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ARTICLE INFO ABSTRACT

Keywords: In medical risk prediction, such as predicting heart disease, machine learning (ML) classifiers must achieve high
Heart disease risk accuracy, precision, and recall to minimize the chances of incorrect diagnoses or treatment recommendations.
Data balancing However, real-world datasets often have imbalanced data, which can affect classifier performance. Traditional

Performance discrepancy
Explainability

Expert system

Domain knowledge

data balancing methods can lead to overfitting and underfitting, making it difficult to identify potential health
risks accurately. Early prediction of heart attacks is of paramount importance, and researchers have developed
ML-based systems to address this problem. However, much of the existing ML research is based on a single
dataset, often ignoring performance evaluation across multiple datasets. As the demand for interpretable ML
models grows, model interpretability becomes central to revealing insights and feature effects within predictive
models. To address these challenges, we present a novel data balancing technique that uses a divide-and-
conquer strategy with the K-Means clustering algorithm to segment the dataset. The performance of our
approach is highlighted through comparisons with established techniques, which demonstrate the superiority
of our proposed method. To address the challenge of inter-dataset discrepancies, we use two different datasets.
Our holistic pipeline, strengthened by the innovative balancing technique, effectively addresses performance
discrepancies, culminating in a significant improvement from 81% to 90%. Furthermore, through advanced
statistical analysis, it has been determined that the 95% confidence interval for the AUC metric of our method
ranges from 0.8187 to 0.8411. This observation serves to underscore the consistency and reliability of our
approach, demonstrating its ability to achieve high performance across a range of scenarios. Incorporating
Explainable AI (XAI), we examine the feature rankings and their contributions within the best performing
Random Forest model. While the domain expert feedback is consistent with the explanatory power of XAI,
some differences remain. Nevertheless, a remarkable convergence in feature ranking and weighting is observed,
bridging the insights from XAI tools and domain expert perspectives.

1. Introduction each approach has inherent drawbacks. Oversampling, which involves
random replication of a subset of the minority class, fails to provide

Classification models in machine learning (ML) often struggle with new insights (Douzas & Bacao, 2018), while undersampling, which in-
the conundrum of imbalanced datasets, where instances of the majority volves random elimination from the majority class, incurs the penalty of
class significantly outnumber those of the minority class, hindering data loss. In highly imbalanced scenarios, oversampling can lead to an

the model’s learning efficiency during training (Tarawneh, Hassanat,
Altarawneh, & Almuhaimeed, 2022). This imbalance becomes critical
in scenarios such as disease risk diagnosis, where the contributions of
the minority class are crucial (Brito, Chen, Wise, & Mortimore, 2022).
Historically, oversampling the minority class or undersampling the
majority class have been conventional remedial strategies. However,

overabundance of synthetic minority class data, reducing class variance
and potentially introducing bias into classification processes (Amin
et al., 2016). Conversely, undersampling potentially weakens classifier
performance through information erosion, and oversampling occasion-
ally culminates in model overfitting (Park & Park, 2021). Thus, the
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formulation of an innovative data equalization technique that avoids
these entrenched limitations is imperative.

Although existing hybrid oversampling and undersampling tech-
niques attempt to ameliorate imbalance problems, they fail in specific
domains such as health informatics, bioinformatics, and biostatistics,
where class instances are close and sometimes overlap, sowing seeds
of ambiguity during the ML model learning phase and misdirecting
classifiers during categorization. Dataset balancing is a powerful pre-
processing technique in ML that is used in a variety of fields, especially
where high precision and recall for all classes are essential (Ching et al.,
2018).

Despite occasionally acceptable accuracy, the pronounced biases in
balanced data can lead to unstable classification results, with precision
and recall experiencing significant inter-class variation, compromising
the consistency of the classifier’s performance. To achieve congruent
performance in ML classifiers — ensuring parity in precision, recall, and
F1 scores across classes — careful dataset balancing is paramount to
prevent bias during model training and testing (Liu, Fan, & Wu, 2019).

Artificial Intelligence (AI) has permeated various facets of health-
care, finding applications in predictive medicine, healthcare adminis-
tration, diagnostics, and clinical decision-making, among others (Ahsan
& Siddique, 2022; Marabelli, Vaast, & Li, 2021; Wallace, Mullarkey, &
Hevner, 2023). Despite progress in achieving human-like performance,
Al models are often underutilized, particularly in medical scenarios,
due to their inherent opacity and consequent mistrust among practi-
tioners (Mikalef, Conboy, Lundstrém, & Popovi¢, 2022). In response
to this concern, Explainable Artificial Intelligence (XAI) has emerged
to increase the transparency of model predictions by explaining the
logical progression that led to them. This initiative aims to foster
an environment conducive to the integration of Al systems into the
healthcare industry by increasing user confidence in such technolo-
gies (Das, Sultana, Bhattacharya, Sengupta, & De, 2023). Within the
XAI framework, the success of Al is measured not only by its predictive
accuracy but also, and importantly, by its ability to provide under-
standable explanations for its conclusions. Improved ‘explainability’
aims to enable more timely, cost-effective, and contextually appropriate
healthcare solutions than are traditionally available, particularly in the
hospital environment.

ML algorithms within XAI, powered by rich data, evidence-based
learning, validated protocols, and compelling post-action reasoning,
navigate clinical pathways. This fosters collaboration and strengthens
the doctor-patient relationship—critical elements in delivering high-
quality, cost-effective healthcare. In today’s environment, traditional
ML training and testing paradigms are insufficient to unravel the nu-
anced narratives embedded in medical informatics and the broader
healthcare sector. As a result, XAl tools have gained traction, serving to
decipher the impact and significance of features within the performance
matrices of ML models (Das et al., 2023). Establishing both local
and global explicability of models is paramount to building a robust
computational healthcare system. To cultivate trust among end-users
and support domain experts in healthcare, ML models must not only
be interpretable but also ensure that the impact and contributions of
individual features are transparently accessible.

A careful examination of the congruence between domain expert
knowledge and AI tools, particularly in healthcare XAI applications,
is imperative. This need arises from the critical necessity to validate
and cross-validate the functionalities and outcomes of widely used XAI
tools. To address this crucial issue, we conducted a survey of healthcare
experts and correlated their perspectives with the interpretability of
XAl tools to unravel and understand the intrinsic narratives embed-
ded in healthcare dilemmas. This paper revolves around several key
contributions, which are outlined below:

» We present a robust data balancing technique strategically de-
signed to regulate the stability of classifier performance, mitigate
performance discrepancies, and avoid overfitting and underfit-
ting scenarios. The proposed data balancing technique is based
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on a divide-and-conquer strategy using the K-means clustering
algorithm. The dataset is segmented into multiple clusters, within
which we independently apply oversampling and undersampling
to balance the class distributions. This approach not only mit-
igates the drawbacks of traditional methods but also improves
classifier performance by preserving class variance and reducing
bias, ultimately leading to more accurate and reliable predictions
in imbalanced classification scenarios.

We identify and dissect the problem of data discrepancies and
propose a structured pipeline aimed at mitigating this problem,
thereby aiming to achieve enhanced accuracy within both single-
dataset and inter-dataset frameworks.

We use XAI techniques to uncover the ’inner story’ hidden in
black-box ML algorithms, focusing on elucidating the local and
global explainability of ML models and assessing the impact of
features on classifier performance.

We synergize domain knowledge with XAI explainability through
a detailed survey of domain experts, exploring the relationship be-
tween domain knowledge and XAl tool results, while identifying
inconsistencies and exploring their potential causal factors.

The subsequent sections of this paper are organized as follows:
Section 2 describes related work in the field, while Section 3 explains
the proposed methodology along with the experimental setup. The
experimental results and their respective analyses are comprehensively
presented in Section 4, and the results are discussed in Section 5.
Section 6 concludes the paper by providing insights into possible future
work.

2. Related work
2.1. Data balancing techniques

The pivotal role of dataset balancing, an effective preprocessing
approach in ML, has seen its application in a variety of domains, high-
lighting its importance in dealing with class imbalance problems. A re-
view of related work provides insights into the different methodologies
adopted by researchers and the diverse contexts of their applications.

In a study by Batista, Prati, and Monard (2004), a meticulous
comparison was made between ten techniques across thirteen UCI
datasets in an attempt to address class imbalance issues. Interestingly,
their empirical findings underscored that discrepancies between classes
do not always undermine the performance of learning systems. One
particular investigation used ML to detect code smells and identified
suboptimal performance due to pronounced dataset imbalance char-
acteristics. Despite incorporating SMOTE in the preprocessing phase,
the researchers found that data balancing did not significantly im-
prove model performance (Pecorelli, Di Nucci, De Roover, & De Lucia,
2019). Extending this research, the same cohort (Pecorelli, Di Nucci,
De Roover, & Lucia, 2020) investigated five different data balancing
techniques, assessed their impact on code smell detection in object-
oriented systems, and found that omitting the balancing phase did not
adversely affect accuracy.

An insightful offering by Lemaitre, Nogueira, and Aridas (2017)
introduced the “imbalanced-learn API”, a Python toolbox tailored for
managing imbalanced datasets in ML. The research juxtaposed binary
and multiclass data balancing models, traversed different data balanc-
ing methodologies, and provided insights into oversampling and un-
dersampling techniques. Another investigation by Nagavelli, Samanta,
and Chakraborty (2022) used a hybrid method that combined SMOTE
and edited nearest neighbor (ENN) to balance datasets in heart dis-
ease prediction. By training ML models using this balancing technique
on ECG data, they contrasted the results from balanced and unbal-
anced datasets, highlighting a significant improvement in classifier
performance using the hybrid SMOTE-ENN method (95.9% accuracy
achieved for XGBoost), underscoring the importance of data balancing
in healthcare scenarios.
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In exploring appropriate data balancing techniques for classifying
the Cleveland heart disease dataset, researchers used NearMiss, SMOTE,
and SMOTETomek, coupling ML with ensemble methods to determine
the effectiveness of these balancing techniques (Sahid, Hasan, Akter,
& Tareq, 2022). The study highlights that using advanced imbalance
data handling techniques like SMOTETomek can significantly improve
the accuracy of heart disease prediction models up to 96% (Sahid
et al., 2022). In another study, in the midst of a highly imbalanced
dataset for stroke prediction in an elderly Chinese population, SMOTE
was implemented during preprocessing and a significant increase in
classifier performance was observed in terms of AUC (0.78 for random
forest), ensuring consistent and reasonably accurate results (Wu &
Fang, 2020).

As noted above, SMOTE is a widely used method for handling
class imbalance in medical datasets. However, it has notable limi-
tations when applied to medical data, including the potential intro-
duction of noise, increased computational complexity, persistence of
imbalance in highly skewed datasets, and challenges related to the
quality and interpretability of synthetic samples. Addressing these limi-
tations often requires combining SMOTE with other techniques or using
advanced methods tailored to the specific characteristics of medical
datasets (Wozniak, Wieczorek, & Sitka, 2023).

Most recently, the RLMD-PA (reinforcement learning-based my-
ocarditis diagnosis combined with population-based algorithm) model
offers a robust approach to myocarditis diagnosis, leveraging rein-
forcement learning and a population-based algorithm for effective and
accurate classification (with a mean accuracy of 88.6%) (Moravvej
et al., 2022). The model formulates the classification problem as a se-
quential decision-making process, which allows for continuous learning
and adjustment based on rewards, enhancing the model’s adaptability
to new data. The model effectively addresses the issue of class imbal-
ance by giving greater rewards for correctly classifying minority class
samples. However, the complexity of the model can make it challenging
to interpret and understand the decision-making process.

In a context where deep learning was applied to medical data, a
specific study (Zhang, Zhang, Pirbhulal, Wu, & Albuquerque, 2020)
applied data balancing techniques to ECG data and proposed the ABM
(active balancing mechanism) data balancing technique. The approach
used the Gaussian Naive Bayes algorithm to estimate the object sam-
ple, using entropy as a query function to evaluate the results. ABM
achieved 92.23% accuracy with support vector machines and 97.52%
with a modified convolutional neural network. Active deep learning
models have also significantly enhanced the precision of medical image
segmentation and classification, aiding in accurate diagnosis exceeding
90% and treatment planning (Mahmood, Rehman, Saba, Nadeem, &
Bahaj, 2023). By utilizing active learning techniques, these models re-
duce the annotation burden, selectively choosing the most informative
samples for training. A limitation is that the algorithmic bias of active
learning methods can result in an increased number of false positives
and negatives for minority classes, reducing the overall effectiveness of
the model (Mahmood et al., 2023).

2.2. Heart disease risk prediction using machine learning

Cardiovascular diseases (CVDs), recognized as a major global health
burden, are responsible for a substantial proportion of deaths world-
wide and fundamentally alter cardiac and vascular function (Azmi
et al., 2022; Jiang et al., 2022). The World Health Organization (WHO)
states that CVDs cause approximately 17.9 million deaths annually,
accounting for approximately 32% of global deaths (Tarawneh et al.,
2022). In particular, heart attacks and strokes cumulatively account for
a staggering 85% of these deaths (Douzas & Bacao, 2018), with de-
terminants such as unhealthy lifestyles, obesity, hypercholesterolemia,
and diabetes serving as precipitating factors (Rajkumar, Devi, & Srini-
vasan, 2022). Amidst the spectrum of sometimes confusing signs of
aging, making a definitive diagnosis becomes a complex endeavor.

Expert Systems With Applications 255 (2024) 124886

Given the critical nature of heart disease, early detection is emerging
as a potentially effective strategy to mitigate associated mortality.
Diagnostic modalities such as ECG and coronary angiography (CA)
are conventionally used; however, both have inherent limitations—CA
is associated with significant costs, while ECG can intermittently fail
to detect symptomatic manifestations of heart disease (Park & Park,
2021).

Navigating the complexities of heart disease diagnosis requires
acute precision, necessitating the fusion of data derived from multiple
sensors to enhance the accuracy of the dataset (Uddin, Rashid, Hasan,
Hossain, & Fang, 2022). ML represents a powerful tool to increase
diagnostic accuracy, using available and real-time data sets for accurate
disease detection (Cutri et al., 2017). The integration of computational
technologies into diagnostic procedures has experienced an upsurge,
simultaneously increasing the volume of medical data and underscoring
ML as an indispensable diagnostic tool in modern healthcare. ML is
useful in scenarios where large amounts of data require rigorous anal-
ysis and discrimination, such as interpreting genetic data, predicting
pandemics, and transforming medical data into actionable knowl-
edge (Sarumi & Leung, 2022; Tiwari, Bhati, Al-Turjman, & Nagpal,
2022; Weissler et al., 2021). A plethora of research efforts across
disciplines have used datasets from the UCI ML repository to predict
cardiac disease, but few investigations have addressed the key issue of
inter-dataset discrepancies when using multiple datasets (Lin, Mak, Li,
& Chien, 2018).

The study by Alshraideh et al. (2024) demonstrated that ML tech-
niques significantly enhance the accuracy of heart attack predictions
by analyzing a variety of risk factors, including high blood pressure,
cholesterol levels, irregular pulse rates, and diabetes. The study demon-
strated superior predictive performance of SVM with an accuracy rate
of 94.3%, outperforming other machine learning techniques tested.
However, even when enhanced with an effective feature selection
method, SVM struggles with imbalanced datasets, a common issue in
medical data. Similarly, Dalal et al. (2023) demonstrated a signifi-
cant improvement in prediction accuracy for cardiovascular disease
risk using ML models. The best-performing ensemble learning models
achieved an accuracy of 99.1%, which is superior to many traditional
methods. However, the lack of model transparency can be a barrier in
clinical settings.

To shape a real-time predictive system, it is imperative to develop an
ML model fed by diverse data that embodies versatility and generality
for assimilating novel input sensor data directly from human sub-
jects. Therefore, the path to constructing a globally applicable model
from existing heart disease prediction datasets requires mitigation of
emerging inter-dataset discrepancy issues. Following the resolution of
such issues, ML models trained on diverse datasets can be molded to
exhibit flexibility towards real-time multi-sensor data during predictive
analysis.

2.3. Explainable artificial intelligence in healthcare decision making

Srinivasu, Sandhya, Jhaveri, and Raut (2022) explored the emerging
trajectory of creating XAI systems in the healthcare sector, underscored
by the strategic use of techniques such as attention mechanisms and
surrogate models. Achieving XAl is fundamentally rooted in facilitating
a full human understanding of the decision-making processes of Al
models. The authors elucidate a range of strategies driven by XAI in
healthcare, including both regional and global post hoc explainability
toolkits, as well as explainability tools focused on the rational, data,
and performance dimensions. They further articulate the prospective
horizon of XAI in healthcare and highlight its potential dividends in
enhancing research cognizance within the sector.

In a parallel vein, Dave, Naik, Singhal, and Patel (2020) illumi-
nate several interpretability techniques, emphasizing the imperative
that if Al fails to elucidate its predictions — particularly within the
healthcare sector — it could potentially create more dilemmas than
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Fig. 1. An overview of the proposed methodology for predicting heart disease, including model development and XAI explanatory power.

solutions. Their experiments, conducted using the Cleveland Heart
Disease dataset, showed that variables such as ca, oldpeak, and thalach
were key contributors to the onset of heart disease. In contrast, Gu-
leria, Naga Srinivasu, Ahmed, Almusallam, and Alarfaj (2022), using
the same dataset but experimenting with different algorithms, found
different results from their model interpretability tools. Their research
showed that variables such as sex, trestbps, and cp had a significant
impact on the manifestation of heart disease.

The findings of the above literature suggest that establishing both
local and global explicability of models is crucial but challenging (All-
gaier, Mulansky, Draelos, & Pryss, 2023; Dhar, Dey, Borra, & Sherratt,
2023). It requires ensuring that the impact and contributions of in-
dividual features are transparently accessible to cultivate trust among
end-users and support domain experts in healthcare. There is a critical
need to validate and cross-validate the functionalities and outcomes of
widely used XAl tools through a survey of healthcare experts.

3. Methods
3.1. Approach overview

In the course of this work, certain datasets are selectively identified
as representative instances of imbalanced data samples. Our proposed
methodology passes through several stages, starting with data prepro-
cessing, where each dataset is individually subjected to data balancing
techniques. Subsequently, the balanced datasets are integrated into ML
algorithms, specifically logistic regression (LR) and random forest (RF)
classifiers, as visually depicted in Fig. 1.

The performance of each algorithmic ensemble is evaluated using
metrics including accuracy, precision, recall, and F1 score, supple-
mented by the presentation of Receiver Operating Characteristic (ROC)
curves. Furthermore, the methodology aims to reconcile inter-dataset

discrepancies in heart disease risk prediction using two publicly rec-
ognized datasets. The stratagem is orchestrated into four main seg-
ments: (i) data preprocessing, (ii) ML classifier construction, (iii) model
evaluation, and (iv) model explainability.

At the outset, the statistical properties of the discrete datasets are
examined, after which various preprocessing techniques are employed
to meticulously match the datasets to the requirements of the ML
classifiers. A congruent dataset structure is established by standard-
izing the columns based on the Hungarian dataset. The performance
metrics of each classifier through discrete stages are tabulated and
visually manifested through various plots, shedding light on inter-
dataset discrepancies and illustrating the effectiveness of our proposed
methodology in overcoming these challenges.

In the area of model explainability, a ranking of features is per-
formed, and their respective contributions to classifier performance are
graphically illustrated. In addition, a survey was conducted to validate
the accuracy of the explanations offered by XAI tools, and subsequently
juxtaposed with insights extrapolated from domain experts, providing
a holistic validation of XAI results.

In essence, our methodology provides a systematic way to navi-
gate unbalanced datasets, improve classifier performance, and reduce
inter-dataset discrepancies, thereby strengthening the robustness and
reliability of heart disease risk prediction models.

3.2. Datasets description

In the context of this investigation, two main datasets are used,
namely the Long Beach Veterans Affairs (VA) and the Hungarian heart
disease datasets (Alizadehsani et al., 2019), which serve as the basic
data sources for our experiments. Both datasets have identical char-
acteristics and are binary labeled. They include 13 standard features
(age, sex, chest pain type, cholesterol, resting blood pressure, fasting
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Table 1
Common features of the primary datasets.
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Feature name Feature type

Detail

Age Integer Age of the patient.

Sex String M - Male and F - Female.

ChestPainType String ATA - Atypical Angina, ASY - Asymptomatic, TA -
Typical Angina, and NAP - Non-Anginal Pain.

RestingBP Integer Resting Blood Pressure in mmHg.

Cholesterol Integer Serum Cholesterol in mm/dl.

FastingBS Binary 1 - if FastingBS > 120mg/dl,0 — otherwise.

RestingECG String Resting Electrocardiogram results [Normal:
Normal, ST: having ST-T wave abnormality (T
wave inversions and/or ST elevation or depression
of > 0.05 mV), LVH: showing probable or definite
left ventricular hypertrophy by Estes’ criteria.

Thalach Integer Maximum Heart Rate (between 60 and 202).

ExerciseAngina String Exercise - Induced Angina. Y - Yes, N - No.

Oldpeak Float Stress Test - ST depression induced by exercise
relative to rest.

ST Slope String The slope of the peak exercise ST segment. Flat -

flat, Up - upsloping, Down - downsloping

Heart Disease Binary

Output class: 0 - Normal and 1 - Heart disease.

blood glucose, maximum heart rate achieved, exercise-induced angina,
resting electrocardiographic results, exercise-induced ST depression rel-
ative to rest, and peak exercise ST segment slope) in addition to a single
target feature (heart disease), as shown in Table 1. The Long Beach
VA dataset contains 200 instances (51 in class 0 and 149 in class 1),
whereas the Hungarian dataset contains 294 instances (106 in class 0
and 188 in class 1).

Supplementary datasets, namely the Caesarean, Cervical, and Parkin-
son’s datasets, are used to corroborate our experimental findings. The
Caesarean dataset, provided by Campillo-Artero, Serra-Burriel, and
Calvo-Pérez (2018), is derived from an exploration of 6,157 patient
records collected in 2014 from four Spanish public hospitals and
includes 161 features - 142 categorical and 19 numerical. These charac-
teristics are divided into six groups, all of which, except for caesarean
sections, are grouped together in a category called “normal delivery”.
Notably, there is an imbalance, with 692 records corresponding to
caesarean deliveries and 5,465 to non-caesarean deliveries. The mul-
tivariate Parkinson’s disease dataset, extracted from the UCI Machine
Learning Repository (Sakar et al., 2019), consists of 188 Parkinson’s
disease patients (81 females and 107 males). Data acquisition consisted
of recording each subject’s articulation of the vowel /a/ three times,
using a microphone calibrated at 44.1 kHz, resulting in a dataset of
756 instances and 754 attributes. The cervical cancer dataset, aimed
at predicting cervical cancer indicators and diagnoses (Fernandes,
Cardoso, & Fernandes, 2017), includes a conglomerate of demographic
characteristics, lifestyle attributes, and historical medical records. It
integrates data from 858 patients (840 in class 0 and 18 in class 1)
covering 36 attributes.

To demonstrate the effectiveness of our proposed methodology,
further validation was performed using the UNSW-NB 15, US Air Force
LAN, CICDarknet 2020, and BETH datasets.

The UNSW-NB15 dataset (Moustafa & Slay, 2015) covers a range of
nine network intrusion types, synthesizing a variety of real-world oper-
ational activities and contemporary attack methods. It includes 82,332
records in the test set and a substantial 175,341 records in the training
set. Importantly, the training set ensures a balanced representation
between attack scenarios and standard, non-intrusive operations. Con-
versely, the US Air Force LAN dataset, available from the Kaggle dataset
repository (Dhanabal & Shantharajah, 2015), authentically replicates
Local Area Network (LAN) attacks through a simulated flow of data

between IP addresses adhering to specified protocols within a defined
connection timeframe. Each connection, represented by a sequence of
TCP packets, is categorically labeled as either ‘normal’ or a specific
attack type. Analysis and data parsing facilitate the extraction of 41
attributes that encapsulate quantitative and qualitative dimensions of
both typical and malicious connection scenarios. The CICDarknet2020
dataset (Aswad & Sonug, 2020) presents a multi-faceted classification
problem, exacerbated by the presence of data imbalance, with 141,530
observations across 85 columns. It is divided into two distinct labeling
columns: Label-1, which identifies non-Tor users, non-VPN users, VPN
users, and Tor users; and Label-2, which distinguishes between various
usage categories, including browsing, audio streaming, chatting, file
transfer, video streaming, email, VOIP, and additional specific use
cases, each with a different number of cases. Lastly, the BETH dataset,
also obtained from Kaggle (Highnam, Arulkumaran, Hanif, & Jennings,
2021), contains a robust 8,004,918 events. This dataset is derived from
23 honeypots, each strategically deployed on a major cloud provider
and monitored at five-hour intervals. Preliminary process logs were
judiciously selected for subsequent benchmarking and analysis efforts,
with data subsets developed for training, validation, and testing based
on host, log count, and activity metrics. Interestingly, the attack data
is exclusively within the test subset.

3.3. Data preprocessing techniques

This research outlines a methodological approach to heart disease
risk classification using ML classifiers, utilizing two elaborately curated
datasets. Central to the analysis is the meticulous implementation
of critical data preprocessing steps that provide a robust foundation
for subsequent analysis stages. Firstly, missing value handling is un-
dertaken to address potential gaps in the dataset and ensure that
the subsequent analysis is based on a comprehensive data structure.
Log-transformation is then applied, a technique crucial for stabilizing
variance and making the data more amenable to the assumptions
underlying many statistical and ML methods. This is followed by nor-
malization, which ensures that different variables are made comparable
by adapting them to a standard scale, thereby increasing the robust-
ness and interpretability of the models developed. In addition, outlier
detection is incorporated into the preprocessing stage to identify and
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address anomalous values that may unduly bias the subsequent analy-
sis. Finally, imbalanced data handling strategies are employed to ensure
that the developed classifiers are not unduly influenced by the relative
frequencies of the response variable categories.

3.3.1. Missing value handling

In real-world datasets, missing values are a primary cause of skewed
results and significantly affect the performance of ML algorithms
(Thomas, Bruin, Zhutovsky, & van Wingen, 2020). To resolve the prob-
lem of missing values in the Hungarian and Long Beach VA datasets,
we treat the missing value column as the dependent variable and the
other correlated columns as the independent variables. To replace any
missing values with appropriate values, we use Random Forest (RF) as
the regression model. We use the mean to handle the missing values of
the other datasets.

3.3.2. Outlier detection

Outlier detection is crucial in ML algorithm development as outliers
in a dataset decrease algorithm performance (Ramaswamy, Rastogi, &
Shim, 2000). Outliers are identified using Tukey fences, which involve
quartiles (Q1, Q2, Q3) to find extreme values (Zhou, Li, Li, Wang, &
Wang, 2006). Q1 and Q3 are values below and above which 25% of
data lies, respectively. Outliers fall below Q1 - 1.5 * (Q3 - Q1) or above
Q3 + 1.5 * (Q3 - Q1). Outliers that are below the lower limit and above
the upper limit are replaced with the lower limit and the upper limit,
respectively.

3.3.3. Data balancing

Data balancing techniques are a crucial part of preprocessing be-
cause they assist classifiers in avoiding incorrect classifications due to
imbalanced data. Data can be balanced by oversampling, undersam-
pling, or combining the two techniques. In this research, we propose a
novel technique that outperforms conventional methods.

3.3.4. Normalization

Normalization is the process of converting numerical column values
in a dataset to a standard scale (Garcia, Luengo, & Herrera, 2015).
Normalization is essential when an ML model uses Euclidean distance
for interpreting the inputs (Taunk, De, Verma, & Swetapadma, 2019).
The Min-Max scaling method is used in this work to normalize the
datasets. It divides the result by the range after subtracting the smallest
value from the column’s maximum value. Following normalization,
each column’s value ranges from O to 1.

3.4. Description of ML algorithms

In this research, we apply several benchmark ML algorithms to
predict heart disease from secondary data. The short descriptions of
the algorithms are listed below.

3.4.1. SVC

Support Vector Classifier (SVC) is a supervised ML algorithm used
for binary classification (Sokoliuk, Kondratenko, Sidenko, Kondratenko,
Khomchenko, & Atamanyuk, 2020). The key concept of this algorithm
is to find a linear hyperplane that separates the two classes in the
feature space with the largest margin. The margin is measured as the
distance between the hyperplane and the nearest data points from each
class. It is an efficient algorithm that can handle non-linearly separable
data through the use of kernel functions to transform the data into a
higher-dimensional space, enabling the discovery of a linear decision
boundary (Prakash & Kanagachidambaresan, 2021).
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3.4.2. DT
A Decision Tree (DT) classifier is a type of supervised learning
algorithm used in ML for classification problems (Caruana & Niculescu-
Mizil, 2006). The DT can be represented as a binary tree, where each
node represents a test on an input feature, and each edge represents
the outcome of that test. The leaves of the tree correspond to the class
labels (Rokach & Maimon, 2005).
The DT classifier can be defined mathematically using the following
equation:
L
h(x) = )" y,I(xeR,) )}
i=1
where h(x) is the predicted class label for input x, L is the number of
leaves in the decision tree, R; is the region of input space corresponding
to the ith leaf, y; is the class label assigned to the ith leaf, and I(x € R;)
is the indicator function that returns 1 if x is in R; and 0 otherwise.

3.4.3. RF

RF is a popular ensemble learning algorithm employed in classifica-
tion tasks. It is composed of a collection of decision trees, each built
with a random subset of features and training data (Reis, Baron, &
Shahaf, 2018). Each RF decision tree is built with a random subset of
features and training data. The feature subsets are randomly selected at
each node of the tree, and the training data subsets are created by boot-
strapping the original dataset (Azar, Elshazly, Hassanien, & Elkorany,
2014). The criterion used to split the nodes of each tree is typically the
Gini impurity or entropy, which measures the homogeneity of the class
labels within each node. The final decision boundary is determined by
the collective decision of all the trees in the forest.

RF is highly robust to noise and less prone to overfitting, espe-
cially important after data balancing, which can sometimes introduce
synthetic noise. RF can also handle a large number of input features
without requiring feature reduction techniques. This is particularly
beneficial when dealing with complex medical datasets where numer-
ous features may be relevant. Its ability to handle different types of
data (numerical, categorical) and missing values makes it an excellent
choice for real-world medical datasets, as confirmed in previous stud-
ies (Sumwiza, Twizere, Rushingabigwi, Bakunzibake, & Bamurigire,
2023).

3.4.4. XGBoost

XGBoost is an ensemble-based approach combining the strengths of
gradient boosting and bagging techniques (Ferreira, Pilastri, Martins,
Pires, & Cortez, 2021). The XGBoost algorithm creates a set of decision
trees, each trained to fix the flaws of the previous one (Sagi & Rokach,
2021). A new tree is fitted to the negative gradient at the end of each
iteration of the algorithm, which calculates the gradient of the loss
function concerning the predictions made by the current model. The
trees’ predictions are then combined to give the final prediction. The
algorithm also includes a regularization term to prevent overfitting and
improve generalization.

3.4.5. LR
Logistic Regression (LR) is a statistical technique that models the
relationship between a binary dependent variable and one or more
independent variables (Zhu, Hu, Hou, & Li, 2021), making it a natural
fit for predicting heart disease risk. Its inherent