposition based solely on the cyclic and flip properties. As
such it is also the decomposition of the tree amplitude A

(0)
7 the one-loop A

(1)
7:1 and both the

two-loop partial amplitudes A
(2)
7:1 and A

(2)
7:1B . Although these have the same decomposition, the

kinematic structures are very different. The decomposition for the various partial amplitudes
is indicated in tables 1 and 2. In terms of notation we label the representation in terms of
the number of elements in each row so 3, 2, 12 is the representation,

Before presenting our results, we provide an overview of relations which appear at tree
and one-loop level which provide motivation to look beyond decoupling identities. At tree
level and one-loop, the identities contained in decoupling identities are maximal for low
numbers of external legs but for higher numbers of legs there exist more identities which
can reduce the number of independent amplitudes. Specifically, at tree level there are the
Kleiss-Kuijf relations [52],

A(0)
n (1, {α}, n, {β}) = (−1)|β|

∑
σ∈OP (α,βT )

A(0)
n (1, {σ}, n) (6.2)

where {α} and {β} are sets of the remaining indices i.e. {α} = {a2, · · · ap} and {β} =
{ap+1, · · · an−1}. The summation is over the order permutations of α and βT . That is
permutations of the union of the sets where the ordering of α and βT are preserved. This
identity reduces the (n− 1)!/2 independent amplitudes to (n− 2)!. For n ≤ 6, the decoupling
identities may be used to show (6.2) however for n ≥ 7 they require further information.
For n = 7, the rank of the decoupling system is 239 whereas the rank of the Kleiss-Kuijf
relations is just larger at 240: a single extra relation exists.

For the one-loop amplitude, the double trace terms are not independent but can be
expressed in terms of the leading [38]

A(1)
n:r(a1, a2, · · · , ar−1; ar, · · · , an) = (−1)r

∑
σ∈COP{α}{βT }

A
(1)
n:1(σ) (6.3)

where {α} = {a1, · · · ar−1} and {β} = {ar · · · an}. The summation is over the ordered
permutations as before but factoring out equivalent permutations due to cyclic symmetry
(see appendices of ref. [33] for examples of the summations). This relation allows the double
trace terms to be derived from the leading in color terms only. This reduces the number of
functional forms to be computed in a calculation considerably. There are some analogues
between the one-loop relation eq. (6.3) and the tree relation eq. (6.2). This relation can be
obtained from the decoupling equations for n ≤ 5 but beyond n = 5 the decoupling equations
are not sufficient: explicitly, at n = 6, decoupling identities determine the combination

A
(1)
6:4(a1, a2, a3; a4, a5, a6) + A

(1)
6:4(a1, a3, a2; a4, a5, a6) (6.4)

but in themselves do not determine the individual terms.
Turning to two-loop amplitudes, for n = 5 there are relations which allow the A

(2)
5:1B to be

expressed in terms of the A
(2)
5:1 and A

(2)
5:3 thus reducing the number of independent functional

forms from three to two [31]. This relation is outside of decoupling identities: the A
(2)
n:1B only

mixes with itself in decoupling identities. In fact the A
(2)
n:1B satisfies the identical decoupling

relations as the tree amplitude A
(0)
n and so satisfy (6.2) for n ≤ 6 at least.
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|Ri| A
(2)
6:1 A

(2)
6:2 A

(2)
6:3 A

(2)
6:4 A

(2)
6:1,1 A

(2)
6:1,2 A

(2)
6:2,2 A

(2)
6:1B

|A(2)
6:x| 60 72 45 30 45 60 15 60

R1 6 1 I I I I I I I I=0
R2 5, 1 5 . I=0 I=0 . I=0 I=I=0 . .
R3 4, 2 9 I,I I I,I I I,I I=I I I=I

R4 4, 12 10 . . . . . I=0 . .
R5 32 5 . I=0 . . . I=0 . .
R6 3, 2, 1 16 I I=0,I I . I I=I . I=I

R7 3, 13 10 I . . . . . I

R8 23 5 I,I I I I I . I=0 I=0, I

R9 22, 1 9 . I=0 . . . . . .
R10 2, 14 5 I I . I . . . I=0
R11 16 1 . I=0 . . . . . .

Table 1. The irreducible S6 representation content of the six point partial amplitudes. The number of
independent partial amplitudes of each type after applying symmetries is shown in second row. Each
I indicates a potential combination of the partial amplitudes after applying cyclic and flip symmetry.
Using the actual kinematic form of the all-plus amplitude some of these vanish which vanish or are
proportional (indicated by equality).

Examining the all-plus amplitudes split into irreducible representations at specific kine-
matic points allows us to search for possible identities. Firstly, a significant number of
the projections vanish: these are indicated as “I = 0” on the table. Secondly, where an
amplitude has multiple versions of a representation, then these may not be independent but
proportional to each other. This proportionality is indicated as equality on the table. The
numerical number of relations of a single vanishing or equality is given by the dimension of the
representation. We will first present the results for the six point amplitudes for comparison
which are essentially the results of ref. [32] together with a single extra identity identified in
ref. [33]. The irreducible representation content of the amplitudes is shown on table 1

First note the relations among the A
(2)
6:1B,

A
(2)
6:1B ( ) = A

(2)
6:1B

( )
= A

(2)
6:1B

( )
= A

(2)
6:1B

( )
1

= 0

A
(2)
6:1B

( )
1 = A

(2)
6:1B

( )
2 . (6.5)

These constitute 36 identities in total which reduce the 60 A
(2)
6:1B(1, σ′(2, 3, 4, 5, 6)) to the 24

A
(2)
6:1B(1, σ(2, 3, 4, 5), 6). These are the Kleiss-Kuijf/decoupling identities.

Secondly, we have a set of relations involving the A
(2)
6:2,2

A
(2)
6:2,2

( )
= 0

A
(2)
6:2,2

( )
= −8A

(2)
6:4
( )

A
(2)
6:2,2 ( ) = −24A

(2)
6:4 ( ) . (6.6)
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Since the relations involve all the representations of A
(2)
6:2,2 this indicates that A

(2)
6:2,2 can be

solved in terms of the other amplitudes. This is known from the decoupling identities. We
have some relations amongst the A

(2)
6:3 and A

(2)
6:4

A
(2)
6:3
( )

= 0

2A
(2)
6:3
( )

1 + A
(2)
6:3
( )

2 + 4A
(2)
6:4
( )

= 0

A
(2)
6:1 ( ) = 1

8A
(2)
6:3 ( ) = −1

3A
(2)
6:4 ( ) (6.7)

which form constraints but are not sufficient to solve for either. They are sufficient to indicate
the A

(2)
6:2,2 can be expressed either purely in terms of the A

(2)
6:4 or A

(2)
6:3.

Finally we have relations involving the A
(2)
6:1B

8
5A

(2)
6:1B

( )
1 = 8A

(2)
6:1
( )

1 − 4A
(2)
6:1
( )

2 − 2A
(2)
6:3
( )

1 + A
(2)
6:3
( )

2

2A
(2)
6:1B

( )
= −10A

(2)
6:1

( )
1

+ A
(2)
6:3

( )
+ 2A

(2)
6:4

( )
. (6.8)

These fourteen relations constrain the 24 A
(2)
6:1B but are insufficient to solve — unlike the

five point situation.
For the seven-point amplitude we have the decomposition of the partial amplitudes as

shown in table 2 where we also indicate the vanishing and proportionality for the all-plus
amplitude of this paper.

For the all-plus seven-point amplitude we have relations amongst the A
(2)
7:1B

A
(2)
7:1B

( )
= A

(2)
7:1B

( )
1

= A
(2)
7:1B

( )
= A

(2)
7:1B

( )
= A

(2)
7:1B


 = 0

A
(2)
7:1B

( )
1

= A
(2)
7:1B

( )
2

= A
(2)
7:1B

( )
3

A
(2)
7:1B

( )
1

= A
(2)
7:1B

( )
2

= A
(2)
7:1B

( )
3

A
(2)
7:1B

( )
1

= A
(2)
7:1B

( )
2

= A
(2)
7:1B

( )
3

A
(2)
7:1B

( )
1

= A
(2)
7:1B

( )
2

. (6.9)

In total, the all-plus A
(2)
7:1B satisfies 240 relations which allow a Kleiss-Kuijf (6.2) type relation

amongst themselves. The expected number from decoupling identities is 239. The extra
relation required is the vanishing of the 17 representation.

A
(2)
7:1B


 = 0 (6.10)

which in terms of amplitudes is∑
σ6

(−1)|σ6|A
(2)
7:1B(1, σ6(2, 3, 4, 5, 6, 7)) = 0 . (6.11)
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|Ri| A
(2)
7:1 A

(2)
7:2 A

(2)
7:3 A

(2)
7:4 A

(2)
7:1,1 A

(2)
7:1,2 A

(2)
7:1,3 A

(2)
7:2,2 A

(2)
7:1B

|A(2)
7:x| 360 420 252 210 252 315 140 105 360

R1 7 1 . . . . . . . . .
R2 6, 1 6 . . . . . . . . .
R3 5, 2 14 . . . . . . . . .
R4 5, 12 15 I,I,I I, I I,I I=I I,I I I I I=I=I

R5 4, 3 14 I I . . . . . I=0
R6 4, 2, 1 35 I, I I=I=I I, I I I,I I=I I . I=0, I

R7 4, 13 20 I I= I, I=0 I,I I=I I,I I=I I=I I I=0
R8 32, 1 21 I,I,I I,I I,I I I,I I . I I=I=I

R9 3, 22 21 . I=0 . . . I=0 . . .
R10 3, 2, 12 35 I,I,I I=I, I I,I I,I I, I I=I,I=0 I I I=I=I

R11 3, 14 15 . I=0 . . . I=0 I=0 . .
R12 23, 1 14 I I . . . I=0 . . I=0
R13 22, 13 14 I, I I . I . I=0 . I=0 I=I

R14 2, 15 6 . . . . . . . . .
R15 17 1 I . . . . . . . I=0

Table 2. The irreducible S7 representation content of the seven point partial amplitudes. Those
combinations which vanish or are equal for the all-plus are indicated.

This is satisfied for the all plus amplitude. It provides a future test for other helicity
amplitudes as to whether the Kleiss-Kuijf relations persist beyond six point for A

(2)
n:1B and

arbitrary helicity.
We have relations involving A

(2)
7:2,2,

A
(2)
7:2,2

( )
= 0

A
(2)
7:2,2

( )
= 6A

(2)
7:3

( )
1

+ 6A
(2)
7:3

( )
2
− 8A

(2)
7:4

( )
2

A
(2)
7:2,2

( )
= 12A

(2)
7:3

( )
1

+ 12A
(2)
7:3

( )
2

A
(2)
7:2,2

( )
= 2A

(2)
7:3

( )
1

A
(2)
7:2,2

( )
= A

(2)
7:3

( )
1

+ A
(2)
7:3

( )
2

. (6.12)

Since these determine all the irreducible representations of A
(2)
7:2,2 this indicates that A

(2)
7:2,2

can be expressed in terms of the sub-leading partial amplitudes A
(2)
7:3 and A

(2)
7:4. This can

be seen from decoupling identities.
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There are two further identities relating the remaining A
(2)
7:1B

18A
(2)
7:1B

( )
+ 126A

(2)
7:1

( )
1
− 42A

(2)
7:1

( )
3

+21A
(2)
7:3

( )
2

+ 70A
(2)
7:4

( )
1

= 0

20A
(2)
7:1B

( )
+ 210A

(2)
7:1B

( )
1

+ 270A
(2)
7:1B

( )
2
− 450A

(2)
7:1B

( )
3

−21A
(2)
7:3

( )
1
− 12A

(2)
7:3

( )
2
− 30A

(2)
7:4

( )
= 0 . (6.13)

Although these form constraints (36 in number) upon the A
(2)
7:1B these is not enough to

determine since the

A
(2)
7:1B

( )
2

, A
(2)
7:1B

( )
, A

(2)
7:1B

( )
(6.14)

are involved in no relations.
We also a small number of constraints

A
(2)
7:4

( )
+ A

(2)
7:3

( )
1

+ A
(2)
7:3

( )
2

= 0

A
(2)
7:4

( )
1

+ A
(2)
7:3

( )
1

+ A
(2)
7:3

( )
2

= 0

2A
(2)
7:4

( )
1

+ A
(2)
7:3

( )
1

+ A
(2)
7:3

( )
2

= 0

−4A
(2)
7:4

( )
1

+ 36A
(2)
7:1

( )
2

+ 24A
(2)
7:1

( )
3

−9A
(2)
7:3

( )
1
− 3A

(2)
7:3

( )
2

= 0 . (6.15)

These finalise all possible linear relationships between the partial amplitudes. Whether
they all extend to all helicities remains open.

7 Eight and nine point relations

We can use the results for the polylogarithmic terms P
(2)
n:λ of section 4 as experimental data

to search for linear identities amongst the partial amplitudes. The results of this study are
displayed, in fairly compact form, in tables 3 and 4. As before we emphasis these are purely
for the all plus configuration and are only indicative for other helicities.

As can be seen the complexity of the decomposition increases with number of legs and
in particular there are significant numbers of independent combinations which are in the
same representation of Sn. Consequently, we have chosen to organise this more compactly
by listing the number of relations a particular set of combinations satisfy. For example
the R3 content of the A

(2)
8:1B representation is given as ′′3(3)[2]′′. The first number is the

number of independent copies of the representation. The second number (3) is the number of
independent relations satisfied by these combinations. The third number [2] is the number of
independent relations amongst themselves.. These may be equating a combination to zero or
proportionality between terms as in the six and seven point amplitudes. If there are enough
relations involving the terms for all representations. i.e. the second number equals the first
for all Ri, then that partial amplitude has a solution in terms of the others.
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We can summarise some of the content of these (and the six and seven point amplitudes
always with the caveats

• There are no relations amongst the leading-in-color A
(2)
8:1 or A

(2)
9:1. Hence these are all

independent.

• There are some number of relations amongst the amplitudes of the other partial
amplitudes : the total number of which indicated as [#] at bottom of table. These are
quite numerous for the triple trace terms but much more limited for the double trace.

• There are significant relations amongst the A
(2)
8:1B and A

(2)
9:1B with the number precisely

that needed with no more to reduce the (n− 1)!/2 to (n− 2)! independent amplitudes.

• The A
(2)
n:1B satisfy significant further identities. These relations are beyond those due to

decoupling identities. However, there are not enough relations to completely specify
this term. For n = 8 there is just not enough with only a single identity for R7 lacking.
For n = 9 there are multiple identities lacking.

• The sub-sub-leading triple trace terms can be expressed in terms of the double trace
partial amplitudes. This is in addition to the information present in the table. For
A

(2)
n:2,r this can be shown true for all helicities using decoupling identities, that is{

A
(2)
n:2,r

}
∈
{∑

s>2
A(2)

n:s

}
(7.1)

however we find this is also true for A
(2)
9:3,3. Futhermore there are simplifications. For

n = 9, {
A

(2)
9:2,2

}
∈
{

A
(2)
9:3, A

(2)
9:5

}
{

A
(2)
9:2,3

}
∈
{

A
(2)
9:3, A

(2)
9:5

}
or
{

A
(2)
9:4, A

(2)
9:5

}
{

A
(2)
9:3,3

}
∈
{

A
(2)
9:3, A

(2)
9:4

}
or
{

A
(2)
9:4, A

(2)
9:5

}
. (7.2)

In ref. [33] it was speculated that A
(2)
9:3,3 could be expressed a sum of A

(2)
9:4 however this

is not the case.
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|Ri| A
(2)
8:1 A

(2)
8:3 A

(2)
8:4 A

(2)
8:5 A

(2)
8:2,2 A

(2)
8:2,3 A

(2)
8:1B #

|A(2)
8:x| 2520 1680 1344 630 630 560 2520

R1 8 1 1(1)[0] 1(1)[0] 1(1)[0] 1(1)[0] 1(1)[0] 1(1)[0] 1(1)[1] 4
R2 7, 1 7 0 1(1)[0] 1(1)[0] 0 1(1)[0] 1(1)[0] 0 1
R3 6, 2 20 3(3)[0] 3(3)[0] 2(2)[0] 2(2)[0] 3(3)[1] 2(2)[0] 3(3)[2] 7
R4 6, 12 21 0 0 0 0 0 0 0
R5 5, 3 28 1(0)[0] 2(1)[0] 2(2)[1] 0 1(1)[1] 1(1)[0] 1(1)[1] 3
R6 5, 2, 1 64 4(2)[0] 3(2)[0] 2(2)[0] 1(1)[0] 2(2)[1] 1(1)[0] 4(4)[3] 7
R7 5, 13 35 2(0)[0] 1(0)[0] 0 0 0 0 2(1)[1] 1
R8 42 14 3(2)[0] 2(2)[0] 0 2(2)[1] 2(2)[1] 1(1)[0] 3(3)[2] 5
R9 4, 3, 1 70 3(1)[0] 3(2)[0] 1(1)[0] 0 1(1)[0] 1(1)[0] 3(3)[2] 4
R10 4, 22 56 7(4)[0] 5(4)[0] 4(4)[0] 3(3)[0] 3(3)[1] 2(2)[0] 7(7)[5] 12
R11 4, 2, 12 90 4(1)[0] 2(1)[0] 3(2)[0] 0 0 0 4(4)[3] 5
R12 4, 14 35 4(2)[0] 2(1)[0] 3(2)[0] 1(1)[0] 0 1(1)[0] 4(4)[3] 6
R13 32, 2 42 1(0)[0] 1(1)[0] 1(1)[0] 0 0 0 1(1)[1] 2
R14 32, 12 56 5(2)[0] 2(1)[0] 0 2(1)[0] 1(1)[0] 0 5(5)[3] 5
R15 3, 22, 1 70 4(1)[0] 3(2)[0] 3(2)[0] 1(1)[0] 1(1)[0] 1(1)[0] 4(4)[3] 6
R16 3, 2, 13 64 4(1)[0] 2(1)[0] 2(1)[0] 1(1)[0] 0 1(1)[0] 4(4)[3] 5
R17 3, 15 21 1(0)[0] 1(1)[0] 3(2)[1] 0 0 1(1)[0] 1(1)[1] 3
R18 24 14 3(1)[0] 2(1)[0] 0 2(1)[0] 1(1)[0] 1(1)[0] 3(3)[2] 4
R19 23, 12 28 0 0 0 0 0 0 0 .
R20 22, 14 20 2(1)[0] 1(1)[0] 0 1(1)[0] 0 1(1)[0] 2(2)[1] 3
R21 2, 16 7 0 0 0 0 0 0 0 .
R22 17 1 0 0 0 0 0 0 0 .
[#] 0 0 49 14 182 0 1800 .

Table 3. Irreducible representation content of the eight point amplitudes and relations. This table
contains various information. The first number indicates the number of independent copies of the
representation in the partial amplitude using only its cyclic and flip symmetry. The other two numbers
refer to the actual amplitudes of the all-plus configuation. The number in round brackets indicates
the number of independent linear relations those combinations are involved in. The number in square
brackets is the number of linear relations those combinations obey amongst themselves. The bottom
row indicates the total number of identities a specific partial amplitude satisfies amongst themselves.
The final column is the total number of identities amongst the A

(2)
8:1, A

(2)
8:3,A(2)

8:4,A(2)
8:5 and A

(2)
8:1B .
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|Ri| A
(2)
9:1 A

(2)
9:3 A

(2)
9:4 A

(2)
9:5 A

(2)
9:2,2 A

(2)
9:2,3 A

(2)
9:3,3 A

(2)
9:1B #

|A9:x| 20160 12960 10080 9072 4536 7560 1120 20160
R1 9 1 0 0 0 0 0 0 0 0 .
R2 8, 1 8 0 0 0 0 0 0 0 0 .
R3 7, 2 27 0 0 0 0 0 0 0 0 .
R4 7, 12 28 4(4)[0] 3(3)[0] 3(3)[0] 3(3)[0] 2(2)[0] 2(2)[0] 1(1)[0] 4(4)[3] 10
R5 6, 3 48 3(2)[0] 1(1)[0] 1(1)[0] 0 0 0 0 3(3)[2] 4
R6 6, 2, 1 105 5(1)[0] 5(3)[0] 3(3)[0] 3(3)[0] 2(2)[0] 3(3)[2] 0 5(4)[4] 9
R7 6, 13 56 3(2)[0] 4(3)[0] 4(4)[0] 3(3)[0] 2(2)[0] 4(4)[2] 1(1)[0] 3(3)[2] 9
R8 5, 4 42 1(0)[0] 1(0)[0] 0 0 0 0 0 1(1)[1] 1
R9 5, 3, 1 162 12(6)[0] 9(7)[0] 6(6)[0] 5(5)[0] 4(4)[1] 4(4)[2] 1(1)[1] 12(12)[9] 20
R10 5, 22 120 3(0)[0] 2(1)[0] 1(1)[0] 0 0 1(1)[1] 0 3(2)[2] 3
R11 5, 2, 12 189 12(4)[0] 9(6)[0] 7(6)[0] 6(5)[1] 4(4)[1] 7(7)[5] 1(1)[1] 12(11)[9] 20
R12 5, 14 70 1(0)[0] 1(1)[0] 1(1)[0] 0 0 2(2)[2] 0 1(1)[1] 2
R13 42, 1 84 3(1)[0] 3(2)[0] 2(2)[1] 1(1)[0] 0 1(1)[1] 0 3(3)[2] 5
R14 4, 3, 2 168 9(3)[0] 6(4)[0] 3(3)[0] 4(3)[0] 2(2)[1] 2(2)[1] 0 9(9)[7] 12
R15 4, 3, 12 216 12(4)[0] 9(6)[0] 7(6)[1] 7(6)[1] 4(4)[2] 6(6)[4] 1(1)[1] 12(12)[9] 20
R16 4, 22, 1 216 12(3)[0] 6(4)[0] 4(3)[0] 4(3)[0] 2(2)[1] 3(3)[2] 0 12(11)[9] 14
R17 4, 2, 13 189 12(3)[0] 6(4)[0] 6(4)[0] 4(3)[0] 2(2)[1] 5(5)[3] 1(1)[1] 12(11)[9] 15
R18 4, 15 56 3(0)[0] 0 1(0)[0] 0 0 0 0 3(2)[2] 2
R19 33 42 6(4)[0] 3(3)[0] 3(3)[0] 3(3)[0] 2(2)[1] 1(1)[0] 1(1)[0] 6(6)[4] 9
R20 32, 2, 1 168 9(2)[0] 6(4)[0] 4(3)[0] 5(4)[0] 2(2)[1] 3(3)[1] 0 9(9)[7] 12
R21 32, 13 120 3(1)[0] 3(2)[0] 2(2)[0] 2(2)[0] 0 2(2)[1] 0 3(3)[2] 5
R22 3, 23 84 3(1)[0] 1(1)[0] 1(0)[0] 1(1)[0] 0 0 0 3(3)[2] 3
R23 3, 22, 12 162 12(4)[0] 6(4)[0] 6(4)[0] 6(5)[0] 2(2)[1] 3(3)[1] 1(1)[0] 12(12)[9] 16
R24 3, 2, 14 105 5(1)[0] 2(1)[0] 3(2)[0] 2(2)[0] 0 1(1)[0] 0 5(5)[4] 6
R25 3, 16 28 4(2)[0] 1(1)[0] 2(1)[0] 1(1)[0] 0 0 1(1)[0] 4(4)[3] 5
R26 24, 1 42 1(0)[0] 1(1)[0] 1(1)[0] 1(1)[0] 0 0 0 1(1)[1] 2
R27 23, 13 48 3(1)[0] 2(1)[0] 3(2)[0] 2(2)[0] 0 1(1)[0] 1(1)[0] 3(3)[2] 5
R28 22, 15 27 0 0 1(1)[0] 1(1)[0] 0 0 0 0 1
R29 2, 17 8 0 1(1)[0] 1(1)[0] 1(1)[0] 0 0 0 0 2
R30 19 1 0 0 0 0 0 0 0 0 .
[#] 0 0 300 405 1728 4416 756 15120

Table 4. Irreducible representation content of the nine point amplitudes and relations using the same
format as for the eight point amplitude.
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8 Conclusions

Using the techniques of four dimensional unitarity cuts and augmented recursion, we have
obtained the two-loop seven-gluon all-plus helicity Yang-Mills amplitude in a compact,
analytic form. By separating the procedure into these two parts, we have avoided the need for
a more difficult D-dimensional unitarity approach. Our method has only required evaluation
of one-loop integrals, to obtain a two-loop result.

The technique of four dimensional unitarity is manifestly gauge invariant throughout,
involving on-shell amplitudes which are themselves gauge invariant as well as box integrals.
Working in four dimensions allows the spinor helicity formalism to be used straightfor-
wardly. Helicity considerations greatly constrain the number of diagrams that contribute
to the unitarity.

The BCFW recursion is also manifestly gauge invariant. The only ingredients are gauge
invariant lower-point amplitudes. Although the process introduces a new reference momentum
to allow the amplitude to be treated as a complex function, the result is independent of
this reference and it is not a gauge choice.

The only gauge dependence of our process takes place in the augmented recursion portion.
To ensure that both leading and sub-leading poles are accounted for, we carry out some explicit
loop integrals involving currents. Internal off-shell legs are treated in the spinor helicity
setup with an axial gauge formalism, which introduces a reference momentum gauge choice.
Despite the individual contributions being gauge dependent, the overall result is independent
of the reference momentum, which is a powerful consistency check. The particular choice of
axial gauge for the gauge dependent step is also convenient because ghosts decouple from
gluons in this gauge, meaning they did not appear in our diagrams. The final result is gauge
invariant, as would be expected for an observable such as an amplitude.

Our calculation presents a new n-point expression for the two-loop all-plus polylogarithmic
piece P

(2)
n:λ(1+, 2+, · · · , n+). It also finds agreement with a previous n-point conjecture, for the

Nc independent single-trace rational piece R
(2)
n:1B(1+, 2+, · · · , n+) [25]. Both were found in

large part by identifying patterns in compact analytic amplitude expressions, demonstrating
the value of calculating such objects.

Although for a specific helicity configuration, this amplitude can be used to explore
the properties of amplitudes and hopefully lead to further insights. We have used the full
seven-point amplitude together with the n-point polylogarithmic amplitude for n = 8, 9 to
test for linear relations between the partial amplitudes akin to the Kleiss-Kuijf relations of
tree amplitudes. The results are limited and in line with previous studies but we provide
evidence that the most sub-leading in color can be derived from the other partial amplitudes.

This work was partially supported by the UKRI Science and Technology Facilities Council
(STFC) Consolidated Grant No. ST/T000813/1. For the purpose of open access, the authors
have applied a Creative Commons Attribution (CC BY) licence.

A Spinors helicity conventions

Amplitudes can be represented more compactly if spinors are used to represent the momenta
and polarisations of massless particles [53–56], in what is known as the “spinor-helicity
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formalism”. Each four-momentum pµ
i is replaced by a pair of two-component spinors λα

i

and λ̃α̇
i , according to

pα̇α = pµσ̄α̇α
µ = λ̃α̇λα. (A.1)

The factor σ̄α̇α
µ = (I, σ⃗) contains the Pauli matrices. Expressions are then built out of

Lorentz-invariant spinor products, defined by

⟨ij⟩ ≡ λα
i λjα = ϵαβλα

i λβ
j = −⟨ji⟩,

[ij] ≡ λ̃iα̇λ̃α̇
j = −ϵα̇β̇λ̃α̇

i λ̃β̇
j = −[ji], (A.2)

where the Levi-Civita antisymmetric tensor raises and lowers spinor indices.
The common Mandelstam variable sij is expressed in terms of spinor products as

sij ≡ (pi + pj)2 = 2pi · pj = ⟨i j⟩ [j i] , (A.3)

and we also define a three-particle momentum factor,

tijk ≡ (pi + pj + pk)2 = sij + sjk + ski, (A.4)

for convenience. A compact notation can be used to join two spinor products of opposite type,
in a way that illustrates the equivalence of full four-momentum factors and their spinors,

[i|j|k⟩ ≡ [i j] ⟨j k⟩ = λ̃α̇
i pjµσ̄µ

α̇αλα
k . (A.5)

We also use notation

[i|ab|k] ≡ [i a] ⟨a b⟩ [b k] (A.6)

and

[i|kab|k⟩ ≡ [i a] ⟨a j⟩+ [i b] ⟨b j⟩ (A.7)

together with obvious generalisations.

B Currents

The augmented recursion procedure requires the input of currents, which are objects with
two off-shell legs. We accommodate these legs in terms of spinors, which individually only
represent massless particles, by introducing the axial gauge formalism [57–59]. A null
reference momentum q is required, so that any non-null momentum K can be represented
as a sum of a null momentum K♭ and a piece proportional to q. Momentum K is said
to be “nullified” according to

K♭ = K − K2

[q|K|q⟩q, (B.1)

where (K♭)2 = 0, q2 = 0 and K2 ̸= 0. We note that a superscript (♭) will be used to denote
the nullified form of off-shell momenta when they appear in our calculations. However, spinor
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labels will not use these superscripts as there is no ambiguity — spinors are on-shell objects
and any spinor we use could be considered to be nullified.

We do not need to derive the entire current, because only those terms with poles in
relevant momenta contribute to the recursion process. Therefore we can derive a simpler
“good enough” current approximation that contains only necessary structures. Two conditions
on these structures have been identified previously, which allow them to be generated [15, 60].
For a current with legs {α, β} that are in general off-shell, we have the rules:

(C1) The current must reproduce the leading sαβ singularities as sαβ → 0, for any
choices of momenta {α, β} with α2, β2 ̸= 0.

(C2) The current must reproduce the appropriate amplitude when α2, β2 → 0 and
sαβ takes a general value (which can be sαβ ̸= 0).

By following these rules, the terms involving poles in sαβ are specified, but various other
contributions can be omitted.

To obtain the new currents required by the seven-point two-loop calculation, we follow
a new, systematic derivation method. This procedure guarantees a “good enough” current
that fulfils the rules C1 and C2:

1. Start by writing the “good enough” current as

τ (1)
n (α, β, · · · ) = A(1)

n |α2,β2=0(α, β, · · · ) +O(α2, β2),

where A
(1)
n |α2,β2=0 represents the amplitude A

(1)
n , with nullified α♭ and β♭ as arguments.

Any instances of sαβ have been replaced by ⟨α β⟩ [β α]. Condition C2 has been satisfied.

2. Add the leading singularities to the current. These are given by all the lower-point
amplitude factorisations where the propagator is sαβ . In this case, it is the full off-shell
sαβ that should be written. We denote the contribution τ

(1)
LS . This satisfies condition

C1, but introduces extra structures that break C2.

3. Subtract the piece τ
(1)
LS |α2,β2=0, which represents the leading singularity terms with

off-shell momenta replaced by the nullified forms α→ α♭ and β → β♭. (In particular,
sαβ → ⟨α β⟩ [β α].) This restores condition C2, without affecting C1.

4. Identifying the O(α2, β2) piece of step 1 with τ
(1)
LS−τ

(1)
LS |α2,β2=0, the entire “good enough”

current, satisfying both conditions C1 and C2, can be written as

τ (1)
n (α, β, · · · ) = A(1)

n |α2,β2=0(α, β, · · · ) + τ
(1)
LS − τ

(1)
LS |α2,β2=0. (B.2)

After reducing the number of distinct currents required by using symmetry properties and
decoupling identities, the two new currents to be derived are τ

(1)
7 (α−, c+, β+, d+, e+, f+, g+)

and τ
(1)
7 (α−, c+, d+, β+, e+, f+, g+). The difference between these structures is the degree of

separation between the two off-shell legs. Referencing this fact, we refer to the currents as the
“singly non-adjacent” and “doubly non-adjacent” currents, respectively. Also required is the
“adjacent” current, τ

(1)
7:1 (α−, β+, c+, d+, e+, f+, g+), which has been calculated previously [24].
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The singly non-adjacent current can be written

τ
(1)
7 (α−, c+, β+, d+, e+, f+, g+) = τ̂basis

7 (α−, c+, β+, d+, e+, f+, g+)
− τ̂basis

7 (α−, g+, f+, e+, d+, β+, c+), (B.3)

where we define

τ̂basis
7 (α−, c+, β+, d+, e+, f+, g+) =

i

3

(
− ⟨α|kcβ |d] ⟨β e⟩ ⟨α d⟩3

⟨β d⟩2 ⟨c β⟩ ⟨d e⟩2 ⟨e f⟩ ⟨f g⟩ ⟨g α⟩ ⟨α c⟩

+ ⟨α|kef |g]3

⟨d|kef |g] ⟨β d⟩ ⟨c β⟩ ⟨e f⟩2 ⟨α c⟩ tefg

− 1
2

⟨α|kcβkde|α⟩3

⟨α|kcβkde|f⟩⟨α|kfgkde|β⟩ ⟨c β⟩ ⟨d e⟩2 ⟨f g⟩ ⟨g α⟩ ⟨α c⟩

− ⟨c d⟩ ⟨α β⟩3 [c β]
⟨β d⟩2 ⟨c β⟩2 ⟨d e⟩ ⟨e f⟩ ⟨f g⟩ ⟨g α⟩

+ [c g]3

⟨β d⟩ ⟨d e⟩ ⟨e f⟩ [g α] [α c] tgαc

(
1
2 [β f ]− [c|kβdkef |g]sde

2⟨β|kαc|g]⟨f |kgα|c] + [f |kdekef |g]
⟨β|kαc|g]

)

+ ⟨α|kcβ |g]3
⟨β|kαc|g] ⟨c β⟩ ⟨d e⟩ ⟨e f⟩ ⟨α c⟩ tdef tαcβ

(
⟨α|kcβ |d]sde

⟨α|kcβkde|f⟩
+ [f |kdekef |g]
⟨d|kef |g]

))
. (B.4)

The doubly non-adjacent current takes a similar form, and can be written in terms
of the same basis function as

τ
(1)
7 (α−, c+, d+, β+, e+, f+, g+) = τ̂basis

7 (α−, c+, β+, d+, e+, f+, g+)
− τ̂basis

7 (α−, g+, f+, e+, β+, d+, c+). (B.5)

These currents are then integrated as part of augmented recursion diagrams.

C Group theory conventions

In this appendix we define the conventions which specify the translation between the group
theory representations and specific combinations of amplitudes.

Irreducible representations for the symmetric group.are specified by Young diagrams
These consist of diagrams of exactly n boxes. For the symmetric group, the diagram determines
the dimension of the corresponding irreducible representation. Furthermore the defining
representation contains the same number of copies of an irreducible representation as its
dimension. This can be seen in the relation

n! =
∑

τ

d2
τ (C.1)

where dτ is the dimension of representation τ . The dτ representations are given by the
individual proper tableaux for that diagram.
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The partial amplitudes, in general, form a reducible representation of the symmetry
group but due to cyclic and reflection symmetry not the full representation. The content of
the various partial amplitudes is given in the tables. For a given irreducible representation
there can be multiple copies appearing.

What this means for amplitudes is that there are specific linear combinations of the
amplitudes which act as the representations under permutations. These combinations with
be of the form

T τ
i =

∑
σ

cτ
σ,iAn:x(σ(1, 2, · · ·n) (C.2)

and these transform under permutations as

g : T τ
i ←−M τ (g)ijT τ

j (C.3)

where M τ (g) is the matrix of permutation g in representation τ .
We now describe a process to create these combinations. (following ref. [32] and references

therein) The starting point is a Young diagram and its proper Young tableaux. Each proper

Young tableaux corresponds to a potential copy of the representation. For example,
1 2 3 4
5 6
7

is a proper Young tableaux of the Young diagram . From the tableaux, projection

operators can be formed

eτ
ij = dτ

n! QiSijPjMj (C.4)

Where Pj is the subset of the permutations which permutes elements of the rows within
the row of tableaux j. Qi is the subset of the permutations which permutes elements of the
columns within the column of tableaux i but signed by the order of the permutation, Sij

is the permutation which converts tableaux j to i and

Mi =
i−1∑
j=1

eτ
jj . (C.5)

The eτ
ij satisfy

eτ
ijeτ ′

kl = δτ,τ ′
δjkeτ

il . (C.6)

The ‘diagonal’ eτ
ii form projection operators i.e.

eτ
iie

τ ′
jj = 0 i ̸= j or τ ̸= τ ′

eτ
iie

τ
ii = eτ

ii∑
τ

∑
i

eτ
ii = 1 . (C.7)

For a given τ and i the eτ
ij project onto the elements of the representation. So taking

eτ
iiAn:r(1, 2, · · ·n) (C.8)
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gives us the first combination of the amplitudes in the representation. The other combinations
in the representation are obtained as eτ

ijAn:r(1, 2, · · ·n) or by action of Sn. Although we
can form dτ combinations many of these will be zero or not independent due to cyclic and
flip symmetry. The precise combinations we choose for n = 7 are included in the attached
mathematica file Amp7reps.m. This defines our conventions which then in turns specifies
the normalisations of the specific relations in sections 6 and 7.

As a consistency check, the number of independent combinations can be computed from
the subgroup G of Sn which leaves a partial amplitude invariant (up to minus sign). For
the leading in color A

(2)
n:1, this is just the dihedral group Dn. The number of independent

combinations for a given representation Ri is given using the characters of Sn

ni = 1
|G|

∑
j

ϵjmjχj(Ri)

 (C.9)

where mj is the number of elements of conjugacy class j within G and ϵj is plus one if the
partial amplitude is invariant and −1 is anti-invariant. The ni evaluated in this way have
been used as a check for n = 7, 8, 9.

Data Availability Statement. This article has data included as electronic supplementary
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