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Spectral densities encode nonperturbative information that enters the calculation of a plethora of
physical observables in strongly coupled field theories. Phenomenological applications encompass aspects
of standard-model hadronic physics, observable at current colliders, as well as correlation functions
characterizing new physics proposals, testable in future experiments. By making use of numerical data
produced in a Spð4Þ lattice gauge theory with matter transforming in an admixture of fundamental and
2-index antisymmetric representations of the gauge group, we perform a systematic study to demonstrate
the effectiveness of recent technological progress in the reconstruction of spectral densities.To this purpose,
we write and test new software packages that use energy-smeared spectral densities to analyze the mass
spectrum of mesons. We assess the effectiveness of different smearing kernels and optimize the smearing
parameters to the characteristics of available lattice ensembles. For concreteness, we analyze the Spð4Þ
lattice gauge theory with matter transforming in an admixture of fundamental and 2-index antisymmetric
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representations of the gauge group. We generate new ensembles for the theory in consideration, with
lattices that have a longer extent in the time direction with respect to the spatial ones. We run our tests on
these ensembles, obtaining new results about the spectrum of light mesons and their excitations. We make
available our algorithm and software for the extraction of spectral densities, that can be applied to theories
with other gauge groups, including the theory of strong interactions (QCD) governing hadronic physics in
the standard model.

DOI: 10.1103/PhysRevD.110.074509

I. INTRODUCTION

Recent years have seen the development of new
technology aimed at extracting spectral densities from
numerical lattice data obtained in the nonperturbative study
of strongly coupled field theories—see for instance
Refs. [1–21]. Spectral densities are inverse Laplace trans-
forms of space-averaged two-point functions involving
time-separated operators. They can be used to compute
high-precision spectral observables that are otherwise
difficult to access with conventional methodologies.
Additionally, spectral densities encode information about
off shell physics, providing an alternative framework to
compute scattering amplitudes [3], inclusive rates [5,10],
finite-volume energies and matrix elements. In QCD,
spectral densities enter the calculation of hadronic observ-
ables, such as the R-ratio [22] and inclusive decays of the
τ lepton [23,24]. They can also be used to access the
properties of glueballs [25]. In finite temperature QCD,
spectral functions enable to investigate transport properties
of the quark gluon plasma (see, e.g., the reviews [26–28]
and the more recent Ref. [29]), including the electrical
conductivity, as discussed, for instance, in Refs. [30,31]. In
analogy to the derivation of the Weinberg sum rules from
the properties of the spectral functions [32–34], the spectral
representation of two-point functions involving both mes-
ons and baryons enters the effective potential of new
physics models [35,36], that implement Higgs composite-
ness [37–39] and top partial compositeness [40] (see also
the reviews in Refs. [41–44], and the summary tables in
Refs. [45–47]), and may trigger electroweak symmetry
breaking via vacuum misalignment [48–50].
This paper has two main objectives. The first is to

develop, test, tune, optimize, and benchmark the effective-
ness of a new software package that allows the computation
of spectral densities from correlation functions measured
on the lattice. The spectral densities of interest are smeared
in energy, and thus have a well-defined infinite-volume
limit. After such limit is taken, the energy smearing can in
principle be removed. This is however not necessary in this
work, where we perform correlated fits of smeared spectral
densities to extract the finite-volume spectrum of mesons,
as proposed in Ref. [9]. The computation of smeared
spectral densities can be systematically improved by
reducing the statistical noise, and by increasing the number
of time slices in the lattice [1]. To this purpose, we generate

and analyze ensembles with long time extent. This work
sets the stage for future applications, both in the context
of QCD and of new physics models, by demonstrating its
viability as an analysis tool for the aforementioned ambi-
tious endeavors. To validate our techniques, we apply these
analysis tools to observables in theories for which alter-
native ways exist to gain access to the relevant non-
perturbative information.
The second objective is to make significant progress

toward understanding the spectrum of a specific gauge
theory that is a prototypical candidate for UV-completion of
composite Higgs models [51]. To this purpose, we generate
new ensembles for the Spð4Þ theory coupled to two Dirac
fermions transforming in the fundamental and three in the
two-index antisymmetric representation of the gauge
group. This theory and its variations have been recently
studied in the literature on Spð2NÞ theories [44,52–72].
We use the Grid software suite [73–75], including adapta-
tions [69] previously made to implement symplectic
groups. The data are analyzed with the HiRep code [76].
Wewrite and make available new software that reconstructs
the smeared energy spectral density. We focus our analysis
on the two-point correlation functions of meson operators,
with a general basis of Dirac structures, but restrict our
attention to flavor nonsinglet states. We will analyze the
spectra of flavor singlet mesons and of chimera baryons in
separate publications.
Our results on the spectrum of mesons show improved

statistical accuracy, with better control over systematics,
with respect to existing published results, and extend over a
larger range of parameter space. We also detect new excited
states, not accessible with earlier existing ensembles. We
make publicly available both the software we developed
and the data analysis flow [77], as well as the new data
generated for this study [78]. In the present paper, we defer
to future studies of the extraction of the couplings (decay
constants) of the associated mesons.
The paper is organized as follows. We define the lattice

theories of interest in Sec. II. We present the properties
of the ensembles we study in the main body of the paper.
We apply the gradient flow as scale-setting procedure, as
well as a smoothening process for topological observables.
We monitor the topological charge, and use it to estimate
autocorrelations. In Sec. III we introduce the flavored,
mesonic operators of interest and their correlation
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functions. We also describe our implementation of
Wuppertal and APE smearing, and exemplify how the
spectra can be extracted from a variational approach based
upon the generalized eigenvalue problem (GEVP).
Spectral densities and (energy) smearing kernels are
introduced in Sec. IV. We also discuss how the signal
and its statistical significance depend on the choices of
smearing parameters. We devote Sec. V to a systematic
investigation of how the length of the time extent of the
lattice affects the spectral density reconstruction. Our
(new) results on the spectrum of mesons are summarized
and critically discussed in Sec. VI. We conclude by
highlighting avenues for further investigation in
Sec. VII. Technical details about the spectral density
reconstruction are relegated to the Appendix.

II. LATTICE FIELD THEORY

In this section, we present the quantum field theory
of interest and the discretized lattice action we adopt for
its study. By doing so, we fix the notation so that the
presentation is self-contained. We also tabulate and char-
acterize the lattice ensembles generated for the purposes of
this paper, in which we report our results on the spectrum
of flavored mesons. We postpone to future publications
the measurement, on these same ensembles, of the
spectra of other bound states—flavor singlet mesons and
chimera baryons.

A. Lattice discretization and bare parameters

The Spð4Þ gauge theory of interest has a continuum
Lagrangian density that, in the presence of Nf Dirac
fermions, QI , transforming in the fundamental representa-
tion, together with Nas Dirac fermions, Ψk, transforming in
the two-index antisymmetric representation, is given by

L ¼ −
1

2
TrGμνGμν þ

XNf

I;J¼1

Q̄IðiδIJγμDμ −mf
IJÞQJ

þ
XNas

k;l¼1

Ψ̄kðiδklγμDμ −mas
klÞΨl; ð1Þ

where γμ are Dirac gamma matrices, μ ¼ 0, 1, 2, 3 refers to
the coordinates in Minkowski space, while I; J ¼ 1;…; Nf ,
and k;l ¼ 1;…; Nas, are flavor indexes—color and spin
indexes are understood. Throughout this paper we assume
mass-degenerate fermions, for which mf

IJ ¼ mfδIJ and
mas

kl ¼ masδkl. The field-strength tensor, Gμν, and the
covariant derivative, Dμ, acting on the fermions are defined
following the conventions of Ref. [55]:

Gμν ¼ ∂μAν − ∂νAμ þ ig½Aμ; Aν�; ð2Þ

DμQ ¼ ∂μQþ igAμQ; ð3Þ

DμΨ ¼ ∂μΨþ igAμΨþ igΨAT
μ ; ð4Þ

where g is the gauge coupling.
An element, M∈ Spð4Þ, of the gauge group acts on the

fermion fields with the gauge transformationQ → MQ and
Ψ → MΨMT . Because the fundamental representation
is pseudo-real, while the 2-index antisymmetric one is
real, the global symmetries are enhanced in comparison
with a complex representation (such as that of QCD).
The global symmetry of the Lagrangian is Uð1Þf ×
Uð1Þas × SUð2NfÞ × SUð2NasÞ. One combination of the
Uð1Þ factors is broken by the axial anomaly.1 The bilinear
condensate of fundamental fermions breaks spontaneously
the associated SUð2NfÞ symmetry to its Spð2NfÞ sub-
group, while the condensate made of antisymmetric fer-
mions gives rise to the breaking pattern SUð2NasÞ →
SOð2NasÞ [80]. The mass terms break explicitly the
symmetry along the same pattern, providing masses
for the Pseudo-Nambu-Goldstone Bosons (PNGB).
From hereon, we ignore the Uð1Þ symmetries and
specify the numbers of flavors to Nf ¼ 2 and Nas ¼ 3.
We hence have 5þ 20 PNGBs associated with the two
non-Abelian cosets.
For the Spð2NÞ Euclidean action on the lattice—see

Refs. [44,60,69] for technical details—we adopt the stan-
dard Wilson plaquette action. We write it in terms of the
gauge links, UμðxÞ, as

Sg ¼ β
X
x

X
μ<ν

�
1 −

1

2N
ReTrðUμðxÞUνðxþ μ̂ÞU†

μðxþ ν̂ÞU†
νðxÞÞ

�
; ð5Þ

independently on the representation of the gauge links, and μ, ν denote the direction of the link, starting from lattice site x,
while μ̂; ν̂ are unit displacement on the lattice. The fermions are described by the Wilson fermion action [81], for both
representations:

1Due to the multirepresentation nature of this theory, both Uð1Þ symmetries are expected to be spontaneously broken which would
lead to two additional (pseudo-) Nambu-Goldstone bosons (PNGBs): one combination of them is broken by the anomaly, while the other
combination is nonanomalous and may have an implication on the phenomenological studies of composite Higgs models [79].
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Sf ¼ a4
XNf

J¼1

X
x;y

Q̄JðxÞDðfÞðx; yÞQJðyÞ

þ a4
XNas

k¼1

X
x;y

Ψ̄kðxÞDðasÞðx; yÞΨkðyÞ: ð6Þ

The lattice spacing is denoted by a, while the fundamental
and antisymmetric Dirac operators, DðfÞ and DðasÞ, depend-
ing on the gauge links in the respective representation.
We borrow their definitions from Refs. [69]:

DðRÞðx; yÞ≡
�
4

a
þmR

0

�
δðx; yÞ

−
1

2a

X4
μ¼1

n
ð1 − γμÞUðRÞ

μ ðxÞδðxþ μ̂; yÞ

þ ð1þ γμÞUðRÞ†
μ ðxÞδðx − μ̂; yÞ

o
; ð7Þ

where R ¼ f, as denotes the different representations.
Specifically, mf

0 and mas
0 are the bare masses of fermions

of species (f) and (as), respectively. For the link variable,

UðfÞ
μ ðxÞ ¼ UμðxÞ, while a choice of parametrization for

UðasÞ
μ ðxÞ can be found in Ref. [60].
Gauge configurations are generated using Grid [73–75],

which has the functionality to work with Spð2NÞ gauge
groups [69]. We include dynamical fermions using the
hybrid Monte Carlo (HMC) algorithm [82] for the two (f)
fermions and the rational HMC (RHMC) [83] algorithm for
the three (as) Dirac fermions. In principle, the inclusion of
an odd number of degenerate fermions might give rise to a

sign problem, but for an odd number of fermions in the
antisymmetric representation the determinant of the Dirac
operator remains positive and real [60,84]. Acceptance
rates were tuned to be around 70% to 80%, which
corresponds to 27–36 integrator steps for a single unit of
Monte Carlo time. Resymplecticization was performed
after every gauge configuration update. We use even-odd
preconditioning as in Ref. [60]. It was also shown in
Ref. [69] that the HMC and RHMC implementations in
Spð4Þ yield compatible results for even number of fer-
mions, and that one could equivalently adopt the HMC
algorithm for two of the (as) fermions and RHMC for the
third, without visible changes to the results.
Our hypercubic lattices have Ns lattice sites in the spatial

and Nt > Ns lattice sites in the temporal direction, hence
the volume is V4 ¼ ðNsaÞ3 × ðNtaÞ ¼ L3 × T. We impose
periodic boundary conditions for the gauge fields. For the
fermion fields, we impose periodic boundary conditions in
the spatial dimensions and antiperiodic boundary condi-
tions along the temporal direction. The lattice action
has three free parameters; the inverse gauge coupling,
β ¼ 2Nc=g2 ¼ 4N=g2 ¼ 8=g2, and the masses, mf

0 and
mas

0 , of the two types of fermions. At strong coupling
(small β) a transition into an unphysical bulk phase occurs.
For this action it was found that a value of β ≳ 6.3 is
sufficient to avoid this lattice phase [60]. We choose
β ¼ 6.5 for the ensembles discussed in this paper, and
we keep the bare mass of the (as) fermions fixed, to be
amas

0 ¼ −1.01. We allow the mass of the (f) fermions to
vary over a modest range of values, as listed in Table I.
For each ensemble, we compute the average plaquette, hPi,
defined as

hPi≡ 1

6NtN3
s

X
x

X
μ>ν

ReTr
1

2N
½UμðxÞUνðxþ μ̂ÞU†

μðxþ ν̂ÞU†
νðxÞ�; ð8Þ

as this quantity enters the tadpole-improved gauge coupling g̃2 ≡ g2=hPi [85,86].

TABLE I. Ensembles generated for this study of the Spð4Þ theory coupled to fermions in multiple representations. The inverse
coupling is denoted as β and the bare masses of the (Wilson-Dirac) fermions transforming according to the fundamental and
antisymmetric representation of the gauge group are denoted by amf

0 and amas
0 , respectively. The lattice volume is NtN3

sa4. For each
ensemble, we further report the number of gauge configurations, Nconf , as well as the average plaquette, hPi, the gradient flow scale in
lattice units, w0=a, the mean of the topological charge, Q̄, and the correlation length of the topological charge, τQint. We also report, for
reproducibility purposes, the number of thermalization steps, Ntherm, discarded from the analysis, as well as the number of complete
sweeps between configurations nskip, which have been discarded to avoid larger autocorrelation. Notice however that τQint has been

computed on the remaining Nconf configurations only, and yet τQint > 1.

Label β amas
0 amf

0 Nt Ns Ntherm nskip Nconf hPi w0=a τQint Q̄

M1 6.5 −1.01 −0.71 48 20 3006 14 479 0.585172(16) 2.5200(50) 6.9(2.4) 0.38(12)
M2 6.5 −1.01 −0.71 64 20 1000 28 698 0.585172(12) 2.5300(40) 7.1(2.1) 0.58(14)
M3 6.5 −1.01 −0.71 96 20 4000 26 436 0.585156(13) 2.5170(40) 6.4(3.3) −0.60ð19Þ
M4 6.5 −1.01 −0.70 64 20 1000 20 709 0.584228(12) 2.3557(31) 10.6(4.8) −0.31ð19Þ
M5 6.5 −1.01 −0.72 64 32 3020 20 295 0.5860810(93) 2.6927(31) 12.9(8.2) 0.80(33)
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B. Gradient flow, topological charge
and autocorrelations

In this study, we adopt the gradient flow [87,88], and its
lattice implementation, the Wilson flow [89]. This finds
two applications; on one hand, it allows us to set the
physical scale for our ensembles [90], on the other hand, it
will be used as a smoothening process in the extraction
of topological properties. We follow the convention and
processes described in Ref. [62]. We define a new observ-
able, WðtÞ, as a function of a new gradient flow time, t, as

WðtÞ≡ d
d ln t

ft2hEðtÞig; ð9Þ

where in turn2

Eðt; xÞ≡ −
1

2
TrGμνðt; xÞGμνðt; xÞ: ð10Þ

The field strength tensor in Euclidean space-time,Gμνðt; xÞ,
evaluated at nonvanishing flow time t, is defined in terms of
the five-dimensional gauge field Aμðt; xÞ as

dAμðt;xÞ
dt

¼DνGνμðt;xÞ; with Aμðt¼0;xÞ¼AμðxÞ: ð11Þ

We define the gradient flow scale, w0, as the square root
of the flow time, t, for which WðtÞjt¼w2

0
¼ W0 ¼ 0.2815

and report all dimensionful quantities in units of w0 [91].
Dimensionful quantities expressed in units of w0 are
denoted by a hat, for example masses are denoted as
m̂≡ ðmaÞðw0=aÞ. The measured values of w0=a, obtained
on the lattice by discretizing Eq. (11), using the clover
discretization of the field-strength tensor, are tabulated
in Table I.
We monitor the topological charge, Q, of each configu-

ration, which in the continuum is defined as

Q ¼ 1

32π2

Z
d4x ϵμνρσTrGμνGρσ: ð12Þ

On the lattice, we measureQ by following the same process
as in Ref. [62], to which we refer the reader for details.
By applying the gradient flow to smoothen the gauge fields,
UV fluctuations are removed in the measurement of Q.
None of the ensembles used in this study show hard
evidence of topological freezing, with the Monte Carlo
algorithm sampling configurations with multiple values
of Q. In order to quantify this statement we study the
autocorrelations in Monte-Carlo time of both the topologi-
cal charge, Q, as well as the average plaquette, hPi.

We perform the measurements of the gradient flow scale,
the topological charge and the hadron correlators using the
HiRep code [76,92], which has been extended to symplec-
tic gauge groups [93]. To this purpose, we convert the
configurations created with the Grid code using the Gauge
Link Utility (GLU) library [94].
For a generic observable of interest, X, we denote as

τ ¼ 1;…; N, the Monte Carlo time, as Xi the individual
measurement of the observable, and as X̄ the arithmetic
mean of X. The Madras-Sokal integrated autocorrelation
time, τint, is defined as follows [95–97]:

τint ¼ max
τmax

τintðτmaxÞ; ð13Þ

where

τintðτmaxÞ ¼
1

2
þ
Xτmax

t¼1

ΓðτÞ; ð14Þ

and

ΓðτÞ ¼
XN−τ

i¼1

ðXi − X̄ÞðXiþτ − X̄Þ
N − τ

: ð15Þ

In applying these definitions, we assume that the Monte-
Carlo time series, Xi, is fully thermalized. In practice, we
vary also the thermalization cutoff and choose the thermal-
ization time so that histograms of the plaquette and
topological charge show a Gaussian behavior. We use this
definition by treating two values of Xi as uncorrelated if
they are separated by at least 2τint in Monte Carlo time τi.
For comparison, we additionally compute the exponential
autocorrelation time, τexp, by fitting the autocorrelation
function, CXðτÞ, defined as

CXðτÞ ¼
XN−τ

i¼1

ðXi − X̄ÞðXiþτ − X̄Þ; ð16Þ

to an exponential decay:

CXðτÞ
CXð0Þ

∼ exp

�
−

τ

τexp

�
: ð17Þ

In Fig. 1 we display one example of average plaquette
trajectory in Monte Carlo time. We find the exponential
autocorrelation to be always smaller than the integrated
Madras-Sokal autocorrelation time. We keep one gauge
configuration every nskip Monte-Carlo time units, such that

nskip ≳ τhPiint for the autocorrelation time of the average
plaquette. We measure our observables on these gauge
configurations and bin the resulting dataset with bin size
of 2. We retain Nconf measurements, or Nconf=2 indepen-
dent samples. We tabulate Nconf , in Table I.

2Here we fix a typo in Eq. (23) Ref. [62], in which a minus sign
is missing, and which should read as our current Eq. (10), and in
Eq. (25) of the same reference, the right-hand side of which
should read as our current Eq. (9).
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We then compute the topological charge,Q, for the Nconf
gauge configurations used in the remainder of this paper.
As for the plaquette, we plot the trajectory, compute the
autocorrelation time(s), and display the measurements in a
histogram. One example of the results is shown in Fig. 2.
We report the autocorrelation of the topology, τQint, and the
average topological charge, Q̄, in Table I. Qualitatively, all
resulting distributions are Gaussian. Yet, τQint > 1 and a
nonvanishing average value of Q is measured for all
ensembles. We conclude that the configurations used in
this paper are affected by a moderate amount of residual
autocorrelation in the topological charge.3

III. CORRELATION FUNCTIONS

Table II summarises the properties of the meson oper-
ators, OA, of interest in this paper. They are constituted by
two fermions in the fundamental, (f), representation QI ,
where I ¼ 1, 2, or two in the antisymmetric (as) repre-
sentation, denoted Ψk, where k ¼ 1, 2, 3. We label them as
pseudoscalar, vector, tensor, axial-vector, axial-tensor
and scalar, both for mesons made of (f) fermions and
(as) ones—in the latter case, we conventionally label them
with lower case acronyms. We also display the quantum
numbers, JP, and the irreducible representation in the
unbroken Spð4Þ × SOð6Þ global symmetry.
Zero-momentum, two-point correlation functions are

defined by averaging over lattice sites as

CABðtÞ ¼
X
x⃗

hOAðt; x⃗ÞŌBð0Þi≡ hOAðtÞŌBð0Þi: ð18Þ

FIG. 2. Thermalized trajectory of the topological charge,Q, in ensemble M2, restricted to configurations used in the remainder of this
paper, after removing the effect of autocorrelation in the plaquette. We fitted the histogram to a Gaussian distribution (red line on the
right). Gauge configurations show a modest level of residual autocorrelation, with respect to the topological charge. The other ensembles
exhibit qualitatively similar behaviors.

FIG. 1. Thermalized trajectory of the average plaquette, hPi, in Monte Carlo time (left) and histogram of the same data (right), for the
lattice ensemble denoted as M1 in Table I. All other ensembles show qualitatively similar behaviors. We fitted the histogram to a
Gaussian distribution (red line on the right). Configuration sampling and binning of the raw data are discussed in the main text.

3In pure gauge theory, no sizeable effect on the glueball
spectrum was detected even in ensembles with complete topo-
logical freezing [98].
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For A ≠ B, Eq. (18) can be recast for a generic CðtÞ as a
summation over a complete basis, jnihnj, with associated
energies En, as follows:

CABðtÞ ¼
X
n

h0jOAð0ÞjnihnjŌBð0Þj0i
2En

bðt; EnÞ; ð19Þ

where bðt; EnÞ becomes an exponential function in the limit
of infinite temporal lattice extent, bðt; EnÞ⟶

Nt→∞
e−tEn . For a

finite, periodic lattice in the time extent, one expects the
following functional form:

bðt; EnÞ ¼ bþðEnÞe−tEn þ b−ðEnÞe−ðNt−tÞEn ; ð20Þ

which suggests identifying the interval for which the
ground states dominate by examining the effective mass,
defined as

ameffðtÞ≡ cosh−1
�
CABðtþ aÞ þ CABðt − aÞ

2CABðtÞ
�
: ð21Þ

At large Euclidean times, one expects ameffðtÞ⟶
t→∞

aE0.

To extract the ground state energy E0, therefore, one has
the freedom of fitting the plateau according to Eq. (21) or
the correlators as in Eq. (19). In the present paper, we fitted
correlators setting coefficients bþðEnÞ ¼ b−ðEnÞ ¼ 1
when A ¼ B, and bþðEnÞ ¼ 1; b−ðEnÞ ¼ 0 when A ≠ B
over the interval that shows a plateau in the effective mass.

In the remainder of the section, we describe two
techniques, APE and Wuppertal smearing, that we adopt
in order to optimize the extraction of physical information
in the fitting procedure. Moreover, we introduce an addi-
tional, well established methodology in lattice field theory,
the GEVP, that reduces the contributions from the excited
states to ground states at large t.

A. APE and Wuppertal smearing algorithms

From Eq. (19), one expects contamination from excited
states to affect meson two-point functions at moderate-to-
small time separation. Conversely, for any finite lattice,
there is an intrinsic limitation on the maximum length of the
time separation in the two-point functions. The combina-
tion of these two factors results in a limitation on the length
of the plateau displaying (approximately) constant effective
mass [see Eq. (21)] that can be used for spectroscopy. As
visible in Eq. (19), the contribution of the nth excited state,
relative to the ground state, is determined by two factors;
the exponential decays proportional to exp ½−ðEn − E0Þt�,
and the overlap functions encoded in the matrix elements
h0jOð0Þjni. Increasing the overlap of the interpolating
operators, O, with the ground state, j0i, relative to the
excited states, jni, results in suppressed contamination
from excitations, longer plateaux in effective mass plots,
and more precise spectroscopy.
Our implementation of these ideas combines APE

smearing [99,100] of the gauge configurations with
Wuppertal smearing [101–103] of the sink/source oper-
ators. APE smearing acts on gauge links, smoothening
their ultraviolet fluctuations, and hence improving the
statistical control over the plateaux being analyzed.
Wuppertal smearing modifies the fermion fields used
to source the two-point functions, and increases the
ground state overlap by using extended interpolators,
instead of pointlike ones.
APE smearing consists of applying an iterative

procedure involving the staple operator around each
gauge link, SμðxÞ≡P

�ν≠μUνðxÞUμðxþ ν̂ÞU†
νðxþ μ̂Þ,

as follows:

UðmÞ
μ ðxÞ ¼ P

n
ð1 − αAPEÞUðm−1Þ

μ ðxÞ þ αAPE
6

Sðm−1Þ
μ ðxÞ

o
;

ð22Þ

with the initial conditions U0
μ ¼ Uμ and S0μ ¼ Sμ. The

iteration number is m ¼ 1;…; NAPE and αAPE is called
APE-smearing step size. In the case of interest in this study,
we use the same process for gauge links transforming in
the fundamental and antisymmetric representations. As the
gauge links at each iteration are summed over their
neighboring staples according to Eq. (22), they do not
necessarily lie within the group manifold. Therefore, we
use a projection operator, P, to project the smeared link
variable into the group manifold. The explicit form of

TABLE II. Meson interpolating operators, OAðxÞ, built using
Dirac fermions transforming in the fundamental, QI , and anti-
symmetric, Ψk, representations. Here, I; J ¼ 1, 2 and k;l ¼ 1, 2,
3 are flavor indices, and we restrict our attention to the case I ≠ J
and k ≠ l. The index i ¼ 1, 2, 3 refers to spatial directions. Color
and spinor indices are implicit and summed over. JP are space-
time quantum numbers. We report also the representation under
the unbroken Spð4Þ and SOð6Þ global symmetries.

Label Interpolating operator OA JP Spð4Þ SOð6Þ
PS Q̄Iγ5QJ 0− 5 1

V Q̄IγiQJ 1− 10 1

T Q̄Iγ0γiQJ 1− 10 1

AV Q̄Iγ5γiQJ 1þ 5 1

AT Q̄Iγ0γ5γiQJ 1þ 10 1

S Q̄IQJ 0þ 5 1

ps Ψ̄kγ5Ψl 0− 1 20
v Ψ̄kγiΨl 1− 1 15
t Ψ̄kγ0γiΨl 1− 1 15
av Ψ̄kγ5γiΨl 1þ 1 20
at Ψ̄kγ0γ5γiΨl 1þ 1 15

s Ψ̄kΨl 0þ 1 20
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the projector depends on the gauge group and representa-
tion considered.
In order to illustrate the Wuppertal smearing of source

and sink operators, one starts at first with the Dirac equation
for pointlike source and sink:

X
y;β;b

DR
aαbβðx; yÞSbβRcγðy; 0Þ ¼ δx;0δαγδac; ð23Þ

where DR
aαbβ is the Wilson-Dirac operator in the represen-

tation, R, spinor indices are denoted as α, β, γ, and
(generalised) color indexes as a, b, c, respectively. The
solution, SbβRcγ, is the hyperquark propagator in such
representation, R. The two-point correlation function is
then written as

CðtÞ ¼ hORðtÞŌRð0Þi ¼
�X

x⃗

Tr½ðΓSRðx; 0ÞΓ̄SRðx; 0ÞÞ�
�
;

ð24Þ

where Γ and Γ̄ depend on the spin structure of the
interpolating operator, OR, listed in Table II.

Wuppertal smearing consists of replacing δx;0, in the

right-hand side of Eq. (23), with a function qðnþ1Þ
R ðxÞ,

defined through an iterative procedure based on a
diffusion process:

qðnÞR ðxÞ¼ 1

1þ6εR

�
qðn−1ÞR ðxÞþεR

X�3

μ¼�1

UR
μ ðxÞqðn−1ÞR ðxþ μ̂Þ

�
;

ðn>0Þ; ð25Þ

qð0ÞR ðxÞ ¼ δx;0: ð26Þ

Here, εR is the representation-dependent Wuppertal-
smearing step size. Each source smearing requires an
inversion of the Dirac operator, and the result is a new,

source-smeared, propagator denoted as SðnÞR ðy; 0Þ. Sink
smearing is obtained by applying the smearing iteration
of Eq. (25) to the source-smeared propagator. Note, that
this does not require further inversions. We denote the
propagator with Nsource iterations of source smearing and
Nsink iterations of sink-smearing as SRðNsource;NsinkÞðx; 0Þ. The
smeared two-point functions read,

CNsource;Nsink
ðtÞ ¼

�X
x⃗

Tr½ΓðSRðNsource;NsinkÞðx; 0ÞÞΓ̄ðSRðNsource;NsinkÞðx; 0ÞÞ�
�
: ð27Þ

The measurement of APE and Wuppertal smeared two-
point mesonic correlation functions are performed using
the HiRep code [76,92,93]. The APE and Wuppertal
smearing step-sizes, αAPE; εf ; εas, and the number of
iterations, NAPE; Nsource; Nsink, are parameters that are
tuned to optimize the signal, both by improving the
effective mass plateaux, as well as the resolution of peaks
in the spectral density reconstruction—as we will discuss
later. For our purposes, for ensembles M1 to M4, we
apply Wuppertal smearing step-sizes εf ¼ 0.20 for
the fundamental sector, and εas ¼ 0.12 for the antisym-
metric one. For the ensemble M5, εf ¼ 0.24 for the
fundamental sector and εas ¼ 0.12 for the antisymmetric
one. Typical iteration numbers for sink and sources
are Nsink; Nsource ∈ ½0; 80�. For APE smearing, we apply
αAPE ¼ 0.4 and NAPE ¼ 50. We verified explicitly that
the process did not lead to large changes in the mass of
the pseudoscalar ground state, and that the convexity
of the effective mass plots is not altered, hence excluding
the possibility of oversmearing.

B. Generalized eigenvalue problem

The ground state in a given channel, E0, can be identified
by the plateau in effective mass, at least as long as the
ground state is clearly separated in mass from its excited

states. A pragmatic way to isolate excitations involves
performing multi-functional fits by minimizing a correlated
chi-square functional

χ2 ¼
X
t;t0

ðhðkÞðtÞ − CðtÞÞCov−1tt0 ½C�ðhðkÞðt0Þ − Cðt0ÞÞ; ð28Þ

where the fitting function is the periodic version of a multi-
exponential fit,

hðkÞðtÞ ¼
Xk
n¼1

Bnbðt; EnÞ; ð29Þ

while bðt; EÞ is defined in Eq. (20). Yet, the extraction of
such excitations, En, is hindered by the increasing number
of degrees of freedom it requires, and the signal gets
exponentially suppressed with growing n.
A variational approach based on solving a GEVP can

overcome this problem [104]. One starts by defining a
matrix-valued correlation function, CijðtÞ, encompassing
the Euclidean-space two-point correlation functions of a set
of operators, Oi:

CijðtÞ ¼ hOiðtÞŌjð0Þi; i; j ¼ 0;…; N − 1: ð30Þ
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Under the assumption that nondegenerate energy levels
exist, they can be ordered with En < Enþ1, where the
eigenvalues are labeled as n ¼ 0;…; N − 1 In this
notation, E0 denotes the ground-state energy. The GEVP
is defined as

CðtÞvnðt; t1Þ ¼ λnðt; t1ÞCðt1Þvnðt; t1Þ; ð31Þ

in which the number of new functions, vn and λn, matches
the dimension of the variational basis used to build the
matrix C. By fixing a reference value, t1, Eq. (31) can be
solved as an eigenvalue equation for each lattice-time slice
t > t1. This procedure results in determining the eigenval-
ues, λnðt; t1Þ.
In the next step, the eigenvalue functions, λnðt; t1Þ, are

used to define N effective-mass plateaux, ameff
n ðt; t1Þ:

meff
n ðt;t1Þ¼−

∂ logλnðt;t1Þ
∂t

¼−
1

a
flog ½λnðtþa;t1Þ�− log½λnðt;t1Þ�g; ð32Þ

or, in the more realistic case of a periodic lattice:

meff
n ðt;t1Þ¼

1

a
cosh−1

�
λnðtþa;t1Þþλnðt−a;t1Þ

2λnðt;t1Þ
�
: ð33Þ

These quantities are expected to converge to the energy
levels,

aEn ¼ lim
t→∞

ameff
n ðt; t1Þ n ¼ 0;…; N − 1: ð34Þ

In the case of lattice correlation functions, to solve the
GEVP in Eq. (31) one focuses on late-time slices, so that
the corrections due to higher-energy excitations, with
E > EN−1, are suppressed. As shown in Ref. [105], for
fixed t1 such contributions are expected to take the form,

ameff
n ðt; t1Þ ¼ aEn þOðe−ΔðaEnÞtÞ;
ΔðaEnÞ ¼ min

m≠n
jaEm − aEnj; ð35Þ

so that the size of the contaminations depends on the gap
between the energy level of the spectrum, and the size of t.
As discussed in [104] there are systematic effects propor-
tional to A · expðEN · t1Þ. On general grounds, then, one
expects the quality of the results and signal in each plateau
to improve when considering lattices with larger time
extents, Nt. In our study, we build a variational basis by
considering different levels of Wuppertal smearing for the
interpolating source and sink operators in each mesonic
channel. For the pseudoscalar, axial-vector, axial-tensor,
and scalar channels [and similar for mesons made of
(as) fermions] we use three different levels of smearing;
Nsource; Nsink ¼ 0, 40, 80. Therefore, in this case, the
correlation matrix C is

CiðtÞ ¼

0
BB@

Ci
0;0ðtÞ Ci

0;40ðtÞ Ci
0;80ðtÞ

Ci
40;0ðtÞ Ci

40;40ðtÞ Ci
40;80ðtÞ

Ci
80;0ðtÞ Ci

80;40ðtÞ Ci
80;80ðtÞ

1
CCA ð36Þ

with Ci
nmðtÞ ¼ hOiðtÞŌið0Þinm, where i ¼ PS;AV;AT; S;

ps; av; at; s and n, m indicate the level of Wuppertal
smearing applied to source and sink operators, n ¼ Nsource;
m ¼ Nsink.
In the case of V and T channels, the operators transform

in the same way under the unbroken symmetry groups, and
are expected to mix, and source the same spectrum. Of
course, this argument is no longer true for our measure-
ments on a discretized lattice as the rotational symmetry is
broken. Yet, we found no discernible difference between
these two channels for given statistical errors. Therefore,
we extend the correlation matrix to include the cross-
channels V=T and T=V, resulting in the following:

CV;TðtÞ ¼

0
BBBBBBBBBBBB@

CV
0;0ðtÞ CV

0;40ðtÞ CV
0;80ðtÞ CV=T

0;0 ðtÞ CV=T
0;40ðtÞ CV=T

0;80ðtÞ
CV
40;0ðtÞ CV

40;40ðtÞ CV
40;80ðtÞ CV=T

40;0ðtÞ CV=T
40;40ðtÞ CV=T

40;80ðtÞ
CV
80;0ðtÞ CV

80;40ðtÞ CV
80;80ðtÞ CV=T

80;0ðtÞ CV=T
80;40ðtÞ CV=T

80;80ðtÞ
CT=V
0;0 ðtÞ CT=V

0;40ðtÞ CT=V
0;80ðtÞ CT

0;0ðtÞ CT
0;40ðtÞ CT

0;80ðtÞ
CT=V
40;0ðtÞ CT=V

40;40ðtÞ CT=V
40;80ðtÞ CT

40;0ðtÞ CT
40;40ðtÞ CT

40;80ðtÞ
CT=V
80;0ðtÞ CT=V

80;40ðtÞ CT=V
80;80ðtÞ CT

80;0ðtÞ CT
80;40ðtÞ CT

80;80ðtÞ

1
CCCCCCCCCCCCA

; ð37Þ

where the cross-channels correlators are defined as CV=T
nm ðtÞ ¼ hOVðtÞŌTð0Þinm, and CT=V

nm ðtÞ ¼ hOTðtÞŌVð0Þinm The
enlarged variational basis can allow for resolving higher excitations.
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IV. SPECTRAL DENSITIES

In this section, we introduce and critically appraise the
spectral density reconstruction algorithm and its applica-
tion to meson spectroscopy. We assess its dependence on
the energy smearing kernel and on the APE and Wuppertal
smearing present in the input data; the two-point correlation
function. To this extent, we implemented this technology in
the Python software package LSDensities, and made it
publicly available in Ref. [106]. Specific details of the latter
are described in the Appendix. We pay particular attention
to estimating systematic effects in the reconstruction
procedure, and to optimizing parameter choices.

A. The Hansen-Lupo-Tantalo method

Given a generic two-point correlation function, CðtÞ, the
spectral density, ρðEÞ, is defined as follows:

CðtÞ ¼
Z

∞

Emin

dE ρðEÞbðt; EÞ; ð38Þ

where bðt; EÞ has been introduced in Eq. (20), for periodic
time extent. This definition reduces to an inverse Laplace
transform for infinite time extent, when one chooses
vanishing Emin. This lower bound in the integration can
be chosen between zero and the energy corresponding to
the ground state of the theory in the channel defined by the
interpolating operators yielding CðtÞ.
The input data takes the form of a set of measurements,

labeled by k ¼ 1;…; Nm (where Nm ≤ Nconf of Table I), of
the given correlation function, CkðtÞ. On the lattice, time is
discretized, so that t ¼ 1;…; tmax ≤ Nt=2. The tmax × tmax
covariance matrix is

Covtt0½C�≡ 1

Nm

XNm

k¼1

ðCkðtÞ − hCðtÞiÞðCkðt0Þ − hCðt0ÞiÞ;

ð39Þ
where hCðtÞi is the arithmetic average over the available
measurements at given t.
In the literature, several approaches have been applied to

reconstruct spectral densities starting from a finite set of
measurements, CðtÞ, which are affected by noise, circum-
stances under which the inversion of Eq. (38) is an ill-posed
problem. Among them, the Backus-Gilbert algorithm
was originally devised in Ref. [107], and then modified
in Ref. [1] to better suit the context of lattice simulations.
We refer to this improved version of the Backus-Gilbert
algorithm as Hansen-Lupo-Tantalo (HLT) method.
The starting point is the introduction of smeared spectral

densities,4 via the rewriting

ρσðωÞ≡
Z

∞

Emin

dEΔσðE − ωÞρðEÞ; ð40Þ

which consists of a convolution of the original spectral
density, ρðEÞ, with a smearing kernel, ΔσðE − ωÞ. The
parameter σ characterizes the smearing radius around the
point ω. At nonzero smearing radius, the convolution
defined in Eq. (40) is such that the smeared spectral density
is always a smooth function.
In a finite volume, the spectral density is a sum of Dirac δ

functions, corresponding to the discrete eigenvalues of the
Hamiltonian:

ρðEÞ ¼
X
n

knδðE − ωnÞ; ð41Þ

where the sum runs over the eigenvalues ωn, and the
coefficients, kn, depends on the lattice spatial volume Nsa.
The choice of the smearing kernel is guided by the
requirement that it is a smooth function, approaching a
Dirac δ function as σ → 0:

ΔσðE − ωÞ⟶
σ→0

δðE − ωÞ; ð42Þ

and hence in this limit, the regulator disappears:

ρσðωÞ⟶
σ→0

ρðE ¼ ωÞ: ð43Þ

A key idea of the HLT method is to choose and fix a
given smearing kernel at the beginning of the procedure. If
the chosen smearing kernel can be represented as an infinite
sum over the space generated by the basis functions:

ΔσðE − ωÞ ¼
X∞
t¼1

gtðω; σÞbðt; EÞ; ð44Þ

in the HLT method we can look for the coefficients gt that
provide the best approximation at a finite tmax ≤ Nt=2:

Δ̄σðE − ωÞ ¼
Xtmax

t¼1

gtðω; σÞbðt; EÞ; ð45Þ

In the HLT procedure, the coefficients gtðω; σÞ are defined
by the minimum value of the following functional:

A½g⃗�≡
Z

∞

Emin

dE eαEjΔ̄σðE − ωÞ − ΔσðE − ωÞj2; ð46Þ

which measures the difference between the reconstructed
smearing kernel, Δ̄σðE − ωÞ, and the target kernel,
ΔσðE − ωÞ. The unphysical α parametrizes different
choices of norm [9], and we shall discuss it later. If the
data are known with infinite precision, the inversion of
Eq. (46) is enough to provide the best values for the

4Smearing of spectral densities should not be confused
with (APE and Wuppertal) smearing of two-point correlation
functions.
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coefficients gt defining the smearing kernel. In any realistic
case, with data affected by uncertainties, the minimization
of Eq. (46) amounts to the inversion of a highly ill-
conditioned matrix. As suggested in Ref. [107], the
problem can be regularized by adding a second functional:

B½g⃗�≡ Xtmax

t;t0¼1

gtCovtt0 ½C�gt0 ; ð47Þ

where the tmax × tmax covariance matrix, Covtt0 ½C�, is taken
from the input data.
With all of the above in place, the third step is to define

the functional W½g⃗� [1]:

W½g⃗�≡ A½g⃗�
A½0� þ λ

B½g⃗�
BnormðωÞ

; λ∈ ð0;∞Þ; ð48Þ

where BnormðωÞ ¼ C2ð1Þ=ω2 is written in terms of the
normalization of the correlator at the initial time slice
Cðt ¼ 1Þ, and λ we refer to as the trade-off parameter. The
second part ofW½g⃗� is called the statistical error functional,
and it is introduced to regularize the problem.
By minimizing W½g⃗� for any given value of ω,

one can determine a set of coefficients g⃗ðωÞ ¼
ðg1ðω; σÞ;…; gtmax

ðω; σÞÞ which corresponds to the follow-
ing estimator for the smeared spectral density:

ρ̂σðωÞ ¼
Xtmax

t¼1

gtðω; σÞCðtÞ: ð49Þ

We devote the rest of this subsection to a critical
discussion of the various systematics associated with the
minimization of W. The ratio

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A½g⃗�=A0

p
provides an

indication of the size of the systematic error due to the
HLT method for extracting gtðω; σÞwith finite tmax andNm,
as this quantity describes the relative deviation between the
targeted smearing kernel,ΔσðE − ωÞ, and the reconstructed
one, Δ̄σðE − ωÞ. Conversely, the B½g⃗�=Bnorm part of the
functional W½g⃗� provides an estimate of the statistical
uncertainty for the reconstructed spectral density ρ̂σðωÞ.
To illustrate this point, in Fig. 3, we display the ratio
A½g⃗�=A0, evaluated at the minimum ofW for a given choice
of λ (and α). Systematic effects due to the reconstruction are
unsuppressed when A½g⃗�=A0 is larger, which corresponds to
choices of the parameters λ and α that make the processing
of information ineffective. Indeed, in this regime changes
of λ result in sizeable changes in ρ̂σðωÞ. In this case,
different numerical choices of norm parameter, α, yield
results that are not compatible with one another within
statistical uncertainties.
Conversely, we can reduce the tradeoff parameter, λ,

reducing the size of A½g⃗�=A0, and hence yielding smaller
systematic effects. This comes at the price of larger
statistical uncertainties, as can be seen in Fig. 3. This is

expected on the basis of the very definition of the functional
W½g⃗� in Eq. (48), as having a small tradeoff parameter, λ,
corresponds to minimizing predominantly the A½g⃗�=A0

functional. Therefore, considering smaller λ values corre-
sponds to forcing the systematic error to be smaller, and in
principle the reconstruction more accurate, but at the same
time the functional B½g⃗�=Bnorm is poorly constraining the
system. In order to find a value of lambda that sits on
middle grounds, we adopt the procedure described in
Ref. [10], where one looks for small enough values of
lambda such that fluctuations due to this unphysical
parameter are not relevant compared to the dominating
statistical error. An example of this stability analysis is
shown in Fig. 3; we can see how values for the prediction
exist such that the dependence on unphysical parameters is
not significant, and yet the reconstruction is not lost into
statistical noise. Additional tunable parameters, such as α,

FIG. 3. Examples of the plateaux in spectral density
reconstruction for a fixed value of energy. In the top panel,
the variation of the tradeoff parameter λ is shown on the x-axis,
whereas A0 ¼ A½g⃗ ¼ 0� is varied in the bottom panel. The
correspondent values of reconstructed spectral densities ρ̂σðωÞ
(shown on y-axes of both panels) are within statistical uncer-
tainties of the unphysical parameters λ and α. Some representative
values of α and λ are chosen in the figure. The data correspond to
the fundamental vector meson channel of ensemble M1, using
tmax ¼ Nt=2, α ¼ 0, σ ¼ 0.30mV.
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can be used with the same criterion to better identify this
region in parameter space.
While the stability analysis supports the idea that the

dependence on the bias can be absorbed into statistical
fluctuation, we take additional steps to estimate a possible
systematic error left in our estimate, by further varying the
algorithmic parameters:

(i) The first component of the systematic error is

σ1;sysðEÞ≡ jρλ� ðEÞ − ρλ�=10ðEÞj; ð50Þ

where λ� is determined by the procedure described
above, and α is fixed.

(ii) The second component of the systematic error is

σ2;sysðEÞ ¼ jρλ�;αðEÞ − ρλ�;α0 ðEÞj; ð51Þ

where λ� is determined as above and fixed, where we
use different norms, α ≠ α0.

Then, these effects are summed up in quadrature with the
statistical error to obtain the error estimate

σ2ρσ ¼ σ2stat þ σ21;sys þ σ22;sys: ð52Þ

B. Smearing kernel and smearing radius

Under reasonable conditions, the HLT method is robust,
in the sense that physical results can be extracted effec-
tively. Given the freedom to choose different smearing
kernels, ΔσðE;ωÞ, as the arguments leading to Eq. (42) can
be satisfied with a broad class of choices. As a check of the
stability of our results, two particularly interesting choices
are the Gaussian kernels, defined as

Δð1Þ
σ ðE − ωÞ≡ 1

ZðωÞ exp
�
−ðE − ωÞ2

2σ2

�
; ð53Þ

with ZðωÞ ¼ R
∞
0 dE e

−ðE−ωÞ2
2σ2 , and the Cauchy (or Breit-

Wigner) kernels, written as

Δð2Þ
σ ðE − ωÞ ¼ σ

ðE − ωÞ2 þ σ2
: ð54Þ

Comparing the results obtained with these two choices
provides an estimate of the systematic uncertainty for
the fits of spectral densities deriving from this source.
As expected, we anticipate that no relevant dependence
(compared to statistical uncertainties) will be observed in
this latter check.
An example of a successful reconstruction of such

kernels, Δ̄σðE − ωÞ (Gaussian and Cauchy cases), com-
pared to the target ones, ΔσðE − ωÞ, is shown in Fig. 4.
As an additional precaution, we only consider values of λ
for which A½g⃗�=A0 < 0.1, which constrains the size of the
systematics. The other parameters are discussed in the

caption. Such an outcome corresponds to what we gen-
erally find in our analysis. As expected, given the finiteness
of the lattice and the finite statistics of correlation function
measurements, the quality of the reconstruction deteriorates
at the largest energies considered, as shown in Fig. 5. The
goal for a successful reconstruction is to keep the discrep-
ancy between the targets ΔσðE − ωÞ and the reconstructed
Δ̄σðE − ωÞ as small as possible for each energy considered.

FIG. 4. Smearing kernel reconstruction for the vector meson
(V) consisting of fermions transforming in the fundamental
representation of Spð4Þ. The data analyzed is taken from
ensemble M2, and mV has been measured through the GEVP
procedure—see Table VI. For both the Gaussian and Cauchy
kernels, we superimpose the target kernel, ΔσðE − ωÞ, and the
reconstructed one, Δ̄σðE − ωÞ. Parameters used are tmax ¼ Nt=2,
α ¼ 0, and σ ¼ 0.40mV.

FIG. 5. Illustration of kernel reconstruction systematics
dependence on energy. The curves are the target Gaussian
kernels, ΔσðE − ωÞ, for ω=mV ≈ 1.0, 1.5, 1.9 (top to bottom
panels), and σ ¼ 0.28mV. The points represent the reconstructed
kernels, Δ̄σðE − ωÞ. The data is taken from ensemble M2, and
mV is extracted through the GEVP procedure—see Table VI.
Other parameters are tmax ¼ Nt=2, and α ¼ 0.
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We find it convenient to express the choice of smearing
radius, σ, in units of the ground state mass, m0, for the
mesonic channel of interest, which can be measured
independently, for example by using the GEVP procedure.
The optimal choice of σ depends on the quality of the data:
the amount of statistics available for the input two-point
correlation functions also affects the lower bound for
the smearing radius σ. Typically, the values used for our
ensembles are in the range 0.18m0 ≤ σ ≤ 0.35m0. In this
interval, the smaller smearing radii are being used to
resolve the details of the spectrum when the discrete energy
levels are tightly packed close together.
Figure 6 displays the reconstruction of a set of synthetic

two-point correlation functions, built to contain a
ground state and an excited state. We have computed
ρ̂σðEÞ using three illustrative values of the smearing radii
(σ ¼ 0.1m0; 0.3m0; 0.7m0). For the smallest smearing
radius, σ ¼ 0.1m0, as one increases the energy considered,
E=m0, the smearing kernels appear to be poorly reproduced
when E=m0⪆1.0, so that excited states are lost below the
level of systematic errors. On the other hand, with the
extreme choice σ ¼ 0.7m0, the two expected peaks merge
completely, and the reconstruction keeps statistical and
systematic error moderate. By choosing an intermediate

value, σ ¼ 0.3m0, there is evidence that the reconstruction
resolves well the two peaks, and keeps the systematic and
statistical uncertainties controllable.

C. Spectral density fits

In this section, we describe how smeared spectral
densities can be used for meson spectroscopy. The method
involves minimizing the correlated functional, χ2, defined
as in Ref. [9], along the same lines as Eq. (28), as follows:

χ2 ≡X
E;E0

ðfðkÞσ ðEÞ − ρ̂σðEÞÞCov−1EE0 ½ρσ�ðfðkÞσ ðE0Þ − ρ̂σðE0ÞÞ;

ð55Þ

where the covariance matrix, CovEE0 , has been defined in

Eq. (39), and the fitting function, fðkÞσ ðEÞ, is defined as a
sum of instances of either the Gaussian (i ¼ 1, Eq. (53)) or
Cauchy [i ¼ 2, Eq. (54)] kernel:

fðkÞσ ðEÞ ¼
Xk
n¼1

AnΔ
ðiÞ
σ ðE − EnÞ: ð56Þ

The fit parameters En will be identified with the eigenval-
ues of the finite-volume Hamiltonian. The freedom in
choosing k refers to the fact that a priori one does not
know how many excited states the method can identify; this
is fixed a posteriori.
As anticipated, we exploit the availability of two differ-

ent and independent smearing kernels as an additional
sense check for the results of our spectroscopy study, given
that the eigenvalues of the finite-volume Hamiltonian do
not depend on the kernel. For the determination of the nth
energy level, we define the systematic error to be

σsysðaEnÞ ¼ jaEn;Gauss − aEn;Cauchyj: ð57Þ

In Sec. VI, we demonstrate that possible systematics due to
the choice of the kernel never lead to fluctuations outside of
statistical errors.
We display in Fig. 7 an example of the comparison

between the results of the reconstruction process performed
using Gauss and Cauchy kernels. The plots show qualita-
tive and quantitative differences in the spectral shapes, due
to the use of different choices ofΔσ functions. Nonetheless,
the position of the corresponding (Gaussian or Cauchy)
peaks are compatible within statistical uncertainties.
Given the finiteness of the smearing radius, and the

deterioration of the reconstruction at high energies, one will
only be able to access a certain number of states in the
mesonic spectrum. Even then, fit results can be contami-
nated by additional states that are not accounted for in the
model. In order to ensure this does not hinder our prediction
for the first k states, we can repeat the fit by adding a state
in the model—performing a reconstruction with kþ 1

FIG. 6. Reconstruction of spectral densities from synthetic
2-point correlation functions, engineered to have ground-state
mass am0 ¼ 0.33, and contain one excited state with m�

0 ¼ 2m0.
The number of configurations is Nconf ¼ 1000, the lattice time
extent is Nt ¼ 96, and the relative uncertainty is 2%. The three
panels correspond to Gaussian kernel reconstructions with
σ ¼ 0.1m0; 0.3m0; 0.7m0 (top to bottom).
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FIG. 7. Spectral density reconstruction in the v channel, in ensemble M2 (Nt ¼ 64). The black data points are the optimal

reconstructed spectral density values ρ̂σðωÞ. The yellow line corresponds to the fitted curve fð2Þσ ðEÞ in Eq. (56), the red line corresponds
to the deriving ground state curve ΔσðE − E0Þ from the fit, the green line is the first excited state ΔσðE − E1Þ. For the left panel, the
reconstruction is done using Gaussian kernels. For the right panel, it is performed using Cauchy kernels. Both the spectral densities
have smearing radius σ ¼ 0.25mv. The Wuppertal smearing applied has Nsource ¼ 0, Nsink ¼ 40 iterations. For the left panel: The fit
has reduced χ2=Nd:o:f: ¼ 1.6, the energy levels are aE0 ¼ 0.6511ð32Þ and aE1 ¼ 0.932ð11Þ, and the associated amplitudes have
A1 ¼ 3.73ð23Þ × 10−6 and A2 ¼ 2.52ð52Þ × 10−6, respectively. For the right panel: χ2=Nd:o:f: ¼ 1.1, aE0 ¼ 0.6442ð37Þ and
aE1 ¼ 0.929ð12Þ, the associated amplitudes are A1 ¼ 2.33ð12Þ × 10−6 and A2 ¼ 1.63ð16Þ × 10−6. The value of mv has been found
through the GEVP analysis—see Table VI.

FIG. 8. Assessment of the fitting systematic error in the ground state energy level, for ensemble M2. For each channel, the results
obtained by fitting using k and kþ 1 peaks, and Gaussian and Cauchy kernels, are compared. Further details are presented in Table VI.
The offset between data points in the same mesonic channel is set for visual clarity.
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(Gaussian or Cauchy) peaks in Eq. (55), to check the
presence of excited states contamination. If the targeted
states are stable under this procedure, and the chi-square
does not improve significantly, we consider the estimate
reliable. As we will show, our measurements appear free
from this effect. An analysis of the systematics due to
different kernels, and contaminations from excited states, is
shown in Figs. 8 and 9, for the ground states and first
excited states, respectively, in a selection of ensembles and
meson channels.

D. On the effect of APE and Wuppertal smearing
on the spectral densities

In analogy with what is done for the correlation functions
in Eq. (19), one can reexpress the spectral density,

ρσðEÞ ¼
X
n

h0jOð0ÞjnihnjŌð0Þj0i
2En

ΔσðE − EnðNsaÞÞ;

ð58Þ

using the matrix elements h0jOð0Þjni and hnjŌð0Þj0i, in
agreement with the functional form in Eq. (56). The matrix
elements in Eq. (58) determine the relative contribution of
each energy level to the smeared spectral density.
A major obstacle in performing spectroscopy of lattice

gauge theories consists in the difficulties of disentangling
their spectrum, because the energies contributing to
Eq. (58) can be very close to each other. Moreover, certain
states can have large contributions, at the risk of obfuscat-
ing others. This phenomenon may result in considerable
discrepancies in the matrix elements corresponding to
different states, jni, posing a challenge to applications in
spectroscopy.
The same potential obstruction would affect the direct

study of two-point correlation functions, as it results in a
distortion of the large-t behavior of two-point correlation
function in Eq. (19), and hence the quality of multi-
exponential fits of effective mass plateaux deteriorates.
As discussed in Sec. III, this difficulty is addressed by
introducing an appropriately tuned combination of APE
and Wuppertal smearing in the extraction of the correlation

FIG. 9. Assessment of the fitting systematic error in the first excited energy level, for ensemble M2. For each channel, the results
obtained by fitting using k and kþ 1 peaks, and Gaussian and Cauchy kernels, are compared. Further details are presented in Table VII.
The offset between data points in the same mesonic channel is set for visual clarity.
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functions. By doing so, one improves the overlap of the
states of interest with the interpolating operator, therefore
reducing the importance of other, undesired states.
An example of the result of the optimization of the

smearing parameters is shown in Fig. 10. The right panel
displays the effect of applying a level of smearing that
optimizes the GEVP extraction of the ground state, chosen
so that the effective mass plateaux are clearly discernible
(left panel). The ground state has comparable amplitude
with the first excited state(s). To be more explicit, in
Table III we report various choices of the smearing
parameters and they affect the output results, for the same
channel and ensemble as in Fig. 10. Cases A to F in
Table III all correspond to reasonable levels of smearing;

the relative amplitudes of the peaks corresponding to the
ground and first excited states are comparable and yield to
accurate spectroscopy results. Conversely, if one applies
too much smearing, such as case G in Table III, or too little,
as in H, the relative difference between the amplitudes
increases, which results in less precise determinations of
the energy levels. We verified that the amplitudes scale
as expected from Eq. (58). By applying smearing to the
operators increases the overlap with the ground state and
decreases the overlap with the excited states. The ratio
A2=A1 is smaller for larger smearing. For the same reason,
and as expected from Eq. (19), another effect of smearing is
the appearance of longer effective-mass plateaux for the
ground state.
For pedagogical purposes, we find it useful to display, in

Fig. 11, also two cases in which the choice of smearing
parameters leads away from optimal results, in cases G
and H of Table III. In producing the top panels, only a tiny
amount of Wuppertal smearing is applied to the two-point
correlation functions, resulting in very short (or absent)
effective mass plateaux and poor resolution of the spectral
density. A similar difficulty emerges if one applies too large
amounts of Wuppertal smearing, as depicted in the bottom
panels of Fig. 11; the plateau practically disappears from
the effective mass plot, which appears to be dominated by
uncontrolled systematics, and the resolution of the spectral
density deteriorates.
To make the point clearer, in Fig. 12 we depict the case

in which no APE nor Wuppertal smearing has been applied.
In this case, the effective-mass plateau is short and might
lead to arguable determinations of effective mass fits. This
is a particularly effective illustration of why the use of point

TABLE III. Illustration of the effectiveness of APE and
Wuppertal smearing in spectroscopy analysis. For ensemble
M1, the correlation function in the V channel is obtained by
applying different levels of sink and source Wuppertal smearing
and APE smearing, and we demonstrate the effect on the output
results, A2=A1, aE0, and aE1.

Case αAPE εf Nsource Nsink A2=A1 aE0 aE1

A 0.4 0.12 80 20 1.32(19) 0.4144(50) 0.692(27)
B 0.4 0.12 80 40 1.15(11) 0.4139(49) 0.702(19)
C 0.4 0.12 80 80 0.75(15) 0.4131(52) 0.699(22)
D 0.4 0.12 40 80 1.24(18) 0.4132(43) 0.694(27)
E 0.4 0.12 20 80 1.80(28) 0.4148(51) 0.714(23)
F 0.4 0.24 90 30 1.01(20) 0.4148(52) 0.698(19)
G 0.4 0.4 170 170 0.63(11) 0.4113(82) 0.717(33)
H 0.4 0.05 20 20 2.28(27) 0.4136(74) 0.705(32)
I 0.0 0.12 80 40 1.27(11) 0.4154(73) 0.698(32)

FIG. 10. Example of the high quality plateau and fit obtained with an appropriate application of APE and Wuppertal smearing. For
ensemble M1, the correlation function in the V channel is obtained by applying APE smearing with NAPE ¼ 50 steps (APE smearing
step size αAPE ¼ 0.4), and Wuppertal smearing with Nsource ¼ 80 source smearing steps and Nsink ¼ 40 sink smearing steps (Wuppertal
smearing step size εf ¼ 0.12). The effective mass is displayed in the left panel. Applying the GEVP procedure, we find
mV ¼ 0.4098ð25Þ, m�

V ¼ 0.700ð26Þ. The right panel displays the reconstructed spectral density with Gaussian kernel, for
σ ¼ 0.30mV , including two states. The black data points are the optimal reconstructed spectral density values ρ̂σðωÞ. The yellow

line corresponds to the fitted curve fð2Þσ ðEÞ in Eq. (56), the red line corresponds to the deriving ground state curve ΔσðE − E0Þ from the
fit, the green line is the first excited state ΔσðE − E1Þ. The fit results are A1 ¼ 2.89ð30Þ × 10−7, A2 ¼ 3.33ð37Þ × 10−7,
aE0 ¼ 0.4139ð49Þ, and aE1 ¼ 0.702ð19Þ. The reduced chi square is χ2=Nd:o:f: ¼ 0.15.
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FIG. 12. The V channel in ensemble M1, for which the GEVP procedure yields mV ¼ 0.4098ð25Þ and m�
V ¼ 0.700ð26Þ. With no

APE nor Wuppertal smearing applied, spectral density reconstruction uses σ ¼ 0.60mV. An example of an optimal amount of (APE
and Wuppertal smearing) in this case is shown in Fig. 10. The same optimal case without applying APE smearing is shown in
Fig. 13. The black data points are the optimal reconstructed spectral density values ρ̂σðωÞ. The yellow line corresponds to the fitted

curve fð2Þσ ðEÞ in Eq. (56), the red line corresponds to the deriving ground state curve ΔσðE − E0Þ from the fit, the green line is the
first excited state ΔσðE − E1Þ. Fit results are A1 ¼ 1.41ð22Þ × 10−6, A2 ¼ 6ð1Þ × 10−6, aE0 ¼ 0.413ð11Þ, aE1 ¼ 0.839ð77Þ, and
reduced χ2=Nd:o:f: ¼ 0.80.

FIG. 11. The V channel in ensemble M1, for which the GEVP procedure yields mV ¼ 0.4098ð25Þ and m�
V ¼ 0.700ð26Þ. Top panels:

Effective mass and spectral density, for σ ¼ 0.30mV, with APE smearing with NAPE ¼ 50 steps (APE smearing step-size αAPE ¼ 0.4),
and Wuppertal smearing with Nsource ¼ 20 source steps and Nsink ¼ 20 sink steps (Wuppertal step size εf ¼ 0.05). An example of an
optimal amount of (APE and Wuppertal smearing) in this case is shown in Fig. 10. The black data points are the optimal reconstructed

spectral density values ρ̂σðωÞ. The yellow line corresponds to the fitted curve fð2Þσ ðEÞ in Eq. (56), the red line corresponds to the deriving
ground-state curve ΔσðE − E0Þ from the fit, the green line is the first excited state ΔσðE − E1Þ. Fit results are A1 ¼ 1.00ð5Þ × 10−6,
A2 ¼ 2.28ð54Þ × 10−6, aE0 ¼ 0.4166ð74Þ, aE1 ¼ 0.705ð32Þ, and reduced χ2=Nd:o:f: ¼ 0.9. Bottom panels: same as top, except that
Wuppertal smearing has Nsource ¼ 170 source steps and Nsink ¼ 170 sink steps (Wuppertal step size εf ¼ 0.90). Fit results are
A1 ¼ 1.80ð26Þ × 10−8, A2 ¼ 1.13ð28Þ × 10−8, aE0 ¼ 0.4113ð82Þ, aE1 ¼ 0.717ð33Þ, and reduced χ2=Nd:o:f: ¼ 0.8.
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sources may be problematic. In such a case, to perform a
reliable reconstruction it is necessary to use a larger
spectral density smearing radius, σ, compared to all the
cases considered above. Moreover, the difference in peak
heights is substantial. All these factors lead to a deterio-
ration of the signal.
In Fig. 13, the same reconstruction as in Fig. 10 is

considered, but with no APE smearing applied. By com-
paring the effective mass plateaux in the left panels of
Figs. 10 and 13 (cases B and I), one sees how APE
smearing affects the effective mass plots and spectroscopy.
As APE smearing averages out the ultraviolet fluctuations
in gauge links, without it, the spectral density fits deterio-
rate at large values of the energy, as illustrated by the right
panels of the figures. Hence, APE smearing of two-point
correlation functions results in a widening of the energy
window available to spectral reconstruction.

V. SPECTRAL ENERGY DENSITY
RECONSTRUCTION AND LATTICE

TIME EXTENT

The reconstructed smearing kernel, Δ̄σðE;ωÞ, can be
expressed in terms of the function bðt; EÞ; see Eq. (45) in
Sec. IVA. This finite sum over t has a precision that is
limited by the lattice extent, as the largest possible choice of
t ¼ tmax is bound by the constraint tmax ≤ Nt=2.
At a vanishing value of the tradeoff parameter λ, this sum

is known to converge to the true kernel in the limit of
infinite time extents [1]. At a nonzero λ, one expects the
reconstruction to improve, because the basis of functions
generating the kernel is larger, and one can afford smaller
values of λ, thus reducing the bias. To quantify this effect,

we consider lattices with different extents, Nt, in the
temporal direction, while keeping all other lattice param-
eters fixed. Ensembles M1, M2, and M3, have time extents
Nt ¼ 48, 64 and 96, respectively, but all other lattice
parameters are common. We then compare the spectral
reconstruction, focusing our attention on the region of
parameter space at large energy.
The first result of this comparative study is shown in

Fig. 14, which displays the reconstructed Gaussian kernel,
Δ̄σðE;ωÞ, with ω=mV ¼ 1.8, for the three aforementioned
ensembles. The choice of tmax is the maximum possible

FIG. 14. Examples of reconstructed Gaussian kernels at large
energy, for ω=mV ¼ 1.8, using different lattice temporal extents,
Nt ¼ 48, Nt ¼ 64, and Nt ¼ 96 cases, in ensembles M1, M2,
and M3, respectively. The value of mV is the ground state for
the V channel in ensemble M3, extracted through the GEVP
process—see Table IX.

FIG. 13. The V channel in ensemble M1, for which the GEVP procedure yields mV ¼ 0.4098ð25Þ and m�
V ¼ 0.700ð26Þ. No APE

smearing has been applied, while Wuppertal smearing has Nsource ¼ 80 source steps and Nsink ¼ 40 sink steps (Wuppertal step size
εf ¼ 0.12). An example of an optimal amount of (APE and Wuppertal smearing) in this case is shown in Fig. 10. The spectral density
assumes σ ¼ 0.30mV. The black data points are the optimal reconstructed spectral density values ρ̂σðωÞ. The yellow line corresponds to

the fitted curve fð2Þσ ðEÞ in Eq. (56), the red line corresponds to the deriving ground state curve ΔσðE − E0Þ from the fit, the green line is
the first excited state ΔσðE − E1Þ. The fit results are A1 ¼ 8.13ð32Þ × 10−13, A2 ¼ 1.03ð12Þ × 10−12, aE0 ¼ 0.4154ð73Þ,
aE1 ¼ 0.698ð32Þ, and reduced χ2=Nd:o:f: ¼ 1.3.
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value, tmax ¼ Nt=2. The reconstruction obtained with the
shorter available time extent, Nt ¼ 48, leads to non-
negligible deviations from the target kernel, ΔσðE;ωÞ,
and hence higher systematic uncertainties, both in the region
away from the maximum of the kernel, but also in the central
region. These indications are compatible with the results
shown in Fig. (5). Conversely, the longest available time
extent, Nt ¼ 96, leads to reconstructed kernels that have
visibly smaller deviations from the exact one.
By increasing the time extent of the lattice one can

perform accurate spectral density fits and spectroscopy,
reaching progressively higher energies. Hence, it becomes
possible to extend the number of measurable excited states.

We illustrate this phenomenon in Fig. 15, for the ðPS)
meson channel and the three time extents Nt ¼ 48, 64
and 96. A stabilization of the spectral reconstruction
with respect to the algorithmic parameters, described in
Sec. IVA, can be obtained at higher energies, which
become accessible by extending the time extent. As a
consequence, we are able to obtain a second peak structure,
which encodes information about excited states. Moreover,
as will be discussed in Sec. VI, the positions of the first two
peaks agree, within statistical errors, and do not show a
significant dependence on Nt. As a consequence, we
can expect our fits to the smeared spectral densities to
improve, possibly capturing more states. We illustrate this

FIG. 15. Reconstructed spectral density in the PS meson channel, with Gaussian kernel. Correlation functions are obtained for APE
smearing with NAPE ¼ 50 steps and step-size αAPE ¼ 0.4. The ground state mass, mPS, is obtained for the GEVP of the longer time
extent—see Table IX. In all the three panels, the black data points are the optimal reconstructed spectral density values ρ̂σðωÞ. Top left
panel: M1 ensemble (Nt ¼ 48), Wuppertal smearing step size εf ¼ 0.18, fit results aE0 ¼ 0.3685ð21Þ, aE1 ¼ 0.649ð20Þ and reduced

χ2=Nd:o:f: ¼ 0.2. The yellow line corresponds to the fitted curve fð2Þσ ðEÞ in Eq. (56), the red line corresponds to the deriving ground state
curve ΔσðE − E0Þ from the fit, the green line is the first excited state ΔσðE − E1Þ. Top right panel: M2 ensemble (Nt ¼ 64), Wuppertal
smearing step size εas ¼ 0.20, fit results aE0 ¼ 0.3652ð18Þ, aE1 ¼ 0.659ð18Þ, and reduced χ2=Nd:o:f: ¼ 0.9. The yellow line corresponds

to the fitted curve fð2Þσ ðEÞ in Eq. (56), the red line corresponds to the deriving ground state curve ΔσðE − E0Þ from the fit, the green line is
the first excited state ΔσðE − E1Þ. Bottom panel: M3 ensemble (Nt ¼ 96), Wuppertal smearing step size εas ¼ 0.20, fit results
aE0 ¼ 0.3678ð10Þ, aE1 ¼ 0.6693ð92Þ, aE2 ¼ 0.888ð24Þ, and reduced χ2=Nd:o:f: ¼ 0.5. The grey line corresponds to the fitted curve

fð3Þσ ðEÞ in Eq. (56), the red line corresponds to the deriving ground state curve ΔσðE − E0Þ from the fit, the green line is the first excited
state ΔσðE − E1Þ, and the yellow line is the second excited state ΔσðE − E2Þ.
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phenomenon in Fig. 16. The three ensembles considered,
M1, M2, and M3, respectively, yield the difference
½aEn − σaEn

; aEn þ σaEn
�, where σaEn

is the uncertainty
in the determination of the nth energy level.

VI. NUMERICAL RESULTS AND
COMPARISONS WITH GEVP

In this section, we display and discuss our spectroscopy
results, obtained with the HLT method. Firstly, we show-
case how our results match the expectations from the GEVP
ones. Figures 17 and 18 display two representative exam-
ples of GEVP computations. The former case is obtained
as described in Eq. (36), by using a variational basis of
nine elements, whereas the latter combines the V and T
channels, according to Eq. (37). As shown in the figures,
typically the signal-to-noise ratio is good enough to find
both ground state and first excited state even for the smaller
variational basis. By adding the cross channel one gains
access to the second excited state, E2.
In Fig. 19, the spectrum for the fundamental pseudo-

scalar meson is shown for all the ensembles of Table I.
The figure shows masses normalized in Wilson flow units,
m̂≡ w0 ·m. Different shadings and small horizontal offsets
have been applied to distinguish the ensembles M1, M2 and
M3, whereas larger offsets and patterns display the ensem-
bles M4 and M5. The vertical extent of each colorblock
represents the sum in quadrature of statistical errors and
systematic effects. The latter ones are given by the excited
states contaminations artifacts and by evaluating methodo-
logical effects using different smearing kernels, as the
maximal difference between lattice results in the k and
kþ 1 peaks Gauss and Cauchy fits, k-G, (kþ 1)-G and
k-C, (kþ 1)-C. In Fig. 20, the same logic is applied to the
whole meson spectrum of the theory, and six different
colors have been used for different meson channels, and
the matching colors have been used for the same meson
channel in different fermion representations—fundamental
and antisymmetric.

The numerical results for the ground states, first excited
states, and (where available) second excited states obtained
are reported in Tables IV–XVII, for all the ensembles M1 to
M5. We write the masses in units of the lattice spacing, a,
but these can be converted to Wilson flow units with the
numerical results reported in Table I. The tables display
the results for all the twelve meson channels of interest,
together with details of the smearing level, and the number
of functions, k, included in Eq. (56). We tabulate the results
obtained with five alternative analyses of the same corre-
lation functions: two measurements obtained from spectral
density reconstruction with Gaussian kernels, with k
or kþ 1 functions, two measurements obtained with
Cauchy kernels, with k or kþ 1 functions, and one
obtained with the GEVP analysis. We also report the value
of the smearing radius in the Gaussian and Cauchy cases,
respectively.

FIG. 16. Spectroscopy results corresponding to Fig. 15 for ground and first excited states. The central value of the corresponding
energy levels corresponds to the data points, whereas the width is the uncertainty in their determination. Offsets between the different
data points are kept for visual clarity.

FIG. 17. Plateau in the effective mass, ameff , for the PS channel
in ensemble M2 (Nt ¼ 64). The plateaux are identified via the
GEVP process, by using a basis of nine correlators as shown in
Eq. (36), obtained by varying N ¼ 0, 40, 80 sink and source
Wuppertal smearing steps (keeping fixed εas ¼ 0.10, αAPE ¼ 0.4,
and NAPE ¼ 50).
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As described in Sec. V, we expect to find smaller
uncertainties, and achieve more precise estimates of the
energy levels, aEn, by considering longer time extents, Nt.
This is confirmed by inspecting the results in ensembles
M1, M2, and M3, which are characterized by the same
lattice bare parameters and lattice spatial extent, Ns, while
only the time extent, Nt, is varied. This is also shown in
Fig. 19, where the pseudoscalar fundamental channel is
shown as a representative case of the data shown in Fig. 20;
the numerical results for the masses concerning ensembles
M1, M2, M3 progressively present smaller uncertainties,
as expected, and their values are compatible. We consider
and show also the cases where the bare fundamental
fermion masses, amf

0, are varied, in ensembles M4 and
M5, for intermediate lattice time extent, Nt ¼ 64.
For each energy level, aEn, we report the fits obtained

with k and kþ 1 peaks, both for Gaussian and Cauchy
kernels, used in Eq. (55). If contaminations from further
excited states are negligible, one expects compatible
results, for both kernels, in going from k to kþ 1;
this is confirmed by the numerical results tabulated.
The number of peaks optimizes the fitting procedure, k,
is reported in all cases. The number of iterations for
Wuppertal operator smearing, at source and sink, Nsource,
and Nsink, used for performing the spectral density fits, is
reported in the tables as well.
The usage of multiple smearing kernels is an additional

safety check against systematic effects that can potentially
be overlooked in the reconstruction. Where the latter
are absent, the spectroscopy should be untainted when

FIG. 18. Plateaux in effective mass, ameff , for the combined Vand T channels, in ensemble M2 (Nt ¼ 64). The plateaux are identified
via the GEVP process, by using a basis of thirty-six correlators as shown in Eq. (37); besides varying the smearing levels, N ¼ 0, 40, 80,
of both sink and source Wuppertal smearing (and keeping fixed εf ¼ 0.2, αAPE ¼ 0.4, and NAPE ¼ 50), we combine the channels with
the cross channels. In the case of degeneracy in the plateau fitting (within statistical uncertainties), we choose the energy level with a
smaller statistical error as a representative value for the considered energy level. This is the case in this example, where aE1 has been
chosen over aE2 (Table VII) as an estimation for the first excited state.

FIG. 19. The spectrum, obtained through spectral density fits,
for the pseudoscalar operators made of fundamental representation
fermions for all the ensembles studied. Tower of masses, m̂≡
w0 ·m (in Wilson flow units), corresponding to ground, first and
(possibly) second excited states is shown. The vertical midpoint of
each colorblock is the numerical result, whereas the heights are
comprehensive of statistical and systematic errors summed in
quadrature. Horizontal offsets distinguish different ensembles.
Different shadings of the same colors differentiate ensembles that
differ in time extents (Nt ¼ 48, 64, 96 for ensembles M1, M2 and
M3), whereas hatched patterns, with no fill, are used to indicate
ensembles that differ also in bare parameters (ensembles M4 and
M5). As expected, progressively smaller uncertainties are obtained
in the results for M1, M2 and M3.
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adopting different kernels. This is confirmed by our
numerical results. The fitted energy levels, aEn, are
compatible with one another, within statistical uncertain-
ties. In summary, as anticipated in Sec. IV C, and shown in
an example in Figs. 8 and 9, all the known sources of
systematic uncertainty in the spectral density reconstruction
appear to be under control.
Comparison between results obtained by using spectral

densities and GEVP show agreement in correspondence
of all mesonic channels of the spectrum of our theory. The
robustness of the results is reassuring and in line with one
of the purposes of this paper, which is to show that
measurements obtained with the former, novel, method
match those of the latter, well-established, one. Focussing
on the spectrum, in our studies the ground-state predictions
from spectral densities tend to have larger uncertainties.
This observation agrees with the findings of Ref. [9].
We also find a general trend towards improvement in the

extraction of excited state masses, for which the quality of
results is competitive with the GEVP ones. This is note-
worthy, for the quantity of information given as input for
spectral density measurements is smaller than what used
in the GEVP analysis. The simple case of Eq. (36) makes
use of nine two-point correlation functions in the GEVP
analysis, and the cross-channel in Eq. (37) uses thirty-six
of them; by comparison, in both cases, the spectral density

method uses only a single measurement. This finding
suggests an opportunity for possible gains in efficiency
in future large-scale studies of multiple excited states.

VII. SUMMARY AND OUTLOOK

The first purpose of this paper is to report on software
development and testing related to a new analysis package
that implements the HLT method as a spectral density
reconstruction tool for two-point functions obtained on the
lattice. We performed a systematic study of the method
itself, in order to optimize the parameter choices entering
the spectral reconstruction. We provide details, and numeri-
cal examples, in the main body of the paper. Our main
findings can be summarized as follows:

(i) For a given smearing kernel, ΔσðE;ωÞ, and a given
input set of 2-point functions,CijðtÞ, spectral density
reconstruction requires minimizing a functional,
W½g⃗�, defined in Eq. (48). This procedure depends
on two unphysical parameters, λ and α. We identify a
range of λ ∼Oð10Þ for which the smeared spectral
densities do not depend on the parameters λ and α
within the statistical error, which is nonetheless not
substantial;

(ii) In this work, we were able to afford values of the
smearing radius, σ, in the range 0.18m0≤σ≤0.35m0,

FIG. 20. Meson spectrum in all the ensembles (summarized in Table I), for both fundamental and antisymmetric representation
fermions, found through spectral densities fitting analysis. For each channel, a tower of masses, m̂≡ w0 ·m (in Wilson flow units),
corresponding to ground, first and (where available) second excited states is shown. The vertical midpoint of each colorblock is the
numerical result, whereas the heights are comprehensive of statistical and systematic errors summed in quadrature. Horizontal offsets
distinguish different ensembles. Different shadings of the same colors differentiate ensembles that differ in time extents (Nt ¼ 48, 64
and 96 for ensembles M1, M2 and M3), whereas no filling color and patterns are used to indicate ensembles that differ also in bare
parameters (ensembles M4 and M5). Progressively smaller uncertainties are obtained in the results for M1, M2 and M3. Six colors
distinguish the different meson channels, and the colors match where two different representations—fundamental and antisymmetric—
are used to study meson operators built with the same gamma-matrix structure.
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wherem0 is the mass of the ground state appearing in
the two-point correlation functions used as input data;

(iii) Under the conditions identified at the previous
points, our fit results are independent of the specific
choice of smearing kernel. We illustrate this point by
repeating our analysis with both Gaussian and
Cauchy kernel, and demonstrating that the results
of the two processes are compatible with one
another.

(iv) APE and Wuppertal smearings are essential in the
production of correlation functions to be analyzed.
APE smearing is necessary in order to explore
the high-energy behavior of the spectral density.
Wuppertal smearing must be tuned so that contri-
butions to the spectral density of all states of interest
have comparable amplitudes.

(v) A critical quantity for spectral density reconstruction,
in particular in reference to the identification of
excited states, is the time extent of the lattice, Nt.
We illustrate its impact on the results of the physical
analysis, by comparing lattices with Nt ¼ 48,
Nt ¼ 64, and Nt ¼ 96, while keeping all other
parameters fixed. For the longest time extent, it is
possible to reconstruct reliably the ground state, first
and second excited states.

A concept that is worth discussing when testing a
method for spectroscopy is the one of near-degenerate
states. The GEVP offers a theoretically clean way to
identify near-degeneracies due to the orthogonality of
the eigenvectors that would be associated to similar (within
noise) eigenvalues. The task would require, however, an
adequately large basis of operators, and sufficient statistics.
A similar statement holds for spectroscopy performed by
fits of spectral densities. In this case, one would require
enough energy resolution to distinguish two energy levels.
Again, this is only possible with enough statistics; a large
operator basis provides benefits here by allowing combined
fits to be performed. Importantly, we have demonstrated that
the smearing radius of the spectral density does not need to
be smaller than the spacing between of two neighboring
states for the fit to separate them, see e.g. Fig. 7.
The second purpose of this document is to report on

progress in the study of meson spectroscopy in the Spð4Þ
lattice gauge theory coupled to Nf ¼ 2 Dirac fermions
transforming according to the fundamental representation
of the gauge group, and nf ¼ 3 on the two-index anti-
symmetric one. This theory is a prominent candidate for
new physics in the context of composite Higgs models
implementing top partial compositeness [51]. To this
purpose, we generated, using the (R)HMC algorithm, five
new gauge ensembles. Allowing for thermalization, we
selected configurations to retain in the ensembles so that
the plaquette does not show significant indications of
autocorrelation. We applied the Wilson flow as a smooth-
ening process and measured the topological charge of the

configurations, to demonstrate the absence of topological
freezing. Some modest level of autocorrelation is visible in
the topology, but we do not expect this phenomenon to
affect meson spectroscopy studied in this work.
We then measured the two-point correlation functions

involving twelve flavored meson operators. We applied
both the HLT spectral density method, and the GEVP
analysis, and reported the resulting mass spectra in
Tables IV–XVII. We expressed the masses in units of
the lattice spacing, a, and verified that the results were
independent of the analysis process applied, within stat-
istical uncertainties. Besides the fact that the analysis
involves new ensembles obtained for different choices of
lattice parameters, the main advance with respect to the
literature in this theory is that we measured excited-state
masses, including both first and second excited states.
Figure 20 is a way to visualize the results; we display the
masses, m̂, expressed in units of the Wilson flow scale, w0,
of all the states we could identify in the spectral density
analysis, and for all the available channels and ensembles.
The work reported in this paper sets the stage for a

plethora of future studies, both within the ongoing program
of systematic exploration of Spð2NÞ gauge theories, but
also in contexts of more general interest. Firstly, the new
ensembles can be analyzed in other physical channels,
looking at correlation functions involving the singlet meson
operators and the chimera baryon operators. Such mea-
surements are currently underway. Second, having put in
place all the necessary technology, it is possible to generate
and analyze new ensembles with different couplings, β, and
masses, amf and amas, of the fermions. By combining the
results within the framework of Wilson chiral perturbation
theory [108,109] (see also Refs. [110], and, in the context
of improvement: Refs. [111,112], as well as, for baryon
chiral perturbation theory in QCD; Refs. [113–115]), one
can perform preliminary extrapolations towards the con-
tinuum and chiral limits. Doing so will allow us to classify
the properties of the theory that are of relevance to model
building considerations in the CHM context, and to
compare the spectroscopy results with those descending
from other, complementary approaches [116–122].
The third further direction of future development reverts

back to the original motivation of spectral density studies:
the reconstruction of off shell properties of correlation
functions. One wants to put in place the technology needed
to measure not just the position of the poles in the two-point
functions, but also their residues, which are related to the
decay constants and the overlap functions between oper-
ators and individual states. Generally, one would like to
reconstruct the whole complex-space structure of the
correlators, because these enter observable quantities of
theoretical and phenomenological relevance, as discussed
in the introduction.
Last but not least, we wrote the main body of this paper

by providing complete technical details, because our
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systematic study has general implications for any lattice
gauge theory, including also QCD, the theory of strong
nuclear interactions. We expect the progress we reported
here to be useful in a broader context, as spectral densities
have broad ranges of phenomenological applications. We
made all our new software and numerical results available
as open source, so that users can download them, use them,
and modify them as appropriate to their own physics goals.
Given the potential that spectral density analysis has for
lattice field theory, we envision this work to contribute
towards the general goal of the lattice community to
develop and master such novel techniques, and turn them
into high-precision analysis tools.

The analysis code and data generated for this manuscript
can be downloaded from Refs. [77,78], respectively.
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APPENDIX A: MORE ABOUT SPECTRAL
DENSITY RECONSTRUCTION

In this appendix, we show details of our implementation
for the HLT method. As described in Sec. IVA, the
functional W½g⃗� in Eq. (48) consists of two parts: the
systematic-error functional A½g⃗�=A0 and the statistical-error
functional B=Bnorm. Minimization of W½g⃗� is tantamount to
solving the linear system,

g⃗ ¼
�
Sþ λA0

Bnorm
B
�

−1
f⃗; ðA1Þ

where Bnorm is defined below Eq. (48). The matrix S
descends from minimizing in A½g⃗�=A0 the contribution
quadratic in g⃗. Its matrix elements can be always expressed
as follows:

Str ¼
Z

∞

Emin

dEeαEbðtþ 1; EÞbðrþ 1; EÞ

¼ eEminðα−r−t−2Þ

tþ rþ 2 − α
þ eEminðαþrþtþ2−2ðNtaÞÞ

2ðNtaÞ − t − r − 2 − α

þ eEminðαþr−t−ðNtaÞÞ

ðNtaÞ þ t − r − α
þ eEminðα−rþt−ðNtaÞÞ

ðNtaÞ − tþ r − α
; ðA2Þ

where bðt; EÞ are the functions defined in Eq. (20), where S
is a tmax × tmax matrix.
The error functional B½g⃗�=Bnorm contributes another

functional quadratic part in g⃗, minimized by

Btr ¼ Covtr: ðA3Þ
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The vector f⃗ appears due to the minimization of terms
linear in g⃗ inside A½g⃗�=A0. Its entries are defined to coincide
with ftþ1, where

ftðωÞ ¼
Z

∞

Emin

dEΔσðE;ωÞeαEbðt; EÞ: ðA4Þ

For a Gaussian kernel, A0ðωÞ and the entries ftþ1ðωÞ
from Eq. (A4) are calculable:

A0ðωÞ≡ A½0�ðωÞ ¼
Z

∞

Emin

dE eαE½Δð1Þ
σ ðE;ωÞ�2

¼ Erfðω−Eminþασ2=2
σ Þ þ 1

σ
ffiffiffi
π

p ðErfð ωffiffi
2

p
σ
Þ þ 1Þ2 e

αωþα2σ2=4; ðA5Þ

and

f̃tðωÞ ¼
Z

∞

Emin

dEΔð1Þ
σ ðE;ωÞeð−tþαÞE

¼
e
σ2

2
ðα−tÞ2eðα−tÞω

n
1 − Erf

h
Emin−ωþσ2ðt−αÞffiffi

2
p

σ

io

1þ Erf
h

ω
σ
ffiffi
2

p
i ; ðA6Þ

respectively, with

ftðωÞ ¼ f̃tðωÞ þ f̃T−tðωÞ: ðA7Þ

For the Cauchy kernel, the integrals have to be computed
numerically.

APPENDIX B: TABLES

TABLE IV. Numerical results for the ground state mass in ensemble M1. k-G stands for k-Gauss fit, (kþ 1)-G is kþ 1-Gauss fit, k-C
stands for k-Cauchy function fit, (kþ 1)-G kþ 1-Cauchy function fit, C indicates the mesonic channel considered, amC is the result of
the GEVP analysis, σG is the energy smearing radius used for the Gaussian fits, σC for the Cauchy fit.

C k Nsource Nsink aE0 k-G aE0 (kþ 1)-G aE0 k-C aE0 (kþ 1)-C amC σG=mC σC=mC

PS 2 80 40 0.3682(20) 0.3695(27) 0.3676(33) 0.3670(37) 0.3678(17) 0.33 0.32
V 2 80 40 0.4092(58) 0.4137(80) 0.4080(24) 0.4078(27) 0.4098(25) 0.30 0.22
T 2 80 40 0.4087(26) 0.4094(58) 0.4035(56) 0.4095(34) 0.4098(25) 0.30 0.30
AV 2 80 40 0.5545(72) 0.5492(93) 0.5466(84) 0.5552(95) 0.5485(81) 0.20 0.18
AT 2 80 40 0.5518(85) 0.5495(77) 0.5459(74) 0.5454(88) 0.5514(73) 0.18 0.20
S 2 80 40 0.5287(84) 0.5272(99) 0.5250(70) 0.5292(80) 0.5241(64) 0.20 0.20

ps 2 80 40 0.5999(31) 0.6009(29) 0.5997(34) 0.6010(31) 0.60161(91) 0.18 0.20
v 2 80 40 0.6457(45) 0.6452(38) 0.6547(30) 0.6492(27) 0.6503(13) 0.20 0.26
t 2 80 40 0.6476(38) 0.6479(33) 0.6552(36) 0.6582(70) 0.6503(13) 0.30 0.26
av 2 80 40 0.8375(71) 0.8370(93) 0.8335(72) 0.8290(62) 0.8299(81) 0.20 0.18
at 2 80 40 0.8516(86) 0.8567(98) 0.8500(71) 0.8533(92) 0.8408(87) 0.18 0.18
s 2 80 40 0.7994(84) 0.7998(83) 0.7953(79) 0.7929(86) 0.7957(83) 0.18 0.20

TABLE V. Numerical results for the first excited state mass in ensemble M1. k-G stands for k-Gauss fit, (kþ 1)-G is kþ 1-Gauss fit,
k-C stands for k-Cauchy function fit, (kþ 1)-G kþ 1-Cauchy function fit,C indicates the mesonic channel considered, amC is the result
of the GEVP analysis, σG is the energy smearing radius used for the Gaussian fits, σC for the Cauchy fit.

C k Nsource Nsink aE1 k-G aE1 (kþ 1)-G aE1 k-C aE1 (kþ 1)-C amC σG=mC σC=mC

PS 2 80 40 0.650(19) 0.652(25) 0.653(30) 0.648(26) 0.661(25) 0.33 0.32
V 2 80 40 0.703(20) 0.698(27) 0.699(20) 0.692(12) 0.700(26) 0.30 0.22
T 2 80 40 0.707(13) 0.696(23) 0.693(22) 0.696(31) 0.700(26) 0.30 0.30
AV 2 80 40 0.761(32) 0.753(33) 0.726(24) 0.722(31) 0.743(44) 0.20 0.18
AT 2 80 40 0.790(42) 0.790(42) 0.766(32) 0.784(17) 0.768(47) 0.18 0.20
S 2 80 40 0.750(23) 0.746(29) 0.755(24) 0.742(18) 0.748(14) 0.20 0.20

ps 2 80 40 0.880(22) 0.876(30) 0.865(30) 0.878(35) 0.891(19) 0.18 0.20
v 2 80 40 0.931(23) 0.923(19) 0.940(22) 0.932(20) 0.955(11) 0.20 0.26
t 2 80 40 0.960(13) 0.966(18) 0.949(23) 0.967(22) 0.955(11) 0.30 0.26
av 2 80 40 1.040(31) 1.046(33) 1.028(40) 1.018(43) 1.063(42) 0.20 0.18
at 2 80 40 1.062(35) 1.067(35) 1.061(30) 1.056(34) � � � 0.18 0.18
s 2 80 40 1.036(22) 1.037(21) 1.024(18) 1.039(28) 1.052(19) 0.18 0.20
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TABLE VI. Numerical results for the ground state mass in ensemble M2. k-G stands for k-Gauss fit, (kþ 1)-G is kþ 1-Gauss fit, k-C
stands for k-Cauchy function fit, (kþ 1)-G kþ 1-Cauchy function fit, C indicates the mesonic channel considered, amC is the result of
the GEVP analysis, σG is the energy smearing radius used for the Gaussian fits, σC for the Cauchy fit.

C k Nsource Nsink aE0 k-G aE0 (kþ 1)-G aE0 k-C aE0 (kþ 1)-C amC σG=mC σC=mC

PS 2 80 40 0.3633(31) 0.3653(12) 0.3642(13) 0.3624(25) 0.3656(12) 0.35 0.30
V 3 0 40 0.4081(31) 0.4034(33) 0.4040(23) 0.4050(20) 0.4054(19) 0.28 0.33
T 3 0 40 0.4022(35) 0.4043(36) 0.4053(24) 0.4043(30) 0.4054(19) 0.23 0.23
AV 2 80 40 0.5484(81) 0.5464(83) 0.5453(92) 0.5462(90) 0.5423(90) 0.30 0.18
AT 2 80 40 0.5522(74) 0.5513(84) 0.5474(66) 0.5428(68) 0.5477(84) 0.30 0.20
S 2 0 40 0.5173(75) 0.5201(75) 0.5163(93) 0.5155(99) 0.5222(78) 0.30 0.20

ps 3 0 40 0.6021(11) 0.6047(11) 0.6067(17) 0.6024(15) 0.6007(11) 0.18 0.18
v 2 40 80 0.6510(31) 0.6523(43) 0.6443(38) 0.6453(29) 0.6473(12) 0.20 0.20
t 2 40 40 0.6443(38) 0.6468(24) 0.6500(33) 0.6499(27) 0.6473(12) 0.20 0.20
av 3 0 40 0.8212(81) 0.8186(76) 0.8216(92) 0.829(11) 0.821(11) 0.18 0.20
at 2 0 40 0.832(13) 0.835(11) 0.843(17) 0.836(17) 0.834(15) 0.18 0.23
s 3 80 40 0.7863(88) 0.7882(95) 0.7872(98) 0.7913(90) 0.7820(96) 0.18 0.18

TABLE VII. Numerical results for the first excited state mass in ensemble M2. k-G stands for k-Gauss fit, (kþ 1)-G is kþ 1-Gauss fit,
k-C stands for k-Cauchy function fit, (kþ 1)-G kþ 1-Cauchy function fit,C indicates the mesonic channel considered, amC is the result
of the GEVP analysis, σG is the energy smearing radius used for the Gaussian fits, σC for the Cauchy fit.

C k Nsource Nsink aE1 k-G aE1 (kþ 1)-G aE1 k-C aE1 (kþ 1)-C amC σG=mC σC=mC

PS 2 80 40 0.658(24) 0.663(18) 0.671(11) 0.678(12) 0.688(10) 0.35 0.30
V 3 0 40 0.676(12) 0.6712(94) 0.670(13) 0.669(10) 0.6809(65) 0.28 0.33
T 3 0 40 0.678(11) 0.670(13) 0.6783(99) 0.679(11) 0.6809(65) 0.23 0.23
AV 2 80 40 0.792(24) 0.770(23) 0.767(23) 0.742(23) 0.772(30) 0.30 0.18
AT 2 80 40 0.802(31) 0.798(34) 0.824(30) 0.804(29) 0.789(39) 0.30 0.20
S 2 0 40 0.749(28) 0.754(21) 0.761(21) 0.763(23) 0.783(25) 0.30 0.20

ps 3 0 40 0.870(17) 0.874(20) 0.864(19) 0.864(16) 0.895(16) 0.18 0.18
v 2 40 80 0.933(12) 0.929(12) 0.928(11) 0.9361(83) 0.9392(67) 0.20 0.20
t 2 40 40 0.927(22) 0.9333(91) 0.9432(65) 0.9397(71) 0.9392(67) 0.20 0.20
av 3 0 40 1.070(18) 1.073(15) 1.079(16) 1.081(20) 1.087(14) 0.18 0.20
at 2 0 40 1.102(21) 1.101(22) 1.102(23) 1.088(22) 1.076(28) 0.18 0.23
s 3 80 40 1.036(22) 1.035(21) 1.058(12) 1.059(14) 1.053(12) 0.18 0.18

TABLE VIII. Numerical results for the second excited state mass in ensemble M2. k-G stands for k-Gauss fit, (kþ 1)-G is kþ 1-
Gauss fit, k-C stands for k-Cauchy function fit, (kþ 1)-G kþ 1-Cauchy function fit,C indicates the mesonic channel considered, amC is
the result of the GEVP analysis, σG is the energy smearing radius used for the Gaussian fits, σC for the Cauchy fit.

C k Nsource Nsink aE2 k-G aE2 (kþ 1)-G aE2 k-C aE2 (kþ 1)-C amC σG=mC σC=mC

PS 2 80 40 � � � � � � � � � � � � � � � 0.35 0.30
V 3 0 40 0.923(19) 0.908(21) 0.906(18) 0.906(21) 0.913(15) 0.28 0.33
T 3 0 40 0.879(31) 0.875(29) 0.902(18) 0.899(13) 0.913(15) 0.23 0.23
AV 2 80 40 � � � � � � � � � � � � � � � 0.30 0.18
AT 2 80 40 � � � � � � � � � � � � � � � 0.30 0.20
S 2 0 40 � � � � � � � � � � � � � � � 0.30 0.20

ps 3 0 40 1.136(41) 1.143(44) 1.131(39) 1.131(35) � � � 0.18 0.18
v 2 40 80 � � � � � � � � � � � � 1.027(11) 0.20 0.20
t 2 40 40 � � � � � � � � � � � � 1.027(11) 0.20 0.20
av 3 0 40 1.347(36) 1.336(33) 1.336(32) 1.349(41) � � � 0.18 0.20
at 2 0 40 � � � � � � � � � � � � � � � 0.18 0.23
s 3 80 40 1.388(37) 1.405(41) 1.396(38) 1.393(40) � � � 0.18 0.18
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TABLE IX. Numerical results for the ground-state mass in ensemble M3. k-G stands for k-Gauss fit, (kþ 1)-G is kþ 1-Gauss fit, k-C
stands for k-Cauchy function fit, (kþ 1)-G kþ 1-Cauchy function fit, C indicates the mesonic channel considered, amC is the result of
the GEVP analysis, σG is the energy smearing radius used for the Gaussian fits, σC for the Cauchy fit.

C k Nsource Nsink aE0 k-G aE0 (kþ 1)-G aE0 k-C aE0 (kþ 1)-C amC σG=mC σC=mC

PS 3 40 0 0.3677(11) 0.36591(81) 0.36733(91) 0.36692(80) 0.36657(82) 0.30 0.27
V 3 40 40 0.4105(14) 0.4101(18) 0.4079(16) 0.4091(10) 0.4083(12) 0.28 0.25
T 3 0 40 0.4071(22) 0.4073(20) 0.4082(11) 0.4092(16) 0.4083(12) 0.33 0.28
AV 3 40 0 0.5363(54) 0.5374(53) 0.5384(48) 0.5361(73) 0.5351(64) 0.28 0.32
AT 3 40 40 0.5459(56) 0.5458(66) 0.5501(53) 0.5508(50) 0.5487(46) 0.30 0.18
S 2 40 40 0.5152(32) 0.5130(37) 0.5177(54) 0.5167(29) 0.5166(44) 0.30 0.24

ps 3 0 40 0.60183(90) 0.60142(80) 0.60183(61) 0.60183(52) 0.60132(57) 0.23 0.22
v 2 0 40 0.6480(20) 0.6491(14) 0.6499(18) 0.6502(19) 0.6491(16) 0.24 0.25
t 2 0 40 0.6481(16) 0.6481(18) 0.6517(22) 0.6520(21) 0.6491(16) 0.28 0.28
av 3 0 40 0.8361(57) 0.8358(62) 0.8348(47) 0.8371(60) 0.8348(64) 0.18 0.25
at 2 0 40 0.8451(64) 0.8401(80) 0.8393(81) 0.8398(73) 0.8431(73) 0.25 0.25
s 3 0 40 0.798(13) 0.800(15) 0.797(12) 0.796(12) 0.789(13) 0.23 0.23

TABLE X. Numerical results for the first excited state mass in ensemble M3. k-G stands for k-Gauss fit, (kþ 1)-G is kþ 1-Gauss fit,
k-C stands for k-Cauchy function fit, (kþ 1)-G kþ 1-Cauchy function fit,C indicates the mesonic channel considered, amC is the result
of the GEVP analysis, σG is the energy smearing radius used for the Gaussian fits, σC for the Cauchy fit.

C k Nsource Nsink aE1 k-G aE1 (kþ 1)-G aE1 k-C aE1 (kþ 1)-C amC σG=mC σC=mC

PS 3 40 0 0.6694(93) 0.6672(97) 0.6786(85) 0.6798(82) 0.6851(88) 0.30 0.27
V 3 40 40 0.6855(92) 0.6757(98) 0.6741(13) 0.6781(15) 0.6818(99) 0.28 0.25
T 3 0 40 0.6881(12) 0.6847(98) 0.6901(11) 0.6911(14) 0.6818(99) 0.33 0.28
AV 3 40 0 0.791(18) 0.787(17) 0.793(19) 0.794(18) 0.783(13) 0.28 0.32
AT 3 40 40 0.783(22) 0.778(24) 0.777(27) 0.775(29) 0.795(24) 0.30 0.18
S 2 40 40 0.778(23) 0.784(32) 0.778(30) 0.778(38) 0.792(34) 0.30 0.24

ps 3 0 40 0.908(13) 0.905(15) 0.907(14) 0.906(16) 0.9116(95) 0.23 0.22
v 2 0 40 0.9332(90) 0.928(12) 0.9332(60) 0.9327(75) 0.9378(70) 0.24 0.25
t 2 0 40 0.9332(85) 0.9317(90) 0.9427(81) 0.9417(68) 0.9378(70) 0.28 0.28
av 3 0 40 1.102(15) 1.098(15) 1.098(14) 1.097(17) 1.109(16) 0.18 0.25
at 2 0 40 1.112(23) 1.112(21) 1.118(16) 1.118(16) 1.114(21) 0.25 0.25
s 3 0 40 1.033(20) 1.027(20) 1.041(33) 1.042(18) 1.044(47) 0.23 0.23

TABLE XI. Numerical results for the second excited state mass in ensemble M3. k-G stands for k-Gauss fit, (kþ 1)-G is kþ 1-Gauss
fit, k-C stands for k-Cauchy function fit, (kþ 1)-G kþ 1-Cauchy function fit, C indicates the mesonic channel considered, amC is the
result of the GEVP analysis, σG is the energy smearing radius used for the Gaussian fits, σC for the Cauchy fit.

C k Nsource Nsink aE2 k-G aE2 (kþ 1)-G aE2 k-C aE2 (kþ 1)-C amC σG=mC σC=mC

PS 3 40 0 0.889(25) 0.877(22) 0.860(22) 0.855(23) � � � 0.30 0.27
V 3 40 40 0.923(20) 0.908(22) 0.922(18) 0.910(19) 0.913(19) 0.28 0.25
T 3 0 40 0.901(18) 0.899(20) 0.920(22) 0.918(20) 0.913(19) 0.33 0.28
AV 3 40 0 1.140(30) 1.111(33) 1.131(36) 1.138(33) � � � 0.28 0.32
AT 3 40 40 1.050(38) 1.043(35) 1.020(32) 1.018(34) � � � 0.30 0.18
S 2 40 40 � � � � � � � � � � � � � � � 0.30 0.24

ps 3 0 40 1.154(39) 1.161(42) 1.156(38) 1.170(40) � � � 0.23 0.22
v 2 0 40 � � � � � � � � � � � � 1.0190(68) 0.24 0.25
t 2 0 40 � � � � � � � � � � � � 1.0190(68) 0.28 0.28
av 3 0 40 1.373(32) 1.371(32) 1.381(28) 1.375(28) � � � 0.18 0.25
at 2 0 40 � � � � � � � � � � � � � � � 0.25 0.25
s 3 0 40 1.340(32) 1.338(32) 1.353(32) 1.351(33) � � � 0.23 0.23
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TABLE XII. Numerical results for the ground state mass in ensemble M4. k-G stands for k-Gauss fit, (kþ 1)-G is kþ 1-Gauss fit, k-C
stands for k-Cauchy function fit, (kþ 1)-G kþ 1-Cauchy function fit, C indicates the mesonic channel considered, amC is the result of
the GEVP analysis, σG is the energy smearing radius used for the Gaussian fits, σC for the Cauchy fit.

C k Nsource Nsink aE0 k-G aE0 (kþ 1)-G aE0 k-C aE0 (kþ 1)-C amC σG=mC σC=mC

PS 2 0 40 0.4079(31) 0.4082(35) 0.4086(24) 0.4087(23) 0.4095(12) 0.30 0.30
V 3 40 40 0.4466(30) 0.4468(32) 0.4459(33) 0.4458(34) 0.4483(17) 0.30 0.27
T 3 0 40 0.4472(22) 0.4474(21) 0.4487(20) 0.4490(22) 0.4483(17) 0.25 0.25
AV 2 80 40 0.5973(85) 0.5976(87) 0.5973(85) 0.5996(85) 0.6015(89) 0.25 0.25
AT 2 80 40 0.6027(90) 0.6020(86) 0.6187(85) 0.6137(84) 0.6140(96) 0.25 0.25
S 2 0 40 0.590(11) 0.589(11) 0.576(13) 0.573(14) 0.579(11) 0.25 0.30

ps 2 0 40 0.6290(13) 0.6292(14) 0.6282(12) 0.6283(15) 0.62808(95) 0.24 0.24
v 2 0 40 0.6691(33) 0.6689(35) 0.6721(33) 0.6724(34) 0.6715(16) 0.23 0.20
t 2 0 40 0.6691(31) 0.6694(34) 0.6688(33) 0.6687(32) 0.6715(16) 0.23 0.25
av 2 40 40 0.8746(55) 0.8747(57) 0.8741(48) 0.8788(55) 0.8792(56) 0.20 0.20
at 2 80 40 0.8744(82) 0.8764(82) 0.8764(52) 0.8754(62) 0.8796(67) 0.25 0.25
s 2 40 40 0.8481(100) 0.8482(97) 0.8581(88) 0.8571(83) 0.8539(91) 0.24 0.20

TABLE XIII. Numerical results for the first excited state mass in ensemble M4. k-G stands for k-Gauss fit, (kþ 1)-G is kþ 1-Gauss
fit, k-C stands for k-Cauchy function fit, (kþ 1)-G kþ 1-Cauchy function fit, C indicates the mesonic channel considered, amC is the
result of the GEVP analysis, σG is the energy smearing radius used for the Gaussian fits, σC for the Cauchy fit.

C k Nsource Nsink aE1 k-G aE1 (kþ 1)-G aE1 k-C aE1 (kþ 1)-C amC σG=mC σC=mC

PS 2 0 40 0.7401(86) 0.7371(87) 0.7351(77) 0.7351(73) 0.7347(87) 0.30 0.30
V 3 40 40 0.783(16) 0.781(15) 0.763(13) 0.767(15) 0.759(16) 0.30 0.27
T 3 0 40 0.787(25) 0.788(25) 0.753(18) 0.759(19) 0.759(16) 0.25 0.25
AV 2 80 40 0.822(24) 0.819(22) 0.832(29) 0.830(28) 0.808(17) 0.25 0.25
AT 2 80 40 0.872(14) 0.868(14) 0.853(14) 0.863(14) 0.856(15) 0.25 0.25
S 2 0 40 0.764(23) 0.765(24) 0.754(19) 0.756(20) 0.751(19) 0.25 0.30

ps 2 0 40 0.922(13) 0.928(14) 0.938(12) 0.922(15) 0.932(14) 0.25 0.24
v 2 0 40 0.947(21) 0.944(21) 0.943(24) 0.942(23) 0.960(20) 0.23 0.20
t 2 0 40 0.952(26) 0.950(25) 0.956(23) 0.951(22) 0.960(20) 0.23 0.25
av 2 40 40 1.119(14) 1.120(13) 1.129(16) 1.122(15) 1.118(15) 0.20 0.20
at 2 80 40 1.103(21) 1.105(20) 1.145(20) 1.135(23) 1.127(21) 0.25 0.25
s 2 40 40 1.101(20) 1.103(22) 1.118(18) 1.107(18) 1.109(19) 0.24 0.20

TABLE XIV. Numerical results for the second excited state mass in ensemble M4. k-G stands for k-Gauss fit, (kþ 1)-G is kþ 1-
Gauss fit, k-C stands for k-Cauchy function fit, (kþ 1)-G kþ 1-Cauchy function fit,C indicates the mesonic channel considered, amC is
the result of the GEVP analysis, σG is the energy smearing radius used for the Gaussian fits, σC for the Cauchy fit.

C k Nsource Nsink aE2 k-G aE2 (kþ 1)-G aE2 k-C aE2 (kþ 1)-C amC σG=mC σC=mC

PS 2 0 40 � � � � � � � � � � � � � � � 0.30 0.30
V 3 40 40 0.949(33) 0.953(32) 0.954(31) 0.959(34) � � � 0.30 0.27
T 3 0 40 0.944(31) 0.949(31) 0.969(31) 0.963(31) � � � 0.25 0.25
AV 2 80 40 � � � � � � � � � � � � � � � 0.25 0.25
AT 2 80 40 � � � � � � � � � � � � � � � 0.25 0.25
S 2 0 40 � � � � � � � � � � � � � � � 0.30 0.30

ps 2 0 40 � � � � � � � � � � � � � � � 0.25 0.24
v 2 0 40 � � � � � � � � � � � � � � � 0.23 0.20
t 2 40 40 � � � � � � � � � � � � � � � 0.23 0.25
av 2 40 40 � � � � � � � � � � � � � � � 0.20 0.20
at 2 80 40 � � � � � � � � � � � � � � � 0.25 0.25
s 2 40 40 � � � � � � � � � � � � � � � 0.24 0.20
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TABLE XV. Numerical results for the ground state mass in ensemble M5. k-G stands for k-Gauss fit, (kþ 1)-G is kþ 1-Gauss fit, k-C
stands for k-Cauchy function fit, (kþ 1)-G kþ 1-Cauchy function fit, C indicates the mesonic channel considered, amC is the result of
the GEVP analysis, σG is the energy smearing radius used for the Gaussian fits, σC for the Cauchy fit.

C k Nsource Nsink aE0 k-G aE0 (kþ 1)-G aE0 k-C aE0 (kþ 1)-C amC σG=mC σC=mC

PS 2 40 40 0.3123(13) 0.3113(14) 0.3120(11) 0.3125(17) 0.31025(64) 0.25 0.25
V 3 40 40 0.3523(22) 0.3502(21) 0.3509(25) 0.3513(24) 0.3515(13) 0.30 0.30
T 3 40 40 0.3520(25) 0.3472(24) 0.3479(29) 0.3523(28) 0.3515(13) 0.30 0.30
AV 2 40 40 0.5142(32) 0.5133(31) 0.5140(30) 0.5131(29) 0.5121(30) 0.25 0.20
AT 2 40 40 0.5211(43) 0.5203(33) 0.5231(53) 0.5215(33) 0.5201(34) 0.20 0.20
S 2 40 40 0.4888(36) 0.4878(32) 0.4900(31) 0.4909(38) 0.4898(30) 0.25 0.25

ps 2 40 40 0.57923(40) 0.57933(44) 0.57905(42) 0.57913(47) 0.57953(42) 0.20 0.20
v 2 40 40 0.6222(33) 0.6231(33) 0.6212(35) 0.6210(33) 0.6222(11) 0.20 0.25
t 2 40 40 0.6242(31) 0.6223(37) 0.6223(32) 0.6222(38) 0.6222(11) 0.20 0.25
av 2 40 40 0.7994(62) 0.7990(67) 0.7964(54) 0.7964(42) 0.7993(42) 0.20 0.20
at 2 40 40 0.8093(45) 0.8078(70) 0.8072(60) 0.8073(53) 0.8105(49) 0.20 0.20
s 2 40 40 0.7645(53) 0.7661(65) 0.7670(52) 0.7658(51) 0.7684(31) 0.20 0.20

TABLE XVI. Numerical results for the first excited state mass in ensemble M5. k-G stands for k-Gauss fit, (kþ 1)-G is kþ 1-Gauss
fit, k-C stands for k-Cauchy function fit, (kþ 1)-G kþ 1-Cauchy function fit, C indicates the mesonic channel considered, amC is the
result of the GEVP analysis, σG is the energy smearing radius used for the Gaussian fits, σC for the Cauchy fit.

C k Nsource Nsink aE1 k-G aE1 (kþ 1)-G aE1 k-C aE1 (kþ 1)-C amC σG=mC σC=mC

PS 2 40 40 0.615(14) 0.620(15) 0.625(13) 0.628(17) 0.627(15) 0.25 0.25
V 3 40 40 0.622(17) 0.612(18) 0.619(15) 0.624(20) 0.620(15) 0.30 0.30
T 3 40 40 0.625(20) 0.615(20) 0.614(18) 0.622(18) 0.620(15) 0.30 0.30
AV 2 40 40 0.780(13) 0.772(13) 0.770(15) 0.771(14) 0.7743(81) 0.25 0.20
AT 2 40 40 0.780(17) 0.776(11) 0.772(14) 0.774(14) 0.7788(92) 0.20 0.20
S 2 40 40 0.741(13) 0.738(11) 0.735(15) 0.740(16) 0.7391(94) 0.25 0.25

ps 2 40 40 0.8783(94) 0.8763(74) 0.8803(100) 0.8763(72) 0.8798(77) 0.20 0.20
v 2 40 40 0.8811(100) 0.8903(100) 0.8862(100) 0.8843(96) 0.8909(86) 0.20 0.25
t 2 40 40 0.8851(99) 0.8853(93) 0.8822(83) 0.8863(85) 0.8909(86) 0.20 0.25
av 2 40 40 1.013(21) 1.003(20) 1.023(23) 1.016(22) 1.008(21) 0.20 0.20
at 2 40 40 1.043(17) 1.041(15) 1.034(14) 1.030(13) 1.034(15) 0.20 0.20
s 2 40 40 1.025(20) 1.016(19) 1.004(17) 1.012(19) 1.001(16) 0.20 0.20

TABLE XVII. Numerical results for the second excited state mass in ensemble M5. k-G stands for k-Gauss fit, (kþ 1)-G is kþ 1-
Gauss fit, k-C stands for k-Cauchy function fit, (kþ 1)-G kþ 1-Cauchy function fit,C indicates the mesonic channel considered, amC is
the result of the GEVP analysis, σG is the energy smearing radius used for the Gaussian fits, σC for the Cauchy fit.

C k Nsource Nsink aE2 k-G aE2 (kþ 1)-G aE2 k-C aE2 (kþ 1)-C amC σG=mC σC=mC

PS 2 40 40 � � � � � � � � � � � � � � � 0.25 0.25
V 3 40 40 0.833(20) 0.843(24) 0.831(19) 0.838(25) 0.839(22) 0.30 0.30
T 3 40 40 0.832(24) 0.840(27) 0.841(24) 0.833(21) 0.839(22) 0.30 0.30
AV 2 40 40 � � � � � � � � � � � � � � � 0.25 0.20
AT 2 40 40 � � � � � � � � � � � � � � � 0.20 0.20
S 2 40 40 � � � � � � � � � � � � � � � 0.25 0.25

ps 2 40 40 � � � � � � � � � � � � � � � 0.20 0.20
v 2 40 40 � � � � � � � � � � � � 1.084(51) 0.20 0.25
t 2 40 40 � � � � � � � � � � � � 1.084(51) 0.20 0.25
av 2 40 40 � � � � � � � � � � � � � � � 0.20 0.20
at 2 40 40 � � � � � � � � � � � � � � � 0.20 0.20
s 2 40 40 � � � � � � � � � � � � � � � 0.20 0.20
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