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A B S T R A C T

This work proposes a modelling framework to analyse flow and pressure distributions throughout the lung of
mechanically ventilated COVID-19 patients. The methodology involves: segmentation of the lungs and major
airways from patient CT images; a volume filling algorithm that creates a dichotomous airway network in the
remaining volume of the lung; an estimate of resistance and compliance within the lung based on Hounsfield
unit values from the CT scan; and a computational fluid dynamics model to analyse flow, lung inflation,
and pressure throughout the airway network. Mechanically ventilated patients with differing progression and
severity of the disease were simulated. The results indicate that the flow distribution within the lung can be
significantly affected when there are competing types of lung damage. These competing types are primarily
fibrosis-like lung damage that creates higher resistance and lower compliance in that region; and emphysema,
which causes a decrease in resistance and increase in compliance. In a patient with severe disease, the model
predicted an increase in inflation by 33% in an area affected by emphysema-like conditions. This could increase
the risk of alveolar rupture. The framework could readily be adapted to study other respiratory diseases. Early
interventions in critical respiratory care could be facilitated through such efficient patient-specific modelling
approaches.
1. Introduction

The COVID-19 pandemic, caused by the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), has been a factor in millions of
deaths worldwide. COVID-19 put healthcare systems under enormous
stress. The majority of people infected by the virus have relatively mild
symptoms. However, the risk of severe disease increases significantly
with co-morbidities. This includes cardiovascular diseases, diabetes,
chronic kidney disease, cancer, and obesity [1]. In addition, people
that initially presented with mild disease are at risk of developing
other symptoms post-recovery, often termed as long-COVID [2,3]. The
SARS-CoV-2 virus has been shown to interfere with many body organ
functions, including the lungs, heart, blood vessels, brain, and kidneys.

One of the more serious complications is pneumonia [4], which
can cause pleural effusion (fluid infiltration of the lungs) and diffuse
alveolar damage, leading to a reduction in lung function. This can re-
duce gas exchange, which can lower blood oxygen levels, and increase
carbon dioxide levels. COVID-19 pneumonia can develop into acute
respiratory distress syndrome (ARDS) and cause respiratory failure.
When a patient fails to respond to non-invasive intervention, invasive
mechanical ventilation (IMV) is required. IMV can save lives, but can
also lead to ventilator-induced lung damage [5,6], which would further
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interfere with airflow and pressure distributions in the lung. In order to
reduce the amount of lung damage caused by IMV, it is important to try
and tailor the mechanical ventilator settings to the individual patient
needs [7]. A clinical trial found that using continuous positive airway
pressure (CPAP) can reduce the need to put the patient under IMV [8].

The link between underlying mechanical change due to disease
and the global lung response is poorly understood. All current work
in this area has been performed on rodents, which may not be ap-
plicable to understanding human respiratory responses. A study used
rodents on mechanical ventilation to understand how volumetric strain
and pressure-volume loops change due to traumatic injury [9]. The
damaged lung showed a wider distribution of volumetric strain which
indicated that after damage, the airflow distribution changed signif-
icantly compared to healthy lungs. Another study used high fidelity
micro-CT imaging on rodent lungs under mechanical ventilation to
develop a more accurate comparison of local volumetric lung tissue
strains and global lung mechanics [10]. Digital volume correlation has
been utilised in combination with pressure-volume data to investigate
local strain data with global lung response [11]. More recently, digital
image correlation has been used to compare local strains between
healthy and diseased rodent lungs [12].
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Understanding of the branching structure of airway networks was
significantly improved following the works of Weibel and Horsfield
[13–15]. Generally only the first few branching generations of airways
can be segmented from a medical image. For smaller airways, several
volume-filling algorithms have been developed to create 3-dimensional
airway networks within the bounds of lungs. The majority of works use
the following two studies as a basis:

• Kitaoka et al. [16] - use purely deterministic algorithms to split
the lung volume into smaller regions and create new airway
branches. The method is a top-down approach, which starts with
the largest airways and then generates smaller branches until
terminal regions have been reached. An algorithm with a similar
top-down process was also presented in [17].

• Tawhai et al. [18] - the method begins with an initial randomi-
sation of points within a lung volume that represent terminal
regions. An algorithm that uses these random points then extends
the network from the largest airways, down to the terminal
regions. Rules are in place to determine if any branching pathway
should be terminated. The diameter of the created branches are
also randomised within a bound. The algorithm can be considered
a bottom-up approach as it uses the randomised terminal points
to guide the creation of airways. Extensions to this method have
been developed or utilised in several studies [19–21].

Previous computational fluid dynamics models have been
erformed on airflow in the lungs, generally focusing on the upper
irways [22,23]. Other studies include analysing the structure and
unction of asthmatic lungs [20], and airflow in pulmonary acinus
diopathic interstitial pneumonia [24]. Reduced-order 0-dimensional
odels have been used to investigate global lung function [25]. In [26],
0-dimensional fluid flow model is used with non-linearly compliant
alled airways and acinar units to model the effect of surfactant
istribution on pressure and flow distributions in the lung. Another
tudy utilised 1-dimensional modelling for the larger airways with an
ssumption of rigid walls. The acinar units (collection of alveoli) are
reated in two different ways in separate models. One model defines
he pressure directly within the acinar units as a boundary condition;
hile the other model defines the pressure in the pleural cavity with
n assumption that the acinar units have static compliance [27].

An airflow model of COVID-19 was developed to analyse flow
nd pressure distributions in tidal (normal) breathing [28]. In their
odel, the larger airways (up to generation 16) are treated as rigid
-dimensional structures. The acinar units are lumped models with a
on-linear compliance based on surfactant concentration which change
ue to the CT scans radiodensity measure (Hounsfield units). This
eans that the model lacks an estimation of compliance and resistance

hanges from other sources, such as the chest wall. In addition, the use
f a 0-dimensional model for the airflow mean that wave-propagation
henomena cannot be captured. A poro-elastic model has been devel-
ped of the whole lung [29] and showed good agreement with global
easures of volume and pressure. However, such a model would strug-

le at capturing local effects and wave-propagation phenomena. This is
ecause the airways are not porous media, and are instead a directed
etwork of airways with a unique pathway from one location in the
ung to another. More recent efforts in the area of full lung respiratory
odelling include the investigation of aerosol deposition [30,31] and
ulti-scale modelling of normal breathing [32,33].

.1. Motivation and contributions

Recent advances have been made in area of respiratory modelling,
hough several gaps remain. Currently, to the authors knowledge, no
espiratory models exist that include the following combination of
mportant attributes for understanding lung function of an individual
nder mechanical ventilation.
2 
• A framework that investigates the local and global impact of
invasive mechanical ventilation of flow and pressure distribution
throughout the lungs. The ability to capture local and global
phenomena provides the capability to efficiently interrogate any
at risk regions.

• The utilisation of patient imaging techniques to personalise a
computational model of the respiratory system.

• The implementation of a computational methodology that can
analyse non-linear wave propagation phenomena.

To address the above research gap, this study presents a comprehensive
computational framework to model the airflow, pressure, and inflation
of structures throughout the lung under invasive mechanical ventila-
tion. This could improve the estimation of alveolar rupture risk, and
the locations within the lung that may be most vulnerable to rupture
for a given patient. The model incorporates patient CT images into
the framework to personalise the model and analyses the impact of
different disease types and distributions within the lung.

The main contributions of this work include:

• the development a global airflow model of the lung that in-
cludes the primary bio-mechanical processes involved in invasive
mechanical ventilation;

• the use of patient respiratory CT images to create a personalised
airway networks;

• a framework to estimate major airway parameters and their dis-
tribution in the lungs, from a ‘healthy’ state to a pathological,
mechanically ventilated lung;

• the use of computational fluid dynamics to investigate airflow and
pressure distributions within a structured airway network for a
mechanically ventilated lung.

2. Methodology

An overview of the framework is shown graphically in Fig. 1. The
first step of the framework involves the analysis and segmentation
of computed tomography pulmonary angiography (CTPA) images to
extract the geometry of the lung boundaries and major airways. The
second step utilises a network generation algorithm to extend the
segmented major airways. This creates a dichotomous airway tree that
fills the lung volume down to the terminal bronchioles. A compu-
tational fluid dynamics (CFD) model is used to predict the airflow
and pressure distribution within the compliant airways of the lung.
The model consists of a one-dimensional deformable network for the
upper airways, while 0-dimensional models are used to model the
highly compliant alveolar structures. In order to reduce the number and
uncertainty of model parameters, several assumptions are made. This
includes disregarding the complicated interaction between a patients
spontaneous breath and the mechanical ventilator settings. In this
work, it is assumed the patient would be in a medically induced coma
under mechanical ventilation, and thus the patient does not trigger the
beginning of inspiration (the ventilator is in control mode). This means
the inlet boundary condition of the computational fluid dynamics
model (trachea) is set to standard volume-controlled ventilator settings.

2.1. Data acquisition and segmentation

Patient data has been acquired during routine clinical practice in
the treatment of COVID-19 patients within the Hywel Dda University
Health Board, Wales, UK. All required ethics where obtained before
commencing this work and all required ethic procedures were followed.
The patient data has been de-identified prior to being shared with the
researchers on the project to ensure data protection is respected. A
data-sharing agreement is in place between the institutions involved
in this work to ensure the standard practice for data handling and
storage are followed. Table 1 shows an overview of the two patients,
including their co-morbidities. Patient 1 had milder disease although
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Fig. 1. Overview of the framework which shows the link between each part of the workflow to produce the final computational fluid dynamics (CFD) simulation results. The
graphic shows where the patient data is utilised within the modelling methodology and how the sub-components of the framework fit together.
Table 1
Overview of the patients which includes sex, age, and co-morbidities. ILD is interstitial
lung disease, and COPD is chronic obstructive pulmonary disease.

Patient 1 Patient 2

Sex F F
Age 47 86
Co-morbidities Hypothyroidism,

Arthritis,
Chronic Fatigue Syndrome

ILD
COPD
Breast Cancer

still required admission to hospital . Patient 2 had much more severe
disease caused by COVID-19 and had more serious co-morbidities.

Segmentation of CTPA images are performed in 3D Slicer (https://
www.slicer.org) following a semi-automated approach using the Lung
CT Analyser project to create an initial mask (https://github.com/
rbumm/SlicerLungCTAnalyzer). A researcher experienced in medical
image segmentation performed additional manual editing of the seg-
mentation to correct errors that had been created in the initialisation
stage. The lung volume and major airways are segmented, the cen-
treline information of the major airways are then extracted using the
vascular modelling toolkit (http://www.vmtk.org/) to create a network
of airways in terms of the airway diameters, and the first and last nodal
positions of each airway in 3d space. This allows the construction of a
1D network from the segmented airways, which are used as a basis for
generating the remainder of the airway network.

2.2. Network generation algorithm

The segmented lung volume, together with the geometric informa-
tion of the segmented airway network, are used as the initialisation
state for the network generation algorithm. The algorithm primarily
follows the set of rules by [16] to create a dichotomous tree, with
some modifications that ensure optimal filling of the entire lung volume
with airways. Due to these modifications, the algorithm utilised in this
work is described in full in the supplementary file accompanying this
manuscript to ensure clarity and reproducibility.

The main assumptions and outcomes of the network generation are
the following. The network created is determined from a set of rules
founded on literature based measurements that: restrict airway length
and diameter; use bifurcation relationships such as the branching an-
gles of child airways; and split a volume into two smaller sub-regions.
3 
The algorithm continues to propagate a branching pathway of the
airway network until one of two main conditions are met. Firstly, that
an airway reaches a boundary, which could be the lung boundary,
or the boundary of the region to which it supplies air. Secondly, the
algorithm terminates if a user-defined minimum regional sub-volume
tolerance is reached for that pathway. An important assumption of the
algorithm is that the amount of flow that is distributed to each child
airway of a bifurcation is proportional to the respective diameters of
those child airways. This means than the child airway with the largest
diameter, will supply air to a larger sub-region. As a result of this
inherent assumption, the network generation algorithm automatically
gives an initial estimation of the resistance and compliance distribution
within the lung. Although the resistance and compliance values are
then adapted based on the local Hounsfield Units, which is described
in Section 2.4.2.

2.3. Computational fluid dynamics

2.3.1. 1D physics-based model - trachea through to respiratory bronchioles
The governing equations employed in this work are the incompress-

ible Navier–Stokes equations reduced to one dimension. The assump-
tions used in this work are that an airway has an axial symmetry,
only radial wall displacement occurs in an airway, pressure is constant
within a cross-section, and the axial velocity component of the airflow
is the most dominant, thus allowing for circumferential and radial
velocity components to be neglected. This results in the following
governing equations in a pressure and flow rate formulation. The
continuity equation is given as,

𝐶 𝜕𝑃
𝜕𝑡

+ 𝜕𝑄
𝜕𝑥

= 0, (1)

and the conservation of linear momentum as,

𝜌
𝐴

𝜕𝑄
𝜕𝑡

+
𝜌
𝐴

𝜕
(

𝑄2

𝐴

)

𝜕𝑥
+ 𝜕𝑃

𝜕𝑥
+

𝜏𝜇𝜋𝑄
𝐴2

= 0. (2)

where 𝐶 is the airway wall compliance, 𝑃 is the pressure, 𝑄 is the flow
rate, 𝐴 is the cross-sectional area, 𝑡 is the temporal coordinate (time), 𝑥
is the axial spatial coordinate, 𝜇 is the dynamic viscosity of air, 𝜌 is the
density of air, and 𝜏 = 22 cm2∕g is the viscous friction coefficient. The
final equation that is required to solve this system of equations is the
constitutive law that provides the relationship between pressure and
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area. The constitutive law used is the following non-linear power-law
model with a Kelvin-Voigt visco-elastic term [34],

𝑃 − 𝑃𝑟𝑒𝑓 − 𝑃𝑒𝑥𝑡 =
2𝜌𝑐2𝑟𝑒𝑓

𝑏

(

(

𝐴
𝐴𝑟𝑒𝑓

)𝑏∕2
− 1

)

+ 𝛹𝑣𝑖𝑠𝑐 , (3)

here 𝑃𝑟𝑒𝑓 = 5cmH2O is the reference pressure, 𝐴𝑟𝑒𝑓 is the area at the
eference pressure,

=
2𝜌𝑐2𝑟𝑒𝑓

𝑃𝑟𝑒𝑓 − 𝑃𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒
, (4)

and the contribution of the wall viscous term,

𝛹𝑣𝑖𝑠𝑐 =
𝛾

𝐴𝑟𝑒𝑓
√

𝐴

𝜕𝐴
𝜕𝑡

. (5)

The wave speed 𝑐𝑟𝑒𝑓 is calculated based on the radius at the reference
ressure 𝑟𝑟𝑒𝑓 as:

𝑐𝑟𝑒𝑓 =
√

2
3𝜌

∗ (𝑘1 ∗ exp (𝑘2 ∗ 𝑟𝑟𝑒𝑓 )) + 𝑘3, (6)

with 𝑘1 = {150 000, 30 000}, 𝑘2 = {−1.8,−1}, and 𝑘3 = {33 700, 2800}, for
the stiffer airways (trachea, bronchi) and more compliant bronchioles,
respectively. The collapse pressure is 𝑃𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒 = −13.6cmH2O. The
format of Eq. (6) is chosen to be the same as that presented for blood
vessels [35] but with modified values to achieve a physiologically
sensible distribution of compliance to the larger airways. This process
achieves a compliance distribution of 10% of the total lung compliance
from the trachea to the terminal bronchioles, while the remaining 90%
is distributed to the lumped models that represent the remainder of the
network. This estimation of compliance distribution is chosen to follow
the volume distribution found in [36].

The viscous term is calculated for all 1D branches as:

𝛾 = 100
𝐷

+ 400, (7)

here 𝐷 is the branch diameter [34].
The tissue composition of the branch wall changes depending on

ocation. More cartilage is generally present in the walls of the trachea.
oving further down the network, the amount of cartilage reduces,
hile the amount of smooth muscle increases. The walls of the bronchi-
les contain almost no cartilage, and are primarily composed of smooth
uscle. Thus the compliance of each airway generation in the network

ends to increase as the location changes from trachea through to the
erminal bronchioles, respiratory bronchioles, and alveoli.

In this work, two different parameter estimations of the constitutive
aws are considered for the lung branches to cover the two main
tructure types. These are: (1) the more rigid trachea and (2) the
ore compliant-walled bronchioles through to the terminal bronchi-

les. Fig. 4(b) compares the constitutive wall behaviour of the trachea,
nd a large and small bronchi. The radial strain to pressure relation-
hip can be observed to exhibit a similar behaviour to experimental
easurements by [37].

The system of equations are solved using a second-order backward
ifference discretisation for time and a sub-domain collocation scheme
n space that was developed and validated for haemodynamics [38,39].

.3.2. 0D physics model - respiratory bronchioles and alveolar structures
The ends of the 1D network are connected to three-element Wind-

essel 0D lumped models and is illustrated in Fig. 2. This is comprised
f: a characteristic impedance (resistance) to minimise artificial wave
eflections; a second resistance that represents the effect of the remain-
er of the downstream resistance of the pulmonary airway network,
hich includes the resistance to airflow from the chest wall; and
compliance element which represents the remaining downstream

ompliance of the system, including the alveolar structures and chest
all. The lumped model represents the lower airways, which begin at

he level of the respiratory bronchioles and end with the pulmonary
4 
cinar units. The resistance and compliance elements can be expressed
s:
1
𝑅

(𝛥𝑃 ) = 𝑄𝑅, (8)

𝐶𝑎

(

𝜕𝑃
𝜕𝑡

−
𝜕𝑃𝑒𝑥𝑡
𝜕𝑡

)

= 𝑄𝐶𝑎, (9)

where 𝑅 is the resistance, 𝐶𝑎 is the compliance, 𝛥𝑃 is the pressure dif-
ference across the resistance, 𝑄𝑅 is the flow rate across the resistance,
and 𝑄𝐶𝑎 is the flow rate within the compliance element.

The final equation required is the constitutive relationship, which
will give the relationship between the wall stress (in this case pressure),
and the wall strain (in the 0d model, using the volumetric strain). The
non-linear power law model with a Kelvin-Voigt visco-elastic term,

𝑃 − 𝑃𝑟𝑒𝑓 − 𝑃𝑒𝑥𝑡 =
2𝜌𝑐2𝑣,𝑟𝑒𝑓

𝑏𝑣

(

(

𝑉
𝑉𝑟𝑒𝑓

)𝑏𝑣∕2
− 1

)

+ 𝛹𝑣, (10)

where 𝑉 , and 𝑉𝑟𝑒𝑓 are the volume and reference volume of the alveoli.
The 𝑐2𝑣,𝑟𝑒𝑓 and 𝑏𝑣 are used as free model parameters for tuning towards
pressure-volume relationships and total respiratory compliance values
from literature [40]. If a patient pressure-volume loop is measured,
then the patient measurement data could also be utilised to estimate
𝑐2𝑣,𝑟𝑒𝑓 and 𝑏𝑣 in local regions of the lung. The viscous term is,

𝛹𝑣 =
𝛾𝑣

𝑉𝑟𝑒𝑓
√

𝑉

𝜕𝑉
𝜕𝑡

. (11)

𝑉 , and 𝑉𝑟𝑒𝑓 are the volume and reference volume of the alveoli. With
the assumption that 90% of the lung compliance is in the terminal struc-
tures, the reference wave speed is calculated to be 𝑐𝑣,𝑟𝑒𝑓 = 5000cm/s
and the power term is 𝑏𝑣 = 9.7. These are found using a parameter
estimation technique with assumptions of alveolar number as described
in Section 2.4.1. The viscous term is calculated to be 𝛾𝑣 = 0.001. While
the viscous effect of one alveolus is small, the cumulative effect of the
viscous term is significant and adds to a noticeable hysteresis in the
pressure-volume loop.

2.4. Parameter estimation and boundary conditions

The inflow at the top of the trachea is set to resemble a volume
curve of a volume-controlled mechanical ventilator setting with a tidal
volume of 0.5 L, where the respiratory period is set to 4 s. The inflow
condition is shown in Fig. 3. The 1d terminal bronchioles are connected
to a three-element Windkessel model to represent the downstream
respiratory bronchioles and alveolar structures. The resistance and
compliance in the model are modified by the Hounsfield units of the
CT scan in order to investigate the effects of COVID-19 distribution
on the mechanical function of local regions within the lung. The
initial resistance distribution is determined by the network generation
algorithm.

2.4.1. Parameter estimation of alveoli compliance - alveoli wall model
The number of alveoli in the entire lungs is approximately 300–780

million alveoli. In this work, it is assumed that the lung is filled with
170 alveoli per cubic millimetre as found by [36] of lung parenchyma.
Furthermore, the same study found that lung parenchyma filled approx-
imately 92% of the total lung volume of 1534 ml, alveoli covered about
70% of the lung parenchyma. This means that alveoli fill approximately
64% of the total lung by volume. It was also observed that each alveolus
is approximately 4.2 × 10−6 ml.

Although these values are extremely useful as a basis for the model
proposed in this work, it should be noted that the study by [36] used
lung fixation ex-vivo with a liquid solution, and a comparison between
the total lung capacity derived from CT and the lung volume measured
during ex-vivo fixation has never been performed. In this work the lung
volume is derived from the segmentation of a patient CT scan. This

will generally require the patient to hold their breath at full inhalation,
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Fig. 2. Overview of the 1d-0d network. (a) is an example 1d network from patient case 1 (mild disease), (b) is an example of how the 1d and 0d models are connected, and (c)
is an example of one lumped model that represents the downstream compliance (𝐶𝑎), characteristic impedance (𝑅1), and a combined resistance of: respiratory bronchioles through
to the alveoli and the chest wall (𝑅2). The lumped models that represent the lung structures responsible for gas-exchange are composed of two resistors and a capacitor.
Fig. 3. Inflow waveform for the CFD simulations.

which would ideally be 100% of total lung capacity (TLC). However,
this is not the case in reality as: the patient is ill and is likely to have
their breathing function impaired which would lower their ability to
inhale fully, thus would not be performed at TLC; and the patient would
typically be in the supine position, which also lowers their TLC [41].

In this work the following is assumed in order to estimate the
number of alveoli in the lung: The patient CT is assumed to be at total
lung capacity, which as an example in the mild disease case, gives a
segmentation volume of 2873 ml for the right lung and 2676 ml for
the left lung. It is assumed that the alveoli cover 64% of the lung
volume from [36]. This gives a total volume of alveoli in the right
lung to be 1839 ml, and 1713 ml in the left lung. Assuming that the
volume of an alveolus is 4.2 × 10−6 ml, the total number of alveoli
in the right lung is estimated to be 312,630,000 and in the left lung
is 291,210,000. The final assumption is that the alveoli are chosen to
be uniformly distributed within the lung volume. The compliance of
the lung is also distributed uniformly throughout the volume as an
initial estimate. The assumptions in the network generation algorithm
creates a collection of terminal sub-regions with a known volume. This
means that the number of alveoli and compliance of each 0D terminal
model are initially estimated from the network generation algorithm.
Although the distributions of both the compliance and resistance are
then adapted depending on the Hounsfield unit distribution from the
CT scan.
5 
2.4.2. Extract Hounsfield units from image
The Hounsfield units (HU) are extracted for each region in the

lung volume and are shown in Figs. 5(a) and 5(b). HU in healthcare
are typically saved in 12-bit format, and thus have a range of 4096.
This range is between −1024, which represents air, through to 3071,
which represents tooth enamel, which is the most dense material in
the human body. Higher values of HU units are possible, but are
generally not of interest in healthcare. Although HU units are useful
for highlighting anomalies within the body, significant variation of HU
units can be observed depending on the protocol and reconstruction
parameters, with variations of up to 39.4% [42] observed in literature.
A variation of 25.6% was seen in HU values in denser materials, while it
is much lower for materials with density of less than 1.1 g/cm3, where a
variation of 2.6% was observed [43]. Although greater variation in HU
values are observed in obese and overweight individuals [44]. Material
densities of 1.1 g/cm3 approximately correspond to 100 HU, and as the
lung parenchyma along with any fluid build-up in the lung are below
100 HU, no HU unit normalisation or correction is performed in this
work.

Generally the normal healthy HU range of a lung is −1024 HU to
−700 HU with a mean around −850 HU. Emphysema will push the HU
unit mean down towards −900 HU and also decrease the statistical
measure of kurtosis. A study found the mean HU in patients with
a healthy lung to be −739 HU, while the mean for an idiopathic
pulmonary fibrosis (IPF) group was −596 [45]. In addition, the kurtosis
and skewness of the HU distribution was significantly reduced in the
IPF group.

With this in consideration, the scaling of resistance and compliance
is calculated in the following way. The HU values are averaged in
each sub-volume that have been created from the network generation
step that includes all 23 generations of airways. Any point with a HU
value of greater than 500 is assumed to be lung tissue that is not
inflated with air, such as blood vessels, and are excluded in the HU
averaging process in the sub-volume. The calculation of the scaling
term 𝑆 is defined as a piecewise linear function with coordinates in
the HU range [−1024, 3071]. The function can be seen in Fig. 4(a). The
points chosen are primarily trying to mimic the change in resistance
due to the impact of fluid build-up and tissue damage. A small increase
is chosen between an HU of −1024 and −500 as it may indicate some
fluid in the lung towards the HU of −500. The range HU −500 to
−100 indicates significant fluid within the lungs which will reduce the

lumenal area of the airways and increases the resistance to airflow. For
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Fig. 4. Compliance and resistance adaptation: (a) Scaling parameter based on the local HU values; (b) constitutive law behaviour showing radial strain against the pressure for
the trachea and larger and small bronchi.
n
f
a
a
g
p
9
c
l
i
t
b

3

s
2
p
p
n
a
t
a
D
a
r
i
c
c
F
t
t

t
d
t
t
t
l

w
t

HU values up to 500, it is assumed that the airway lumena are not
entirely blocked by fluid. Although airway plugging could be easily
included if required. The resistance at each terminal sub-region at
generation 23 is updated to be 𝑅𝑛𝑒𝑤 = 𝑅 ∗ 𝑆. The contribution of
ung compliance in the lumped model is estimated to change using
𝑛𝑒𝑤 = 𝐶∕𝑆. This means the expiratory time constant of each terminal
ub-region 𝑅𝐶𝑒𝑥𝑝 = 𝑅 ∗ 𝐶 = 𝑅𝑛𝑒𝑤 ∗ 𝐶𝑛𝑒𝑤 is kept the same. Before

performing the CFD analysis, the model branching is truncated in order
to prevent excessively long simulation run times of the model. The
network parameters of resistance and compliance are lumped together
and thus re-calculated during the truncation process. As airways are in
parallel, this means the resistance of the child airways (𝑅1 and 𝑅2) are
lumped together as:

1
𝑅𝐿𝑢𝑚𝑝𝑒𝑑

= 1
𝑅1

+ 1
𝑅2

, (12)

While the two compliance values (𝐶1 and 𝐶2) are lumped as:

𝐶𝐿𝑢𝑚𝑝𝑒𝑑 = 𝐶1 + 𝐶2. (13)

This means that after all airways have been truncated back to genera-
tion 14, that the expiratory time constant 𝑅 ∗ 𝐶 will be different for all
terminal lumped models.

3. Results

A supplementary file is included with this paper showing the net-
work generation algorithm in full, and a sensitivity analysis of all the
primitive parameters in the CFD model.

3.1. Network generation algorithm

The network generation algorithm successfully filled the lung vol-
ume with airway structures. One of the algorithm’s terminating con-
ditions is a defined minimum volume percentage. If a sub-volume
goes below the minimum volume threshold, then no more airways are
created within that network pathway. The remainder of any further
respiratory structures are contained in a terminal 0D alveolar model.
Fig. 2 shows the final network generated of the mild disease case,
although the graphic is limited to show only up to generation 15
due to image clarity issues. The final network produced for patient
1 (mild case) contains 1,919,861 airways up to the 23rd generation,

hile for the patient 2 (severe case), 1,045,691 airways where created.
ig. 6 shows the following network statistics for the generation number,
orsfield order, and Strahler number: the number of airways, the mean
nd standard deviation of branching angles, the mean airway diameter
nd length. All statistics are within the expected range from both

heoretical values [13], experimental studies [14,15], and other airway

6 
etwork creating algorithms [16–18]. The total volume of the lungs
or the patients are vastly different, with the lung volume for patient 1
nd 2 respectively, being 5452 ml and 2143 ml. The total volume of the
irways of patient 1 and 2 respectively, are estimated by the network
eneration algorithm to be 304.09 ml and 203.48 ml. This gives the
ercentage of lung volume taken up by the airways to be 5.58% and
.5% of their total lung volume, to patient 1 and 2 respectively. This is
onsistent with the value of approximately 8% given in [36] (92% of
ung is parenchyma and the remaining 8% being other structures that
ncluded the airways). The remainder of the volume is distributed to
he lung parenchyma, including alveoli, and other structures such as
lood vessels.

.2. Effect of resistance on airway waveforms

To avoid excessive computation times, the network utilised in this
ection is that of patient 1, and includes up to generation 14 with
5,145 airways. The remainder of the network structures, which would
rimarily be composed of respiratory bronchioles and alveoli, are incor-
orated into each terminal 0D model. The effect of changing the termi-
al resistances in the 14 generation network are shown in Figs. 7(a),
nd 7(c). The terminal resistances include the resistance to airflow of
he smaller airways, such as respiratory bronchioles and alveoli, and
lso the resistance to flow of the lung parenchyma and the chest wall.
ue to the non-linear relationship between resistance, compliance,
irflow, and pressure, it is difficult to truly separate the effects of
esistance and compliance as they are implicitly linked. For example,
ncreasing the resistance will increase the pressure, which in turn will
hange the compliance via the constitutive equation. The pressure
hange shown by changing the resistance is relatively minor, as seen in
ig. 7(a). This is primarily due to the fact that the contribution of the
erminal resistance to the total resistance of the lung is much smaller
han those located further up the tree.

An increase in resistance causes a greater pressure increase within
he trachea during the initial inhalation phase, and a greater pressure
rop within the trachea during the initial exhalation phase. The resis-
ance increase causes the hysteresis of the pressure–volume (P–V) loop
o be exacerbated and is shown in Fig. 7(c). If the resistance is increased
he P-V loop becomes wider, and when the resistance is reduced the P-V
oop becomes narrower.

In order to analyse the effects of the resistance on the pressure
aveform in the middle of the trachea, the pressure difference in the

emporal domain is calculated as 𝜕𝑃
𝜕𝑡 𝛥𝑡 and shown as Fig. 7(e). This

allows the waveform to be broken down into smaller blocks and helps
determine where the waveform shape changes as a result of the change
in resistance. It is observed that the largest changes in the waveform
due to a resistance change occurs primarily at 4 distinct points in
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Fig. 5. Hounsfield unit distribution throughout the lungs, extracted from the patient CT images. An example CT image slice is given for each patient.
time. The first phase (time between 0–0.2 s) is during the initial ramp
up phase on inhalation, which is generally the most dynamic part of
the cycle, and occurs most significantly before the onset of alveoli
recruitment. The second phase (time between 0.8–1.8 s) is the period
between the peak pressure and the plateau pressure, which occurs in
part due to the visco-elastic recoil of the lung and the re-distribution
of pressure throughout the lung. The third phase (time between 1.8–
2.0 s) is at the very beginning of the exhalation phase, which is
most significant in the period between the start of inhalation and the
beginning of alveolar air expulsion. The fourth phase (time between
3.2–3.4 s) where this occurs is another type of pressure redistribution,
which occurs at the end phase of exhalation. In ventilated patients,
phase 4 is often termed the auto-peep phenomena.

3.3. Effect of compliance on airway waveforms

The effect of changing total respiratory compliance on the trachea
pressure and P-V loop are shown in Figs. 7(b) and 7(d), respectively.
Reducing the compliance, increases both the peak and plateau pressures
in the trachea. Conversely, an increase in compliance will reduce the
peak and plateau pressures. In the P-V loop, a reduced compliance
essentially rotates the waveform clockwise around the lowest pressure-
volume point, which corresponds with the beginning of inhalation. An
increase in compliance rotates the waveform anti-clockwise around the
same low pressure-volume point. In order to investigate where the
compliance change particularly affects the pressure waveform shape,
the pressure difference in the temporal domain is also calculated for the
compliance changing cases and is shown in Fig. 7(f). It can be observed
that the compliance generally affects the waveform in two main phases.
The first phase starts during the latter part of the inhalation ramp-up
(which occurs after alveolar recruitment), and continues to impact the
pressure change until the peak pressure is reached. The second phase
occurs close to the beginning of exhalation and ends when the pressure
reaches the defined peep pressure.
7 
3.4. Analysis of COVID-19 affected lungs

Histograms showing the HU frequency distribution within each lung
for both patients are shown in Fig. 8. The peaks corresponding to an
−800 HU frequency are much sharper in the mild COVID case and are
shown for the left and right lung in Figs. 8(a) and 8(b). This is expected,
as the majority of the HU values are expected to be around −800 HU
representing healthy air-filling regions of the lung. Damage or fluid
in the lungs will increase the HU values in those regions. Additional
features are expected within the lung: the range between −100 to 0
HU that indicates fat deposits; between 100 to 200 HU that represents
muscle. A significant frequency of HU values in general between −150
to 300 HU represent body tissues and fluid filled structures. When the
blood vessels are enhanced in the CT for angiography, a small peak may
be present around 300–500 HU.

In the more severe disease case, shown in Figs. 8(c) and 8(d),
there is a significant frequency of HU values between −700 and −100
HU. This type of histogram can represent different conditions, such as
pulmonary fibrosis, pneumonia (lung inflammation), and pulmonary
oedema (interstitial fluid build-up). In the patient with more severe
disease, the presence of pneumonia is the primary cause for this feature
in the HU frequency histogram. Another complication that can be de-
termined from the histogram is emphysema. Emphysema occurs when
the wall connecting neighbouring alveolar sacs break down, effectively
joining neighbouring alveolar sacs into one larger alveolus. The effect
this has on the histogram is that the sharpness of the waveform shape
is reduced, particularly in the regions between −850 to −1000 HU. A
small amount of HU values in this range would be expected throughout
the entire lung as the larger airways would have HU values within this
range, though typically this would not produce a very noticeable fre-
quency on the histogram. The effect of emphysema is most pronounced
in the right lung of the patient with more severe disease (Fig. 8(c)), with
a lower incidence of emphysema also present in the left lung.

The maximum inflation of each airway branch up to and including
the 12th generation, can be seen in Figs. 9(a) and 9(b) respectively.
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Fig. 6. Analysis of network generation algorithm output for patient 1 and 2. Analysis is shown for generation number, Horsfield order and Strahler order. The metrics investigated
are the number of airways, branching angle, airway lengths and diameters.
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The percentage change of inflation is defined as:

𝐼𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛 =
(𝐴1 − 𝐴2)

𝐴1
∗ 100, (14)

here 𝐴1 is the maximum area observed in the non-COVID-affected
imulation, and 𝐴2 is the maximum area of the COVID-affected sim-
lation at the same location in the network. The largest increase in
nflation in the mild disease case was 8.5%, while in the severe case
t was 33%. Fig. 9(c) is a histogram that shows the number of airways
hich are over-inflated, up to and including the 12th generation (to
 r

8 
oincide with Figs. 9(a) and 9(b)). It is observed that the lungs severely
ffected by COVID-19 have a significant increase in inflation from the
aseline/healthy simulation. The global inflation for this patient is
bserved in Fig. 9(b) and indicates the regions that undergo the largest
ver-inflation occur primarily, though not exclusively, in the regions
ffected by emphysema. Fig. 9(d) shows correlation plots of the over-
nflation with the resistance at terminal airways of the network. The
pearman 𝜌 coefficients show no correlations between the inflation and

esistance in these regions. This means that analysis of the CT images,
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Fig. 7. Comparison of different waveforms produced by the model with changes to the terminal resistance (resistance that represents the respiratory bronchioles and alveoli) and
total lung compliance.
which have been used to estimate the resistance and compliance distri-
bution in the lung, is not sufficient to estimate the functional impact of
the on the lung (pressure, flow distribution, and inflation).

4. Discussion

The network generation algorithm used in this work used a bottom-
up approach with a purely deterministic approach to fill the lung.
This is primarily as one of the fundamental assumptions of the algo-
rithm already provides an estimated airflow distribution by virtue of
its more controllable resistance distribution. The network generation
algorithm was limited to a minimum sub-volume to avoid excessive
computational run times and memory requirements for both the net-
work generation algorithm and its proceeding CFD simulations. The
9 
network generation proposed in this paper gives a similar performance
of volume-filling to other published algorithms [16–18] with similar
branching angles, airway diameters, airway lengths, and total number
of airways.

An overview comparing different global airflow models within lung
is shown in Table 2. There have been a few previously published
models on full lung airflow under mechanical ventilation. One such
study involved a 3D poro-elastic model to model lung pressure-volume
curves [29]. In which, the first 3 generations were not explicitly mod-
elled. Instead, the lung boundary was considered closed except at
the locations where the 3rd generation airways would be located. A
prescribed pressure (for pressure controlled ventilation), or flow rate
(for volume-controlled ventilation), was used as a boundary condition
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Fig. 8. Histograms of the Hounsfield unit frequency distribution of the two cases. Each lung has been analysed separately in order to highlight the asymmetry in the distribution
of severity.
at these entrances to the lung at the opening left by the 3rd generation
airways. The entirety of the lung was then considered a porous me-
dia with hyper-elastic, isotropic wall properties. The poro-elastic wall
model showed the ability to reproduce P-V curves. However, modelling
the entire lung as porous media does not represent the physiological
reality as there are essentially an infinite number of pathways that air
can travel between locations. Modelling the lung in this way could
potentially capture global parameters and relationships, such as the
pressure-volume loop. Porous media would not be able to capture
locally distributed phenomena such as plugging or alveolar damage.
The modelling approach proposed here was chosen due to its potential
to connect local scale phenomena with global scale phenomena. This
offers a versatility that can be exploited and developed further around
a variety of diseases or injury mechanisms.

A 3D-0D model of airflow in the lungs was developed for sponta-
neous breathing [25]. The 3D modelling was added for the first few
generations to overcome the shortcomings of the 0D lumped model
which did not adequately capture wave reflection phenomena that
occur in the upper airways. The same group also coupled their 0D
lumped model with electrical impedance tomography [46]. In compar-
ison to their methodologies, the same type of non-linear distributed
1D model presented here has been shown to capture the majority of
wave-propagation phenomena in the more complex flow behaviour
of the cardiovascular system when compared to 3D flow [47]. Thus
1D models are generally regarded to be a good compromise between
computational power requirements and accuracy. Additionally, Several
differences in the solutions of lumped models and 1D models have also
been observed, particularly for sharper waveforms (higher frequency
10 
Table 2
Comparison of the main studies involved in global respiratory modelling. The columns
are as follows: turbulence model (TM) for trachea and bronchi; non-linear wave
propagation (NLWP) in the upper airways (U) and lower airways (L); compliant
structures (CS) in the upper airways (U), lower airways (L), and alveoli (A); breathing
type (BT) that includes spontaneous breathing (S), and invasive mechanical ventilation
(V); model personalisation (MP) using imaging and patient data for the airway network
(N) and model parameters (P). The symbol ∙ means the study includes the ability
referred to in the column, ×mean the model does not investigate or capture it.

Study TM NLWP CS BT MP

U L U L A S V N P

This study × ∙ ∙ ∙ ∙ ∙ × ∙ ∙ ∙
[19] × × × × × × ∙ × ∙ ×
[25] ∙ ∙ × × ∙ ∙ ∙ × ∙ ×
[26] × × × ∙ ∙ ∙ ∙ × ∙ ×
[27] × ∙ ∙ × × ∙ ∙ × ∙ ∙
[28] × × × × × ∙ ∙ × ∙ ∙
[29] × × × ∙ ∙ ∙ × ∙ × ∙
[30] ∙ ∙ × ∙ × ∙ ∙ × ∙ ∙
[31] ∙ ∙ × × × × ∙ × ∙ ×
[32] × ∙ × × × × ∙ × ∙ ×
[33] ∙ ∙ × ∙ × × ∙ × ∙ ∙

waves) [39,48,49]. In the case of lung modelling, these higher fre-
quency waves are more likely to occur under mechanical ventilation,
specifically the peak pressure value in the pressure waveform. More
complex wave-reflection phenomena are also more likely to occur in
cases of disease or trauma. 1D models have been shown to be more
effective than 0D models at capturing wave reflection phenomena [39].
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Fig. 9. Whole lung overview of inflation change from the baseline ‘healthy’ case, to the COVID-affected lungs. In (a) and (b), blue indicates that the change of inflation is less
than 3%, light blue indicates the change is between 3% and 10%, and red is for a change greater than 10%. The number of locations with a percentage of over-inflation is shown
in the histogram plot (c). Correlation plots are shown in (d).
In physiology, under-inflated and over-inflated regions will have
different densities of alveoli. An over-inflated region will have a lower
alveolar density and lower HU value, while an under-inflated section
would have a high HU value. To achieve over-inflation in the model,
increases in compliance and decreases in resistance would be required
in that lung region. The use of the scaling term in the model addresses
this phenomena by increasing compliance and lowering resistance in
regions with lower (more negative) HU values, and by decreasing
compliance and increasing resistance in regions with higher HU values.

The model shows the expected response to the volume-controlled
defined airflow waveform at the inlet. The expected pressure waveform
in the trachea is achieved, which also means the shape of the pressure-
volume loop is as expected [50]. The model response to both a change
in resistance and of compliance is also in agreement with that given
in medical literature [51]. This is the case for both waveform shapes
of pressure–time, and pressure-volume. A widening of the pressure-
volume loop occurs when the resistance increases, and narrows when
resistance decreases. While the entire pressure-volume loop rotates
towards the volume axis when the compliance increases, and towards
the pressure axis when compliance decreases.

The general effect of emphysema is to increase the compliance and
reduce the resistance [52]. The change in structure can also increase the
risk of alveolar collapse by interfering with the surfactant distribution,
although the use of peep in mechanical ventilation reduces this risk
considerably. Mixed lung disease, e.g. a combination of fibrosis and
emphysema, can be a particular challenge in clinical assessment [53,
54]. The effect of the higher resistance, lower compliance of fibrosis
with the lower resistance, higher compliance of emphysema can cause
11 
some clinical measurements to appear normal, in particular the ratio
between the forced expiratory volume in the first one second and the
forced vital capacity of the lungs (FEV1/FVC ratio), Residual Volume
(RV), and the RV to total lung capacity (TLC) ratio [54]. Although the
global clinical measures may appear to be somewhat counterbalanced
by the presence of both diseases, the patients typically have a poor
prognosis as exchange of gases within the lung are severely affected.
The presence of both may lead to normal global measures, however
the local mechanisms and effects of both diseases are very different and
thus the pressure and volume/inflation of regions of the lungs will be
very different depending on which disease is present in that location.
The areas affected primarily by emphysema will distend much more
when there are nearby regions that are affected by fibrosis. This is due
to fibrosis increasing resistance, which lowers the volume of airflow
to some region, while emphysema reduces resistance, which raises the
volume of airflow to another region. The presence of both diseases can
interfere with airflow distributions in the lung even more than what
would be expected if only one of the diseases was present. This could
potentially increase the risk of rupture in emphysema-affected regions,
as an even greater proportion of air will go to these regions, causing
significant over-inflation of the affected alveoli.

An absence of correlation was observed between the resistance scal-
ing term and the inflation of the terminal airways at the same location.
This indicates that image analysis alone is not sufficient to estimate
the functional impact of COVID-19 on the lungs and complementing
it with fluid dynamics will provide further insight in the fundamental
mechanisms and their effects on overall lung performance. This model
could provide a basis for future work on respiratory diseases other than
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COVID-19, and could potentially provide insight into the locations of
alveoli in the lung which are likely to rupture for a given patient with
a distribution of disease that has been extracted from medical imaging.

5. Conclusion

This study provides a bottom-up modelling methodology to analyse
flow and pressure distribution within the lung of ventilated patients
with COVID-19. The algorithm proposed in this work utilised the
lung boundary of a real human lung, extracted by segmentation from
pulmonary CT scans. The network generation algorithm successfully
filled the lung with airways even in the presence of non-smooth regions
of the lung boundary. The physics-based model used to analyse the
airflow and pressure changes show the expected responses to the main
system parameters of resistance and compliance. The model indicates
that the risk of alveolar rupture during mechanical ventilation could
increase if the lung is affected by two competing disease effects such
as fibrosis and emphysema, which is commonly seen in COVID-19
patients. The airflow is forced from stiffer regions of the lung and
into more compliant regions, thus significantly affecting the airflow
distribution within local regions of the lung. The model can be used
as a basis for further investigations on other respiratory diseases. With
access to additional data, more personalised ventilation strategies can
be tested effectively in this framework. The model can be used as a
basis for investigation of other respiratory diseases in general.

6. Limitations

The current model is not capable of capturing auto-peep as the
mechanical ventilator airflow output is defined, which prevents the
inhalation and exhalation phases to have different total airflow volume.
In order to be able to capture this, a numerical model of the mechanical
ventilator would need to be incorporated into the model, which would
allow the interaction of ventilator, breathing circuit, lung structures,
and thoracic pressure to be included. Due to the lack of additional
patient data, several aspects of the model had to be made consistent
between patients. This includes: the initial estimate of compliance and
resistance, and thus the constitutive law parameters for both the 1D
airway models and terminal lumped parameter models; the inflow
boundary condition; and that no airway was plugged, which could cut
off entire regions of the lung to air and significantly impact the total
lung compliance and resistance. In order to test the effect of some of
these assumptions, a sensitivity analysis of the primitive variables in the
model has been performed and is presented in supplementary material
accompanying this paper. More personalised models would be achieved
with access to data such as patient pressure-volume curves.
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