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A B S T R A C T

Recent advances in rheometry exploiting frequency-modulated (chirp) waveforms have dramatically reduced
the time required to perform linear viscoelastic characterisation of complex materials. However, the technique
was optimised for ‘separate motor transducer’ instruments, in which the drive motor imposing the strain
deformation is decoupled from the torque transducer. Whilst the use of optimised windowed chirps (OWCh)
using other rheometers has been recently reported in the literature, no systematic study concerning the use of
‘combined motor transducer’ instruments (in which the motor and transducer subsystems are integrated into
a single ‘head’) has been undertaken. In the present study, we demonstrate the use of OWCh rheometry using
combined motor transducer/single-head rheometers using a stress-controlled operating principle, thus avoiding
the reliance on complicated and instrument-specific feedback control systems that would be required to perform
strain-controlled experiments. The use of stress-controlled chirps requires a modification to the established
OWCh analysis protocol such that the complex viscosity 𝜂∗(𝜔) is used as an intermediate proxy function for
ultimately computing the complex modulus 𝐺∗(𝜔). This approach negates the effect of the strain offset that is
inherent to stress-controlled oscillatory rheometry. Secondly, a correction algorithm and operational criteria for
identifying inertial artefacts is established before we consider the impact of chirp digitisation on data acquisi-
tion. The use of stress-controlled OWCh rheometry (which we term Stress-OWCh, i.e. 𝜎OWCh) is demonstrated
for a diverse range of material classes including, Newtonian calibration fluids (silicone oil), polymer solutions
(polyethylene oxide in water), an entangled polymer melt (polydimethylsiloxane), worm-like micellar systems
(cetylpyridinium chloride/sodium salicylate), time-evolving critical gels (gelatin) and aging elastoviscoplastic
materials (Laponite®). This novel implementation of chirp waveforms using a single-head rheometer will
facilitate the wider adoption of OWCh rheometry and allow the benefits of frequency-modulation techniques
to be exploited where separate motor transducer instruments are unavailable/unsuitable.
. Introduction

Linear viscoelastic characterisation of complex fluids and soft solids
s perhaps the most common rheometric operation and allows the
olecular architecture and relaxation dynamics of a sample, that is

ften (but not exclusively) polymeric in nature, to be investigated.
xperiments can be designed to monitor the transient evolution of
hese properties with time/extent of reaction and other environmental
arameters such as temperature and pH. The data obtained from linear
iscoelastic property measurement also provide a basis for quality
ontrol/quality assurance (QC/QA) assays, often in conjunction with
he determination of the steady-state flow curve of the material. Con-
entional linear viscoelastic characterisation is often performed in the
requency domain by considering the mechanical response of a material
o a discrete sequence of small amplitude, single-tone, oscillations.

∗ Corresponding author.
E-mail address: d.j.curtis@swansea.ac.uk (D.J. Curtis).

However, this frequency sweep (FS) approach is time consuming and
can be the source of QA/QC bottlenecks. Further, when probing mi-
crostructural evolution (e.g. gelation/curing) [1–4] using repeated FS
experiments, the evolving rheological properties, compete with the
constraint that the material be assumed to be linear time invariant
(LTI) during each frequency sweep. This limits the duration, and hence
frequency content of the FS signal. A useful alternative to the FS is
the multi-wave experiment (often termed Fourier Transform Mechani-
cal Spectroscopy, FTMS) in which the material is probed at multiple
frequencies simultaneously using a composite waveform constructed
from a fundamental base frequency and several harmonics [5,6]. Whilst
FTMS experiments allow the linear viscoelastic properties of the ma-
terial to be assessed rapidly, the deformation associated with each
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component frequency contributes to the total strain amplitude, which
must remain within the linear viscoelastic range of the material, hence
the amplitude of each component frequency must be reduced compared
to the FS approach.

The use of broadband experimental techniques in the rapid linear
viscoelastic characterisation of complex fluids is gaining popularity [7–
11]. Such techniques allow the linear viscoelastic parameters charac-
terising an unknown material (such as time-evolving complex modulus
of an aging or mutating material, 𝐺∗(𝜔, 𝑡𝑤)) to be determined, with
ery high frequency resolution, in a fraction of the time required by
onventional FS based rheometric protocols. One such technique uses
requency modulated ‘Chirp signals’ [7,12–15] which, whilst exploited
n acoustics [16] and radar [17] for many years, have only recently
een used for complex fluids characterisation. A chirp waveform, in
hich the frequency evolves from 𝜔1 to 𝜔2 over the waveform duration
(in this case exponentially) can be mathematically expressed as

ollows:

(𝑡) = 𝑥0 sin (𝑘1[𝑒𝑘2𝑡 − 1]) (1)

here 𝑘1 = 𝜔1𝑇 ∕ log (𝜔2∕𝜔1) and 𝑘2 = log (𝜔2∕𝜔1)∕𝑇 . Hence, the
nstantaneous frequency evolves as:

(𝑡) = 𝜔1

(

𝜔2
𝜔1

)𝑡∕𝑇
(2)

and all frequencies 𝜔1 ≤ 𝜔 ≤ 𝜔2 are probed by the waveform. As
such, the signals are ideally suited to probing the transfer function of
LTI material systems. In terms of mechanical analysis, one may probe
the complex modulus 𝐺∗(𝜔) by defining this as the transfer function
between an applied perturbation (strain, 𝛾) and the response of the
material in terms of stress (𝜎), i.e.:

𝐺∗(𝜔) = ℱ [𝜎]
ℱ [𝛾]

(3)

here ℱ (.) denotes the Fourier Transform.
However, analysis of a waveform such as (Eq. (1)) using a Discrete

ourier Transform results in the convolution of the Fourier trans-
orm of the material response to the perturbation waveform itself and
he Fourier transform of a rectangular signal envelope. This leads
o the generation of sidelobes and ‘spectral leakage’ (i.e. the loss of
nformation from the frequency spectrum between 𝜔1 and 𝜔2), thus
reventing accurate determination of the desired linear response func-
ion, i.e. 𝐺∗(𝜔). Further, the absence of periodicity in the waveforms
ay exacerbate spectral leakage. Geri et al. [7] demonstrated that

uch issues can be effectively minimised by (i) ensuring that the Time-
andwidth product of the forcing signal, TB = 𝑇 (𝜔2 − 𝜔1)∕2𝜋, is large
nd (ii) multiplying the chirp signal with a Tukey style windowing
unction, which ensures periodicity in both the imposed perturbation
nd material response waveforms (since the Tukey window smoothly
rows from, and returns to, zero at 𝑡 = 0 and 𝑡 = 𝑇 , respectively)

thus minimising spectral leakage. The corresponding forcing function
is thus [7]:

𝑥(𝑡) = 𝑥0

⎧

⎪

⎪

⎨

⎪

⎪

⎩

cos2
[

𝜋
𝑟

(

𝑡
𝑇 − 𝑟

2

)]

sin (𝑘1[𝑒𝑘2𝑡 − 1]), 𝑡
𝑇 ≤ 𝑟

2

sin (𝑘1[𝑒𝑘2𝑡 − 1]), 𝑟
2 <

𝑡
𝑇 < 1 − 𝑟

2
cos2

[

𝜋
𝑟

(

𝑡
𝑇 − 1 + 𝑟

2

)]

sin (𝑘1[𝑒𝑘2𝑡 − 1]), 𝑡
𝑇 ≥ 1 − 𝑟

2

(4)

where 𝑟 denotes a windowing parameter which defines the steepness of
the window function as 𝑡 → 0 and 𝑡 → 𝑇 . An Optimally Windowed Chirp
OWCh) waveform that permitted 𝐺∗(𝜔) to be determined accurately
ver a wide frequency range was proposed with 𝑟 = 0.1. Fig. 1
ompares, for illustrative purpose, the unwindowed and windowed (𝑟 =
.5) signals.

Chirp-based protocols are particularly useful in the study of mutat-
ng materials [7,14] since a wide frequency band can be excited in a
elatively short experiment, allowing the evolution of the frequency-
ependent viscoelastic properties of a sample to be monitored using a
 i

2 
equence of chirps (the material being assumed to be an LTI system
ocally during each chirp). In the context of gelling samples, for exam-
le, such data allows the gel point (GP), which identifies the transition
rom viscoelastic liquid to viscoelastic solid, to be determined [1,2,5,6,
8]. However, the ability to rapidly acquire viscoelastic spectra finds
ore general use in the efficient and high throughput characterisation

f a wide variety of samples. The present work focusses on linear
iscoelastic characterisation but the use of chirp protocols in the non-
inear regime has been demonstrated, through the use of orthogonal
uperposition, by Rathinaraj et al. [19]. In addition it is possible
o consider future combinations of chirp protocols and slowly swept
train (or stress) amplitude-modulated approaches using for example
he Gaborheometry approach [20].

Whilst OWCh protocols can be implemented using a TA Instruments
RES-G2 rheometer following Geri et al. [7] or the Anton Paar MCR702

Twin Drive) following Athanasiou et al. [15], both of which operate
s Separate Motor Transducer (SMT) devices, implementing such pro-
ocols using Combined Motor Transducer (CMT) instruments can be
hallenging. Whilst modern CMT rheometers are often able to perform
train-controlled experiments requiring steady unidirectional shear or
teady state oscillatory waveforms exceptionally well (as discussed by
auger [21]), it can be difficult for the rheometer to achieve a desired
hirp waveform since the frequency and phase of the applied deforma-
ion wave (and also the response of the material to that deformation)
s evolving dynamically throughout the duration of waveform. The
onlinear feedback and control algorithms have also been optimised
or single frequency periodic oscillatory deformations. Modern CMT
heometers utilise either Drag Cup or Electrically Commutated motor
echnology, both of which work on the principle that the achieved
orque (and thus the stress applied to the sample) is proportional to
he current applied to the motor, and a more effective approach may be
o invoke the torque-controlled operation mode of the CMT rheometer
o apply stress-controlled and frequency-modulated signals such as a
hirp.

In addition to avoiding the need for strain-controlled feedback
oops, the use of stress-controlled chirps has other benefits. For exam-
le, in gelling materials, it is necessary to balance the limited linear
iscoelastic range (LVR) of the post-gel point regime with achieving
ufficient resolution of the response waveform in the pre-gel regime.
train-controlled protocols typically sacrifice pre-GP stress resolution
o ensure that the strain at (and beyond) the GP remains within the
VR [7,12–14]. Employing a stress-controlled protocol allows good
ata to be obtained throughout the gelation process since the strain
mplitude attained naturally decreases as the relaxation spectrum of
he material (and hence the zero shear viscosity) evolves towards the
P [4]. Materials characterised by a limited and frequency-dependent
VR may also benefit from the use of stress-controlled, chirp-based
heometry. When employing a strain-based chirp protocol on such
aterials, the strain amplitude will be limited by the extent of the
igh-frequency LVR which, at low frequencies, may be insufficient
o generate a resolvable torque signal. The response of such a ma-
erial to a stress-based chirp (with the stress amplitude determined
ased on both high and low-frequency LVR considerations) would be
haracterised by larger strains at low frequencies thus allowing good
esolution to be achieved across a far wider frequency range. Stress-
ontrolled experiments are often also employed in studies of yield stress
luids [20]. By applying stress amplitudes that are either below or
bove the critical flow stress the evolution of the frequency-dependent
roperties of an elastoviscoplastic material can be followed as the
aterial yields and begins to flow. Finally, the ability to perform chirp-

ased rheometry on Combined Motor Transducer (CMT) rheometers
also often referred to as single head (SH) rheometers) will facilitate
he wider adoption of OWCh and allow its benefits to be exploited
here native strain-controlled instruments are unavailable, as most
nstruments in non-specialist/industrial laboratories are CMT units.
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Fig. 1. Comparison of un-windowed chirp (grey) and Tukey windowed chirp (blue) waveforms. Dashed lines show the signal envelopes (i.e. window functions). Note that the
optimum windowed chirp was found to be 𝑟 = 0.1 in Geri et al. [7], but a waveform with 𝑟 = 0.5 is shown here for clarity.
𝜙

The response of most samples to stress-controlled (single-tone) os-
illations does not result in a strain waveform that oscillates around
ero strain; a constant ‘strain offset’ is observed which can be used to
robe the zero shear viscosity as recently demonstrated experimentally
y Lee et al. [22] and analytically by Hassager [23] and Ogunkeye
t al. [24]. In Section 2.1 we extend the modelling of Hassager (for
ingle-tone oscillations) to the stress-controlled chirp and demonstrate
hat, for such perturbations, the offset evolves throughout the chirp
aveform. The presence of this time varying offset is problematic in

erms of extracting the complex modulus from the 𝜎OWCh experiment
ince, whilst the driving stress waveform is periodic, the strain response
s not and subsequent Fourier Transformation of the data generates
ignificant Fresnel ripples in the computed moduli which render the
esults unusable (the time dependency of the offset preventing it from
ppearing as a simple DC term in the FFT). Herein, we propose to over-
ome this issue by performing Fourier analysis on the time derivative of
he strain data (i.e. the strain rate) and seeking the complex viscosity,
∗(𝜔), before converting this to the complex modulus through the well-
nown relation 𝐺∗(𝜔) = 𝑖𝜔𝜂∗(𝜔). Notably, a recent study of the aging of
entonite samples using chirp-based rheometry was performed using a
A Instruments DHR3 rheometer (a CMT device) operated in its stress-
ontrolled mode (thus avoiding the need to employ feedback loops)
n which 𝐺∗(𝜔) was determined from the stress and strain waveforms
irectly [20]. However, the Bentonite sample displayed a yield stress
hus driving the strain offset to zero. Other classes of materials, which
o not display a yield stress cannot be analysed accurately using FFT
nalysis of the stress and strain waveforms.

In addition to the issues associated with the evolving strain offset,
xperiments performed on CMT rheometers are subject to the effects of
oth ‘instrument’ and ‘sample’ inertia. In contrast to SMT rheometers,
or which torque is measured at the stationary part of the geometry,
n CMT rheometers torque application and displacement measurement
oth occur at the moving element of the geometry. As such, some of
he applied torque must be used to accelerate the moving parts of
he rheometer (motor, shaft and geometry). Such ‘instrument’ inertial
ffects have been discussed in detail by several authors [24–31], in-
luding Prof. Ken Walters in his 1975 book ‘Rheometry’ [32], and it
s well understood that inertial artefacts can (i) introduce a quadratic
caling with 𝐺′(𝜔) ∼ 𝐼𝜔2 at high frequencies and (ii) generate a reso-

nant coupling between the instrument and the sample elasticity which
dramatically reduces the torque amplitude applied to the material at
high frequencies. Ogunkeye, Hudson & Curtis [24] recently evaluated
the impact of inertia on the start up of stress-controlled oscillations
following the analysis of Hassager [23] for the inertialess case. In
Section 2.2 we extend this analysis to study the impact of instrument
inertia on the response of the combined system (i.e. the rheometer
3 
and the loaded material sample) to a 𝜎OWCh perturbation and demon-
strate that understanding its effects are critical to performing accurate
chirp-based rheometry using CMT rheometers.

In Section 2.3 we consider the implications of waveform digitisa-
tion. This discretisation process occurs within the rheometer software
and results in the generation of a look up table (LUT) that is sent to
the rheometer as a command signal. The chirp signal is reconstructed
by the rheometer hardware using an interpolation function to generate
the perturbation waveform. This operation generates limitations on the
range of waveform parameters and we present guidelines for OWCh
waveform design based on the size of the LUT (which can differ
dramatically between rheometer models) and the frequency range it
is desired to study.

In Section 3 we demonstrate the use of the 𝜎OWCh on a wide
range of model systems; (i) a silicone oil (ii) a polydimethylsiloxane
(PDMS) which we consider as a room temperature entangled polymer
melt, (iii) a polymer solution (polyethyleneoxide) (iv) a worm-like
micellar system, (v) a gelatin sample undergoing gelation, and finally
(vi) Laponite® (an aging, yield stress material).

2. Modelling

2.1. Strain offset

We begin by considering the response of a general viscoelastic
material to a 𝜎OWCh perturbation following Hassager (2020) [23] who,
working in the Laplace domain, derived an analytical expression for
the strain response to the start-up of a (single-tone) stress-controlled
oscillatory perturbation. However, the Laplace transform of the chirp
signal cannot be computed easily and hence we consider an arbitrary
waveform constructed as a piecewise function of 𝑁 steps, each having
discrete frequency 𝜔𝑖 initiated at time 𝑡𝑖 and terminating at 𝑡𝑖+1. The
chirp function can then be approximated by discretising 𝜔 and 𝑡 (as
per Eq. (2)). The stress profile for this arbitrary waveform can then be
expressed as:

𝜎 = 𝜎0
𝑁−1
∑

𝑖=1

[

𝐻(𝑡 − 𝑡𝑖) sin(𝜔𝑖(𝑡 − 𝑡𝑖) + 𝜙𝑖) −𝐻(𝑡 − 𝑡𝑖+1)

× sin(𝜔𝑖(𝑡 − 𝑡𝑖+1) + 𝜙𝑖+1)
]

(5)

where 𝐻(𝑡 − 𝑡𝑖) denotes the Heaviside step function and

𝑖 =
𝑖−1
∑

𝑗=1
𝜔𝑗 (𝑡𝑗 − 𝑡𝑗−1) (6)

expresses the accumulated phase of the perturbation waveform up to
𝑡 .
𝑖
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Noting that the Boltzmann superposition principle expresses the
stress at the present time, 𝜎(𝑡), as a convolution of the stress relaxation
modulus, 𝐺(𝑡 − 𝑡′) and the deformation history �̇�(𝑡′),

𝜎 = ∫

𝑡

−∞
𝐺(𝑡 − 𝑡′)�̇�(𝑡′)𝑑𝑡′ (7)

in the Laplace domain one can write:

𝑦(𝑠) = 1
𝑠
�̇�(𝑠) = 1

𝑠
𝑥(𝑠)
𝑔(𝑠)

(8)

here 𝑦(𝑠), �̇�(𝑠), 𝑥(𝑠) and 𝑔(𝑠) denote the Laplace transforms of 𝛾(𝑡),
̇ (𝑡), 𝜎(𝑡) and 𝐺(𝑡), respectively. Whilst the proposed data processing
lgorithm employs �̇�(𝑡) which could be determined analytically as
−1 [𝑥(𝑠)∕𝑔(𝑠)

]

, the rheometer does not directly record this function for
rbitrary waveforms and �̇�(𝑡) must be determined numerically. Hence,
n the present section, we seek to determine 𝛾(𝑡). Noting that 𝑡𝑖 = 𝑡𝑖+1 −
𝑡𝑖+1 − 𝑡𝑖), the Laplace transform of 𝜎(𝑡) can be determined from Eq. (5)
s:

(𝑠) = 𝜎0
∑

𝑖

{

𝑒−𝑡𝑖𝑠
[

𝑠 sin(𝜙𝑖) + 𝜔𝑖 cos(𝜙𝑖)
(𝑠2 + 𝜔2

𝑖 )

]

−𝑒−𝑠𝑡𝑖+1
[

𝑠 sin(𝜙𝑖+1) + 𝜔𝑖 cos(𝜙𝑖+1)
(𝑠2 + 𝜔2

𝑖 )

]}

(9)

y substituting Eq. (9) into Eq. (8) we arrive at the following expression
or 𝑦(𝑠):

(𝑠) = 𝜎0
∑

𝑖

{

𝑒−𝑡𝑖𝑠
[

𝑠 sin(𝜙𝑖) + 𝜔𝑖 cos(𝜙𝑖)
𝑠(𝑠2 + 𝜔2

𝑖 )𝑔(𝑠)

]

−𝑒−𝑠𝑡𝑖+1
[

𝑠 sin(𝜙𝑖+1) + 𝜔𝑖 cos(𝜙𝑖+1)
𝑠(𝑠2 + 𝜔2

𝑖 )𝑔(𝑠)

]}

(10)

The time domain function 𝛾(𝑡) can now be determined by taking the
inverse Laplace transform of Eq. (10) by considering its poles.

Firstly, we note that:

ℒ−1 [𝑒−𝑎𝑠𝐹 (𝑠)
]

= 𝐻(𝑡 − 𝑎)𝑓 (𝑡 − 𝑎) (11)

such that we can write:

𝛾(𝑡) = 𝜎0
∑

𝑖

⎧

⎪

⎨

⎪

⎩

𝐻(𝑡 − 𝑡𝑖)ℒ−1

[

𝑠 sin(𝜙𝑖) + 𝜔𝑖 cos(𝜙𝑖)
𝑠(𝑠2 + 𝜔2

𝑖 )𝑔(𝑠)

]

(𝑡−𝑡𝑖)

−𝐻(𝑡 − 𝑡𝑖+1)ℒ−1

[

𝑠 sin(𝜙𝑖+1) + 𝜔𝑖 cos(𝜙𝑖+1)
𝑠(𝑠2 + 𝜔2

𝑖 )𝑔(𝑠)

]

(𝑡−𝑡𝑖+1)

⎫

⎪

⎬

⎪

⎭

(12)

where the notation ℒ−1 [𝐹 (𝑠)](𝑡−𝑡𝑖) denotes that the variable of the time
domain function, 𝑓 , will be shifted by a constant 𝑡𝑖. For later use, we
note that the arguments of both inverse Laplace transforms in Eq. (12)
have the same form:

𝐵(𝑠) =
𝑠 sin 𝑎 + 𝜔𝑖 cos 𝑎
𝑠(𝑠2 + 𝜔2

𝑖 )𝑔(𝑠)
(13)

Each of the inverse Laplace transform terms in Eq. (12) will have
poles at 𝑠 = 0 (corresponding to the long time behaviour of the system,
i.e. the offset), at 𝑠 = ±𝑖𝜔𝑖 (corresponding to the periodic response) and
where 𝑠 generates zeros of 𝑔(𝑠) (corresponding to the transient response
of the material to the frequency steps). We now treat each of these poles
separately. Firstly, the contribution to 𝛾(𝑡) from the pole at 𝑠 = 0 can
be determined by noting that 𝑔(0) = 𝜂0 and applying the final value
theorem,

lim
𝑡→∞

𝑓 (𝑡) = lim
𝑠→0

𝑠𝐹 (𝑠) (14)

such that:

𝛾off(𝑡) = 𝜎0
∑

[

𝐻(𝑡 − 𝑡𝑖) cos(𝜙𝑖) −
𝐻(𝑡 − 𝑡𝑖+1) cos(𝜙𝑖+1)

]

(15)

𝑖 𝜔𝑖𝜂0 𝜔𝑖𝜂0

4 
We now consider the periodic contribution to the signal (𝑠 = ±𝑖𝜔𝑖),
valuating 𝑓 (𝑠) = (𝜔2 + 𝑠2)𝐵(𝑠) at the point 𝑠 = 𝑖𝜔 we find,

(𝑠) =
𝑖𝜔𝑖 sin 𝑎 + 𝜔𝑖 cos 𝑎

𝑖𝜔𝑖𝑔(𝑖𝜔𝑖)
(16)

Recalling that,

∗(𝜔) = 𝑖𝜔∫

∞

0
𝐺(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡 = 𝑖𝜔𝑔(𝑖𝜔) (17)

e can write that

(𝑖𝜔) =
𝐺∗(𝜔)
𝑖𝜔

(18)

and since 𝐽 ∗ = 1∕𝐺∗

𝐽 ∗(𝜔) = 1
𝑖𝜔𝑔(𝑖𝜔)

(19)

hence,

𝑓 (𝑖𝜔𝑖) = 𝐽 ∗ (𝑖𝜔𝑖 sin 𝑎 + 𝜔𝑖 cos 𝑎
)

=
(

𝐽 ′ − 𝑖𝐽 ′′) (𝑖𝜔𝑖 sin 𝑎 + 𝜔𝑖 cos 𝑎
)

(20)

which has real (𝑓𝑟) and imaginary (𝑓𝑖) parts given by

𝑓𝑟 = 𝜔(𝐽 ′ cos 𝑎 + 𝐽 ′′ sin 𝑎) (21)

𝑓𝑖 = 𝜔(𝐽 ′ sin 𝑎 − 𝐽 ′′ cos 𝑎) (22)

The combined contribution from 𝑠 = ±𝑖𝜔𝑖 is then:

𝑏𝑝(𝑡) = 𝐽 ′ sin(𝑎 + 𝜔𝑖𝑡) − 𝐽 ′′ cos(𝑎 + 𝜔𝑖𝑡) (23)

Introducing Eq. (23) into Eq. (10) we find that the periodic contribution
to 𝛾(𝑡) is:

𝛾𝑝(𝑡) = 𝜎0
∑

𝑖

{

𝐻(𝑡 − 𝑡𝑖)
[

𝐽 ′
𝑖 sin (𝜙𝑖 + 𝜔𝑖(𝑡 − 𝑡𝑖))

−𝐽 ′′
𝑖 cos (𝜙𝑖 + 𝜔𝑖(𝑡 − 𝑡𝑖))

]

−

𝐻(𝑡 − 𝑡𝑖+1)
[

𝐽 ′
𝑖 sin (𝜙𝑖+1 + 𝜔𝑖(𝑡 − 𝑡𝑖+1))

−𝐽 ′′
𝑖 cos (𝜙𝑖+1 + 𝜔𝑖(𝑡 − 𝑡𝑖+1))

]}

(24)

where the subscript 𝑝 denotes the ‘periodic’ part of the material re-
sponse whilst 𝐽 ′

𝑖 and 𝐽 ′′
𝑖 denote the real and imaginary parts of the

complex compliance evaluated at 𝜔𝑖.
Finally, the transient contribution to 𝛾(𝑡) needs to be considered.

Again following Hassager [23], we consider a multi-mode Maxwell
model with 𝑁𝑚 relaxation times 𝜏𝑚 and associated viscosities 𝜂𝑚 such
that:

𝑔(𝑠) =
∑

𝑚

𝜂𝑚
1 + 𝑠𝜏𝑚

(25)

This function will have singularities at 𝑠 = −1∕𝜏𝑚. Outside of these
singularities
𝑑𝑔
𝑑𝑠

= −
∑

𝑚

𝜂𝑚𝜏𝑚
(1 + 𝑠𝜏𝑚)2

< 0 (26)

and hence a single root, 𝑠1, of 𝑔(𝑠) = 0 is found in each of the intervals

1
𝜏𝑚

< 𝑠 < − 1
𝜏𝑚+1

(27)

which can be used to define (following Hassager [23]) 𝑁𝑘 = 𝑁𝑚 − 1
positive retardation times 𝜆𝑘 such that:

𝜏𝑚 < 𝜆𝑘 < 𝜏𝑚+1 (28)

(Note that a single-mode Maxwell model has no retardation time).
The total contribution of the poles at 𝑠𝑘 to 𝐵(𝑠) can be determined

y summing the residues of 𝐵(𝑠) exp(−𝑠𝑡) at the poles [33]. Close to a
iven pole (of 𝐵(𝑠)), by definition 𝑔(−1∕𝜆𝑘) = 0 and hence, 𝑔(𝑠) can be
xpanded as:

(𝑠) =
(

𝑠 + 1
)

𝑔′
(

− 1
)

+ 𝑂(𝑠2) (29)

𝜆𝑘 𝜆𝑘
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Hence, to first order, we have:

𝑔(𝑠) = −𝜆2𝑘

(

𝑠 + 1
𝜆𝑘

)

∑

𝑚

𝜂𝑚𝜏𝑚
(𝜆𝑘 − 𝜏𝑚)2

(30)

(note that higher order terms of Eq. (29) will not contribute to the
residual since the term (𝑠+1∕𝜆𝑘)𝑛 → 0 as 𝑠 → −1∕𝜆𝑘). We now substitute
his into Eq. (13), multiply by 𝑒𝑠𝑡 and take the residue of the pole
ccurring at −1∕𝜆𝑘 to get:

es
[

𝐵(𝑠)𝑒𝑠𝑡,− 1
𝜆𝑘

]

=

[

𝜔𝜆𝑘 cos 𝑎 − sin 𝑎
]

𝑒−𝑡∕𝜆𝑘

(1 + 𝜔2𝜆2𝑘)
∑

𝑚
𝜂𝑚𝜏𝑚

(𝜆𝑘−𝜏𝑚)2
(31)

Summing over all roots (one of which appears between each pair of
relaxation times) and substituting into Eq. (10) allows the transient
contribution to the strain to be determined as:

𝛾𝑡(𝑡) = 𝜎0
∑

𝑖

⎧

⎪

⎨

⎪

⎩

𝐻(𝑡 − 𝑡𝑖)
∑

𝑘

[

𝜔𝑖𝜆𝑘 cos𝜙𝑖 − sin𝜙𝑖
]

𝑒−(𝑡−𝑡𝑖)∕𝜆𝑘

(1 + 𝜔2
𝑖 𝜆

2
𝑘)
∑

𝑚
𝜂𝑚𝜏𝑚

(𝜆𝑘−𝜏𝑚)2

−𝐻(𝑡 − 𝑡𝑖+1)
∑

𝑘

[

𝜔𝑖𝜆𝑘 cos𝜙𝑖+1 − sin𝜙𝑖+1
]

𝑒−(𝑡−𝑡𝑖+1)∕𝜆𝑘

(1 + 𝜔2
𝑖 𝜆

2
𝑘)
∑

𝑚
𝜂𝑚𝜏𝑚

(𝜆𝑘−𝜏𝑚)2

⎫

⎪

⎬

⎪

⎭

(32)

ence, (neglecting inertia) the total strain as a function of time can be
ritten as:

(𝑡) = 𝛾off(𝑡) + 𝛾𝑝(𝑡) + 𝛾𝑡(𝑡) (33)

.1.1. The windowed chirp signal
For a windowed chirp (i.e. an OWCh experimental protocol) the

arameter 𝜎0 in Eq. (5) becomes a time-dependent variable, however,
ithin each discrete interval of Eq. (5), 𝜎0(𝑡𝑖) takes a constant value

which changes between intervals) and hence the windowed chirp can
e accommodated by discretising 𝜎0 in the same manner as 𝜔 and 𝑡.

.1.2. Two mode Maxwell model
A two-mode Maxwell model represents the simplest mechanical

odel with a retardation time (and hence involves a transient con-
ribution to the total strain). The retardation time, 𝜆, for a two-mode
axwell model (with relaxation times 𝜏1, 𝜏2 and mode viscosities of 𝜂1

nd 𝜂2) can be expressed as:

=
𝜂1𝜏2 + 𝜂2𝜏1
𝜂1 + 𝜂2

(34)

whilst

𝐽 ′(𝜔) =
𝜂1𝜏1 + 𝜂2𝜏2 + (𝜂1𝜏2 + 𝜂2𝜏1)𝜏1𝜏2𝜔2

(𝜂1 + 𝜂2)2 + (𝜂1𝜏2 + 𝜂2𝜏1)2𝜔2
(35)

𝐽 ′′(𝜔) =
𝜂1 + 𝜂2 + (𝜂1𝜏22 + 𝜂2𝜏21 )𝜔

2

𝜔(𝜂1 + 𝜂2)2 + (𝜂1𝜏2 + 𝜂2𝜏1)2𝜔3
(36)

𝜂0 = 𝜂1 + 𝜂2 (37)

Eqs. (34) through (37) can be combined with Eqs. (5) and (33) to
determine the strain response (in the absence of instrument/sample
inertia effects) of a two-mode Maxwell model to a given windowed
chirp. Fig. 2 shows the response of a two-mode Maxwell model with
𝜏1 = 0.1 s, 𝜏2 = 1 s and 𝜂1 = 𝜂2 = 1.0 Pa s to a stress-controlled OWCh
waveform which clearly shows that a strain offset is a key feature of
the response. Consequently, if the conventional OWCh protocol, which
calculates the dynamic moduli via

𝐺∗(𝜔) = ℱ [𝜎]
ℱ [𝛾]

(38)

s used to process the waveforms, the resulting moduli show no re-
emblance to the expected result (Fig. 2D). However, provided the
andwidth of the chirp is sufficiently wide (approximately 2 orders of
agnitude) this offset term approaches a constant in the latter half of
 o

5 
he experiment (see Fig. 2B) and the expected moduli may be recovered
ia:
∗(𝜔) = 𝑖𝜔𝜂∗(𝜔) = 𝑖𝜔ℱ [𝜎]

ℱ [�̇�]
(39)

as shown in Fig. 2E.
Note that if one seeks �̇�(𝑡) rather than 𝛾(𝑡) in the analysis above, the

final value theorem reveals that �̇�(∞) = 0 confirming the absence of the
offset and the validity of seeking 𝜂∗(𝜔) as an intermediate to obtaining

∗(𝜔).
This approach requires that the derivative of the strain signal be

btained. In the present work a second order central difference ap-
roach has been used to determine �̇� (for data points 𝑖 = 2 ∶ 𝑁 − 1,
hilst for 𝑖 = 1 and 𝑖 = 𝑁 first order forward/backward differences are
mployed, respectively). Whilst this operation exacerbates noise, this is
ypically only important at a higher frequency than 𝜔2 and hence does
ot impede the determination of 𝐺∗(𝜔) over the range 𝜔1 ≤ 𝜔 ≤ 𝜔2.

In a similar fashion, whilst direct calculation of the complex com-
liance, 𝐽 ∗(𝜔) as

∗(𝜔) =
𝐹𝐹𝑇 (𝛾)
𝐹𝐹𝑇 (𝜎)

(40)

results in significant noise, the material function can be obtained via a
complex fluidity, 𝛷∗(𝜔) = 𝛷′ − 𝑖𝛷′′ (the negative imaginary part being
required to ensure positive values of 𝐽 ′ and 𝐽 ′′) as:

𝐽 ∗(𝜔) =
𝛷∗(𝜔)
𝑖𝜔

(41)

where

𝛷∗(𝜔) =
𝐹𝐹𝑇 (�̇�)
𝐹𝐹𝑇 (𝜎)

(42)

In the present work we choose to work with the complex viscosity
and complex modulus 𝐺∗(𝜔) (rather than reporting the complex compli-
ance 𝐽 ∗(𝜔)) due to their predominance in the literature, and to facilitate
eady comparison with previous work using strain-controlled chirps.

.2. Inertia

Having demonstrated that 𝐺′(𝜔) and 𝐺′′(𝜔) can be accurately deter-
mined from a 𝜎OWCh experiment if one seeks 𝜂∗(𝜔) as an intermediate
arameter, we now consider the impact of instrument inertia on the
train waveform.

Unlike SMT instruments, in which the torque-sensing element of the
eometry is separated from that which is driven by the motor, in CMT
heometers the application of torque and displacement sensing both
ccur at the moving element of the geometry (which is undergoing
ontinuous acceleration in oscillatory flows). Hence, both the sample
nd instrument inertia contribute to the total stress recorded by the
nstrument. In the limit of ‘gap loading’, where sample inertia is deemed
o be negligible [34], the total torque (𝑀𝑡) can be expressed as the sum

of the sample torque, 𝑀𝑠 and the inertial torque as follows:

𝑀𝑡 =𝑀𝑠 + 𝐼𝑐 �̈� (43)

where 𝐼𝑐 is the calibrated moment of inertia constant of the system
(i.e. including instrument and geometry components) and 𝜃(𝑡) denotes
the instantaneous angular displacement. Consequently, in the presence
of inertia, Eq. (7) becomes:

𝜎𝑡(𝑡) = ∫

𝑡

−∞
𝐺(𝑡 − 𝑡′)�̇�(𝑡′)𝑑𝑡′ + 𝐼�̈� (44)

where 𝜎𝑡 denotes the total stress (= 𝑀𝑡∕𝐾𝜎). Note that 𝐼 = 𝐼𝑐 (𝐾𝜎∕𝐾𝛾 )
where 𝐾𝜎 and 𝐾𝛾 denote the geometry-specific stress and strain factors,
respectively. Hence the Laplace domain function becomes

𝑦(𝑠) = 1
𝑠

𝑥(𝑠)
𝑔(𝑠) + 𝐼𝑠

(45)

gunkeye, Hudson & Curtis [24] demonstrated that, for single-tone
scillations, the additional term (𝐼𝑠) in the denominator of Eq. (45)
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Fig. 2. Perturbation (A) and response (B&C) for a two-mode Maxwell model (Eq. (33)) with 𝜏1 = 0.1 s, 𝜏2 = 1 s and 𝜂1 = 𝜂2 = 1.0 Pa s. Calculating 𝐺∗(𝜔) as using the standard
OWCh protocol, based on the FFT of the stress and strain waveforms, generates very poor data (D) due to the offset observed in the strain profile (B). Calculating 𝐺∗(𝜔) based on
he FFT of the stress and strain-rate waveforms, generates storage (closed red) and loss (open blue) moduli that are in excellent agreement with their SAOS counterparts (solid
rey and dashed grey lines, respectively)(E).
s
s
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𝛾

w

𝛾

mpacts the form of both the transient and periodic contributions to 𝛾(𝑡).
or non-zero values of 𝐼 , the periodic part of the strain (for a single-tone
tress controlled excitation) can be expressed as [24]:

𝑝(𝑡) =
𝜎0

[(

𝐺′ − 𝐼𝜔2) sin (𝜓 + 𝜔𝑡) − 𝐺′′ cos (𝜓 + 𝜔𝑡)
]

(

𝐺′ − 𝐼𝜔2
)2 + 𝐺′′2

(46)

In contrast to the inertialess case, for which the transient response
ssociated with each pair of relaxation modes is defined by a single
oot of the function 𝑔(𝑠) = 0 in the interval −1∕𝜏𝑚 < 𝑠𝑘 < −1∕𝜏𝑚+1 (as

discussed in Section 2.1), where 𝐼 ≠ 0, three (potentially complex) roots
of the function 𝑔(𝑠) + 𝐼𝑠 appear within the same interval. Within each
interval, the roots of the function 𝑔(𝑠)+𝐼𝑠 can be found by solving [24]:

(𝜂1)(1 + 𝑠𝜏2) + (𝜂2)(1 + 𝑠𝜏1) + 𝐼𝑠(1 + 𝑠𝜏2)(1 + 𝑠𝜏1) = 0 (47)

which can be expanded into the form of a 3rd order polynomial (𝑎𝑠3 +
𝑏𝑠2 + 𝑐𝑠 + 𝑑 = 0) with coefficients

𝑎 = 𝐼𝜏1𝜏2

𝑏 = 𝐼(𝜏1 + 𝜏2)

𝑐 = 𝜏1𝜂2 + 𝜏2𝜂1 + 𝐼

𝑑 = 𝜂1 + 𝜂2

whose roots (denoted 𝑠𝑘) can easily be found numerically. There are

three roots (and hence 𝑘 = 1, 2, 3) if the discriminant of this polynomial

6 
(i.e. 𝛥 = 18𝑎𝑏𝑐𝑑−4𝑏3𝑑+𝑏2𝑐2−4𝑎𝑐3−27𝑎2𝑑2) for the pair of modes (𝑛 and
𝑛+1) is positive (three real roots) or negative (one real and two complex
conjugate roots). If the determinant evaluates to 0 the polynomial has
a repeated root; a single repeated root if 3𝑎𝑐 = 𝑏2 resulting in 𝑘 = 1,
otherwise there are two roots and 𝑘 = 1, 2 [24]. Hence, the transient
component 𝛾(𝑡) can be expressed as

𝑦𝑡(𝑡) =
𝑁𝑚−1
∑

𝑛=1

∑

𝑘

𝜎0
(

𝜔 cos𝜙 + 𝑠𝑛,𝑘 sin𝜙
)

exp(𝑠𝑛,𝑘𝑡)

𝑠𝑛,𝑘
(

𝐼 −
∑

𝑚
𝜂𝑚𝜏𝑚

(1+𝑠𝑛,𝑘𝜏𝑚)2

)(

𝑠2𝑛,𝑘 + 𝜔
2
) (48)

where 𝑠𝑛,𝑘 refers to the 𝑘th root in the interval 1∕𝜏𝑛 < 𝑠 < 1∕𝜏𝑛+1. The
strain offset term is unaffected by inertia and can be expressed as:

𝛾off =
𝜎0 cos(𝜙)
𝜔𝜂0

(49)

Generalising the above expressions for the strain response to a
ingle-tone stress-controlled excitation to the response to an arbitrary
tress-controlled waveform, following the same procedure as described
n Section 2.1, we arrive at the following expressions for the strain
esponse to a 𝜎OWCh waveform:

(𝑡) = 𝛾off(𝑡) + 𝛾𝑝(𝑡) + 𝛾𝑡(𝑡) (50)

here,

off(𝑡) =
∑

𝜎𝑖

[

𝐻(𝑡 − 𝑡𝑖) cos(𝜙𝑖) −
𝐻(𝑡 − 𝑡𝑖+1) cos(𝜙𝑖+1)

]

(51)

𝑖 𝜔𝑖𝜂0 𝜔𝑖𝜂0
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Fig. 3. Perturbation (A) and response (B&C) waveforms for a two mode Maxwell model (Eq. (33)) with 𝜏1 = 0.1 s, 𝜏1 = 1 s and 𝜂1 = 𝜂2 = 1.0 Pa s in the presence of an inertial
erm 𝐼 = 0.02 Pa s2. (D) Calculating 𝐺∗(𝜔) as using the 𝜎OWCh protocol, based on the FFT of the stress and strain-rate waveforms, generates raw loss (open blue) moduli that
re in excellent agreement with their SAOS counterparts (dashed grey line) over the entire frequency range. Raw storage moduli (closed grey) agree with the SAOS data at low
requency but deviate significantly at high frequency due to the contribution from inertial term. Correction of the raw storage modulus by the addition of 𝐼𝜔2 returns the storage
odulus to its expected behaviour (closed red). In (E), we show the high-frequency behaviour of the moduli when an additional period is added to the end of the waveform to

llow the inertial effects to decay in contrast to (F) in which the strain waveform has been terminated at 𝑇 = 22 s leading to truncation of the response waveform (marked ∗ in
). The shaded region in figures D-F shows regions in which inertial effects dominate the system response.
𝑡(𝑡) =
∑

𝑖

𝑁𝑚−1
∑

𝑛=1

∑

𝑘
𝜎𝑖

⎧

⎪

⎨

⎪

⎩

𝐻(𝑡 − 𝑡𝑖)

(

𝜔𝑖 cos𝜙𝑖 + 𝑠𝑛,𝑘 sin𝜙𝑖
)

exp(𝑠𝑛,𝑘(𝑡 − 𝑡𝑖))

𝑠𝑛,𝑘
(

𝐼 −
∑

𝑚
𝜂𝑚𝜏𝑚

(1+𝑠𝑛,𝑘𝜏𝑚)2

)(

𝑠2𝑛,𝑘 + 𝜔
2
𝑖

) −

𝐻(𝑡 − 𝑡𝑖+1)

(

𝜔𝑖 cos𝜙𝑖+1 + 𝑠𝑛,𝑘 sin𝜙𝑖+1
)

exp(𝑠𝑛,𝑘(𝑡 − 𝑡𝑖+1))

𝑠𝑛,𝑘
(

𝐼 −
∑ 𝜂𝑚𝜏𝑚

2

)(

𝑠2 + 𝜔2
)

⎫

⎪

⎬

⎪

(52)

𝑚 (1+𝑠𝑛,𝑘𝜏𝑚) 𝑛,𝑘 𝑖

⎭

7 
𝛾𝑝(𝑡) =
∑

𝑖
𝜎𝑖

{

𝐻(𝑡 − 𝑡𝑖)

×

[

(𝐺′
𝑖 − 𝐼𝜔

2) sin (𝜙𝑖 + 𝜔𝑖(𝑡 − 𝑡𝑖)) − 𝐺′′
𝑖 cos (𝜙𝑖 + 𝜔𝑖(𝑡 − 𝑡𝑖))

(𝐺′
𝑖 − 𝐼𝜔2)2 + 𝐺′′2

𝑖

]

−

𝐻(𝑡 − 𝑡𝑖+1)

×

[

(𝐺′ − 𝐼𝜔2) sin (𝜙𝑖+1 + 𝜔𝑖(𝑡 − 𝑡𝑖+1)) − 𝐺′′
𝑖 cos (𝜙𝑖+1 + 𝜔𝑖(𝑡 − 𝑡𝑖+1))

(𝐺′
𝑖 − 𝐼𝜔2)2 + 𝐺′′2

𝑖

]}
(53)
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Fig. 4. Data processing algorithm for a stress-controlled 𝜎OWCh protocol.

Fig. 3 demonstrates the impact of system inertia on the strain (B),
nd strain rate (C) response to a stress-controlled chirp perturbation (A)
or the same two-mode Maxwell model employed in Section 2.1.2 in the
resence of instrument inertia (with 𝐼 = 0.02 Pa s2). There are three
nteresting features of this data that are not present in the inertialess
ase (Fig. 2). Firstly, a resonance effect causes the amplitude of the
train waveform to increase towards the end of the chirp. Secondly,
he strain (and strain rate) signals persist beyond the chirp duration,

(shown as a dotted line), consequently a short post-chirp period (𝑡𝑝)
n which the stress is held at zero must be added to the perturbation
aveform following the chirp to allow the strain-rate signal to return

o zero (an additional, one-sided, window can be applied to the strain-
ate signal over the interval 𝑇 < 𝑡 < 𝑇 + 𝑡𝑝 during post-processing to
orce this transient response to zero if necessary). Applying Eq. (39)
o the stress and strain-rate signals allows the calculation of a ‘raw’
omplex modulus 𝐺∗

𝑟𝑎𝑤(𝜔), the real part of which contains an inertial
ontribution, −𝐼𝜔2 (see Eq. (53)). The true storage modulus, 𝐺′(𝜔), can
hen be obtained from the real part of the 𝐺∗

𝑟𝑎𝑤(𝜔) as 𝐺′
𝑟𝑎𝑤(𝜔) + 𝐼𝜔

2 as
per conventional SAOS experiments. A schematic of the proposed data
processing algorithm for 𝜎OWCh is shown as Fig. 4.

When performing SAOS experiments using a CMT rheometer it
s customary to consider either the ‘raw phase angle’ or the ratio
f inertial to sample torques to identify data (typically that at high
requencies) in which the inertial contribution to torque dominates
he total torque, thus preventing robust determination of 𝐺∗(𝜔). In
n analogous manner, the raw phase angle can be calculated for data
cquired from chirp experiments as atan(𝐺′′∕𝐺′

𝑟𝑎𝑤) where 𝐺′
𝑟𝑎𝑤 denotes

the real part of the apparent modulus 𝐺∗
𝑟𝑎𝑤 as calculated via Eq. (39).

TA Instruments documentation suggests that for an AR series rheome-
ter, accurate inertia correction can be made where 𝛿𝑟𝑎𝑤 < 155◦ [35]
(confirmed for gelling materials by Hudson et al. [31]) whilst for the
HR-30 rheometer, accurate inertia correction can be made for values
of 𝛿𝑟𝑎𝑤 as high as 175◦ [35]. Subfigures D and E show 𝐺′(𝜔) (red),
𝐺′′(𝜔) (blue) and 𝐺′ (𝜔). It is clear that the recovered moduli are in
𝑟𝑎𝑤

8 
Fig. 5. Sampling and interpolation during data acquisition using an approximated chirp
strain signal. 𝑥(𝑡) denotes the commanded chirp, 𝑝1(𝑡) denotes the sampling function
associated with the limited size of the LUT (with sampling rate 1024/T for a HR/DHR
controlled stress rheometer). ℎ1(𝑡) denotes a first-order hold (i.e. linear interpolation)
operation, Mat. denotes the ‘material’ transfer function and 𝛾(𝑡) and 𝜎(𝑡) denote the
ontinuous ‘approximate chirp’ perturbation and response signals. 𝑝2(𝑡) denotes the
ampling function associated with data acquisition (488 pts/s herein) and 𝛾[𝑛] and 𝜎[𝑛]
enote the discretely sampled strain and stress outputs as recorded by the instrument
oftware.

xcellent agreement with the analytical predictions. Fig. 3F shows the
ame data where the stress and strain waveforms have been truncated
t 𝑇 (i.e. no ‘settling time’ has been provided). Fresnel ripples are
bserved in both moduli because the periodicity of the underlying
train-rate data has been lost. It is interesting to note that in 𝜎OWCh a
settling’ period is required following the chirp whilst in a controlled-
train OWCh experiment (e.g. applied using an ARES-G2 rheometer) a
elay is required at the start of the chirp waveform to allow settling of
he torque transducer [7].

.3. Waveform construction

.3.1. Digitisation
As discussed by Geri et al. [7], an important consideration when

esigning chirp waveforms is that the time-bandwidth product, TB =
(𝜔2 − 𝜔1)∕2𝜋 is large in order to minimise the magnitude of ripples

in the computed frequency spectra of the perturbation and response
signals, and consequently, in 𝐺∗(𝜔). Since the frequency range of OWCh
rheometry is limited by resolution and inertial considerations the TB
requirement demands that long chirps be employed; a condition that
cannot easily be satisfied when studying gelling systems as 𝑇 is limited
y the assumption that the rheological properties of the material do not
ary throughout the duration of the chirp. However, a further limitation
n the signal duration 𝑇 exists as a consequence of the digitisation
f the chirp waveform by the rheometer. For DHR/HR and MCR
ystems the command waveform is passed from the control software
o the rheometer in the form of a look up table (LUT). The instrument
irmware then interpolates between the LUT values in order to generate
he continuous signal that is applied to the material as the perturbation
aveform. The perturbation and response waveforms are then over

ampled (often at a high rate) to generate the reported perturbation and
esponse data that is processed to determine 𝐺∗(𝜔). The block diagram
hown in Fig. 5 illustrates the sampling and interpolation processes that
ccur during waveform construction and data acquisition. There are
wo important sampling operations that must be considered.

The well-known Nyquist-Shannon criterion [37] defines the mini-
um sampling rate that must be used for data acquisition as twice the
aximum frequency component of the signal. The HR/DHR and MCR

ystems sample torque and displacement at rates of (up to) 966 pts/s
HR/DHR) and (up to) 200 pts/s (MCR), far exceeding those required
o satisfy the Nyquist-Shannon criteria at the highest chirp frequencies
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Fig. 6. Effect of increasing the signal duration 𝑇 on perturbation waveform in time and frequency domains. In Figures A–C, we show perturbation signals generated using the
lgorithm presented as Fig. 5 with 𝑇 = 21, 100 and 200 s respectively. In Figures D–E, we show the corresponding frequency domain representation obtained via a Fast Fourier
ransform [36] (solid black lines). In figures D–E, solid red lines show the frequency band of the command waveform, the dashed red line shows the Nyquist frequency associated
ith waveform generation (i.e. based on the sampling rate for 𝑝1) and the dashed blue line shows the scaling of a ‘pink’ power spectrum for reference. For chirps A–C, 𝑁 = 1024,
ence chirps B and C do not satisfy the oversampling criterion, with 𝑅 = 1.07 and 𝑅 = 0.54, respectively.
that may be applied using conventional rheometers. However, the
generation of the LUT also involves a sampling operation (shown as
𝑝1 in Fig. 5).

The LUT that is generated by the rheometer software has 𝑁 entries
which are uniformly distributed over the chirp duration (𝑇 + 𝑡𝑝), hence
he sampling rate for waveform generation is 𝑝1 = 𝑁∕(𝑇 +𝑡𝑝). The value

of 𝑁 is instrument-specific and, whilst for the ARES-G2 rheometer
𝑁 > 32,000, for the DHR/HR series of instruments 𝑁 = 1024 and
or the Anton Paar MCR series (in both CMT and SMT configurations),
≈ 2048. In the frequency domain, this sampling operation generates

liases of the spectrum of the desired signal that are centred at integer
ultiples of the sampling frequency (1∕𝑝1). However, the subsequent

nterpolation of the LUT (convolution of the sampled time domain
ignal with a triangular pulse) has the effect of multiplying the fre-
uency domain spectrum with a 𝑠𝑖𝑛𝑐2(𝜔) function [38] which has zeros

at integer multiples of the sampling frequency (1∕𝑝1). Consequently,
inappropriate selection of 𝑝1 (because of an excessive chirp duration,

for the given LUT size, 𝑁) causes (i) power to be lost to higher
aliased’ frequencies outside of the chirp bandwidth and (ii) the loss
f all power at frequencies around 1∕𝑝1. In the time domain, the

approximate chirp waveform loses its smoothness and may, at high
frequencies, completely skip entire oscillations causing rapid accel-
erations and preventing appropriate inertial correction. Fig. 6 shows
9 
perturbation waveforms generated using LUTs with 𝑁 = 1024 for
𝑇 = 21, 100, 200 s as figures A–C. Whilst the 21 s chirp is accurately
approximated by the algorithm, the longer chirps show significant
deviations from the expected waveform. Fig. 6D–E shows the cor-
responding power spectra with D showing the characteristic ‘pink’
power spectrum of a chirp (shown as a dashed blue line decaying
inversely with frequency) for the accurately reconstructed chirp sig-
nal and E/D showing significant deviations from the expected power
spectrum.

An operational limit for the chirp time, 𝑇 , based on 𝜔2 can hence
be determined by considering an oversampling criterion based on the
Nyquist frequency of the waveform (i.e. 2 × 𝜔2∕2𝜋 = 𝜔2∕𝜋) and the
sampling rate associated with LUT generation (𝑁∕(𝑇 + 𝑡𝑝)), i.e. we
evaluate the ratio, 𝑅 = 𝜋𝑁∕𝜔2(𝑇 + 𝑡𝑝). A value of 𝑅 > 4 is found
to generate adequate approximations to the desired chirp signal (see
Supplementary Materials). Furthermore, since 𝜔1 and 𝑇 are effectively
linked by a relationship of the form 𝑇 = 2𝜋∕𝜔1, there is a single
degree of freedom when designing chirp waveforms where the objective
is to probe as wide a frequency range as possible (a limitation not
encountered for the ARES-G2 for which 𝑁 is not limiting). For example,
one may specify 𝜔1 to be 0.1 rad/s, thus 𝑇 should be at least 𝑇 =
2𝜋∕0.1 = 62.8 s, and, for 𝑡𝑐 = 1 s and 𝑅 = 4, 𝜔2 is limited to
𝜔 ≈ 12 rad/s for the TA Instruments DHR/HR series (𝑁 = 1024). Fig. 7
2
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Fig. 7. Time-bandwidth design space of OWCh waveforms. The lower bound is set
by 2𝜋∕𝑇 whilst the upper bound is set by 𝑅 = 5 and depends on the size of the
look-up table (𝑁) employed by the rheometer being used. Diagonal contours denote
lines of constant time-bandwidth product, TB, (with 𝜔1 = 2𝜋∕𝑇 ). A maximum 𝜔2 of
100 rad/s has been utilised in generating this figure. Operational limits (associated
with resolution and inertia) will also bound the available design space, however, since
these depend on the material being studied we do not attempt to include them in this
figure. The chirp waveforms employed in the present study are show as LF, MF and
HF (low, medium and high frequency) whilst those employed by Geri et al. (2018)
and Rathinaraj et al. (2022) using an ARES-G2 [7,19], Rathinaraj et al. (2023) using
a DHR-30 [20] and Athanasiou et al. using an MCR702 [15] are shown for reference.
[Note: *Whilst the studies of Geri et al. (2018) and Rathinaraj et al. (2023) used
chirps with 𝜔1 = 0.3, only data for 𝜔 > 0.45 rad/s was reported since 𝜔1 < 2𝜋∕𝑇
which is consistent with the operating window reported in the figure, **The study
of Rathinaraj et al. (2023) [19], extending the use of chirp waveforms to orthogonal
superposition experiments, employed external hardware for which the size of the LUT
was not reported].

shows the presently accessible chirp parameter space for rheometers
with different sizes of lookup table (LUT) evaluated using 𝑅 = 5. The
lower boundary is determined by the relationship 𝜔 = 2𝜋∕𝑇 , whilst
the upper boundary depends on the available LUT size (as shown by
the value of 𝑁 displayed). Vertical lines represent chirp signals that
have been applied in the literature to date, in terms of their duration
(𝑇 ) and frequency band (𝜔2 − 𝜔1). Diagonal lines thus represent a
constant Time-Bandwidth product, 𝑇𝐵 = 𝑇 (𝜔2 − 𝜔1)∕2𝜋 (with values
shown on the right-hand ordinate axis), where 𝜔1 is determined as
2𝜋∕𝑇 (i.e. the minimum frequency for a given chirp duration). Geri
et al. [7] demonstrated that maximising TB is an important aspect of
chirp waveform design. It is evident from the figure that as the signal
duration is decreased (i.e. moving to the left in the design space shown)
the time-bandwidth values and the frequency band accessible become
increasingly constrained.

In their work implementing OWCh using an MCR702 operating in
SMT mode, Athanasiou et al. [15] addressed the limited size of the LUT
by limiting their chirp duration to 10 s for a chirp with 𝜔 = 60 rad/s.
2

10 
Fig. 8. Effect of truncation of logarithmic skew rate (𝑘2) for low-frequency chirps.
Including insufficient significant numerical precision for 𝑘2 into the waveform definition
results in a slightly slower than anticipated evolution of the instantaneous frequency
𝜔(𝑡). This effect is compounded by the desired exponential variation in frequency,
the waveform imposed by the instrument does not probe frequencies above 𝜔𝑚𝑎𝑥 thus
generating noisy data in the frequency range 𝜔𝑚𝑎𝑥 ≤ 𝜔 ≤ 𝜔2.

Such a chirp (with 𝑁 = 2000)1 has an oversampling ratio of around 12
thus satisfying the proposed criterion.

2.3.2. A note on the importance of defining the Logarithmic Skew Rate to
sufficient numerical precision

An important parameter in defining the chirp waveform is the
Logarithmic Skew Rate, 𝑘2, originally defined in Eq. (1) and given by:

𝑘2 =
1
𝑇

ln
(

𝜔2
𝜔1

)

(54)

which determines how quickly the angular frequency evolves on a
logarithmic scale during the chirp. When using low-frequency chirps,
one must ensure that this parameter appears within the expressions
that define the chirp to a sufficient number of significant digits. For
example, a chirp with a specified frequency range 0.01 rad/s ≤ 𝜔 ≤
1.0 rad/s and 𝑇 = 628.3 s should have 𝑘2 = 0.0074 s−1. Truncating this
to 𝑘2 = 0.007 s−1 due to, for example, the limited number of characters
that may be used to specify the input signal on the TA Instruments
ARES-G2 rheometer, generates a waveform for which 𝜔2 = 0.81 rad/s
(see Fig. 8). Hence, no power is present in the perturbation waveform
above 0.81 rad/s resulting in significant noise appearing in the moduli
at this point. The DHR/HR series of rheometers are less restrictive in
terms of the number of characters available for waveform definition
and hence 𝑘2 may be input at a precision greater than three decimal
places.

Having now defined an appropriate data processing algorithm, in-
ertial correction procedures, and guidelines for chirp design we now
proceed to demonstrate the use of 𝜎OWCh in a range of materials using
the TA Instruments DHR/HR series rheometers.

3. Experimental

3.1. Rheometry

Two rheometers, a TA Instruments HR-30 rheometer (at Swansea)
and a TA Instruments DHR-3 (at MIT) were employed for all exper-
iments reported herein. Geometry selection was sample specific and

1 Whilst the MCR has a LUT size of 𝑁 = 2048 this can be reduced by the
operator.
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Table 1
Chirp parameters for the three 𝜎OWCh chirps employed herein.

Chirp 𝜔1 [rad/s] 𝜔2 [rad/s] 𝑇 [s] 𝑅

Low Frequency (LF) 0.01 1.0 628.0 5.1
Mid Frequency (MF) 0.30 30.0 21.8 4.9
High Frequency (HF) 1.0 100 6.28 5.1

is noted in Sections 3.2 to 3.7. Low viscosity silicone oil was used to
prevent evaporation of aqueous samples. Samples were loaded to the
temperature-controlled (Peltier) lower plate of the rheometer before the
upper geometry was lowered into place. Experiments were performed
at a stress amplitude within the LVR as determined via amplitude
sweeps at frequencies of 0.1 rad s−1 and 1 rad s−1 (data not shown)
unless otherwise stated below. The additional requirement of satisfying
the oversampling criteria (see Section 2.3) prevented the use of a single
chirp covering four decades of frequency (0.01 rad/s ≤ 𝜔 ≤ 100
rad/s), however, three sequential chirps as detailed in Table 1 and
designated as LF, MF and HF (i.e. low-frequency, mid-frequency and
high-frequency chirps, respectively) on Fig. 7 were employed. The three
chirps were applied over a total duration of approximately 11 min, a
conventional frequency sweep approach (with five points per decade,
three cycle sampling, and one cycle of conditioning time) requires
approximately two hours to acquire data over the same frequency
range and achieves a far lower data density. Conventional frequency
sweep (FS) data was acquired as a basis for confirming the accuracy
of the 𝜎OWCh protocols. In all experiments, chirp rheometry and
conventional FS rheometry were performed on the same sample to min-
imise the impact of loading errors when comparing the results of the
two techniques. For some samples, terminal Maxwell-like viscoelastic
behaviour was evident below 𝜔 ≈ 0.1 rad/s and hence the range of the
FS was truncated to 0.1 rad/s ≤ 𝜔 ≤ 100 rad/s.

3.2. Silicone oil

3.2.1. Sample & geometry
The first, and simplest, material response that we consider is that of

the Newtonian fluid. A 970 mPa s Silicone Oil (Brookfield) was tested at
25 ◦C using a TA Instruments HR-30 fitted with a 60 mm 2◦ aluminium
cone with a truncation gap of 52 μm.

3.2.2. Results & discussion
Fig. 9 shows conventional FS data (lines) and the results of the LF,

MF and HF 𝜎OWCh experiments. It is clear that the 𝐺′′ data are in
excellent agreement across the entire frequency range with 𝛿 ≥ 89.2◦

being observed for all data. Whilst non-zero values of 𝐺′ are present
for both the conventional and OWCh-based experiments, these data
lie close to the operational limits of the rheometer. The operational
limit associated with instrument inertia has been determined following
Ewoldt et al. [25] using 𝐺′

𝑚𝑖𝑛(𝜔) = 𝜀𝐼𝜔2 where 𝜀 = 0.1. For this value of
𝜀, only 10 % of the total torque applied to the system is used to deform
the sample. Beyond this point, inertia correction (as per Section 2.2)
is unreliable due to uncertainty in precisely determining the value of
𝐼 [25,31]. At 𝜔 < 10 rad/s, both OWCh and FS data appear to show
𝐺′ above the inertial limit. Whilst for strain controlled experiments, a
minimum value of 𝐺 (either 𝐺′ or 𝐺′′) can be determined based on
torque resolution [25], for stress controlled protocols, the minimum
value of 𝐺 is associated with the maximum strain amplitude that
may be applied to the material (defined by the extent of the linear
viscoelastic region). For silicone oils, the extent of the linear range is
large and hence the apparent non-zero values of 𝐺′(𝜔) are likely due
to a deviation from true viscometric conditions (e.g. the presence of
a small asymmetry in the sample free surface [25]). Importantly, the
artifact in the chirp-based determination of 𝐺′(𝜔) is acceptably small,
being of a similar magnitude to that in the conventional FS data.
 O

11 
3.3. Polydimethylsiloxane

3.3.1. Sample & geometry
As an example of a (room temperature) melt system, a

polydimethylsiloxane (PDMS) sample was studied using a HR-30 fitted
with a 20 mm 2◦ stainless steel cone with a truncation gap of 48 μm

3.3.2. Results & discussion
Fig. 10 shows excellent agreement between the dynamic moduli of

the PDMS sample as measured using FS and 𝜎OWCh-based procedures
over the entire frequency range studied. The operational limit asso-
ciated with instrument inertia is also shown and was determined as
described in Section 3.2.2.

3.4. Polyethylene oxide solution

3.4.1. Sample & geometry
As an example of a concentrated polymer solution (𝑐 > 𝑐∗∗, where

𝑐∗∗ denotes the second critical concentration [39]), a 2.5 wt% aqueous
solution of poly(ethylene oxide), PEO, (4 × 106 g/mol, Sigma Aldrich,
189 464) was studied. Appropriate amounts of PEO powder and type
I deionised water were combined to form the desired concentration
using a magnetic stirrer at room temperature for ≈ 24 h [39]. Any
bubbles incorporated into the PEO during preparation were removed
by degassing the sample in a vacuum chamber. Samples were stored at
room temperature before being loaded directly onto the temperature-
controlled (20 ◦C) Peltier plate of a TA instruments HR-30 rheometer
fitted with a 60 mm 2◦ aluminium cone with truncation 52 μm.

.4.2. Results & discussion
Fig. 11 compares the results of the consecutive LF, MF and HF

hirps with equivalent data acquired using a conventional FS experi-
ent. As observed for the silicone oil and PDMS experiments, excellent

greement is observed across the entire frequency range.

.5. Worm like micelles

.5.1. Sample & geometry
A 4.1 wt% cetylpyridinium chloride in sodium salicylate sample

as prepared and studied as an example of a worm-like micellar
WLM) system. Cetylpyridinium chloride (CPyCl) and sodium salicy-
ate (NaSal) (both from Sigma-Aldrich) were dissolved at a molar
atio of 2:1 in 0.5 M sodium chloride (NaCl) (Sigma-Aldrich) solu-
ions prepared using deionised water. The samples were stirred for
4 h at 40 ◦C (in a sealed beaker atop a heated plate) to completely
isperse the powder. All chemicals were used as received without
urther purification. This WLM formulation has been reported to dis-
lay viscoelastic shear thinning characteristics in contrast to those
t higher CPyCl/NaSal concentrations which have been shown to ex-
ibit shear banding characteristics [40–42]. In the present work we
estrict our attention to ‘non-shear banding’ formulations. Samples
ere stored at room temperature before being loaded directly onto the

emperature-controlled lower plate of a TA instruments HR-30 rheome-
er fitted with a 60 mm 2◦ aluminium cone with truncation 52 μm.
his system served the additional purpose of providing an experimental
erification of the modelling efforts of Section 2.2, since its linear
iscoelastic behaviour can be adequately captured by a two-mode
axwell model - thus allowing the expressions derived in Section 2.2 to

e used to predict the system response to a 𝜎OWCh waveform that can
ubsequently be compared with the experimental response following

gunkeye et al. [24].
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Fig. 9. Comparison of FS and stress-chirp (𝜎OWCH) based data acquired using a HR-30 rheomter for a 0.987 Pa s Silicone Oil. Storage and loss moduli (𝐺′ and 𝐺′′) are shown
as filled and open symbols respectively. The instrument inertia limit line has been determined as 𝐺′

𝑚𝑖𝑛(𝜔) = 𝜀𝐼𝜔2 where 𝜀 = 0.1, following [25].
Fig. 10. Comparison of FS and stress-chirp (𝜎OWCH) based data acquired using a HR-30 rheometer for a PDMS sample. Storage and loss moduli (𝐺′ and 𝐺′′) are shown as filled
and open symbols respectively. The instrument inertia limit line has been determined as 𝐺′

𝑚𝑖𝑛(𝜔) = 𝜀𝐼𝜔2 where 𝜀 = 0.1, following [25].
3.5.2. Results & discussion
Fig. 12 demonstrates excellent agreement between the stress chirp

and FS-based dynamic moduli. There is some discrepancy between
the moduli at high frequency, however, as can be seen from Fig. 12,
the discrepancy appears close to the operational limit associated with
instrument inertia.

In order to verify the modelling efforts of Section 2.2, the FS data
was fitted to a two-mode Maxwell model (with 𝜏1 = 0.17 s, 𝜏2 = 0.017 s,
𝜂1 = 5.85 Pa s and 𝜂2 = 0.135 Pa s) as shown in Fig. 13 (this figure
also shows moduli associated with the longest mode in isolation as
dashed lines, demonstrating the need for both modes to fit the data
adequately). The two-mode Maxwell model was then used to predict the
response of the material to a stress-controlled chirp signal (HF chirp)
using Eqs. (50) to (53) with 𝐼 = 0.0185 Pa s2, i.e. the calibrated inertia
constant of the instrument. The predicted response to the HF chirp
signal is shown in red on Fig. 14. The corresponding chirp experiment
was then performed and the results are also shown, in grey, on Fig. 14.
No fitting of the experimental data (after initial parameterisation of the
12 
model based on the SAOS data of Fig. 13) was undertaken. The pre-
dicted response to the stress-controlled chirp is in excellent agreement
with the measured response. It is especially noteworthy that resonant
effects (seen at 𝑡 > 4.5 s) are very well captured by the model providing
confidence in the derivation of Section 2.2.

3.6. Gelatin

3.6.1. Sample & geometry
Samples of 10 wt% gelatin were prepared by combining appropriate

quantities of gelatin powder (Fisher G/0150/53) and type I deionised
water preheated to 60 ◦C. Each sample was agitated for two minutes
before being placed into a 60 ◦C water bath for 45 min (with further
agitation at 10 min intervals) to ensure complete dissolution of the
gelatin powder. Aliquots were kept at 60 ◦C for no longer than 45 min
at a time to prevent degradation of the gelatin solutions. The gelatin
samples were stored at 4 ◦C in a refrigerator until required. To prepare
for testing, samples were removed from the refrigerator and placed



R.E. Hudson-Kershaw et al. Journal of Non-Newtonian Fluid Mechanics 333 (2024) 105307 
Fig. 11. Comparison of FS and stress- chirp (𝜎OWCH) based data acquired using a HR-30 rheometer for a 2.5 wt% PEO sample. Storage and loss moduli (𝐺′ and 𝐺′′) are shown
as filled and open symbols respectively. The instrument inertia limit line has been determined as 𝐺′

𝑚𝑖𝑛(𝜔) = 𝜀𝐼𝜔2 where 𝜀 = 0.1, following [25].
Fig. 12. Comparison of FS and 𝜎Chirp based data acquired using a HR-30 rheomter for a WLM sample. Storage and loss moduli (𝐺′ and 𝐺′′) are shown as filled and open symbols
respectively. The instrument inertia limit line has been determined as 𝐺′

𝑚𝑖𝑛(𝜔) = 𝜀𝐼𝜔2 where 𝜀 = 0.1, following [25].
Fig. 13. Conventional frequency sweep based dynamic moduli for a WLM system with
a two mode Maxwell fit (solid lines). Dashed lines show the linear viscoelastic moduli
calculated from the longest mode only, demonstrating that two modes are necessary
to fit the data.
13 
into a 60 ◦C water bath for 45 min. A 60 mm aluminium plate with
a gap of 300 μm (sufficiently small to ensure the ‘gap loading’ criterion
was met) fitted to a HR-30 rheometer was used with the medium
frequency range (MF) chirp signals (as detailed in Table 1) with stress
amplitude 𝜎0 = 0.1 Pa being applied to the material every 40 s (a delay
of 25 s associated with data transfer and storage in the rheometer
operating software package TRIOS 5.7.2.101 prevents more rapid data
acquisition).

3.6.2. Results & discussion
Fig. 15A shows the results of the repeated chirps in terms of the

evolving phase angle as a function of time. This representation of the
data allows the gel point, which marks the establishment of a sample-
spanning network, to be easily determined as the time point at which
the phase angle is independent of frequency. At this point, a critical
gel exists for which 𝐺′ and 𝐺′′ both scale with the same power law in
frequency 𝐺′ ∼ 𝐺′′ ∼ 𝜔𝛼 . The value of the power law exponent, 𝛼, can
be related to the microstructure of the incipient gel network [18]. Note
that data at 10 logarithmically spaced frequencies is shown on Fig. 15A
for visual clarity, despite data at over 80 discrete frequencies being
available from the 𝜎OWCh experiment. Fig. 15B shows the measured
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Fig. 14. Prediction (red line) of the response of WLM (modelled as a two mode Maxwell material as shown in Fig. 13) to a stress controlled chirp perturbation with 𝜔1 = 1 rad/s,
2 = 100 rad/s, 𝑇 = 6.3 s and 𝜎0 = 10 Pa using a controlled stress single head instrument with inertial constant 𝐼 = 0.0185 Pa s2. Grey symbols show experimental data for the same

system demonstrating excellent agreement with the prediction and establishing confidence in the modelling approach of Section 2.2. It is important to note that no calibration of
the model was performed based on the experimental chirp data and the red line may be considered to be a prediction.
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values of the LVE moduli at the GP (𝑡 = 11.9 min) with identical
power-law scaling (with 𝛼 = 0.71) being clearly evident (all available
requencies are shown).

As discussed in Section 1, the rheological characterisation of tran-
ient systems, using conventional FS or Chirp-based rheometry, requires
hat the period of the perturbation waveform be short relative to the
imescale over which the material properties are changing. Winter
t al. [43] proposed a dimensionless Mutation number characterising
he time rate of change of material properties (on a dimensionless,
ogarithmic scale), 𝑑 ln𝐺∕𝑑𝑡, with the duration of the applied waveform
𝑇 , where 𝐺 can be any material property, usually 𝐺′(𝑡) or 𝐺∗(𝑡),

𝑚𝑢 =
𝛥𝑇
𝐺

𝑑𝐺
𝑑𝑡

(55)

ith 𝑁𝑚𝑢 < 0.15 often being considered an appropriate criteria for con-
irming the validity of the LTI assumption [44]. For the data presented
n Fig. 15, the Mutation number at the gel point ranges from 𝑁𝑚𝑢 =
.141 at the lowest frequency to 𝑁𝑚𝑢 = 0.056 at the highest frequency.

closely related, though distinct, issue concerns data interpolation.
hilst the Mutation number ensures that individual data points are

alid, identification of the gel point typically requires some degree
f data interpolation in either 𝐺∗(𝜔, 𝑡) or 𝛿(𝜔, 𝑡). Hawkins et al. [4]
ddressed this problem by defining an ‘interpolation criterion’ which
ompares the experiment time, 𝑡𝑒𝑥𝑝 (i.e the time required to generate

one complete FS, including any conditioning or data transfer delays) to
the material gel time, 𝑡𝑔 , as

𝑁𝑖𝑛𝑡 =
𝑡𝑒𝑥𝑝
𝑡𝑔

< 0.1 (56)

Whilst this criterion is unlikely to be universal (since it does not
consider the local rate of change of material properties around the
GP) it has been shown to be valid for gelatin systems [4]. For the
data shown in Fig. 15, 𝑁𝑖𝑛𝑡 ≈ 0.056. Artefacts associated with sample
mutation and interpolation should be carefully considered, alongside
the oversampling criterion, when determining the chirp duration and
frequency content for a particular experiment.
 c

14 
3.7. Laponite (colloidal gel)

3.7.1. Sample & geometry
An aqueous suspension of 3.5 wt% hectorite clay (LAPONITE® RD)

as prepared using dry Laponite powder and a 5 mM Sodium Chloride
NaCl) solution. The corresponding amount of Laponite powder was
dded gradually in small portions to the ionic aqueous solution and
ixed using a high shear mixer (Ultra-Turrax T 50 basic mixer, IKA)

t 10,000 rpm, the pH of the suspension was measured to be approx-
mately 8.5. The suspension was then transferred to a rolling mill and
eft for one day to ensure homogeneity and allow any entrained air
o separate. Subsequently, the suspension was stored in a Borosilicate
lass bottle for 2 years. Rheometric measurements were performed us-
ng a TA Instruments DHR-3 Rheometer, with a temperature-controlled
ottom Peltier plate, and an upper 60 mm diameter, 2◦ aluminium cone
ith truncation gap 58 μm. After loading the sample to the rheometer,

he cone-and-plate fixture was enclosed within a solvent trap to pre-
ent solvent evaporation from the sample. Before the experiment, the
aponite suspension was presheared by using a shear rate of 500 s−1 for
0 s. This preshearing stage was essential for achieving reproducible
ata and to ‘letherize’ the material and reset the internal ‘material
lock’. The test protocols and data acquisition were performed using
he rheometer software (TRIOS v5.7.0.1).

.7.2. Results & discussion
Fig. 16 illustrates the evolution of the storage and loss moduli of

he Laponite sample at a temperature of T = 25 ◦C, as determined
hrough a series of eight consecutive stress chirps imposed. Each chirp
as designed considering the mid-frequency (MF) range i.e., 𝜔1 =
.3 rad∕s to 𝜔2 = 30 rad∕s, with a duration of 14 s, resulting in a time-
andwidth product, TB ≈ 66. The input stress amplitude was set at
0 = 10 Pa, which is within the linear viscoelastic regime (𝜎0 ≤ 40 Pa),
s confirmed by an oscillatory stress- amplitude sweep experiment at a
requency 6 rad/s. A Tukey window with tapering parameter, 𝑟 = 10%
as used, and each chirp was followed by a 2-s post-chirp period to
rovide sufficient time for residual transient effects to decay, i.e., to
llow sufficient time for the strain rate to decay to zero and the strain
o return to a constant offset value. Notably, the wait time — also
nown as the aging time of the material sample — differs for each
hirp test (which increased steadily from chirp to chirp), following
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Fig. 15. (A) Transient gelation data expressed as the evolving phase angle (𝛿(𝜔, 𝑡)) as a function of time at 10 logarithmically spaced frequencies (1.0 rad/s ≤ 𝜔 ≤ 29.1 rad/s)
ith the Gel Point (GP) identified at the frequency independent point. (B) Dynamic moduli as a function of frequency, measured using a stress chirp with 𝜔1 = 0.4 rad/s, 𝜔2 = 30

ad/s, 𝑇 = 15.708, 𝑡𝑝 = 1.0 s and 𝜎0 = 0.1 Pa (such that 𝑇𝐵 = 74 and 𝑅 = 6.4), at the GP demonstrating identical power law scaling with 𝐺′ ∼ 𝐺′′ ∼ 𝜔0.71. The instrument inertia
ine (shown in subfigure B) has been determined as 𝐺′

𝑚𝑖𝑛(𝜔) = 𝜀𝐼𝜔2 where 𝜀 = 0.1, following [25].
b
(

he preshearing process. As depicted in Fig. 16, the storage modulus,
′(𝜔, 𝑡𝑤) increases as the material ages, indicated by a transition in
olouring from light orange to black-filled circles. A weak power-law
ependence on frequency is also observed. On the other hand, the
oss modulus, 𝐺′′(𝜔, 𝑡𝑤) demonstrates the opposite trend as the waiting
ime (or material age) increases. At lower frequencies, the loss modulus
hows a decreasing trend or a negative slope, reaching a local minimum
t a frequency of 𝜔 = 10 rad∕s. Beyond this point, the loss modulus
egins to increase with increasing frequencies. Similar trends were
lso observed by Rathinaraj et al. [20] in a recent study on bentonite
ispersions. They attributed this upturn in the loss modulus at higher
requencies to instantaneous, non-aging background effects, such as
hose arising from the solvent or other non-aging viscous contributions
o the material response. These observed trends in the evolution of
he storage and loss moduli are consistent with previous findings on
ispersions reported by Pilavtape et al. [45] and Shukla et al. [46].

. Summary

.1. Stress controlled chirp rheometry

The use of chirp-based rheometry is gaining popularity. However, to
ate, all reported implementations have employed either separate mo-
or transducer (SMT) instruments [7,15,19] or single-head instruments
n stress-controlled operating mode for a specific class of materials
i.e. yield stress type materials [20]). In the latter study, the specific
inear elastic response of the yield stress material below yield enabled
he existing OWCh algorithm [7] to be employed, but its general
pplication to stress-controlled signals results in poor quality data. In
he present work, we have undertaken a detailed mathematical anal-
sis of stress-based frequency-modulated rheometry (𝜎OWCh) using
ingle-head/combined motor transducer rheometers and have devel-
ped novel data processing algorithms and operational guidelines for
aveform design. These protocols permit chirp-based rheometry to be

apidly applied to a much wider range of materials without reliance
n displacement feedback loops (which are typically machine-specific
nd optimised for viscometric and conventional SAOS experiments)
hus overcoming a significant barrier to the widespread adoption of
WCh. There are three important aspects that must be considered when
erforming stress-controlled chirp experiments which we summarise
elow.
15 
• The strain response to the start-up of stress-controlled oscillations
includes the presence of a strain offset (which depends on the
amplitude and frequency of the applied waveform as well as
the zero shear viscosity of the sample) about which the strain
oscillates [22–24]. Typically, the offset is removed as part of the
conventional data processing undertaken by rheometer software.
However, this is not generally feasible for chirp-based waveforms
and, as such, the strain response to a stress chirp contains a time
varying offset term which can render the results of a standard
OWCh analysis (based on discrete frequency transforms of the
measured stress and strain waveforms) incoherent. However, as
we have shown in Section 2.1, this limitation can be easily
remedied by evaluating the complex viscosity using the instan-
taneous time rate of change of the strain �̇�(𝑡) rather than the
complex modulus (which may be subsequently calculated using
the relation 𝐺∗ = 𝑖𝜔𝜂∗).

• Chirp waveforms are passed from the rheometer software to the
instrument in the form of a look up table (LUT). Whilst the ARES-
G2 rheometer has a LUT with approximately 32,000 points, the
TA Instruments DHR/HR series rheometers and Anton Paar MCR
Series rheometers have far smaller LUT sizes, limited to 1024 and
2048 points, respectively. Hence, chirp waveform design must
be carefully undertaken in order to ensure that the commanded
signal sufficiently approximates the desired chirp waveform. In
Section 2.3 it has been demonstrated that an oversampling ratio
𝑅 = 𝜋𝑁∕𝜔2(𝑇 + 𝑡𝑐 ) > 4 is sufficient for performing chirp
experiments.

• The use of single-head rheometers requires that instrument inertia
effects also be considered. Sections 2.2 and 3 demonstrate that
the operational limits associated with instrument inertia for chirp
waveforms are similar to those for conventional frequency sweep
experiments and can be corrected in the same fashion (by adding
the term 𝐼𝜔2 to the raw value of 𝐺′). Importantly, a further
complication arises as a consequence of inertia which causes the
strain waveform to persist beyond the duration of the applied
stress chirp (due to the transient response of the inertio-elastic
system) which necessitates data to be acquired for a short period
(∼1 s) beyond the chirp duration, T.

The waveform design and analysis protocols described herein have
een implemented in a Matlab Graphical User Interface, SUMIT OWCh
i.e. Swansea University/Massachusetts Institute of Technology OWCh),
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Fig. 16. Evolution of the time- and frequency-dependent linear viscoelastic moduli (i.e. the storage modulus 𝐺′(𝜔, 𝑡), represented by filled circles and the loss modulus 𝐺′′(𝜔, 𝑡),
represented by hollow circles) as measured using a repeated sequence of eight stress -controlled chirps of length 𝛥𝑇 = 14 s conducted immediately after preshearing (letherization)
of the sample for 𝑡 = 30 s is ceased. The colour of the symbols for the elastic and viscous moduli vary from light orange to black to represent the evolving sample age, 𝑡𝑤.
which is available as an executable file that may be installed alongside,
and integrated within the workflow of TA Instrument’s TRIOS, and/or
Anton Paar’s RheoCompass rheometer control software. The software
is available via email to the authors at sumit-owch@swansea.ac.uk.

4.2. Strain controlled chirp rheometry using CMT rheometers

Modern single-head rheometers are generally capable of operating
in both stress-controlled mode (in which the torque applied to the
sample is directly controlled) and in a strain-controlled mode (in which
rapid instrument-specific feedback loops are used to achieve the desired
command strain waveform). Whilst these feedback loops are optimised
for viscometric and conventional SAOS experiments in certain cases,
they can also be successfully employed when performing chirp-based
experiments thus avoiding the offset issue noted above. However, wave-
form design and subsequent analysis remain subject to the limitations
associated with LUT size and instrument inertia. SUMIT OWCh can
be used to design/analyse both stress-controlled and strain-controlled
experiments performed using single-head rheometers. However, it is
important to note that the actual strain waveform that is applied to the
sample and the command chirp may differ significantly as a result of
the internal instrument feedback loops and caution must be exercised
when using this operating mode.
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