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The costs of reproductive conflict can shape the evolution of life-histories
in animal societies. These costs may change as individuals age and grow,
and with within-group competition. Social costs of reproductive conflict
have been invoked to explain why females might gain from delaying
maturity or ceasing reproduction midway through life, but not in males.
Here, we analyse more than 20 years of data to understand how individual
male banded mongooses adjust their reproductive activity in response to
the costs of reproductive conflict. In banded mongoose groups, multiple
female breeders enter oestrus synchronously that are each guarded by a
single male that aggressively wards-off rivals. The heaviest males in the
group gained the greatest share of paternity. Those lighter males that
are reproductively active paid disproportionate survival costs, and by
engaging in reproductive activity early had lower lifetime reproductive
success. Our results suggest that reproductive inactivity early in life is
adaptive, as males recoup any lost fitness by first growing before engaging
in less costly and more profitable reproductive activity later in life. These
results suggest that resource holding potential of males and the intensity
of reproductive conflict interact to shape lifetime schedules of reproductive
behaviour.

1. Introduction
The assumption that reproduction involves costs to future fecundity and/or
survival has formed the bedrock of life-history theory since its inception [1–
8]. Owing to finite resources, individuals are expected to balance the costs
and benefits of reproduction across their lifespan to maximize their lifetime
reproductive success (LRS) [5–7]. These costs and benefits can vary accord-
ing to an individual’s condition. Individuals in good condition might escape
or reduce life-history trade-offs as they have more metabolic resources to
put towards both reproductive effort and somatic maintenance [9,10]. The
condition of individuals can change over time, for example as individuals
grow they will have more resources to put towards reproductive effort,
with individuals of high body mass typically the most fecund or successful
competitors in a population [11,12].

In social groups, individuals can assume non-reproductive subordinate
roles despite the cost of losing out on reproductive opportunities. Why these
non-reproductive roles are assumed may reflect how the life-history trade-offs
faced by these individuals change throughout their life. Younger individu-
als may not have acquired the resources either to successfully reproduce

© 2024 The Author(s). Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.

Research

Cite this article: Birch G, Nichols HJ,
Mwanguhya F, Thompson FJ, Cant MA, Blount JD.
2024 Lifetime trajectories of male mating effort
under reproductive conflict in a cooperatively
breeding mammal. Proc. R. Soc. B 291: 20241499.
https://doi.org/10.1098/rspb.2024.1499

Received: 6 March 2024
Accepted: 12 August 2024

Subject Category:
Behaviour

Subject Areas:
behaviour

Keywords:
life-history, reproductive conflict, cooperative
breeder, restraint, reproductive costs, male

Author for correspondence:
Graham Birch
e-mail: gb357@exeter.ac.uk

Electronic supplementary material is available
online at https://doi.org/10.6084/
m9.figshare.c.7430653.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

04
 O

ct
ob

er
 2

02
4 

http://orcid.org/
http://orcid.org/0000-0002-7412-4095
http://orcid.org/0000-0002-4455-6065
http://orcid.org/0000-0002-1530-3077
http://orcid.org/0000-0002-0016-0130
https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2024.1499&domain=pdf&date_stamp=2024-09-17
https://doi.org/10.1098/rspb.2024.1499
https://doi.org/10.6084/m9.figshare.c.7430653
https://doi.org/10.6084/m9.figshare.c.7430653


independently [13,14] or to reproduce without subjecting themselves to higher reproductive costs [15,16], and cooperative
breeding groups can form when these individuals instead stay at home to help kin [14]. Non-breeding roles in social groups
may allow these individuals to optimize their reproductive life-histories.

Rather than an ultimate assessment of the adaptive value of non-reproductive roles, previous hypotheses for why these
roles exist typically focus on the proximate constraints on reproduction. For example, subordinates may face constraints in
access to unrelated mating partners in their natal groups, and rather than inbreed, these individuals assume non-reproductive
roles until unrelated mating partners become accessible (for example, as in female Damaraland molerats, Cryptomys damarensis)
[17]. Where there are unrelated mating partners, subordinate reproduction may instead be directly suppressed by dominants
through threats and violence [18–26], with the degree of suppression increasing with the level of reproductive skew. A
single dominant pair may monopolize reproduction in despotic high skew groups compared with egalitarian lower skew
groups where suppression is relatively weak and multiple same sex members reproduce [27,28]. Although we understand
the proximate constraints on subordinate reproduction, there have been limited attempts to assess the measurable costs and
benefits of adopting non-reproductive roles in these groups, without which we cannot fully understand the importance of
adaptive life-history decisions in their emergence.

The life-histories of individuals in social groups may adaptively adjust to these changing reproductive constraints. Social
constraints can include the condition of helpers and mating partners, with offspring having worse survival outcomes in groups
with only genetically incompatible or low-quality mating partners, or in cooperative breeding groups with fewer helpers
[22,29,30]. Here, we focus on the social constraint of reproductive conflict. Through suppression, higher relative resource
holding potential (RHP) same-sex rivals increase the social costs, and reduce the likelihood of gaining fitness, for males
that engage in reproductive conflict [27,31], defined in this study as pre-copulatory competition over mating partners. When
suppression fails to prevent reproductive conflict, fights can be exceptionally costly in cooperative groups and can even escalate
to the eviction of losers [32–35]. Such evictees lose the help and protection of the group for themselves and their potential
offspring [36], and face an associated high failure rate for establishing new groups [29,37]. To avoid these social costs, young
subordinates may withhold reproductive activity to wait in queues for future reproductive roles [32,37,38]. They may appease
dominant individuals through submissive behaviours [39,40], by restricting growth to appear less of a threat [41,42], and by
‘paying to stay’ through cooperative behaviour such as offspring care [39]. As these individuals grow and gain in RHP relative
to same-sex rivals the social costs of engaging in reproductive conflict should relax, and the reproductive roles adopted should
adaptively adjust accordingly over the lifespan in such a way that may recoup any costs of delaying reproduction through more
profitable and less costly reproduction later in life.

Examples demonstrating how life-histories adjust to the social costs of reproductive conflict have predominantly come
from females [27,38,43,44]. For males in social groups, adjustments in reproductive life-histories have largely been described
in response to ecological constraints. For example, African striped mice (Rhabdomys pumilio) delayed dispersal under high
population densities [13], and in cooperative breeding birds [45,46] such as long-tailed tits (Aegithalos caudatus) males redirec-
ted helping effort to the clutches of kin when their own nests failed [47]. Much less is known about adjustments in male
reproductive life-histories to the cost of reproductive conflict within social groups, despite the significant costs associated
with reproductive competition among males [48–52]. In mammals, in particular, this knowledge gap may be explained by the
less tractable nature of male reproductive life-histories in social groups. It is challenging to collect accurate long-term data
when copulations are often difficult to observe compared with the relatively conspicuous changes in the morphology and
behaviours of reproducing females, and it can be impossible to confirm paternity without the availability of genetic data.
Additionally, many males in social groups are obligate dispersers, and large dispersal distances make it difficult to identify the
past life-history of males that form or join non-natal groups. Where these problems can be overcome, how reproductive conflict
alters the reproductive life-histories of males deserves assessment.

We use a comprehensive dataset spanning more than two decades, comprising behavioural, genetic and life-history data,
to explore how reproductive activity in male banded mongooses adjusts to the costs and benefits of reproductive conflict.
Banded mongooses live in large groups of up to 60 individuals, although groups of 10–30 are more typical (median = 18
adults, interquartile range = 9.25) [53,54]. The most common cause of adult mortality in our study population is predation,
with disease or death attributed to senescence being less common [54]. Groups reproduce around four times per year [55].
Both sexes reach sexual maturity at around 1 year of age [56]. Same-sex banded mongoose group members are typically highly
related to each other owing to budding dispersal—groups are formed from same-sex bands originating from the same group
[54]. Banded mongooses are intermediate skew cooperative breeders with reproductive opportunities spread across a ‘core’ of
breeding adults (1−5 females and 3−7 males) that reproduce 3−4 times per year [54], while other male group members remain
reproductively inactive. All adult females in banded mongoose groups enter oestrus over a period of 7–10 days, preventing
their monopolization by a single dominant male [53]. On average, older females enter oestrus first, followed by younger females
a few days later [53]. The period from the first to last signs of oestrus within a group is labelled an ‘oestrus event’. Owing
to the higher survival rate of males, and their tendency to stay in their natal group long-term compared with females, which
are more regularly evicted [34,55], most groups have heavily male-biased sex ratios [53]. This skewed sex ratio sets the stage
for reproductive conflict between males over a limited number of breeding females. During oestrus events, reproductive males
guard individual females by following them closely and aggressively defending them from other males [53]. Guarding males
remain active throughout the oestrus event, noticeably reducing foraging effort compared with inactive males. Older males tend
to guard older, more fecund females, despite efforts by females to escape their guards [53].

Kin selection may play a role in adaptive adjustments to reproductive life-histories in social groups [27,57]. However, as
males in banded mongoose groups are invariably closely related, this prevents comparisons between high- and low-relatedness
social environments in our wild study system. Therefore, in this initial exploration into the reproductive life-histories of male
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banded mongooses, we focus on reproductive activity adjustments in accordance with direct reproductive costs and fitness
benefits.

To test how male banded mongooses adjust their reproductive activity across their lifespan, we first employed state-transi-
tion models to ask whether there is evidence that males delay reproductive activity when they are at an RHP (weight and age)
disadvantage compared with their competitors. Secondly, using the same models, we asked how males decline in reproductive
activity as they senesce. We expected activity to decrease as RHP declines at the oldest age classes in line with previously
identified weight declines in aged banded mongooses [58] and in other taxa [59]. We then assessed the degree to which
paternity in each oestrus event is dominated by the highest RHP males in the group, and whether there is evidence that
paternity declines rapidly in old age. We also asked whether males suffer energetic costs in the form of weight loss as a result
of engaging in reproductive activity. Then, we asked whether the costs of reproductive activity contribute to mortality, and if
low RHP males are at a higher risk of death. Finally, we asked how the timing with which a male first becomes reproductively
active affects its LRS, expecting to find that males have higher LRS if they delay their reproductive activity until they increase
in RHP compared with rivals. Simultaneous assessment of patterns of reproductive activity, mortality and reproductive pay-offs
allowed us to judge whether the costs and benefits of reproductive activity adaptively shape the reproductive life-histories of
male banded mongooses.

2. Methods
(a) Study population
We collected data from a banded mongoose population living on the Mweya Peninsula, Queen Elizabeth National Park, Uganda
(0°12′S, 29°54′E) between April 2003 and February 2021. For climate and habitat details, see Cant et al. [54]. Each individual
was given a unique fur shave pattern on a small area of their back for identification. The history of each individual and group
membership is known through life-history data collection ongoing since 1995 [54].

(b) Long-term data collection
All long-term data collection has been previously described, which includes observations of the reproductive behaviour of
males [11,53], life-history information [54], weights [58] and a genetic pedigree [60,61]. We briefly summarize these methods and
data processing. For further details and clarifications on all long-term data collection methods and data processing, please see
the electronic supplementary material accompanying this article.

(i) Reproductive behaviour

Since 2000, focals have been performed on females to record the reproductive behaviour they receive from males during each
group oestrus event. Oestrus events are defined as the period spanning the start of oestrus until reproductive behaviour ceases.
Male reproductive behaviour from all data collection days was summarized into one state for each oestrus event. Males that
guarded on any day of the oestrus event were defined as guards, with the exception of cases where they were defined as
sneaker males if they more often used opportunistic sneaky tactics. Males that had no observed reproductive activity on any
day of an oestrus event were defined as inactive subordinates.

(ii) Life-history and weight data collection

All males in this analysis were followed from birth to death and are therefore of known age, and individual body weights
have been collected from the population since 2000. To obtain a measure of relative RHP, males were ranked in age relative
to other same-sex group members, and relative weight of each male compared with the average male member was calculated
(group-centred weight: weight – mean group weight). Weight loss was calculated from pre- and post-oestrus weight.

(iii) Pedigree data

Genetic pedigrees have been collected since 2003. A banded mongoose’s gestation period is around nine weeks [53,62]. 105
group litters (402 offspring) could be connected to 180 sires in oestrus events approximately nine weeks prior to the litter’s birth
date (ended 59 ± 15 days before).

(c) Statistical models
All models were fitted using Bayesian inference (JAGS MCMC) in R [63]. To improve model convergence, numerical covariates
with a range below 0 and above 1 were standardized. Posteriors were checked for multi-collinearity using the ggmcmc package
[64]. Chain convergence was checked using rhat values from the JAGS model output, with all models showing convergence of
chains for each fitted parameter (R < 1.1). Convergence was also checked using traceplots by eye (ggmcmc).
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(d) Mortality and state transition modelling
In this analysis, we aimed to focus on active mate guarding and inactive subordinate roles. Secondary reproductive males
(sneakers) are present but were found to be rare for all values of age and weight (<0.10 transition probability). Modelled
transitions to guarding or subordinate roles take account of the probability to transition to sneaking roles, but for simplicity,
and because the costs and benefits of sneaking form the topic of a currently unpublished companion paper, model outputs
for transitions to these sneaking roles have been omitted. Males must have been involved in at least two oestrus events for
transition probabilities to be calculated, so males that only lived through a singular observed oestrus event are not included in
these models.

The transition probability of males from one reproductive status to the next, and state-specific probability of dying before the
next oestrus event, were modelled in relation to male age, age rank, and group-centred weight using JAGS MCMC [63,65]—the
former testing for how reproductive activity is adjusted, and the latter to test for how costs of reproductive activity manifest
throughout the lifespan of male banded mongooses. This model was based on 320 males undergoing 2999 transitions in total
between four states (subordinate, sneaker, guard and dead). Using a state-transition matrix mortality (iterations = 50 000,
thinning interval = 100, burn-in = 5000, chains = 3) and reproductive state transitions (iterations = 20 000, thinning interval = 100,
burn-in = 2000, chains = 3) were modelled separately. See the electronic supplementary material for specification of the transition
matrix.

To allow the assessment of a separate senescence effect while avoiding problems with multi-collinearity, state transitions and
mortality models were run twice—first with age rank and second with quadratic age. Group-centred weight was included in
each age model variation. Age rank and group-centred weight (r = 0.44), and age and group-centred weight (r = 0.37), were
moderately correlated and did not produce problems with model convergence. Indeed, running separate models for moderately
correlated variables may lead to bias exaggerating their significance [66]. Interactions between weight and age were, however,
not considered since interactions between moderately correlated variables can produce significant multi-collinearity problems
[66].

To control for common group membership during oestrus events and repeated sampling of the same males, random effects
for oestrus event ID (n = 375), group ID (n = 20) and male ID (n = 320) were fitted for state transition models. To control
for probability of death increasing with time, mortality transition models were also fitted with time to next oestrus event. To
remove cases where excessive time had passed before death since the last oestrus event, data were truncated so that males that
died more than a year from the last oestrus event were removed from analysis (random effects fitted: oestrus event ID (n = 371),
historical group ID (n = 20) and male ID (n = 280)). Initially, mortality analysis included time interactions with all fixed effects,
but these were later removed when none proved credible.

(e) Oestrus event fitness models
To test for how each male’s share of a group’s paternity changes throughout its lifespan, the number of offspring sired by
each male in a given oestrus event was regressed against group-centred weight with a binomial error structure (iterations = 20
000, thinning interval = 100, burn-in = 2000, chains = 3), with total offspring sired in an oestrus event used as the maximum
number of successes. Mirroring the transition and mortality models, two model variations were run, one including age rank and
the other quadratic age. To control for common group membership and repeated sampling on individuals, random effects for
oestrus event ID (n = 105), historical group ID (n = 11) and male ID (n = 388) were fitted.

(f) Weight loss models
554 weight changes from subordinates and 265 weight changes from guards were included. To control for common group
membership during oestrus events and repeated sampling on the same males, random effects for oestrus event ID (n =
118), group ID (n = 20) and male ID (n = 259) were fitted. Percentage weight loss for each individual over an oestrus event
was normally distributed, and as such was regressed with behavioural state (subordinate versus guard) using a Gaussian
distribution using the JAGS MCMC engine (iterations = 20000, thinning interval = 100, burn-in = 2000, chains = 3). Initially, we
wanted to assess whether age had an effect on weight loss for guards compared with subordinates. However, age, or age in
interaction with state, was not fitted owing to issues with multi-collinearity with state.

(g) First onset of reproductive activity and lifetime reproductive success models
229 males have recorded observations of reproductive activity. Lifetime number of offspring sired (LRS) by each of these males
was zero-inflated (n = 95); therefore LRS was regressed using zero-inflated negative binomial models using the JAGS MCMC
engine (iterations = 20 000, thinning interval = 100, burn-in = 2000, chains = 3). LRS was regressed against the age rank and
group-centred weight of each male relative to other group members when they first engaged in reproductive activity (first
observed as a guard). A second model regressed against absolute age and weight (not relative to other males’ age or weight
in the same group) was also fitted. To control for common group membership, group ID was fitted as a random effect in both
models (n = 15).
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(h) Model output processing
For all models, significance table outputs were generated using the MCMCvis package [67], and model diagnostic plots using
ggmcmc. Plotted probabilities were simulated from the posterior distribution extracted using the jagsUI package [68] (figures 1
and 2; electronic supplementary material, figure S2,S3,S4,S5).

3. Results
(a) Patterns of reproductive activity throughout the lives of males in banded mongoose groups
On average, subordinates were more likely to stay as a subordinate in the next oestrus event (figure 1; mean = 0.72, high credible
interval (hci) = 0.756, low credible interval (lci) = 0.644) than to transition into a guarding role (mean = 0.2, hci = 0.28, lci = 0.16),
while the transition probabilities from a guarding role were not significantly different (figure 1; guard to subordinate—mean =
0.46, hci = 0.523, lci = 0.386; stay guard—mean = 0.41, hci = 0.5, lci = 0.34).

Overall, age rank and group-centred weight have similar independent effects on transition probabilities (figure 1(iii)). There
was a significant linear effect, whereby as young mongooses moved up in weight and age rank in the group, they became more
likely to gain a guarding position and less likely to stay in a subordinate position (electronic supplementary material, table S1,
model 1a). Parity between the probabilities of staying as a subordinate compared with gaining a guarding role was reached at
the oldest age ranks (1 and 2) and at around 50 g above the group average weight. At young age ranks and low weights, males
rarely became a guard, for example subordinates at age rank 11, or 200 g below the mean weight of other males in the group,
were predicted to gain a guarding role only ca 10% of the time (mean = 0.11, hci = 0.14, lci = 0.08 and mean = 0.09, hci = 0.13,
lci = 0.07), tending towards 0 at younger age ranks and lighter weights. Predictions of age rank and weight diverge at cases
of extreme weight, whereby age rank 1 subordinates were predicted to gain a guarding role around 50% of the time (mean =
0.48, hci = 0.55, lci = 0.41), while those of extreme weights (97.5% quantile + 320.4 g, max. = +494.48 g) had a higher predicted
probability to become a guard, approaching two times out of three (weight = +450 g, mean = 0.67, hci = 0.77, lci = 0.58).

Similarly, there were independent significant linear effects of weight and age rank for keeping or losing a guarding role;
heavier and older age rank males were more likely to keep a guarding position once obtained, and less likely to become an
inactive subordinate (electronic supplementary material, table S1, model 1a). Parity for keeping as opposed to losing a guarding
role was reached at age rank 4 and −150 g, younger and lighter than when parity was reached for staying compared with
transitions out from a subordinate role (age rank 1 or 2 and +50 g). At the low end of probabilities, males had ca 10% probability
of keeping their guarding position at age rank 12 and weight −250 g (mean = 0.1, hci = 0.16, lci = 0.05 and mean = 0.1, hci = 0.17,
lci = 0.05). Guards of age rank older than 4 were more likely to hold than lose their guarding role with age rank 1 males, who
as a subordinate would have had parity in their transition probabilities, having a 63% probability of keeping their guarding role
(lci = 0.53, hci = 0.75). Guards of extreme weights (97.5% quantile = +382.59 g, max = +520.63 g) had a predicted probability of
keeping a guarding role exceeding 80% (weight = +450, mean = 0.81, hci = 0.89, lci = 0.7), higher than predicted at the highest age
ranks.

Age had a significant quadratic effect on all transition probabilities (electronic supplementary material, table S1, model 1b).
The probability of gaining and keeping a guarding role mirrored the effect of age rank (figure 1b(iii)), with males tending
to remain reproductively inactive well past sexual maturity (1 year) until reaching a peak of guarding at 6.5 years of age
(subordinate to guard: mean = 0.57, hci = 0.67, lci = 0.48 and staying guard: mean = 0.65, hci = 0.75, lci = 0.56), after which
probabilities of guarding decreased continuously as males aged. The switch point for the quadratic effect at 6.5 years was just
below the mean age of age rank 1 males in oestrus events (mean = 7.25, interquartile range (IQR) = 3.25), suggesting an ageing
effect was masked in age rank 1 males by groups that lack older males. As the probability of gaining or holding a guarding
position trended down with age, parity between transitions to a subordinate and guarding role was reached at around 8.5 years
(from subordinate) and 9.5 years (from guarding) (figure 1). At extreme ages (subordinate: 97.5% quantile = 10.24, maximum =
11.8; guard: 97.5% quantile = 10.13 years, maximum = 11.36 years), transition probabilities to gain or keep a guarding role were
as low as 20 and 30%, respectively (subordinate to guard: age = 10.5 years, mean = 0.19, hci = 0.37, lci = 0.09; stay guard: age
= 10.5 years, mean = 0.3, hci = 0.53, lci = 0.13). Beyond 8 years of age, increasing age corresponded to a decrease in weight of
males (electronic supplementary material, figure S1), which may correspond with the decreased probability to gain and keep
a guarding role at extreme ages and low group-centred weights. A linear decline past the quadratic switch points was further
verified by running separate models on a truncated dataset (see electronic supplementary material).

(b) Distribution of siring success in banded mongoose groups
The probability to maintain or transition into guarding roles reflected the probability of siring offspring. Older age rank and
heavier males were significantly more likely to sire a given pup (electronic supplementary material, table S1, model 2a, figure
S2b,c), while age had a significant negative quadratic effect (electronic supplementary material, tables S1 and S2b) with a
decline in the probability of siring at old ages, past 7 years old (for more detail, see electronic supplementary material, figure
S2d). Extremely heavy males were predicted to sire more pups beyond that predicted by the oldest age ranks, with mongooses
weighing at least 400 g more than the average male in the group siring at least 1 pup per oestrus event (400 g: mean = 1.00, hci =
1.35, lci = 0.76; 450 g: mean = 1.25, hci = 1.64, lci = 0.98).
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(c) Weight loss costs of reproductive activity
The mean observed weight for a male mongoose was 1455.99 ± 4.64 g s.e.m. Guards lost on average 2.36% (figure 2; hci =
−1.46%, lci = −3.33%) of their body weight, significantly more, 2.63% (ca 40 g), than subordinates (electronic supplementary
material, table S1, model 3), for which net change was not significantly different from 0 (figure 2; mean = +0.21% , hci = +0.92%,
lci = −0.53% — posterior effect overlaps 0).

(d) Mortality costs of reproductive activity
Mean survival between oestrus events was not on average significantly different between guards (mean = 0.075, hci = 0.14,
lci = 0.40) and subordinates (mean = 0.71, hci = 0.131, lci = 0.039) (electronic supplementary material, figure S3a). There was
a significant negative effect of group-centred weight on mortality probabilities for guards but not subordinates (electronic
supplementary material, table S1, models 4a, 4b). Below the average weight of males, guards started to have a higher mortality
probability than subordinates (figure 2), although only at particularly low weights was this difference statistically significant
(−450 g guard: mean = 0.3, hci = 0.60, lci = 0.10; −450 g subordinate: mean = 0.05, hci = 0.10, lci = 0.02). The mortality cost in
low-weight guards was reflected in the raw data; relative to the weight of other males in the group, 29/200 (14.5%) guards of
below average weight, and 2/908 (8%) of average and above weight, died before the next oestrus event. In contrast, 80/1190
(6.7%) subordinates of below average weight, similar to 80/976 (8.2%) of average and above weight, died before the next oestrus
event. There was a similar negative effect of absolute weight on the mortality probability of guards and not subordinates
(electronic supplementary material, table S2, model 4c).

Mortality increased as mongooses moved into older age ranks (electronic supplementary material, table S1). When simulat-
ing mortality probabilities, the effects of each state overlapped at all age rank values (electronic supplementary material, figure
S3c). When simulated overall, increases in mortality with age rank were small, with a <5% increase in mortality from the
youngest to the oldest age ranks for subordinates and negligible increase for guards (electronic supplementary material, figure
S3c). There was no significant quadratic effect of age on mortality, and the linear effect of age mirrored age rank (electronic
supplementary material, table S1 and figure S3d).

(e) Effect of delaying reproductive activity on lifetime reproductive success
Absolute age and weight at first reproductive activity had a significant effect on LRS (electronic supplementary material, table
S1, model 5b). LRS increased as males delayed their first guarding activity to older ages or higher weights (electronic supple-
mentary material, figure S4b,d). However, when the competitive environment in groups is taken into account by fitting age
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rank and group-centred weight, only group-centred weight at first reproductive activity significantly affected LRS (electronic
supplementary material, table S1, model 5a, figure S4a,c), with LRS increasing as males delayed reproductive activity until they
reached higher weights relative to same-sex rivals (figure 2). For example, males that delayed reproductive activity until they
were 250 g heavier than the average group member had a predicted LRS of 7.52 (hci = 10.93, lci = 4.98). This was higher than for
males that delayed activity until they reached the average male group weight (mean = 3.53, hci = 4.65, lci−2.51), and was higher
again than for males that started guarding at 350 g below the average male group weight (mean = 1.29, hci = 2.33, lci = 0.65).

4. Discussion
We found that males largely delayed reproductive activity until they became older and heavier relative to rival groups
members. The oldest and the heaviest male intragroup competitors have the highest probability to guard. Males that reached
old ages (associated with weight decline) became less reproductively active, suggesting a senescent effect. Paternity share
mirrored reproductive activity in the group, with the heaviest and oldest males in groups dominating paternity share of group
litters. Reproductive activity did impose significant costs on male banded mongooses. Reproductively active guards lost weight
compared with inactive subordinates, which on average had no change in weight over the oestrus period. Mortality costs of
reproductive activity were the greatest for lower-weight males in banded mongoose groups, those at a RHP disadvantage to
rivals. Finally, males that delayed reproductive activity until they reached heavier weights compared with same-sex competitors
increased their LRS. This points to the likelihood that the reproductive inactivity we have identified in low RHP males may be
adaptive, as the costs of reproductive conflict with superior rivals are prohibitive and any lost reproductive fitness is recouped
later in life as males grow.

Our investigation revealed adjustments in the reproductive activity of male banded mongooses consistent with reproductive
queues. Males that were lighter relative to other males in the group delayed reproductive activity despite being sexually
mature, staying in inactive subordinate roles. Social costs of competing with heavy males may explain why lighter males avoid
reproductive activity. The high RHP individuals that dominate reproductive roles in social groups often suppress subordinate
reproduction through regular threat displays or violence [25,53,69,70]. Yet, in male banded mongooses, outside of guarding
females during short oestrus events, males are rarely observed threatening or attacking other male group members, suggesting
a permanent hierarchy does not need to be enforced by dominant males. When low RHP males do engage in reproductive
activity, they may suffer larger social costs owing to a competitive disadvantage in fights, which may have contributed to the
higher mortality costs of reproductive activity at low weight relative to other group members. Restraint when at a competitive
disadvantage likely serves to avoid social costs of reproductive conflict. These males may be passively coerced into reproductive
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restraint consistent with previously identified ‘hidden threats’, where escalation to direct suppression or violent punishment
by dominants is rarely seen because subordinate transgression is rare [71]. For example, experimental manipulation revealed
subordinate female banded mongooses that breed asynchronously with dominants are punished by infanticide—rarely seen
under natural circumstances because females almost always breed synchronously [71]. We suggest low RHP males may
similarly abstain from reproductive activity to avoid aggression by dominants. Dominant males may gain from ‘hidden threats’
as these reduce the need to actively suppress subordinate reproduction, which can be costly for dominants, for example females
that carried out evictions in banded mongoose groups reduced their future fecundity [72]. If these ‘hidden threats’ are not
respected by low RHP males, they may suffer high social costs as a result of reproductive conflict, as suggested by our mortality
results. Instead of incurring social costs, low RHP males may typically choose to stay reproductively inactive while continuing
to gain inclusive fitness by helping relatives [73,74].

Our finding of weight loss costs aligns with those previously reported [49], such as in reindeer (Rangier tarandus) during rutts
[75], and other cases of mate-guarding such as in Sceloporus virgatus lizards [76]. The weight loss observed in our study is likely
a result of the energetic demands of actively guarding females and the time spent away from foraging activities, as suggested
by other studies [49,77]. Mortality costs of reproductive activity also increased as the relative weight compared with other males
in the group decreased, yet only at below average weights were guards predicted to die between oestrus events more often
than subordinates. These low RHP mortality costs could be explained by mismatched fights with superior rivals, but they could
also indicate condition-dependent costs of reproductive activity [9,10]. Condition-dependent costs align with past evidence in
other systems of higher mortality costs [6,16,78] or long-term fecundity costs [13,52] of reproductive activity in lower condition
breeders. The low-weight mortality cost of reproductive activity in male banded mongooses mirrors the rarity with which males
gain or maintain active guarding roles at low weight in our state transitional analysis. It also aligns with reduced LRS for
males that begin reproductive activity at low weight. These results together suggest avoiding the costs of reproductive conflict
adaptively shapes the reproductive life-histories of males in banded mongoose groups.

Condition-dependent costs would suggest that individuals do not face the same constraints for life-history trade-offs when
they are in sufficiently good condition [7,79]. Instead of trade-offs, positive relationships between reproductive demands and
survival can be observed as individuals that typically invest more into reproduction are in higher condition [80]. For example,
survival in Iberolacerta cyreni lizards had a positive rather than a negative association with high reproductive activity [81].
Similarly, longevity was associated with ovarian function in Bombus terretris honeybees [82]. Without experimental manipulation
or control of condition, variation in individual condition can often mask the costs of reproduction [83]. Survival costs may have
only been detectable in our system owing to the longevity of our study, allowing relatively rare cases of constrained low-weight
males engaging in reproductive activity to occur. Overall, reproductive costs in banded mongooses may follow the ‘big house,
big car’ analogy [9,10,80], where lighter males cannot afford the costs of reproductive activity compared with heavier malesthat
have accumulated enough wealth in terms of resources to afford the investment.

Reproductive inactivity may avoid delaying the growth of males in order to effectively fight in the future and ultimately
secure reproductive success. For example, the energetic demands of early roaming in male African striped mice (R. pumilio)
reduced LRS by delaying the age at which males acquired their own harems [51,52]. Similarly, the weight lost by guarding early
in banded mongoose groups may delay the weight gain necessary to more successfully compete for guarding roles in future
oestrus events, suggesting early reproductive activity could have latent fecundity costs together with the short-term survival
costs we have found. Therefore, as well as avoiding social costs of reproductive conflict in the short term, the decision of young
growing males to stay inactive in queues may be reinforced by the long-term need to gain weight to successfully challenge
in future oestrus events. Ultimately, our LRS results suggest fitness lost owing to reproductive inactivity early on is recouped
when males become reproductively active once obtaining these heavier weights compared with rivals.

Female choice may have played a role in the reproductive inactivity of males. Females can increase their reproductive
fitness through choice by biasing fertilization to higher-quality fathers [84,85]. RHP is a common characteristic females use in
mate choice as their sons stand to inherit their father’s competitiveness to continue to pass on their mother’s genes [86,87]. By
guarding, males may reduce the ability of females to make their own mate choices. Yet, there is evidence that female banded
mongooses retain some autonomy over mate choice in inbreeding avoidance [61], which may carry over to RHP-based mate
choices. Avoidance by females could add an additional barrier to the success of low RHP males on top of reproductive conflict
with superior rivals, which may further favour reproductive inactivity to avoid unnecessary reproductive costs for a small
chance of success.

Exceptionally heavy males were the most reproductively active, above activity explained by age rank. The large condition
advantage should be beneficial when considering the long-term endurance of consecutive bouts of reproductive activity.
Banded mongooses reproduce throughout the year, with a new oestrus event often occurring two months after the last, soon
after pups have emerged from the den [55], or more frequently where litters are unsuccessful. Frequent reproductive bouts
mean that males must strive to recover rapidly from the costs of previous reproductive activity, which may lead to exhaustion
going into the next reproductive bout if they have not replenished their condition in the interim period. Lower condition males
should suffer more from reproductive exhaustion owing to having fewer resources to recover from previous reproductive
activity. For example, experimental manipulations of the mating history of mosquito-fish (Gambusia affinis) revealed ageing
males are unable to maintain sperm count and velocity compared with younger males during repeated bouts of reproduction
[88]. Additionally, as the weight advantage a male has over rivals increases, it may better maintain an RHP advantage into
future oestrus events to more easily secure guarding positions in the long term despite repeated episodes of weight loss.

As condition declined with age in senescing males, the probability they maintained reproductive activity, or sired offspring,
similarly declined. As their RHP declines, these males may become vulnerable to displacement by rivals, aligning with
senescence-associated exiting of reproductive roles in other animal societies. For example, Seba’s short-tailed bats (Carollia
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perspicillata) show a decline in the ability to maintain harems as males pass 5 years of age [65]. Also, senescing males’ reluctance
to engage in reproductive activity may persist owing to the threat of social conflict with higher RHP rivals. However, when so
close to the end of life, abstaining from costly reproductive activity may not contribute significantly to their LRS in the future. In
fact, according to terminal investment theory, senescing individuals should invest maximally in reproduction when it becomes
clear that there are few remaining reproductive opportunities [89]. Additionally, many intermediate-weight males relative to
rivals remain inactive despite no significant difference in mortality costs between activity and inactivity found, which may
appear suboptimal for their lifetime reproductive fitness. These seemingly cautious approaches to reproductive activity may
only make sense when considering kin selection. Rivals are fellow productive group members and often close kin [90], so costs
imposed on them due to reproductive conflict may reduce inclusive fitness.

The costs incurred through internal conflict may weaken the group as a whole. Weight loss and injuries due to conflict
may mean members are not able to effectively contribute to cooperative behaviours such as offspring care, protection against
predators, or fighting during intergroup wars [36]. Reduced contributions of individuals may reduce the survival and reproduc-
tive success of all group members. As such, models of the evolution of cooperative breeders centre around how conflict has
been minimized [27]. Two alternative evolutionary pathways may minimize conflict and are characterized by mechanisms that
are difficult to disentangle: suppression and voluntary restraint.

One pathway we have discussed is the suppression of conflict by dominants through imposing social costs on subordinates.
For example in social insects, queens police reproduction in workers by promoting aggression and the consumption of the eggs
of any females that attempt to reproduce [91,92]. The second pathway is kin selection, where individuals reduce reproductive
conflict in order to help relatives for inclusive fitness benefits [27]. If kin-selected benefits are high, voluntary restraint may
be selected without the need for suppression by dominants. For example, one experimental study found policing in carpenter
ants (Camponotus floridanus) was not present in incipient colonies [93]. Worker reproduction is highly damaging to incipient
colonies owing to a lack of caring capacity, and policing was suggested not to be necessary in these cases, as workers are under
high kin selection to express voluntary reproductive restraint and help care instead of reproduce themselves [93]. Without such
carefully designed experiments, inactivity to avoid the social costs of conflict and voluntary inactivity for kin-selected benefits
are difficult to tease apart. Suppression may mean conflict is present but not observed unless subordinates transgress, which
may only rarely be observable in natural systems. This gives the appearance of voluntary reproductive inactivity, such as if
subordinates use cues to avoid conflict, for example pheromones or a queen’s cuticular hydrocarbon (CHC) profile in social
insects [91,94]. We cannot tease apart suppression versus voluntary inactivity in our wild study system, but voluntary restraint
could play a role in banded mongoose groups, which often have overlapping generations of related males [55]. Reducing
kin-selected costs of internal conflict may serve as a significant selection pressure reinforcing the prevalent reproductive
inactivity observed among mature males in this study.

The reduction in internal conflict among related males in banded mongoose groups is consistent with recent ideas suggest-
ing a key step in evolutionary transitions to higher levels of social organization is the breaking of life-history trade-offs (i.e.
major evolutionary transitions) [95]. Kin selection may favour low condition males to remain inactive in order to allow higher
condition males to reproduce, which face a weakened trade-off between reproduction and survival. Kin selection could also
favour reduction in the social costs of internal conflict to improve the fighting ability of the group in intergroup wars, as males
specifically are important in determining the outcome of conflict [58]. Of course as discussed, the reproductive inactivity of
lower condition mature males we have found may simply be a result of competitive displacement from reproductive positions,
or ultimately self-interested attempts by subordinates to avoid the social costs of conflict in the group, which does not require
kin selection to play a role. In our wild population, males are typically closely related to rival same-sex group members [55].
Without many social groups with non-related rivals as a comparison with related rivals, it will be difficult to disentangle how
self-interested avoidance of social costs and kin selection mould the reproductive life-histories of male banded mongooses.
Experimentally manipulated group demographics are not always possible when monitoring long-term projects, as in our case,
but where they are possible comparisons of reproductive activity trajectories could allow us to understand the role kin selection
plays moulding the life-histories of males in social groups.

5. Conclusion
The life-histories of male banded mongooses are shaped by the benefits of reducing costly reproductive conflict. Lower
condition males remain inactive, which likely serves to avoid suffering higher social costs of reproductive activity, supported
by higher mortality costs found for lower-weight males. Early reproductive inactivity may allow males to recoup lost fitness
through more successful attempts to compete with rivals in the future, as suggested by their LRS. These costs and benefits
fit well with the queueing dynamics we have found, suggesting young, lighter males adaptively delay reproductive activity.
As males grow, the social costs of reproductive conflict decline, and increased condition may make the energetic demands
of guarding easier to bear. Reduction in the costs of conflict is reflected in more consistent engagement in reproductive
activity at older, but not senescent, age classes. Kin-selected benefits may play a role reducing reproductive conflict within
banded mongoose groups. Disentangling how self-interested avoidance of social costs and kin selection mould the reproductive
life-histories of males in social groups requires future research.
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