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Chapter 1

Introduction

1.1 Introduction

This paper aims to study an alternative proof of the Fundamental theorem of trop-

ical geometry with higher rank valuation. For illustrating it, we will introduce the

background of tropical geometry and some work about higher rank valuation first.

Tropical geometry is a new field of mathematics and it’s applied in many areas

such as real and complex geometry, machine learning, neural networks and auctions

theory, etc. Tropical geometry was proposed in the 1980s and it has experienced a

rapid development since the beginning of the 21st century. Tropical geometry is a

variant of algebraic geometry, in simple term, it is an intersection of algebraic ge-

ometry and combinatorial mathematics. Tropical geometry is based on the algebraic

structure which is known as the tropical semiring or the min-plus algebra sum. In

tropical semiring, the tropical sum ⊕ of two numbers is their minimum and the

tropical product of two elements is their usual sum. With tropical algebra, the func-

tions in tropical geometry are piecewise linear, and the algebraic variety also can be

defined in tropical setting, which consists of convex ployhedra in Rn. In this pa-

per, chapter 2 will introduce the background of tropical geometry and the details of

tropical geometry can be found in [1].

The tool building the tropical geometry is valuation. This is a function that map-

ping a field k to Γ ∪ {∞} such that

val(0) = ∞

val(ab) = val(a) + val(b)

val(a + b) ≥ min{val(a), val(b)}

for any a, b ∈ k, and Γ here is meaning an additive ordered abelian subgroup of R. In
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this thesis, a valuation is abbreviated as ν. Let ν be a valuation on field k, there exists

a local ring containing those elements with non-negative valuation which is given

by R = {a ∈ k : ν(a) ≥ 0}. Since R is a local ring, it contains a unique maximal

ideal such that mk = {a ∈ k : ν(a) > 0}. Then the quotient ring K = R/mk forms

a field which is called the residue field of k. Now consider a Laurent polynomial

f = ∑
u∈Zn

cuxu ∈ k[x±1 , . . . , x±n ], the tropicalization of f via ν is taking valuation

for every coefficient in f and replacing usual sum and product as tropical sum and

tropical product such that

trop( f ) = minu∈Zn{ν(cu) + x · u} ∈ R.

Obviously, trop( f ) is a piecewise linear function mapping k to k which is a finite set

of monomials and taking the minimum among this set to be the result of trop( f ).

Fix a vector w ∈ Rn and substitute it into trop( f ), we will have the minimum which

is denoted as

W = trop( f )(w) = minu∈Zn{ν(cu) + w · u : cu ̸= 0}.

For any valuation ν on k, there exists a splitting that σ : Γ −→ k∗, then the initial

form of f with respect to w is defined as

inν
w( f ) = ∑

u∈Zn;
W=ν(cu)+w·u

cuσ(ν(cu))−1xu ∈ K[x±1 , . . . , x±n ].

The notation cuσ(ν(cu))−1 means the image of cuσ(ν(cu))−1 in the residue field K of

ν. In chapter 4, for clarifying the notations, we will use π to represent the mapping

R → K. For the polynomial f , the tropical hypersurface V(trop( f )) is

{w ∈ Rn : the minimum in trop( f )(w) is achieved at least twice}.

Then we have all the prerequisites of Kapranov’s theorem. Kapranov’s theorem was

first stated in 1990’s by Mikhail Kapranov[1]. It shows three different constructions

of a tropical variety from a classic algebraic variety and those three are all the same.

Theorem 1.1.1. (Kapranov’s theorem)

Let k be an algebraically closed field with a non-trivial valuation ν. Suppose a Laurent

polynomial f = ∑
u∈Zn

cuxu ∈ k[x±1 , . . . , x±n ]. Then the following subset in Rn coincide:
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1. the tropical hypersurface V(trop( f ));

2. the set {w ∈ Rn : inν
w( f ) in not a monomial};

3. the closure of {(ν(y1), . . . , ν(yn)) : (y1, . . . , yn) ∈ V( f )}.

Moreover, if f is irreducible and w is any point in Γn
ν ∩ trop(V( f )), then the set {y ∈

V( f ) : ν(y) = w} is Zariski dense in the hypersurface V( f ).

With the same polynomial, the tropical hypersurface V(trop( f )) associated with

tropical polynomial trop( f ) is the set of those points in Rn which let trop( f ) contains

at least two minimum terms. After defining tropical hypersurface, we shall see the

tropicalization of variety easily. Consider an ideal I ⊂ k[x±1 , . . . , x±n ], the variety of I

is denoted as X = V(I), the tropicalization of variety X: trop(X) is the intersection

of all tropical hypersurfaces associated to the polynomials f ∈ I such that

trop(X) =
⋂
f∈I

trop(V( f )) ⊆ Rn.

The set above also called tropical variety trop(X) which is involved in the Funda-

mental theorem. Moreover, there are two other subset of Rn involve in the Funda-

mental theorem. One of them is the Zariski closure of the set of coordinate-wise

valuations of points in X such that

ν(X) = {(ν(y1), . . . , ν(yn) : (y1, . . . , yn) ∈ X}.

Then fixing the weight vector w, for the ideal I ⊂ k[x±1 , . . . , x±n ], the initial ideal

inν
w(I) is

⟨inν
w( f ) : f ∈ I⟩ ⊂ K[x±1 , . . . , x±n ].

And the last subset of Rn involve in the fundamental theorem is the set of all vectors

w ∈ Rn such that

{w ∈ Rn : inν
w(I) ̸= K[x±1 , . . . , x±n ]}.

Then we come to the Fundamental theorem which is the direct generalization of

Kapranov’s theorem from hypersurfaces to arbitrary varieties.

Theorem 1.1.2. (Fundamental Theorem of Tropical Algebraic Geometry)[1]

Let k be an algebraically closed field with a non-trivial valuation ν, let I be an ideal in
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k[x±1 , . . . , x±n ], and let X = V(I) be its variety in the algebraic torus Tn ∼= (k∗)n. Then the

following three subsets of Rn coincide:

1. the tropical variety trop(X);

2. the set of all vectors w ∈ Rn with inν
w(I) ̸= ⟨1⟩;

3. the closure of the set of coordinate-wise valuations of points in X,

ν(X) = {(ν(y1), . . . , ν(yn)) : (y1, . . . , yn) ∈ X}.

Furthermore, if X is irreducible and w is any point in Γn
ν ∩ trop(X), then the set {y ∈ X :

ν(y) = w} is Zariski dense in the classical variety X.

This paper is aim to extend the study on higher rank valuation, so we will in-

troduce the difference between higher rank and ordinary valuation. In some paper,

higher rank valuation also called Krull valuation and the definition of Krull valua-

tion is that ν : k 7→ G ∪ {∞} where k is a field and G is an ordered group with rank

n > 1. The rank of group G is the maximum length of the chain of distinct proper

convex subgroups in G. Replacing the valued group as an ordered group then ν is a

higher rank valuation. Naturally, the definitions of tropical polynomial and tropical

hypersurface in higher rank version is similar to the definitions in classic version.

In 2018, Fuensanta Aroca proved Kapranov’s theorem holds when the valuation

on the field has higher rank in [2]. And, in [3], S. Banerjee proved that rank n trop-

icalization of a d-dimensional variety is a polyhedral complex of dimension nd and

proposed a question that trop(X) is connected if X is a connected variety in rank 1

case, but is that true when the rank of valuation is n ≥ 1. In [4], Tyler Foster and

Dhruv Ranganathan proved that is true.

In chapter 3, we will introduce more about higher rank valuation and show some

examples of higher rank tropicalizaition and initial form with higher rank valuation.

Then we will discuss about our own work on higher rank valuation, and the most

important step is reducing a rank n valuation with the following proposition

Proposition 1.1.3. Let ν be a rank n valuation on field k. Let ν = (ν1, ν2) : k → Rn
lex ∪

{∞} where ν1 is the first component and ν2 is the remaining n − 1 components such that

ν1 : k → R ∪ {∞} and ν2 : k → Rn−1
lex ∪ {∞}. Clearly, ν1 is a valuation and we let R be

the valuation ring of ν1, m is the maximal ideal, K is the residue field. Now restricting the

domain of ν2 to be R such that ν2 |R: R → Rn−1
lex ∩ {∞}. Then there is a map ν2 : K −→

Rn−1
lex ∪ ∞ as the following diagram
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R Rn−1
lex ∪ ∞

K

ν2|R

ν2

and the map ν2 is a rank n − 1 valuation on K.

By induction, we shall reduce a rank n valuation ν on a field k to an n-step valu-

ation (υ1, . . . , υn) on k such that each υi is a rank 1 valuation on the residue field of

υi−1 for i > 1, and υ1 is a rank 1 valuation on k.

After defining n-step valuation, we will explore n-step tropicalization of a hyper-

surface and the initial form via an n-step valuation in chapter 4. Then we will prove

that the rank n tropicalization of the hypersurface associated to a polynomial is equal

to the n-step tropicalization of the hypersurface assoicated to this polynomial such

that

Corollary 1.1.4. Let ν be a rank n valuation on k and f ∈ k[x±1 , . . . , x±m ]. Reducing ν to an

n-step valuation (υ1, . . . , υn) where

υ1 : k∗ → R

υ2 : k∗1 → R

...

υn : k∗n−1 → R.

Fixing a weight vector w = (w1, . . . , wn) ∈ (Γm)n and let tropν( f )(w) = W =

(W1, . . . , Wn) ∈ Γn. Then we will have

tropυ1
( f )(w1) = W1

tropυ2
(inυ1

w1
f )(w2) = W2

...

tropυn
(inυn−1

wn−1 . . . inυ1
w1

f )(wn) = Wn

Moreover there is also an equivalence between the initial form of a polynomial

via a rank n valuation with respect to a weight vector and the initial form with re-

spect to the same weight vector via n-step valuation iterated such that

Proposition 1.1.5. Let ν be a rank n valuation on field k which can be reduced to an n-step

valuation on k which is supposed to be (υ1, υ2, . . . , υn). Let f = ∑
u∈Zm

cuxu ∈ k[x±1 , . . . , x±m ]
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and fix a weight vector w = (w1, w2, . . . , wn) ∈ Rn×m
lex where wi ∈ Rm for all 1 ≤ i ≤ n.

Then

inν
w( f ) = inυn

wn
. . . inυ1

w1
( f )

Then rank n and n-step tropicalization vanish at the same weight vector conse-

quently.

Corollary 1.1.6. Let f ∈ k[x±1 , . . . , x±m ], ν be a rank n valuation on k which can be split as

an n-step valuation (υ1, . . . , υn). Suppose w be a weight vector for v such that w ∈ (Rm
lex)

n

and w = (w1, . . . , wn) where wi ∈ Rm. Then tropν( f ) tropically vanishes at w if and only

if tropυ1
( f ) tropically vanishes at w1 and tropυi

(inυi−1
wi−1 . . . inυ1

w1
( f )) tropically vanishes at

wi for each 1 < i ≤ n.

Finally, for proving Kapranov’s theorem in higher rank version, we will prove

the following proposition.

Proposition 1.1.7. Let ν be a rank n valuation on an algebraically closed field k, and f is a

polynomial in m variables over k. Fixing a weight vector w ∈ V(trop( f )) ∩ (Γm)n and a

point A ∈ (K×)m×n such that A ∈ V(inν
w( f )) where K is the residue field of ν. Then there

exists a point a ∈ V( f ) with ν(a) = w and π(a) = A.

With the proposition 1.1.7, we prove that: given a hypersurface V( f ) associated

to a polynomial f , the coordinate-wise valuations via a rank n valuation ν of the

points in V( f ) is equal to the tropical hypersurface associated to the rank n tropical-

ization of f , which means

tropν(V( f )) = V(tropν( f )).
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Chapter 2

Tropical Background

This chapter is an introduction of the tropical geometry. We will discuss the back-

ground of tropical geometry and explain the fundamental theorem of tropical geom-

etry in the last section.

2.1 Polyhedral Geometry

Before we talking about the background of tropical geometry, polyhedral geometry

is an important part which plays a significant role in the study of tropical variety.

Everything in this section can be found in section 2.3 of [1] or [7]

Definition 2.1.1. Let C be a polyhedral cone in Rn, then C is a positive hull of finite

subsets of Rn such that

C = pos(v1, . . . , vn) :=

{
r

∑
i=1

λivi ∈ Rn : λi ≥ 0 for all i

}
.

In other word, a cone C ∈ Rn is a nonempty set of vectors which also contains all

the linear combinations of these vectors with nonnegative coefficients. If all vi are

linearly independent, then the cone is simplicial.

Definition 2.1.2. A polyhedron P ⊆ Rn is an intersection of finitely many closed

half spaces in Rn such that

P = {v ∈ Rn : Av ≤ u}

where A is a d × n matrix and u ∈ Rd.

Furthermore, a polyhedral cone is a polyhedron.

Definition 2.1.3. A subset X ⊆ Rn is a convex set, if for all u, v ∈ X we have λu +

(1 − λ)v ∈ X where 0 ≤ λ ≤ 1.
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With the notion of convex, it is clear that any intersection of convex sets is convex.

Definition 2.1.4. Let X ⊆ Rn. The convex hull conv(X) of X is the smallest con-

vex set which containing X. Furthermore, if X = {x1, . . . , xn} is a finite set, then

conv(X) =

{
r

∑
i=1

λixi : 0 ≤ λi ≤ 1,
r

∑
i=1

λi = 1

}
is a polytope.

Polytopes are bounded polyhedra.

Example 2.1.5. Let P ⊂ R2 be a 2 dimensional polyhedron and A = (1,−1), u = 0.

Then P is a polyhedron consists of the points which are below the line x − y = 0.

The inequality Av ≤ u represents a list of inequalities. Let a1, . . . , ad be the rows

of matrix A, then aiv can be considered as a product of vectors which is less than ui

the corresponding component of vector u.

Definition 2.1.6. A face of a polyhedron P ⊆ Rn is determined by a linear functional

w ∈ (Rn)∨ such that

facew(P) = {x ∈ P : w · x ≤ w · y for all y ∈ P}.

The definition of a face of a cone is the same

facew(C) = {x ∈ C : w · x ≤ w · y for all y ∈ C}

Example 2.1.7. Let P ⊂ R4, and P = {(a, b, c, d) ∈ R4 : d ≥ 0}. Let the linear

functional w be w =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

, then facew = {(a, b, c, d) : b = c = d = 0}.

A face of a polyhedron P that is not contained in any larger proper face is called

a facet of this polyhedron P.

Definition 2.1.8. A polyhedral fan of Rn is a collection of polyhedral cones,

F = {C1, . . . , Cn}

with the following two properties:

• Every nonempty face of a cone in the fan F is also a cone in F .
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• The intersection of any two cones in F is a face of these two cones

Example 2.1.9. The two figure above show an example of polyhedral fan and a pic-

ture which is not one. The figure on left hand side is a polyhedral fan but the right

one is not. The intersection of the cone at the bottom of the figure and the cone in

the upper left corner of the figure is the segment OA, but it is not a face of the cone

at bottom.

Definition 2.1.10. A polyhedral complex is a collection Σ of polyhedra which satis-

fies the following two conditions:

• let P be a polyhedron, if P is in Σ, then any face of P is in Σ too

• let P, Q be two polyhedron, if P, Q are in Σ, then the intersection P
⋂

Q is either

an empty set or a face in both P and Q

The polyhedra in a polyhedral complex Σ is called the cells of polyhedral com-

plex Σ. The cells of Σ are not faces of any larger cell are called facets of the complex,

and their facets are called ridges of the complex.

Example 2.1.11. A common example is cube, a cube is a 3-dimensional polyhedral

complex, the quadrangles are the facets of the cube and each edges are the ridges of

the cube.

The support |Σ| of polyhedral complex Σ is a set such that

{x ∈ Rn : x ∈ P where P ∈ Σ}
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Definition 2.1.12. The lineality space of a polyhedron P is the largest linear subspace

V ⊂ Rn with the property that x ∈ P, v ∈ V implies x + v ∈ P

The lineality space of a polyhedral complex is the intersection of all the lineality

sapce of the polyhedra in the complex. The smallest affine subspace of Rn containing

a polyhedron P is called the linear space parallel to P. The dimension of P is the

dimension of the linear space parallel to P.

Definition 2.1.13. A polyhedral complex is pure of dimension d if every facet of the

polyhedral complex has dimension d.

Definition 2.1.14. The relative interior of P which is denoted relint(P) is the interior

of P inside its affine span. If P = {x ∈ Rn : Ax = b, A′x ≤ b′}, where each of the

inequalities in A′x < b′ is strict for some x ∈ P, then relint(P) = {x ∈ Rn : Ax =

b, A′x < b′}

Definition 2.1.15. Let Γ be a subgroup of (R,+). A Γ-rational polyhedron is

P = {x ∈ Rn : Ax ≤ u}

for some A is a d × n matrix with entries in Q, and u ∈ Γd.

And if every polyhedron in a polyhedral complex Σ is Γ-rational, then Σ is Γ-

rational.

Definition 2.1.16. Let P ∈ Rn be a polyhedron. The normal fan of P is the polyhedral

fan NP consisting of the cones

NP(F ) = cl({w ∈ (Rn)∨ : facew(P) = F )})

as F varies over the faces of P.

The notation cl is the closure in the Euclidean topology on (Rn)∨.
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Example 2.1.17. As the figure above, the normal fan of the quadrangle ABCD is the

graph on right side. The vector w1 is the linear functional which determines the

segment CD as a face of ABCD, so do vector w2, w3 and w4 determine AD, AB and

BC respectively. And this fan consists of nine cones, four of dimension 2 that are

the four areas separated by the vectors, four of dimension 1 and one of dimension 0

which is the point intersected by the vectors.

Definition 2.1.18. Let S = k[x1
±1, . . . , xn

±1] be a Laurent polynomial ring. Let f =

∑
u∈Zn

cuxu ∈ S, then the Newton polytope of f is

Newt( f ) = conv(u : cu ̸= 0) ⊂ Rn.

Example 2.1.19. Consider the polynomial f = x−1 − y−1 + 3x − 2y + xy, its Newton

polytope is a polygon which has vertices at (−1, 0), (0,−1), (1, 0), (0, 1) and (1, 1).

Definition 2.1.20. Let Σ be a polyhedral complex in Rn, and σ is a cell in Σ. The

star of σ in Σ is a fan in Rn, written as starΣ(σ). the cones in the fan starΣ(σ) are

indexed by those cells τ in Σ that contains σ as a face. Then the cone of starΣ(σ) that

is indexed by τ is the following subset in Rn

τ̃ = {λ(x − y) : λ ≥ 0, x ∈ τ, y ∈ σ}

As the following figure, the polyhedral complex Σ is shown on the left hand side.

The affine span of the vertex σ1 is the vertex itself and the star of σ1 is shown on the

right. So the the star of σ2.
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Definition 2.1.21. Let {v1, . . . , vr} be an ordered set of vectors in Rn+1 and fix w =

(w1, . . . , wr) ∈ Rr. The regular subdivision of v1, . . . , vr induced by w is the polyhe-

dral fan with the support

pos(v1, . . . , vr) =

{
r

∑
i=1

λivi ∈ Rn : λi ≥ 0 for all i

}

whose cones are pos(vi : i ∈ σ) for all subsets σ ⊆ {1, . . . , r} such that there exists

c ∈ Rn+1 with c · vi = wi for i ∈ σ and c · vi < wi for i /∈ σ.

The construction is usually the following processes:

First, let the vectors vi = (ui, 1) which represents a point configuration u1, . . . , ur

in Rn. So the polyhedral fan in definition 2.1.21 is a subdivision of the polytope

P = conv{ui : 1 ≤ i ≤ r} in Rn. Then we can write the regular subdivision of P

induced by w = (w1, . . . , wr) ∈ Rr as the following equation

Pw = conv{(ui, wi) : 1 ≤ i ≤ r} ⊂ Rn+1.

Let c ∈ (Rn+1)∨ be an inner normal vector. For finding the regular subdivision of P,

we need to find the lower faces of Pw which is the vectors in Pw with an inner normal

vector c ∈ (Rn+1)∨ and the last coordinate of c is positive. Then these lower faces

project to P ⊂ Rn and form a polyhedral complex which is defined in definition

2.1.21.

In addition, as the construction above, c represents the inner normal vectors of

the lower faces of Pw. We can rewrite them to define the vectors c ∈ Rn+1 in defini-

tion 2.1.21. Let (ĉ, 1) be an inner normal vector for a face conv((ui, wi) : i ∈ σ) of



13

Pw. By definition and , (ĉ, 1) · x ≤ (ĉ, 1) · y where x ∈ conv((ui, wi) : i ∈ σ) and

y ∈ Pw. Then let (ĉ, 1) · (ui, wi) ≥ c0 for all i and the equality holds when i ∈ σ. Then

we rewrite this inequality that is (−ĉ, c0) · (ui, 1) ≤ wi, with equality when i ∈ σ. Let

(−ĉ, c0) be the vector c ∈ Rn+1, then we have the vector defined in definition 2.1.21.

Example 2.1.22. Let n = 1, r = 4 and a cone pos((0, 1), (3, 1)) ∈ R2 which is

spanned by the vectors (0, 1), (1, 1), (2, 1), (3, 1). Suppose w = (4, 2, 1, 2) ∈ R4

then the regular subdivision are three cones: pos((0, 1), (1, 1)), pos((1, 1), (2, 1)) and

pos((2, 1), (3, 1)), which is shown in the following figure.

When we let w = (3, 2, 1, 2) ∈ R4, the regular subdivision are two cones: pos((0, 1), (2, 1))

and pos((2, 1), (3, 1)), as the following figure.

2.2 Valuations

From this section to the end of this chapter, we will introduce the background of

Fundamental theorem in tropical geometry. And any details of this part can be found

in chapter 2 and 3 in [1].

Definition 2.2.1. Let k be a field and k× be the set of nonzero elements in k. A

valuation ν on k is a function such that ν : k −→ Γ ∪ {∞}, and ν has the following
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three axioms:

ν(0) = ∞

ν(ab) = ν(a) + ν(b)

ν(a + b) ≥ min{ν(a), ν(b)},

for all a, b ∈ k. Γ is an additive ordered abelian subgroup of R, which is called the

value group of (k, ν).

From definition 2.2.1, we shall gain ν(1) = 0. Since for any a ∈ k we have

ν(a) = ν(a · 1) = ν(1) + ν(a) which implies ν(1) = 0.

Usually Γ∪{∞} is abbreviated as Γ+, and Γ+ is an idempotent semifield with the

operation ⊕ and ⊙. These two operations are tropical addition and multiplication

respectively, the tropical addition is taking the minimum between two elements and

the tropical multiplication is the usual addition. Then we shall see that (Γ,⊙) is an

abelian group with identity element 0 and ∞ is the identity for (Γ+,⊕). As ordinary

arithmetic, tropical multiplication ⊙ has higher priority than tropical addition ⊕, so

suppose a, b, c ∈ Γ+ we have

c ⊙ (a ⊕ b) = c ⊙ a ⊕ c ⊙ b

and since (Γ+,⊙) is commutative, ⊙ is distributive on both sides. Also division is

always possible in (Γ+,⊙) since ⊙ is the usual addition. For every element ν(a) ∈

Γ+ we have ν(a)⊕ ν(a) = ν(a), which shows that it is idempotent.

Lemma 2.2.2. Let k be a field and ν be a valuation on k. Let a, b ∈ k if ν(a) ̸= ν(b) then

ν(a + b) = min{ν(a), ν(b)}.

Proof. Without loss of generality, we shall assume that ν(b) > ν(a). We just show

that ν(1) = 0, then ν(−1) = 0, since (−1)2 = 1. Therefore we have ν(−b) = ν(b) for

all b ∈ k. By the third axiom of definition 2.2.1 there exist

ν(a) = ν((a + b) + (−b)) ≥ min{ν(a + b), ν(−b)} = min{ν(a + b), ν(b)}.

So we have ν(a) ≥ ν(a + b), since we have assumed ν(b) > ν(a). On the other hand,

we have

ν(a + b) ≥ min{ν(a), ν(b)} = ν(a).
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Hence, ν(a + b) = ν(a).

In addition, there are several subsets in the field k need to be mentioned. First,

let the valuation on k be ν and consider a subset R of field k such that

R = {c ∈ k : ν(c) ≥ 0}.

Then the set R is a local ring, and R is also called a valuation ring associated to

valuation ν. Since R is a local ring, there is a unique maximal ideal which we can

denote it to be mν such that

mν = {c ∈ k : ν(c) > 0}.

It is easy to see that R/mν is a subfield in k and usually we denote it to be K, called

the residue field of (k, ν).

Example 2.2.3. One of the most common example of valuation is the p-adic valua-

tion on the field of rational numbers Q. Let ν be a valuation such that ν : Q −→ R

and it is defined as νp(q) = t where q = pt a
b , a, b ∈ Z and p does not divide a or b.

For instance,

ν2(15) = 0 or ν3(
9

14
) = 2.

The valuation ring R of p-adic valuation ν at prime p is the set consists of the rational

numbers m
n where p does not divide n. The maximal ideal mν consists of the rational

numbers m
n where p divides m but not n. Then the residue field K of ν is a finite field

Z/pZ.

Another common field in tropical geometry is the field of Puiseux series. Puiseux

series is a generalization of power series that the exponents of indeterminate in

Puiseux series are allowed to be negative or fraction. Usually, we let a Puiseux series

with coefficients in complex number C, then there is an expression of the form

c(t) =
∞

∑
k=k0

ckt
k
n ,
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where n is a positive integer and k0 is an integer. For instance,

c(t) = c1ta1 + c2ta2 + c3ta3 + . . .

is a Puiseux series where ci are non-zero complex numbers for all i, and ai are rational

numbers with the same denominator with a1 < a2 < a3 < . . .. Usually, we use

notation C{{t}} for the field of Peisuex series over C. There is a natural valuation

on the field of Peisuex series, that is ν : C{{t}} −→ R which is defined by taking

a nonzero Peisuex series c(t) to the lowest exponent a1 that appears in c(t) and we

will call this valuation as t-adic valuation in this thesis. In addition, the field k{{t}}

is algebraically closed when k is an algebraically closed field of characteristic zero

by [1, Theorem 2.1.5].

Example 2.2.4. Suppose a field of Puiseux series C{{t}}, let c1(t), c2(t) ∈ C{{t}}

such that

c1(t) =
4t2 − 7t3 + 9t5

6 + 11t4 =
2
3

t2 − 7
6

t3 +
3
2

t5 + . . .

c2(t) =
14t + 3t2

7t4 + 3t7 + 8t8 = 2t−3 +
3
7

t−2 + . . . .

Then the valuations are ν(c1(t)) = 2 and ν(c2(t)) = −3

2.3 Tropical polynomials

A tropical polynomial is a finite tropical linear combination of tropical monomials.

For instance, let f ∈ R+[x1, . . . , xn] such that

f = a1x1
i1 x2

i2 . . . xn
in ⊕ a2x1

j1 x2
j2 . . . xn

jn ⊕ . . .

where a1, a2, . . . ∈ R are coefficients. The symbol ⊕ represents tropical sum which is

taking minimum and multiplication in tropical polynomial means addition in classic

arithmetic. So evaluating f in classic arithmetic we will have

f = min{a1 + i1x1 + i2x2 + . . . inxn, a2 + j1x1 + j2x2 + . . . jnxn, . . .}.

Let w = (w1, . . . , wn) ∈ Rn be a point and polynomial f evaluated at w is f (w) =

min{a1 + i1w1 + i2w2 + . . . inwn, a2 + j1w1 + j2w2 + . . . jnwn, . . .}, then f (w) is the
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linear function which is taking the minimum at w. Hence tropical polynomial is a

combination of linear functions.

Hence a tropical polynomial also represents a function f : Rn 7→ R and satisfies

the following three properties

1. f is continuous

2. f is piecewise linear and the number of pieces is finite

3. f is concave

Example 2.3.1. Let f (x) = x3 ⊕ x2 ⊕ 1 be a tropical polynomial, then evaluating f

in classic arithmetic we have f = min{3x, 2x, 1}. The graph of f is the following

figure.

As shown in the (x, y) plane above, when x < 0 then minimum of f is equal to the

linear function y = 3x, when 0 < x < 0.5 the minimum is y = 2x, and when x > 0.5

it is y = 1. And if the minimum in f is more than one term such that 3x = 2x and

2x = 1, it is those two points which labelled in the figure.

2.4 Tropicalization of polynomials

Definition 2.4.1. Let k be a field, f is a polynomial such that f = ∑
u∈Nn

cuxu ∈

k[x1, . . . , xn] and ν is a valuation on k. Then the tropicalization of f via ν is a tropical

polynomial in x1, . . . , xn such as

tropν( f ) =
⊕

u∈Nn

ν(cu) + x · u.
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And if we fix a weight vector w ∈ Γn, the tropicalization of f at weight vector w is

tropν( f )(w) = min
(

ν(cu) + w · u
)

where u ∈ Nn.

Example 2.4.2. Suppose a polynomial f = 3x4 + 4y2 + 16 ∈ Q[x±, y±]. The valuation

ν on Q is 2-adic valuation. Then the tropicalization of f is

tropν( f ) = min{4x, 2 + 2y, 4}

For instance, let the weight vector w be (2, 2), then the tropicalization of f at w is

tropν( f )(w) = min{8, 2 + 4, 4} = 4

The following graph is a projection of the tropical line of trop( f ) in 2-dimensional

plane. The segment x = 1 represents a shadow of a part of the whole tropical line. It

consists of those weight vector w which make trop( f )ν(w) have two terms 4x and 4,

then 4x = 4. Similarly, the lines y = 1 and y = 2x − 1 represent the value of weight

vectors w that make 2 + 2y = 4 and 4x = 2 + 2y respectively. And the point (1, 1) is

the solution of 4x = 2 + 2y = 4.

Example 2.4.3. Suppose that k = C{{t}}, f = (t + t2)x + 2t2y + t3 ∈ k[x±, y±] and

the valuation ν on C{{t}} is given by taking the lowest nonzero exponent which

appears in Puiseux series. Then the tropicalization of f is

tropν( f ) = min{1 + x, 2 + y, 3}
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Let the weight vector w be (1, 2). Then the tropicalization of f at w is

tropν( f )(w) = min{1 + 1, 2 + 2, 3} = 2

The same as Example 2.4.2, the following graph represents those solutions that

make the minimum in trop( f ) has at least two terms.

2.5 Initial forms of polynomials

Recalling Definition 2.4.1, we know that the tropicalization with a valuation ν of a

polynomial f = ∑
u∈Nn

cuxu ∈ k[x1, . . . , xn] is a piecewise linear function trop( f ) :

Rn −→ R. For the valuation ν : k → Γ+, there is a mapping σ : Γ → k∗ where

k∗ is the set of nonzero elements of k. Obviously, it is a homomorphism such that

σ(a + b) = σ(a)σ(b), for any a, b ∈ Γ. And this mapping σ is named as a splitting of

ν. Now we can define the initial form of f .

Definition 2.5.1. Let f = ∑
u∈Nn

cuxu ∈ k[x1, . . . , xn], ν is a valuation on k and w =

(w1, . . . , wn) ∈ Rn be weight vector. Suppose

W = tropν( f )(w) = min{ν(cu) + w · u : cu ̸= 0}.
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Then the initial form of f with respect to w is

inν
w( f ) = ∑

u∈Zn

min{ν(cu)+w·u}=W

σ(w · u − W) · cuxu

= ∑
u∈Zn

min{ν(cu)+w·u}=W

σ(−ν(cu)) · cuxu

The notation σ(−ν(cu)) · cu means the image of σ(−ν(cu)) · cu ∈ k in the residue

field K of ν.

Example 2.5.2. Let f ∈ k[x1, x2, x3] where k = C{{t}}. Suppose f = (t − t3)x1
2 +

3t2x2 + 2t3x3
3 then the tropicalization of f is tropν( f ) = min{1 + 2x1, 2 + x2, 3 +

3x3}. Fixing a weight vector w = (1, 1, 1) then W = 3 and the initial form of f is

inν
w( f ) = t−1(t − t3)x1

2 + t−2(3t2)x2

= (1 − t2)x1
2 + 3x2

= x1
2 + 3x2.

If w = (2, 1, 0) then W = 3 and the initial form of f is

inν
w( f ) = t−2(3t2)x2 + t−32t3x3

3

= 3x2 + 2x3
3

= 3x2 + 2x3
3.

Definition 2.5.3. The degree of a polynomial f = ∑
u∈Nn

cuxu in k[x1, . . . , xn] is U =

max{|u| : cu ̸= 0}, where |u| =
n

∑
i=1

ui. The homogenization f̃ of f is the homoge-

neous polynomial f̃ = ∑ cuxU−|u|
0 xu ∈ k[x0, x1, . . . , xn]. The homogenization of an

ideal I in k[x1, . . . , xn] is the ideal Iproj = ⟨ f̃ : f ∈ I⟩.

Similarly, the definition of Iproj for a given Laurent ideal I ⊂ k[x±1 , . . . , x±n ] is the

same.

Definition 2.5.4. Let ν be a valuation on k, and I be any ideal in k[x±1
1 , . . . , x±1

n ] and

fix a weight vector w ∈ Rn, then its initial ideal is

inν
w(I) = ⟨inν

w( f ) : f ∈ I⟩ ⊂ K[x±1
1 , . . . , x±1

n ]

where K is the residue field of ν.
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Notice that the polynomial ring k[x±1
1 , . . . , x±1

n ] consists of Laurent polynomi-

als, then some choices of weight vector w ∈ Rn may let the initial form inν
w( f ) be

a unit in K[x±1
1 , . . . , x±1

n ] where K is the residue field of ν, and inν
w(I) will be the

whole ring. So we only pay attention on those wight vectors which make inν
w(I) ⊂

K[x±1
1 , . . . , x±1

n ].

Lemma 2.5.5. [1, Lemma 2.4.6] Fix a polynomial f ∈ k[x1, . . . , xn] and w, v ∈ Rn. There

exists an ϵ > 0 such that, for all ϵ > ϵ′ > 0, we have

inv(inw( f )) = inw+ϵ′v( f ).

Proof. Let f = ∑
u∈Nn

cuxu. Then the initial form of f with respect to w is

inw( f ) = ∑
u∈Zn

min{ν(cu)+w·u}=W

cutw·u−W xu, where W = tropν( f )(w).

Let W ′ = min{v · u : ν(cu) + w · u = W} which means we choose the minimum

among the terms in inν
w( f ) when plugging the vector weight v into inν

w( f ). Then

inν
v(in

ν
w)( f ) = ∑

v·w=W ′
cutw·u−W xu.

and the power of x in inν
v(in

ν
w) is the subset {u : ν(cu) + w · u = W, v · u = W ′} of

Nn. Now consider the initial form inν
w+v( f ), the power of monomials in inν

w+v( f ) is

{u : min(ν(cu) + w · u + v · u)}. Clearly, there is a possible that {u : ν(cu) + w · u =

W, v ·u = W ′} ̸= {u : min(ν(cu)+w ·u+ v ·u)}, then we may choose a sufficiently

small positive real number ϵ to make the changing of value by ϵv ·u cannot influence

the choosing of u. Let ϵ be a sufficiently small positive real number such that

trop( f )(w + ϵv) = min{ν(cu) + w · u + ϵv · u} = W + ϵW′.

Then the exponent appearing in trop( f )(w + ϵv) is {u : ν(cu) + (w + ϵv) · u =

W + ϵW′}. Since W′ = min{v · u : ν(cu) + w · u = W}, then

{u : ν(cu) + (w + ϵv) · u = W + ϵW′} = {u : ν(cu) + w · u = W, v · u = W′}.

These exponents are the same as those in initial form inν
v(in

ν
w)( f ). Therefore inw+ϵ′v( f ) =

inν
v(in

ν
w)( f ) for all 0 < ϵ′ < ϵ.
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Lemma 2.5.6. [1, Lemma 2.4.2] Let I be a homogeneous ideal in k[x1, . . . , xn]. Fix w ∈

Rn. Then inw(I) is homogeneous, and we may choose a homogeneous Gröbner basis for I.

Furthermore, if g ∈ inw(I), then g = inw( f ) for some f ∈ I.

Proof. Let f be an arbitrary polynomial in I. Since I is a homogeneous ideal, every

polynomial in I is generated by some homogeneous polynomials. Suppose I =

⟨h1, . . . , hj⟩ where h1, . . . hj are all homogeneous and f = l1h1 + . . . ljhj and let h1 =

ca1 xa1 + ca2 xa2 + . . ., l1 = db1 xb1 + db2 xb2 + . . ., then

f = ca1 db1 xa1+b1 + ca1 db2 xa1+b2 + . . . + ca2 db1 xa2+b1 + ca2 db2 xa2+b2 + . . . .

Rearrange the polynomial we get

f = ca1 db1 xa1+b1 + ca2 db1 xa2+b1 + . . . + ca1 db2 xa1+b2 + ca2 db2 xa2+b2 + . . . .

Since h1, . . . hj are homogeneous, then |a1 + bi| = |a2 + bi| = . . . for all i. Hence

for any polynomial in I, it is a sum of a set of homogeneous polynomials, so we can

write f = ∑
i≥0

fi ∈ k[x1, . . . , xn] with each fi homogeneous of degree i. The initial form

inw( f ) is the sum of initial forms inw( fi) of those fi with trop( f )(w) = trop( fi)(w).

From the progress above, we shall see that each fi ∈ I, and for any initial form

inw( f ), it can be generated by some initial forms inw( fi) ∈ inw(I). The initial form

of a homogeneous polynomial is homogeneous, then inw(I) is a homogeneous ideal.

Since polynomial ring is Noetherian, then inw(I) is generated by a finite number of

inw( f ) where f ∈ I, and the corresponding f form a homogeneous Gröbner basis

for I. For the last claim, we let g = ∑
u∈Nn

auxuinw( fu) ∈ inw(I), with au ∈ K∗ and

fu ∈ I for all u. Then g = ∑ auinw(xu fu). Now choosing a lift cu in the valuation

ring R for each au with ν(cu) = 0 and cu = au, and let Wu = trop( fu)(w) + w · u.

Then let f = ∑
u∈Nn

cut−Wu xu fu, consider the tropicalization of f we have

trop( f )(w) = minu∈Nn{ν(cu)− Wu + Wu}.
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Since we set ν(cu) = 0, then trop( f )(w) = 0 which means in the initial form inw( f )

every term of f will be remained. Hence the initial form of f is

inw( f ) = ∑
u∈Nn

cut−Wu xuinw( fu)

= ∑
u∈Nn

auxuinw( fu)

=g

Proposition 2.5.7. [1, Proposition 2.6.1] Let I be an ideal in k[x±1 , . . . , x±n ] with a valuation

ν on k, and fix w ∈ Rn. Then inw(I) is the image of in(0,w)(Iproj) in K[x±1 , . . . , x±n ] where

x0 = 1 and K is the residue field of the valuation ν. Every element of inw(I) has the form

xug, where xu is a Laurent monomial and g = f (1, x1, . . . , xn) for some f ∈ in(0,w)(Iproj).

Proof. Suppose f = ∑
u∈Zn

cuxu ∈ I ∩ k[x1, . . . , xn] and let ju = (maxcv |v|)− |u| such

that f̃ = ∑
u∈Nn

cuxuxju
0 is the homogenization of f . Then we shall have the following

equation directly.

W := trop( f )(w) =min{ν(cu) + w · u}

=min{ν(cu) + (0, w) · (ju, u)} = trop( f̃ )((0, w)).

Then consider the initial form in(0,w)( f̃ ),

in(0,w)( f̃ ) = ∑
u∈Zn

min{ν(cu)+w·u}=W

cut−ν(cu)xuxju
0 .

If we restrict x0 at 1, then this initial form is equal to inw( f ) such that

in(0,w)( f̃ )|x0=1 = ∑
u∈Zn

min{ν(cu)+w·u}=W

cut−ν(cu)xu = inw( f ).

By multiplying some monomials, we can choose some polynomials f1, . . . , fs ∈ k[x1, . . . , xn]∩

I such that inw(I) = ⟨inw( f1), . . . , inw( fs)⟩. Since we have shown that in(0,w)( f̃ )|x0=1 =

inw( f ) for any f ∈ k[x1, . . . , xn] ∩ I, so inw(I) ⊆ in(0,w)(Iproj)|x0=1. For proving the

reverse inclusion, let g be a homogeneous polynomial in Iproj, then we have g = xj
0 · f̃

for some j ∈ Z and since f̃ = ∑ cuxuxju
0 where ju = (maxcv ̸=0 |v|) − |u|. Then
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f (x) = g(1, x), and by lemma 2.5.6 we can find a homogeneous Gröbner basis for

Iproj. Since in(0,w)( f̃ )|x0=1 = inw( f ), then we have the reverse inclusion.

Let f ∈ k[x±1 , . . . , x±n ] be a polynomial and u = (u1, . . . , un) ∈ Zn. If the total

degree of each monomial in f is |u|, we say that f is homogeneous with respect to

the grading given by deg(xi) = ui.

Lemma 2.5.8. [1, Lemma 2.6.2] Let ν be a valuation on field k and I be an ideal in k[x1, . . . , xn].

Fix w ∈ Rn. Then

1. If inν
u(in

ν
w(I)) = inν

w(I) for some u = (u1, . . . , un) ∈ Rn, then inν
w(I) is homoge-

neous with respect to the grading given by deg(xi) = ui.

2. If f , g ∈ k[x1, . . . , xn], then inν
w( f g) = inν

w( f )inν
w(g).

Proof. For part 1, Suppose inν
u(in

ν
w(I)) = inν

w(I). Then we shall suppose there exists

gi ∈ inν
w(I) such that inν

u(gi) generate inν
w(I). For any gi, let it be

gi = ∑
s∈Nn

asxs ∈ K[x1, . . . , xn],

then the initial form of gi with respect to u is inν
u(gi) = ∑

u·s=W
asxs, and as ∈ K. Since

the monomials in inν
u(gi) = ∑

u·s=W
asxs are chosen from W = minas ̸=0{u · s} and u

is a fixed weight vector, then the multi-degree of each monomial is the same. Hence

inν
w(I) is homogeneous.

For part 2, first we suppose f = ∑
u∈Nn

auxu and g = ∑
u′∈Nn

bu′xu′
. Then let f g =

∑
s∈Nn

csxs for cs = ∑
u+u′=s

aubu′ . Now let W1 = trop( f )(w) and W2 = trop(g)(w).

Recall definition 2.5.1, it implies trop( f g)(w) = W1 + W2. Then consider the initial

form inν
w( f g) we have

inν
w( f g) = ∑

W1+W2=ν(cs)+w·s
cst−ν(cs)xs

= ∑
W1+W2=ν(cs)+w·s

∑
u+u′=s

aubu′ t−W1−W2+w·(u+u′)xs.

This is just the product of inν
w( f ) and inν

w(g) such that

(
∑

ν(au)+w·u=W1

aut−ν(au)xu

)(
∑

ν(bu′ )+w·u′=W2

bu′ t−ν(bu′ )xu′

)

= ∑
ν(au)+w·u=W1

∑
ν(bu′ )+w·u′=W2

aubu′ t−ν(au)−ν(bu′ )xu+u′
,
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where −W1 − W2 + w · (u + u′) = −ν(au)− ν(bu′) and u + u′ = s. Then we have

the equation inν
w( f g) = inν

w( f )inν
w(g).

2.6 Tropical hypersurfaces

In algebraic geometry, a hypersurface of a polynomial f ∈ k[x±1 , . . . , x±n ] is a set

V( f ) = {y ∈ kn : f (y) = 0}.

And the n-dimensional algebraic torus Tn
k over a field k is

Tn
k = {(a1, a2, . . . , an) : ai ∈ k∗}

In this section, we will discuss an important lemma which will be involved in the

proof of Kapranov’s theorem in the next section. This lemma shows a specific subset

in an algebraic torus Tn
k is Zariski dense. So we need to know what Zariski topology

and Zariski dense set is. In algebraic geometry, Zariski topology is a topology which

is defined by its closed sets. For instance, let S ⊂ k[x1, . . . , xn], the closed set V(S) in

kn is

V(S) = {x ∈ kn : f (x) = 0, ∀ f ∈ S}.

Then we shall introduce the Zariski closure.

Definition 2.6.1. The Zariski closure of a subset of the affine space kn is the smallest

affine algebraic variety containing the subset.

And then we have the definition of a Zariski dense set

Definition 2.6.2. let V(S) be a subset of an affine space kn. V(S) is said to be Zariski

dense if the smallest variety containing V(S) is kn.

Lemma 2.6.3. [1, Lemma 2.2.12] Let k be a valued field with a splitting Γv −→ k∗ given

by w −→ tw, so that v(tw) = w. Let α1, . . . , αn ∈ K∗ where K is the residue field of v and

w1, . . . , wn ∈ Γv. Consider the set of all y = (y1, . . . , yn) in Tn that satisfy v(yi) = wi and

t−wi yi = αi for i = 1, . . . , n. Then this set is Zariski dense in Tn.

Proof. We shall start from the case that n = 1. First of all, fixing an element z in the

valuation ring R of ν and the image of z in K∗ is α. Then y = twz, then ν(y) = w,
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since α ∈ K∗ which implies that ν(z) = 0. In fact, we have infinite number of

elememts in k∗ that satisfy the desired form. For instance, y + tw+j for all j > 0, then

ν(y + tw+j) = min{ν(y), w + j}.

Since ν(y) = w then ν(y + tw+j), and

t−w(y + tw+j) = t−wy + tj.

Since j > 0 then ν(tj) > 0 and tj /∈ K∗. So t−w(y + tw+j) = α. Then for any non-

zero polynomial h ∈ k[x±1
1 ] we can choose a y1 from the infinite number of elements

which we just defined with ν(y1) = w1 and t−w1 y1 = α1 to make h(y1) ̸= 0 when

n = 1. When n = 2, let h = h1 · xj
2 where h1 ∈ k[x±1

1 ]. Repeating the process above

we can choose a y = (y1, y2) which we defined with ν(yi) = wi and t−wi yi = αi for

i = 1, 2. Then for proving this induction, we can hypothesis this holds when n = k.

Now suppose n = k + 1, let h = ∑ hj · xj
k+1 where hj ∈ k[x±1 , . . . , x±n ]. Obviously,

we can choose y′ = (y1, . . . , yn) ∈ (K∗)n coordinate by coordinate with ν(yi) = wi

and t−wi yi = αi with hj(y′) ̸= 0 for all j. We then shall choose yn with ν(yn) = wn

and t−wn yn = αn to make h(y1, . . . , yn−1, yn) ̸= 0. Then there is not any non-zero

polynomial in k[x±1 , . . . , x±n ] vanishes at those points y. Therefore the only variety

containing the set consists of y is Tn itself and it is the smallest variety containing

those points y, which implies the set of y is Zariski dense in Tn.

Now we define the tropical hypersurface associated with f .

Definition 2.6.4. Let f ∈ k[x±1 , . . . , x±n ]. Then the tropical hypersurface V(trop( f )) is

the set

{w ∈ Rn : the minimum in trop( f )(w) is achieved at least twice}

By definition 2.5.1 and 2.6.4, we shall conclude that the tropical hypersurface of

f ∈ k[x±1 , . . . , x±n ] is a set of weight vectors w ∈ Rn which let the initial form inv
w( f )

have more than one monomial.

Definition 2.6.5. Given a morphism ϕ : Tn −→ Tm with associated ring homomor-

phism ϕ∗ : k[x±1 , . . . , x±m ] −→ k[z±1 , . . . , z±n ], we can denote by ϕ∗ the map Zm → Zn

given by ϕ∗(ei) = u where e1, . . . , em is the standard basis of Zm, and ϕ∗(xi) = zu.
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This gives an induced map which is called the tropicalization of ϕ

trop(ϕ) : Hom(Zn, Z) ∼= Zn −→ Hom(Zm, Z) ∼= Zm.

For an instance, let ϕ∗(xi) = xai for ai ∈ Zn and A be the n×m matrix which each

i-th column is ai. Then the tropicalization of ϕ is AT. For any y = (y1, . . . , yn) ∈ Tn

trop(ϕ(y)) = ν(ϕ(y)) =(ν(ya1), . . . , ν(yam))

=(a1(ν(y1), . . . , ν(yn)), . . . am(ν(y1), . . . , ν(yn)))

=


a1
...

am




ν(y1)
...

ν(yn)



=AT


ν(y1)

...

ν(yn)


Lemma 2.6.6. [1, Lemma 2.6.10] Let ϕ∗ : k[x±1 , . . . , x±m ] −→ k[z±1 , . . . , z±n ] be a monomial

map. Let I ⊆ k[z±1 , . . . , z±n ] be an ideal, and let I ′ = ϕ∗−1(I). Then

ϕ∗(introp(ϕ)(w)(I′)) ⊆ inw(I) for all w ∈ Rn.

Thus, in particular, if inw(I) ̸= ⟨1⟩, then we also have introp(ϕ)(w)(I′) ̸= ⟨1⟩.

Proof. Let ϕ∗(xi) = zai , where ai ∈ Zn. Then ϕ∗(xu) = ϕ∗(xu1
1 ) . . . ϕ∗(xum

m ) =

za1u1 . . . zamum . Then the power of z is the product of matrices (a1, . . . , am)


u1
...

um

.

Let A = (a1, . . . , am) and f = ∑ cuxu ∈ I′, then we have ϕ∗( f ) = ∑ cuzAu ∈ I.

Therefore fixing a weight vector w = (w1, . . . , wn) ∈ Γn
ν , we have trop(ϕ∗( f ))(w) =

mincu ̸=0{ν(cu) + w · Au} and w · A = (w1, . . . , wn) · (a1, . . . , am) which gets the

same vector as AT · w =


a1
...

am

 ·


w1
...

wn

. So it is equal to trop( f )(ATw) then we
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let W = trop( f )(ATw) and

inw(ϕ
∗( f )) =ϕ∗

(
∑

ν(cu)+w·Au=W
cuσ(ν(cu))−1 · xu

)

= ∑
ν(cu)+w·Au=W

cuσ(ν(cu))−1 · zAu.

In the equation above, the polynomial ∑
ν(cu)+w·Au=W

cuσ(ν(cu))−1 · xu can be seen as

an initial form of f with respect to weight vector w · A ∈ Γm
ν . Since trop(ϕ) : Rn −→

Rm then ∑
ν(cu)+w·Au=W

cuσ(ν(cu))−1 · xu = introp(ϕ)(w)( f ). Hence

ϕ∗(introp(ϕ)(w)( f )) = inw(ϕ
∗( f )) ∈ inw(I)

which implies that ϕ∗(introp(ϕ)(w)(I′)) ⊆ inw(I). And it is obvious that if 1 ∈ introp(ϕ)(w)(I′)

then 1 ∈ ϕ∗(introp(ϕ)(w)(I′)) and 1 ∈ inw(I) which proves the contrapositive at the

end of the lemma.

The following corollary is the direct result from lemma 2.6.6 which will be in-

volved in the next section.

Corollary 2.6.7. [1, Corollary 2.6.12] Let ϕ∗ be a monomial automorphism of k[x±1 , . . . , x±n ],

let I be any ideal in this Laurent polynomial ring, and let I′ = ϕ∗−1(I). Then

inw(I) = ⟨1⟩ if and only if introp(ϕ)(w)(I′) = ⟨1⟩.

2.7 The Fundamental Theorem

Before Fundamental theorem, we shall introduce Kapranov’s Theorem first. Kapra-

nov’s theorem was first stated in an unpublished manuscript by Russian mathe-

matician Mikhail Kapranov in the early 1990’s. It builds a link between the classical

hypersurfaces over a field k and the tropical hypersurfaces in Rn.

Theorem 2.7.1. (Kapranov’s theorem)[1, Theorem 3.1.3]

Let k be an algebraically closed field with a non-trivial valuation v. Fix a Laurent polynomial

f = ∑
u∈Nn

cuxu ∈ k[x1, . . . , xn]. The following three sets coincide:

1. the tropical hypersurface V(trop( f )) in Rn;

2. the set {w ∈ Rn : inν
w( f ) is not a monomial};
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3. the closure in Rn of {(ν(y1), . . . , ν(yn)) : (y1, . . . , yn) ∈ V( f )}

Moreover, if f is irreducible and w is ant point in Γn
ν ∩ V(trop( f )), then the set {y ∈

V( f ) : ν(y) = w} is Zariski dense in the hypersurface V( f ).

Proof. First suppose w = (w1, . . . , wn) ∈ V(trop( f )). By definition 2.6.4, trop( f )(w)

has at least two monomials and recall definition 2.5.1 w is contained by set 2 clearly.

Then set 2 contains set 1. Similarly, recalling definition 2.5.1 and 2.6.4, we will prove

the converse direction easily. Hence this is the equality of set 1 and set 2.

Now we need to show the equality of set 1 and set 3. Since (y1, . . . , yn) ∈ V( f ),

we have f (y) = ∑
u∈Nn

cuyu = 0. Then taking the valuation we will have

v
(

∑
u∈Nn

cuyu) = v(0) = ∞ > v(cu′yu′
)

for all u′ with cu′ ̸= 0. By lemma 2.2.2, v
(

∑
u∈Nn

cuyu) > minu∈Nn{v(cu) + y · u}

implies there are more than one minimum. Therefore v(y) ∈ trop(V( f )). Since

trop( f )(w) is a tropical hypersurface associated to f , then it is closed. Hence set 1

contains set 3.

The proof above isn’t complete, we haven’t proven the converse direction of

the last part. For proving that set 3 contains set 1, we need to show the subset

{y ∈ V( f ) : v(y) = w} is Zariski dense in the hypersurface V( f ). The follow-

ing proposition will show that every zero of an initial form can be lifted to a zero of

the given polynomial.

Proposition 2.7.2. [1, Proposition 3.1.5] Fix f ∈ k[x±1 , . . . , x±n ], and let w = (w1, . . . , wn) ∈

Γn
v where v is the valuation on k and the residue field v is K. Suppose inv

w( f ) is not a

monomial and α = (α1, . . . , αn) ∈ (K∗)n satisfies inv
w( f )(α) = 0. There exists y =

(y1, . . . , yn) ∈ (k∗)n satisfying f (y) = 0, v(y) = w, and t−wi yi = αi for 1 ≤ i ≤ n. If f

is irreducible, then the set of such y is Zariski dense in the hypersurface V( f ).

Proof. First, we shall let n = 1. Let f =
s

∑
i=0

cixi where c0, cs ̸= 0, then we may assume

that f =
s

∏
j=1

(ajx − bj). By the part 3 of lemma 2.5.8, we have inv
w( f ) =

s

∏
j=1

inv
w(ajx −

bj). Let inv
w( f ) has more than one monomial and α ∈ K∗ where inv

w( f )(α) = 0,

then for some j, we have inv
w(ajx − bj)(α) = 0. Since α ̸= 0 then inv

w(ajx − bj) is

not a monomial either. Then v(aj) + w = v(bj) which implies that α = t−wbj/aj.

Therefore let y = bj/aj ∈ k∗, we have f (y) = 0 and we shall find w = v(y) =

v(bj)− v(aj) ∈ Γv. Then α = t−wy.
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Now assume that the proposition holds for all dimensions less than n. We first

reduce this case such that no two monomials in f have the same power of xn. Then

we shall consider f as a polynomial in xn with coefficients in k[x1, . . . , xn−1]. Now

consider the automorphism ϕ∗
l on k[x1, . . . , xn−1] given by

ϕ∗
l (xj) = xjxl j

n for 1 ≤ j ≤ n − 1

and ϕ∗
l (xn) = xn, where l ∈ N. Then for any monomial xuxi

n, we have

ϕ∗
l (xuxi

n) = xux
i+∑n−1

j=1 ui l j

n

where u = (u1, . . . , un−1) ∈ Zn−1. Then follow this construction, each monomial in

ϕ∗
l ( f ) has a different power of xn, for l ≫ 0. Now suppose y = (y1, . . . , yn) ∈ Tn

which satisfies ϕ∗
l ( f )(y) = 0, v(yi) = wi − liwn and t−wi+liwn yi = αiα

−li

n for 1 ≤ i ≤

n − 1. Also it satisfies v(yn) = wn and t−wn yn = αn. Base on the assumption above,

define y′ ∈ Tn by yi
′ = yiyli

n for 1 ≤ i ≤ n − 1 and yn
′ = yn. Then

0 = ϕ∗
l ( f )(y) = ∑

u∈Zn−1

i∈Z

cuỹuy
i+∑n−1

j=1 uj l j

n

where ỹ = (y1, . . . , yn−1). For each monomial, ỹu = (yu1
1 , . . . , yun−1

n−1 ) multiplying

with y
∑n−1

j=1 uj l j

n we have ỹ′ = ỹu · y
∑n−1

j=1 uj l j

n since yi
′ = yiyli

n for 1 ≤ i ≤ n − 1, and

yn
′ = yn implies that y′ = ỹuy

i+∑n−1
j=1 uj l j

n . Therefore ϕ∗
l ( f )(y) = f (y′) = 0. Secondly,

v(yi
′) = v(yi) + v(yl j

n) = wi − l jwn + l jwn = wi for 1 ≤ i ≤ n − 1, so v(y′) = w.

Finally, t−wi+liwn yi = αiα
−li

n = αi · t−wn yn
−l j

=⇒ t−wi+liwn yi · t−wn yn
l j

= αi, then we

have t−wi yi
′ = αi.

Now consider the set consists of all ỹ = (y1, . . . , yn) ∈ Tn−1 with v(yi) = wi and

t−wi yi = αi for 1 ≤ i ≤ n − 1. By lemma 2.6.3, ỹ is Zariski dense in Tn−1. Moreover,

by the induction we follow g(xn) = f (y1, . . . , yn−1, xn) is not the zero polynomial.

Let u′ ∈ Zn−1 be the projection of u ∈ Zn. Let g = ∑ dixi
n and di = cuyu′

for a

unique u ∈ Zn that un = i. Note that trop(g)(wn) = v(di) + wni = v(cu) + v(yu′
) +

wni, since we have v(yi) = wi then v(cu) + v(yu′
) + wni = v(cu) + w′ · u′ + wnun =

v(cu) + w · u. Hence trop(g)(wn) = trop( f )(w). Then consider the initial form of g
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with respect to wn

inwn(g) = ∑
i:v(di)+wni=trop(g)(wn)

t−v(di)dixi
n

= ∑
u:v(cuyu′ )+wnun=trop(g)(wn)

t−v(cu)cut−u′·w′yu′xun
n .

Recall that we let t−wi yi = αi for all 1 ≤ i ≤ n − 1, let α = (α1, . . . , αn−1) we will gain

t−u′·w′yu′ = αu′
. Therefore

∑
u:v(cu)+w·u=trop( f )(w)

t−v(cu)cu · αu′
xun

n

=inw( f )(α1, . . . , αn−1, xn).

By the case n = 1, for the polynomial g ∈ k[x±1 , . . . , x±n ], there exists an element in k∗,

here we shall let it be yn with g(yn) = 0, ν(yn) = wn and inwn(g)(αn) = 0 for which

t−wn yn = αn. Thus f (y1, . . . , yn−1, yn) = 0 and this is the point y = (y1, . . . , yn−1, yn)

in the hypersurface V( f ).

Finally, we need to show that if f is irreducible, then the set Y that consists of

those points y is Zariski dense in V( f ) which means that the smallest variety con-

taining Y is V( f ) itself. By lemma 2.6.3, for any (y1, . . . , yn−1) ∈ Tn, with ν(yi) =

wi and t−wi yi = αi for all 1 ≤ i ≤ n − 1, so the set of such point (y1, . . . , yn−1)

is Zariski dense in Tn−1. Now constructing a set Y containing these points y =

(y1, . . . , yn−1, yn), then the projection of Y onto the first n − 1 coordinates is not in

any hypersurface in Tn−1. Let gi be those polynomials in k[x±1 , . . . , x±n ] and gi(y) = 0

for all y ∈ Y for all i ∈ N. Since the set of (y1, . . . , yn−1) is Zariski dense in Tn−1,

then ⟨ f , gi⟩ ∩ k[x±1 , . . . , x±n−1] = {0}. And since f is irreducible, then for all i ∈ N, gi

is a multiple of f . Therefore V( f ) = Y.

Hence proposition 2.7.2 shows that the closure {(ν(y1), . . . , ν(yn)) : (y1, . . . , yn) ∈

V( f )} contains V(trop( f )), which complete the proof of theorem 2.7.1

Here we have a simple example to illustrate Kapranov’s theorem. This example

is modified from example 3.1.4 in [1].

Example 2.7.3. Let k = C{{t}} be an algebraically closed field, and f = 2tx − y +

t2 ∈ k[x±1, y±1]. The value group Γval of k is dense in R where the valuation on k

is t-adic valuation. Then the variety V( f ) is {(z, 2tz + t2) : z ∈ k}. Consider the
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tropicalization of f , we have

trop( f ) = min{1 + x, y, 2}.

Now we have four possibilities that trop( f ) contains more than 1 term, and they are

1 + x = y, 1 + x = 2, y = 2 and 1 + x = y = 2. Then the tropical hypersurfaces are

{(1, 2 + λ1), (1 + λ2, 2), (λ3, 1 + λ3), (1, 2)},

where λ1, λ2 ∈ R+ and λ3 < 1. And the tropical line of trop(V( f )) is shown on the

following diagram.

Now consider the weight vectors w which make inw( f ) be not one monomial. It

is obviously that inw( f ) contains more than one monomial only when w = (1, 2) or

(1, 2 + λ1), (1 + λ2, 2) and (λ3, 1 + λ3) where λ1, λ2 ∈ R+ and λ3 < 1. Then the set

of the weight vectors which making inw( f ) contains more than one term coincides

the tropical hypersurfaces of trop( f ). And the inw( f ) with respect to those weight

vectors are x + y + 1, x + 1, y + 1 and x + y respectively.

Finally, note the closure of the set of coordinatewise valuations of the points in

V( f ). In the beginning of this example, we have V( f ) = {(z, 2tz + t2) : z ∈ k},

then the coordinatewise valuation of the hypersurface is (val(z), val(2tz + t2)). Let

val(z) = 1, then we have val(2tz + t2) > min{1 + val(z), 2} = 2. Hence the points

are contained in the set {(1, 2 + λ1) : λ1 ∈ R+} when val(z) = 1. If val(z) > 1,

then val(2tz + t2) = min{1 + val(z), 2} = 2. Then the points in the {(1 + λ2, 2) :

λ2 ∈ R+} when val(z) > 1. Let val(z) < 1, then we have val(2tz + t2) = min{1 +
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val(z), 2} = 1 + val(z) < 2. Hence, the points in the set {(λ3, 1 + λ3) : λ3 < 1}

when val(z) < 2. In conclusion, we have

(val(z), val(2tz + t2)) =



(1, 2 + λ1) if val(z) = 1

(1 + λ2, 2) if val(z) > 1

(λ3, 1 + λ3) if val(z) < 1

(1, 2) otherwise

where λ1, λ2 ∈ R+ and λ3 < 1. Therefore the closure of the set coordinatewise

valuations of points in V( f ) coinsides with the tropical hypersurfaces of f and the

set of weight vectors that make inw( f ) contains more than 1 term.

Kapranov’s theorem establishes an equivalence between the hypersurface asso-

ciated to the polynomial and its coordinate-wise valuation. The Fundamental The-

orem of Tropical Algebraic Geometry is directly generalized from Kapranov’s theo-

rem from hypersurfaces to arbitrary varieties.

Definition 2.7.4. Let I be an ideal in k[x±1 , . . . , x±n ], and let X = V(I) be its variety.

With a valuation ν on k, the tropicalization trop(X) of the variety X is the intersection

of all tropical hypersurfaces defined by elements of I:

trop(X) =
⋂
f∈I

trop(V( f )) ⊆ Rn.

Example 2.7.5. Let I = ⟨x + y + 1, x + 2y⟩ ⊂ C{{t}}. Then the classical variety is

X = {(−2, 1)} and the coordinate-wise valuation is trop(X) = {(0, 0)}. However

the tropical hypersurfaces trop(V(x + y + 1)) and trop(V(x + 2y)) are shown on the

following diagram respectively.
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Then the intersection is the half-ray {(w1, w2) ∈ R2 : w1 = w2 ≤ 0}. So trop(X) ̸=⋂
f

trop(V( f )) when f only runs over generator set of I.

Before introducing the next lemma, we need to introduce the rank of subgroup.

Let G be a group and L be a subgroup of G, the smallest cardinality of a generating

set for L is the rank of L.

Lemma 2.7.6. [1, Lemma 2.2.7] Given any vector v = (v1, . . . , vn) ∈ Zn with the greatest

common divisor of |v1|, . . . , |vn| equal to 1, there exists a matrix U ∈ GL(n, Z) with Uv =

e1. Further, if L is a rank k subgroup of Zn with Zn/L torsion free, then there is a matrix

U ∈ GL(n, Z) with UL equal to the subgroup generated by e1, . . . , ek.

Proof. First of all, we show that if v = (v1, . . . , vn) and the greatest common divisor

of |v1|, . . . , |vn| is equal to 1, then the group Zn/Zv is torsion free. Suppose that

a = (a1, . . . , an) ∈ Zn/Zv and there exists an integer m ∈ Z such that m · a = 0 ∈

Zn/Zv which means that (ma1, . . . , man) ∈ Zv. Let z ∈ Z that (ma1, . . . , man) =

(zv1, . . . , zvn). Then we have the ratio a1 : · · · : an = v1 : · · · : vn. Since the

greatest common divisor of |v1|, . . . , |vn| is 1, for any 1 ≤ i ≤ n, ai can only be the

multiple of vi. Then (a1, . . . , an) ∈ Zv and Zn/Zv is torsion free. The condition

Zn/L is torsion free allows us to choose a generator set of L with cardinality k and

the greatest common divisor of their absolute value is 1. Let b1, . . . , bk be a generator

set of L and for each bi 1 ≤ i ≤ k the greatest common divisor of |bi,1|, . . . , |bi,n| is 1.

Suppose a k × n matrix A such that

A =


b1
...

bk


By the Smith normal form of A, there exist a k × k matrix V and a n × n matrix U′

such that

VAU′ =



c1 0 . . . 0 . . . 0

0 c2 . . . 0 . . . 0
...

...
. . .

...
...

0 0 . . . ck . . . 0
...

...
...

...

0 0 . . . 0 . . . 0
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where ci =
di(A)

di−1(A)
, di(A) is the the greatest common divisor of the determinants of

all i × i minors of A. Since the greatest common divisor of |bi,1|, . . . , |bi,n| is 1 for each

bi 1 ≤ i ≤ k, then ci = 1 for all 1 ≤ i ≤ k. And according the algorithm of Smith

normal form, we may have V ∈ GL(k, Z) and U′ ∈ GL(n, Z). Since V ∈ GL(k, Z),

then VA is still a basis of L. Then we take U = U′T.

Lemma 2.7.7. [1, Lemma 3.2.10] Let X be a d-dimensional subvariety of Tn, with ideal

I ⊂ k[x±1 , . . . , x±n ]. Every cell in the Gröbner complex Σ whose support lies in the set

{w ∈ Rn : inw(I) ̸= ⟨1⟩}

has dimension at most d.

Proof. Since |Σ| is in the set {w ∈ Rn : inw(I) ̸= ⟨1⟩}, we may assume that there

exists a set of w ∈ Γn
ν lie in the relative interior of a maximal cell P ∈ Σ. Let L

be a subspace of Rn such that w + L is the affine span of P. By lemma 2.7.6, we

know that with a linear transformation we may assume that L is spanned by vectors

e1, . . . , em for some m. And by corollary 2.6.6, we can assume that the image of w

under the linear transformation is w′ and inw′(I) ̸= ⟨1⟩. Then we need to prove that

dim(L) = m ≤ d. Since w is in the relative interior of P, then inw+ϵv(I) ̸= ⟨1⟩ for all

v ∈ Rn ∩ L and ϵ is sufficiently small. By lemma 2.5.5 and proposition 2.5.7, we have

inv(inw(I)) = inw(I) for all v ∈ Rn ∩ L. Let G be a set of generators for inw(I) such

that none of the generators in G is the sum of two other polynomial in inw(I) which

have fewer monomials. Now suppose f ∈ G, since inv(inw(I)) = inw(I) we have

inv( f ) = f , because if inv( f ) ̸= f , inv( f ) will be a polynomial with fewer monomials

in inw(I) which contradicts our assumption. Also, since we assume L is spanned by

e1, . . . , em, then inei( f ) = f for 1 ≤ i ≤ m. Moreover, by proposition 2.5.7, we have

f = g · f̃ where g is a monomial and x1, . . . , xm do not appear in f̃ ∈ Iproj. Since

monomials are units in K[x±1 , . . . , x±n ] where K is the residue field of the valuation

on k, which implies that inw(I) is generated by those polynomials not containing

x1, . . . , xm. Therefore m ≤ dim(inw(I)) ≤ dim(X) = d.

Proposition 2.7.8. [1, Proposition 3.2.7]) Fix a subvariety X in Tn and m ≥ dim(X).

There exists a morphism ψ : Tn −→ Tm whose image ψ(X) is Zariski closed in Tm and

satisfies dim(ψ(X)) = dim(X). This map can be chosen so that the following hold.

1. The kernel of the linear map trop(ψ) : Rn −→ Rm intersects trivially with a fixed

finite arrangement of m-dimensional subspaces in Rn.
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2. When n > m, if we change coordinates so that ψ is the projection onto the first m

coordinates, then the ideal I of X is generated by polynomials in xm+1, . . . , xn whose

coefficients are monomials in x1, . . . , xm.

Proof. We shall prove this proposition by induction. The case n = m is trivial. Now

assume n > m. We first define a monomial change of variables in Tn as

ϕ∗
l (xi) = xixli

n and ϕ∗
l (xn) = xn,

for 1 ≤ i ≤ n − 1 and l ∈ N. Then, for any f ∈ I ⊂ k[x±1 , . . . , x±n ] we have

g = ϕ∗
l ( f ) = f (x1xl

n, x2xl2

n , . . . , xn−1xln−1

n , xn).

This is an automorphism of k[x±1 , . . . , x±n ]. Notice that its monomials have distinct

degrees in the variables xi. Since ϕ∗
l is invertible, we can replace I by ϕ∗

l (I), and

assume that I is generated by a set of polynomials with this property.

Let π be the map Tn −→ Tn−1 which is defined by

π(x1, x2, . . . , xn) = (x1, x2, . . . , xn−1).

We need to show the image of subvariety X ∈ Tn under π is closed. First, by [5,

Theorem 3.2.2], the closure of π(X) is the variety V(I ∩ k[x±1 , . . . , x±n−1]) in Tn−1. The

difference π(X)/π(X) is contained in the variety of the leading coefficients of the

polynomials in a generating set of I when viewed as polynomials in xn. Since the

leading coefficient of each generator is a monomial consists of x1, . . . , xn−1, then the

variety in Tn−1 defined by those polynomials is empty. Therefore π(X) = π(X).

For proving dim(X) = dim(π(X)), since I ⊂ k[x±1 , . . . , x±n ] then there always

exists a polynomial in I that is monic when it is regarded as a polynomial in xn.

Then k[X] can be consider as a coordinate ring which is generated by xn, and the

field of fractions k(X) is a finite extension of k(π(X)). Then their transcendence

degrees are the same by [5, Theorem 9.5.6] (The details about this step can be found

in the whole section 5 in Chapter 9 of [5]). Therefore dim(X) = dim(π(X)).

By induction on n−m, there is a morphism ψ : Tn−1 −→ Tm with ψ(X) is Zariski

closed in Tm and dim(ψ(X)) = dim(X), and by induction, the second requirement

on the form of the generators all follow.

For proving the first requirement, we can choose the change of the coordinates

which makes the intersection of the kernel of trop(π) : Rn −→ Rn−1 and some finite
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collection of subspaces empty, in the original coordinates the kernel of trop(π) is the

line spanned by (1, l, l2, . . . , ln−1) in Rn. If l ≫ 0, the intersection of this line and any

fixed finite number of hyperplanes is the origin. Then by induction on n − m, we

can prove that ψ satisfies the first requirement.

Theorem 2.7.9. (Fundamental Theorem of Tropical Algebraic Geometry)[1, Theorem 3.2.3]

Let k be an algebraically closed field with a non-trivial valuation ν, let I be an ideal in

k[x±1 , . . . , x±n ], and let X = V(I) be its variety in the algebraic torus Tn ∼= (k∗)n. Then the

following three subsets of Rn coincide:

1. the tropical variety trop(X);

2. the set of all vectors w ∈ Rn with inν
w(I) ̸= ⟨1⟩;

3. the closure of the set of coordinate-wise valuations of points in X,

ν(X) = {(ν(y1), . . . , ν(yn)) : (y1, . . . , yn) ∈ X}.

Furthermore, if X is irreducible and w is any point in Γn
ν ∩ trop(X), then the set {y ∈ X :

ν(y) = w} is Zariski dense in the classical variety X.

Proof. By Kapranov’s theorem 2.7.1, for any f ∈ I, if y = (y1, . . . , yn) ∈ X that

f (y) = 0, then (ν(y1), . . . , ν(yn)) ∈ trop(X). Since trop(X) is a tropical variety

which is closed with Zariski topology, hence set 3 is contained by set 1.

Then we let w ∈ trop(X), hence for any f = ∑
u∈Zn

cuxu ∈ I we have more than

one monomial in {ν(cu) + u · w : cu ̸= 0}. Then inν
w( f ) is not a monomial. Since

inν
w( f ) ∈ K[x±1

1 , . . . , x±1
n ], K is the residue field of ν, if inν

w( f ) is a monomial then

there may exists a h ∈ K[x±1
1 , . . . , x±1

n ] such that inν
w( f ) · h = 1. Now suppose

g ∈ k[x±1
1 , . . . , x±1

n ] that inν
w(g) = h, by lemma 2.5.8 we have inν

w( f ) · inν
w(g) =

inν
w( f g) = 1. Then inν

w(I) = ⟨1⟩. Therefore for any w, it lies in set 2.

Before showing that set 2 is contained by set 3, we will first prove that if a weight

vector w is in set 2 for X, then w lies in the set 2 for some irreducible component f X.

First of all, X is a variety in Tn then there is a decomposition that X = X1 ∪ . . . ∪ Xs

where Xi is irreducible for all 1 ≤ i ≤ s. Then the ideals corresponding to X1, . . . , Xs

are all prime ideals, let them be I1, . . . , Is respectively, then I = I1 ∩ . . . ∩ Is. Let

w ∈ Rn has inν
w ̸= ⟨1⟩, then there is one j ∈ {1, . . . , s} such that inν

w(Ij) ̸= ⟨1⟩.

For proving this, assume that there are polynomials gi ∈ Ii for 1 ≤ i ≤ s with

inν
w(gi) = 1. Since I = I1 ∩ . . . ∩ Is, then

s

∏
i=1

gi ∈ I. By lemma 2.5.8, we have

inν
w

( s

∏
i=1

gi

)
=

s

∏
i=1

(
inν

wgi

)
, hence 1 ∈ inν

w(I), contradicting the assumption.
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As the proof of Kapronov’s theorem 2.7.1 we haven’t shown that the set 3 con-

taining set 2 and the rest of the Fundamental theorem. Just like the proposition 2.7.2,

proposition 2.7.10 will complete the proof of theorem 2.7.9.

Proposition 2.7.10. [1, Proposition 3.2.11] Let X be an irreducible subvariety of Tn, with

prime ideal I ⊆ k[x±1
1 , . . . , x±1

n ]. Fix w ∈ Γn
ν with inν

w(I) ̸= ⟨1⟩, and let α ∈ V(inν
w(I)).

Then there exists a point y ∈ X with ν(y) = w and t−wy = α. The set of such y is Zariski

dense in X.

Proof. Let d = dim(X), if n = 1 then it follows the beginning of the proof of proposi-

tion 2.7.2, and if n = d + 1, X is a hypersurface then it also follows proposition 2.7.2.

So assume that 0 ≤ d ≤ n − 2 and we shall use induction on n. According to lemma

2.7.7, the support of a polyhedral complex Σ lies in the set {v ∈ Rn : inv(I) ̸= ⟨1⟩},

and every cell P ∈ Σ the dimension of P is at most d = dim(X). Let LP be the lin-

ear span of P − w ∈ Rn. Then dim(LP) ≤ d + 1 < n, and w + LP is the subspace

spanned by P and w.

Suppose a monomial map ϕ : Tn −→ Tn−1, then by definition 2.6.5 there exists

a linear map trop(ϕ) : Rn −→ Rn−1. Recalling proposition 2.7.8, we can choose the

linear map trop(ϕ) which satisfies ker(trop(ϕ)) ∩ LP = {0} for all P ∈ Σ. Further-

more, from proposition 2.7.8, we have that ϕ maps onto the first n − 1 coordinates

and the image ϕ(X) is Zariski closed in Tn−1. Then we can show that trop(ϕ) is an

injective map. Now suppose there exists another weight vector w′ ∈ Γn
ν such that

inw′(I) ̸= ⟨1⟩ and trop(ϕ)(w′) = trop(ϕ)(w). Since w′ is in the support of Σ then

there exists a polyhedron P such that w′ ∈ P. And we let LP be the affine span of

P − w then w′ ∈ LP which implies w′ ∈ w + LP and w′ − w ∈ LP. Since w′ − w ∈

ker(trop(ϕ)) and we choose the linear map trop(ϕ) with ker(trop(ϕ)) ∩ LP = {0},

then w′ = w.

Recalling definition 2.6.5, the monomial map ϕ : Tn → Tn−1 is associated with

the ring homomorphism ϕ∗ : k[x±1 , . . . , x±n−1] → k[x±1 , . . . , x±n ]. Therefore let I′ =

ϕ∗−1(I) = I ∩ k[x±1 , . . . , x±n−1] and X′ = V(I′). By proposition 2.7.8, we have ϕ(X)

is Zariski closed in Tn−1, then X′ = ϕ(X). By lemma 2.6.6, introp(ϕ)(w)(I′) ̸= ⟨1⟩,

then trop(ϕ)(w) is in the tropical variety of I′. As the proof of proposition 2.7.2, we

use induction start from ϕ : Tn → T. When ϕ : Tn → T, we have ϕ∗ : k[x±1 ] →

k[x±1 , . . . , x±n ]. Then as the beginning of this paragraph, we have I1 = ϕ∗−1(I) =

I ∩ k[x±1 ], X1 = ϕ(X) is Zariski closed in T and introp(ϕ)(w)(I1) = ⟨1⟩. Since k[x±1 ] is a

principal ideal domain, I1 can be generated by a polynomial let it be f1 ∈ I1, which

implies that X1 is a hypersurface of this polynomial f1. Then by proposition 2.7.2,
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there exists y ∈ k∗ satisfying f1(y) = 0, ν(y) = w and t−wy = α where inν
w( f1)(α) =

0. So we shall prove the Kapranov’s theorem in X1 when ϕ : Tn → T, then we

can consider the monomial map ϕ : Tn → T2. Following the description above,

we have ϕ∗ : k[x±1 , x±2 ] → k[x±1 , . . . , x±n ] which implies that we have a new ideal

I2 = ϕ∗−1(I) = I ∩ k[x±1 , x±2 ] and X2 = V(I2) is Zariski closed in T2. So by induction,

we will reach the step ϕ : Tn −→ Tn−1. Then with the same method we can show

that there is y′ = (y1, . . . , yn−1) ∈ X′ ⊂ Tn−1 with ν(yi) = wi and t−wi yi = αi for

all 1 ≤ i ≤ n − 1. Let J = ⟨ f (y1, . . . , yn−1, xn) : f ∈ I⟩ ⊆ k[x±n ]. Since k[x±n ] is a

ring of polynomials in one variable, k[x±n ] is a principal ideal domain which implies

that there must exists a single polynomial f ∈ I whose specialization generates the

principal ideal J. By proposition 2.7.8 we may rewrite f such that f = xl
n + f ′ where

f ′ ∈ k[x±1 , . . . , x±n−1]. The degree l is positive, hence J ̸= ⟨1⟩.

With the monomial map in Tn in the proof of proposition 2.7.8, for any f =

∑
u∈Zn

cuxu ∈ k[x±1 , . . . , x±n ] we have

ϕ∗
l ( f ) = f (x1xl

n, x2xl2

n , . . . , xn−1xln−1

n , xn)

where l ∈ N. Then we can assume that f is a polynomial in only one variable

xn and the coefficients in f are monomials in k[x±1 , . . . , x±n−1]. So we can write f =

∑
i∈Z

cixui xi
n where ui ∈ Zn−1. Now plugging the point y′ into ϕ∗

l ( f ), then let g =

f (y1, . . . , yn−1, xn) = ∑
i∈Z

ciy′ui xi
n. By the induction, we let w′ ∈ Rn−1 and assume

that

ν(y′) = ν(y1, . . . , yn−1) = (w1, . . . , wn−1) = w′.

Let wn be a value such that trop( f )(w) = trop(g)(wn) and then we consider the

initial form. Suppose trop(g)(wn) = W then

inwn(g)(xn) = ∑
i∈Z

trop(g)(wn)=W

ciy′ui t−ν(ciy′ui )xi
n

Notice that ν(ciy′ui) = ν(ci)+ui · ν(y′), by induction we have ν(y′) = ν(y1, . . . , yn−1) =

(w1. . . . , wn−1) = w′. Then for each i we have

ciy′ui t−ν(ciy′ui ) = cit−ν(ci)(t−w′y′)ui = cit−ν(ci)α′ui .
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So the initial form inwn(g)(xn) will be

inwn(g)(xn) = ∑
i∈Z

trop(g)(wn)=W

cit−ν(ci)α′ui · xi
n

which is the n = 1 case in proposition 2.7.2, there exists a yn ∈ k× with g(yn) = 0,

ν(yn) = wn and t−wn yn = αn. Then we have the point y = (y1, . . . , yn) with ν(y) =

w = (w1, . . . , wn) and t−wi yi = αi for all 1 ≤ i ≤ n. And in the second paragraph of

this proof, we have shown the uniqueness.

Now for the last step of this proof, we need the show that the set Y of all the

points y is Zariski dense in X. Let X′ be a proper subvariety in X and contains Y.

Then ϕ(Y) ⊂ ϕ(X′), and for any y ∈ Y let ϕ(y) = y′. By the induction, for all

y′ ∈ ϕ(X) we have ν(y′i) = wi and t−wi yi = αi for 1 ≤ i ≤ n − 1. By proposition

2.7.8, we have dim(ϕ(X)) = dim(X) > 0. Then from ϕ : Tn → T, by induction

we used in this proof with proposition 2.7.2, ϕ(Y) is Zariski dense in ϕ(X) then we

have ϕ(X′) = ϕ(X), which contradicts X′ ⊊ X =⇒ dim(X′) < dim(X). Therefore

subvariety X′ doesn’t exist, so Y is Zariski dense in X.
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Chapter 3

Higher rank background

In chapter 3, we will introduce higher rank valuation and some research related to it.

Unlike classic valuation, higher rank valuation is mapping a field into an arbitrary

ordered abelian group and the rank of the ordered abelian group is the rank of val-

uation. In the last section, we will reduce a rank n valuation to a sequence of rank 1

valuations and that is the n-step valuation we are studying.

3.1 The rank of an ordered abelian group

Definition 3.1.1. (Ordered abelian group)

An ordered abelian group (Γ,+,≤) is an abelian group (Γ,+) which is totally or-

dered and a < b, c < d implies a + c < b + d for any a, b, c, d ∈ Γ.

A convex subgroup ∆ ⊂ Γ is a subgroup such that for any γ ∈ Γ and 0 ≤ γ ≤ δ

where δ ∈ ∆, then γ ∈ ∆. And the set of all convex subgroups is linearly ordered

inclusion.

Definition 3.1.2. The rank of an ordered abelian group is the maximal length of a

chain of distinct proper convex subgroups.

For instance, (Z,+) and (Q,+) are both rank 1 ordered abelian group with ad-

dition, because convex subgroups contained by (Z,+) and (Q,+) are either {0} or

the whole group. And there exists an isomorphism between a non-trivial subgroup

of (R,+) and an ordered abelian group.
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Definition 3.1.3. An ordered abelian group (Γ,+,≤) is called archimedean if for all

γ, ε ∈ Γ such that ε > 0, there exists n ∈ N such that γ ≤ nε.

Then let ∆ be a convex subgroup of Γ and 0 < a ∈ ∆. Suppose 0 < γ ∈ Γ, then

∃n ∈ N such that r ≤ na where a ∈ ∆. So we will have γ ∈ ∆ which implies that

∆ = Γ. Therefore an archimedean ordered abelian group has no non-trivial convex

subgroup.

Proposition 3.1.4. [6, Proposition 2.1.1] An ordered abelian group Γ is of rank 1 if and only

if it is order isomorphic to a non-trivial subgroup of (R,+) with the canonical order induced

from R.

Proof. This is proof is from the proof of proposition 2.1.1 on page 26 of [6].

First, we need to show Γ is archimedean. Let ε ∈ Γ with ε > 0 and set

∆ = {γ ∈ Γ : γ,−γ ≤ nε for some n ∈ N}.

Obviously, 0 ∈ ∆ and −γ ∈ ∆ for all γ ∈ ∆. Let γ1, γ2 ∈ ∆ then there exist n1, n2 ∈ N

such that γ1,−γ1 ∈ n1ε and γ2,−γ2 ∈ n2ε. Then we have (γ1 + γ2),−(γ1 + γ2) ≤

(n1 + n2)ε. So ∆ is a subgroup of Γ. Let 0 ≤ δ ≤ γ ∈ ∆ and δ ∈ Γ, by the definition

of δ we give, δ ∈ ∆, then ∆ is convex. However, Γ is of rank 1 and ∆ is not a trivial

subgroup, then ∆ = Γ and Γ is archimedean.

For showing the isomorphism between Γ and a non-trivial subgroup of (R,+),

we need to define a map which is mapping Γ to the set of Dedekind cuts of Q. Since

Dedekind cuts are real numbers, then we shall prove the map is injective. Suppose

an arbitrary element α ∈ Γ, set the following subsets of rational number

L(α) = {m
n

∈ Q : n > 0 and mε ≤ nα}

U(α) = {m
n

∈ Q : n > 0 and mε ≥ nα}

Since Γ is ordered, then either mε ≤ nα or mε ≥ nα, then every rational number in

Q is in L(α) ∪ U(α), thus L(α) ∪ U(α) = Q. Assume U(α) = ∅, we have L(α) = Q,

then mε ≤ α which contradicts that Γ is archimedean. Then U(α) ̸= ∅ and L(α) ̸= ∅

similarly. Now suppose m
n , m′

n′ ∈ Q such that mε ≤ nα and m′ε ≥ n′α, then we have

mn′ε ≤ n′nα = nn′α ≤ nm′ε. Then mn′ ≤ nm′, since n, n′ > 0 we have m
n ≤ m′

n′ ,

which implies that L(α) ≤ U(α). So with these two subsets L(α), U(α) ∈ Q, we
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shall define a Dedekind cut of Q. Now consider the mapping r : Γ → (R,+) where

L(α) ≤ r(α) ≤ U(α) for any α ∈ Γ, and this mapping preserves the ordering. We

need to show r is a group homomorphism. Let α, β ∈ Γ and let m
n , m′

n′ be two arbitrary

elements in L(α), L(β) respectively. Then we have mε ≤ nα and m′ε ≤ n′β. Clearly,

we will have these inequalities mn′ε ≤ nn′α and m′nε ≤ nn′β. Since n, n′ > 0 and

ε > 0 we have mn′

nn′ ≤ α
ε and m′n

nn′ ≤ β
ε . Then

mn′ + m′n
nn′ ≤ α + β

ε

(mn′ + m′n)ε ≤ nn′(α + β).

So m
n + m′

n′ ∈ L(α + β), then L(α) + L(β) ⊆ L(α + β). Since we defined r(α) ≥ L(α)

for any α ∈ Γ, thus r(α + β) ≥ r(α) + r(β). Conversely, with the same method, we

can show that U(α) + U(β) ⊆ U(α + β) and this implies r(α + β) ≤ r(α) + r(β).

Therefore r(α + β) = r(α) + r(β). So r is a group homomorphism.

The last step of this proof is showing r is an isomorphism. By the fundamental

thoerem of isomorphism, we need to prove that the kernel of r is trivial. So let r(α) =

0, then 0 ≥ α
ε ≥ m

n which means the maximum value of m is −1. Similarly, from

U(α), we get 1
n ≥ α

ε . Then −ε ≤ nα ≤ ε for all n > 0. However, Γ is archimedean, so

the only possibility is α = 0.

Proposition 3.1.5. Let Γ be an ordered abelian group of rank n then Γ is ordered isomorphic

to a non-trivial subgroup of (Rn,+) with the canonical order induced from R.

Proof. For proving this proposition, we can use induction from n = 2. Suppose Γ is

of rank 2, then there exists a chain of convex subgroups of Γ such that ∅ ⊂ Γ′ ⊂ Γ

where Γ′ is a convex subgroup of Γ. Since Γ′ is abelian, Γ/Γ′ is a factor group. Since

Γ is of rank 2, if there exists a convex subgroups in Γ/Γ′ then then rank of Γ is bigger

than 2, which contradicts. Therefore Γ/Γ′ is of rank 1 and by proposition 3.1.4, Γ/Γ′

is ordered isomorphic to a non-trivial subgroup of (R,+).

Now consider a mapping r : Γ → (R2,+). For any a ∈ Γ, let a = p + q where p ∈

Γ′ and q ∈ Γ but not in Γ′. Then define r such that r(a) = (r1(p), r2(q)) where r1 is

the isomorphism between Γ′ and the subgroup of (R,+), and r2 is the isomorphism

between Γ/Γ′ and the subgroup of (R,+). Let a = p + q ∈ Γ and b = s + t ∈ Γ,
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where p, s ∈ Γ′ and q, t ∈ Γ but not in Γ′. Then

r(a + b) = (r1(p + s), r2(q + t))

= (r1(p) + r1(s), r2(q) + r2(t))

= (r1(p), r2(q)) + (r1(s), r2(t))

= r(a) + r(b).

So r is a homomorphism. Now let r(a) = 0, we have r1(p) = 0 and r2(q) = 0. Since

r1 and r2 are both isomorphism, then p, q = 0 and a = 0. So the kernel of r is trivial

and r is an isomorphism.

Now suppose this proposition holds when the rank of Γ is n > 2. Let Γn be a

rank n ordered abelian group which is isomorphic to (Rn,+) and we have a chain of

convex subgroups of Γ such as ∅ ⊂ Γ1 ⊂ . . . ⊂ Γn. Let Γn ⊂ Γn+1, we need to prove

that Γn+1 is isomorphic to (Rn+1,+). Consider a mapping f : Γn+1 → (Rn+1,+). For

any a ∈ Γn, f (a) = ( f (p), fn(q)) where a = p + q, p ∈ Γn and q ∈ Γn+1 but q /∈ Γn.

Since Γn is isomorphic to (Rn,+), f can be defined as the isomorphism between Γn

and (Rn,+). Meanwhile, fn can be defined as an isomorphism between Γn+1/Γn

and (R,+) because Γn+1/Γn is of rank 1. So let b be another element in Γn+1 and

b = s + t, then

f (a + b) = ( f (p + s), fn(q + t))

= ( f (p) + f (s), fn(q) + fn(t))

= ( f (p), fn(q)) + ( f (s), fn(t))

= f (a) + f (b).

And since f and fn are both isomorphism, the kernel of f is trivial which implies

that f is an isomorphism. So Γn+1 is isomorphic to (Rn+1,+).

Then by induction, Γ is of rank n if and only if Γ is order isomorphic to a non-

trivial subgroup of (Rn,+).

Now define lexicographic ordering of direct product of ordered abelian groups

such that let (Γ1,⪯1) and (Γ2,⪯2) be two ordered abelian groups and Γ = Γ1 ⊕ Γ2,
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the ordering is defined as

(γ1, γ2) ⪯ (γ′
1, γ′

2) if either γ1 ⪯1 γ′
1 or γ1 = γ′

1 and γ2 ⪯2 γ′
2.

The rank of Γ is the sum of the rank of Γ1 and Γ2 which we will prove in the following

proposition.

Proposition 3.1.6. Suppose two ordered abelian groups (Γ1,⪯1) and (Γ2,⪯2) and define

the order of the group Γ = Γ1 ⊕ Γ2 to be

(γ1, γ2) ⪯ (γ′
1, γ′

2) if either γ1 ⪯1 γ′
1 or γ1 = γ′

1 and γ2 ⪯2 γ′
2.

Then the rank of Γ is the sum of the rank of Γ1 and Γ2.

Proof. Let the rank of Γ1 and Γ2 be n1 and n2 respectively. Let the chains of convex

subgroups be

∅ ⊂ ∆1 ⊂ ∆2 ⊂ · · · ⊂ ∆n1−1 ⊂ Γ1 and ∅ ⊂ Λ1 ⊂ Λ2 ⊂ · · · ⊂ Λn2−1 ⊂ Γ2.

First, let A, B be convex subgroups of Γ1, Γ2 respectively then we need to prove that

if ∅ ⊊ A ⊊ Γ1 and ∅ ⊊ B ⊊ Γ2, then A ⊕ B may not be a convex subgroups of Γ.

Let (p, q) ∈ Γ and p ⪯1 s ∈ A, then (p, q) ⪯ (s, t) ∈ A ⊕ B. But there is a possibility

that q /∈ B which implies that (p, q) /∈ A ⊕ B. Hence A ⊕ B may not be a convex

subgroup of Γ.

Now let Ki = e1 ⊕ Λi and Li = ∆i ⊕ Γ2, where e1 is the identity of Γ1. Then we

have a chain of convex subgroups of Γ such that

∅ ⊂ K1 ⊂ K2 ⊂ . . . ⊂ e1 ⊕ Γ2 ⊂ L1 ⊂ L2 ⊂ . . . ⊂ Γ.

Clearly, this chain of convex subgroups has length n1 + n2, so the rank of Γ is bigger

than or equal to the sum of the rank of Γ1 and Γ2.

By proposition 3.1.5, Γ1 is isomorphic to a non-trivial subgroup of (Rn1 ,+) and

Γ2 is isomorphic to a non-trivial subgroup of (Rn2 ,+), which we can write as Γ1
∼= R1

and Γ2 ∼= R2 where R1 and R2 are the subgroups of Rn1 and Rn2 respectively. Then

Γ1 ⊕ Γ2 ∼= R1 ⊕ R2. Since R1 ⊂ Rn1 and R2 ⊂ Rn2 , then the rank of R1 ⊕ R2 is at most

as big as Rn1 ⊕ Rn2 . So the rank of R1 ⊕ R2 is less than or equal to n1 + n2, so is the

rank of Γ1 ⊕ Γ2. Therefore the rank of Γ is the sum of the rank of Γ1 and Γ2.
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3.2 Higher rank valuation

In this section, we will discuss higher rank valuation. The type of valuation which

maps a field into the real numbers is called classical valuation. In 1932, Wolfgang

Krull extended the definition that let valuations with the values contained by an ar-

bitrary ordered abelian group.

Definition 3.2.1. [2] Let (Γ,+,≤) be a total ordered group and (G,⊕,⊙) be the min-

plus algebra of Γ. A valuation of of a field k with values in (Γ,+,≤) is a map ν :

k −→ G such that

ν(0) = ∞

ν(ab) = ν(a) + ν(b)

ν(a + b) ≥ min{ν(a), ν(b)},

for all a, b ∈ k. We say k has values in Γ. A field together with a valuation is called a

valued field and (Γ,+,≤) is called the group of values.

Definition 3.2.1 is from Aroca’s paper [2] that defines Krull valuation and we

shall consider its rank. In [3], Banerjee gives the definition of the rank of a valuation

ν on k which is the rank of the ordered abelian group ν(k×). In general, the rank of

a Krull valuation is the rank of the group of values.

Example 3.2.2. Let the field k be a Puiseux series such that k = kn−1{{tn−1}}, kn−1 =

kn−2{{tn−2}}, . . ., k1 = C{{t0}}. Let ν be a rank n valuation on k, which is defined

as

ν : k −→ Rn ∪ {∞}

The valued group of ν is a subgroup of Rn, clearly there exists a chain of distinct

proper convex subgroups such that Rn−1 ⊃ Rn−2 ⊃ . . . ⊃ R ⊃ {0}.
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3.3 Tropicalization of polynomials in the rank n case

Definition 3.3.1. Let k be a field and ν is a rank n valuation of k with values in a total

ordered group Γ of rank n. Suppose f is a non-zero polynomial in m variables with

coefficients in k such that f ∈ k[x1, . . . , xm] and

f = ∑
u∈Zm

cuxu.

The rank n tropicalization of f via ν induces an element of Γ[x1, . . . , xm]

trop( f ) : =
⊕

u∈Zm

ν(cu) + x · u

= minu∈Zm{ν(cu) + x · u}

Notice that the notation
⊕

has the same meaning in the ordinary case, which we

take the minimum among each term of the polynomial, but ν is rank n so we need

to follow the lexicographic ordering when we taking the minimum.

Example 3.3.2. Let ν be a rank 2 valuation on field k such that ν : k× −→ Γ2
lex ⊂ R2

lex,

and let k be a field of Puiseux series such that k = k1{{t}} and k1 = C{{s}}. Then

suppose a polynomial f ∈ k[x, y] such that

f = (s + t2 + s2t2 + . . .)x2y + (s2 + s2t + s2t3 + . . .)y2 + (s + st + s3t + . . .)xy.

Then we have

ν(s + t2 + s2t2 + . . .) = (0, 1)

ν(s2 + s2t + s2t3 + . . .) = (0, 2)

ν(s + st + s3t + . . .) = (0, 1)

and the tropicalization of f via ν is

tropν( f ) = (0, 1) + 2x + y ⊕ (0, 2) + 2y ⊕ (0, 1) + x + y
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Now fix a weight vector w ∈ (Γ2)2 such that w = (x, y) = ((1, 3), (0, 2)), then we

have

trop( f )(w) = min{(0, 1) + 2(1, 3) + (0, 2), (0, 2) + 2(0, 2), (0, 1) + (1, 3) + (0, 2)}

= min{(2, 9), (0, 6), (1, 6)}

= (0, 6)

3.4 Initial forms with higher rank valuations

Let ν be a rank n valuation on k with a splitting σ, the tropicalization of polynomial

f = ∑
u∈Zm

cuxu ∈ k[x1, . . . , xm] is trop( f ) = minu∈Zm{ν(cu) + x · u}. Fixing a weight

vector w ∈ (Γm)n then we have W = trop( f )(w) = minu∈Zm{ν(cu)+w ·u}. Similar

to definition 2.5.1, the initial form of f with respect to w via rank n valuation ν is

inν
w( f ) = ∑

u∈Nm
σ(w · u − W) · cuxu

where σ is the splitting of ν.

Example 3.4.1. Let ν be a rank 2 valuation on a field of Puiseux series k = k1{{t}}

where k1 = C{{s}}. Then ν : k× → Γ2
lex ⊂ R2

lex, which we define that the first

coordinate of ν is the image of t-adic valuation on k and the second coordinate

of ν is the image of s-adic valuation on k1. Suppose a polynomial f = (ts2 +

t2s)x1 + (t3s2 + t4s)x2 + t2sx2
3 ∈ k[x±1 , x±2 , x±3 ], and let the weight vector be w =

((1, 1), (1, 1), (0, 0)) ∈ (Γ3)2. Then we have

W = trop( f )(w) = min{ν(ts2 + t2s) + (1, 1), ν(t3s2 + t4s) + (1, 1), ν(t2s)}

= min{(1, 2) + (1, 1), (3, 2) + (1, 1), (2, 1)}

= min{(2, 3), (4, 3), (2, 1)}.

By lexicographical order, W = (2, 1). Hence the initial form of f with respect to w is

inν
u( f ) = σ(−(2, 1))t2s · x2

3
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where σ is the splitting of ν. Then

inν
u( f ) = x2

3.

3.5 Higher rank tropical varieties

Definition 3.5.1. Let ν be a rank n valuation on field k such that ν : k → Γ ∪ {∞}, Γ

is an ordered abelian group of rank n. Let f ∈ k[x±1 , . . . , x±m ], then the rank n tropical

hypersurface V(tropν( f )) associated to tropical polynomial tropν( f ) is the following

set

{w ∈ (Γm)n : the minimum in F(w) is achieved at least twice}.

Definition 3.5.2. Let f ∈ k[x±1 , . . . , x±m ] and ν be a rank n valuation on k. Then the

rank n tropicalization of the hypersurface of f is

tropν(V( f )) = {ν(y) : y ∈ V( f )},

which is the set of coordinate-wise valuations of points in V( f ).

In chapter 2, we introduce Kapranov’s theorem when the valuation is classical.

In [2], Fuensanta Aroca proves that in an algebraically closed field k with a surjective

rank n valuation ν, the rank n tropical hypersurface associatied to a polynomial f is

equal to the hypersurface associated to the rank n tropicalization of f such that

tropν(V( f )) = V(tropν( f )) (3.1)

The left hand side of the equation above is the rank n tropical hypersurface associ-

ated to f , which is called the rank n tropicalization of the hypersurface assoicated to

f in [2]. More specific, it is the set of coordinatewise valuations of V( f ) such that

{(ν(y1), . . . , ν(ym)) : (y1, . . . , ym) ∈ V( f )},

The right hand side is the hypersurface associated to the rank n tropicalization of

f which is the tropical hypersurface assoicaited to the rank n tropicalization of f in
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this paper. So it is equivalent to

{w ∈ (Γm)n : tropν( f )(w) is not a monomial}.

Based on that, in [3], Soumya Banerjee showed that a rank n tropicalization of

a d-dimensional variety is a polyhedral complex of dimension nd. In addition, a

variety X is connected implies that the tropicalization of X is connected too when

the valuation is of rank 1. Soumya left a question that if it is also true in rank n case

in [3]. In [4], Tyler Foster and Dhruv Ranganathan proved that trop(X) is connected

if X is connected holds when the valuation is of rank n ≥ 1 as a corollary of the

theory of analytic spaces over a higher rank valued field.

3.6 Going from rank n valuation to n-step valuation

In [3], Soumya Banerjee introduced a definition of higher dimensional local field

over a field k which is an ordered sequence of fields (K(0), K(1), . . . , K(n−1), K(n))

such that

1. Each K(i) is a local field with respect to a discrete rank 1 valuation ν(i) : K×
(i) →

Z, for all 1 ≤ i ≤ n.

2. K(i+1) is the residue field of (K(i), ν(i)) for all i ≥ 0.

3. K(0) = k.

This definition lists a sequence of local fields with a sequence of discrete rank 1

valuation correspondingly. Our interest is that can we reduce a rank n valuation to

the sequence of valuations corresponding to n-dimensional local field? So in this

section, we will focus on this question and define n-step valuation.

For defining an n-step valuation, we need to split a rank n valuation step by step.

The following proposition is the important tool which will show us how to reduce a

rank n valuation.

Proposition 3.6.1. Let ν be a rank n valuation on field k. Let ν = (ν1, ν2) : k → Rn
lex ∪

{∞} where ν1 is the first component and ν2 is the remaining n − 1 components such that

ν1 : k → R ∪ {∞} and ν2 : k → Rn−1
lex ∪ {∞}. Clearly, ν1 is a valuation and we let R be

the valuation ring of ν1, m is the maximal ideal, K is the residue field. Now restricting the

domain of ν2 to be R such that ν2 |R: R → Rn−1
lex ∩ {∞}. Then there is a map ν2 : K −→

Rn−1
lex ∪ ∞ as the following diagram
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R Rn−1
lex ∪ ∞

K

ν2|R

ν2

and the map ν2 is a rank n − 1 valuation on K.

Proof. For showing that restricting the domain of ν2 to R, let a ∈ m and r ∈ R with

ν1(r) = 0. Then consider ν2(r + a), we have

ν2(r + a) = ν2(r(1 +
a
r
))

= ν2(r) + ν2(1 +
a
r
).

Since a ∈ m, then ν1(a) > 0 and we let ν1(r) = 0. This implies that ν1(
a
r ) = ν1(a)−

ν1(r) > 0, so a
r ∈ m. Since ν(1+ a

r ) = min{0, ν( a
r )} and ν1(

a
r ) > 0, then ν(1+ a

r ) = 0,

which implies that ν2(1+ a
r ) = 0. Therefore ν2(r + a) = ν2(r), and this shows that ν2

descends to a well defined map ν2 on the residue field K.

Now we show that ν2 is a valuation on K. It is obvious that ν2(0) = ∞ and

ν2(ab) = ν2(a) + ν2(b). Now we should prove ν2 satisfying the third property of

valuation which is the inequality ν2(a + b) ≥ min(ν2(a), ν2(b)). Let the correspond-

ing elements of a and b in R be ã and b̃, then ν1(ã) = 0 and ν1(b̃) = 0. Consider the

inequality

ν(ã + b̃) ≥ min{ν(ã), ν(b̃)}

(ν1(ã + b̃), ν2(ã + b̃)) ≥ min{(ν1(ã), ν2(ã)), (ν1(b̃), ν2(b̃))} = (0, min{ν2(ã), ν2(b̃)}),

so we have two possibilities such that

ν1(ã + b̃) = 0 =⇒ ν2(ã + b̃) ≥ min{ν2(ã), ν2(b̃)}

or

ν1(ã + b̃) > 0 =⇒ ∃ν2(ã + b̃) < min{ν2(ã), ν2(b̃)}.

If a + b = 0 in K, then ν2(a + b) = ∞ which means it is greater than anything, so

ν2(a + b) ≥ min(ν2(a), ν2(b)).

If a + b ̸= 0, we suppose the homompohism R −→ K to be π, then π(ã + b̃) =

π(ã) + π(b̃) = a + b. Since K = R/m, we can write ã and b̃ as ã = a0 + a1 and

b̃ = b0 + b1 respectively, where ν1(a0) = ν1(b0) = 0 and a1, b1 ∈ m. Then a + b ̸= 0

implies a0 ̸= −b0, because π(a1) = π(b1) = 0 in K. If a0 = −b0 then a + b = 0 in K,
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which contradicts. Therefore

ν1(ã + b̃) = ν1((a0 + b0) + (a1 + b1)) ≥ min{ν1(a0 + b0), ν1(a1 + b1)},

since a0, b0 ∈ K and a1, b1 ∈ m, ν1(a0 + b0) = 0 and ν1(a1 + b1) > 0. By lemma

2.2.2, we have ν1(ã + b̃) = 0 which implies ν2(ã + b̃) ≥ min{ν2(ã), ν2(b̃)}. Since ν2

is restricted from ν2, then we shall gain ν2(a + b) ≥ min{ν2(a), ν2(b)} and ν2 is a

valuation on K.

Base on proposition 3.6.1, we shall reduce a rank n valuation step by step and

gain a set of valuations of rank 1 finally. Let ν be a rank n valuation on field k, then

we have ν = ν1 × ν2 : k× −→ R × Rn−1. As the proof of proposition 3.6.1, ν1

is a valuation on k but ν2 is not. Then we restrict ν2 to the valuation ring of ν1 and

proposition 3.6.1 shows that it descends to a rank n − 1 valuation ν2 on the residue

field k1 of ν1. Then repeating the process, we have ν2 = ν2 × ν3 : k1
× −→ R×Rn−2,

and ν2 is a valuation on k1, while ν3 is restricted to the valuation ring of ν2 and

descends to a rank n − 2 valuation ν3 on the residue field k2 of ν2. Et cetera.

Inductively, for each valuation νi in the process above for 1 < i < n, we have

νi = νi × νi+1 : k×i−1 −→ R × Rn−i

νi is a valuation on field ki−1, let Ri be the valuation ring of νi, then ki is the residue

field of νi. By proposition 3.6.1, restrict νi+1 to Ri and it descends to a rank n − i

valuation on ki which can be denoted by νi+1 as the following diagram.

Ri Rn−i ∪ {∞}

ki

νi+1|Ri

νi+1

Then by induction, there exists a sequence of rank 1 valuations νi for 1 ≤ i ≤ n.

In order not to confuse, let’s call these rank 1 valuations υi for 1 ≤ i ≤ n such that

υ1 : k −→ R ∪ {∞}

υ2 : k1 −→ R ∪ {∞}

. . . . . .

υn−1 : kn−2 −→ R ∪ {∞}

υn : kn−1 −→ R ∪ {∞}.
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And we shall define this set of rank 1 valuation as an n-step valuation on field k.

Definition 3.6.2. Let k be a field. An n-step valuation on k is a sequence of rank 1

valuations such that (υ1, υ2, . . . , υn) where each υi is a rank 1 valuation on the residue

field ki−1 of υi−1 for all i > 1, and υ1 is a rank 1 valuation on k.

In this thesis, to distinguish rank n and n-step valuation, we are going to use ν

and (υ1, . . . , υn) to represent the rank n and n-step valuation respectively.

The following example illustrates Proposition 3.6.1 in action.

Example 3.6.3. Let k = k1{{t}} and k1 = C{{s}} and we define a map ν on k such

that ν : k× → R2 with the lexicographical order. Suppose P be a Puiseux series in k.

Then ν(P) is given by

ν(P) = (α, β)

where α is the lowest exponent of t in the series P and β is the exponent of s of the

coefficient of the leading term.

Let P1, P2 be two arbitrary Puiseux series in k that can be written as

P1 = c1tα1 sβ1 + c2tα2 sβ2 + c3tα3 sβ3 + . . .

P2 = d1tλ1 sµ1 + d2tλ2 sµ2 + d3tλ3 sµ3 + . . . ,

ci, di ∈ C and αi, βi, λi, µi ∈ Q for all i. Clearly, ν(P1) = (α1, β1) and ν(P2) = (λ1, µ1),

then we shall consider the case of the product of P1 and P2.

ν(P1P2) = ν(c1d1tα1+λ1 sβ1+µ1 + . . .) = (α1 + λ1, β1 + µ1) = ν(P1) + ν(P2).

So from the equation above we gain that ν(P1P2) = ν(P1) + ν(P2) which satisfies the

second axiom of valuation. And now we need to check the case of P1 + P2.

ν(P1 + P2) = ν(c1tα1 sβ1 + d1tλ1 sµ1 + . . .).

By the given definition at the beginning of example 3.6.3, the first coordinate of

ν(P1 + P2) is the lowest exponent of t and the second coordinate of ν(P1 + P2) is

the exponent of s of the leading term. Hence we have two situations
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1. if c1 + d1 ̸= 0, then the first coordinate is min{α1, λ1} and the second coordi-

nate is the power of s in the term with the power of t be min{α1, λ1}.

2. if c1 + d1 = 0 the term with lowest power of t becomes 0, so we shall find the

lowest power of t among the rest terms.

In case 1, assume the first coordinate of ν(P1 + P2) is α1 then

ν(P1 + P2) = (α1, β1) = minlex{(α1, β1), (λ1, µ1)} = minlex{ν(P1), ν(P2)}.

It is the same when ν(P1 + P2) = (λ1, µ1).

In case 2, let the lowest power of t among the rest terms be ρ and let the power

of s in this term be ω. It is obvious that

ν(P1 + P2) = (ρ, ω) > minlex{(α1, β1), (λ1, µ1)} = minlex{ν(P1), ν(P2)}.

We can see that for any P1, P2 ∈ k, we have ν(P1 + P2) ≥ minlex{ν(P1), ν(P2)}.

Then ν satisfies the axioms of valuation, and notice that ν : k → R2 where ∅ ⊂ R ⊂

R2 has rank 2, so ν is a rank 2 valuation. Now by proposition 3.6.1, we can reduce

ν as (υ1, υ2) and follow the process we have shown in proposition 3.6.1, we shall see

that υ1 is a t-adic valuation on k and υ2 is a s-adic valuation on k1.

Example 3.6.4. Let k = k1{{t}} and k1 = C{{s}}, let P1, P2 be two explicit puiseux

series such as

P1 = −2ts + 3t2s + 5t3s + . . .

P2 = 2ts + 4ts3 + 3t2s3 + . . . .

Define ν to be a rank 2 valuation on k as example 3.6.3, so we have ν(P1) = (1, 1)

and ν(P2) = (1, 1) then we have

ν(P1P2) = ν(−4t2s2 − 8t2s4 + 6t3s2 + . . .) = (2, 2) = ν(P1) + ν(P2)

and

ν(P1 + P2) = ν(4ts3 + 3t2s + 3t2s3 + 5t3s + . . .) = (1, 3) > min{ν(P1), ν(P2)}.
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By proposition 3.6.1, ν can be reduced as (υ1, υ2), where υ1 is a t-adic valuation on k

and υ2 is a s-adic valuation on the residue field k1 of υ1.

Proposition 3.6.5. Let ν be a rank n valuation such that ν : k −→ Γ ∪ ∞ where Γ = Rn.

By proposition 3.6.1, ν can be induced as (ν, ν2) where ν1 : k −→ R ∪ ∞, and ν2 will be

restricted to the valuation ring of ν1 and descends to a rank n − 1 valuation on the residue

field k1 of ν1 such that ν2 : k1 −→ Rn−1 ∪ ∞. Suppose σ is a splitting of ν; then this

induces splittings of ν1 and ν2.

Proof. Let (a, b) ∈ Γ, then σ(a, b) ∈ k. Consider ν(σ(a, 0)) = (a, 0), since ν1(σ(a, 0)) =

a then we shall define σ1 to be the splitting of ν1 by σ1(a) = σ(a, 0) which induces the

splitting of ν1 such that ν1(σ1(a)) = a for any a ∈ k. Now consider ν(σ(0, b)) = (0, b),

it is clear that ν1(σ(0, b)) = 0, then σ(0, b) ∈ k1 ⊂ R where k1 is the residue field of

ν1 and R is the valuation ring of ν1. Then we can define that σ2(b) = σ(0, b) where

ν2(σ(0, b)) = b and the notation σ(0, b) means we take the image of σ(0, b) in the

residue field k1 of ν1, since ν2 descends to a rank n − 1 valuation on k1.
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Chapter 4

The Main Theorem

In Chapter 3, we introduced rank n valuations and reviewed some work on it. By

proposition 3.6.1, we show how to reduce a rank n valuation to a sequence of rank

1 valuations and we define this sequence of valuation to be an n-step valuation. So

this Chapter will focus on higher rank tropicalization, as the strategy in Chapter 3,

we will split higher rank tropicalization of a polynomial as a sequence of tropical

polynomials which we will define it to be n-step tropicalization of the polynomial.

In section 2 of this Chapter, we will show the equivalence between rank n and n-

step tropicalization of the hypersurface associated to a polynomial, and with this

equivalence there is an alternative method to prove Kapranov’s Theorem in higher

rank version.

4.1 n-step tropicalization of hypersurface associated to a poly-

nomial

Recalling definition 3.6.2, an n-step valuation (υ1, . . . , υn) on k is a sequence

υ1 is a rank 1 valuation on k

υ2 is a rank 1 valuation on the residue field k1 of v1

...

υn is a rank 1 valuation on the residue field kn−1 of vn−1.

Before we introducing the following tropicalization, we need to clear up some

notations we will use. In Chapter 2 and 3, we used to use a to represent the image of

a ∈ k in the residue field K of the valuation on k. But in this Chapter, there are more

one valuation ring and residue field, so in order not to confuse, we need to some

new notations. First let the valuation ring of υi be Ri, correspondingly, the residue
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field of νi is ki for all 1 ≤ i ≤ n. Similarly, the valuation ring and residue field of ν

are denoted by R and K. Now define that π and πi are the projections from these

valuation rings to these residue fields such as

ν : k → Γ1 × Γ2 × . . . × Γn σ : Γ1 × Γ2 × . . . × Γn → k π : R → K

υ1 : k → Γ1 σ1 : Γ1 → k π1 : R1 → k1

υ2 : k1 → Γ2 σ2 : Γ2 → k1 π2 : R2 → k2
...

...
...

υn : kn−1 → Γn σn : Γn → kn−1 πn : Rn → kn

Note that K = kn. Based on that let’s consider the following sequence of tropical

polynomials:

Suppose a polynomial f = ∑
u∈Zm

cuxu ∈ k[x±1 , . . . , x±m ] and fix a sequence of

weight vectors (w1, . . . , wn) where wi ∈ Γm, for all 1 ≤ i ≤ n. Then it is easy to

calculate the tropicalization of f via υ1 with respect to w1 such that

tropυ1
( f )(w1) =

⊕
u∈Zm

υ1(cu) + w1 · u.

By the definition of initial form we shall determine the initial form inυ1
w1
( f ) of f with

respect to w1 easily such that

inυ1
w1
( f ) = ∑

υ1(cu)+w1·u=W1

π1(σ1(−υ1(cu))cu)xu

where W1 = tropυ1
( f )(w1) = min{υ1(cu) + w1 · u} and σ1 is the splitting of υ1 such

that σ1 : Γυ1 −→ k×. Notice that inυ1
w1
( f ) ∈ k1[x±1 , . . . , x±m ] and υ2 is rank 1 valuation

on k1. Then we shall determine the tropicalization of inυ1
w1
( f ) via υ2 with respect to

w2

tropυ2
(inυ1

w1
( f ))(w2) =

⊕
u∈Zm

υ2(π1(σ1(−υ1(cu))cu)) + w2 · u.

For simplicity, let π1(σ1(−υ1(cu))cu) = du, then the initial form of inυ1
w1
( f ) with

respect to w2 is

inυ2
w2
(inυ1

w1
( f )) = ∑

υ2(du)+w2·u=W2

π2(σ2(−υ2(du))du)xu.
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So if we keep repeating the process above we shall gain a sequence of tropical poly-

nomials, and each one is the tropicalization of the previous initial form via the corre-

sponding valuation. Then the sequence of tropical polynomials we described above

is defined to be an n-step tropicalization of f via the n-step valuation (υ1, . . . , υn) in

this paper. Hence we shall give the definition of n-step tropicalization.

Definition 4.1.1. Let (υ1, . . . , υn) be an n-step valuation on field k and f ∈ k[x±1 , . . . , x±n ].

Fixing a sequence of weight vectors (w1, . . . , wn−1) where wi ∈ Rm for all 1 ≤ i ≤

n − 1. Then the n-step tropicalization of f at (w1, . . . , wn−1) is the sequence of tropi-

cal polynomials such that

tropυ1
( f )

tropυ2
(inυ1

w1
( f ))

. . . . . .

tropυn
(inυn−1

wn−1 . . . inυ1
w1
( f )).

Now we have the definition of n-step topicalization, and recall definition 2.6.4

about ordinary tropical hypersurface. It’s easy to define the n-step tropical hyper-

surface of a polynomial directly.

Definition 4.1.2. Let (υ1, . . . , υn) be an n-step valuation on field k and f ∈ k[x±1
1 , . . . , x±1

m ].

Then the n-step tropicalization of the hypersurface associated to f via (υ1, . . . , υn)

is the set of all weight vectors w = (w1, . . . , wn) ∈ Rm×n where w1 is a point in the

tropical hypersurface of tropυ1
( f ) and for each 1 < i ≤ n, wi is a point in the tropical

hypersurface of the tropical polynomial tropυi
(inυi−1

wi−1 . . . inυ1
w1
( f )).

Example 4.1.3. Let k be a field of Puiseux series such that k = k1{{t}} and k1 =

C{{s}}, ν is a rank 2 valuation on k which can be reduced as (υ1, υ2) where υ1 is a

t-adic valuation on k and υ2 is an s-adic valuation on the residue field of υ1. Suppose

a polynomial f = sx − s2y + 4 ∈ k[x±1, y±1] then the hypersurface of f is

{(sz − 4s−1, z) : z ∈ k}.
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The tropicalization of f via υ1 is

tropυ1
( f ) = min{x, y, 0},

and the tropical hypersurface of tropυ1
( f ) are

{(0, λ1), (λ2, 0), (λ3, λ3), (0, 0) : λ1 > 0, λ2 > 0, λ3 < 0 and λ1, λ2, λ3 ∈ R1},

where R1 is the valuation ring of υ1, and the tropical hypersurface of tropυ1
( f ) is the

following dagram.

Clearly, the weight vectors which let tropυ1
( f ) contains at least two terms form the

diagram above. Therefore we shall choose the weight vectors as w1 = (0, 1), w2 =

(1, 0), w3 = (−1,−1) and w4 = (0, 0) and we have the initial forms with respect to

the corresponding wi for 1 ≤ i ≤ 4 as the following

inυ1
w1
( f ) = sx + 4

inυ1
w2
( f ) = −s2y + 4

inυ1
w3
( f ) = sx − s2y

inυ1
w4
( f ) = sx − s2y + 4.
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Then for each initial form we shall gain the tropicalization of inwi( f ) via υ2 which

are

tropυ2
(inυ1

w1
( f )) = min{1 + x, 0}

tropυ2
(inυ1

w2
( f )) = min{2 + y, 0}

tropυ2
(inυ1

w3
( f )) = min{1 + x, 2 + y}

tropυ2
(inυ1

w4
( f )) = min{1 + x, 2 + y, 0}.

Then we need to find those weight vectors which let the tropicalization of inυ1
wi
( f )

via υ2 contain at least two terms. Let those weight vectors be ŵi for 1 ≤ i ≤ 4, then

we shall see that ŵ1 can be picked form the line (−1, µ1), ŵ2 can be chosen form

(µ2,−2), ŵ3 can be chosen form (µ3 + 1, µ3) and ŵ4 is the point (−1,−2) where

µ1, µ2 and µ3 can be any complex number. Therefore the sets of the weight vectors

are

{w = ((0,−1), (λ1, µ1)) : λ1 > 0, λ ∈ R1, µ1 ∈ R2}

{w = ((λ2, µ2), (0,−2)) : λ2 > 0, λ2 ∈ R1 µ2 ∈ R2}

{w = ((λ3, µ3 + 1), (λ3, µ3)) : λ3 < 0, λ3 ∈ R1, µ3 ∈ R2}

{w = ((0,−1), (0, 2))}.

and the union of these sets are the 2-step tropicalization of the hypersurface associ-

ated of f with respect to the 2-step valuation (υ1, υ2).

4.2 Equivalence of rank n and n-step tropicalization

In chapter 3, we have introduced how to construct an n-step valuation from a rank

n valuation by proposition 3.6.1. In the previous section, we define the n-step trop-

icalization and the tropical hypersurface of polynomial with n-step valuation. It is

natural to conjecture that there exists an equivalence between rank n and n-step trop-

icalization. So in this section, our purpose is to find the equivalence between them.
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Proposition 4.2.1. Let ν be a rank n valuation on field k and f ∈ k[x±1
1 , . . . , x±1

m ]. By

proposition 3.6.1, we shall induce ν as (ν1, ν2) where

ν1 : k∗ −→ R

ν2 : k∗1 −→ Rn−1,

k1 is the residue field of ν1. Let σ be a splitting of ν, according to proposition 3.6.5, σ can be

induced splittings of ν1 and ν2 which are supposed to be σ1 and σ2 such that

σ1 : R −→ k∗

σ2 : Rn−1 −→ k∗1.

Fixing a set of weight vectors w = (w1, w2) ∈ Γm
1 × Γm

2 × . . . × Γm
n such that w1 ∈ Γm

1

and w2 ∈ Γm
2 × . . . × Γm

n . Let tropν( f )(w) = W then W = (W1, W2) and W1 ∈ Γ1,

W2 ∈ Γ2 × . . . × Γn. Then this implies that

tropν1
( f )(w1) = W1

tropν2
(inν1

w1
f )(w2) = W2.

Proof. First, let ν = (ν1, ν2) where ν1 is the function which maps the first coordinate

of ν and ν2 maps the rest coordinates. Suppose f = ∑
u∈Zm

cuxu, then the tropicaliza-

tion via ν of f is

W = tropν( f )(w) =
⊕

u∈Zm

ν(cu) + w · u

=
⊕

u∈Zm

(ν1(cu), ν2(cu)) + (w1 · u, w2 · u)

=
⊕

u∈Zm

(ν1(cu) + w1 · u, ν2(cu) + w2 · u)

= minlex
(
ν1(cu) + w1 · u, ν2(cu) + w2 · u

)
,

then following the condition in proposition 4.2.1, we shall let W1 be the minimum

among the terms ν1(cu)+w1 ·u. As for W2, since the lexicographical ordering, when

we taking the minimum W2 among ν2(cu)+w2 ·u we only focus on those terms with

exponents u such that ν1(cu) + w1 · u = W1. Then the exponents u appearing in the
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first coordinate of tropν( f )(w) make up the following set

arg min
u∈Zm

(ν1(cu) + w1 · u) = {u ∈ Zm : ν1(cu) + w1 · u ≤ ν1(cs) + w1 · s ∀s ∈ Zm}

and the exponents u in the rest coordinates are

arg min
u∈arg minu∈Zm (ν1(cu)+w1·u)

(ν2(cu) + w2 · u)

={u ∈ u ∈ arg min
u∈Zm

(ν1(cu) + w1 · u) : ν2(cu) + w2 · u ≤ ν2(cs) + w2 · s ∀s ∈ Zm}.

This is obvious that W1 =
⊕

u∈Zm

ν1(cu) + w1 · u is equal to tropν1
( f )(w1) which is the

tropicalization of f via the first valuation ν1 in (ν1, ν2).

For showing tropν2
(inν1

w1
f )(w2) = W2, notice that

⊕
means taking the mini-

mum with lexicographical ordering, then

W2 = minν1(cu)+w1·u=W1
{ν2(cu) + w2 · u}

and those terms ν1(cu) + w1 · u being minimum implies that u are those exponents

appearing in inν1
w1

f . Recalling that σ1 is a splitting of ν1 induced from σ, then we

have the initial form of f with respect to w1

inν1
w1
( f ) = ∑

W1=tropν1
( f )(w1)

σ1(w1 · u − W1)cuxu.

Then the tropicalization with ν2 of inν1
w1
( f ) is

tropν2
(inν1

w1
( f )) =

⊕
u∈Zm

W1=tropν1
( f )(w1)

ν2(σ1(w1 · u − W1)cu) + x · u

According to proposition 3.6.1, we have the diagram
R Rn−1

lex ∪ ∞

K

ν2|R

ν2 . Then

from the diagram above we have the equation

ν2(σ1(w1 · u − W1)cu) = ν2(σ1(w1 · u − W1)cu)

= ν2(σ1(w1 · u − W1)) + ν2(cu).

Now recalling the proof of proposition 3.6.5, let z ∈ k, ν(z) = (ζ1, ζ2) ∈ R × Rn−1
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where ν1(z) = ζ1 and ν2(z) = ζ2 then we have ν(σ(ζ1, ζ2)) = (ζ1, ζ2) and σ induces

two splitting of ν1 and ν2 such that ν(σ1(ζ1, ζ2)) = ζ1 ∈ R and ν(σ2(ζ1, ζ2)) = ζ2 ∈

Rn−1. Then σ1(ζ1) and σ2(ζ2) are defined to be σ(ζ1, 0) and σ(0, ζ2) correspondingly.

Clearly, ν2(σ1(w1 · u − W1)) = 0, since σ1(w1 · u − W1) = σ(w1 · u − W1, 0). Then

we have ν2(σ1(w1 · u − W1)cu) = ν2(cu). So we have

tropν2
(inν1

w1
( f ))(x) =

⊕
u∈Zm

ν(cu)+w1·u=W1

ν2(cu) + x · u.

If we plug in the w2 we will get the following equation immediately

tropν2
(inν1

w1
( f ))(w2) =

⊕
u∈Zm

ν(cu)+w1·u=W1

ν2(cu) + w2 · u

which implies that tropν2
(inν1

w1
( f ))(w2) = W2.

Example 4.2.2. Let k = k1{{t}} and k1 = C{{s}} with the lexicographic ordering

t > s. Suppose ν be a rank 2 valuation ν : k× 7→ Γ1 × Γ2 such that

ν(a) = (a1, a2)

where a ∈ k. let a1 be the lowest exponent of t in a and a2 be the exponent of s of the

coefficient of the leading term in a. By proposition 3.6.1, ν can be reduced as a 2-step

valuation (υ1, υ2), where υ1 is the t-adic valuation on k and υ2 be the s-adic valuation

on the residue field k1 of υ1, then

υ1 : k× 7→ R

υ2 : k1
× 7→ R.

Let f ∈ k[x±, y±, z±] such that

f = (s5 + 3t5s2 + . . .)xyz + (s3 + 6ts + . . .)x2y3z + (ts2 + t3s4 + . . .)x3y3z.



65

Now fixing a weight vector w ∈ (Γ3)2 and let it be w =

w1

w2

 where w1, w2 ∈ Γ3.

Suppose that

w =

1 0 1

1 0 1


then w1 = (1, 0, 1) and w2 = (1, 0, 1). Now we calculate W = tropν( f )(w) first.

Clearly, ν(s5 + 3t5s2 + . . .) = (0, 5), ν(s3 + 6ts+ . . .) = (0, 3) and ν(ts2 + t3s4 + . . .) =

(1, 2) then

W = tropν( f )(w) = minlex{(0, 5) + (1, 1) + (0, 0) + (1, 1),

(0, 3) + (2, 2) + (0, 0) + (1, 1),

(1, 2) + (3, 3) + (0, 0) + (1, 1)}.

By lexicographic ordering, W = (2, 7). By proposition, 4.2.1, we shall set W1 = 2

and W2 = 7 where tropυ1
( f )(w1) = W1 and tropυ2

(inυ1
w1
( f ))(w2) = W2, which we

shall check now.

tropυ1
( f )(w1) =min{υ1(s5 + 3t5s2 + . . .) + 1 + 0 + 1,

υ1(s3 + 6ts + . . .) + 2 + 0 + 1, υ1(ts2 + t3s4 + . . .) + 3 + 0 + 1}

=min{0 + 1 + 0 + 1, 0 + 2 + 0 + 1, 1 + 3 + 0 + 1}

=2.

Hence tropυ1
( f )(w1) = W1. Then we shall find the initial form inυ1

w1
( f ) easily that

inυ1
w1
( f ) = (s5 + 3t5s2 + . . .)xyz. Finally, we need to check whether tropυ2

(inυ1
w1
( f ))(w2) =

W2.

tropυ2
(inυ1

w1
( f ))(w2) = υ2(s5 + 3t5s2 + . . .) + 1 + 0 + 1

= 7.

Therefore tropυ2
(inυ1

w1
( f ))(w2) = W2.

From proposition 4.2.1 and recalling proposition 3.6.1, we shall prove the follow-

ing corollary directly.
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Corollary 4.2.3. Let ν be a rank n valuation on k and f ∈ k[x±1 , . . . , x±m ]. By propsoition

3.6.1, we can induce ν as an n-step valuation (υ1, . . . , υn) where

υ1 : k∗ → R

υ2 : k∗1 → R

...

υn : k∗n−1 → R.

As the description in proposition 4.2.1, fixing a weight vector w = (w1, . . . , wn) ∈ Γm
1 ×

. . . × Γm
n and let tropν( f )(w) = W = (W1, . . . , Wn) ∈ Γ1 × . . . × Γn. Then we will have

tropυ1
( f )(w1) = W1

tropυ2
(inυ1

w1
f )(w2) = W2

...

tropυn
(inυn−1

wn−1 . . . inυ1
w1

f )(wn) = Wn

The proof of corollary 4.2.3 is the same as the proof of proposition 4.2.1. In propo-

sition 4.2.1, we show that

tropν( f )(w) =
(
tropν1

( f )(w1), tropν2
(inν1

w1
f )(w2)

)
where w = (w1, w2) and w1 ∈ Γm

1 , w2 ∈ Γm
2 × . . . × Γm

n . Then we shall start the

induction from tropν2
(inν1

w1
f )(w2), by proposition 3.6.1, we shall induce ν2 as (ν2, ν3)

where ν2 is a rank 1 valuation such that ν2 : k∗1 → R and ν3 is a rank n − 2 valuation

such that ν3 : k∗2 → Rn−2. Then with the same proof of propsoition 4.2.1, we shall

easily see that

tropν( f )(w) =
(
tropν1

( f )(w1), tropν2
(inν1

w1
f )(w2), tropν3

(inν2
w2

inν1
w1

f )(w3)
)
.

Therefore by induction we will finally prove that if tropν( f )(w) = W ∈ Γ1 × . . .× Γn

then

W = (tropυ1
( f )(w1), tropυ2

(inυ1
w1

f )(w2), . . . , tropυn
(inυn−1

wn−1 . . . inυ1
w1

f )(wn)).



67

Now we prove the equivalence between rank n and n-step tropicalization, and

we can go further on this. Recalling definition 2.5.1, we can hypothesise the equiva-

lence also holds in initial form.

Proposition 4.2.4. Let ν be a rank n valuation on k. By proposition 3.6.1 and 3.6.5, let ν1

and ν2 be the valuations induced from ν with the splitting σ1 and σ2 induced from σ. Let

f = ∑
u∈Zm

cuxu ∈ k[x±1 , . . . , x±m ] and fix a weight vector w = (w1, w2) ∈ Γm
1 × . . . × Γm

n

with w1 ∈ Γm
1 , w2 ∈ Γm

2 × . . . × Γm
n . Then

inν2
w2
(inν1

w1
( f )) = inν

w( f ).

Proof. By proposition 4.2.1, fixing a weight vector w = (w1, w2), and let W =

(W1, W2), we have

tropν( f )(w) = W

tropν1
( f )(w1) = W1

tropν2
(inν1

w1
f )(w2) = W2

In tropν1
( f )(w1) = W1, the exponents u satisfies ν1(cu) + w1 · u = W1. So the initial

form inν1
w1
( f ) is

inν1
w1
( f ) = ∑

u∈Zn

W1=ν1(cu)+w1·u

π1(σ1(w1 · u − W1)cu)xu.

Let π1(σ1(w1 · u − W1)cu) = du, then in the equation tropν2
(inν1

w1
f )(w2) = W2, the

exponents u which we taking from the minimum of ν1(cu) + w1 · u must satisfy

that ν2(du) + w2 · u = W2. By proposition 4.2.1, we have ν2(du) + w2 · u = W2 =

ν2(cu) + w2 · u. Now notice that the exponents appearing in inν1
w1
( f ) consists of the

following set

arg min
u∈Zm

(ν1(cu) + w1 · u) = {u ∈ Zm : ν1(cu) + w1 · u ≤ ν1(cs) + w1 · s ∀s ∈ Zm}.
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Then the exponents in inν2
w2

inν1
w1
( f ) are the following set

arg min
u∈arg minu∈Zm (ν1(cu)+w1·u)

(ν2(du) + w2 · u)

={u ∈ arg min
u∈Zm

(ν1(cu) + w1 · u) : ν2(du) + w2 · u ≤ ν2(ds) + w2 · s ∀s ∈ Zm}.

Now consider the exponents u in inν
w( f )

arg min
u∈Zm

(ν(cu) + w · u) = {u ∈ Zm : ν(cu) + w · u ≤lex ν(cs) + w · s ∀s ∈ Zm}.

Notice that the inequality ν(cu) + w · u ≤lex ν(cs) + w · s is

(ν1(cu) + w1 · u, ν2(cu) + w2 · u) ≤lex (ν1(cs) + w1 · s, ν2(cs) + w2 · s).

Then the exponents appearing in inν
w( f ) and inν2

w2
(inν1

w1
( f )) are the same.

In the rest of proof, we need to show that the coefficients of inν
w( f ) are the same

as the coefficients of inν2
w2

inν1
w1
( f ). With the definition of the initial form, the initial

form of f with respect to w is

inν
w( f ) = ∑

u∈Zm

ν(cu)+w·u=W

π(σ(w · u − W)cu)xu.

With the initial form inν1
w1
( f ) at the beginning of this proof we shall have the initial

form inν2
w2

inν1
w1
( f ) such that

inν2
w2

inν1
w1
( f ) = ∑

u∈Zm

ν1(cu)+w1·u=W1
ν2(cu)+w2·u=W2

π2(σ2(w2 · u − W2)π1(σ1(w1 · u − W1)cu))xu

By proposition 3.6.5, a splitting σ of ν can be induced as splittings σ1 and σ2 of ν1

and ν2. Also we have these equations σ1(a) = σ(a, 0) and σ2(b) = π1(σ(0, b)) where

a ∈ Γ1 and b ∈ Γ2 × . . . × Γn. Then we shall rewrite the coefficients in inν2
w2

inν1
w1
( f ) as

π2(π1(σ(0, w2 · u − W2))π1(σ(w1 · u − W1, 0)cu)).

Notice that ν1(σ1(0, w2 · u − W2)) = 0 and

ν1(σ(w1 · u − W1, 0)cu) = ν1(σ(−ν1(cu), 0)) + ν1(cu)

= −ν1(cu) + ν1(cu) = 0
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then both σ(0, w2 · u − W2) and σ(w1 · u − W1, 0)cu are in the valuation ring R1 of

ν1. Since π1 : R1 → k1 is a homomorphism then

π2(π1(σ(0, w2 · u − W2))π1(σ(w1 · u − W1, 0)cu))

=π2(π1(σ(0, w2 · u − W2)σ(w1 · u − W1, 0)cu))

=π2(π1(σ(w1 · u − W1, w2 · u − W2)cu))

=π2(π1(σ(w · u − W)cu)).

Since ν(σ(w · u − W)cu) = (0, 0), σ(w · u − W)cu is in the valuation ring R of ν.

The final step of this proof is showing that π1(σ(w · u−W)cu) is in the valuation

ring R2 of ν2. For any x ∈ R, we have ν(x) = (ν1(x), ν2(x)) ≥lex (0, 0) which implies

that x ∈ R1. If ν1(x) > 0 then π1(x) = 0 =⇒ π1(x) ∈ R2 and if ν1(x) = 0 then

ν2(x) ≥lex 0 =⇒ ν2(π1(x)) ≥lex 0 so π1(x) ∈ R2. So for any x ∈ R we have

π1(x) ∈ R2. Then for proving this mapping π1 : R → R2 is surjective, let y be

an arbitrary element in R2 and π1(x) = y where x ∈ R1. Since y ∈ R2, we have

ν2(y) ≥lex 0 =⇒ ν2(π1(x)) ≥lex 0 =⇒ ν2(x) ≥lex 0. Since x ∈ R1, ν1(x) ≥ 0 so

we have two possibilities, ν1(x) > 0 or ν1(x) = 0 and ν2(x) ≥lex 0, both imply that

x ∈ R, then π1 : R → R2 is surjective. Therefore

π2(π1(σ(w · u − W)cu)) = π(σ(w1 · u − W1, w2 · u − W2)cu).

So inν2
w2
(inν1

w1
( f )) has the same coefficients as inν

w( f ) and we have already proven

that the exponents in these two initial forms are the same. Therefore inν2
w2
(inν1

w1
( f )) =

inν
w( f ).

With proposition 4.2.4, by induction we will have the following immediate con-

sequence.

Proposition 4.2.5. Let ν be a rank n valuation on field k and according to proposition

3.6.1 there exists an n-step valuation on k which is supposed to be (υ1, υ2, . . . , υn). Let

f = ∑
u∈Zm

cuxu ∈ k[x±1 , . . . , x±m ] and fix a weight vector w = (w1, w2, . . . , wn) ∈ Rn×m
lex

where wi ∈ Rm for all 1 ≤ i ≤ n. Then

inν
w( f ) = inυn

wn
. . . inυ1

w1
( f )
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Example 4.2.6. Let k = k1{{t}} and k1 = C{{s}}. Suppose ν : k× −→ Γ1 × Γ2 be a

rank 2 valuation on k such that

ν(a) = (a1, a2),

where a ∈ k, a1 is the lowest exponent of t in a and a2 is the exponent of s of the

coefficient of the leading term. By proposition 3.6.1, ν can be reduced as a 2-step

valuation (υ1, υ2), where υ1 is the t-adic valuation on k and υ2 is the s-adic valuation

on the residue field k1 of v1. Suppose a polynomial f ∈ k[x±, y±] such that

f = (t4s6 + t6s)xy + (t3s + t3s2)x2y + t3sxy2 + (t4s2 + t5s2)x2y2.

Let w = (w1, w2) be a weight vector, w1 = (1, 1) and w2 = (2, 2). Then the tropical-

ization of f of υ1 at w1 is

W1 = tropυ1
( f )(1, 1) = min{6, 6, 6, 8}

Therefore we have the initial form of f with respect to w1

inυ1
w1
( f ) = (s6 + t2s)xy + (s + s2)x2y + sxy2.

Next, consider the tropicalization of inυ1
w1
( f ) of υ2 at w2

W2 = tropυ2
(inυ1

w1
( f ))(2, 2) = min{10, 7, 7}

then the initial form is

inυ2
w2

inυ1
w1
( f ) = (1 + s)x2y + xy2.

On the other hand, we need to check the initial form of f with respect to w =

(w1, w2). First, the tropicalization of f with ν at w is

W = tropν( f )((1, 1), (2, 2)) = min{(6, 10), (6, 7), (6, 7), (8, 10)}

= {(6, 7), (6, 7)}.

Hence the initial form of f with respect to w is

inν
w( f ) = (1 + s)x2y + xy2.



71

Therefore inν
w( f ) = inυ2

w2
inυ1

w1
( f ).

Now recalling proposition 4.2.1, let ν be a rank n valuation on k and (υ1, . . . , υn)

be an n-step valuation on k which is reduced from ν and fix a weight vector w =

(w1, . . . , wn) ∈ (Rm)n where wi ∈ Rm for all 1 ≤ i ≤ n. By induction, we can

deduce the following equation easily

tropν( f )(w) =

(
tropυ1

( f )(w1), tropυ2
(inυ1

w1
( f )(w2), . . . , tropυn

(inυn−1
wn−1 . . . inυn

w1
( f )(wn)

)
.

From the equation above, we have the hypothesis that tropν( f ) has more than

one terms at w if and only if tropυi
(inυi−1

wi−1 . . . inυ1
w1
( f )) also has more than one terms

at wi for all 1 ≤ i ≤ n.

We can now state and prove our main theorem.

Theorem 4.2.7. As Proposition 4.2.1, let a polynomial f = ∑
u∈Zm

cuxu ∈ k[x±1 , . . . , x±m ]

and v be a rank n valuation on k which can be induced as (ν1, ν2) where ν1 is on k and ν2

is on the residue field of ν1. Consider a weight vector w = (w1, w2) ∈ R × (Rm)n−1.

Then tropν( f ) tropically vanishes at w if and only if tropν1
( f ) tropical vanishes at w1 and

tropν2
(inν1

w1
( f )) tropical vanishes at w2.

Proof. First, Let tropν( f ) tropically vanishes at w, then tropν( f )(w) contains at least

two terms. So we can let the index of these terms be ui such that i ∈ {1, . . . , s} and

s ≥ 2, then we have

W = tropν( f )(w) = ν(cu1) + w · u1 = . . . = ν(cus) + w · us.

Now let ν = (ν1, ν2) where ν1 maps the first coordinate of ν and ν2 maps the rest.

Then fixing a weight vector w ∈ Γm
1 × . . . × Γm

n and let it be w = (w1, w2) where

w1 ∈ Γm
1 and w2 ∈ Γm

2 × . . . × Γm
n . Then we have

W = ν(cui) + w · ui

W = (ν1(cui), ν2(cui)) + (w1, w2) · ui

W = (ν1(cui), ν2(cui)) + (w1 · ui, w2 · ui)

W = (ν1(cui) + w1 · ui, ν2(cui) + w2 · ui)
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for any 1 ≤ i ≤ s. By proposition 4.2.1, we show that if tropν( f )(w) = W =

(W1, W2) ∈ R × Rn−1 then

tropν1
( f )(w1) = W1

tropν2
(inν1

w1
f )(w2) = W2.

Therefore tropν1
( f )(w1) = ν1(cui)+w1 ·ui for all 1 ≤ i ≤ s and tropν2

(inν1
w1

f )(w2) =

ν2(cui) + w2 · ui for all 1 ≤ i ≤ s, then both tropν1
( f )(w1) and tropν2

(inν1
w1

f )(w2)

contain more than one term. Hence, tropν1
( f ) and tropν2

(inν1
w1

f ) tropical vanish at

w1 and w2 respectively.

Conversely, suppose tropν1
( f ) tropical vanishes at w1 and tropν2

(inν1
w1

f ) trop-

ical vanishes at w2. We will have an immediate consequence that there is more

than one index i satisfies ν1(cui) + w1 · ui = tropν1
( f )(w1) and ν2(cui) + w2 · ui =

tropν2
(inν1

w1
f )(w2). By proposition 4.2.1, tropν( f )(w) = (tropν1

( f )(w1), tropν2
(inν1

w1
f )(w2)),

so tropν( f )(w) has at least two terms so that tropν( f ) tropical vanishes at w.

Beside the proof above, proposition 4.2.4 provides an alternative method to the-

orem 4.2.7.

By proposition 4.2.4, inν2
w2
(inν1

w1
( f )) = inν

w( f ), then inν2
w2
(inν1

w1
( f )) is not mono-

mial if and only if inν
w( f ) is not. If inν2

w2
(inν1

w1
( f )) has more than 1 monomial then it

implies that the initial form inν1
w1
( f ) has more than 1 monomial too. By proposition

4.2.4, w = (w1, w2), then w ∈ V(tropν( f )) if and only if w1 ∈ V(tropυ1
( f )) and

w2 ∈ V(tropυ2
inυ1

w1
( f )), which shall prove theorem 4.2.7.

Example 4.2.8. As example 4.2.6, let k = k1{{t}} and k1 = C{{s}}. Let ν be a rank

2 valuation on k as example 4.2.6 and f ∈ k[x1, x2, x3] such that

f = (t + st + st2 + . . .)x1 + (s + s2 + s2t + . . .)x1x2
2 + (st2 + st3 + s2t3 + . . .)x2

2x3
3.

Then the tropicalization of f via ν is

tropν( f ) = min{(1, 0) + x1, (0, 1) + x1 + 2x2, (2, 1) + 2x2 + 3x3}. (4.1)
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Fixing a weight vector w ∈ (Γ3
lex)

2 which let tropν( f ) tropical vanishes at w. Then

let w = ((0, 1), ( 1
2 ,− 1

2 ), (1, 1)), we will have the W such that

W = tropν( f )(w) = min{(1, 1), (1, 1), (6, 3)} = {(1, 1), (1, 1)}.

On the other hand, recalling proposition 3.6.1, we shall reduce ν as a 2-step valuation

(υ1, υ2) where υ1 is a on k and υ2 is on the residue field k1 of υ1. And we set two

weight vectors w1, w2 such that w =

w1

w2

. Then consider the tropicalization of f

via υ1, we have

tropυ1
( f ) = min{1 + x1, 0 + x1 + 2x2, 2 + 2x2 + 3x3}.

w1 = (0, 1
2 , 1), then we have the W1 = tropυ1

( f )(w1) = {1, 1}. So the initial form

inυ1
w1
( f ) is

inυ1
w1
( f ) = (1 + s + st + . . .)x1 + (s + s2 + s2t + . . .)x1x2

2.

Then we will calculate the tropicalization of inυ1
w1
( f ) via υ2

tropυ2
(inυ1

w1
( f )) = min{0 + x1, 1 + x1 + 2x2}.

Plugging w2 = (1,− 1
2 , 1), we have W2 = {1, 1} there are more than one terms re-

main. Therefore tropυ1
( f ) tropical vanishes at w1 and tropυ2

(inυ1
w1
( f )) tropical van-

ishes at w2.

It is easy to see, by induction, we can extend theorem 4.2.7 as the following corol-

lary.

Corollary 4.2.9. Let f ∈ k[x±1 , . . . , x±m ], ν be a rank n valuation on k which can be split as an

n-step valuation (υ1, . . . , υn) by proposition 3.6.1. Suppose w be a weight vector for v such

that w ∈ (Rm
lex)

n and w = (w1, . . . , wn) where wi ∈ Rm. Then tropν( f ) tropically van-

ishes at w if and only if tropυ1
( f ) tropically vanishes at w1 and tropυi

(inυi−1
wi−1 . . . inυ1

w1
( f ))

tropically vanishes at wi for each 1 < i ≤ n.
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Notice that the description about (w1, . . . , wn) is definition 4.1.2, so we can con-

clude that

Theorem 4.2.10. Let ν be a rank n valuation on k and (υ1, . . . , υn) be an n-step valuation

which is induced from ν. Given a variety X, then the rank n tropicalization of X is equal to

the n-step tropicalization of X.

In [2], Fuensanta Aroca proves that in an algebraically closed field k with a sur-

jective rank n valuation ν, the rank n tropicalization of the hypersurface associatied

to a polynomial f is equal to the tropical hypersurface associated to the rank n trop-

icalization of f such that

tropν(V( f )) = V(tropν( f )).

In this thesis, we shall prove the main theorem in [2] again in a different way.

Recalling the Kapranov’s theorem in ordinary version, for any Laurent polyno-

mial f in m variables over an algebraically closed field k with a valuation ν, that

theorem shows the equivalence between the following three subsets in Rm

1. the tropical hypersurface trop(V( f )) in Rm;

2. the set {w ∈ Rm : inν
w( f ) is not a monomial}

3. the closure in Rm of {(ν(y1), . . . , ν(ym)) : (y1, . . . , ym) ∈ V( f )}

By definition 2.6.4, set 2 can be rewritten as V(tropν( f )), then we have the following

diagram

V( f ) ⊂ (k×)m

V(tropν( f )) ⊂ Rm

ν ν

If a ∈ k, then σ(−ν(a)) · a is in the valuation ring, and we can take its image

in the residue field K. Denote this element π(a). According to Theorem 2.7.1 and

proposition 2.7.2, there is the following proposition as the immediately result, and

we can use this to prove the Kapranov’s Theorem holds when the valuation has rank

n.
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Proposition 4.2.11. Let k be an algebraically closed field with a nontrivial valuation ν, and

f is a Laurent polynomial in m variables over k. Fixing a weight vector w ∈ V(trop( f ))
⋂

Γm

and a point A ∈ (K×)m such that A ∈ V(inν
w( f )), then there exists a point a ∈ V( f ) with

ν(a) = w and π(a) = A.

Kapranov proved the above result in the rank 1 case. Our purpose is to show

that proposition 4.2.11 also holds when rank of ν is n > 1. The method is to deduce

it from the rank 1 case applied n times in sequence. Then proposition we are trying

to prove is

Proposition 4.2.12. Let ν be a rank n valuation on an algebraically closed field k, and f is a

polynomial in m variables over k. Fixing a weight vector w ∈ V(trop( f ))∩ Γm
1 × . . . × Γm

n

and a point A ∈ (k×1 )
m × (k×2 )

m . . . × (k×n )m such that A ∈ V(inν
w( f )) where kn = K is

the residue field of ν. Then there exists a point a ∈ V( f ) with ν(a) = w and π(a) = A.

Proof. Let the valuation ν be a rank n valuation, by the manipulation described in

proposition 3.6.1, ν can be reduced as an n-step valuation (υ1, . . . , υn) finally. For

clarifying the notations, recalling the list at beginning of this Chapter

ν : k → Γ1 × Γ2 × . . . × Γn σ : Γ1 × Γ2 × . . . × Γn → k π : R → K

υ1 : k → Γ1 σ1 : Γ1 → k π1 : R1 → k1

υ2 : k1 → Γ2 σ2 : Γ2 → k1 π2 : R2 → k2
...

...
...

υn : kn−1 → Γn σn : Γn → kn−1 πn : Rn → kn

Each ki is the residue field of υi for 1 ≤ i ≤ n − 1 and by proposition 3.6.5, σ induces

the splittings of υ1, . . . , υn where are σ1, . . . , σn correspondingly. In addition, let the

image in the residue fields k1, k2, . . . , kn represented by the notations π1, π2, . . . , πn.

By proposition 4.2.5, we have inν
w( f ) = inυn

wn
. . . inυ1

w1
( f ). Let A ∈ V(inν

w( f )),

then A ∈ V(inυn
wn

. . . inυ1
w1
( f ))

Now we have A be a point in V(inυn
wn

. . . inυ1
w1
( f )). Let A = An and note that

wn ∈ V(tropυn
(inυn−1

wn−1 . . . inυ1
w1
( f ))). By proposition 4.2.11, there exists a point let’s

say An−1 ∈ V(inυn−1
wn−1 . . . inυ1

w1
( f )) such that υn(An−1) = wn and πn(An−1) = An.
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wn ∈ V(tropυn
inυn−1

wn−1 . . . inυ1
w1
( f ))

An−1 ∈ V(inυn−1
wn−1 . . . inυ1

wi
( f ))

An ∈ V(inυn
wn

. . . inυ1
w1
( f ))

Suppose wn−1 ∈ V(tropυn−1
(inυn−2

wn−2 . . . inυ1
w1
( f ))), then we can apply proposition

4.2.11 again. There exists a point An−2 ∈ V(inυn−2
wn−2 . . . inυ1

w1
( f )) with υn−1(An−2) =

wn−1 and πn−1(An−2) = An−1.

wn−1 ∈ V(tropυn−1
inυn−2

wn−2 . . . inυ1
w1
( f ))

An−2 ∈ V(inυn−2
wn−2 . . . inυ1

wi
( f ))

An−1 ∈ V(inυn−1
wn−1 . . . inυ1

w1
( f ))

Therefore we can hypothesis that the process above holds until n − k. Then we

have An−k ∈ V(inυn−k
wn−k . . . inυ1

w1
( f )) and let wn−k ∈ V(tropn−k(in

υn−k+1
wn−k+1 . . . inυ1

w1
( f ))).

We can apply the proposition 4.2.11 again, so there exists a point An−k+1 ∈ V(inυn−k+1
wn−k+1 . . . inυ1

w1
( f ))

with υn−k(An−k+1) = wn−k and πn−k(An−k+1) = An−k.

wn−k ∈ V(tropn−k(in
υn−k+1
wn−k+1 . . . inυ1

w1
( f )))

An−k+1 ∈ V(inυn−k+1
wn−k+1 . . . inυ1

w1
( f ))

An−k ∈ V(inυn−k
wn−k . . . inυ1

w1
( f ))

Therefore by the induction above we can repeat the progress to the point a ∈

V( f ). According to corollary 4.2.9, there exists a w =


w1
...

wn

 which tropν( f ) trop-

ically vanishes at w. And by proposition 3.6.5, σ induces σ1, σ2, . . . σn where are

the splitting of υ1, υ2, . . . , υn correspondingly. Then we have ν(a) = w. Hence for

the polynomial f ∈ k[x±1 , . . . , x±m ] and the rank n valuation ν on k, fixing a w ∈

V(tropν( f )) ⊂ (Rm)n and let A = An ∈ V(inν
w( f )) = V(inυn

w1
. . . inν1

w1
( f )) ⊂ (k×n )m

there exists a point a ∈ V( f ) with ν(a) = w and the its image in kn is A.
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Therefore for any polynomial f ∈ k[x±1 , . . . , x±m ] with a rank n valuation ν, propo-

sition 4.2.12 holds. Since inυn
wn

. . . inυ1
w1
( f ) is not a monomial, then inν

w( f ) is not mono-

mial neither. Hence w ∈ V(tropν( f )), meanwhile a ∈ V( f ) and ν(a) = w then we

have

V(tropν( f )) = tropν(V( f ))

when the valuation is rank n > 1. Then we prove the Kapranov’s theorem holds

when valuation is rank n > 1.

Example 4.2.13. Let k = k1{{t}} and k1 = C{{s}}, and f = 2x + sy ∈ k[x, y]. Set ν

be a rank 2 valuation on k, as many examples in this paper, let ν(c) = (c1, c2) where

c1 is the lowest exponent of t in c and c2 is the exponent of s of the coefficient of the

leading term in c. Clearly, the classic hypersurface of f is

V( f ) = {(λ,−2
s

λ) : λ ∈ k}.

By proposition 3.6.1, reducing ν as (υ1, υ2), υ1 is on k and υ2 is on k1. Then the

tropicalization of f via υ1 is

tropυ1
( f ) = min{x, y}.

Consider the coordinate-wise valuation
(

υ1(λ), υ1(− 2
s λ)
)
=
(

υ1(λ), υ1(− 2
s )+ υ1(λ)

)
=

(υ1(λ), υ1(λ)). It is easy to see that the image (υ1(λ), υ1(λ)) ∈ Γ2
1 are those weight

vectors which make tropυ1
( f ) contain more than 1 term, so we can let the tropical

hypersurface tropυ1
(V( f )) be the set of the points which we let them be w1 such that

w1 = (υ1(λ), υ1(λ)) : λ ∈ k.

Then we consider the initial form of f via υ1 with respect to the weight vectors in

this set is inυ1
w1
( f ) = 2x + sy. Now suppose a point a = (s,−2) which is in V( f ),

then we have υ1(a) = (0, 0) and π1(a) = (s,−2). It is clear that (0, 0) is the weight

vector which makes tropυ1
( f ) contain at least two terms and the initial form inυ1

w1
( f )

vanishes at π1(a) = (s,−2). Then w1 = (0, 0) and A1 = (s,−2).
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Now consider that tropicalization of inυ1
w1
( f ) via υ2 such that

tropυ2
(inυ1

w1
( f )) = min{x, 1 + y},

then the tropical hypersurface tropυ2
(V(inυ1

w1
( f ))) is the set of the points which we

let them be w2 such that

{w2 = (µ, µ − 1) ∈ Γ2 : µ ∈ k2}.

So the initial form of inυ1
w1
( f ) via υ2 with respect to the weight vectors above is

inυ2
w2

inυ1
w1
( f ) = 2x + y. We have A1 = (s,−2), then υ2(A1) = (1, 0) and π2(A1) =

(1,−2). It is easy to check that υ2(A1) is the weight vector w2 and inυ2
w2

inυ1
w1
( f ) van-

ishes at π2(A1).

Therefore we have a = (s,−2), w =

0, 0

1, 0

 and A = (1,−2) such that ν(a) = w

and π(a) = A, which is shown by the following diagram.

w1 = (0, 0) ∈ V(tropυ1
( f ))

a = (s,−2) ∈ V( f ) w2 = (1, 0) ∈ V(tropυ2
inυ1

w1
( f ))

A1 = (s,−2) ∈ V(inυ1
w1
( f ))

A2 = (1,−2) ∈ V(inυ2
w2

inυ1
w1
( f ))
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