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Computational models can be at the basis of new powerful technologies for studying and classifying 
disorders like pre-eclampsia, where it is difficult to distinguish pre-eclamptic patients from non-pre-
eclamptic based on pressure when patients have a track record of hypertension. Computational models 
now enable a detailed analysis of how pregnancy affects the cardiovascular system. Therefore, new 
non-invasive biomarkers were developed that can aid the classification of pre-eclampsia through the 
integration of six different measured non-invasive cardiovascular signals. Datasets of 21 pregnant 
women (no early onset pre-eclampsia, n = 12; early onset pre-eclampsia, n = 9) were used to create 
personalised cardiovascular models through computational modelling resulting in predictions of blood 
pressure and flow waveforms in all major and minor vessels of the utero-ovarian system. The analysis 
performed revealed that the new predictors PPI (pressure pulsatility index) and RI (resistance index) 
calculated in arcuate and radial/spiral arteries are able to differentiate between the 2 groups of women 
(t-test scores of p < .001) better than PI (pulsatility index) and RI (Doppler calculated in the uterine 
artery) for both supervised and unsupervised classification. In conclusion, two novel high-performing 
biomarkers for the classification of pre-eclampsia have been identified based on blood velocity and 
pressure predictions in the smaller placental vasculatures where non-invasive measurements are not 
feasible.
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Pre-eclampsia is one of the most common hypertensive disorders and is one of the leading causes of maternal 
mortality and morbidity1,2 and can be categorised into early-onset pre-eclampsia (< 34 weeks) and late-onset 
pre-eclampsia. Pre-eclampsia‘s pathophysiology is not fully understood but is linked to abnormal placentation 
in early pregnancy, leading to clinical symptoms such as elevated blood pressure and proteinuria (> 140/90 
mmHg and > 0.3 g)2–5. Abnormal placentation involves deficient extravillous cytotrophoblast invasion of spiral 
arteries, hindering vascular remodelling and resulting in highly resistive vessels2,6. Doppler ultrasound-derived 
Resistance Index (RI) and Pulsatility Index (PI) measure increased resistance in uterine arteries7–14 correlating 
with later pre-eclampsia onset, however, the positive predictive values are around 50% indicating that many 
women with elevated indices do not develop the disease15.

Maternal arterial function is explored as a potential biomarker due to the recognition of arterial stiffness as a 
risk factor in assessing cardiovascular diseases16. Investigations involve monitoring pulse wave velocity (PWV), 
larger artery diameter, pulse pressure and more17,18. Hypertensive women can exhibit increased PWV19–22 and 
associations with altered aortic wall elastic properties resulting in increased diameter and decreased vascular 
compliance were found23.

Although all these metrics show evidence of a relation between arterial stiffness and pre-eclampsia, they 
are not enough to capture the spatial variations throughout the maternal cardiovascular system. As a result, 
computational modelling approaches have been developed to provide a more in-depth understanding of these 
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variations during pregnancy, especially for the utero-ovarian system and its properties such as the resistances 
and compliances. The benefit of these models is that they can predict values of pressure and flow downstream of 
the point measured due to the wave propagation along each vessel via 1D modelling24. This will help understand 
the cardiovascular responses in the vessels downstream of the uterine artery, locations that are challenging to 
measure25.

This study explores alternative biomarkers from maternal circulation mechanics utilising the model 
developed by Carson et al.26. The new biomarkers will be assessed using a clinical cohort of high risk women 
for early onset pregnancy disease (no early onset pre-eclampsia = 12, early onset pre-eclampsia = 9). The use of 
personalised computational models is advantageous as they can predict patient-specific solutions.

 Materials and methods
All methods were performed in accordance with the relevant guidelines and regulations as stipulated by University 
of Manchester. This was a retrospective pilot study based on data from St. Mary’s Hospital, Manchester, UK, 
collected with the approval of NHS Research Ethics Committees (RECs). Informed consent was received from 
all participants in this study.

A computational model of the maternal circulation and wave reflection
This study utilizes models by Carson et al.24,26,27 comprising larger arteries, veins, vascular beds (including 
organs and capillary systems), and a heart model. Larger vasculatures are modelled for wave propagation using 
one-dimensional flow models, while electric circuit models describe the vascular beds. Figure 1 demonstrates 
how the maternal arterial system, utero-ovarian vasculature, and non-invasive measurements are employed to 
create personalised models.

Parameters as SBP, DBP, PWV, CO, HR and blood flow in the uterine artery (measured using standard 
methods such as blood pressure monitors, Doppler scan etc.) are used to converge the computational model 
(Fig. 1).

The resulting personalised models form a “digital twin” of each patient that characterises the patient’s 
cardiovascular physiology. It can provide predictions of pressures/flow waveforms throughout the larger 
vasculature, but also in the arcuate/spiral arteries in the utero-ovarian vasculature (Fig. 1).

Patient characteristics
This was a case control pilot study amongst a high risk cohort (see Table 1). To determine an appropriate sample 
size, a one-tailed t-test with a typical power of 80% was employed. Given the integration of various measurements 
into the model, the effect size was anticipated to be large (equal to 1), whilst alpha was chosen to be 0.1. From 
this a target sample size of 10 for each of the groups was estimated, which led to the final study groups of 9 and 
12 for whom the required combination of measurements were taken.

Women were selected from a cohort attending high-risk clinics, where they were referred due to risk factors 
for developing pre-eclampsia and fetal growth restriction (FGR)28. Participants were randomly chosen from 

Fig. 1.  Maternal arterial network model (left). The pressure upstream of the uterine artery (P1, blue dots) are 
calculated using global maternal measurements of heart and vasculature together with the uterine Doppler 
waveform (S – peak systolic velocity, D – end-diastolic velocity) resulting in the prediction of downstream 
pressure (P2, yellow dots); P1 – pressure at start of uterine artery, P2 – pressure at end of uterine artery.
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the clinic database, ensuring a complete dataset of measurements (required for running the computational 
model, see Table 1) was available. The two groups outcomes were defined as following: NPE group contains 
women with no medical conditions or late onset pre-eclampsia or late onset FGR while PE contains women 
that were diagnosed with early onset pre-eclampsia or early onset FGR. Diagnosis of pre-eclampsia was made in 
accordance with ISSHP guidelines29.

Defining potential classifiers
The new biomarkers proposed for the assessment of pre-eclampsia were derived using Buckingham Pi 
theorem and can be found in Eqs. 1–6 (π1, π2, π3, π4, π5 and π6). The parameters that were used to compose 
the dimensionless terms are uterine vessel resistance Rut, Stroke volume SV, Cardiac output CO, Systemic 
compliance Csyst, Peripheral resistance Rperiph, Pulse Wave Velocity PWV, Systolic Blood Pressure Psyst, Pulse 
pressure ∆Ppulse, Aortic area A.

	
π1 =

Rut

Rperiph
� (1)

	
π2 =

SV 2

A3
� (2)

	
π3 =

CORperiph

Psyst
� (3)

	
π4 =
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A
3
2

� (4)
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Rperiph APWV

Psyst
� (5)
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∆Ppulse

Psyst
� (6)

NPE (n = 12)
Mean ± SD

PE (n = 9)
Mean ± SD

Pregnancy measurements

GA at measurement (weeks) 23.3 ± 0.7 25.2 ± 2

Parity 1.7 ± 1.4 0.7 ± 0.9

BMI 29.6 ± 7.3 28.3 ± 3.2

SBP (mmHg) 133.9 ± 13 140.9 ± 17.6

DBP (mmHg) 89.6 ± 8.2 90.7 ± 12.2

HR (beats/min) 91.6 ± 11.9 81.9± 11.3

CO (L/min) 4.6 ± 1.4 6.1 ± 1.1

PWV (m/s) 7.3 ± 1.7 8.9 ± 1.5

Age (years) 32.2 ± 3.7 34.1 ± 4.6

Weight (kg) 79 ± 22.6 75.8 ± 8.5

PI 0.9 ± 0.2 1.7 ± 0.7

RI 0.5 ± 0.1 0.7 ± 0.1

Pregnancy outcome

GA at birth (weeks) 38.3 ± 1.7 27.9 ± 2.4

Birth Weight (g) 2933.7 ± 683.4 540.6 ± 220.5

Complications (by birth) 2 Late FGR, 3 Late onset PE 7 Early onset PE, 2 Early FGR

Adverse pregnancy outcome (%) 0% 11% neonatal death, 33% 
FDIU

Medical history

History of hypertension 83.3% Yes 22.2% Yes

Demographics

Ethnic group
2 African (Black or Black British), 1 Pakistani (Asian or Asian British), 
1 Caribbean (Black or Black British), 5 British (White), 2 any other 
ethnic group

2 African (Black or Black 
British), 2 Pakistani (Asian 
or Asian British), 4 British 
(White), 1 any other ethnic 
group

Table 1.  The measurements were obtained during routine visits. SD – standard deviation; FDIU – fetal death 
in utero, NPE – no early onset pre-eclampsia group, PE – early onset pre-eclampsia group* (*= with 2 early 
onset FGR), GA – gestational age.
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Two further dimensionless terms are proposed based on the pressure and velocity in the utero-ovarian vessels 
such as ascending uterine artery, arcuate artery and radial/spiral arteries (the radial and spiral arteries were 
modelled together so when referring to radial arteries or subscript rad, spiral arteries were also included). The 
formulation of pressure index for the utero-umbilical system was introduced by Adamson et al.30. An alternative 
metric proposed clinically is the pulmonary artery pulsatility index (PAPi) which was defined as the pulmonary 
artery pulse pressure (PAP) divided by the right atrial pressure (RAP)31. Here we propose pressure pulsatility 
index, PPI, as:

	
PPI =

Pmax − Pmin

Pmean
� (7)

where Pmin is the minimum pressure in the selected utero-ovarian vessel and Pmax is the maximum pressure 
during the cardiac cycle. PPI relates pulsatility to pressure and should not be confused with the PI which captures 
the pulsatility of the velocity.

RI has the generic form shown in Eq. 8. The RI calculated from the Doppler scan will be noted as RI and the RI 
calculated from the computational model will be noted with the appropriate subscript.

	
RI =

Vmax − Vmin

Vmax
� (8)

Classification analysis
The terms stated above were used in a binary classification problem (PE and NPE). The analysis was performed 
using the Classification Learner App in MATLAB R2021b. To analyse the data both Logistic Regression 
(supervised learning) and k-means clustering (unsupervised learning) were used. The supervised learning 
training sample size was 19 and testing sample size was 2, where a two-fold cross-validation was used during 
training. This process was repeated 5 times to reduce bias. The purpose of the supervised classification is to assess 
the features’ classification performance while the unsupervised machine learning focuses on the features’ ability 
to classify the two groups in a bias-free manner.

The dimensionless terms, PPI, RI, π1, π2, π3, π4, π5, π6, π7 and the clinical parameters PI, RI, DBP and 
SBP were selected as classifiers. The metrics used to assess the classification were: A – accuracy (%), 95% CI 
– confidence interval (%), SE – sensitivity (%), and SP – specificity (%). Accuracy is defined as the number of 
correct predictions divided by the total number of predictions.

 Results
The results presented only display the right side of the circulation (RI, PI, and PPI) as the difference between 
right and left side was not statistically significant.

Table 2 displays model accuracies for individual features, revealing that computational indices PPI and RI 
outperform PI and RI from Doppler scans. T-test scores confirm that SBP/DBP are inappropriate diagnostic 

Features t-test (p-score)

Supervised ML

Unsupervised MLTraining + Testing

AUC (Training only) A CI SE SP A CI SE SP

π1 0.001 0.85 85.7 15.0 84.6 87.5 76.2 18.2 88.9 66.7

π2 0.0099 0.86 67.7 20.2 72.7 60.0 76.2 18.2 100 64.3

π3 0.3146 0.61 33.3 20.2 42.8 0.0 57.1 21.2 71.4 50

π4 0.0055 0.93 85.7 15.0 90.9 80.0 76.2 18.2 100 64.3

π5 0.0244 0.86 66.7 20.2 66.7 66.7 66.7 21.2 85.7 57.1

π6 0.3489 0.24 52.4 21.4 55.6 33.3 47.6 21.4 60 45.4

PPIarc 0.0006 0.86 81.0 16.8 78.6 85.7 85 15 84.6 87.5

RIarc 10−6 0.89 90.5 12.5 91.7 88.9 95.2 9.1 92.3 100

PPIrad 0.0104 0.8 81.0 16.8 78.6 86.7 80.9 16.8 78.6 85.7

RIrad 0.0006 0.84 85.7 15.0 84.6 87.5 90.5 12.5 91.7 88.9

PI 0.0006 0.89 81.0 16.8 83.3 77.8 85.7 15 80 100

RI 0.0011 0.85 76.2 18.2 81.8 70.0 80.9 16.8 90 72.7

SBP 0.3327 0.4 47.6 21.4 52.9 75.0 52.4 21.4 50 55.5

DBP 0.8195 0.57 52.4 21.4 55.0 0.0 57.1 21.2 33.3 75

Table 2.  Classification analysis results of individual features where supervised ML was performed using 
logistic regression from the Classifier App while unsupervised ML was performed using k-means; the results 
for the supervised ML show the mean of all algorithms that were trained/tested. A – accuracy (%), 95% CI – 
confidence interval (%) SE – sensitivity (%), SP – specificity (%), AUC – area under the ROC curve.
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criteria for early-onset pregnancy diseases in high-risk women. Effect size analysis (Cohen’s d) supports this, 
with low scores for SBP and DBP and high scores for PI, PPI and RI indicating their diagnostic significance.

The values presented in Fig. 2 were normalised within the range [0,1] and the p-scores highlighted. Figure 2 
depicts boxplot comparisons between the two groups for the best performing features. For the PE group, the 
medians of PI, RI, PPI, and RI  were significantly higher than the NPE group, whilst SBP and DBP showed very 
similar medians between the NPE and PE groups.

The next features that resulted in high accuracy are π1 and π4 which showed accuracies of over 85% (higher 
than PI and RI) but the accuracy dropped considerably for unsupervised classification. Even so, this result for π4 
suggests that the aortic area could be related to changes in the uterine region, as found by Orabona et al.23 and 
the calculated resistance of the uterine arteries of π1 had a significant impact on the classification of the groups. 
The features were also paired with each other to search for stronger biomarkers, but the classification results 
did not improve compared to those presented in Table  2. For the unsupervised classification, RIarc showed 
an accuracy of 95.2%. Besides RIarc, all other biomarkers including PI and RI classified two or more patients 
incorrectly.

Lastly, a threshold value was calculated for RIarc and compared to the same biomarker calculated in the 
uterine artery (RI) for a direct comparison. The plots clearly show that the two groups are more clustered 
together for RIarc compared to RI (Fig. 3).

Fig. 3.  RI values for the two groups with threshold of 0.72 (left), RIarc values for the two groups with 
threshold of 0.64 (right).

 

Fig. 2.  Comparison of NPE and PE selected features using boxplots were the median, minimum and 
maximum ranges are displayed. Main outliers: PE8 for RI; NPE7 for SBP; NPE9 for PPIarc, PPIrad, RIrad; 
*p-score < 0.05, **p-score < 0.01, ***p-score < 0.001.
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Discussion
The data-driven modelling approach taken in this work demonstrated that integrating key physiological 
measurements into computational models allows us to define a range of new metrics for classifying placental 
disease-complicated pregnancies. The newly defined metrics PPI and RI  in the arcuate and spiral arteries seem 
more accurate classifiers of “at risk” pregnancies (e.g. early-onset pre-eclampsia) than standard measurements 
such as SBP/DBP. The modelling approach has allowed the integration of multivariate data to develop 
personalised models and to use them to predict pressures/flows in locations where measurement is not possible 
(i.e. arcuate or radial/spiral arteries).

It is worth noting that NPE9 was the most misclassified woman as a false positive. NPE9 shows a PWV 
of 12.3 m/s, HR of 117 beats/min and pressure measurements of 146/95 mmHg which is considerably higher 
than the mean of the NPE group. When calculating the π terms, it was found that this specific woman had the 
highest BMI (= 44.1) in the group with a model-predicted aortic cross-sectional area value that sits in the PE 
group range. Additionally, the medical history indicates a diagnosis of chronic hypertension and blood pressure 
measurements of 138/84 mmHg pre-pregnancy. This could explain why the new biomarkers fail to classify this 
specific woman in the NPE group. When looking at other classifiers that have a lower relation to pressure like π1
, the result for this woman was similar to the group range. It would be interesting to understand the relationship 
between high BMI and pre-eclampsia in more depth as obesity is a known risk factor for pre-eclampsia32–35 but 
in this case, the high BMI did not lead to early onset pre-eclampsia.

The most common false negative was PE8. RI, RIarc, and PPIrad identified this woman as a false negative. 
Looking at it in more detail, the measurements taken seem to be ordinary with only a low DBP (69 mmHg 
compared to the median of the group of 93 mmHg) and small CO (4.8 L/min). Regarding the Doppler scans, 
the end-Diastolic Velocity for both left and right were significantly higher than the rest of the group which 
resulted in a lower RI. Interestingly, it was observed that π4 did not misclassify PE8 as it uses the global maternal 
parameters rather than the local uterine artery velocity. The medical history did not reveal any hypertension 
history. One possibility for this outcome could be that the woman might have a different phenotype of placental 
disease.

There is a general consensus that the Doppler indices RI and PI are related to the vascular resistance in the 
uterine circulation and pre-eclamptic women will show an increase in RI/PI due to the vascular remodelling 
from high resistance to lower resistance vessels36. This was observed in Tables 1 and 2 where the classification 
results display a great accuracy for PI with AUC of 0.89. The PPI and RI biomarkers which are derived from the 
downstream uterine circulation show great results with similar AUC values (from 0.8 to 0.89). This suggests that 
the changes seen in early onset pre-eclampsia are related to the resistance in uterine circulation due to vascular 
remodelling and is also highlighted in π1 classification results (p-score of 0.001 & classification accuracy of 85%) 
which is a biomarker consisting of the computational model’s calculated uterine resistance, Rut, and peripheral 
resistance, Rperiph.

This illustrates that the newly found PPI and RI calculated in the smaller vasculatures show great potential 
when assessing women with a high risk of developing early onset pre-eclampsia, however, they require more 
testing in bigger populations to confirm their ability. Their current lack of statistical power in this pilot study is 
illustrated by the DeLong p-values found in the Supplementary Material s737. Sedaghati et al.38 highlighted the 
advantages of employing an intricate mathematical model customised for pregnancy in analysing the impact 
of pre-eclampsia, alongside underscoring the significance of PI in evaluating early or late onset pre-eclampsia. 
Exploring the effect of PPI and RI computed within the smaller vasculature on a sophisticated mathematical 
model capable of replicating maternal physiology more authentically would offer further valuable insights.

Biomarker π4 demonstrates an accuracy of 85.7% and AUC of 0.93 but faced challenges due to low specificity, 
resulting in more false positives (classifying NPE women as PE women). This is visualised in Fig. 2 where the 
NPE group’s lower quartile nearly overlaps the PE group’s range. The inclusion of aortic area, A, SBP and Csyst 
in π4 suggests a difference in aortic area for early onset pre-eclamptic women, consistent with findings by 
Spaanderman et al.39 that presented hypertensive women with a history of pre-eclampsia had lower compliance 
and increased aortic areas. In a study performed on gestational age > 33 weeks, it was found that PWV was 
higher in pre-eclamptic women compared to hypertensive ones40. Conversely, biomarkers involving PWV or SV 
did not show higher classification accuracy than π4, indicating PWV’s inadequacy for early classification of early 
onset pre-eclampsia (< 28 weeks).

Based on this pilot study, the predictive ability of our biomarkers seems promising, but it’s too early to to draw 
a strong conclusion about the possibility of PPI or RI predicting early onset pre-eclampsia or how they perform 
in late pregnancy. These limitations can be explored in future work.

Finally, it should be noted that the modelling framework used is currently computationally intensive, and 
opportunities for simplification are currently explored. Future directions could be around the differential 
diagnosis of disorders such as FGR, pregnancy induced hypertension, and placental dysfunction by adding 
weights to certain parameters that are heavily affected by a given disease. Lastly, the model could be used to 
further analyse flow and pressure waveform shapes and how their form is related to pregnancy complications.

 Conclusion
The modelling framework proposed gives an insight in how various clinical measurements are related, which 
makes it a useful tool to study the differences between these patient groups. PPI and RI calculated in the smaller 
uterine vasculature have shown better accuracy in the classification of women with a high risk of developing early 
onset pre-eclampsia as part of the retrospective study. The results were comparable to PI and RI calculated in the 
Doppler scan meaning usage of the computational model provides insightful information of the cardiovascular 
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mechanics of the pregnant woman. Clinical methods are not able to properly assess the blood flow in the smaller 
vasculature which makes the usage of computational model and deriving new biomarkers from it a novelty.

Data availability
The full data can be found in the Supplementary Material.
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