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Abstract
Biologging has proven to be a powerful approach to investigate diverse questions 
related to movement ecology across a range of spatiotemporal scales and increas-
ingly relies on multidisciplinary expertise. However, the variety of animal-borne 
equipment, coupled with little consensus regarding analytical approaches to interpret 
large, complex data sets presents challenges and makes comparison between stud-
ies and study species difficult. Here, we present a combined hardware and analytical 
approach for standardizing the collection, analysis, and interpretation of multisensor 
biologging data. Here, we present (i) a custom-designed integrated multisensor collar 
(IMSC), which was field tested on 71 free-ranging wild boar (Sus scrofa) over 2 years; 
(ii) a machine learning behavioral classifier capable of identifying six behaviors in free-
roaming boar, validated across individuals equipped with differing collar designs; and 
(iii) laboratory and field-based calibration and accuracy assessments of animal mag-
netic heading measurements derived from raw magnetometer data. The IMSC capac-
ity and durability exceeded expectations, with a 94% collar recovery rate and a 75% 
cumulative data recording success rate, with a maximum logging duration of 421 days. 
The behavioral classifier had an overall accuracy of 85% in identifying the six behav-
ioral classes when tested on multiple collar designs and improved to 90% when tested 
on data exclusively from the IMSC. Both laboratory and field tests of magnetic com-
pass headings were in precise agreement with expectations, with overall median mag-
netic headings deviating from ground truth observations by 1.7° and 0°, respectively. 
Although multisensor equipment and sophisticated analyses are now commonplace 
in biologging studies, the IMSC hardware and analytical framework presented here 
provide a valuable tool for biologging researchers and will facilitate standardization 
of biologging data across studies. In addition, we highlight the potential of additional 
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1  |  INTRODUC TION

In recent decades, animal-borne sensors designed to monitor physi-
ology, behavior, movement, and environmental conditions have rev-
olutionized studies of animal ecology in diverse taxa across a range 
of spatiotemporal scales (Ropert-Coudert & Wilson, 2005; Rutz & 
Hays,  2009; Williams et  al., 2020; Wilmers et  al., 2015). This has 
been made possible due to advances in sensor technology, data 
management, and analytical techniques, which now underpin both 
theoretical and applied research on wild animals (Cooke et al., 2012; 
Rattenborg et al., 2016; Vyssotski et al., 2006; Wilmers et al., 2015). 
However, the emergence of novel biologging techniques requires a 
multidisciplinary approach, often relying on diverse expertise in areas 
beyond wildlife ecology (Jolles,  2021; Kays et  al.,  2022; Portugal 
& White, 2018; Tuia et  al.,  2022; Wild et  al., 2023). Furthermore, 
animal-borne electronics and data sets are increasingly tailored to a 
particular study or research group, making access to, and compari-
son between, biologging studies challenging.

Triaxial accelerometers and magnetometers form the bedrock of 
biologging studies and are capable of providing high-resolution data 
on animal movement and orientation (Shepard et al., 2008; Williams 
et al., 2017; Wilson et al., 2008; Yoda et al., 1999). However, trans-
forming and interpreting the often large and complex data sets gen-
erated from biologgers into behaviorally and ecologically relevant 
information requires expertise from disciplines beyond ethology. 
For example, recent studies have applied various machine learn-
ing techniques to identify behaviors from raw accelerometer and/
or magnetometer profiles (Balasso et al., 2023; Bidder et al., 2014; 
Chang et al., 2022; Dentinger et al., 2022; Painter et al., 2016; Studd 
et al., 2019; Wang, 2019; Yu et al., 2021), in addition to alternative 
approaches, such as template matching (Walker et  al.,  2015) and 
user-defined algorithms for behavior (Wilson et al., 2018). The per-
formance of such models varies due to factors such as the frequency 
at which data are recorded and the degree of behavioral variation 
within and between the behavioral classes attempting to be identi-
fied. To date, no consensus has been reached on a single behavioral 
classification technique across biologging studies, further hinder-
ing comparison between studies and species (Wang, 2019; Wilson 
et al., 2018; Yu et al., 2021).

Magnetometer data, used in conjunction with accelerometers, 
can enhance machine learning performance by providing addi-
tional information regarding animal body or limb orientation (Alex 

Shorter et  al., 2017; Brewster et  al.,  2021; Dickinson et  al.,  2021; 
Sakai et al., 2019; Williams et al., 2020). In some contexts, triaxial 
magnetometer data alone have been used to successfully identify 
behavior in free-roaming animals (Chakravarty et al., 2019; Williams 
et al., 2017). In addition, triaxial magnetometers are well suited to 
provide magnetic heading orientation (Matsumura et  al.,  2011), 
although extracting compass headings from raw data is not trivial 
and depends on sensor calibrations and accelerometer-based tilt-
compensation corrections (Bidder et al., 2015). Unsurprisingly, cal-
ibration techniques are now commonplace in studies that report 
magnetic heading measurements derived from raw magnetome-
ter data (Fannjiang et al., 2019; Gutzler & Watson III, 2022; Logan 
et al., 2023; Martín López et al., 2016; Noda et al., 2014); however, 
few (Wilson et al., 2007) have provided ground truth validation of 
magnetic compass accuracy and reliability across ecologically realis-
tic movement dynamics or behaviors.

Integration of GPS technology with accelerometer and mag-
netometer data has further enhanced the accuracy and depth of 
spatial information in animal tracking studies and is reflected in the 
widespread deployment of GPS technology across a range of animal 
studies over the past three decades (Hebblewhite & Haydon, 2010; 
Katzner & Arlettaz, 2020; Kays et al., 2015). Beyond its utility in pro-
viding reliable positional fixes, GPS is now used to improve the per-
formance (e.g., mitigate drift and heading error) of dead-reckoning 
path reconstruction that relies on vector integration obtained 
from synchronized accelerometer and magnetometer data (Gunner 
et  al.,  2021) and further underscores the importance of assessing 
the accuracy of magnetic heading measurements obtained from raw 
data. Engineering multisensor collars (e.g., GPS, accelerometers, 
magnetometers) capable of recording and storing large volumes of 
data over months or years that comply with animal welfare stan-
dards remains an additional challenge in biologging research (Cook 
et al., 2017; Holton et al., 2021; Kenward, 2000; Wilson et al., 1986, 
2021).

Here we present the development of a multisensor biologging 
collar equipped with GPS and triaxial accelerometer and magnetom-
eter sensors that has been extensively tested in free-ranging wild 
boar (Sus scrofa). In tandem, we have developed a method for classi-
fying ecologically relevant behaviors from raw accelerometer data in 
wild boar using machine learning techniques and provide a detailed 
assessment of magnetic compass performance based on raw mag-
netometer data across a range of behavioral contexts. Our findings 
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suggest that both the collars and analytical techniques are robust, 
adaptable, and suitable for long-term studies with terrestrial mam-
mals, and we discuss the broader applications of this work for future 
wildlife research.

2  |  METHODS

2.1  |  Study site and subjects

Field testing of the integrated multisensor collars (IMSCs) was car-
ried out in unrestricted, natural habitats throughout the Czech 
Republic. Boar were captured in corral traps, sedated using meth-
ods described below (see also Appendix S1), and fitted with the 
IMSC, then released into the surrounding environment. All data 
used to develop the behavioral classifier and evaluate mag-
netic compass performance were collected at a wildlife reserve 
(49°57′52.7″ N 14°50′14.7″ E) owned by the Czech University 
of Life Sciences. Inside the reserve, a semi-natural enclosure 
(~38 m × ~ 46 m), made from nonmagnetic wood fencing was used 
to collect ground truth behavioral data (hereafter “behavioral en-
closure”) from six adult wild boars between October 2017 and 
December 2018 (Figure  S1). Boar were captured opportunisti-
cally using dart tranquilizer methods (see Appendix S1), then were 
transported inside the behavioral enclosure and fitted with one of 
the two biologging collar designs (see below). Four infrared game 

cameras (UOVision UM 565) were installed within the enclosure 
(Figure S1) to record ground truth data used for behavioral classi-
fier and magnetic heading analyses (see below).

Trapping, handling, and collaring protocols were performed 
in accordance with the Ethics Committee of the Ministry of the 
Environment of the Czech Republic number MZP/2019/630/361 
and following ARRIVE guidelines (Percie du Sert et al., 2020). See 
Appendix S1 for additional study site information.

2.2  |  Biologging collar development

Two collar systems were designed in this study: “IMSCs” and 
“single-tag collars” (STCs), both fitted with Wildbyte Technologies 
Daily Diary data loggers (http://​www.​wildb​ytete​chnol​ogies.​com/​ ). 
Loggers were equipped with triaxial accelerometers and triaxial 
magnetometers (LSM303DLHC, ST Microelectronics) programmed 
to record continuously at a sample rate of 10 Hz across all six sensors 
aligned along three orthogonal axes corresponding to the major axes 
of the boars' bodies (Figure 1).

2.3  |  Integrated multi-sensor collar (IMSC)

The IMSCs included a “Thumb” Daily Diary tag (18 × 14 × 5 mm) 
with triaxial accelerometer and magnetometer sensors (LSM9DS1, 

F I G U R E  1 Biologging collars used throughout the study. Accelerometer axes orientation is superimposed on the logger and axis polarity 
indicates the acceleration value as the axis is pointed toward gravity. Note the different axis alignments between STC designs (a, b). Both the 
logger position and logger orientation used in all IMSCs (c) differ from the STC logger position and orientations. Photographs of both collar 
designs are shown below their respective schematics. IMSC, integrated multisensor collars; STC, single-tag collars.
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ST Microelectronics), as well as a Vertex Plus GPS collar, sched-
uled to record GPS fixes at 30-min intervals. All accelerometer 
and magnetometer data was recorded and stored on a removable 
32 GB MicroSD card. Collars were equipped with an integrated 
“drop-off mechanism” and VHF beacon to enable collar recovery 
from the field. All collar electronics were powered from a sin-
gle battery pack (4-D cell) and the total deployment weight was 
716 g. The Daily Diary tag was protected by a custom-designed 
polyurethane housing (40 mm × 25 mm × 12 mm) positioned on 
the outside of the plastic collar belt. The orientation of the tag 
relative to the collar, as well as the orientation of collar relative 
to the animal, remained fixed for all IMSC deployments (Figure 1, 
Table 1).

2.4  |  Single-tag collars (STCs)

All STCs were equipped with the “Square” Daily Diary tag 
(27 × 26 × 10 mm) and recorded data to a removable 32 GB MicroSD 
card. The logger was powered with a single cell 3.6 V lithium bat-
tery (SAFT, LS17500CNR) and was oriented and leveled within a 
12 cm × 4.8 cm dia PVC-U cylindrical tube housing secured to a plas-
tic collar belt. Total STC weight was 250 g. All STC housings were 
positioned ventrally at the base of the animal's neck (Figure 1a,b). 
However, logger orientation was rotated in one STC deployment 
(Figure 1b) to test the positional robustness of the behavioral clas-
sifier (see below).

See Appendix  S1 for additional information regarding collar 
specifications and deployments.

2.5  |  Data collection

Field testing of the IMSC involved 71 collar deployments over a 2-
year period on adult (>12 months, >40 kg) free-roaming wild boar 
(52 females, 18 males, 1 unidentified). Collars were evaluated for 
robustness, capacity, and functionality over 6001 tracking days, cu-
mulatively across all deployments.

Behavioral classifier and magnetic compass performance data 
were collected from six free-roaming individuals inside the behav-
ioral enclosure. Before collaring, calibration data used for hard- and 
soft-iron magnetometer corrections (Gunner et al., 2021; Williams 
et  al.,  2017) were collected by rotating the collars through three-
dimensional space for 5 min within the immediate area of the behav-
ioral enclosure. The resulting accelerometer “calibration signature” 
was also used to time-sync biologging data with ground truth re-
cordings from each game camera. Upon data retrieval, raw data 
files were uploaded to DDMT software (Wildbyte Technologies – 
Swansea University, Singleton Park, Swansea, UK, SA2 8PP), for fur-
ther processing, including magnetometer calibrations. A summary of 
data collection and performance evaluations for each collar design 
is provided in Table 1.

2.6  |  Behavioral classifier development

2.6.1  |  Training data set construction

Triaxial (x, y, z) accelerometer data from three individuals fitted with 
STCs were used to develop the behavioral classifier (Table  1). Six 
broad behavioral classes (“Continuous Walk,” “Foraging,” “Resting,” 
“Running,” “Standing,” and “Other”) were established using the cri-
teria listed in the Appendix S1. Behavioral classes were determined 
based on a collective knowledge of Sus scrofa behavioral repertoires 
within the Czech Republic are consistent with those reported in 
other Suidae behavioral classification studies (Dentinger et al., 2022; 
Erdtmann & Keuling, 2020; Zhang et al., 2022). Behaviors were iden-
tified using video records, and corresponding accelerometer profiles 
were located by matching video timestamps with synced times-
tamps in the DDMT software. Profiles were then extracted to cre-
ate behavioral ethograms composed solely of triaxial accelerometer 
data falling into one of the six behavioral classes. To facilitate future 
refinement of the classifier, “Foraging,” “Running,” and “Standing” 
classes were further subdivided to produce three additional, 
“higher resolution” behavioral categories: “Rooting,” “Trotting,” 
and “Vigilance,” respectively, resulting in a total of nine behavioral 

TA B L E  1 Collar design and data collection. Overview of collar design, biologger position and orientation, and data type collected (i.e., 
behavioral classifier training, testing, magnetic heading evaluation), per individual.

Collar design and data collection

Boar ID Collar design Tag position Tag orientation Classifier training Classifier testing Magnetometer testing

B3 STC 1 A Yes No No

B4 STC 1 B No Yes No

B5 STC 1 A Yes No No

B6 STC 1 A Yes No Yes

B7 STC 1 A No Yes Yes

B30 IMSC 2 C No Yes Yes

Note: Numbers and letters listed for Tag Position and Orientation are arbitrary and indicate similarities and differences between collar designs.
Abbreviations: IMSC, integrated multisensor collar; STC, single-tag collar.
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classes. The higher-resolution behavioral classes were collapsed into 
their parent classes for initial classifier evaluation.

Each marked behavioral epoch was subdivided into 4-s non-
overlapping windows to generate baseline observations for 
classifier training (i.e., entities to be classified following feature 
extraction). The 4-s observation window was chosen in consid-
eration of two factors: the shortest-duration behavior desirable 
to detect and the minimum acceptable detection latency. In total, 
there were 13,461 training observations (14.96 hours of marked 
data), with the following breakdown of observations and train-
ing percentage for the six “core” behavioral classes: “Continuous 
Walk” (1445, 11%), “Foraging” (2601, 19%), “Resting” (6345, 47%), 
“Running” (1042, 8%), “Standing” (1668, 12%), and “Other” (360, 
3%) (Table  2, Table S1). Training data for the “higher resolution” 
behavioral subclasses are provided in Table 2, Table S1. The pro-
portions of observations used to train the behavioral classifier 
were selected a priori to reflect the frequencies of these behav-
ioral classes thought to occur in natural contexts (VS, MJ personal 
observations). The training data set was constructed from three 
individuals (B3, B6 male; B5, female), all fitted with STCs with 
identical tag orientations (Figure 1a, Table 1).

2.6.2  |  Feature extraction

Eighteen features were extracted from each 4-s raw-data obser-
vation window. These features were the estimated “signal power” 
in each of four frequency bands (0–2.5 Hz, 2.5–5 Hz, 5–7.5 Hz, and 
7.5–10 Hz; four features), the signal median (one feature), and the 

signal variance (one feature), for each of the three accelerometer 
axes. The power features were derived from the Welch method 
of power spectral density estimation (2 s windows with 1 s over-
lap, 64-point Discrete Fourier Transforms), by integrating the 
output in the designated frequency ranges. All features guaran-
teed to be nonnegative (i.e., all except the median features) were 
log-transformed to a decibel-proportional scale prior to further 
processing. Finally, features were z-scored and principal compo-
nent analysis was performed, retaining a number of components 
required to preserve 95% of the total data variance (eight com-
ponents). The resultant 13,461 × 8 matrix served as the training 
data for a 5-nearest neighbor classifier with cityblock distance 
as the metric (Hastie et al., 2009). A k-NN classifier was chosen 
for its ability to represent highly nonlinear decision boundaries, 
based on the demonstrated success of similar methods in prior 
biologging studies (Bidder et  al., 2014; Painter et  al., 2016; Sur 
et al., 2017). The number of neighbors and distance metric were 
chosen by grid-search optimization on a small holdout data set 
(Hastie et al., 2009).

2.6.3  |  Behavioral classifier evaluation

Performance of the behavioral classifier was evaluated using con-
tinuous accelerometer recordings collected from three individuals 
(B4, B7, and B30) not used in classifier training (Table  1). Prior to 
evaluation, behaviors were verified using ground truth video record-
ings and corresponding accelerometer profiles were identified as de-
scribed above. Because the tag orientation was not identical across 
training and test boar (Figure 1, Table 1), test data x, y, and z accelera-
tion vectors at every time step were multiplied by the 3D rotation 
matrix required to map them to the coordinate frame used for train-
ing data. After 18-dimensional feature extraction, test data observa-
tions were transformed using the training data mean and standard 
deviation vectors before being projected onto the 8-dimensional 
principal component space of the training data for classification. 
Initial test data classifications were made at every possible time step 
using a 4-s symmetric, noncausal sliding window.

2.6.4  |  Postprocessing

Initial classifications were smoothed with a nonlinear filter; specifi-
cally, the class at each time step was replaced with the modal class of 
a 1-s forward-looking window. This filtering step resulted in a set of 
candidate's behavioral events, each delimited by a starting and end-
ing time, which were then subject to two predetermined heuristic 
criteria to yield the final set of classifications. The first was that each 
candidate behavioral event was required to be of a minimum dura-
tion: “Foraging” (5 s; “Rooting” 3 s), “Resting” (120 s), “Running” (3 s; 
“Trotting” 3 s), “Standing” (2 s; “Vigilance” 2 s), and “Other” (1 s). Any 
candidate event not meeting its minimum duration, which was used 
only in postprocessing, was reassigned to the next most likely class 

TA B L E  2 Summary of behavioral data used for classifier training. 
For each behavioral class, the total duration (seconds) and total 
observations (i.e., 4-s training windows) are shown, as well as the 
class proportion (%). A total of 14.96 h of training data were used 
for classifier development and proportions reflect those of the test 
set. The expanded suite of “higher resolution” behavioral classes 
are italicized and nested within the respective parent class (i.e., 
669 of the “Forage” observations were subclassified as “Root,” 
representing 5% of all training observations).

Classifier training: behavioral class summary

Behavioral class
Total duration 
(s)

Total 
observations %

Rest 25,380 6345 47.1

Forage 10,404 2601 19.3

Root (2676) (669) (5.0)

Walk 5780 1445 10.7

Stand 6672 1668 12.4

Vigilance (472) (118) (0.9)

Run 4168 1042 7.7

Trot (2556) (639) (4.8)

Other 1440 360 2.7

Total 53,844 13,461 100.0

 20457758, 2024, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.70264 by W

elsh A
ssem

bly G
overnm

ent, W
iley O

nline L
ibrary on [30/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 of 15  |     PAINTER et al.

for which the duration criterion could be met. Class likelihoods were 
determined using the relative class proportions among the five near-
est training set-neighbors corresponding to each time step in the 
candidate event. Class proportions were summed across time steps 
and sorted to produce a rank-ordered likelihood for the classes. 
Candidate events for which this procedure failed to yield a valid al-
ternate class assignment were merged with the subsequent event.1

The second heuristic was that any candidate “Standing” event 
flanked by “Resting” activity was reassigned to the “Resting” class. 
Specifically, this reassignment was made if the majority of a 120 s 
window on either side of the candidate “Standing” event was classi-
fied as “Resting.”

2.7  |  Magnetometer data

To assess magnetic compass heading accuracy and reliability, 
magnetometer data were collected from four collars under two 
conditions: a controlled laboratory environment (hereafter, “lab 
evaluation”) designed to test the precision of the magnetometer and 
from three free-roaming boar inside the behavioral enclosure (here-
after, “field test”) (Table 1).

During the lab evaluation, the tag was leveled and centered 
inside an electromagnetic enclosure containing four Helmholtz's 
coils used to manipulate the strength and alignment of an experi-
mentally generated magnetic field. Two orthogonally aligned coils 
were used to cancel the residual horizontal component of the Earth's 
magnetic field (+/− 0.1%) and to adjust the vertical component of 
the magnetic field to match that of an Earth strength vertical field 
(~45,000 nT). Two inner orthogonally aligned coils were used to 
generate Earth-strength magnetic fields (total strength ~50,000 nT) 
that could be rotated into alignment into one of four cardinal com-
pass alignments corresponding to topographic North, South, East, 
and West (Kirschvink,  1992). The tag was oriented such that one 
end of the x-axis was aligned toward topographic North which was 
then defined as the “heading direction” in DDMT for analysis. Tag 
orientation remained static, whereas the horizontal component of 
the magnetic field was rotated by 90° increments into alignment 
with each of the four cardinal compass directions for a period of 10 s 
in each alignment. Magnetic heading measurements calculated by 
DDMT were plotted relative to the four expected cardinal compass 
directions using the gghistogram function in the R package ggpubr 
(Kassambara, 2020).

Field tests of magnetometer performance were carried out con-
currently with data collected for the behavioral classifier within the 
behavioral enclosure on three free-roaming individuals (Table  1). 
Video recordings were used to estimate ground truth magnetic 
headings and a spatial array of “magnetic landmarks” were installed 
within the camera's field of view to provide known magnetic ref-
erences to better estimate magnetic headings of focal subjects. 
Magnetic landmarks were either nonmagnetic cables tethered be-
tween trees or the nonmagnetic fence-line forming the behavioral 
enclosure (Figure S1). A total of 45 independent behavioral epochs 

from all core behavioral classes (excluding “other”), totaling 5:27 
(min:s), were selected to test the precision of the magnetic head-
ing data. Heading predictions were made by two investigators not 
involved in data collection and blind to all raw magnetometer data. 
Using only video records, investigators predicted boar magnetic 
heading using the available magnetic landmarks described above. 
For each prediction, the average magnetic heading was estimated 
over the duration of the behavioral segment identified. When in-
vestigator predictions differed by less than 20° (n = 40), they were 
averaged to establish the final magnetic heading, whereas when pre-
dictions differed by more than 20° (n = 5), investigators determined a 
final prediction after reevaluating the recording together. A third in-
vestigator blind to the magnetic predictions extracted the magnetic 
heading data from DDMT which was later compared to investigator 
predictions.

3  |  RESULTS

3.1  |  IMSC field performance: Durability, 
capacity, and lifetime

Between 2019 and 2022, 67 of the 71 total collars (~94%) deployed 
on free-ranging boar were recovered and data recording durations 
ranged from 9 to 421 days. The remaining four collars (~6%) expe-
rienced an unknown GPS malfunction and remain unrecovered. Of 
the 67 collars retrieved, 51 (76%) were fully functional and no appre-
ciable damage was noted, whereas 11 (16%) exhibited mechanical 
damage likely due to physical stresses associated with boar behavior, 
and the remaining 5 collars (7%) failed prematurely due to an unex-
pected electrical fault. Of the fully functional subset, 35 (69%) col-
lars recorded data until retrieval, whereas 9 collars (18%) recorded 
data for >50% of the deployment period and the remaining 7 collars 
(14%) recorded data for <50% of deployment period. Overall, free-
ranging boar equipped with IMSCs were tracked for 6001 days and a 
total of 4547 days of biologging data were recorded, corresponding 
to 75% of the cumulative deployment duration.

3.2  |  Behavioral classifier

Classifier performance was evaluated using accelerometer data from 
2100 independent ground truth behavioral epochs (i.e., independent 
behaviors falling into one of the six behavioral classes) across three 
individuals, totaling 08:28:15 (HH:mm:ss) of data (Table 3, Table S1). 
Classifier performance was evaluated on an event-by-event basis 
(i.e., per 0.1 s sample). Overall behavioral classifier performance was 
85.1% across all behaviors from all three individuals (Table  4) and 
includes data from the STC and IMSC designs with different tag 
positions and orientations. Of the five behavioral classes of inter-
est (i.e., excluding “Other” which was composed of heterogeneous 
behaviors only identified by the classifier when a behavior did not 
fall into any of the five core behavioral categories), the likelihood 
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    |  7 of 15PAINTER et al.

that any given prediction matched the ground truth class label (i.e., 
precision), ranged from 77.1% (“Walking” and “Standing”) to 96.5% 
(“Resting”) (Table 4). Classifier recall, that is, the proportion of behav-
ioral epochs correctly identified by the classifier, ranged from 74.7% 
(“Running”) to 91.8% (“Resting”) (Table  4). Classifier performance 
was consistent between the three deployments, ranging from 83.5% 
(B4) to 89.9% (B30), and surprisingly, the collar with the highest per-
formance (B30, IMSC) was least similar in design (i.e., tag position 
and orientation) to those used to train the classifier (Table 5). All pos-
sible pairs of the eight principal components used to identify the six 
behavioral classes are plotted, along with histograms corresponding 

to each component in isolation, to illustrate the collective and rela-
tive contribution of the principal components toward class separa-
bility (Figure 2). Precision and recall metrics were substantially lower 
when tested on the three expanded behavioral classes, reflecting 
their similar acceleration profiles relative to their respective parent 
classes. However, overall classifier performance remained robust, 
with an accuracy of 78.4%, although there was larger variation in 
performance between collar designs when tested on the expanded 
classes (Table 6).

3.3  |  Magnetic heading: Lab evaluation

Following the calibration procedures described above, the me-
dian magnetic heading measurements calculated by DDMT were 
in agreement with each of the experimentally generated magnetic 
field alignments: N = 2.99°, S = 179.16°, East = 88.21°, W = 268.66° 
(Figure 3), with an overall median heading error of 1.7° relative to 
expected.

3.4  |  Magnetic heading: Field test

Across all 45 magnetic heading samples, the median discrepancy 
between DDMT magnetic compass heading measurements and 
ground truth predictions was 0° (CI: −3.1° and 6.9°) (Figure  4b). 
Median bootstrapped 95% confidence intervals relative to predic-
tions were calculated using the function boot from the boot pack-
age (Canty & Ripley, 2020). Discrepancy between DDMT heading 
and corresponding ground truth prediction ranged from −30° to 
21° (Figure 4b). As shown in Figure 4a, the distribution of compass 
headings obtained was evenly distributed across all possible mag-
netic heading alignments, and the error in the DDMT magnetic com-
pass heading measurements compared to predictions was uniform 

TA B L E  3 Classifier testing data. Summary of accelerometer data 
used to test behavioral classifier performance in three individuals 
not used for classifier training. The total duration (s) and total 
number of independent behaviors per class (Epochs) as well as their 
proportions (%) in classifier testing are listed. The expanded suite 
of “higher resolution” behavioral classes are italicized and nested 
within their respective parent class, as in Table 2.

Behavioral classifier testing data

Behavioral Class

Duration Epochs

Sum (s) % Total %

Rest 11,008 36.1 67 3.2

Forage 7436 24.4 343 16.3

Rooting (1562) (5.1) (98) (4.7)

Walk 4129 13.5 459 21.9

Stand 4590 15.1 685 32.6

Vigilance (439) (1.4) (106) (5.0)

Run 1827 6.0 157 7.5

Trot (647) (2.1) (106) (5.0)

Other 1505 4.9 389 18.5

Total 30,495 100 2100 100

TA B L E  4 Behavioral classifier performance. Confusion matrix showing behavioral classifier accuracy tested on three individuals across 
six behavioral classes. Classifier predictions are listed on the left column and ground truth classes are listed across the second-to-last 
row. Values within the matrix represent the total number of events for each predicted class (rows) and for each ground truth observation 
(columns), where an event corresponds to one acceleration data point recorded by the logger. Light green-shaded cells inside the matrix 
represent classifier predictions that match ground truth observations. The likelihood that the classifier prediction matches that of the ground 
truth observation for each behavior class is represented by the Precision column shown on the right. The proportion of events in each class 
identified by the classifier is represented by Recall shown across the bottom row. Lighter to darker shades of green in Precision and Recall 
cells indicate lower to higher classification performance, respectively.

Prediction Behavioral classifier confusion matrix Precision (%)

Walk 36,851 2883 0 5514 472 2064 77.1

Other 2758 9863 15 5606 1580 3881 41.6

Rest 39 253 101,077 0 0 3379 96.5

Forage 962 1090 0 62,545 2361 995 92.0

Run 167 788 0 35 13,649 173 92.1

Stand 508 174 8987 656 209 35,409 77.1

Truth Walk Other Rest Forage Run Stand

Recall (%) 89.3 65.5 91.8 84.1 74.7 77.1
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8 of 15  |     PAINTER et al.

TA B L E  5 Behavioral classifier performance summary. Precision and recall percentages are shown for all six behavioral classes, partitioned 
by individual, as well as overall classifier accuracy (%) per individual.

Behavioral classifier performance summary

Behavioral class

B4 B7 B30

Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%)

Walk 77.8 86.4 74.2 91.2 87.1 85.6

Other 34.1 58.0 53.7 72.3 4.3 17.4

Rest 93.5 85.6 98.3 95.0 98.6 100.0

Forage 96.1 88.6 62.9 39.1 94.6 96.2

Run 92.3 78.4 94.1 75.2 75.0 60.2

Stand 58.7 72.4 85.9 83.0 95.3 67.3

Overall accuracy (%) 83.5 84.2 89.9

F I G U R E  2 Matrix showing plots of all possible pairs of the 8 principal components (PCs) that were used in behavioral classification. 
Points correspond to training observations (n = 13,461 in each plot) and are colored according to behavioral class. Numbering columns and 
rows each from 1 to 8, respectively, beginning at the top left corner of the matrix, the column number corresponds to the PC plotted on 
the horizontal axis and the row number to the PC plotted on the vertical axis. For example, the plot in row 3, column 2 has the second PC 
plotted on the horizontal axis and the third PC plotted on the vertical axis. The plots along the diagonal are histograms, colored by class, for 
each of the 8 PCs. (Plots mirrored across the diagonal show the same two PCs with the axes swapped.)
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    |  9 of 15PAINTER et al.

TA B L E  6 Expanded classifier performance. Confusion matrix showing behavioral classifier accuracy tested on three individuals across the 
expanded suite of nine behavioral classes. Table format is identical to that shown in Table 4.

Prediction Behavioral classifier confusion matrix Precision (%)

Walk 36,851 2883 0 4643 871 172 300 1885 179 77.1

Other 2758 9863 15 3959 1647 601 979 3334 547 41.6

Rest 39 253 101,077 0 0 0 0 3330 49 96.5

Forage 170 587 0 42,458 4415 1 0 457 478 87.4

Root 792 503 0 7061 8611 2360 0 55 5 44.4

Run 0 129 0 35 0 7164 109 15 0 96.1

Trott 167 659 0 0 0 1306 5070 119 39 68.9

Stand 434 117 8372 585 64 203 2 27,766 2980 68.5

Vigilance 74 57 615 7 0 0 4 4547 116 2.1

Truth Walk Other Rest Forage Root Run Trot Stand Vigilance

Recall (%) 89.3 65.5 91.8 72.3 55.2 60.7 78.4 66.9 2.6

F I G U R E  3 Lab test of triaxial magnetometer data used to calculate magnetic heading measurements after calibration in DDMT software. 
Histograms plot the total count of 100 samples (10 Hz × 10 s) recorded in each magnetic field alignment (i.e., mN = topoN, E, S, W), relative 
to magnetic heading bearings calculated in DDMT after performing magnetometer calibration procedures. Plots (a–d) correspond to 
experimentally generated Earth-strength magnetic fields aligned at North (0°), East (90°), South (180°), West (270°), respectively. Median 
values for each magnetic field alignment are shown in red.
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10 of 15  |     PAINTER et al.

(i.e., error was unbiased across the range of magnetic directions) 
as indicated by the manova model previously described in Landler 
et al. (2022) (model results: intercept: approx. F = 0.65, p = .53, error 
proportion: approx. F = 0.79, p = .46) (Figure 4c). The “error propor-
tion” was calculated as the angular deviation between the DDMT 
measurement and the ground truth prediction divided by the total 
angular deviation. The cosine and sine of the magnetic heading in 
radians were used as the response variables and the error propor-
tion as a linear covariate. The intercept of this model was used to 
test for a significant departure from uniformity (Landler et al., 2022). 
Importantly, the accuracy of magnetic compass headings was con-
sistent across all three individuals evaluated (Table 7), fitted with dif-
ferent collar designs, biologger positions, and orientations (Figure 1, 
Table 1), as well as across all behavioral classes, including behaviors 
characterized by large acceleration amplitudes and variation (e.g., 
“Foraging,” “Walking,” “Running”).

4  |  DISCUSSION

Animal-borne telemetry systems have emerged as a powerful tool 
to further characterize animal movement, behavior, and ecology. 
The availability of reliable collar systems equipped with a range of 
sensor technologies adaptable across multiple studies and species 
is valuable for several reasons, including that it eliminates the need 
to develop and test novel equipment, and that data sets collected 
from a standardized system may catalyze additional collaboration, 
data sharing, and advance progress in analytical techniques.2 The 
IMSC developed here, equipped with triaxial accelerometer and 
magnetometer sensors, GPS technology, as well as a variety of addi-
tional sensors not used in the current study, has proven to be highly 
reliable under the harsh demands imposed by wild boar under natu-
ral contexts. Across the 71 IMSC deployments, 94% of the collars 
were recovered resulting in biologging data recorded across 75% of 

F I G U R E  4 Results from the magnetometer field test collected from free-roaming individuals equipped with STC and IMSC designs. A 
total of 45 samples were evaluated and compared to ground-truth predictions of magnetic heading. (a) Histogram of the overall distribution 
of magnetic compass measurements produced by DDMT shows that samples were obtained from the range of possible compass directions. 
(b) The discrepancy between DDMT magnetic compass measurements and ground-truth recordings, that is, DDMT magnetic heading output 
error (median error = 0°, black dashed line; bootstrapped 95% CI: −3.1° and 6.9°). (c) The error produced by DDMT was uniform across the 
range of possible magnetic compass headings. IMSC, integrated multisensor collars; STC, single-tag collars.

TA B L E  7 Magnetic heading field test. Summary and results of ground truth magnetic compass headings. The proportion of time 
(% Duration) and the proportion of epochs from each behavioral class (% Epochs) used to ground truth the magnetic headings are 
listed, partitioned by individual. Combined data from all individuals tested, per behavioral class, are shown. Median magnetic heading 
measurements calculated by DDMT, relative to ground truth predications are shown per behavioral class and partitioned by individual. In 
cases with a negative (−) median value, the corresponding magnetic compass heading is shown in parentheses.

Behavioral class

B6 B7 B30 Combined

Median heading 
Rel GT prediction% duration

% 
epochs

% 
duration

% 
epochs

% 
duration

% 
epochs

Total % 
duration

Total % 
epochs

Rest 0 0 0 0 1 2 1 2 −8° (352°)

Forage 30 22 10 9 16 11 55 42 −6° (354°)

Walk 1 2 6 9 3 7 10 18 0°

Stand 5 7 17 13 11 16 33 36 −0.5 (359.5°)

Run 0 0 1 2 0 0 1 2 9°

Total 35 31 34 33 31 36 100 100 n/a

Median Heading Rel 
GT Prediction

−0.5° (359.5°) 0° −6° (354°) 0°
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    |  11 of 15PAINTER et al.

the cumulative deployment duration. While the maximum record-
ing duration was an impressive 421 days for one deployment, the 
majority of IMSCs (72%) were terminated prematurely due to hunt-
ing or automobile collisions, which does not reflect collar capacity. 
In a separate study, 36 IMSCs identical to those described above 
were deployed on free-ranging red deer (Cervus elaphus) and had an 
average and maximum data recording duration of 203 and 529 days, 
respectively. Given the standardization, durability, and functionality 
of the IMSC, these collars are well suited for long-term studies in ter-
restrial mammals, and we hope they will be adopted for use in future 
biologging studies.

Concurrent with the IMSC development, we have built a behav-
ioral classifier capable of identifying ecologically relevant behav-
iors from six behavioral classes in wild boar. The classifier had an 
overall performance of 85% and, of the five core classes (i.e., ex-
cluding “Other”), “Resting” was identified with the highest precision, 
and “Standing” had the lowest precision, most often misclassified 
as “Resting”, likely due to the similar acceleration profiles between 
resting and standing behaviors. Classification recall performance 
was highest in “Resting” and lowest in “Running.” The majority of 
undetected “Runs” were misclassified as “Forage,” a class that in-
cludes “Rooting” characterized by large and variable x-axis accelera-
tion amplitudes, like those associated with “Running” accelerometer 
profiles. Importantly, the test data set for core and expanded behav-
ioral classes reflected the proportions of behaviors used in classifier 
training, which in turn, approximated the overall behavioral reper-
toire of wild boar in natural contexts. This proportionality helps to 
mitigate performance biases caused by over- or underrepresented 
behaviors and better reflects true overall classification perfor-
mance. The decision to use a k-NN classifier was based on classifica-
tion performance reported in previous biologging literature (Bidder 
et al., 2014; Painter et al., 2016; Sur et al., 2017), coupled with the 
nonlinearity of its decision boundaries (Hastie et al., 2009), however, 
further optimization across classifiers and of hyperparameters could 
potentially yield performance improvements that can be empirically 
characterized in future studies.

The classifier exhibited the best overall performance (89.9% 
accuracy) when tested with data collected from the IMSC, despite 
being trained on data exclusively from STCs, suggesting that the 
classifier has an inherent plasticity and is capable of classifying be-
haviors from biologging tags attached in various orientations and 
positions. As expected, classifier performance on the expanded 
suite of behavioral classes was not as robust, largely due to the 
similarities between the parent class and higher resolution classes. 
To explore this further, we build upon the framework detailed in 
Wilson et al. (2018) using DDMT's Behavior Builder and Time Series 
functions in an attempt to distinguish between behavioral classes 
with similar acceleration profiles, such as “Standing” and “Vigilance” 
behaviors. Applying these postclassification techniques to a sub-
set of our current dataset drastically improved “Vigilance” result-
ing in >50% precision and recall metrics (see Figure S1). Although 
encouraging, a more detailed investigation using larger data sets 
across multiple behaviors will be needed. Furthermore, we expect 

that a similar improvement in classification performance could 
also be achieved in the preprocessing stages of classifier develop-
ment by creating new features that capture subtle differences in 
accelerometer signatures between similar classes, like those iden-
tified between “Standing” and “Vigilance” behaviors.

The classifier was trained and tested solely from triaxial accel-
erometer data, an important a priori consideration. Because spatial 
features of the behavioral enclosure remained consistent through-
out the study (e.g., location of water source and feeding area, shaded 
areas used as bedding sites), including locations and viewing angles 
of the cameras used to collect ground truth videos, it was important 
to exclude magnetometer data from classifier training and testing, 
as behaviors under these circumstances cannot be assumed to be 
randomly oriented. For example, in our study, “Resting” alignment 
was biased due to limited shaded areas in the enclosure. Had magne-
tometer data been included in the behavioral analysis, the classifier 
would likely identify “Resting” using biased magnetometer data that 
have no relevance beyond the confines of the behavioral enclosure 
and would result in false positive classifications that artificially in-
flate precision and recall metrics. We acknowledge that magnetom-
eter data can be valuable for behavioral identification under certain 
contexts (Chakravarty et al., 2019; Williams et al., 2017); however, it 
remains unclear if studies that incorporate magnetometer data into 
machine learning analyses could be predisposed to such biases, as 
the relative contribution of magnetometer data used for behavioral 
identification is rarely provided.

Nonetheless, triaxial magnetometer data can provide a wealth of 
opportunities for exploring movement ecology in greater detail, such 
as dead-reckoning analyses (Gunner et al., 2020) and studies of mag-
netic alignment (Begall et al., 2013; Červený et al., 2017). Given the 
salience of magnetometer data in biologging research, it is surprising 
that few studies have validated the precision of magnetic compass 
headings calculated from raw triaxial magnetometer data (but see 
Wilson et al., 2007). Therefore, we provide a detailed characterization 
of magnetic heading measurements under laboratory and natural con-
texts with magnetometer sensors mounted in different positions and 
orientations. Magnetic headings calculated by DDMT were consistent 
with ground truth predictions, with an overall median deviation from 
expected of 1.7° and 0° in the laboratory and field test, respectively. 
These data confirm that the magnetometer calibrations (i.e., soft- and 
hard-iron corrections) and tilt-compensation algorithms applied in 
DDMT are well suited for extracting high-frequency magnetic com-
pass bearings from raw magnetometer data.

Importantly, the field test carried out on free-roaming boar in-
cluded magnetic measurements that were obtained from the core be-
havioral classes. “Running” had the largest average deviation relative 
to expected (9°) and may be due to the large variation in acceleration 
amplitudes that introduce “noise” into accelerometer-dependent tilt-
compensation calculations and/or the (in)ability of observers to accu-
rately predict magnetic alignment from more spatially erratic behavioral 
classes, such as “Running.” Unintuitively, however, magnetic headings 
obtained from “Resting” behavior, characterized by little-to-no varia-
tion in acceleration profile, also had a relatively high deviation from 
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12 of 15  |     PAINTER et al.

expected (8°) and was likely due to an obstructed view of the animal's 
head alignment caused by a dense canopy covering the bedding area 
where boar would exclusively rest. It is noteworthy that magnetic 
compass performance remained accurate across all core behaviors (ex-
cluding “Other”, which was not assessed), and compass performance 
was evaluated across a representative range of all possible magnetic 
directions (i.e., 0°–359°). This is the first study to our knowledge that 
has provided a detailed characterization of magnetic compass perfor-
mance in free-roaming animals using ground truth data.

Of particular interest is the implementation of dead-reckoning to 
reconstruct high-resolution movement traces in free-roaming mam-
mals. As a proof-of-concept, we take advantage of three important 
elements made possible by the IMSC presented in the current study: 
(i) the behavioral classifier capable of identifying ecologically rele-
vant behaviors in free-roaming boar, (ii) a reliable stream of mag-
netic heading data recorded at subsecond intervals, and (iii) GPS 
fixes recorded at 30-min intervals. Dead-reckoning relies on vector 
integration, where vectors depend on speed (or distance traveled) 
and heading estimates derived from raw biologging data (for details, 
see Bidder et al., 2015; Gunner et al., 2021). Deriving speed from 
biologging data is notoriously difficult (Cade et al., 2018), and pre-
vious work has assigned speed coefficients to manually labeled be-
havioral classes to estimate vector lengths for dead-reckoning path 
reconstruction (Bidder et  al., 2015). We build upon this approach 
by using machine learning to identify behavioral classes from large 
volumes of continuous biologging data, which were then assigned 
speed coefficients based on ground truth observations. Coupling 
our behavioral classification techniques with the accuracy of our 
verified magnetic heading data yielded high-resolution track re-
construction that was further refined by “anchoring” tracks to the 

landscape using time-synced GPS fixes (Figure 5). The tortuosity of 
the reconstructed track in Figure  5 that explicitly avoids environ-
mental boundaries and physical obstacles highlights the precision 
of these methods compared to using GPS data alone and offers a 
powerful approach to investigate movement ecology over multiple 
spatiotemporal scales.

Although the emergence of biologging techniques has revolu-
tionized studies of animal ecology, a growing set of challenges ac-
companies these technologies, requiring multidisciplinary expertise. 
The IMSCs developed here, coupled with a robust behavioral clas-
sifier and a detailed verification of magnetic heading performance, 
provide a commercially available system that can be adopted and 
adapted for future studies on terrestrial mammals.
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ENDNOTE S
	1	If no subsequent event was available – only possible at the end of a file 
– the candidate event was discarded as unclassifiable. A small number 
of time steps at the beginning of each file were similarly discarded, since 
a fixed amount of time must accumulate before the classifier can make 
its first decision. Such edge-effects have negligible impact on classifier 
evaluation.

	2	We do not imply that the field of animal-borne telemetry and biologging 
is not collaborative, and indeed, would argue the opposite. However, 
we suggest that increased overlap between methodologies may en-
courage further collaboration and promote the growth of this emerging 
discipline.
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