
Citation: Ma, X.; Ma, G.; Liu, Y.; Qi, S.

APCSMA: Adaptive Personalized

Client-Selection and

Model-Aggregation Algorithm for

Federated Learning in Edge

Computing Scenarios. Entropy 2024,

26, 712. https://doi.org/10.3390/

e26080712

Academic Editor: Éloi Bossé

Received: 31 July 2024

Revised: 14 August 2024

Accepted: 19 August 2024

Published: 21 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

APCSMA: Adaptive Personalized Client-Selection and
Model-Aggregation Algorithm for Federated Learning in Edge
Computing Scenarios
Xueting Ma 1,2 , Guorui Ma 1, Yang Liu 3,* and Shuhan Qi 1,2,*

1 School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen 518055, China;
22s151149@stu.hit.edu.cn (X.M.); 22s151091@stu.hit.edu.cn (G.M.)

2 Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies, Shenzhen 518055, China
3 Department of Computer Science, Swansea University, Swansea SA1 8EN, UK
* Correspondence: yang.liu@swansea.ac.uk (Y.L.); shuhanqi@cs.hitsz.edu.cn (S.Q.)

Abstract: With the rapid advancement of the Internet and big data technologies, traditional central-
ized machine learning methods are challenged when dealing with large-scale datasets. Federated
Learning (FL), as an emerging distributed machine learning paradigm, enables multiple clients to
collaboratively train a global model while preserving privacy. Edge computing, also recognized as a
critical technology for handling massive datasets, has garnered significant attention. However, the
heterogeneity of clients in edge computing environments can severely impact the performance of
the resultant models. This study introduces an Adaptive Personalized Client-Selection and Model-
Aggregation Algorithm, APCSMA, aimed at optimizing FL performance in edge computing settings.
The algorithm evaluates clients’ contributions by calculating the real-time performance of local
models and the cosine similarity between local and global models, and it designs a ContriFunc
function to quantify each client’s contribution. The server then selects clients and assigns weights
during model aggregation based on these contributions. Moreover, the algorithm accommodates
personalized needs in local model updates, rather than simply overwriting with the global model.
Extensive experiments were conducted on the FashionMNIST and Cifar-10 datasets, simulating three
data distributions with parameters dir = 0.1, 0.3, and 0.5. The accuracy improvements achieved
were 3.9%, 1.9%, and 1.1% for the FashionMNIST dataset, and 31.9%, 8.4%, and 5.4% for the Cifar-10
dataset, respectively.

Keywords: edge computing; federated learning; client selection; model aggregation

1. Introduction

With the rapid advancement of science and technology and continuous upgrades in
hardware devices, there has been a significant increase in the number of smart terminals
and the volume of data they hold. Traditional centralized machine learning training
methods, which consolidate data from all clients to the cloud for unified training and
optimization, lead to substantial unnecessary communication overhead. This issue becomes
even more pronounced in the current 5G/6G network environments, where there are
stringent demands for network timeliness, making centralized data processing prone to
considerable service latency issues, especially in long-distance transmissions and high-
density scenarios. Additionally, increasing concerns over privacy and data security have
elevated data leakage risks to a major concern for clients.

Whether due to mistrust towards cloud services or fear of data interception during
transmission, there is a growing preference to avoid transferring private data to the cloud.
Therefore, in the context of 5G/6G networks, there is a gradual shift of artificial intelli-
gence algorithms towards the edge layer, leading to the emergence of a new deployment
model—edge computing [1]. Edge computing enables data processing and analysis at

Entropy 2024, 26, 712. https://doi.org/10.3390/e26080712 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26080712
https://doi.org/10.3390/e26080712
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0009-0003-1950-2908
https://orcid.org/0000-0003-2486-5765
https://orcid.org/0000-0002-6903-145X
https://doi.org/10.3390/e26080712
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26080712?type=check_update&version=2

Entropy 2024, 26, 712 2 of 26

locations closer to the client, significantly reducing service latency and eliminating the need
for information exchange between clients and the cloud. This is particularly crucial for
real-time or near-real-time application scenarios.

Furthermore, federated learning [2], as a novel distributed learning model specifically
designed to solve the problem of data centralization, can jointly train multiple client models
without leaking private client data, thereby obtaining a global model. In federated learning,
each client has certain computing and storage capabilities and can use local data for local
model training. Unlike traditional centralized learning, federated learning clients upload
model parameters instead of local data, ensuring the privacy and security of client data
through a “data stays, model moves” approach [3]. The server side receives and aggregates
these local model parameters uploaded by distributed nodes, calculates and updates the
global federated model parameters, then distributes the new model parameters to all client
nodes, and repeats the above training process until the model converges or reaches a
specified number of training rounds. Since both edge computing and federated learning
belong to distributed federated learning and their computation models are similar, the
industrial and academic communities have gradually attempted to apply federated learning
technology to edge computing scenarios, thus forming edge federated learning [4].

In edge computing scenarios, where client numbers are typically high, edge servers
are often unable to aggregate models across all clients for training. To alleviate the com-
putational burden on edge servers and reduce the volume of data transmission from end
devices to the edge, traditional federated learning approaches commonly employ random
client-selection methods for model aggregation. However, considering the significant
heterogeneity of clients in terms of data resources, computational capabilities, and device
conditions within the edge computing environment, random selection does not always
effectively identify the clients most valuable for global model training. This heterogeneity
implies that certain clients may be better suited to participate in specific training rounds,
thereby having a more direct impact on enhancing the performance of the global model.

Therefore, we propose the development of a more refined client-selection strategy
that can identify and select the clients most likely to improve global model performance
in each training round. This strategy will be based on real-time performance indicators of
clients, such as data quality, computational capacity, and device stability, ensuring that the
chosen clients can maximize their contribution to the optimization and advancement of the
global model. By employing this method, we can not only enhance the training efficiency
and performance of the model but also utilize edge computing resources more judiciously,
paving the way for new possibilities in the application of federated learning within edge
computing environments.

Moreover, traditional federated learning typically assigns weights to clients based on
the volume of their data. However, since it cannot be guaranteed that all data from each
client are effective, it is possible that clients with a larger volume of data may not contribute
to the global model training. Therefore, exploring the contribution of clients to the global
model training through some real-time dynamic indicators is very necessary. Assigning
larger weight parameters to clients with greater contributions can maximize the impact on
all clients.

Furthermore, traditional federated learning models usually directly use the global
model parameters received by clients to overwrite local models during local updates. This
approach can lead to the loss of some client-specific features, which is not conducive
to judgments on categories with smaller distribution ranges. Therefore, researching an
effective method to balance the relationship between the global model and client local
models can, to some extent, preserve some local features of clients, thereby improving the
accuracy of the federated model.

The research in this paper focuses on how to solve the federated learning problem in
the edge computing scenarios mentioned above, especially for the case of a large number
of heterogeneous clients. To this end, we design APCSMA, which avoids pre-assessment of
the importance of each metric in the current situation by iteratively learning the client’s

Entropy 2024, 26, 712 3 of 26

metric coefficients during the training process, significantly reducing the need for extensive
prior experiments. In addition, this approach improves the generalization ability of the
model to adapt to different scenarios and datasets more effectively. The main contributions
of APCSMA are as follows:

(1) We analyze the main factors affecting the efficiency of model training and propose
a new contribution function ContiFunc based on these factors. By iteratively training this
function, APCSMA can adaptively determine the coefficients of each metric and evaluate
the contribution of clients in real time. This enables us to select appropriate clients to
participate in each round of global model training and assign appropriate weights to the
selected clients during global model aggregation.

(2) Considering that the number of clients participating in the model-aggregation
phase is relatively small and the client contribution values will be used as aggregation
weights, we introduce the concept of cosine similarity. The contribution function in the
model-aggregation phase is optimized to ensure that each client receives a more accurate
aggregation weight value and achieves a fairer global model aggregation, as long as the
computational resources and time conditions allow.

(3) In the client local model update phase, we take a different approach from traditional
federated learning. By comparing the performance of the aggregated global model with
the previous round of local models on client local data, we decide whether to retain certain
features of the client local model parameters to achieve personalized model updating.

(4) To verify the feasibility, effectiveness, and generalizability of the proposed method,
we conducted extensive simulation experiments and comparative studies using the Fashion-
MNIST and Cifar-10 datasets. By adjusting the Dirichlet coefficient of the dataset distribu-
tion, we simulated the degree of data dispersion across various client scenarios. Through
comparisons with three classical algorithms—FedAvg, FedPHP [5], and FedALA [6]—the
experimental results demonstrate that the APCSMA algorithm can adaptively optimize the
performance of federated training models in diverse edge scenarios.

The remainder of the paper is organized as follows. Section 2 presents the research
background and related literature on edge computing and federated learning. In Section 3,
we describe the implementation of traditional federated learning models and the model
architecture between terminals and edge nodes in edge scenarios and some influencing
factors of model training. Section 4 elaborates on the specific design scheme of the algorithm
APCSMA proposed in this paper. Section 5 presents extensive validation experiments
conducted on two distinct datasets, and includes a comparative analysis with two state-of-
the-art algorithms. Finally, we conclude and consider possible future work in Section 6.

2. Background and Related Work

Early distributed systems were predominantly based on cloud computing architec-
tures, consisting of a cloud server and multiple clients [7]. In such architectures, servers
would collect local data from all clients, upload it to the server, and perform unified param-
eter aggregation and model updates. However, with the rapid development of Internet of
Things technology, the problems faced by this centralized data-processing approach have
gradually become apparent: (1) Centralized cloud computing architectures cannot cope
with the explosive growth of massive data from clients; (2) Long-distance data transmission
between the cloud and edge incurs substantial transportation costs and network latency;
(3) There is a risk of leakage of client privacy information during the data-transmission
process at the edge. As a result, the network model of edge computing [8] has emerged.

The edge computing architecture improves upon traditional cloud computing by
dividing clients into multiple edge network layers and delegating some of the cloud’s
computational power to edge network layers near the clients, equipping each edge network
layer with edge servers capable of computing and storage. This not only reduces the cost
and latency issues associated with long-distance communication between “cloud-edge”
but also minimizes the risk of privacy data leakage during long-distance transmission.

Entropy 2024, 26, 712 4 of 26

Arranging for all clients to participate in the training of the global model is a pre-
requisite for implementing edge computing and is key to ensuring high-performance
services, which is very important for the edge computing planning of enterprises and
service providers. Compared to direct long-distance communication between “cloud-
terminal”, edge computing introduces an intermediate network layer between the two,
namely the edge, dividing all clients into different edge networks.

Federated learning is also a popular distributed training network, first introduced by
McMahan et al. [9] and described the most traditional federated algorithm, the Federated
Averaging algorithm (FedAvg), in previous study [10]. This algorithm improves the perfor-
mance and training rate of federated learning models by sharing training models through
the transmission of client models instead of local training data.

Subsequently, researchers have explored and optimized federated algorithms in vari-
ous ways. Previous study [11] took into account the system heterogeneity and statistical
heterogeneity of the federated network and proposed the FedProx federated framework.
This framework limits the gap between client models and the current global model by
adding a proximal term to the local loss function, ensuring the convergence of the resulting
model. Previous study [12] focused on the issue of data heterogeneity, designing the FedCos
algorithm by analyzing the gradient changes of models during training. This algorithm
introduces cosine similarity to reduce the inconsistency in the direction of client models.
Personalized Federated Learning is also a method to enhance model performance. Previ-
ous study [13] improves performance by identifying sensitive parts of the model, such as
the classification layer, and utilizing plugins to distribute information along with model
parameters from the server to various clients. Previous study [14] delves into the archi-
tecture, development, and evaluation of universal corporate performance, implementing
user-centered artificial intelligence. Meanwhile, previous study [15] introduces the Fair Fed-
erated Personalized Graph Neural Network (F2PGNN), a graph-based model that addresses
inherent bias issues in recommendation systems across different demographic groups.

Moreover, due to the excessive number of clients in edge scenarios, it is not feasible
to aggregate local models from all clients. It is necessary to determine which clients
should participate in each round of global model training based on an assessment of
their contribution to the global model. Existing evaluation metrics include the shapley
value [16], single-round and multi-round reconstruction [17], and the differences between
the predictions of new and original models [18]. Previous study [19] proposed that selecting
clients with larger values of the local loss function could accelerate the convergence of the
global model. Previous study [20] simulated the test accuracy of local models using the
amount of training data from clients to measure their contribution level.

Since the distributed concepts of edge computing and federated learning are very
similar, Previous study [21] introduced an edge server layer in cloud computing and
designed a three-layer federated learning algorithm, HierFAVG, for aggregating models
trained by multiple edge servers. Previous studies [22–28] focused on the training of clients
by the edge and the aggregation of the edge by the cloud, while studies [29–34] focused on
the terminal-edge, deploying and optimizing in the edge network layer near the clients.
Study [29] compares and analyzes feature-selection algorithms from the perspective of
accuracy, processing update weights from appropriate users in edge devices. Study [30]
designs a mobile-aware collaborative caching approach using asynchronous federated and
deep reinforcement learning to cache content at edge or vehicular nodes, thus enabling
vehicular computing in edge scenarios. Meanwhile, study [31] employs a self-determination
mechanism in place of a centralized selection process, allowing clients to autonomously
decide whether to participate in federated training based on resource status, thereby
facilitating mobile edge computing.

In summary, recent research has generated significant interest in federated learning
and edge computing, particularly regarding their potential for data privacy protection and
reducing data-transmission needs. FedProx introduces a mechanism to address system
heterogeneity, while FedCos tackles data heterogeneity by considering the cosine similarity

Entropy 2024, 26, 712 5 of 26

of model gradients. Additionally, personalized federated learning strategies have emerged
as a growing trend, aimed at enhancing the applicability of traditional models in various
user environments. Despite these contributions establishing a theoretical foundation for
federated learning, challenges remain in effectively optimizing model aggregation in envi-
ronments characterized by system and statistical heterogeneity. Specifically, the critical issues
of selecting appropriate clients for each round of model updates and achieving efficient
model training under heterogeneous conditions are still unresolved. This research aims to
address these challenges by proposing a new solution that combines the latest algorithms
and techniques to enhance the application of federated learning in edge computing.

3. Adaptive Personalized Client-Selection Algorithm for Edge Federated Learning

The first subsection of this section discusses the challenges faced by traditional fed-
erated learning algorithms in edge computing scenarios, particularly the issue of high
transmission and computation costs due to the large number of clients. It then emphasizes
the limitation of randomly selecting clients, which is not suitable for the heterogeneous
nature of clients in edge scenarios, thus affecting the accuracy of the global model. Next, the
proposed optimization algorithm is introduced in detail. The drawbacks of the “edge-cloud”
computing model are then explained, leading to the proposal of the “terminal-edge-cloud”
architecture, along with an introduction to its advantages. In the second subsection, it
points out the drawbacks of some federated algorithms that only consider a single metric
and provides a detailed introduction to the performance metrics that will be used in this
paper’s algorithm.

3.1. An Edge Computing Framework Based on “Terminal-Edge” Architecture

In traditional federated learning algorithms, each round of global model training
requires the participation of all clients, and it is assumed that the cloud server has suffi-
cient computational power to process the model parameters uploaded by all clients. This
poses a challenge in edge computing scenarios, where the multitude of clients means
that aggregating all local models to the cloud can lead to significant transmission and
computational costs. Due to the differences in data resources, computational, and commu-
nication capabilities among clients, randomly selecting a subset of clients for training can
reduce the accuracy of the global model. To address these issues, we propose an Adaptive
Personalized Client-Selection and Model-Aggregation Algorithm (APCSMA) suitable for
edge scenarios.

Taking into account the computational capabilities and resource constraints of various
clients, to make model training more efficient and not limited by the computational power
of individual devices, this paper opts for a streamlined Convolutional Neural Network
(CNN) structure as the base model for all clients. This choice ensures that even clients with
lower computational capabilities can participate in the federated learning process, thus
achieving comprehensive client coverage and ensuring the universality and inclusiveness of
model training. This not only considers the diversity of computational power distribution
but also helps to reduce the communication costs of model training, making the entire
federated learning process more feasible and efficient in edge computing scenarios.

Building on this, our approach involves delegating some of the cloud’s computational
capabilities to the edge layer closer to the clients, to alleviate the load on the central
server and reduce communication latency. Specifically, we divide the clients into different
edge network layers and equip each layer with an edge server capable of computing and
storage. These edge servers are responsible not only for aggregating the global model but
also for saving the performance metrics of all clients from the last participation in global
training. By conducting small-scale training between edge servers and clients within each
edge network layer, our architecture can effectively optimize the terminal-to-edge model
training process. This “terminal-edge-cloud” architecture not only reduces communication
overhead and improves the efficiency of model updates aggregation but also ensures data
privacy throughout the learning process.

Entropy 2024, 26, 712 6 of 26

Furthermore, we have implemented various algorithms to address the heterogeneity
of data distribution, ensuring the generalizability of the model and its robustness in Non-IID
data environments. Through this horizontal federated learning architecture, our research
demonstrates a collaborative machine learning method that can effectively utilize data
resources scattered among various data holders while maximally protecting data privacy.
The entire “terminal-edge-cloud” federated learning framework is illustrated in Figure 1,
with the main optimization being the training conducted within each edge network layer,
that is, the optimization of the model training between the terminals and the edge.

Figure 1. “Terminal-edge-cloud” architecture in edge computing (incorporating multiple edge layers).

This design effectively mitigates the challenges of federated learning in edge comput-
ing scenarios. By decentralizing computational capabilities to the edge layer, it not only
safeguards the privacy of client data to a certain extent but also alleviates the computational
burden on the cloud and reduces transportation costs, thereby enhancing the efficiency of
model training. Moreover, through small-scale training within edge network layers and
analysis of metrics across various edge repositories, it better accommodates the differences
among clients, thereby improving the performance of the global model. This adaptive
federated learning algorithm offers a viable solution for edge computing and holds broad
application prospects.

3.2. Factors Influencing Client Selection and Weight Allocation

Given the limited number of clients that can participate in global aggregation in each
round, selecting the appropriate clients is crucial. The most common method of client
selection is the random selection algorithm, an unbiased selection method. While ensuring
that each client has an equal probability of participation in the global model training process,
the heterogeneity of clients in terms of data and computational resources means that a
random selection algorithm is unable to identify the clients most beneficial for enhancing
global performance in each training round. Therefore, researchers have attempted to study
biased client-selection strategies.

In existing research, server-side selection of clients has been based on metrics such as
the number of local training samples available at the client [10] and the loss function [19].
However, these metrics focus on relatively narrow aspects and do not adequately measure
each client’s contribution to the optimization of global model performance during aggre-
gation. Therefore, this paper considers multiple client metrics within model training and
employs a function design approach to interrelate these metrics. Among these, the most
common metrics for classification tasks include the following:

(1) Client sample number (number): The volume of test sample data in each client’s
local data.

Entropy 2024, 26, 712 7 of 26

(2) Participation rounds (epoch): The total number of rounds each client participates
in global training.

(3) Accuracy (acc): Accuracy is the most direct evaluation indicator in classification
tasks, i.e., the proportion of correctly predicted samples out of the total number of samples.
Whether a classification is correct or not only considers whether the predicted category
matches the true category, as shown in Equation (1).

acc =
TP + TN

TP + TN + FP + FN
(1)

where, TP, TN, FP, and FN stand for True Positive, True Negative, False Positive, and
False Negative, respectively.

(4) Loss Function (loss): The cross-entropy loss function is most commonly used in
classification problems to calculate the discrepancy between model predictions and the true
labels of the samples, thereby reflecting the performance of the model in federated training.
In the case of binary classification problems, the cross-entropy loss for an individual sample
is denoted as loss, while the cross-entropy loss for a client with N samples is denoted
as L. The calculation methods for these are shown in Equations (2) and (3), respectively
(for multi-class problems, the cross-entropy loss function is typically combined with the
so f tmax function to extend it to the multi-class cross-entropy loss function).

loss = −
(

ylogŷ + (1− y)log(1− ŷ)

)
(2)

L =
N

∑
i=1

loss = −
N

∑
i=1

(
yilogŷi + (1− yi)log(1− ŷi)

)
(3)

where, N represents the number of test samples at each client, i denotes the i-th training
sample of the client, y and ŷ respectively represent the actual label and the predicted label
of the i-th sample.

4. Algorithm

This section is the most critical part of the entire text, providing a detailed overview of
the three optimization steps discussed in this paper. In the first subsection, we introduce
the contribution function, offering an in-depth explanation, followed by a description
of its specific applications during the client-selection phase and the model-aggregation
phase, along with flowcharts and pseudocode. Recognizing that the model-aggregation
phase demands more detailed considerations than the client-selection phase, the second
subsection introduces the concept of cosine similarity. We then explain how to appropriately
incorporate cosine similarity in the experiments and the subsequent optimization methods.
Finally, the third subsection addresses the traditional local model updating methods in
federated learning, highlights their shortcomings, and proposes a conditional weighted
update approach for the client-local models.

4.1. Client Selection and Model Aggregation

While the number of client samples, the number of participation rounds, the accuracy
of the local model, and the loss function all influence the training of the global model,
balancing the impact of different metrics on the training of the global model is a crucial
and complex process. Therefore, we have established a contribution function, ContriFunc,
as shown in Equation (4).

ContriFunc = α · NumCi + β · EpochCi + γ · AccCi + η · LossCi (4)

where, i denotes the ID number of each client, Ci represents the i-th client, and α, β, γ, and η
correspond to the relative importance coefficients of the number of samples, the number of

Entropy 2024, 26, 712 8 of 26

participation rounds, the accuracy, and the loss function value of the contribution function
ContriFunc of each client, respectively, with the constraint that α + β + γ + η = 1.

The determination of the metric coefficients within the contribution function typically
relies on existing empirical knowledge or tedious experimental processes. Once these
coefficients are set up, this algorithm can be only applicable to specific datasets in a
particular environment, showing strong context dependencies. Such an approach not
only consumes a considerable amount of time and effort but also has relatively narrow
applicability. In practical applications, the need for frequent recalculations significantly
adds to the inconvenience of operations, thereby affecting the practicality of the method.

To address the aforementioned issues, this paper proposes an adaptive method for
calculating metric coefficients. This method employs a simple neural network model that
automatically learns and determines the weights of each metric in the contribution function
through an iterative training process. The network model is capable of automatically
adjusting the metric coefficients based on real-time performance feedback, significantly
reducing reliance on traditional manual parameter tuning. Moreover, the model exhibits
good adaptability and can efficiently process a variety of datasets in different scenarios.

To effectively train the aforementioned neural network, this paper constructs a shared
dataset, Dshare. This dataset consists of data fragments provided by various clients, intended
to collect diverse data characteristics while retaining the uniqueness of each client’s data.
This approach ensures that the coefficient training dataset not only covers a wide range of
heterogeneous data types but also integrates the data variability between different clients,
providing a solid foundation for the comprehensive training of the model.

The contribution function ContriFunc proposed in this paper is primarily applied in
two stages. First, during the client-selection phase, the server-side inputs the performance
metrics of each client’s local model into the contribution function to autonomously and in
real-time calculate the contribution level of all clients to the global model. It then filters
out a subset of clients that are deemed to have a higher contribution to the training of the
global model for that round. These selected clients will participate in the training of the
global model for the current round. Subsequently, during the client model-aggregation
phase, the server-side uses the function to accurately compute the contribution of these
selected clients to the global model. Based on the magnitude of their contributions, the
server then more justly and efficiently allocates the aggregation weights. This method not
only optimizes the model training process but also enhances the overall performance and
fairness of the model.

4.1.1. Adaptive Client Selection Based on Contribution Function

In the client-selection phase, each client uploads the performance indicators of their
local model from the previous training round to the edge server. The server initially
uses iterative training on a shared dataset to derive coefficients for the indicators that
are appropriate for the client-selection stage. Subsequently, it incorporates each client’s
indicators into the contribution function to calculate the contribution value for all clients.
These values are used to assess each client’s contribution to the training of the global model,
and a subset of clients with higher contributions are selected to participate in the current
round of global model training.

To illustrate the adopted method, this paper takes the accuracy of the client’s local
model as an example. First, an accuracy vector all_train_acc is defined, which contains the
model accuracy of all clients from the previous training round. Then, the ratio of each client
model’s accuracy to the total accuracy of all models is calculated, thereby generating a
normalized accuracy distribution vector ls_acc. This normalized vector reflects the relative
importance of each client model’s accuracy within the accuracy of all client models. The
normalization process is shown in Equation (5).

ls_acc =
all_train_acc

∑m
i=1(all_train_acci)

(5)

Entropy 2024, 26, 712 9 of 26

where, m represents the number of clients, ls_acc is the normalized distribution vector of
all clients’ accuracies, and all_train_acci represents the local model accuracy of client i.

To ensure mathematical certainty in subsequent analyses, such as avoiding the base
of a logarithm being zero when performing log transformations, this study has made a
minor positive adjustment to each element of the normalized accuracy distribution vector
ls_acc. Specifically, a very small positive number ϵ is added to each element of the vector
to ensure that the value of each element is greater than zero when performing logarithmic
operations or other computations that could lead to uncertainty. The process of this positive
adjustment is shown in Equation (6).

ls_acc =

{
1× 10−6 ls_acc= 0,
ls_acc otherwise.

(6)

where ls_acc is the normalized distribution vector for all client precision and this formula
represents batch operations on the elements in the vector.

Subsequently, to quantify the amount of information contained in the accuracy of each
client’s model, the concept of information entropy is introduced in this study. Specifically,
by applying a negative logarithmic transformation to the normalized accuracy distribution
vector ls_acc, the information entropy of each client’s local model within the accuracy
distribution is calculated. The calculation process of the information entropy is shown in
Equation (7).

ls_acc_inf = −log2(ls_acc) (7)

To convert the calculated information quantity vector into a probability distribution,
the study normalizes this vector to ensure that the sum of all elements in the vector equals
1, thus meeting the basic requirements of a probability distribution. The normalized infor-
mation quantity vector more reasonably reflects the relative contribution of information
from each client’s model to the overall system. The corresponding normalization process is
shown in Equation (8).

W_acc =
ls_acc_inf

∑m
i=1(ls_acc_infi)

(8)

In this study, the local model accuracy, the number of training rounds participated, and
the local model loss function values of the client all need to go through the aforementioned
logarithmic normalization process to ensure that these indicators are numerically stable
and reflect the actual amount of information when applied in the contribution function.
However, the normalization method for the client’s data volume is slightly different. The
ratio of the local data volume of the client to the total data volume of all clients is used
directly as the data volume indicator for each client in the contribution function. The
calculation formula for this indicator is shown in Equation (9).

W_num =
num

∑m
i=1(numi)

(9)

The contribution function comprehensively considers the normalized values of various
indicators from clients to evaluate the contribution of each client to the global model
training. This evaluation serves as the basis for decision-making in the client-selection
phase, determining which clients are chosen to participate. The formula for this function is
shown in Equation (10).

ContriFunci = α1 ·Wi_num + β1 ·Wi_epoch + γ1 ·Wi_acc + η1 ·Wi_loss (10)

where, α1, β1, γ1, and η1 represent the respective coefficients for each metric of a client during
the client-selection phase within the contribution function. The variable i denotes the client’s

Entropy 2024, 26, 712 10 of 26

ID number. The terms Wi_num, Wi_epoch, Wi_acc, and Wi_loss correspond to the normalized
values of data volume, number of epochs participated, model accuracy, and model loss,
respectively, for the local model of client i in the previous round of the global model.

To facilitate a more convenient and accurate reflection of the relative importance of
each metric within the contribution function, this study employs an adaptive iterative
optimization method to determine the corresponding coefficients for each metric. This
method utilizes a simple neural network trained on a shared dataset. Through the iterative
training of this simple neural network, the most suitable coefficients for each metric in each
round are derived. The process of iterative training is illustrated by Equation (11).

α∗1 , β∗1, γ∗1 , η∗1 = arg min
α1,β1,γ1,η1

Lossshare

(
m

∑
i=1

ContriFunci ·Wt
i ; Dshare

)
(11)

where, m represents the number of clients within the edge computing scenario. Wt
i and

ContriFunci denote the local model parameters for client i from the previous round of
global training and the corresponding contribution function values, respectively. Dshare is a
specially constructed shared dataset featuring characteristics from all clients, which is used
for the iterative training of the simplified model.

By incorporating a contribution function during the client-selection phase, we can
evaluate the extent of each client’s contribution to the current round of global training
based on the values of their respective performance metrics and corresponding coefficients.
Clients are ranked in descending order of their contribution levels, and a subset of clients
with higher contribution levels is selected to participate in the global model training.

This approach enhances the utilization of edge computing and federated learning
benefits, thereby improving the performance metrics of the global model. The overall
process of client selection and the corresponding pseudocode are depicted in Figure 2 and
Algorithm 1, respectively.

Figure 2. Adaptive client selection based on contribution function values for global federated training.

Entropy 2024, 26, 712 11 of 26

Algorithm 1 Client selection with self-learning weight optimization

Require: number of clients nc, proportion of selected clients jr, shared dataset D_share,
metric values for each client num, epoch, acc, and loss.

Ensure: List of selected clients participating in each round of global training select_clients.
1: procedure CHOOSECLIENTS
2: get acc, loss, cnt, num from all clients
3: W_acc← log normalization(acc)
4: W_loss← log normalization(loss)
5: W_cnt← log normalization(cnt)
6: W_num← Normalize(num)
7: (α1, β1, γ1, η1)← Call F1Parameters
8: for i← 0 to nc do
9: ContriFunci ← α1 ·Wi_num + β1 ·Wi_epoch + γ1 ·Wi_acc + η1 ·Wi_loss

10: end for
11: select_clients← ContriFunc[: nc ∗ jr]
12: return select_clients
13: end procedure
14: function F1PARAMETERS
15: Initialize model, optimizer, and loss function
16: Prepare D_share and set parameters of model
17: α1, β1, γ1, η1 ← 1/4, 1/4, 1/4, 1/4
18: for each training epoch do
19: (α, β, γ, η)← min L(Func, Wt; Dshare)
20: end for
21: (α∗1 , β∗1, γ∗1 , η∗1)← coefficients of last round
22: return (α∗1 , β∗1, γ∗1 , η∗1)
23: end function

4.1.2. Adaptive Aggregation of Client Models Based on Contribution Function

In the global model-aggregation phase, the server is also required to collect various
indicators submitted by clients and perform normalization. Additionally, it adaptively
derives the coefficients corresponding to each indicator in the contribution function through
iterative training on the shared dataset. The specific methods for indicator normalization
and the determination of contribution function coefficients are consistent with those in the
client-selection phase. The contribution function for the aggregation phase is shown in
Equation (12).

ContriFunci = α2 ·Wi_num + β2 ·Wi_epoch + γ2 ·Wi_acc + η2 ·Wi_loss (12)

where, α2, β2, γ2, and η2 represent the corresponding coefficients of various indicators
for all selected clients during the model-aggregation phase in the contribution function,
respectively. The variable i denotes the ID number of a client, Wi_num, Wi_epoch, Wi_acc,
and Wi_loss represent the normalized values of the indicators for the local model of the
selected client i from the previous round of global training.

Unlike the client-selection phase, the aggregation phase does not need to consider all
clients in the edge scenario but only focuses on those who have been selected to participate
in the current round of global training. During this phase, the outcome of the contribution
function not only reflects the contribution level of each selected client to the current round
of global training but also determines their participation weight in the global model training
process. In other words, the contribution function result for each selected client will serve
as the fusion ratio for integrating each client’s local model in the weighted aggregation
process of the global model. The process during the model-aggregation phase is shown in
Equation (13).

Entropy 2024, 26, 712 12 of 26

Wt+1 =
K

∑
k=1

(ContriFunckWt
k) (13)

where, K denotes the number of clients participating in the training of the global model
per round, and K identifies the k-th selected client. The notations t + 1 and t correspond to
the current and previous rounds of global model training, respectively. The terms wt

k and
ContriFunck represent the local model gradient of the k-th selected client from the previous
round and the weight coefficient calculated by the contribution function for this client in
the aggregation phase of the global model for the current round, respectively. Wt and Wt+1

indicate the global model gradients before and after aggregation, respectively.
By introducing the contribution function during the global model-aggregation phase,

this study achieves a quantitative assessment of the contribution of the local models from
the selected clients, thereby enhancing the precision and efficiency of the global model
training. The overall process and pseudocode for the client model-aggregation phase are
illustrated in Figure 3 and Algorithm 2, respectively.

Algorithm 2 Model aggregation with self-learning weight optimization

Require: Current epoch t + 1 and previous epoch t, global model parameters before model
aggregation Wt, selected clients select_clients along with local model gradients Wi

t and
performance metrics Wi_numt, Wi_epocht, Wi_acct and Wi_losst in epoch t.

Ensure: The global model parameters after model aggregation in each round Wt+1.
1: procedure MODELAGGREGATION
2: get acc, loss, cnt, num from selected clients
3: W_acc← log normalization(acc)
4: W_loss← log normalization(loss)
5: W_cnt← log normalization(cnt)
6: W_num← Normalize(num)
7: (α2, β2, γ2, η2)← Call F2Parameters
8: for i← 0 to nc ∗ jr do
9: ContriFunci ← α2 ·Wi_num + β2 ·Wi_epoch + γ2 ·Wi_acc + η2 ·Wi_loss

10: end for
11: Wt+1 ← ∑

nc∗jr
k=1 (ContriFunck ·Wt

k)
12: Send the new global model to all clients
13: return Wt+1

14: end procedure
15: function F2PARAMETERS
16: Initialize model, optimizer, and loss function
17: Prepare D_share and set parameters of model
18: α2, β2, γ2, η2 ← 1/4, 1/4, 1/4, 1/4
19: for each training epoch do
20: (α, β, γ, η)← min L(Func, Wt; Dshare)
21: end for
22: (α∗2 , β∗2, γ∗2 , η∗2)← coefficient of last round
23: return (α∗2 , β∗2, γ∗2 , η∗2)
24: end function

Entropy 2024, 26, 712 13 of 26

Figure 3. Adaptive aggregation of the model gradients from the selected clients based on the values
of the contribution function.

4.2. Optimization of Model Aggregation Based on Cosine Similarity

This section focuses on optimizing the contribution function during the global model-
aggregation phase. Unlike the client-selection phase, where clients are chosen solely based
on the ranking of their contribution function values, in this phase, the contribution function
of the selected clients serves as their weight during model aggregation. Consequently,
more precise calculations are required. Additionally, only clients chosen to participate in
the current round of global model aggregation will compute their contribution functions,
significantly reducing computational costs and pressure. This allows us to introduce
additional metrics for more nuanced calculations, specifically incorporating the metric of
cosine similarity.

4.2.1. Cosine Similarity between Neural Network Models

In this study, we also introduce the concept of cosine similarity, a similarity measure-
ment method widely applied in fields such as text and image analysis and processing.
Within the context of federated learning, cosine similarity serves as a crucial metric for
evaluating the extent of client model updates, quantifying the similarity between each
client model and the global model. This concept is incorporated into the design of the
contribution function during the model-aggregation phase, allowing for a more precise
assessment of the contribution level of the selected clients’ local models during aggregation.
The traditional method of calculating cosine similarity evaluates the similarity between
different vectors by measuring the cosine of the angle between two vectors, a result that is
independent of the vectors’ magnitudes and solely related to their directions. The cosine
similarity between two vectors can be represented by cos(θ), and the calculation method is
shown in Equation (14):

cosθ =
w1 · w2

∥w1∥∥w2∥
(14)

where, w1 and w2 denote two vectors, while θ represents the angle between them, and |w1|
and |w2| correspond to the magnitudes of the vectors, respectively.

However, within the training process of federated learning, the cosine similarity to be
computed is not between two simple vectors but rather between two convolutional neural
network (CNN) models. The advantage of employing cosine similarity is its insensitivity

Entropy 2024, 26, 712 14 of 26

to the dimensionality of vectors, rendering it appropriate for the computation of similarity
between parameters of diverse CNN models. Convolutional neural networks are comprised
of multiple layers, with each layer’s parameters being representable as a vector. Considering
the data heterogeneity and category-distribution variances among clients in different edge
computing scenarios, the cosine similarity between parameter vectors of each layer in
the local models of clients and the global model on the server side varies accordingly.
Consequently, one may first convert the parameter vectors of both the local and global
models into a uniform one-dimensional vector format, thereby facilitating the assessment
of similarity between the models of clients and the server. A higher cosine similarity value
relative to the global model signifies a closer alignment of the client’s local model gradient
direction with that of the global model, indicating lesser personalization, and vice versa.

4.2.2. Model Aggregation with Weight Function Modification

In this study, we employ a segregated neural network architecture, BaseHeadSplit,
which is composed of two parts: the base network and the head network. The base network
is a convolutional neural network named FedAvgCNN, which includes two convolutional
layers and one fully connected layer. Specifically, the first convolutional layer, conv1,
consists of a 5× 5 convolutional kernel with a single-channel input, producing 32 feature
maps, followed by a ReLU activation function and a 2× 2 max pooling layer. The second
convolutional layer, conv2, expands the features to 64 and similarly utilizes a ReLU activa-
tion function and max pooling layer. Subsequently, the fc1 layer maps the 1024 features
outputted by the convolutional layers to 512 features through a fully connected layer,
followed by activation with the ReLU function. The final layer of the base network, FC, is
set to the Identity function, allowing the features to be passed to the head network without
altering their representation. The head network consists of a single-layer fully connected
network, whose primary function is to map the features extracted by the base network to
10 output classes, suitable for classification tasks.

To assess the similarity between the global model and the local models of selected
clients during the federated learning process, we calculate the cosine similarity of each
local model to the global model separately for the base network and the head network
components. By applying logarithmic normalization to these similarity values, we obtain
standardized similarity metrics, denoted as W_base and W_head. These metrics are
then integrated into the contribution function ContriFunc, serving as crucial indicators
for adjusting and optimizing the model-aggregation strategy. The optimized contribution
function ContriFunc’, is presented as shown in Equation (15).

ContriFunc′i = α2 ·Wi_num + β2 ·Wi_epoch + γ2 ·Wi_acc+

η2 ·Wi_loss + µ2 ·Wi_base + ν2 ·Wi_head
(15)

where, Wi_base and Wi_head represent the log-normalized cosine similarity values be-
tween the base and head networks of the selected client i’s local model and the global
model, respectively. The coefficients µ2 and ν2 correspond to these two metrics and are
utilized to adjust the influence of the base and head network similarities in the assessment
of contribution.

4.3. Conditional Weighted Updating of Client Local Models

After global model aggregation, the server disseminates the updated global model
to all clients. In traditional federated learning practices, clients typically overwrite their
local models with the new global model upon receipt. However, this approach may lead to
a loss of the local model’s adaptation to the client’s unique data distribution. To mitigate
this issue, this study proposes an optimization strategy that determines the update policy
by comparing the performance of the global model with the local model on the client’s
data. Specifically, the client validates its local dataset using both the current local model
and the received global model to obtain a local accuracy Acc_local and a global accuracy
Acc_global. Based on the comparison of these two accuracies, the client will decide whether

Entropy 2024, 26, 712 15 of 26

to directly overwrite the local model with the global model or integrate the global and local
models using a weighted combination. The aforementioned conditional weighted update
process is shown in Equation (16).

Wt+1
i =

{
Wt+1 if Accglobal ≥ Acclocal,
(1− κ)Wt+1 + κWt

i otherwise.
(16)

where, Wt+1 represents the new global model obtained from the current round of model
aggregation, Wt

i and Wt+1
i respectively denote the local model gradients of client i before

and after the model update. Acc_global and Acc_local indicate the accuracy of the new
global model and the previous local model validated on the local dataset, respectively. The
parameter κ within the range [0, 1] is a tuning factor used to control the influence weight
of each local mode parameter during the update process. This factor can be dynamically
adjusted based on the performance of the local model or set to a fixed value according to a
predefined strategy.

This method allows clients to retain a degree of local characteristics during the global
model update process, thereby enhancing the adaptability and robustness of the model on
specific client data. Moreover, by finely controlling the degree of integration between global
model parameters and local model parameters, this approach helps to balance the trade-off
between global optimization objectives and the maintenance of client data specificity. The
pseudo-code for this procedure is shown in Algorithm 3.

Algorithm 3 Conditional weighted updating of client local model

Require: Each local model of previous epoch Wt
i , global model after aggregation of current

epoch W(t+1), conditional weight of each local model κ.
Ensure: Each updated local model of current epoch Wt+1

i .
1: procedure LOCALMODELUPDATE

2: Each client receives the updated global model W(t+1)

3: if Accglobal ≥ Acclocal then
4: Wt+1

i ←W(t+1)

5: else
6: Wt+1

i ← (1− κ)×Wt+1 + κ ×Wt
i

7: end if
8: return Wt+1

i
9: end procedure

5. Experiment

In this section of our research, we conducted a series of experiments using the Fash-
ionMNIST and Cifar-10 datasets. To validate the robustness of our proposed algorithm in
adapting to varying degrees of client data distribution, we carried out experiments on these
datasets with three different levels of data heterogeneity. Initially, we thoroughly explored
each optimization step of the APCSMA algorithm and experimentally verified its effective-
ness. Subsequently, we plotted the accuracy and loss function over the course of training in
line graphs to visually demonstrate the performance dynamics of the algorithm. Finally,
we conducted a horizontal comparison of our algorithm with the current leading FedALA
and FedPHP algorithms to fully showcase the efficiency and performance advantages of
our proposed algorithm.

5.1. Dataset Introduction and Dirichlet Distribution Partitioning

To demonstrate the effectiveness and generalizability of our algorithm, we conducted
experiments on the FashionMNIST and Cifar-10 datasets respectively. The FashionMNIST
dataset consists of 70,000 front-view images of various products across 10 categories, with
each category containing 6000 training samples and 1000 test samples. Each image sample

Entropy 2024, 26, 712 16 of 26

is a 28× 28 pixel grayscale image of clothing. The Cifar-10 dataset, widely used for image
recognition tasks, comprises 60,000 color images of 32× 32 pixels, divided into 10 categories,
with each category having 6000 images.

To simulate the data distribution in the real world, we employed the Dirichlet dis-
tribution to generate Non-IID data partitions. The Dirichlet distribution is a multivariate
probability distribution that is shaped by the parameter vector α = (α1, α2, . . . , αK), where K
represents the number of categories. In this experiment, a symmetric Dirichlet distribution
was used, where the parameter vector αi has the same value for each category; thus, it
can be denoted as α = (α, α, ..., α). Given the parameter α, the Dirichlet distribution can
produce a corresponding K-dimensional vector p = (p1, p2, . . . , pK), where Pi indicates the
proportion of the i-th category, satisfying ∑K

i=1 Pi = 1. The probability density function of
this symmetric Dirichlet distribution is shown in Equation (17).

Dir(P|α) = 1
B(α)

K

∏
k=1

Pαk−1
k (17)

where, P is a random variable vector that follows a Dirichlet distribution. The parameter
vector α is symmetrical for the Dirichlet distribution and controls the shape of the distribu-
tion. B(α) is the multivariate β function, which ensures the normalization of the probability
density function. K denotes the dimensionality of the random variable P.

Within this distribution, the degree of data heterogeneity among different clients is
controlled by the parameter α. Adjusting the value of α allows for data partitions with
varying degrees of dispersion. When α is larger, the sample data distribution among
participants is more similar. Specifically, as α → +∞, the local data distribution of each
client becomes consistent with the distribution of the original dataset, and the Dirichlet
distribution degenerates into a deterministic distribution at its mean. Conversely, when α
is smaller, the distribution differences among local data on each client increase. Particularly,
as α → 0, each client contains samples from only one randomly selected category. In
this paper, to illustrate the varying degrees of personalization among client data, we set
the value of α to 0.1, 0.3, and 0.5, thereby simulating Non-IID data distributions under
three scenarios. Assuming there are a total of 50 clients in this study, the data partitioning
scenarios for these 50 clients under the three distributions are shown in Figure 4.

5.2. Experimental Configuration and Evaluation Metrics

This section primarily introduces the preparations conducted before the experiments.
The first subsection discusses the configuration of various hyperparameters used in the
experiments, while the second subsection outlines all the evaluation metrics involved in
the experimental process.

5.2.1. Experimental Configuration

Given the large number of clients typically present in edge computing scenarios and
the limited computational capabilities of edge servers to aggregate local models from all
clients, we assume a scenario with 50 clients. In each training round, 14% of these clients
are selected to participate in the training of the global model. The local learning rate for
each client is set to 0.005. The number of global and local iterations is set to 2000 and 1,
respectively. Clients’ local data is divided into multiple batches, each containing 64 data
points. During the local conditional weighted update, each local model weight κ is set
to 0.2. To reflect the data distribution under different levels of dispersion, the Dirichlet
coefficient α (represented as dir) is set to 0.1, 0.3, and 0.5 for the dataset partitioning.

Entropy 2024, 26, 712 17 of 26

(a) FashionMNIST dataset with α = 0.1 (b) Cifar-10 dataset with α = 0.1

(c) FashionMNIST dataset with α = 0.3 (d) Cifar-10 dataset with α = 0.3

(e) FashionMNIST dataset with α = 0.5 (f) Cifar-10 dataset with α = 0.5

Figure 4. Dirichlet distributions of FashionMNIST and Cifar-10 datasets at three degrees of dispersion.

5.2.2. Evaluation Metrics

To gain a deeper understanding of the performance of the optimization algorithms,
we employed two primary evaluation metrics: the test accuracy of the global model and
the value of the loss function. The test accuracy directly reflects the model’s generalization
ability on unseen data, while the global model’s loss function reveals the average error
across the entire test set, providing us with another perspective to assess the merits of the
model’s performance:

(1) Test Accuracy: This is one of the direct indicators of model performance. A high test
accuracy implies that the model can accurately predict or classify unseen data, indicating
good generalization capabilities of the model.

(2) Loss Function Value: The loss function is a core concept in machine learning,
quantifying the discrepancy between the model’s predictions and the actual values. It
provides important information about the accuracy of the model’s predictions. A low
value of the loss function typically means that the model’s predictions are very close to
the true labels, whereas a high value indicates a significant deviation between the model’s
predictions and the actual situation.

Furthermore, we compared various metrics such as the maximum, minimum, and
average values of all clients’ accuracy and loss function over the last 20 rounds for each
algorithm and illustrated the results using box plots. These box plots provide an important
perspective on the consistency of the algorithms, offering a clear visual representation of the
performance distribution across different clients. Through these diagrams, we can quickly
identify fluctuations in algorithm performance and potential outliers. These statistical
metrics and visualization tools aid in our deeper understanding of the robustness of the
algorithms in a multi-client environment:

Entropy 2024, 26, 712 18 of 26

(1) Maximum Value: This reflects the highest level of performance that the algorithm
can achieve across all clients, which is instrumental in assessing the upper limit of the
algorithm’s potential.

(2) Minimum Value: This indicates the lower bound of performance, which is crucial
for evaluating the worst-case scenario of the algorithm. Especially in practical applications,
it is essential to ensure that the algorithm can meet a certain basic performance standard
for all clients.

(3) Average Value: This provides a measure of the algorithm’s average performance
across all clients, serving as an important indicator for assessing the overall effectiveness of
the algorithm.

(4) Variance or Standard Deviation: This measures the consistency of performance
across clients. A lower variance indicates more uniform performance by the algorithm on
different clients, which is very important to ensure a good experience for all users.

(5) Quartiles: The quartiles in the box plot, including the median (second quartile), as
well as the first (Q1) and third (Q3) quartiles, can show the distribution of the data. These
metrics help us understand the central tendency and dispersion of the data.

Through the aforementioned performance metrics, we can comprehensively assess
the generalization ability and performance stability of the optimization algorithms across
various clients. Moreover, the insights gained from these analyses can guide us in further
fine-tuning the details of the algorithms to enhance the minimum performance standards
on all clients, while reducing performance variability, thus ensuring the robustness and
reliability of the model. Ultimately, we hope that these comprehensive analyses will
provide valuable insights and data support for the design and improvement of future
optimization algorithms.

5.3. Experimental Results

This section presents the experimental results. The first subsection demonstrates,
through experiments, the performance decline of the FedAvg algorithm in edge computing
scenarios compared to an ideal baseline, highlighting the necessity for algorithm optimiza-
tion. The second subsection conducts comparative training on each step of our algorithm to
validate the effectiveness of each component. The third subsection organizes the algorithms
from each step and presents box plots to visualize the performance of all clients across
these algorithms. The fourth subsection features a horizontal comparison, contrasting our
optimized algorithm with several state-of-the-art approaches to underscore the significance
of the proposed method.

5.3.1. Differences between Edge Computing Scenarios and Traditional Federated
Learning Scenarios

Traditional federated learning models often presuppose that the data across all clients
are independently and identically distributed (IID), and that each global model training it-
eration aggregates the model parameters from all clients, thereby ensuring the effectiveness
of the global model on the local data of all clients. However, in edge computing scenarios,
the data among different clients are heterogeneous, and due to reasons such as the exces-
sive number of edge-side clients and insufficient computational capabilities at the edge,
edge servers are unable to aggregate the local models from all clients, leading to a decline
in the accuracy of federated model training. Therefore, we proceed with the following
comparisons from the two scenarios (dir = 0.1 for edge scenarios) mentioned above:

(1) A comparison between training with all clients participating and training with a
random selection of clients in heterogeneous scenarios.

(2) A comparison between training with a random selection of clients in IID data
scenarios and heterogeneous data scenarios.

(3) A comparison between traditional IID federated learning and heterogeneous feder-
ated learning in edge computing scenarios.

Entropy 2024, 26, 712 19 of 26

These comparisons aim to demonstrate the necessity of optimizing the participation of
some clients in the global model training of federated learning in edge computing scenarios,
as illustrated in Figure 5.

(a) Scenario 1 of the FashionMNIST dataset (b) Scenario 1 of the Cifar-10 dataset

(c) Scenario 2 of the FashionMNIST dataset (d) Scenario 2 of the Cifar-10 dataset

(e) Scenario 3 of the FashionMNIST dataset (f) Scenario 3 of the Cifar-10 dataset

Figure 5. The comparison of model performance on the FashionMnist and Cifar-10 datasets under
three edge-case data-distribution scenarios against the ideal situation highlights the importance of
client selection in edge scenarios.

5.3.2. Verification of the Proposed Optimization Methods for Federated
Learning Performance

To enhance the performance of federated learning models in edge computing scenarios,
this paper has implemented a series of optimization strategies. Specifically, the optimization
efforts mainly involve four key steps: adaptive selection of clients denoted as F1, adaptive
aggregation of models represented as F1_F2, incorporation of cosine similarity during
model aggregation indicated as F1_F2_cos, and local conditional weight updates at the
client-side referred to as APCSMA. These strategies are designed to improve the learning
efficiency and performance of the model under conditions of non-uniform data distribution.
To validate the effectiveness of each step in our algorithm, we have separately recorded the
accuracy and variations in the loss function under an ideal scenario (IDEAL), a random
edge scenario (FedAvg), and the four steps outlined in this paper. To reflect the actual
conditions of different datasets and edge scenarios, extensive comparative experiments
were conducted on the FashionMnist and Cifar-10 datasets across three levels of data-
distribution discreteness, corresponding to Dirichlet distributions with dir = 0.1, 0.3, 0.5.

However, to simulate the realistic situation of low client participation rates in edge
scenarios, we selected only a small fraction of clients to participate in the global model ag-
gregation each round. This led to fluctuations in the global model performance. Therefore,

Entropy 2024, 26, 712 20 of 26

we employed the Exponential Moving Average (EMA) method for curve smoothing in the
presentation of our results, with a smoothing factor set to 0.2. This approach allowed us to
obtain smoother training progress curves, which more accurately reflect the actual changes
in model performance.

Initially, we conducted comparative experiments on the FashionMnist dataset and
created line charts comparing accuracy and loss function values, as illustrated in Figure 6.

(a) (b)

(c) (d)

(e) (f)

Figure 6. The comparison of the accuracy and loss function values of each algorithm under the three
degrees of dispersion of the FashionMnist dataset. (a) Comparison of accuracy at dir = 0.1. (b) Com-
parison of loss function values at dir = 0.1. (c) Comparison of accuracy at dir = 0.3. (d) Comparison
of loss function values at dir = 0.3. (e) Comparison of accuracy at dir = 0.5. (f) Comparison of loss
function values at dir = 0.5.

Subsequently, to demonstrate the generalizability of our algorithm, we replicated the
aforementioned experiments on the Cifar-10 dataset, as shown in Figure 7. Given that the
Cifar-10 dataset is more complex than the FashionMnist dataset, the experimental results are
more compelling.

5.3.3. Analysis of Experimental Results

To quantitatively and visually ascertain the percentage improvement offered by the
APCSMA algorithm across all data distributions, we conducted a step-by-step comparative
analysis between the APCSMA and FedAvg algorithms. Furthermore, we compiled the
accuracies of the last 20 rounds for all algorithms under every data-distribution scenario
into Table 1. This tabular representation facilitates a more intuitive demonstration of the
efficacy of each step within the APCSMA algorithm.

Entropy 2024, 26, 712 21 of 26

(a) (b)

(c) (d)

(e) (f)

Figure 7. The comparison of the accuracy and loss function values of each algorithm under the three
degrees of dispersion of the Cifar-10 dataset. (a) Comparison of accuracy at dir = 0.1. (b) Comparison
of loss function values at dir = 0.1. (c) Comparison of accuracy at dir = 0.3. (d) Comparison of loss
function values at dir = 0.3. (e) Comparison of accuracy at dir = 0.5. (f) Comparison of loss function
values at dir = 0.5.

Table 1. Summary of optimization results.

FashinMnist Cifar-10
Algorithm dir = 0.1 dir = 0.3 dir = 0.5 dir = 0.1 dir = 0.3 dir = 0.5

Ideal 0.907 0.907 0.907 0.650 0.650 0.650
FedAvg 0.795 0.870 0.880 0.470 0.608 0.627

F1 0.809 0.873 0.886 0.521 0.612 0.631
F1+F2 0.814 0.881 0.886 0.548 0.613 0.636

F1+cos F2 0.817 0.885 0.890 0.600 0.645 0.650
APCSMA 0.834 0.889 0.891 0.620 0.659 0.661

From the analysis of the comparative data on accuracy and loss function values for
each algorithm under three different data-distribution conditions, as presented in the
above figures, a clear trend can be observed: the greater the degree of dispersion in the
data distribution among clients, the more significant the impact on the training of the
global model, resulting in a notable performance degradation in edge computing scenarios
compared to an ideal environment. However, it is noteworthy that, as the dispersion of
client data distribution increases, our proposed APCSMA algorithm demonstrates a more
pronounced effect in optimizing the performance of federated learning models. Specifically,
when the data-distribution parameter dir is set to 0.1, 0.3, and 0.5, respectively, the APCMSA

Entropy 2024, 26, 712 22 of 26

algorithm improves the model’s accuracy by 3.9%, 1.9%, and 1.1% on the FashionMnist
dataset, and by 31.9%, 8.4%, and 5.4% on the Cifar-10 dataset, respectively.

To delve deeper into the universal applicability of the global model across all clients,
this study conducted a detailed analysis of the last 20 rounds of the federated learning
process and plotted box plots for the performance of each algorithm across all clients during
this period. The maximum and minimum values in these box plots represent the highest
and lowest accuracies achieved by the global model on local validations of all clients under
specific data-distribution conditions, using the respective algorithms. Furthermore, the
width of the box in the box plots reflects the variability in performance across all clients
when adopting the algorithm; a narrower box indicates higher fairness of the algorithm
across different clients, while a wider box suggests deficiencies in the algorithm’s ability to
balance performance across all clients. The specific box plots are displayed in Figure 8.

(a) (b)

(c) (d)

(e) (f)

Figure 8. The boxplots for each step of the APCSMA algorithm on FashionMnist and Cifar-10 datasets
across three levels of discretization. (a) Boxplot for the FashionMnist Dataset at dir = 0.1. (b) Boxplot
for the Cifar-10 Dataset at dir = 0.1. (c) Boxplot for the FashionMnist Dataset at dir = 0.3. (d) Boxplot
for the Cifar-10 Dataset at dir = 0.3. (e) Boxplot for the FashionMnist Dataset at dir = 0.5. (f) Boxplot
for the Cifar-10 Dataset at dir = 0.5.

Through the analysis of these box plots, we have not only confirmed that the APCSMA
algorithm can effectively enhance the overall performance of the global model but also
revealed its potential in reducing the performance disparity among different clients. This
finding underscores the superiority of the APCSMA algorithm in handling federated
learning scenarios with uneven data distribution, providing valuable insights for the
optimization of future federated learning models.

Entropy 2024, 26, 712 23 of 26

5.4. Horizontal Comparative Experiment

In our study, to comprehensively evaluate the performance of the proposed methods,
we set up comparative experiments involving two representative benchmark algorithms:
the FedPHP algorithm [5] and the FedALA algorithm [6]. The FedPHP algorithm takes a
moving average of personalized models on each client and uses them to supervise the
newly downloaded model in the next global round. The FedALA algorithmadaptively ag-
gregates the global model and local models to align with the local objectives, capturing the
necessary information from the global model in an element-wise manner. To demonstrate
the optimization effects of all algorithms, training performances under ideal conditions
(IDEAL) and the random selection algorithm FedAvg were also included.

In the comparative experiments, we also trained on three levels of data heterogeneity
within the FashionMnist and Cifar-10 datasets. The line graphs and loss function plots were
smoothed using an exponential moving average with a smoothing factor of 0.2, and the
final accuracy and loss function comparison charts are shown in Figure 9.

(a) (b)

(c) (d)

(e) (f)

Figure 9. Comparative analysis with FedPHP and FedALA across three levels of data dispersity on the
FashionMnist and Cifar-10 Datasets. (a) Horizontal Comparison at a Dispersity Level of dir = 0.1 on
the FashionMnist Dataset. (b) Horizontal Comparison at a Dispersity Level of dir = 0.1 on the Cifar-10
Dataset. (c) Horizontal Comparison at a Dispersity Level of dir = 0.3 on the FashionMnist Dataset.
(d) Horizontal Comparison at a Dispersity Level of dir = 0.3 on the Cifar-10 Dataset. (e) Horizontal
Comparison at a Dispersity Level of dir = 0.5 on the FashionMnist Dataset. (f) Horizontal Comparison
at a Dispersity Level of dir = 0.5 on the Cifar-10 Dataset.

To present the results of the horizontal comparison more intuitively, we summarized
the accuracy of different algorithms under various scenarios in Table 2, finding that our
algorithm surpasses the existing algorithms FedAvg, FedPHP, and FedALA.

Entropy 2024, 26, 712 24 of 26

Table 2. Summary of optimization results.

FashinMnist Cifar-10
Algorithm dir = 0.1 dir = 0.3 dir = 0.5 dir = 0.1 dir = 0.3 dir = 0.5

Ideal 0.907 0.907 0.907 0.650 0.650 0.650
FedAvg 0.795 0.870 0.880 0.470 0.608 0.627
FedPHP 0.793 0.879 0.878 0.494 0.600 0.635
FedALA 0.832 0.883 0.887 0.603 0.658 0.657

APCSMA 0.834 0.889 0.891 0.620 0.659 0.661

6. Conclusions

In this study, we have proposed an innovative solution for federated learning problems
in edge computing scenarios: the APCSMA algorithm. This algorithm designs a contri-
bution function during the client-selection and model-aggregation phases, integrating a
cosine similarity metric within the contribution function at the model-aggregation stage
to enhance the personalized learning capabilities of the model. Additionally, we use a
conditional weighted update strategy to optimize the local model update process, aiming
to further improve model performance.

To validate the effectiveness of the proposed algorithm, we conducted a series of
experiments on the FashionMnist and Cifar-10 datasets, evaluating the algorithm when the
data-distribution parameter dir is set to 0.1, 0.3, and 0.5, respectively. The experimental
results demonstrate that, compared to existing federated learning algorithms, the APCSMA
algorithm achieved significant improvements in accuracy: 3.9%, 1.9%, and 1.1% on the
FashionMnist dataset, and 31.9%, 8.4%, and 5.4% on the Cifar-10 dataset, respectively. These
results not only prove the APCSMA algorithm’s effectiveness in handling Non-IID data
issues in edge computing scenarios but also indicate that the more complex and dispersed
the client data, the more significant the improvement of our algorithm. Furthermore,
we conducted a horizontal comparison with two current advanced algorithms, FedPHP
and FedALA, thereby demonstrating the performance optimization and enhancement of
our algorithm.

In conclusion, the APCSMA algorithm provides a novel and effective solution for
solving the federated learning problem in edge computing scenarios. We expect that this
study will bring a new perspective to academic research and practice in this area and
provide insights for future research.

At the same time, we are clearly aware of the limitations of the current study. In this paper,
we have compared the APCSMA algorithm with FedAvg, FedPHP, and FedALA; however,
there are numerous other research papers in this area. In our future work, we will conduct a
broader range of comparative experiments to further explore the advantages, contributions,
and potential limitations of APCSMA, as well as propose more creative solutions.

We will continue to optimize the contribution function, comprehensively consider
“edge” characteristics, and investigate the effectiveness of APCSMA across more diverse
datasets and more complex application scenarios. Additionally, we will consider the
integration of APCSMA with Federated Multi-Task Learning methods [35] to effectively ad-
dress data privacy and security issues, thereby further enhancing the model’s performance
and generalization capabilities.

Author Contributions: Conceptualization, X.M. and Y.L.; Data curation, X.M.; Formal analysis,
X.M.; Funding acquisition, Y.L.; Investigation, X.M. and G.M.; Methodology, X.M. and Y.L.; Project
administration, Y.L. and S.Q.; Resources, Y.L. and S.Q.; Software, X.M.; Supervision, Y.L. and S.Q.;
Validation, X.M. and G.M.; Visualization, X.M.; Writing—original draft, X.M.; Writing—review and
editing, X.M. and Y.L. All authors have read and agreed to the published version of the manuscript.

Entropy 2024, 26, 712 25 of 26

Funding: This research was funded by Guangdong Provincial Key Laboratory of Novel Security
Intelligence Technologies (No. 2022B1212010005); Shenzhen Science and Technology Major Special
Project (No. KJZD20230923114608017); National Natural Science Foundation of China (No. 62372139,
No. 62376073); Natural Science Foundation of Guang-dong (No. 2024A1515030024); Shenzhen Stable
Supporting Program (General Project) (No. GXWD20231130110352002); and Shenzhen Foundational
Research Funding Under Grant (No. 20220818102414030, No. JCYJ20200109113427092).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Liu, G.; Dai, F.; Xu, X.; Fu, X.; Dou, W.; Kumar, N.; Bilal, M. An adaptive DNN inference acceleration framework with

end–edge–cloud collaborative computing. Future Gener. Comput. Syst. 2023, 140, 422–435. [CrossRef]
2. Chamikara, M.; Bertok, P.; Khalil, I.; Liu, D.; Camtepe, S. Privacy preserving distributed machine learning with federated learning.

Comput. Commun. 2021, 171, 112–125. [CrossRef]
3. Al-Athba Al-Marri, N.A.; Ciftler, B.S.; Abdallah, M.M. Federated Mimic Learning for Privacy Preserving Intrusion Detection. In

Proceedings of the 2020 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), Odessa,
Ukraine, 26–29 May 2020. [CrossRef]

4. Kushwaha, D.; Redhu, S.; Brinton, C.G.; Hegde, R.M. Optimal Device Selection in Federated Learning for Resource-Constrained
Edge Networks. IEEE Internet Things J. 2023, 10, 10845–10856. [CrossRef]

5. Li, X.C.; Zhan, D.C.; Shao, Y.; Li, B.; Song, S. FedPHP: Federated Personalization with Inherited Private Models. In Machine
Learning and Knowledge Discovery in Databases. Research Track; Oliver, N., Pérez-Cruz, F., Kramer, S., Read, J., Lozano, J.A., Eds.;
Springer International Publishing: Cham, Switzerland, 2021; pp. 587–602. [CrossRef]

6. Zhang, J.; Hua, Y.; Wang, H.; Song, T.; Xue, Z.; Ma, R.; Guan, H. FedALA: Adaptive Local Aggregation for Personalized Federated
Learning. Proc. AAAI Conf. Artif. Intell. 2023, 37, 11237–11244. [CrossRef]

7. Tao, Y.; Qiu, J.; Lai, S.; Sun, X.; Zhao, J. Market-Based Resource Allocation of Distributed Cloud Computing Services: Virtual
Energy Storage Systems. IEEE Internet Things J. 2022, 9, 22811–22821. [CrossRef]

8. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet Things J. 2016, 3, 637–646.
[CrossRef]

9. McMahan, H.B.; Moore, E.; Ramage, D.; y Arcas, B.A. Federated learning of deep networks using model averaging. arXiv 2016,
arXiv:1602.05629. [CrossRef]

10. Liu, J.; Lou, J.; Xiong, L.; Liu, J.; Meng, X. Projected federated averaging with heterogeneous differential privacy. Proc. VLDB
Endow. 2021, 15, 828–840. [CrossRef]

11. Li, T.; Sahu, A.K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.; Smith, V. Federated optimization in heterogeneous networks. Proc.
Mach. Learn. Syst. 2020, 2, 429–450. [CrossRef]

12. Zhang, H.; Wu, T.; Cheng, S.; Liu, J. FedCos: A scene-adaptive federated optimization enhancement for performance improvement.
arXiv 2022, arXiv:2204.03174. [CrossRef]

13. Sun, G.; Mendieta, M.; Luo, J.; Wu, S.; Chen, C. FedPerfix: Towards Partial Model Personalization of Vision Transformers in
Federated Learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 1–6 October
2023; pp. 4988–4998. [CrossRef]

14. Lee, K.J.; Jeong, B.; Kim, S.; Kim, D.; Park, D. General Commerce Intelligence: Glocally Federated NLP-Based Engine for
Privacy-Preserving and Sustainable Personalized Services of Multi-Merchants. In Proceedings of the Thirty-Eighth AAAI
Conference on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence,
IAAI 2024, Fourteenth Symposium on Educational Advances in Artificial Intelligence, EAAI 2014, Vancouver, BC, Canada,
20–27 February 2024; Wooldridge, M.J., Dy, J.G., Natarajan, S., Eds.; AAAI Press: Washington, DC, USA, 2024; pp. 22752–22760.
[CrossRef]

15. Agrawal, N.; Sirohi, A.K.; Kumar, S. No Prejudice! Fair Federated Graph Neural Networks for Personalized Recommendation.
Proc. AAAI Conf. Artif. Intell. 2024, 38, 10775–10783. [CrossRef]

16. Sim, R.H.L.; Zhang, Y.; Chan, M.C.; Low, B.K.H. Collaborative machine learning with incentive-aware model rewards. In
Proceedings of the International Conference on Machine Learning, Virtual Event, 3–18 July 2020; pp. 8927–8936. [CrossRef]

17. Song, T.; Tong, Y.; Wei, S. Profit Allocation for Federated Learning. In Proceedings of the 2019 IEEE International Conference on
Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 2577–2586. [CrossRef]

18. Wang, G.; Dang, C.X.; Zhou, Z. Measure contribution of participants in federated learning. In Proceedings of the 2019 IEEE
International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 2597–2604. [CrossRef]

19. Cho, Y.J.; Wang, J.; Joshi, G. Client selection in federated learning: Convergence analysis and power-of-choice selection strategies.
arXiv 2020, arXiv:2010.01243. [CrossRef]

http://doi.org/10.1016/j.future.2022.10.033
http://dx.doi.org/10.1016/j.comcom.2021.02.014
http://dx.doi.org/10.1109/blackseacom48709.2020.9234959
http://dx.doi.org/10.1109/jiot.2023.3243082
http://dx.doi.org/10.1007/978-3-030-86486-6_36
http://dx.doi.org/10.1609/aaai.v37i9.26330
http://dx.doi.org/10.1109/jiot.2022.3184750
http://dx.doi.org/10.1109/jiot.2016.2579198
https://doi.org/10.48550/arXiv.1602.05629
http://dx.doi.org/10.14778/3503585.3503592
http://dx.doi.org/10.48550/arXiv.1812.06127
https://doi.org/10.48550/arXiv.2204.03174
http://dx.doi.org/10.48550/arXiv.2308.09160
http://dx.doi.org/10.1609/AAAI.V38I21.30309
http://dx.doi.org/10.1609/aaai.v38i10.28950
http://dx.doi.org/10.48550/arXiv.2010.12797
http://dx.doi.org/10.1109/bigdata47090.2019.9006327
http://dx.doi.org/10.1109/BigData47090.2019.9006179
https://doi.org/10.48550/arXiv.2010.01243

Entropy 2024, 26, 712 26 of 26

20. Shyn, S.K.; Kim, D.; Kim, K. Fedccea: A practical approach of client contribution evaluation for federated learning. arXiv 2021,
arXiv:2106.02310. [CrossRef]

21. Liu, L.; Zhang, J.; Song, S.; Letaief, K.B. Client-Edge-Cloud Hierarchical Federated Learning. In Proceedings of the ICC 2020-2020
IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6. [CrossRef]

22. Yan, Z.; Xue, J.; Chen, C.W. Prius: Hybrid Edge Cloud and Client Adaptation for HTTP Adaptive Streaming in Cellular Networks.
IEEE Trans. Circuits Syst. Video Technol. 2017, 27, 209–222. [CrossRef]

23. Zhou, X.; Xu, X.; Liang, W.; Zeng, Z.; Yan, Z. Deep-Learning-Enhanced Multitarget Detection for End–Edge–Cloud Surveillance
in Smart IoT. IEEE Internet Things J. 2021, 8, 12588–12596. [CrossRef]

24. Ding, C.; Ding, F.; Gorbachev, S.; Yue, D.; Zhang, D. A learnable end-edge-cloud cooperative network for driving emotion sensing.
Comput. Electr. Eng. 2022, 103, 108378. [CrossRef]

25. Duan, S.; Wang, D.; Ren, J.; Lyu, F.; Zhang, Y.; Wu, H.; Shen, X. Distributed artificial intelligence empowered by end-edge-cloud
computing: A survey. IEEE Commun. Surv. Tutor. 2022, 25, 591–624. [CrossRef]

26. Liu, F.; Yan, Y.; Sun, Y.; Liu, J.; Li, D.; Guan, Z. Extremely Lightweight PUF-based Batch Authentication Protocol for End-Edge-
Cloud Hierarchical Smart Grid. Secur. Commun. Netw. 2022, 2022, 1–14. [CrossRef]

27. Qin, T.; Cheng, G.; Wei, Y.; Yao, Z. Hier-SFL: Client-edge-cloud collaborative traffic classification framework based on hierarchical
federated split learning. Future Gener. Comput. Syst. 2023, 149, 12–24. [CrossRef]

28. Zhu, X.; Sun, W.; Li, X. Task Offloading and Resource Allocation with Privacy Constraints in End-Edge-Cloud Environment. In
Computer Supported Cooperative Work and Social Computing, Communications in Computer and Information Science; Springer Nature:
Singapore, 2023; pp. 219–234. [CrossRef]

29. Paulraj, G.J.L.; Jebadurai, I.J.; Janani, S.P.; Aarthi, M.S. Edge-based Heart Disease Prediction using Federated Learning. In
Proceedings of the 2024 International Conference on Cognitive Robotics and Intelligent Systems (ICC-ROBINS), Coimbatore,
India, 17–19 April 2024; pp. 294–299. [CrossRef]

30. Yang, W.; Liu, Z. Efficient Vehicular Edge Computing: A Novel Approach with Asynchronous Federated and Deep Reinforcement
Learning for Content Caching in VEC. IEEE Access 2024, 12, 13196–13212. [CrossRef]

31. Li, R.; Wang, C.; Zheng, Z.; Huang, H. Enhancing Federated Learning with Self-Determining Mechanism in MEC. In Proceedings
of the 2024 International Conference on Computing, Networking and Communications (ICNC), Big Island, HI, USA, 19–22
February 2024; pp. 1006–1010. [CrossRef]

32. Puliafito, C.; Cicconetti, C.; Conti, M.; Mingozzi, E.; Passarella, A. Balancing local vs. remote state allocation for micro-services in
the cloud-edge continuum. Pervasive Mob. Comput. 2023, 93, 101808. [CrossRef]

33. Liao, Z.; Zhang, X.; He, S.; Tang, Q. PMP: A partition-match parallel mechanism for DNN inference acceleration in cloud–edge
collaborative environments. J. Netw. Comput. Appl. 2023, 218, 103720. [CrossRef]

34. Fan, W.; Gao, L.; Su, Y.; Wu, F.; Liu, Y. Joint DNN Partition and Resource Allocation for Task Offloading in Edge-Cloud-Assisted
IoT Environments. IEEE Internet Things J. 2023, 10, 10146–10159. [CrossRef]

35. Okegbile, S.D.; Cai, J.; Zheng, H.; Chen, J.; Yi, C. Differentially private federated multi-task learning framework for enhancing
human-to-virtual connectivity in human digital twin. IEEE J. Sel. Areas Commun. 2023, 41, 3533–3547. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.48550/arXiv.2106.02310
http://dx.doi.org/10.1109/icc40277.2020.9148862
http://dx.doi.org/10.1109/tcsvt.2016.2539827
http://dx.doi.org/10.1109/jiot.2021.3077449
http://dx.doi.org/10.1016/j.compeleceng.2022.108378
http://dx.doi.org/10.1109/COMST.2022.3218527
http://dx.doi.org/10.1155/2022/9774853
http://dx.doi.org/10.1016/j.future.2023.07.001
http://dx.doi.org/10.1007/978-981-99-2385-4_16
http://dx.doi.org/10.1109/ICC-ROBINS60238.2024.10534005
http://dx.doi.org/10.1109/ACCESS.2024.3355462
http://dx.doi.org/10.1109/ICNC59896.2024.10556194
http://dx.doi.org/10.1016/j.pmcj.2023.101808
http://dx.doi.org/10.1016/j.jnca.2023.103720
http://dx.doi.org/10.1109/jiot.2023.3237361
http://dx.doi.org/10.1109/JSAC.2023.3310106

	Introduction
	Background and Related Work
	Adaptive Personalized Client-Selection Algorithm for Edge Federated Learning
	An Edge Computing Framework Based on ``Terminal-Edge'' Architecture
	Factors Influencing Client Selection and Weight Allocation

	Algorithm
	Client Selection and Model Aggregation
	Adaptive Client Selection Based on Contribution Function
	Adaptive Aggregation of Client Models Based on Contribution Function

	Optimization of Model Aggregation Based on Cosine Similarity
	Cosine Similarity between Neural Network Models
	Model Aggregation with Weight Function Modification

	Conditional Weighted Updating of Client Local Models

	Experiment
	Dataset Introduction and Dirichlet Distribution Partitioning
	Experimental Configuration and Evaluation Metrics
	Experimental Configuration
	Evaluation Metrics

	Experimental Results
	Differences between Edge Computing Scenarios and Traditional Federated Learning Scenarios
	Verification of the Proposed Optimization Methods for Federated Learning Performance
	Analysis of Experimental Results

	Horizontal Comparative Experiment

	Conclusions
	References

