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Abstract

This paper addresses the challenges of low-carbon sourcing in intertwined supply

chains by proposing a data-driven control framework and a prey–predator model for

sourcing decisions. The objective is to optimize low-carbon objectives and reduce

environmental impact. Existing static models fail to capture the dynamic nature of

supply chain systems and overlook the ripple effects when sourcing decisions propa-

gate throughout the interconnected network. To bridge this gap, our study develops

a dynamic model that explicitly captures the bullwhip effect and leverages real-time

and historical data. This model conceptualizes suppliers as prey and manufacturers

and consumers as predators, employing an ecological analogy to decipher the intri-

cate interactions and dependencies within the supply chain. Through this approach,

we identify strategies to promote sustainable practices and motivate suppliers to

adopt low-carbon measures. We assess two data-driven algorithms, the nonlinear

auto-regressive exogenous (NARX) network and sparse identification of nonlinear

dynamic systems with input variables (SINDYc). The results reveal that SINDYc out-

performs prediction accuracy and control, offering significant advantages for rapid

decision-making. The study highlights how shifts in market demands and regulatory

pressures critically influence the strategies of chemical firms and fertilizer markets.

Moreover, it discusses the economic challenges in transitioning from high carbon

footprint suppliers (HCFSs) to low carbon footprint suppliers (LCFSs), exacerbated by

a notable cost disparity where HCFSs are approximately 30% cheaper. By advancing

beyond conventional static models, this research provides a deeper understanding of

the environmental impacts and operational dynamics within supply chains, emphasiz-

ing the significant “ripple effect” where decisions at one node profoundly affect

others within the chain.
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1 | INTRODUCTION

The recent increasing insistence on confronting the challenges

posed by climate change and its environmental ramifications has ele-

vated sustainable practices to the forefront of global priorities

(Brandenburg, 2015; Peng et al. 2020). Firms across diverse supply

chain sectors progressively recognize the significance of implementing

low-carbon strategies across their supply chains (Halat &

Hafezalkotob, 2019; Shaharudin et al., 2019). Sourcing decisions are

critical in determining a supply chain's overall carbon footprint

(Correia et al., 2013; Govindan & Sivakumar, 2016). Thus, developing

effective strategies to optimize these decisions is paramount in

achieving low-carbon supply chain objectives (Ma et al., 2022).

While considerable advancement has been made within individual

segments of the supply chain, such as transportation (Cariou

et al., 2019; Xun et al., 2022) or manufacturing (Xia et al., 2022), the

interconnected nature of the elements of the supply chains in

the low-carbon sourcing problem requires a comprehensive approach

for modeling and analysis (Ivanov & Dolgui, 2020; Patil et al., 2023).

Different methods have been proposed to model low-carbon issues

in supply chains, including deterministic, stochastic, economic

game-theoretic, and simulation-based models (Sarimveis et al., 2008).

However, most existing models are static and focus on average per-

formance or steady-state conditions, failing to capture the dynamic

nature of supply chain systems. Such models are ill-suited for addres-

sing the low carbon sourcing problem, especially in intertwined supply

chains (Ivanov & Dolgui, 2020; Kumari & Bera, 2023), characterized

by complex interdependencies and dynamic interactions among multi-

ple stakeholders. Indeed, intertwined supply chains refer to complex

networks where the entities involved are highly interdependent in

logistics and operations and their strategic and environmental impacts

(Feizabadi et al., 2023; Mahapatra et al., 2010). These supply chains

are characterized by multiple layers of suppliers, manufacturers, and

consumers whose decisions and actions are closely linked, creating a

web of direct and indirect relationships. This interconnectivity often

leads to intricate dynamics where decisions at one node can signifi-

cantly influence operations and outcomes at several other points in

the system. In these intertwined supply chains, decisions related to

sourcing play a critical role in achieving low-carbon objectives and

reducing environmental impact. The low-carbon sourcing problem in

intertwined supply chains can give rise to the “ripple effect” (Lamba &

Singh, 2019; Patil et al., 2023). This effect occurs when changes in

sourcing decisions at one point in the supply chain propagate and

amplify throughout the interconnected network, leading to increased

carbon emissions, excessive waste, and inefficient resource utilization

(Cariou et al., 2019). Consequently, static models fail to consider these

ripple effects and overlook the potential for reducing carbon foot-

prints through strategic sourcing decisions (Govindan &

Sivakumar, 2016; Kumari & Bera, 2023; Ma et al., 2022).

Developing dynamic models that account for time-varying supply

chain dynamics is crucial. This study addresses this gap by proposing a

dynamic model that captures the bullwhip effect in low-carbon sourc-

ing decisions for intertwined supply chains. We leverage data-driven

control techniques, utilizing real-time and historical data for informed

decision-making. Our model incorporates a prey–predator analogy,

viewing suppliers as prey and manufacturers and consumers as preda-

tors. This ecological perspective helps analyze carbon dynamics,

highlighting the balance and interdependencies akin to natural ecosys-

tems. It illustrates how disruptions ripple through the network,

explaining how small changes cause major fluctuations. By examining

these dynamics, we gain insights into interactions and dependencies

affecting environmental performance. This approach helps identify

strategies to promote sustainable practices and incentivize suppliers

to adopt low-carbon initiatives.

This paper has two main objectives. First, we develop a data-

driven control model using real-time and historical data to optimize

sourcing decisions in an LCISC. Second, we identify the most suitable

algorithm for applying the prey–predator model to low-carbon sourc-

ing in these complex supply chains. Moving beyond traditional static

models, we capture dynamic interactions and ripple effects within the

network, demonstrating how decisions at one node impact the entire

supply chain. To achieve this, we explore two data-driven algorithms:

the nonlinear auto-regressive exogenous (NARX) network and the

sparse identification of nonlinear dynamics with control (SINDYc). We

evaluate their suitability for addressing the complex dynamics of the

prey–predator model. Thus, this study is an effort to assist both

manufacturing and service supply-chain practitioners in building a

model that analyzes carbon dynamics by addressing two main

research questions (RQs):

Research Question 1. How can a dynamic model that

employs a data-driven control framework and a prey–

predator analogy be developed to capture the ripple

effects and optimize low-carbon sourcing decisions in

intertwined supply chains?

Research Question 2. Which data-driven algorithm,

between the nonlinear auto-regressive exogenous

(NARX) network and sparse identification of nonlinear

dynamic systems with input variables (SINDYc), is more

effective in addressing the complexity inherent in the

prey–predator model within the context of low-carbon

intertwined supply chains?

The remainder of the paper is organized as follows: Following the

introduction, Section 2 presents a comprehensive literature review.

Section 3 introduces our prey–predator model for sourcing decisions

in LCISC, elaborating on our data-driven methodology comprising the

NARX and SINDYc methods. Section 4 delves into the context and

problem formulation, setting the stage for the subsequent analysis.

Section 5 details the process of solving the prey–predator model

using the NARX and SINDYc approaches, showcasing the practical

application of these methodologies. Section 6 is dedicated to thor-

oughly discussing our results and dissecting their significance and

implications. Section 7 presents the theoretical and managerial impli-

cations, providing insights into the broader impact of our study.
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Finally, the paper concludes in Section 8 with a summary of our find-

ings, current study limitations, and future research directions.

2 | LITERATURE REVIEW

2.1 | Advancing decision support systems in
dynamic low-carbon supply chains

The modeling of supply chains is vital in decision-making processes,

particularly for enhancing operational efficiency and effectiveness. A

growing focus has recently been formalizing sustainable and eco-

friendly supply chain models (Li et al., 2020). These models incorpo-

rate various methodologies, including optimization algorithms (Halat &

Hafezalkotob, 2019; Xia et al., 2022), simulation techniques (Xia

et al., 2022), and programming strategies (Brandenburg, 2015;

Jabbarzadeh et al., 2019). In the realm of intertwined supply chains,

companies often form complex networks by connecting within and

across diverse industries, resulting in interconnected ecosystems of

suppliers. These low-carbon intertwined supply chains (LCISCs) are

dynamic and structurally different from traditional linear and static

green supply chains (Tan et al., 2023). This complexity necessitates

novel modeling approaches, leading researchers to explore system

dynamics (SD) modeling (Francis & Albert, 2023; Wang & Yao, 2021).

Several studies exemplify the application of SD modeling in this

field. Rebs et al. (2019) developed an SD model that captures the intri-

cate dynamics of supply chain systems, including the influence of

external stakeholder pressures from entities like governments and

shareholders. Dolgui et al. (2020) used SD modeling to design block-

chain technology's smart contracts, employing a dynamic, event-

driven approach for task and service composition. Vlachos et al.

(2007) proposed capacity planning policies for reverse supply chains

in remanufacturing, considering both economic and environmental

factors, such as legislative mandates and the impact of a company's

green image on consumer demand. Olivares-Aguila and ElMaraghy

(2021) introduced a system dynamics framework to analyze supply

chain behavior and assess the impact of disruptions on various busi-

ness metrics. Golroudbary and Zahraee (2015) evaluated the system

behavior of an electrical manufacturing company using SD to simulate

a closed-loop supply chain. Similarly, Tian et al. (2014) used an SD

model to guide subsidy policies in China to promote the diffusion of

green supply chain management. Trappey et al. (2012) also use SD

modeling to simulate and identify green product redesigns with low

carbon footprints during manufacturing. Such research aims to find

the best ways to reduce carbon footprints in green product develop-

ment and production.

Despite these advancements, literature indicates significant chal-

lenges in constructing SD models for complex supply chains, primarily

due to their intricacy (Cui et al., 2022; Nguyen et al., 2022). To

address this, recent research has pivoted toward data-driven SD

modeling (Peng et al., 2020). This approach has seen varied applica-

tions, such as Pereira and Frazzon's (2021) alignment of demand and

supply in omnichannel supply chains using machine learning

and simulation-based optimization and Huber et al.'s (2019) use of

regression and neural networks for dynamic inventory decision-

making. Notably, the exploration of data-driven SD modeling in envi-

ronmentally focused supply chains is still emerging, with notable

efforts by Tseng, Ha, et al. (2022) and Tseng, Bui, et al. (2022) in circu-

lar and sustainable supply chains. Moreover, while AI models, includ-

ing linear regression and artificial neural networks (ANN), are central

to this new wave of data-driven SD modeling (Cui et al., 2022;

Pereira & Frazzon, 2021), evidence of their effectiveness in highly

interconnected systems is still forthcoming (Huber et al., 2019; Kraus

et al., 2020). Additionally, customizing AI models for SD support

demands careful consideration of various factors, including the degree

of interconnection and uncertainty in the system (Erkip, 2022).

2.2 | Sourcing decisions in low-carbon intertwined
supply chains

Intertwined supply chains, as defined by Ivanov and Dolgui (2020),

represent a network of interlinked supply chains collaboratively work-

ing to ensure the steady provision of goods and services to markets

and customers. Within this framework, LCISCs specifically focus on

minimizing greenhouse gas (GHG) emissions throughout all supply

chain stages, including production, transportation, and disposal (Liu

et al., 2020; Xia et al., 2022). Central to the concept of LCISCs are

sourcing decisions, which play a pivotal role in achieving the goal of

reducing carbon emissions across the supply chain (Shaharudin

et al., 2019). These decisions encompass strategies for acquiring

goods and services while consciously minimizing the carbon footprint

of their life cycle, from production to end use (Peng et al., 2020;

Shaharudin et al., 2019). Adopting low-carbon sourcing practices is

increasingly seen as a vital corporate strategy, aiding organizations in

lessening their environmental impact and supporting the transition

toward sustainable supply chain models (Correia et al., 2013). There

has been a growing body of research on sourcing decisions in LCISC

in recent years, with numerous studies examining its benefits and

challenges (Lamba & Singh, 2019; Ma et al., 2018).

Recent research, including that by Ma et al. (2022), has under-

scored the importance of sourcing decisions in reducing carbon emis-

sions within LCISCs, highlighting their significant influence on the

overall environmental performance of the supply chain. A critical com-

ponent of these sourcing decisions is the selection of suppliers. Opt-

ing for suppliers committed to sustainable practices can substantially

reduce the carbon footprint of the focal firm (Singh et al., 2018). This

can involve a range of strategies, such as choosing suppliers that uti-

lize renewable energy sources, have effective energy efficiency mea-

sures in place, or have a demonstrable record of reducing carbon

emissions (Govindan & Sivakumar, 2016; Shaw et al., 2012; Singh

et al., 2018). However, transitioning to low-carbon sourcing is fraught

with challenges, as the literature indicates (Ma et al., 2022). Many

companies face initial cost barriers, such as the need for investment in

new technologies or processes, which may not be immediately feasi-

ble (Brandenburg, 2015; Liu et al., 2020). Additionally, there can be
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resistance from suppliers reluctant to adopt new, low-carbon prac-

tices, and implementing such initiatives within the supply chain can be

challenging (Govindan & Sivakumar, 2016). Moreover, the lack of

incentives for suppliers to transition to low-carbon practices, such as

through carbon pricing or regulatory frameworks, further complicates

adopting these practices (Ma et al., 2018).

This paper seeks to bridge the gap between the challenges above

and the potential solutions advanced modeling techniques offer. Spe-

cifically, we aim to enhance the support of SD models in LCISCs

through data-driven methods, particularly under conditions of high

interconnection. We focus on a sourcing problem within an LCISC,

utilizing the well-known prey–predator SD model as a basis (Ivanov &

Dolgui, 2020; Nagurney & Nagurney, 2012; Turken et al., 2020).

3 | DATA-DRIVEN SD MODELING
METHODOLOGY

This study aims to enhance sustainable supply chain management,

focusing on LCISCs, by improving decision-making through advanced

SD modeling techniques. We employ a dynamic model incorporating a

prey–predator framework, using an ecological analogy to represent

complex supply chain interactions, with suppliers as prey and manu-

facturers and consumers as predators. This approach effectively cap-

tures competitive and cooperative dynamics, illustrating significant

ripple effects from shifts at any node. Central to this model is a data-

driven decision-making framework that leverages real-time and histor-

ical data for accurate and timely sourcing decisions, utilizing advanced

algorithms like the nonlinear auto-regressive exogenous (NARX) net-

work and sparse identification of nonlinear dynamic systems with

control (SINDYc).

The basic idea behind applying the data-driven control framework

and the prey–predator model for sourcing decisions is to leverage

real-time and historical data to simulate and optimize the complex

dynamics within a supply chain network (SCN). The data-driven con-

trol framework uses data analytics and control theory to create

decision-support systems that adapt to supply chain fluctuations and

uncertainties. Analyzing extensive datasets on variables such as cus-

tomer demand, inventory levels, and production capacity enables

informed and timely decisions on sourcing strategies, inventory man-

agement, and production planning. The prey–predator model views

suppliers as “prey” and manufacturers/consumers as “predators,”
highlighting their dependency on each other and competition for

resources. Indeed, the prey–predator model is particularly suited

for describing the complex interactions and dependencies in low-

carbon intertwined supply chains (LCISCs) due to its ability to capture

the competitive and cooperative dynamics inherent in such systems.

In LCISCs, suppliers, manufacturers, and consumers are interdepen-

dent, where suppliers provide essential resources to manufacturers

and consumers who compete for these limited resources. This ecolog-

ical analogy effectively illustrates how shifts or disruptions at one

point in the supply chain can propagate and magnify throughout the

network, like ecological systems where the population dynamics of

prey and predators are closely linked. Moreover, this model helps elu-

cidate phenomena like the “bullwhip effect,” where small changes in

demand or supply at one node can cause significant fluctuations

throughout the chain.

By applying the prey–predator framework, the study offers a

nuanced perspective on how interdependencies and feedback loops in

LCISCs impact overall performance, enabling more precise and dynamic

decision-making essential for managing sustainability and efficiency in

these complex networks. The model also incorporates dynamic feed-

back loops to reflect the nonlinear interactions and dependencies

within the supply chain, emphasizing how decisions in one part of the

chain can amplify effects elsewhere. These loops are crucial for under-

standing the interconnected nature of LCISCs and predicting the out-

comes of various operational and strategic decisions. Moreover, the

model is designed to accommodate various external factors that influ-

ence the supply chain, such as fluctuations in market demand, changes

in commodity prices, and variations in supplier performance.

The NARX method was selected for its expertise in forecasting

and managing nonlinear systems, effectively processing data influ-

enced by previous output values and multiple exogenous variables. In

LCISCs, these inputs include market factors like commodity prices,

demand fluctuations, and supplier performance metrics. NARX's struc-

ture integrates these dynamics, providing a sophisticated tool for

modeling the impact of external factors on sourcing decisions. Simul-

taneously, the SINDYc method excels in identifying the governing

equations of a dynamical system using sparse regression, which is par-

ticularly beneficial for complex, high-dimensional data typical in supply

chain analysis. SINDYc identifies both passively observed and actively

controlled systems, making it invaluable for exploring robust and

adaptable low-carbon sourcing strategies in LCISCs. This paper com-

pares NARX and SINDYc, analyzing their strengths and limitations in

LCISCs. Our study aims to enhance sustainable supply chain

management by understanding how data-driven models improve

decision-making in complex, intertwined supply chains with low-

carbon objectives. The comparative analysis delineates each method's

strengths and limitations, providing insights into their appropriateness

and efficiency for LCISC modeling.

To strengthen the methodological rigor of our study, we imple-

mented a comprehensive validation procedure for both the NARX and

SINDYc models, focusing on their performance in real-world scenarios

within low-carbon intertwined supply chains (LCISCs). We employed

several key metrics to evaluate these models to ensure a thorough

assessment of their accuracy and reliability. The primary metric used

was the mean square error (MSE), which measures the average of the

squares of the errors between predicted and actual values, clearly

indicating each model's precision. Additionally, we utilized error histo-

grams to visualize the distribution and magnitude of errors, which

allowed us to identify patterns, variance, and skewness, offering

insights into areas needing improvement. We also analyzed the

models' convergence behavior by examining their ability to minimize

errors through iterative training processes. Furthermore, our valida-

tion process included testing the models against unseen real-world

data from the same supply chains they are intended to serve. This
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step was crucial for assessing the models' robustness and reliability

under actual operational conditions, ensuring their capability to gener-

alize beyond the training data. This comprehensive evaluation high-

lights the practical applicability and effectiveness of the models in

making informed decisions under the dynamic and unpredictable con-

ditions characteristic of LCISCs.

3.1 | NARX neural networks

The NARX neural network is a logical extension of artificial neural net-

works that are designed for time series prediction problems, where

the current output of the system depends on past input and output

values as well as on exogenous variables (Alshater et al., 2022; Gao

et al., 2023; Trapero et al., 2012). ANN models usually outperform

conventional approaches when the time series is noisy, and the under-

lying dynamical system is nonlinear and challenging to analyze. In

these circumstances, the ANN's superior prediction performance

seems to be explained by its ability to draw complicated nonlinear

correlations from actual experimental data and learn from them (Ebadi

Jalal et al., 2016; Shahbaz et al., 2020). In addition to being computa-

tionally robust in principle, NARX neural networks also provide sev-

eral practical benefits. One of the critical advantages of NARX

networks is that they are more effective at learning than other neural

networks due to their use of gradient-descending learning algorithms.

NARX networks are known to converge much faster and generalize

better than other networks. For instance, Lin et al. (1996) assert that

NARX networks have a higher potential for gradient-descent learning

than different recurrent designs with “hidden states.” Furthermore,

NARX networks are particularly adept at discovering long-term

dependencies, making them ideal for modeling complex systems. This

contrasts with conventional recurrent neural networks, which can

struggle with capturing long-term dependencies. Indeed, NARX net-

works can effectively capture long-term dependencies due to their

use of output delays. This allows the network to consider the impact

of past inputs on current outputs, thereby enabling it to model com-

plex relationships over extended periods. As shown in Equation (1),

the desired value of the output at the NARX model's nþ1ð Þth element

is given mathematically by bX nþ1ð Þ, where bX nþ1ð Þ is the output

value, at the nþ1ð Þth element (Ebadi Jalal et al., 2016).

bX nþ1ð Þ¼ F bX nð Þ, � � �,bX n�kþ1ð Þ,u nð Þ, � � �,u n�kþ1ð Þ
� �

, ð1Þ

where u is the input sequence, bX is the projected output sequence,

and F represents a nonlinear function. The accuracy of this value is

critical in ensuring the model's effectiveness.

3.2 | SINDy

SINDy is a method for mathematically deducing sparse dynamics from

data to study complex systems using snapshot data y tð Þ�Rn. A critical

step in building an SD model is identifying the relationships among

the system's components, known as parse identification. This article

will discuss the parse identification process and its importance in

describing, analyzing, and explaining supply chain system issues.

SINDYc is an extension of the SINDy framework, where “c” denotes

the inclusion of control terms. SINDYc is used explicitly for systems

where external control inputs influence the dynamics.

System identification is the process of identifying the variables,

parameters, and relationships crucial to the behavior of the

system being modeled. Creating an accurate and comprehensive SD

model that can produce reliable predictions is essential. SINDy has

been used successfully for model identification in various fields,

including fluid flows, optical systems, chemical reaction dynamics,

convection in plasma, structural modeling, and model predictive

control (Hoffmann et al., 2019; Loiseau & Brunton, 2018; Zhang &

Schaeffer, 2019). The SINDy framework has also undergone theo-

retical expansion to incorporate various models. Mangan et al.

(2016) demonstrated the framework's ability to handle models with

rational function nonlinearities. Additionally, Schaeffer et al. (2020)

introduced models for partial differential equations, while Zhang

and Schaeffer (2019) demonstrated the framework's applicability to

hybrid dynamical systems and models for parametrically dependent

dynamical systems. Moreover, the SINDy framework can combine

physics and limitations that are not fully understood, as demon-

strated by Loiseau and Brunton (2018). Furthermore, the framework

can discover models using data from physically accurate sensors.

The algorithm can be modified to handle missing or limited data or

include integral terms for noisy data, as Schaeffer et al. (2020)

show. Additionally, information criteria can be utilized to evaluate

the selected modes. These theoretical advancements have

expanded the scope of the SINDy framework, allowing it to handle

a broader range of modeling problems and offer a sound basis for

model discovery methods. Parse identification in system dynamics

involves several steps. First, the system boundary is established to

determine the model's scope. Next, relevant stocks and flows are

identified, representing accumulations and rates of change within

the system. Feedback loops are then placed, which can create

dynamic behavior. Parameters that affect the system's behavior are

also identified. Lastly, the specified variables, parameters, and rela-

tionships are translated into a mathematical model for simulation

and analysis. The method seeks to identify a best-fit dynamical sys-

tem with the fewest terms possible, represented by Equation (2),

which describes the rate of change of the system's state variable

y at a given time t, which is influenced by the input variable u and

the current state y tð Þ.

_y tð Þ¼G y tð Þ,uð ÞΞ: ð2Þ

Here, G y tð Þ,uð Þ represents a library of candidate functions of the

state variables y and input variables u, and Ξ is a sparse coefficient

matrix. This form explicitly highlights the sparse regression approach

used in SINDY to identify the most relevant dynamics governing the

system.
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By finding the best-fit system, the method enables the modeling

of complex systems with a more straightforward representation, facili-

tating analysis and prediction of system behavior.

4 | PROBLEM MODELING

4.1 | Context and problem formulation

In this paper, we delve into the sourcing decision problem within an

African fertilizers supply chain, a quintessential example of an LCISC

due to its complexity and sensitivity to the carbon footprint of prod-

ucts (Bouzekri et al., 2022; Hilali et al., 2022). The intertwined supply

chain is modeled using a novel data-driven control framework and a

prey–predator dynamic, where suppliers are “prey” and manufac-

turers and consumers are “predators.” This ecological analogy high-

lights complex interactions and dependencies, capturing the “bullwhip

effect” where decisions at one node impact the entire network. In

ecological terms, prey–predator models illustrate resource depen-

dency and competition, with prey providing essential resources for

predators. Applied to supply chains, suppliers (HCFSs and LCFSs) are

prey-providing raw materials, and manufacturers (CFs) are predators.

Introducing super-predators, represented by fertilizer markets (FMs),

adds complexity as FMs pressure CFs, who must optimize sourcing

from HCFSs and LCFSs, creating a three-tier hierarchy similar to eco-

logical systems. This analogy, despite lacking traditional cooperation,

captures broader supply chain interactions, emphasizing competitive

and cooperative dynamics. This approach enhances informed

decision-making, reflects real-world complexities, and improves supply

chain sustainability and efficiency.

Moreover, the paper discusses the economic challenges inherent

in transitioning from HCFSs to LCFSs, particularly their notable cost

disparity. This economic consideration poses a significant hurdle in

achieving low-carbon objectives without compromising financial via-

bility. The general structure of this supply chain, depicted in Figure 1,

shows chemical firms (CFs) sourcing phosphate rock from various min-

ing suppliers. These CFs then process the phosphate rock into prod-

ucts like phosphoric acid, feeds, and fertilizers, which are distributed

to local and international fertilizer markets (FMs).

In the African fertilizers supply chain, phosphate rock is principally

sourced from two distinct types of mining suppliers: low carbon foot-

print suppliers (LCFSs) and high carbon footprint suppliers (HCFSs).

Traditionally, CFs have predominantly relied on HCFSs for their phos-

phate rock due to their widespread availability in Africa (Couth &

Trois, 2010). However, recent developments in environmental legisla-

tion across several African nations have prompted a significant shift in

this dynamic (Bouzekri et al., 2022; Olujobi et al., 2022). These new

carbon footprint regulations are compelling HCFSs to reevaluate and

modify their mining processes, increasingly transitioning toward prac-

tices characteristic of LCFSs (Tan et al., 2023). Concurrently, there is a

growing emphasis within chemical firms (CFs) on reducing their prod-

ucts' carbon footprint by sourcing from low carbon footprint suppliers

(LCFSs). However, this shift faces significant challenges, primarily due

to the cost disparity between LCFSs and high carbon footprint sup-

pliers (HCFSs). On average, sourcing from HCFSs is about 30%

cheaper. This cost difference arises because LCFSs invest more in

cleaner technologies and stricter environmental regulations, leading to

higher production costs. In contrast, HCFSs often use older, fully

amortized infrastructure with lower operational expenses. Addition-

ally, many HCFSs benefit from economies of scale, producing goods

more cheaply in large quantities. This disparity creates a complex

economic landscape in the African fertilizers supply chain, affecting

sourcing decisions. We propose a double-prey, predator, and super-

predator interaction framework to model this complexity.

F IGURE 1 Structure of LCISC of fertilizers in Africa.

6 EL HARRAKI ET AL.

 10990836, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bse.3971 by Sw

ansea U
niversity, W

iley O
nline L

ibrary on [25/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2Fbse.3971&mode=


4.2 | Assumptions and modeling

In our model of the fertilizer supply chain, which includes fertilizer

markets (FMs), chemical firms (CFs), and fertilizer suppliers (FSs), we

establish several foundational assumptions for analysis. The supply

chain is structured into three hierarchical levels: FM, CF, and FS. We

treat the evolution of these levels as a deterministic process described

by quadratic growth and death parameters, simplifying the model by

assuming static parameters (u, v, w, and p) that do not change over

time. This framework assumes a monopolistic market setting where

market changes are gradual and disturbances are considered negligi-

ble, thus not affecting the system's dynamics significantly. This model

also conceptualizes the dynamics between HCFSs and LCFSs

(as prey), the CFs (as predators), and the FMs (as super-predators).

We represent the carbon footprint of these entities at any given time

t; the carbon footprint of prey (HCFSs and LCFSs), predator (CFs), and

super-predator (FMs) are denoted as xHCFSs(t), xLCFSs(t), xCFs(t), and

xFMs(t), respectively. The predator CFs and the prey LCFSs are both

expected to play a role in the dynamic evolution of the prey HCFSs,

while the predator CFs serve as prey for the supra-predator FMs. The

logistic response function is used to model the interaction between

these levels, capturing the consumption of resources (prey) by CFs

and their impact on HCFSs and LCFSs while also considering the influ-

ence of FMs on CFs. This method allows the model to capture the rip-

ple effects of decisions and behaviors across the supply chain. Indeed,

using the logistic functional response for predator and super-predator

population consumption of prey and predator (Equation 3), we can

demonstrate this phenomenon.

x0HCFSs tð Þ¼ xHCFSs 1�uHCFSsxHCFSs�vHCFSsxCFs�pxLCFSsð ÞþU, 3:1ð Þ
x0LCFSs tð Þ¼ xLCFSs 1�uLCFSsxLCFSs�vLCFSsxCFsþpxHCFSsð Þ, 3:2ð Þ
x0CFs tð Þ¼ xCFs �bþαHCFSsvHCFSsxHCFSsþαLCFSsvLCFSsxLCFSs�wxFMsð Þ, 3:3ð Þ
x0FMs tð Þ¼ xFMs �cþwxCFsð Þ: 3:4ð Þ

8>>><
>>>:

ð3Þ

We denote the set of model parameters (ui, vi, w, p,

U) � Uadmissible, where Uadmissible is the bounded set of admissible con-

trol variables. These variables would entail behavioral strategies at

businesses at various LCISC tiers. Accordingly, the internal strategy of

companies is denoted by ui, while vj denotes the behavioral strategies

of CFs toward their suppliers j (HCFSs or LCFSs). In addition,

w represents the behavioral strategies of FMs toward CFs. Moreover,

we included an exogenous system control, that is, the credit carbon

buying capacity (denoted by U). We assume that HCFSs are intrinsi-

cally migrating to LCFSs under carbon neutrality pressures at a con-

stant rate denoted by p. The intrinsic effort to reduce carbon

footprint by CFs and FMs is c>0 and b>0. Finally, the physiological

parameters αLCFSs depict the transfer rate of carbon footprint between

the intertwined levels. Table 1 summarizes the variables and parame-

ters of the model.

To build the system of differential equations in our model, we

start by transitioning from discrete-time data to continuous modeling.

We represent the population of high carbon footprint suppliers

(HCFSs) (Equation 3.1) with a differential equation that accounts for

intrinsic growth adjusted for intraspecific competition, predation by

chemical firms (CFs), migration to low carbon footprint suppliers

(LCFSs), and external regulatory forces. The differential equation for

LCFSs (Equation 3.2) includes similar terms but incorporates the

positive influx of individuals transitioning from HCFSs. For CFs, Equa-

tion (3.3) reflects their efforts to reduce their carbon footprint, their

benefits from consuming HCFSs and LCFSs, and the negative impact

of interactions with fertilizer markets (FMs). Finally, the dynamics of

FMs are modeled with a differential equation (Equation 3.4) that cap-

tures their growth due to the availability of CFs as a resource while

considering their efforts to reduce their carbon footprint.

5 | SOLVING THE PREY–PREDATOR
MODEL OF SOURCING DECISIONS IN LCISC

5.1 | Data collection procedure

In our study, comprehensive data collection was paramount to analyz-

ing the supply chain dynamics of African fertilizers. We obtained our

primary dataset from the North African Company of Fertilizers

(NACF), a pseudonym to preserve confidentiality. We utilized various

internal digital sources within NACF, stored in a data lake, to collect a

wide range of information. These sources included inputs from sen-

sors and platforms, which provided in-depth insights into sourcing

practices, carbon footprints, and market dynamics within the supply

chain. Mainly, we focused on gathering data on sourcing phosphate

rock by CFs from mining suppliers and distributing chemical products

to local and international FMs. Data collection was done over approxi-

mately 4 years. This duration is necessary to adequately capture the

TABLE 1 Summary of variables and parameters.

Symbol Interpretation

xHCFSs Population or state of high carbon footprint suppliers

(HCFSs)

xLCFSs Population or state of low carbon footprint suppliers

(LCFSs)

xCFs Population or state of chemical firms (CFs)

xFMs Population or state of fertilizer markets (FMs)

uHCFSs ,uLCFSs Internal strategies of companies (efficiency measures)

vHCFSs ,vLCFSs Behavioral strategies of CFs toward their suppliers

(HCFSs or LCFSs)

w Behavioral strategies of FMs toward CFs

p Migration rate from HCFSs to LCFSs under carbon

neutrality pressures

U Exogenous control variable, representing external

forces that can influence and control the behavior of

xHCFSs

αHCFSs,αLCFSs Efficiency parameters reflecting the transfer rate of

carbon footprint from HCFSs and LCFSs to CFs

b Intrinsic effort by CFs to reduce their carbon footprint

c Intrinsic effort by FMs to reduce their carbon footprint

EL HARRAKI ET AL. 7
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temporal fluctuations and trends in the supply chain, including sea-

sonal variations and long-term market shifts that impact the supply

chain dynamics. Furthermore, data collection involved thousands of

data points. These points span various metrics and periods to accu-

rately capture the supply chain's evolving dynamics.

The data collection and preparation were intricately designed to

align with and support the model in Equation (3), ensuring coherence

between the data sources, content, and the theoretical framework. The

first phase of data collection focused on assembling a broad array of

information from various internal digital sources of NACF stored in a

data lake. This data lake included inputs from sensors and platforms,

providing in-depth insights into sourcing practices, carbon footprints,

and market dynamics pertinent to the supply chain. Mainly, we gathered

detailed information on the sourcing of phosphate rock by CFs from

mining suppliers, along with data on the distribution of chemical prod-

ucts to local and international FMs. This phase involved cataloging data

on the types of chemical products produced, identifying both LCFSs and

HCFSs, and collating information on the carbon footprint at each stage

of the supply chain. In the second phase, we conducted thorough

assessments to quantify the carbon footprint of different supply chain

components. This analysis encompassed data related to energy con-

sumption, emissions, transportation, and production processes. We

applied established carbon accounting methodologies to ensure the

accuracy and comparability of our carbon footprint assessments.

Additionally, we gathered data on the pricing trends of phosphate

rock sourced from both LCPSs and HCFSs. These data were comple-

mented by market information from the international fertilizers mar-

ketplace to understand the factors influencing the sourcing decisions

of CFs. The third phase was crucial in bridging our data collection with

the prey–predator model outlined in Equation (3). We collected time

series data, capturing the dynamic nature of the sourcing problem.

These data were essential in representing the temporal fluctuations of

carbon footprints within the supply chain entities, denoted as xHCFSs(t),

xLCFSs(t), xCFs(t), and xFMs(t) (or simply x1(t), x2(t), x3(t), and x4(t)).

By collecting data at various time intervals, we could track and

analyze changes in the carbon footprints of HCFSs, LCFSs, CFs, and

FMs over time. Moreover, we collected additional data on population

dynamics, consumption rates, and other relevant parameters to cali-

brate the prey–predator model effectively. These parameters were

instrumental in accurately depicting the interactions and dependen-

cies within the supply chain system. By meticulously aligning our data

collection and preparation with the model's requirements, we ensured

that the empirical data substantiated and enriched the theoretical

constructs of our model, thereby enhancing the robustness and appli-

cability of our research findings.

5.2 | Solving the prey–predator model of sourcing
decisions in LCISC using NARX

The NARX method is used to understand the complex dynamics of

the prey–predator model described in Equation (3). This algorithm is

designed for time series forecasting and provides valuable insights

into the behavior of the system (Alshater et al., 2022; Ebadi Jalal

et al., 2016). By utilizing historical data and external inputs, we will

explore the capabilities of the NARX method to better understand the

dynamics in Equation (3). Indeed, the collected data were meticulously

aligned with each model parameter. The time series data, which cap-

tured the carbon footprints of HCFSs, LCFSs, CFs, and FMs at various

time intervals, provided empirical values for parameters such as

xHCFSs(t), xLCFSs(t), xCFs(t), and xFMs(t). These data were instrumental in

representing the changes in carbon footprints within the supply chain

over time. Additionally, data on population dynamics, consumption

rates, and other relevant factors were crucial for effectively calibrating

the prey–predator model.

The model's architecture, shown in Figure 2, facilitates data-

driven predictive analysis by incorporating information from previous

time steps and external factors. Before the initiation of the training

process, specific parameters, such as u1 = 0.01, v1 = 0.1, p1 = 1,

u2 = 1, v2 = 1, b = 1, w = 0.01, and c = 1, are set as initial conditions.

These initial values are fundamental in establishing the starting trajec-

tory of the system, playing a significant role in shaping the behavior

and subsequent evolution of the dynamic supply chain system. More-

over, these parameters reflect the behavioral strategies adopted by

different levels within the supply chain, and their accurate determina-

tion is vital for the model's efficacy. We undertook a comprehensive

data analysis process to ensure precision in setting these parameters.

This iterative process aims to construct a model that accurately

reflects the real-world behaviors and dynamics of the LCISC. The ini-

tial stage of this process involves the systematic collection of perti-

nent data, with a specific focus on behavioral aspects, such as

sourcing decisions, supplier choices, carbon footprints, and pricing

strategies, across the diverse levels of the supply chain. Once the data

are compiled, a comprehensive preprocessing procedure involves

data cleaning, standardization, and normalization to prepare it for sub-

sequent exploratory analysis. Through exploratory analysis, trends

and relationships are identified, and regression analysis is then

employed to estimate the values of the parameters above.

The NARX model architecture is displayed in Figure 2. It high-

lights the key components, starting with the inputs marked as x(t),

representing the prey–predator interactions within the supply chain.

These inputs are crucial data points that initiate the network's proces-

sing. The target output, labeled y(t), signifies the network's desired

output, encapsulating the modeled supply chain dynamics. Central to

the neural network are the weights and biases, forming the founda-

tion of the neural processing units. The architecture includes 10 hid-

den layers, each performing complex nonlinear transformations on the

input data. These layers sequentially process and refine the informa-

tion, preparing it for the final output prediction (Ebadi Jalal

et al., 2016). The four output layers then compile and finalize this pro-

cessed information, shaping the network's ultimate output to match

the intended result. The figure also delineates the generation of the

final output y(t), utilizing the NARX method. This process uniquely

updates the output, considering both the present input and past out-

puts, thereby capturing the dynamic and interconnected nature of the

supply chain within our model.

8 EL HARRAKI ET AL.
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A rigorous evaluation process is conducted to analyze the perfor-

mance of our NARX model. The main goal of this assessment hinges

on a comparative analysis of the expected target state against the

output state generated by the model. This juxtaposition serves two

pivotal roles. Primarily, it offers an insight into the predictive prowess

of the model, evaluating its capacity to make accurate forecasts. Sec-

ond, it gauges the model's generalization capabilities, testing its ability

to apply learned patterns to new, unseen data.

The training process involves multiple iterations, and with each

iteration, the model refines its internal parameters to minimize the dis-

crepancy between the target state and the output state. Thus, to

effectively train a neural network to learn the nonlinear mapping from

xk to xkþ1, we use a diverse set of initial data to generate trajectories

(Shahbaz et al., 2020). These trajectories are generated through the

simulation of the system, which produces two matrices, namely,

the input matrix and the output matrix (Trapero et al., 2012). The for-

mer is a matrix of the system at xk, while the latter is the correspond-

ing state of the xkþ1 system advancement Δt. The neural network

must learn the nonlinear mapping from xk to xkþ1 by analyzing these

matrices. Figure 3 represents this iterative learning process, effec-

tively showcasing the gradual improvement in the model's predictive

capabilities during training.

After the training phase, the model advances to the validation

phase, where it predicts outputs for a new dataset it has not encoun-

tered during the training phase. In this stage, we employ a two-

pronged approach. First, we examine the model's performance under

various specific initial conditions. These initial conditions, deliberately

selected for their relevance and importance to the supply chain

dynamics, allow us to test the model's predictive competence in sce-

narios that are of particular interest (Alshater et al., 2022; Ebadi Jalal

et al., 2016). This validation method offers an in-depth evaluation of

how well the model performs under conditions deemed crucial in the

sourcing problem within the LCISC context. Simultaneously, we

extend our validation process to examine the model's performance

under randomly chosen initial conditions. This aspect of our validation

phase tests the model's resilience and generalization capability across

a wide range of initial states, thereby closely mirroring real-world situ-

ations where initial conditions can vary significantly (Trapero

et al., 2012). Figure 4a offers a visual representation of the first stage

of the validation phase, and Figure 4b represents the second

stage with randomly chosen initial conditions, highlighting the model's

accuracy in predicting unseen data points.

Despite the promising structure and theoretical capabilities of the

NARX method, its performance has not lived up to expectations.

The error between the target and output states remains significantly

large, failing to converge to zero. This indicates that the model strug-

gles to encapsulate the complexities of the underlying system within

the interval (0, 10), leading to an inability to minimize error effectively.

The error magnitude surpasses the threshold of 10, suggesting a sub-

stantial deviation from the expected accuracy. This observation is cor-

roborated by the model's behavior during the validation phase, as

shown in Figure 4. The model's output increasingly diverges from the

exact model, indicating an apparent discrepancy between the model's

predictions and the actual dynamics of the system.

To complete our performance analysis, Figure 5 displays an error

histogram with 20 bins, representing the distribution of errors

F IGURE 2 NARX model neural network architecture.
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between the target and output states. By examining the histogram,

it's possible to gain insights into the variability, magnitude, and fre-

quency of errors generated by the NARX method. These insights can

be crucial for identifying potential issues and planning necessary

improvements in the model (Alshater et al., 2022).

As shown in Figure 5, the analysis reveals the limitations of the

NARX method in accurately capturing the intricate dynamics of

the sourcing mechanisms in the LCISC model. Indeed, the inability to

converge and the substantial error values highlight the limitations of

the NARX method in accurately capturing the desired dynamics.

These findings suggest that alternative approaches or modifications

may be necessary to achieve better performance and improve the

model's accuracy.

5.3 | Solving the prey–predator model of sourcing
decisions in LCISC using SINDYc

Our study on nonlinear dynamics starts by outlining the system

boundary and defining the model's dimensions. We identify “stocks”
and “flows” key variables for system accumulations and changes. In

our African fertilizers supply chain study, stocks include the quantities

of raw materials such as phosphate rock; the inventory of produced

chemical products like phosphoric acid, feeds, and fertilizers; and the

populations of different actors within the supply chain, including CFs,

LCFSs, and HCFSs. Simultaneously, we have identified “flows” within

this system. These encompass the rates at which raw materials are

converted into chemical products, the pace at which these products

are supplied to local and international FMs, the rate of transition from

HCFSs to LCFSs spurred by carbon neutrality pressures, the tempo of

carbon credit buying capacity, which may fluctuate over time, and the

transfer rate of the carbon footprint across different stages of

the supply chain.

Once we have a clear understanding of the stocks and flows

within our system, we proceed to identify feedback loops. Feedback

loops are inherent aspects of many dynamic systems that can engen-

der complex, sometimes unexpected, behaviors over time (Loiseau &

Brunton, 2018; Zhang & Schaeffer, 2019). In this regard, several feed-

back loops and parameters were identified in Table 2 within the con-

text of our African fertilizers supply chain system.

Having identified the integral components of our system, the next

step involves translating these components into a mathematical

model. This model, represented by Equation (3), describes the rate of

change of the system's state variable y, influenced by the input vari-

able u and the current state y tð Þ. This mathematical representation

aids in encapsulating the complexity of our system into a more

straightforward, more analyzable form.

Sparse regression, by design, strives to identify a model that

captures the essential behavior of a system with the fewest possi-

ble active terms, thereby providing a more manageable and stream-

lined representation of complex systems (Loiseau & Brunton, 2018).

To implement this methodology, “snapshots” of the system are con-

sidered. The snapshots are not merely collected but are systemati-

cally arranged or “stacked” together to form what we refer to as

data matrices. This arrangement of data is executed with an under-

lying assumption that the derivatives of these snapshots are either

already available or can be computed from the data. Derivatives, in

this context, signify the rates of change of the system's state vari-

ables over time. These derivatives offer valuable insights into the

system's dynamic behavior, informing us how the system evolves as

time progresses. The constructed Y and Y0 matrices are presented

as follows.

F IGURE 3 The training phase of the NARX model.
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Y¼

y1 t1ð Þ y2 t1ð Þ � � � yn t1ð Þ
y1 t2ð Þ y2 t2ð Þ � � � yn t2ð Þ

..

. ..
. . .

. ..
.

y1 tmð Þ y2 tmð Þ � � � yn tmð Þ

0
BBBB@

1
CCCCA, _Y

¼

_y1 t1ð Þ _y2 t1ð Þ � � � _yn t1ð Þ
_y1 t2ð Þ _y2 t2ð Þ � � � _yn t2ð Þ

..

. ..
. . .

. ..
.

_y1 tmð Þ _y2 tmð Þ � � � _yn tmð Þ

0
BBBB@

1
CCCCA, ð4Þ

Y¼ yj tið Þ� �Þm�n: ð5Þ

Once these data matrices are established, they are a reference

point for identifying potential candidate functions that describe the

system's dynamic behavior. This process involves creating a library of

potential candidate functions, which are then tested against the data

matrices. The goal is to find those functions that best fit the data and

maintain the model's simplicity by including as few terms as possible

F IGURE 4 Validation phase of the NARX model. (a) Validation phase. (b) Validation phase for randomly initial conditions.
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(Hoffmann et al., 2019). Indeed, with Y, _Y�ℝm�n. We can create an

extensive library of p probable candidate basis functions with

unknown values. After making the library of potential candidate basis

functions, we formulate a regression problem using the library to

solve approximately the overdetermined linear system of equations:

G Yð Þ¼ G1 Yð Þ� � �Gp Yð Þ½ ��ℝm�p, where each Gj is an alternative

term for a basis function or model.

Gi νð Þ¼ 1 x1 x2 � � � x21 x22 � � � x1x2 x2x3 � � � x32 x33 � � � x43 x44 � � �� �
: ð6Þ

Since we assume that m�p makes the number of data snapshots

significantly more significant than the number of potential library

functions, it may be necessary to sample transient dynamics and mul-

tiple initial conditions to increase the condition number of the library

functions (Loiseau & Brunton, 2018). This gives us a sparse represen-

tation of the system dynamics, represented as

_Y¼G Yð ÞΛ, ð7Þ

where the set of coefficients for the unknown matrix Λ¼
λ1λ2� � �λnð Þ�ℝp�n is the set of coefficients that determine the active

terms from G Yð Þ in the dynamics G.

As we venture deeper into system modeling, we extend our

horizons to a more encompassing approach by implementing SINDy.

As an advanced iteration of the SINDy method, SINDYc broadens the

scope of the original method by incorporating inputs and controls into

the equation (Zhang & Schaeffer, 2019). This expansion, however,

comes with an additional requirement: to capture both the state “Y”
and the input signal “u.” In other words, SINDYc necessitates a dualF IGURE 5 Error histogram with 20 bins.

TABLE 2 SINDYc's model loops and parameters.

Key elements Description Validation

Feedback loops Market demand and

production loop

The demand for fertilizers in the market

influences the production rate at the CFs. As

demand increases, the production rate also

escalates to meet the requirement, which

might affect market demand.

Analyzing market demand data and

production rates from historical records

Carbon footprint and

legislation loop

As the carbon footprint of the HCFSs

increases, stricter carbon footprint laws are

prompted. These laws then shift toward

LCFSs, reducing the overall carbon footprint.

Examining the legislative changes and

their impact on HCFSs' carbon footprint

Supply–demand balance

loop

The balance between supply (from LCFSs and

HCFSs) and demand (from CFs) for phosphate

rock influences the prices, which in turn

affects the sourcing decisions of the CFs and

the market competitiveness.

Examining price elasticity studies and

how changes in phosphate rock prices

impact CFs' sourcing decisions and

market competitiveness

Parameters that

influence the behavior of

the system

Carbon credit buying

capacity

This affects the rate at which HCFSs can

transition to becoming LCFSs.

Analyzing the transition trends of HCFSs

to LCFSs about available carbon credits

Carbon neutrality pressures The intensity of these pressures can

significantly affect the migration rate from

HCFSs to LCFSs.

Assessing migration trends from HCFSs

to LCFSs against the backdrop of

increasing carbon neutrality pressures

Market demand for

fertilizers

Fluctuations in this demand can influence

production rates and, thus, the rates of raw

material transformation.

Analyzing the correlation between

market demand fluctuations and

production rate changes

Regulatory parameters The stringency of carbon footprint laws in

different African countries can impact the

operations of both HCFSs and LCFSs,

affecting the overall supply chain dynamics.

Analyzing how changes in carbon

footprint laws impact the operations of

HCFSs and LCFSs

12 EL HARRAKI ET AL.
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set of measurements to encapsulate the broader dynamics it aims to

represent. This dual measurement process informs the creation of our

extended library of candidate functions, underpinning the new

dimensions that SINDYc seeks to explore. In the quest for parsimoni-

ous models, we employ sparsity-promoting regression to ensure that

the resultant models are both simple and understandable. We use a

sequentially thresholded least squares technique to testify to the

SINDy algorithm's robustness in obtaining the coefficients.

The approach is presented in Equation (8).

λk ¼ argminλk 0
_Yk�G Yð Þλ0k

�� ��þ λ λk
0k k: ð8Þ

This equation succinctly articulates our pursuit of finding

coefficients that minimize the sum of the residuals' square and the

regularized term λ λk
0k k.

The final step involves simulating the model using given initial

conditions and parameters. This facilitates the production of input and

output matrices, wherein the former represents the system's state at

xk and the latter represents the system's state at xkþ1 advanced

t= 0.01. The simulation of the model with these conditions permits

the NN to learn the nonlinear mapping from xk to xkþ1. From our col-

lected data, the simulation of the previous model with initial condi-

tions is given by x1=7, x2=1, x3=15, and x4=14 and the

parameters u1=0.01; v1=0.1; p=1; u2=1; v2=1; b=1; w=0.01;

α1 = α2 =0.01; c=0. Using these initial conditions and parameters,

we modelized the studied architecture in Figure 6.

The following steps aim to identify the underlying dynamics of a

system by leveraging sparsity-promoting techniques. A training and

validation process is launched to recover the input U. Figure 8

illustrates the training and validation process employed to recover this

input U. During the training phase, the SINDy algorithm analyzes the

training data. It uses a sparse regression approach to identify

the essential terms in the dynamic equations. The algorithm searches

for the optimal terms that best represent the system dynamics

while promoting sparsity. In other words, it aims to identify the mini-

mum number of terms necessary to capture the system behavior

accurately.

Figure 7 illustrates the control variable, a key factor representing

incentives for reducing CO2 emissions. An intriguing observation from

the figure is the diminishing trajectory of the control variable beyond

time 10, which suggests a decreasing need for incentives to sustain

low CO2 emission levels. This trend offers valuable insights into the

system's evolving nature of emission control strategies. Further analy-

sis of Figure 7 reveals the SINDy method's increasing proficiency in

accurately capturing and representing the system's dynamics through

its iterative process. With every iteration, SINDy increasingly focuses

on identifying the most crucial terms and relationships that dictate the

system's behavior. This methodical refinement leads to an increasingly

accurate depiction of the supply chain dynamics, as evidenced by the

narrowing gap between the predicted outcomes and observed data.

This accuracy demonstrates the SINDy method's capability to

effectively decipher the underlying dynamics of the system, even

amidst potential noise and complexity inherent in the data. The

culmination of this process is showcased in Figure 8, where the resul-

tant sparse model is presented. This model adeptly encapsulates the

intricacies of the supply chain dynamics into a more streamlined and

manageable format.

Next, we train and validate using actual data collected from the

African fertilizers supply chain. The process entails the model learning

from and then benchmarking its predictions against the factual data,

commonly represented by a solid line in visual representations. The

data used include but are not limited to historical data chronicling

quantities of raw materials, production volumes of chemical products,

the evolving population of CFs, shifts in migration rates, and changes

in carbon credit purchasing capacity, among other factors. These data

encapsulate the complexity and intricacies of the African fertilizers

supply chain. With the training dataset in place, the SINDYc algorithm

is deployed on these data. The objective is to generate a sparse

dynamical system that aligns closely with the observed data. The

obtained sparse dynamical system is formulated in Equation (9).

_x1 ¼0:1x1þu�0:0001x21�0:1x1x2�0:1x1x3
_x2 ¼0:1x2�0:01x22�0:1x2x1�x2x3
_x3 ¼0:7x3�x21�x1x2�x1x3
_x4 ¼0:8x4þx24�x1x2�x1x3

8>>><
>>>:

: ð9Þ

The mathematical equations provided exhibit the dynamics of a

complex system governed by four state variables _x1, _x2, _x3, _x4Þ
�

and

an external input u. Each state's change rate is portrayed through dif-

ferential equations, encapsulating a set of nonlinear interactions

between the variables and the input. These equations embody the

underlying dynamics the SINDY method strives to learn and repro-

duce. The proficiency of the SINDY model's decoder in reconstructing

these complex dynamics is conveyed through the calculated mean

square error. On a test dataset that comprises trajectories derived

from randomly chosen initial conditions, this error is less than 2.10�6

of the input variance fractions. Such a minimal value signifies an exact

reproduction of the system's dynamics by the SINDY model. More-

over, when examining the dynamics across the lifetime of trajectories

within the training data, the SINDY method's simulations demonstrate
F IGURE 6 Model simulation using given initial conditions and
parameters.
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prowess in reconstructing the dynamics of a solitary trajectory. The

associated accuracy here is less than 0.005, further solidifying the

exceptional precision of the SINDY approach. The training and valida-

tion phases, the two crucial stages of the model development process,

are visually traced in Figure 9.

The trained model is tested against unseen real-world data from

the same supply chain. The predictions the model makes, often

depicted as a dashed line, are juxtaposed against the actual data,

represented by a solid line. This comparison affirms the model's apti-

tude to accurately encapsulate and forecast real-world system dynam-

ics. The attained accuracy in the model is notably high, with the error

during the continuous validation phase being less than 10�5. This

insubstantial error reemphasizes the fidelity of the SINDY method in

capturing the system's dynamics (Olivares-Aguila & ElMaraghy, 2021;

Zhang & Schaeffer, 2019).

6 | DISCUSSION

This research addressed a sourcing decision problem within an African

fertilizer supply chain, exemplifying an LCISC characterized by com-

plexity and sensitivity to carbon footprint (Ivanov & Dolgui, 2020).

Our study aimed to understand the challenges and dynamics of sus-

tainable sourcing decisions. We modeled interactions between

HCFSs, LCFSs, CFs, and FMs using a double-prey, predator, and

super-predator model, capturing the nuanced supply chain dynamics

and carbon footprint interplay. The study highlighted the impact of

carbon neutrality pressures, showing a shift from HCFSs to LCFSs

driven by parameter p. It also demonstrated how market demand (w)

and regulatory parameters (U) significantly influence supply chain

dynamics, affecting production rates, sourcing decisions, and strate-

gies of CFs and FMs. Additionally, the model revealed efforts by CFs

and FMs to reduce their carbon footprint in response to market and

regulatory demands. However, a key challenge identified is the 30%

cost disparity between HCFSs and LCFSs, presenting a hurdle that

influences sourcing decisions and necessitates balancing economic

viability with environmental sustainability. The study underscores the

complexities of achieving sustainability goals within the economic

landscape of the supply chain.

In developing our dynamic model for low-carbon sourcing

in intertwined supply chains (LCISCs), we drew on key studies in sup-

ply chain management and data-driven modeling (Dolgui et al., 2020;

Peng et al., 2020; Tseng, Bui, et al., 2022; Tseng, Ha, et al., 2022).

These studies provided foundational concepts in real-time data inte-

gration, stochastic modeling techniques, and sustainable supply chain

management indicators, highlighting gaps our research addresses. Our

F IGURE 8 Training SINDYc for supply chain model.

F IGURE 7 Training and validation to recover the input U.
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model builds on these insights but differs significantly by focusing on

optimizing low-carbon sourcing through ecological analogies and

advanced data-driven algorithms. Our approach addresses the com-

plex reality of intertwined supply chains, characterized by pronounced

interdependencies and dynamic interactions. Unlike existing studies

that propose system dynamics models without resolving them, our

work presents an adapted system dynamics model for LCISCs. It

resolves this problem using advanced algorithms like NARX and

SINDYc. This allows us to account for time-varying dynamics and pro-

vide practical solutions for optimizing sourcing decisions.

To delve deeper into the capabilities of these algorithms, we

examined the NARX method and the SINDy model. The NARX

method excels in time series analysis, capturing nonlinear relationships

between a target and multiple exogenous variables, making it superior

to traditional autoregressive (AR) models (Alshater et al., 2022).

Conversely, the SINDy model uncovers underlying dynamic systems

F IGURE 9 Training and validation using the SINDYc method. (a) Training and validation. (b) Training and validation of real data.
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in time series data, assuming sparsity to focus on critical terms

influencing system behavior. This involves solving an optimization

problem to identify sparse differential equations best describing sys-

tem dynamics. Our analysis revealed that while NARX is robust in

time series analysis, SINDy outperformed in prediction accuracy and

control performance. Indeed, the performance metrics for the NARX

model indicated significant limitations, as evidenced by the error

histogram with 20 bins, which showed a wide distribution of errors

between the target and output states. This substantial deviation from

expected accuracy highlighted the model's inability to accurately cap-

ture the system's intricate dynamics, with errors remaining signifi-

cantly large and failing to converge to zero. In contrast, the SINDYc

model demonstrated superior quantitative performance. The mean

square error on test datasets with randomly chosen initial conditions

was less than 2.10�6, indicating a precise reproduction of system

dynamics. Additionally, the accuracy for trajectories within the train-

ing data was exceptionally high, with errors less than 0.005. Further

validation against unseen real-world data from the same supply chain

confirmed the robustness of the SINDYc model, with predictions

showing high accuracy and continuous validation phase errors being

less than 10�5. Moreover, data requirements differed significantly as

NARX needed a larger dataset for effective training (250 short trajec-

tories with 1000 snapshots each, totaling 25,000 instances), while

SINDYc performed comparably with just 104 instances from a single

trajectory. Despite limited training data, this demonstrates SINDYc's

robustness and effectiveness in learning system dynamics.

The study also employs ecological analogies to manage supply

chains under low-carbon and environmental sustainability con-

straints. Suppliers are modeled as prey and manufacturers and con-

sumers as predators, illustrating the competitive and cooperative

dynamics within the supply chain. This analogy highlights the need

for suppliers to adapt to manufacturers' and consumers' demands,

aligning with low-carbon initiatives. Decisions at one node can ripple

throughout the chain, akin to ecosystem changes affecting species

populations, helping managers anticipate and mitigate potential neg-

ative impacts. Additionally, employing real-time and historical data to

make informed sourcing decisions mirrors how natural ecosystems

adjust to environmental changes in real time. This enhances the sup-

ply chain's ability to quickly adapt to market and environmental

shifts. Using data-driven algorithms like NARX and SINDYc to pre-

dict and control supply chain dynamics improves decision-making

accuracy and operational efficiency, similar to how ecologists use

models to manage and conserve ecosystems effectively. By applying

these ecological insights to supply chain management, the paper

provides a novel perspective on navigating the complexities of inter-

twined supply chains in an environmentally conscious and economi-

cally viable manner.

To enhance the generalizability of our model, it is crucial to con-

sider potential modifications or expansions across different economic

sectors and geographical areas. Customizing the model to align with

specific industry practices and market conditions is essential for

broadening its applicability. For instance, adapting the model for the

European automotive sector would necessitate adjustments to

account for the stringent environmental regulations and sustainability

practices prevalent in the EU. Similarly, tailoring the model for the

East Asian electronics industry would require considering the region's

rapid technological advancements and competitive manufacturing

landscape. Incorporating variables such as local environmental poli-

cies, economic conditions, and unique supply chain characteristics can

provide deeper insights and increase the model's applicability in

diverse contexts. These adaptations would enhance the model's rele-

vance, flexibility, and utility, supporting informed and sustainable

decision-making across various industries worldwide. Consequently,

expanding our model in this manner could make it a more versatile

tool in strategic planning, thereby contributing more effectively to

global sustainability efforts.

7 | THEORETICAL AND MANAGERIAL
IMPLICATIONS

Our study advances the theoretical understanding of sustainable

supply chain management, particularly in the context of LCISCs. This

research transcends the conventional static frameworks by employ-

ing a novel double-prey, predator, and super-predator interaction

model, offering a dynamic and nuanced perspective to capture the

complex interdependencies and the consequential ripple effects

within such supply chains. Theoretical advancements can be repre-

sented in several key areas. First, our research provides a ground-

breaking approach to modeling the complexities of LCISCs.

Traditional models often present a static view, focusing on average

performance or steady-state conditions. In contrast, our dynamic

model integrates supply chain elements' interconnected and evolving

nature, offering a more comprehensive understanding of supply

chains' environmental impact and operational dynamics. Second, the

study elucidates the “ripple effect” in supply chains, where changes

at one supply chain node have amplified effects throughout the net-

work. Furthermore, by adopting an ecological analogy, our study

breaks new ground in applying the prey–predator model to analyze

carbon dynamics within supply chains. This approach highlights the

balance and sustainability, mirroring the delicate interdependencies

found in natural ecosystems, and offers a comprehensive method to

manage the interplay between economic activities and environmen-

tal impact.

Exploring data-driven algorithms like NARX and SINDYc repre-

sents a significant theoretical advancement. These models, particularly

SINDYc, emphasize sparse data and enhance predictive accuracy and

operational efficiency. Their application in supply chain management

introduces a new pathway for real-time decision-making based on

dynamic data inputs. Additionally, the research provides theoretical

insights into strategic decision-making within supply chains, highlight-

ing the need to balance economic viability with environmental sus-

tainability. This challenges traditional profit-centric approaches and

advocates for integrated decision-making frameworks that consider

environmental impact. The study offers a valuable roadmap for man-

agers to optimize sourcing strategies that balance economic viability

16 EL HARRAKI ET AL.
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with environmental sustainability. A key finding is the need to balance

sourcing between HCFSs and LCFSs. Despite a 30% cost advantage

of HCFSs, the study advocates for a gradual shift toward sustainable

LCFSs. It suggests collaborating with LCFSs to enhance cost-

effectiveness through technological investments or long-term con-

tracts, mitigating cost disparities and ensuring a smoother transition

to sustainable practices.

Moreover, the study underscores the importance of proactive

adaptation to market trends and regulatory changes. It advocates for

agile sourcing strategies that swiftly respond to the dynamic market

and regulatory environment, ensuring competitive advantage and

compliance. Another critical implication is using data-driven

decision-making tools such as NARX and SINDYc. These methods are

instrumental in enhancing decision-making processes by accurately

predicting the impact of external factors on the supply chain, thereby

aiding in strategic planning and risk management. Updating and refin-

ing these models with real-time data are essential for maintaining their

effectiveness. The study also highlights the importance of balancing

profitability with sustainability (Chevrollier et al., 2023). Managers are

encouraged to integrate environmental considerations into their

economic decision-making frameworks. Though initially costlier, the

research suggests that investments in cleaner, more efficient

technologies can offer long-term sustainability and regulatory compli-

ance benefits.

Additionally, our research leverages dynamic modeling techniques

to address the complexities of LCISCs, offering insights applicable

across various industries. The innovative double-prey, predator, and

super-predator interaction model, while developed for LCISCs, is

useful for any supply chain facing rapid changes or significant environ-

mental impacts. This model enhances understanding of dynamic

interdependencies and can be integrated into broader supply chain

management theories, emphasizing adaptability and resilience under

external pressures like market fluctuations and regulatory shifts. The

strategic decision-making insights, supported by advanced data-driven

tools like NARX and SINDYc, lay the groundwork for integrated

decision-making frameworks that balance economic viability with

environmental sustainability. These frameworks can guide managers

in low-carbon sourcing and other supply chain decisions, influencing

policymaking and strategic planning across sectors. Furthermore,

integrating our findings into educational programs and training for

supply chain management ensures that future managers are equipped

with the knowledge and tools to implement sustainable practices

effectively.

Our study also presents several ethical and social implications.

By applying our model, businesses can make decisions that posi-

tively impact local communities, promoting community engagement

and fostering stronger stakeholder relationships. Additionally, our

model addresses environmental justice by guiding companies to

reduce their carbon footprint and mitigate environmental impacts,

particularly in vulnerable and marginalized communities. This dual

focus on community engagement and environmental justice

underscores our approach's broader social benefits and ethical

considerations.

8 | CONCLUSION

Our study provides critical insights into the African fertilizers supply

chain, representing LCISCs in an environmentally conscious era. We

developed an innovative model capturing complex interactions

between supply chain entities, featuring a unique double-prey, preda-

tor, and super-predator dynamic. This model highlights the balance

between economic viability and environmental responsibility in

sustainable sourcing decisions. Unlike traditional static models, our

dynamic approach offers a comprehensive view of environmental

impacts within the supply chain, illustrating the ripple effect of deci-

sions across the chain. The study also highlights the significant cost

difference between HCFSs and LCFSs, with HCFSs being cheaper,

creating a complex decision-making scenario for managers balancing

sustainability and economic goals. We suggest a gradual transition to

LCFSs, facilitated through collaborations to improve cost competitive-

ness. Our exploration of data-driven algorithms, NARX and SINDYc,

revealed that while NARX is robust for analyzing complex time series

data, SINDYc outperformed it in prediction accuracy and control per-

formance, especially in real-time applications. The efficiency of SIN-

DYc, even with limited data, underscores its potential as a powerful

tool for supply chain managers, enabling rapid responses to market

changes and regulatory developments.

While our study provides valuable insights into sourcing decision

challenges within the African fertilizer supply chain, addressing its lim-

itations is essential to enhance transparency and reliability. Our meth-

odology, though robust and adaptable, is specifically tailored to this

industry and region. Different market dynamics, regulatory environ-

ments, and structural nuances in other sectors or regions may require

significant modifications. Second, our research heavily relies on esti-

mating model parameters, which depend on the availability and qual-

ity of historical data. The precision of these estimates is influenced by

the selection of appropriate algorithms and the representativeness of

the data. This highlights the need for rigorous data selection and algo-

rithm testing to ensure model accuracy and reliability.

Addressing these limitations requires further research. Our study

presents several promising research opportunities, such as exploring

advanced or alternative data-driven models to enhance predictive

accuracy and operational efficiency in LCISCs. Future studies could

integrate AI techniques for more nuanced analyses and better han-

dling human decision-making complexities. Additionally, applying our

model to various sectors and geographical contexts is a valuable direc-

tion, which would involve adapting the model to different market

dynamics, regulatory environments, and supply chain structures. This

expansion could help validate the model's versatility and robustness

across diverse applications. Developing practical tools and frame-

works to assist managers in implementing model insights is also cru-

cial. Future work could focus on creating user-friendly software or

decision-support systems that encapsulate the model's capabilities,

making it easier for managers to apply these insights in real-world

scenarios. This could include interactive dashboards, simulation tools,

and visualization techniques to provide managers with actionable

information and facilitate informed decision-making. Furthermore,
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collaborating with industry stakeholders to pilot these tools in real-

world settings could provide valuable feedback and drive continuous

improvement. By pursuing these directions, future research can

enhance our modeling approach's practical applicability and impact,

contributing to more efficient and sustainable supply chain manage-

ment practices.
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