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Abstract

This body of research showcases several facets of the intersection between computer
science and game theory.

On the foundational side, we explore the obstructions to the computability of
Nash equilibria in the setting of computable analysis. In particular, we study the
Weihrauch degree of the problem of finding a Nash equilibrium for a multiplayer game
in normal form. We conclude that the Weihrauch degree Nash for multiplayer games
lies between AoUC∗

[0,1] and AoUC⋄
[0,1] (Theorem 5.3). As a slight detour, we also explore

the demarcation between computable and non-computable computational problems
pertaining to the verification of machine learning. We demonstrate that many verification
questions are computable without the need to specify a machine learning framework
(Section 7.2). As well as looking into the theory of learners, robustness and sparisty of
training data.

On the application side, we study the use of Hypergames in Cybersecurity. We
look into cybersecurity AND/OR attack graphs and how we could turn them into a
hypergame (8.1). Hyper Nash equilibria is not an ideal solution for these games, however,
we propose a regret-minimisation based solution concept. In Section 8.2, we survey the
area of Hypergames and their connection to cybersecurity, showing that even if there is a
small overlap, the reach is limited. We suggest new research directions such as adaptive
games, generalisation and transferability (Section 8.3).
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Chapter 1

Introduction

Contents
1.1 Aims and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Published Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

This work represents a fusion of disciplines, namely computable analysis, game theory
and machine learning. Comprehending the foundations of these fields is essential to grasp
the collaboration within this thesis. From this we explore the practical applications in the
various domains, notably cybersecurity. This multidisciplinary approach demonstrates
the power of interdisciplinary collaboration.

Computable analysis is a branch of mathematics that focuses on studying functions,
numbers, and mathematical structures from a computational perspective. It aims to
understand what can be effectively computed within the realm of real numbers and
continuous mathematics. The groundwork for computable analysis was laid by Alan
Turing’s development of the Turing machine, a theoretical model of computation [154].
Turing’s work in the 1930s established the concept of computability and paved the way
for exploring which functions could be effectively computed by such machines. During
the late 1930s and early 1940s, Turing and other notable figures, such as Alonzo Church
and Stephen Kleene, contributed to the definition of computable numbers.

In this thesis, we delve into a specific area of computable analysis known as Weihrauch
complexity. The concept of Weihrauch complexity has been present since the 1980s, with
the foundational work by Klaus Weihrauch [162]. However, the precise definitions we
currently employ were solidified only in 2008. A comprehensive database encompassing
all papers related to Weihrauch complexity has been curated1, consisting of over 160
papers. Notably, a significant portion of these papers has been published within the
past five years. This trend highlights the recent emergence and increasing interest in
this area.

1http://cca-net.de/publications/weibib.php
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1. Introduction

Game theory received its initial comprehensive mathematical formulation from John
von Neumann and Oskar Morgenstern [112]. Through their work, they introduced
pivotal concepts such as zero-sum games, strategies, and the renowned minimax theorem.
Subsequently, in the 1950s, John Nash introduced the concept of the Nash equilibrium
[110], which signifies a state within a game where no player has an incentive to unilaterally
deviate from their chosen strategy. Modern day game theory possesses a rich history
that spans across diverse disciplines. Evolving from its foundational principles, it has
developed into a versatile framework that aids in comprehending strategic decision-
making across a wide spectrum of contexts.

A more recent subsection of game theory is Hypergame theory. hypergames are an
intriguing concept that has emerged from the need to develop better models for games
with incomplete information. The notion of hypergames involves each player behaving
as an autonomous agent who makes decisions based on their individual ‘internal model’,
which is constructed from their own knowledge of game states and their perception of
other players’ knowledge of game states. This situation arises when a player does not
know or fully understand all the strategies of the game.

Machine learning’s history spans from its conceptual roots in the mid-20th century,
focusing on simulating human cognitive processes, through the rule-based systems of
the 1970s and 1980s, neural network revivals in the 1990s, and the big data era of
the early 2000s. The pivotal emergence of deep learning in the mid-2010s propelled
machine learning into a new era, revolutionising tasks like image recognition and natural
language processing. Now deeply integrated across industries, machine learning continues
to evolve through advancements in neural architectures, reinforcement learning, and
interdisciplinary collaborations with fields like robotics and economics.

This thesis represents a comprehensive culmination of my research endeavours,
encompassing both my previously published works and those soon to be published.
As a result, readers may notice that several chapters or sections have already been
made available or are in the process of being released. It is essential to acknowledge
that similarities may arise between these published or forthcoming works and the
content within this thesis. However, I would like to highlight that extensive efforts have
been invested in the refinement and alignment of the materials to ensure a coherent
and harmonious structure throughout the thesis. The content has been meticulously
rearranged and, where necessary, modified to enhance the overall flow and construct of
the thesis. This approach allows the various pieces of research to converge seamlessly,
contributing to a comprehensive and unified exploration of the subject matter.

1.1 Aims and Contributions

The first part of this project (Chapter 5) aims to use Weihrauch computability to
explore game theory techniques and their level of computability. The exploration
starts by building upon previous research conducted by Arno Pauly [124] regarding the
Weihrauch degree of Nash equilibria. The research discovered that for one-player games,
finding the Nash equilibrium corresponds to the Weihrauch degree of finite choice. For
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1.1. Aims and Contributions

two-player games, it was proven to be equivalent to All-or-Unique Choice (AoUC∗
[0,1]).

Additionally, it was established by Pauly that Nash equilibrium for one-player games
is strictly Weihrauch reducible to Nash equilibrium for two-player games. Expanding
on this research involves demonstrating the incomputable nature of Nash equilibria in
multiplayer games. While finding the Nash equilibrium in two-player games involves
solving a single linear inequality, this complexity grows when extended to multiplayer
games, resulting in higher-degree polynomial equations. We show that the Weihrauch
degree of Nash equilibrium for multiplayer games can be compared to a benchmark
principle AoUC[0,1]. We proved that it lies between AoUC[0,1] invoked finitely many
times in parallel and AoUC[0,1] invoked any finitely many times. Furthermore, we have
established that Nash equilibrium is solvable with finitely many mind chances, is Las
Vegas computable and Monte Carlo computable.

In the second project (Chapter 7), we harness computable analysis to delve into
machine learning, exploring a new dimension in this field. By applying the principles of
computable analysis, we seek to verify and validate classifiers and learners with a level of
precision and rigour not previously attainable. This novel approach allows us to scrutinise
the intricacies of machine learning algorithms, providing a deeper understanding of their
behaviours and limitations. Through the lens of computable analysis, we provide results
about which properties of classifiers and learners are computable. We explore various
verification questions related to classifiers, with the goal of validating specific criteria and
assessing the classifier’s performance over a designated set or region, which we proved to
be computable. Additionally, we investigate the detection and prevention of adversarial
examples by employing computable metric spaces and classifiers, incorporating the
concept of ‘locallyConstant’. Furthermore, we delve into examining the robustness of
learners that transform a finite sequence of labeled points into classifiers.

The third project (Chapter 8) leverages the framework of hypergames to explore
the realm of cybersecurity, thus extending the boundaries of research in this domain.
By employing hypergames, we embark on an exploration that goes beyond conven-
tional methodologies, enabling us to dissect and comprehend the intricate dynamics
of cybersecurity challenges. Through the lens of hypergames, we dissect the strategic
interplay between attackers and defenders within cyber systems. This work combines a
literature review paper which was a joint work with Andrew Fielder, Paul Jones, and
Conor Artman, as well as some work converting cyber attack graphs to hypergames
which was a joint work with Martin Barrere Cambrun and Chris Hankin. The conversion
from cyber attack graphs to hypergames was relatively straightforward. However, we
encountered challenges when finding the Hyper-Nash equilibrium. This was particularly
complex because the two parties, attackers and defenders, were in competition. A higher
payoff for the attacker indicates a successful breach of the system, resulting in a worse
outcome for the defender and a lower payoff. Therefore, we suggest a different approach
using regret minimisation, with joint work with Arno Pauly.
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1. Introduction

1.2 Published Works

The Weihrauch Degree of Finding Nash Equilibria in Multiplayer Games
[49] Presented in Chapter 5. Joint work with Arno Pauly.
Presents: Is there an algorithm that takes a game in normal form as input, and outputs
a Nash equilibrium? If the payoffs are integers, the answer is yes, and a lot of work
has been done in its computational complexity. If the payoffs are permitted to be real
numbers, the answer is no, for continuity reasons. It is worthwhile to investigate the
precise degree of non-computability (the Weihrauch degree) since knowing the degree
entails what other approaches are available (eg, is there a randomised algorithm with
positive success change?). The two-player case has already been fully classified, but the
multiplayer case remains open and is addressed here. Our approach involves classifying
the degree of finding roots of polynomials and lifting this to systems of polynomial
inequalities via cylindrical algebraic decomposition.

A Computability Perspective on (Verified) Machine Learning (WADT, [47])
Presented in Chapter 7. Joint work with Jay Morgan, Arno Pauly, Markus Roggenbach.
Presents: In Computer Science there is a strong consensus that it is highly desirable to
combine the versatility of Machine Learning (ML) with the assurances formal verification
can provide. However, it is unclear what such ‘verified ML’ should look like.

This paper is the first to formalise the concepts of classifiers and learners in ML in
terms of Computable Analysis. It provides results about which properties of classifiers
and learners are computable. By doing this we establish a bridge between the continuous
mathematics underpinning ML and the discrete setting of most of computer science.

We define the computational tasks underlying the newly suggested verified ML in a
model-agnostic way, and show that they are in principle computable. Our formalisations
are justified and proofs of theorems are provided.

Exploring the Non-Computability of Machine Learning Classifiers (Extended
Abstract)[48] Joint work with Jay Morgan, Arno Pauly, Markus Roggenbach.
Presents: We have previously shown that various questions pertaining to the verification
of classifiers are computable. Here, we use Weihrauch degrees to examine how non-
computable certain problems become. Such an approach reveals whether relaxing our
demands for the nature of computation permits us to answer more questions.

Hypergames, Cybersecurity and RL (Publication Pending) Tonicha Crook,
Andrew Fielder, Paul Jones, Conor Artman.
Presents: hypergames model games with incomplete information between players who
each have different perspectives of the game being played. This can mean something as
simple as different preferences or as complex as players having hidden strategies. Game
theory has been used to explore cybersecurity for many years, however, hypergames
are a new addition. An insight into the definitions and solution concepts are explored.
Thereafter, a literature review of the current applications of hypergames in cybersecurity.
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1.3. Thesis Overview

We present potential areas hypergames could be useful in the future along with suggested
research areas.

1.3 Thesis Overview

• Part 2 provides the background needed for this thesis. This gives introductions
to Computable Analysis (Chapter 2) and Game Theory (Chapter 3). As well as
exploring the intersection of Computable Analysis and Game Theory (Chapter 4).

• Part 3 involves classifying the Weihrauch degree of Nash Equilibria in Multiplayer
Games in order to explore how non-computable the task is (Chapter 5). The
prerequisites for this chapter is Chapter 2.

• Part 4 are the applied chapters of this thesis. First is Verified Machine Learning
(Chapter 7) which requires the knowledge of Chapter 2. Secondly is hypergames
and Cybersecurity (Chapter 8) which requires Chapter 3.

• Part 5 is the Conclusion (Chapter 9).
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Chapter 2

Computable Analysis and
Weihrauch Degrees

Contents
2.1 Represented Spaces and Multivalued Functions . . . . . . . . . . . . 11
2.2 Topological Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Weihrauch Reducibility . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Choice Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Reverse Mathematics Principles . . . . . . . . . . . . . . . . . . . . 22
2.6 Translating Between Spaces of Subsets . . . . . . . . . . . . . . . . 24

The following summarises the formal definitions and key properties of the most important
notions from Computable Analysis for this thesis. Focusing on Weihrauch computability,
where the Weihrauch lattice framework allows us to classify the uniform computational
content of problems and theorems from analysis and other areas of mathematics. A
standard textbook is [164]. A quick introduction in a similar style is available as [25]. A
concise, more general treatment is found in [126].

2.1 Represented Spaces and Multivalued Functions

In this section, our objective is to delve into the computability properties and requisite
data types for our problems represented as f :⊆ X ⇒ Y . To achieve this, we establish a
structure on the spaces X and Y through the concept of representations.

Definition 2.1 (Represented Spaces) A represented space X is a pair (X, δ) which is a
set X together with a surjective partial function δ :⊆ NN → X.

The term ‘representation’ refers to the map δ itself; when δ(p) = x, we label p as
a ‘name’ for x. For brevity, we may refer to a represented space as simply X if the
representation is evident from the context or does not require explicit mention. We
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2. Computable Analysis and Weihrauch Degrees

borrow this concept from [30] and it is more extensively elaborated upon in [126]. In
the context of represented spaces X and Y , we define problems as partial multivalued
functions, denoted as f :⊆ X ⇒ Y . Properties like computability and continuity of
problems can be readily introduced through the concept of realisers.

Definition 2.2 (Realiser) Given represented spaces (X, δX), (Y, δY ), a problem f :⊆
X ⇒ Y and a function F :⊆ NN → NN, we define F ⊢ f :⇐⇒ δY F ⊑ fδX . We say that
F is a realiser of f .

In essence, F is recognised as a realiser of f when δY F effectively solves the problem
fδX , this depends on the underlying represented spaces. The validity of this notation,
F ⊢ f , hinges on the clarity of the underlying represented spaces. For Baire space,
the continuity of functions is evident as F :⊆ NN → NN, while their computability can
be formally defined using Turing machines. Consequently, we classify a problem f as
‘computable’ when it possesses a computable realiser. Likewise, if a continuous realiser
can be found for f , it is termed ‘continuous’.

Interestingly, numerous spaces encountered in analysis can be classified as computable
metric spaces. In this context, we work under the assumption that the reader is familiar
with the concept of a computable (double) sequence of real numbers.

Definition 2.3 (Computable Metric Spaces) A computable metric space (X, d, α) is
a separable metric space (X, d) with metric d : X × X → R and a dense sequence
α : N → X such that d ◦ (α × α) : N2 → R is a computable double sequence of real
numbers.

A comprehensive introduction to multivalued functions within computable analysis
can be found in [125]. The category-theoretic framework is established based on the
composition of multivalued functions. Within this framework, they demonstrate that
many-one degrees of multivalued functions form a distributive lattice.

We represent mathematical problems using partial multivalued functions, denoted
as f :⊆ X ⇒ Y , where these functions are essentially relations f ⊆ X × Y . For the
purpose of our discussion, we define dom(f) = x ∈ X : f(x) ̸= ∅ as the set of admissible
instances for the problem. An admissible instance refers to a specific input value
for a mathematical problem that can be effectively processed or analysed within the
framework of computability. The corresponding set of function values, denoted as
f(x) ⊆ Y , represents the set of possible outcomes. In the case of a single-valued function
f , we treat f(x) as a singleton value.

Mathematical problems can be combined in various ways to create new problems. In
this thesis, we employ several standard operations to facilitate problem combinations.
The subsequent definition outlines these operations, which are integral to our analysis.
Given two represented spaces X,Y we obtain a third represented space C(X,Y) of
functions from X to Y by letting 0n1p be a δX → δY -name for f , if the n-th Turing
machine equipped with the oracle p computes a realiser for f .

Definition 2.4 ([127]) Let X = (X, δX),Y = (Y, δY ),Z = (Z, δZ),U = (U, δU ) be

12



2.2. Topological Properties

represented spaces.

1. Composition: C(Y,Z)× C(X,Y) → C(X,Z).

2. Product: C(X,Y)× C(U,Z) → C(X × U,Y × Z).

3. X∧Y := (X∩Y, δX∧δY ) where (X∩Y, δX∧δY )(⟨p, q⟩) = x iff δX(p) = x∧δY (p) =
x.

When considering two problems, denoted as f and g, we aim to define the concept
of f solving g. The notation f ⊑ g indicates that every instance of problem g is also an
instance of problem f , and furthermore, the solutions that are valid for both f and g
correspond to valid solutions of problem g. These relationships exhibit both reflexivity
and transitivity.

Definition 2.5 (Solutions) Let f, g :⊆ X ⇒ Y be multivalued functions. We define
f ⊑ g :⇐⇒ dom(g) ⊆ dom(f)and (∀x ∈ dom(g))f(x) ⊆ g(x). In this situation we say
that f solves g, f is a strengthening of gand g is a weakening of f .

2.2 Topological Properties

Within this thesis, we frequently regard spaces such as N, R, [0, 1], 2N, and NN as
computable metric spaces. We make use of N = (N, δN) which is given by δN(0

n10N) = n.
On occasions where we require a non-metrisable space, we turn to the Sierpiński Space
denoted as S = {⊥,⊤}.

Definition 2.6 (Sierpiński Space) Let S = ({⊥,⊤}, δS) be defined via δS(0
N) = 1 and

δS(p) = 0 for p ̸= 0N.

Given a computable metric space (X, d, α) we denote by B(x, r) := {y ∈ X :
d(x, y) < r} the open ball with center x ∈ X and radius r ≥ 0.

Definition 2.7 (Open and Closed Sets) Denote open sets of a topological set X as
O(X) if for every x ∈ U , there exists an r > 0 such that B(x, r) ⊆ U .
Denote closed sets of a topological set X as A(X) by identifying A ⊆ X with (X\A) ∈
O(X).

Definition 2.8 (The Space of Open and Closed Sets) For any represented space X we
obtain two spaces of subsets of X; the space of open sets O(X) by identifying f ∈ C(X, S)
with f−1({⊤}), and the space of closed sets A by identifying f ∈ C(X, S) with f−1({⊥}).

Definition 2.9 ([127]) Let X,Y be represented spaces then the following functions are
well defined and computable:

1. Complement: C : O(X) → A(X), C : A(X) → O(X).

2. ∪ : O(X)×O(X) → O(X), ∪ : A(X)×A(X) → A(X).

13



2. Computable Analysis and Weihrauch Degrees

3. ∩ : O(X)×O(X) → O(X), ∩ : A(X)×A(X) → A(X).

4. Union:
⋃

: X (N,O(X)) → O(X) maps a sequence (Un)n∈N of open sets to their
union

⋃
n∈N Un.

5. Intersection:
⋂

: X (N,A(X)) → A(X) maps a sequence (An)n∈N of open sets to
their union

⋂
n∈NAn.

6. Product: × : O(X)×O(Y) → O(X × Y), × : A(X)×A(Y) → A(X × Y).

In addition to the concept of closed subsets, we also require the concept of a compact
subsets.

Definition 2.10 (Computably Compact [127]) A represented space X is (computably)
compact, if the map IsEmptyX : A(X) → S defined by IsEmptyX(∅) = ⊤ and
IsEmptyX(A) = ⊥ otherwise is continuous (computable).

Definition 2.11 (Compact Sets) Define K(X) by identifying K ⊆ X with {U ∈ O(X) |
K ⊆ U} ∈ O(O(X)) whenever K =

⋂
{U ∈ O(X) | K ⊆ U}.

Another perspective on this matter is that a representative space is computably
compact if the map that is recognising that an open set is actually full is answering top
and any other open set to bottom is computable. Additionally, a notable dual concept
to compactness is overtness.

Definition 2.12 Let IsNonEmptyX : O(X) → S be defined by IsNonEmptyX(∅) = ⊥
and IsNonEmptyX(U) = ⊤ for U ̸= ∅. Now call X (computably) overt, iff IsNonEmptyX
is continuous (computable).

Definition 2.13 (Overt Sets) Define V(X) by identifying A ⊆ X with {U ∈ O(X) |
A ∩ U ̸= ∅} ∈ O(O(X)) whenever A = A.

Overtness arises when the goal is to identify that an open set is non-empty. In this
context, the response should be ‘yes’ if the input open set is not the empty set. This
notion is dual to compactness, as compact subsets contain precisely the right amount
of information to recognise inclusion in open sets. Conversely, overt subsets carry just
enough information to identify intersections with open sets.

The relevance of K(X) and V(X) is found, in particular, in the following charac-
terisations, which show that compactness just makes universal quantification preserve
open predicates, and dually, overtness makes existential quantification preserve open
predicates.

Proposition 2.14 ([126, Proposition 40 & 42]). The following are computable:

1. The map ∃ : O(X×Y)× V(X) → O(Y) defined by

∃(R,A) = {y ∈ Y | ∃x ∈ A (x, y) ∈ R}.

14



2.3. Weihrauch Reducibility

2. The map ∀ : O(X×Y)×K(X) → O(Y) defined by

∀(R,A) = {y ∈ Y | ∀x ∈ A (x, y) ∈ R}.

The represented space (V∧K)(X) contains the sets which are both compact and overt,
and codes them by providing the compact and the overt information simultaneously.
Thus, both universal and existential quantification over elements of (V ∧K)(X) preserve
open predicates.

A nice class of topological spaces, not necessarily based on countable sets, is formed
by the category of CoPolish spaces. They play a significant role in Type-2 Complexity
Theory [141] by simplifying complexity. CoPolish Spaces take a slightly different direction
and can be understood as the direct limit of an increasing sequence of compact metrisable
subspaces Xn. This concept is particularly significant in descriptive set theory and
topology, providing a framework to explore topological and computational properties in
a specific setting.

In the realm of topology, a topological space is deemed Hausdorff if, for any two
distinct points x and y within the space, there exist open sets U and V that accommodate
x and y respectively, while ensuring that these open sets do not intersect (U ∩ V = ∅).
This property, often referred to as the ‘Hausdorff separation axiom’, guarantees that
any pair of distinct points can be separated by open sets.

2.3 Weihrauch Reducibility

Weihrauch computability was introduced by Klaus Weihrauch in the 1980s. The notion
of Weihrauch reducibility was popularised by Brattka and Gherardi [22, 21]. There is a
handbook that is an excellent introduction to the area [24]. The handbook begins by
covering the basics of algebraic operations on multivalued functions and then introduces
the theory of representations and computable functions of represented spaces. It’s impor-
tant to understand both of these concepts before delving into Weihrauch computability,
which is detailed in the next subsection. The handbook also discusses the algebraic and
topological properties, completeness, composition, and implications of the Weihrauch
lattice. Finally, it explores the choice problems and classifies different theorems from the
analysis. An extension of this handbook and a collection of open questions in Weihrauch
complexity can be found in [129].

Our aim now is to introduce Weihrauch reducibility as a means to compare problems
to each other. The intent is for f ≤W g to convey the idea that problem f can be
computed by a single application of problem g. The notion of computable reducibility
for multivalued functions was introduced by Gherardi and Marcone within [63]. One
problem is reducible to another, provided that whenever we have a method to compute
a solution for the second problem, we can uniformly find a way to compute a solution
for the first one. They show that the operator is transitive and reflexive.

To establish this concept, we require two variants of such a reducibility. We denote the
identity of Baire space by id : NN → NN. For other sets X, we commonly include an index
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2. Computable Analysis and Weihrauch Degrees

and express the identity as idX : X → X. Given sets of functions F,G :⊆ NN → NN, we
define ⟨F,G⟩(p) := ⟨F (p), G(p)⟩.

Definition 2.15 (Weihrauch Reducibility) Let f and g be problems. We define:

1. f ≤W g ⇐⇒ (∃computableH,K :⊆ NN → NN(∀G ⊢ g)H⟨idNN , GK⟩ ⊢ f .

2. f ≤sW g ⇐⇒ (∃computableH,K :⊆ NN → NN(∀G ⊢ g)HGK ⊢ f .

We say that f is (strongly) Weihrauch reducible to g if f ≤W g (f ≤sW g) holds.

K G H K G H

Figure 2.1: Weihrauch Reducibility and Strong Weihrauch Reducibility

The diagram in Figure 2.1 provides an illustration of Weihrauch reducibility and its
stronger counterpart. Its evident that strong Weihrauch reducibility implies Weihrauch
reducibility. Furthermore, both Weihrauch reducibility and strong Weihrauch reducibility
satisfy the properties of preorders; that is, they are reflexive and transitive relations.

We denote the corresponding equivalences as ≡W and ≡sW , respectively. To signify
strict reducibilities, we employ the symbols <W and <sW . It’s important to emphasise
that the notation f ≤W g signifies that the oracle g is utilised once during the computa-
tion of f . This implies that utilising the oracle g could potentially present an obstacle,
especially if the domain of g consists solely of intricate or complex points.

The equivalence classes established by ≡W and ≡sW are referred to as Weihrauch
degrees and strong Weihrauch degrees, respectively. The reducibilities ≤W and ≤sW

naturally extend to these degrees.
Definition 2.4 presents a set of algebraic operations that, when applied to Weihrauch

degrees, offer an intuitive interpretation. Notably, while some operations have been
excluded from this definition, several new operations have been introduced to enrich the
framework.

Definition 2.16 (Operations on Weihrauch degrees) Let f, g be problems;

1. f ⊓ g returns either an answer to f or an answer to g,

2. f ⊔ g lets us choose if f or g gives an answer,

3. f × g gets the answers to both f and g in parallel,
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2.3. Weihrauch Reducibility

4. f ⋆ g lets us first apply g, then do some computation, and then apply f .

5. f → g = min{h | g ≤W f ⋆ h},

6. f∗ lets us invoke f finitely many times in parallel, meaning that all queries to f
can be computed without knowing any of the answers.

7. f⋄ lets us invoke f any finite number of times (not specified in advance), where
later queries can be computed from previous answers [165].

8. f̂ lets us use f countably many times in parallel.

9.
⊔

where
⊔

n∈N fn receives an n ∈ N together with an input for fn, and returns a
matching output.

An integral map within the Weihrauch lattice is the limit map, which holds particular
significance. When considering a Hausdorff space X, we establish the limit map (of Baire
space) for this space. The domain of limX consists of all converging sequences in X.

Definition 2.17 1. limX :⊆ XN → X, (xn)n∈N 7→ limn→∞xn.

2. lim :⊆ NN → NN, ⟨p0, p1, p2, . . . ⟩ 7→ limn→∞pn

Brattka and Gherardi studied the Weihrauch reducibility of multivalued functions on
represented spaces in [22]. Limited Principle of Omniscience (LPO) and Lesser Limited
Principle of Omniscience (LLPO) have been introduced in constructive mathematics.
LPO corresponds to the law of the excluded middle (A ∨ ¬A) and LLPO to be de
Morgan’s law ¬(A ∨B) ↔ (¬A ∨ ¬B). Where both are restricted to simple existential
statements.

Definition 2.18 ([22]) We define:

1. LPO : NN → NN, LPO(p) =

{
0 if (∃n ∈ N) p(n) = 0

1 otherwise

2. LLPO :⊆ NN ⇒ NN, LLPO(p) ∋

{
0 if (∀n ∈ N) p(2n) = 0

1 if (∀n ∈ N) p(2n+ 1) = 0

where dom(LLPO) := {p ∈ NN : p(k) ̸= 0 for at most one k}.

2.3.1 Structure of the Weihrauch Lattice

Higuchi and Pauly, [72], demonstrated that Weihrauch degrees and pointed Weihrauch
degrees do not form a Brouwer algebra. They also explored the identification of other
lattices that exhibit the structure of a Heyting or Brouwer algebra. For instance, while
the computable Weihrauch lattice does not conform to a Heyting algebra, the continuous
Weihrauch lattice does. While there are a few cases that remained open at the time of
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2. Computable Analysis and Weihrauch Degrees

this paper, the lattice allows finitely many parallel iterations of non-empty continuous
Weihrauch degrees and the infinite version. Both of these are open concerning Bouwer
algebra, however, the finite version has been confirmed to be true for Heyting algebra.

The investigation into Weihrauch degrees and their structure continues in [29]
following the conclusion that they are not a Brouwer algebra. Instead, they look into
the connections between intuitionistic linear logic and substructural logic. By employing
reduction witnesses as inputs and outputs of multivalued functions they introduce two
new operations; the compositional product of Weihrauch degrees and the implication.

The Weihrauch lattice serves as a tool for classifying the level of incomputability of
mathematical problems. A selection of operators within the Weihrauch lattice are listed
in [64]. This paper operates within the framework of the Type-2 Theory of Effectivity
which provides a realistic and flexible model of computation. It defines negative, positive,
and total closed projection operators, along with their approximated versions. Gherardi,
Marcone and Pauly classify these operators using Weihrauch reducibility depending on
the representation of closed sets and the dimension of the space. Depending on these
factors they found that the projection and approximate projection operators characterise
some of the most fundamental computational classes in the lattice.

The Cantor-Bendixson theorem utilises Polish spaces, perfect and countable sets. A
new study into the Weihrauch lattice introduces the level of Π1

1 − CA0 and explores
problems such as perfect subsets of Polish spaces, studying the perfect set theorem,
the Cantor-Bendixson theorem [43]. They explore the connection of perfect sets and
Cantor-Bendixson theorems in arbitrary computable metric spaces and achieve this
by formulating the Cantor-Bendixson theorem as a problem using perfect kernels and
scattered lists.

2.3.2 Related Reducibilities

In [12], Bauer introduces the concept of extended Weihrauch degrees. Extended
Weihrauch degrees form a class derived from a preorder of Weihrauch reducibility,
where the symmetrisation ≡W establishes an equivalence relation. Bauer extends this
concept to encompass both modest extended Weihrauch predicates and ¬¬-dense ex-
tended Weihrauch predicates. Subsequently, they delve into examples of non-trivial
non-¬¬-degrees, the embedding of truth values, and reductions to and from non-modest
degrees.

In their work [55], Day, Downey, and Westrick employ Weihrauch reducibility
in conjunction with parallelised Weihrauch reducibility to investigate discontinuous
functions. In this context, they define three related reducibilities: ≤T , ≤tt, and ≤m for
arbitrary functions. They also examine the α-jump functions, highlighting their ≤m−
minimality within the Baire class and characterising the degree structures associated
with ≤T and ≤tt within Baire 1 functions. These characterisations enable them to
establish an exact match with the α hierarchy.
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2.3. Weihrauch Reducibility

2.3.3 Some Applications of Weihrauch Computability

2.3.3.1 Supergraphs

In their paper [44], Cipriani and Pauly delve into the complexity of finding supergraphs.
They examine various problem variations concerning fixed countable graphs, considering
both subgraphs and induced subgraphs using the framework of Weihrauch reducibility
and effective Wadge degrees. They address the question of whether there exist graphs
for which determining their corresponding supergraph is more intricate. This question
was initially posed in [13], where it was observed that for totally disconnected infinite
graphs, deciding whether they are supergraphs of given graphs is equivalent to LPO, the
simplest discontinuous problem. Cipriani and Pauly confirm the existence of a graph
G such that LPO <W ISG while also exploring the complexity of the search problem.
They conclude that supergraph results do not appear to have a close relationship with
analogous subgraph results. However, they do not currently have conjectures regarding
the expected Weihrauch degrees in this context.

2.3.3.2 Gödel numbers

In [18], Brattka delves into the computability of Gödel numbers and demonstrates that
the Gödel problem and its variants can be naturally classified within the Weihrauch
lattice. They establish an optimal upper bound in terms of the Weihrauch version of the
Kirby-Paris hierarchy, as well as investigate closure properties and lower bounds. Brattka
confirms that C(n)

N and K
(n)
N indeed correspond to IΩ0

n+1 and BΩ0
n+1, respectively. This

classification allows for the categorisation of Gödel problems and their variants with
respect to an appropriate benchmark scale.

Algorithmic learning theory investigates the problem of determining the Gödel
number of a program given a computable sequence of natural numbers. Brattka’s work
[19] delves into this problem when dealing with computable sequences and classifies its
Weihrauch complexity. In their study, they employ learning theory, closed and compact
choice, and their jumps on natural numbers. By utilising the Weihrauch version of the
Kirby-Paris hierarchy, Brattka demonstrates that the upper bound of G≥ can be reduced
to LPO∗ and establishes that these bounds are minimal. Furthermore, they explore
the closure properties of G, effective discontinuity, and lower bounds for Kolmogorov
complexity.

2.3.3.3 Ramsey’s Theorem

Dorais et al. showed that Ramsey’s theorem for n-tuples and k many colours is not
uniformly, or Weihrauch, reducible to Ramsey’s theorem for n-tuples and j many colours
[56]. They introduced the Squashing Theorem, enabling the deduction of multiple
applications of a given principle which, in many cases, cannot be uniformly reduced to
one. Their work also delves into Weihrauch reductions for thin sets, WWKL and the
Rainbow Ramsey Theorem.
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Pradic and Soldà explored the additive Ramsey theorem, which involves coloured
pairs of rational numbers and incorporates additional colour-related structure [130]. They
also introduced a simpler statement known as the shuffle principle. This principle asserts
that every Q-indexed word contains a convex subword in which each letter appears
densely or not at all. Additionally, they employed Weihrauch complexity to determine
the strength of an additive Ramseyan theorem over the rationals within the context
of reverse mathematics. This determination was found to be Weihrauch equivalent to
TC∗

N × (LPO′)∗. Furthermore, it was established as equivalent to Σ0
2-induction and

showed that the problem decomposes nicely into the distinct complexities (LPO′)∗ or
TC∗

N.

2.3.3.4 Brouwer’s Fixed Point Theorem

Brouwer’s Fixed Point Theorem is a pivotal result stating that every continuous function
F : D 7→ D mapping a compact convex set D ⊆ Rm to itself has a fixed point x∗ ∈ D,
such that F (x∗) = x∗. In other words, there exists a point within the set that remains
unchanged under the function’s transformation. These principles collectively form the
backdrop for exploring the logical foundations of various mathematical phenomena.

The Brouwer Fixed Point Theorem was proved to be computably equivalent to
connected to choice for any fixed dimension [27]. This equivalence is achieved by
representing closed sets by trees of rational complexes. Both the Brouwer Fixed Point
Theorem of dimension one and the Intermediate Value Theorem were found to not be
idempotent, using a displacement principle that provides information on the power of
binary choice on the left-hand side of a reduction.

2.4 Choice Principles

The Weihrauch lattice encompasses various Weihrauch degrees, including omniscience
principles and choice principles. Choice principles represent multivalued functions with
a non-empty, closed subset as an input and an element of the closed set as an output.
Within [21], a range of choice principles are defined and examined as boundedness
principles. Various different analyses and functional theorems are explored in order to
classify their Weihrauch degree. Different techniques are used to achieve this, such as
the parallelisation principle, the mind change principle and the Baire category principle.

The choice problem, denoted as CX for a given space X, involves the task of locating
a point within a specified closed set A ⊆ X. This seemingly simple yet fundamental
problem leads to the derivation of various significant Weihrauch degrees by strategically
selecting appropriate spaces X. Closed choice principles are multivalued functions taking
as input a non-empty closed subset of some fixed space, and have to provide some
element of the closed set as output.

Definition 2.19 (Closed Choice) Let X be a represented space. Then the closed choice
operation CX :⊆ A(X) ⇒ X of this space is defined by x ∈ CX(A) iff x ∈ A.
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Definition 2.20 Finite closed choice, denoted as Ck, operates within the ambient
space {0, 1, . . . , k − 1}. The input consists of an enumeration of a subset (which can
be empty) excluding at least one element. Valid outputs encompass any numbers from
{0, 1, . . . , k − 1} that are absent from the enumeration.

The investigation into choice principles extends to finite sets and convex sets in
[134], where Le Roux and Pauly establish the dimension of convex sets that can be
characterised by the cardinality of finite sets. Le Roux and Pauly delve into finding zeros
of functions with finite local extrema. They employ an algorithm to compute a fixed
finite number of real numbers that will include all zeros of the function at hand. Their
work reveals that finding a zero of a continuous function with finite local minima is
Weihrauch reducible to C{1,...,3n}. In addition, they establish that C{1,...,n} is Weihrauch
reducible to finding roots of polynomials of degree 2n.

The choice problem has been subject to extensive study through numerous variants,
often involving restrictions to closed subsets possessing specific additional properties.

Definition 2.21 (Variants of Choice) 1. Unique choice: UCX is CX restricted to
singletons,

2. Connected choice: CCX is CX is restricted to connected sets,

3. Pathwise connected choice: PWCCX is CX restricted to pathwise connected sets,

4. Convex choice: XCX is CX restricted to convex sets,

5. Positive choice: PCX is CX restricted to sets with positive measure,

6. All-or-unique choice: AoUCX is CX restricted to sets of the form {x} or X,

7. All-or-co-unique choice: ACCX is CX restricted to sets of the form X\{x} or X,

8. Co-finite choice: CFCX is CX restricted to co-finite sets.

Drawing special attention to the AOUC principle, which holds immense significance
in this research, AoUC[0,1] operates with an abstract input that delineates valid solutions
x ∈ {0, 1}N as follows: Initially, the entire set {0, 1}N is considered a valid solution. This
state can persist indefinitely (termed the ‘all’ case), or at some juncture, we may receive
information that there exists a sole correct answer, accompanied by knowledge of what
that answer is (referred to as the ‘unique’ case).

It’s worth noting that another choice problem, denoted as KX :⊆ K _(X) ⇒ X,K ⊢
K and is referred to as ‘compact choice’ exists. Unlike the other choice problems, this
one not only constrains CX to compact sets but also augments the input information.
Specifically, the input set K is described as a compact set, defined in previous sections.

Any single-valued function f that can be computed from compact choice and another
function g can already be computed by g alone [20]. This provides the possibility to
‘divide’ by compact choice in some situations. The notion of mind changes is introduced,
wherein a function is computable with finitely many mind changes if it can be computed
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on a Turing machine that revises its output at most finitely many times for each particular
input.

We present an overview of significant classes of functions that can be delineated
through suitable versions of the choice principle.

Notions of Computability: Let f be a problem. All the given properties of f are
invariant.

1. f ≤W CN ⇐⇒ f is computable with finitely many mind changes.

2. f ≤W C2N ⇐⇒ f is non-deterministically computable.

3. f ≤W PC2N ⇐⇒ f is Las Vegas Computable.

Numerical quantities that remain invariant under Weihrauch reducibility can also
provide valuable insights. In this regard, another useful approach involves considering
the number of mind changes necessary to compute a problem. Denoted as mind(f),
this value represents the minimum number n ∈ N that a Turing machine with two-way
output requires to compute f , ensuring a maximum of n mind changes across all inputs
(if such a number exists).

Furthermore, our exploration delves into computation with a finite number of
mind changes. Our journey begins with a model of computation where the machine
progressively generates more and more digits of the infinite code for the desired output.
However, we augment this process by granting the machine the capability to erase all
previously written digits and commence anew. To maintain the integrity of the output,
this erasure ability can be invoked only finitely many times. The result is an upper
bound that sheds light on the number of mind changes needed for the computation. A
problem is solvable with many mind changes if and only if it is Weihrauch reducible to
Cn.

A Las Vegas machine employs random coin flips to aid its computation. While it
can halt at any point, reporting a fault and aborting, if it continues indefinitely, it must
produce a valid output. For each input, the probability (based on the coin flips) of
generating a correct output needs to be positive (without necessitating a global positive
lower bound). Therefore, a problem is considered Las Vegas computable if it can be
Weihrauch-reduced to WWKL.

By relaxing the requirement that an incorrect output must be reported during
computation, we encounter Monte Carlo machines. These machines also employ random
coin tosses and adhere to the condition that any completed output must be accurate.
However, they can fail by simply ceasing to produce output. A problem is classified as
Monte Carlo computable if it can be Weihrauch-reduced to WWKL′, which is prime
with C ′

n.

2.5 Reverse Mathematics Principles

Reverse mathematics seeks to answer the question of which axioms are appropriate for
mathematics. An extensive introduction to this topic is provided by Simpson [143]. If
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a mathematical theorem is proved from an appropriately weak set existence axioms,
then the axioms will be logically equivalent to the theorem. This book goes into depth
on many of these axioms such as RCA0, WKL0, ACA0, ATR−0 and Π0

0. Several key
principles and concepts play significant roles in understanding the logical strengths and
interrelationships of various mathematical theorems.

A newly published textbook [51] delves into the intricacies of demonstrating mathe-
matical theorems and resolving mathematical conundrums. The book adopts a contempo-
rary approach to reverse mathematics by interlacing reductions rooted in computability
theory with proofs grounded in formal arithmetic. This fusion allows for an assessment of
the intricacy of theorems and problems across the entire spectrum of mathematics. The
work serves as a comprehensive primer on reverse mathematics, presenting a thorough
exploration of the reverse mathematics pertaining to combinatorics. Furthermore, it
encapsulates pivotal findings and approaches from the most recent twenty-year period.
Each chapter is enriched with a plethora of exercises spanning various levels of difficulty,
thus complementing the content effectively.

Recursive Comprehension Axiom, often denoted as RCA0, serves as the foundational
system in the field of reverse mathematics. It is a subset of second-order arithmetic
designed to align with computable and constructive mathematics principles. In RCA0,
the comprehensive schema is modified to apply exclusively to ∆0

1 sets. Basically,
∃X∀n(n ∈ X ↔ ϕ(n)). However, this must be expressible as a ∆0

1 formula. Additionally,
the induction principle is restricted to Σ0

1 formulas.
Arithmetical comprehension (ACA0) is a formal system defined similarly to RCA0,

although it is, in fact, much stronger. It incorporates all the logical and arithmetic
axioms of standard Peano arithmetic, in addition to including a comprehensive schema
covering all arithmetic formulas. ACA0 enables us to construct the set of natural
numbers satisfying arbitrary arithmetical formulas (with no bounded set variables).

Hirschfeldt also contributes to the exploration of reverse mathematics and computable
mathematics in his work [74]. He delves into a range of phenomena and techniques.
The book includes an introduction to König’s Lemma and computability. They focus
on Ramsey’s Theorem, with particular attention on stability, cohesiveness and Mathias
forcing. The Weak König’s Lemma (WKL) states that every infinite and definable tree
admits an infinite path, forming a foundational principle that has implications across
various mathematical areas. WWKL, an abbreviation for Weak Weak König’s Lemma,
asserts the presence of an infinite path within an infinite binary tree, demonstrating a
weaker version of the classical König’s Lemma.

Arithmetical transfinite recursion (ATR0) is a subsystem of second-order arithmetic
that is logically stronger than ACA0. This system can be described as an extension
of ACA0 by allowing the transfinite iteration of the Turing jump operator along any
countable well-ordering. ATR0 is considered impredicative, and has the proof-theoretic
ordinal Γ0, the supremum of that of predicative systems.

In the realm of reverse mathematics, both Π0
1 and Π1

1 classes assume pivotal roles,
contributing to the classification and comparison of mathematical principles and theorems
based on their logical properties. Π0

1 classes represent sets of natural numbers that can
be defined by specifying conditions universally applicable to all natural numbers. On
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the contrary, Π1
1 classes extend the hierarchy of descriptive set theory and introduce

a higher degree of complexity. A set belongs to a Π1
1 class if its characterisation

entails conditions that universally apply to all natural numbers, followed by conditions
that existentially hold for certain additional parameters. This incorporation of both
universal and existential quantification empowers Π1

1 classes to encapsulate more intricate
mathematical properties and relationships in contrast to the capabilities of Π0

1 classes.
One of the strongest subsystems is Π1

1−CA0, which can be defined as the subsystem
consisting of RCA0 together with the comprehension scheme for Π1

1 formulas. Π1
1 −CA0

proves the induction scheme for Π1
1 formulas and for Σ1

1 formulas as well.
The connection between reverse mathematics and computable analysis has been a

long-standing investigation. A recent development in this field focuses on first-order
strength, with the most robust outcome referred to as the first-order part of the theorem.
In their work [58], the concept of the first-order part of a problem is introduced,
capturing the strongest ‘number-theoretic’ problem that is Weihrauch reducible to the
given problem. Dzhafarov, Solomon and Yokoyama demonstrate that if a theorem
is undiagonalisable (such as COH, FIP, and Π0

1G), its first-order part as a problem
becomes trivial. This insight allows them to conclude that these theorems are uniformly
computably true.

2.6 Translating Between Spaces of Subsets

It is important to note this is new research ([48]). Section 2.2 introduces various subsets
such as closed, compact and overt. This raises the question of when we can translate
between two of these subsets. We know that Hausdorff compact subsets are also closed
and that overt subsets have some of the same elements as closed subsets. Therefore, how
can we use this to find the Weihrauch computability of these translations. According
to the literature, closed to compact subsets has not been studied yet. In this work, we
answer this open question.

A name for some set A ∈ K(Rn) can be thought of as a name for A ∈ A(Rn) along
with some M ∈ N such that A ⊆ [−M,M ]n (e.g. [164]). Consequently, the translation
id :⊆ A(Rn) → K(Rn) merely involves determining an appropriate bound M . To classify
its Weihrauch degree, we compare it to the following: The principle Π0

1Bound takes a
finite closed subset of N as input and produces an upper bound for it. Its counterpart
Π1

1Bound was introduced and explored in [65]. Using Π0
2CN we denote the choice

operator for Π0
2-subsets of N. This entails being given a Π0

2-code for some non-empty
A ⊆ N and needing to provide an n ∈ A. Then Π0

2CN|upw-cl represents the restriction of
Π0

2CN to upwards-closed sets, i.e. those A ⊆ N where n ∈ A and n < m implies m ∈ A.

Theorem 2.22 [jww Arno Pauly] The following are Weihrauch equivalent:

1. id :⊆ A(Rn) → K(Rn)

2. id :⊆ A(N) → K(N)

3. Π0
1Bound :⊆ A(N) ⇒ N
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4. Π0
2CN|upw-cl :⊆ Π0

2(N) ⇒ N

Proof. 1. (id :⊆ A(Rn) → K(Rn)) ≤W Π0
1Bound

Given an element A ∈ A(Rn), we have the capability to compute the set {k ∈
N | A ∩ ([−k − 1, k + 1]n \ (−k, k)n) ̸= ∅} ∈ A(N). This is feasible because each
[−k− 1, k+1]n \ (−k, k)n is at our disposal as a compact set. When A is bounded,
the resulting set is finite. Any upper bound for this set (provided by Π0

1Bound)
serves to complete the A(Rn)-name for A to a K(Rn)-name for A.

2. (id :⊆ A(N) → K(N)) ≤W (id :⊆ A(Rn) → K(Rn))

We can embed A(N) into A(Rn) by mapping A to {(k, . . . , k) ∈ Rn | k ∈ A}.

3. (id :⊆ A(N) → K(N)) ≡W Π0
1Bound

By its definition, Π0
1Bound is the very task of finding the upper bound that

differentiates a K(N)-name of a finite subset of N from a A(N)-name for the same
set.

4. Π0
1Bound ≤W Π0

2CN|upw-cl

For M ∈ N to be an upper bound for A ∈ A(N) is stating that for all t > M ,
t /∈ A. This is a Π0

2-statement, and the set of solutions is clearly upwards closed.

5. Π0
2CN|upw-cl ≤W Π0

1Bound

A set A ∈ Π0
2(N) can be represented by a sequence (pn,i) ∈ 2N×N such that

A = {n ∈ N | ∃∞i ∈ N pn,i = 1}. From this representation, we can derive the
closed set B = {⟨n, i⟩ ∈ N2 | pn,i = 1 ∧ ∀j > i pn,i = 0}. If A is upwards-closed,
B is finite. Additionally, under the assumption of a reasonably defined pairing
function, any strict upper bound for B also serves as a strict upper bound for the
complement of A, hence belonging to A. Consequently, by applying Π0

1Bound to
B, we acquire a value n ∈ N, implying that n+ 1 ∈ A.

Definition 2.23 ([65]) Let X be a represented space and f :⊆ Y ⇒ Z be a multivalued
function. We define DetX(f) :⊆ NN × Y → X by

DetX(f)(p, y) = x ⇐⇒ (∀s ∈ δ−1
Z (f(y)))(δX(Φp(s)) = x),

where Φ(.) is an universal Turing functional. The domain of DetX(f) is maximal for this
to be well-defined. We write Det(f) for DetNN(f).

Det(f) is the greatest Weihrauch degree of a single-valued function with codomain
NN which is Weihrauch reducible to f . We can conclude that:

Corollary 2.24 Det(id :⊆ A(Rn) → K(Rn)) ≡W CN.

Proof. This follows from [65, Lemma 4.13] and Theorem 2.22. For the reverse direction,
we recall that UCN ≡W CN, and that given some {n} ∈ A(N), some upper bound M ≥ n
suffices to compute n.
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Proposition 2.25. isInfiniteS ≤W Π0
1Bound

Proof. Given some p ∈ {0, 1}N, we can compute the set of positions in p where a 1
appears for the last time as an element of A(N) - it is either a singleton or the empty
set. If we obtain a bound N for this set from Π0

1Bound, then we know that we will
encounter a 1 in p after position N iff p contains infinitely many 1s.

Proposition 2.26. Π0
1Bound×Π0

1Bound ≤W Π0
1Bound

Proof. We can just take the union of the two closed sets we obtain as an input on the
left, and use it as an input for the single copy of Π0

1Bound. Any resulting upper bound
is a correct output for both instances.
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Chapter 3

Game Theory and Hypergame
Theory
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3.1 Game Theory

Game theory is a branch of mathematics that studies how individuals and entities make
decisions in strategic situations where their choices affect each other’s outcomes. It
involves analysing the interactions between players, their choices, and the outcomes
they collectively achieve, often with the goal of understanding optimal decision-making
strategies and predicting the likely results of various scenarios. Standard sources on
game theory include [104] and [117]. My Masters Thesis also explored Game theory and
games with incomplete information [46]. In the context of cybersecurity (needed for
Chapter 8), the dilemma can be conceptualised as a competition between attackers and
defenders vying for control over a system.

There are two primary representations in Game theory; extensive-form (tree form)
and normal-form (matrix form). Extensive-form presents the information as a decision
tree, where actions are selected from the root to a leaf, culminating in a payoff for the
entire path. In our paper, we focus on normal-form games, where players’ strategies
are depicted as the matrix’s rows and columns. The payoffs are then located at the
intersection of these strategies.

Definition 3.1 A game in normal-form is an ordered triple, G = (N, (Si)i∈N , (ui)i∈N )
in which:
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3. Game Theory and Hypergame Theory

• N={1,2,...,n} is a finite set of players.

• Si is the set of strategies of player i, for every i ∈ N .
Denote the set of all vectors of strategies by S = S1 × S2 × ...× Sn.

• ui : S → R is a utility function.

The utility function ui associates each vector of strategies, S = (Si)i∈N with the
payoff ui(S) to player i.

In the realm of game theory, the participants are referred to as agents or players.
Players are defined as a set of rational agents who take actions based on a set of available
choices, which means they will always act to their own advantage. The set of players is
defined as n ∈ N . In order to define a game, the rules need to be defined. These are the
moves each player can make, typically referred to as the strategies of each player.

An example of a normal-form game is shown in Table 3.1. In this scenario, the
defender (d) is tasked with protecting two targets against the actions of the attacker (a).
The game entails the following choices: the defender can opt to defend target 1 (d1) or
target 2 (d2), while the attacker can decide to attack target 1 (a1) or target 2 (a2). The
payoffs within the cells represent the respective payoffs for the defender and attacker,
where a higher value indicates a more favorable outcome.

a1 a2
d1 1,0 -10,10
d2 -2,2 1,0

Table 3.1: A basic 2-player game in normal-form, with an attacker (a) and defender (d)

The measure of satisfaction of the player is defined as the utility of a player or the
payoff. This utility represents the reward obtained by selecting a specific course of action,
which can signify projected financial losses or damages. The rational decision-making
of the players is driven by utility as it implies a ranking or priority among the options.
Rooted in decision theory, the utility function allows the player to calculate the expected
utility based on their preferences when set against an indifferent player. Utility, uij , is
the given payoff for player i for taking action j, where uij ∈ U , U is the set of all utility
functions.

Considering the game in Table 3.1, there is a clear preference for the defender to
play d2, as the worst outcome would only be −2 instead of the −10 of d1. The ultimate
payoff in a game remains undisclosed until both players have executed their actions,
as a player’s reward hinges on their action in conjunction with the actions of all other
participants.

In game theory, players can adopt either pure strategies or mixed strategies in terms
of the process by which the player chooses between sets of actions. Pure strategies are
the complete action taken by a player, they can be a single choice or action in a simple
game or a set of decisions. Importantly, pure strategies are uninterruptable, once all
players have chosen a strategy, all actions are executed simultaneously.
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3.1. Game Theory

Definition 3.2 A pure strategy for a player i is given as si and the set of possible
strategies is given by Si = {s1i , . . . , smi } where smi is the mth strategy for player i.

For the game set out in Table 3.1, each player has two strategies target 1 and 2, the
notation for this would give Sd = {s1d, s2d} and Sa = {s1a, s2a}.

On the other hand, mixed strategies are a probability distribution across various
pure strategies that a player views as viable choices.

Definition 3.3 A mixed strategy, σ, for player i is given as σi = (p1i , . . . , p
m
i ) where pmi

represents the probability of player i playing pure strategies m.

Each mixed strategy is subject to the constraint
∑

j p
j
i = 1. The utility for a mixed

strategy is given as ui(σi, σ−i).
The utility (ui) of a player is the payoff assigned to that player based on the actions

of all participants.

Definition 3.4 A utility is defined as ui(si, s−i), where si represents the strategy chosen
by player i and s−i signifies the strategy of all other players.

A utility function allows us to make judgements and analyse preferences of strategies.
To achieve this, a preference ordering is needed. Ordered preferences show how different
outcomes satisfy the player’s preferences. The assumption of transitivity is an example
of this, if a player prefers outcome x to y and prefers y to z it is consistent if they prefer
x to z.

Definition 3.5 Let O be a set of outcomes and ≿ be a complete, reflexive, transitive
preference relation over O. A function u : O → R is called a utility function representing
≿ if for all x, y ∈ O x ≿ y ⇔ u(x) ≥ u(y).

Definition 3.5 implies that u is a function associating an outcome with a real number,
where the higher the real number associated with it, the more preferred the relative
outcome. The utility numbers are known as ordinal utility as they convey nothing more
than information on the ordering of preferences [70].

In the game from Table 3.1 if the defender opts for d2 the payoff will be based
on the action of the attacker. If the attacker plays a1 the defender’s utility would be
ud(d2, a1) = −2.

Games can be categorised based on the information players possess regarding the
actions of others. Perfect information implies that all players are fully aware of every
move that has transpired. On the other hand, imperfect information is when players
lack knowledge of each other’s previous moves. Additionally, games can be classified
according to the extent of information about the game’s structure and participants’
utility functions. Complete information denotes the structure of the game and the
payoffs/utility functions of the players are common knowledge. An example of this is
chess as all of the rules are laid out fully before the game begins. Conversely, incomplete
information is when players lack full knowledge of the game’s structure or other players’
utility functions or strategies.
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3. Game Theory and Hypergame Theory

The optimal solution within a game is defined as the strategy from which no player
can achieve a higher utility by deviating. This optimal strategy for all players is referred
to as an equilibrium. At this equilibrium point, no player is incentivised to alter their
strategy, denoted as σ∗. This is given by ui(σ

∗
i , σ−i) ≥ ui(σ

′
i, σ−i) where σ′

i is any
alternative strategy to σi and σ−i is the best response strategy amongst all other players.

Definition 3.6 A strategy vector s∗ = (s∗1, ..., s
∗
n) is a Nash Equilibrium if for each

player i ∈ N and each strategy si ∈ Si, the following is being satisfied:

ui(s
∗) ≥ ui(si, S

∗
i ).

The payoff vector u(s∗) is the equilibrium payoff corresponding to the Nash equilibrium
s∗.

The expected payoff for a mixed strategy is defined as the sum of each utility given
the probability that the utility is achieved. The expected utilities for the attacker and
defender can be shown by ua =

∑
j p

j
aua(σa, σd) and ud =

∑
j p

j
dud(σd, σa).

Definition 3.7 A Nash Equilibrium for a two-player game is defined as

maxσa

(∑
j

pjaua(σa, σd)
)

and maxσd

(∑
j

pjdud(σd, σa)
)
.

Given the game in Table 3.1 and the optimal strategies σ∗
d = (0.333, 0.667), meaning

the defender plays d1 with p1 = 0.333 and p2 = 0.667, meanwhile the attackers optimal
strategy is σ∗

a = (0.667, 0.333). In order to calculate the expected payoff for d1, calculate
the individual utilities:

ud(d1, a1)pd(d1)pa(a1) = 1× 0.333× 0.667 = 0.222

ud(d1, a2)pd(d1)pa(a2) = −10× 0.333× 0.333 = −1.110

ud(d2, a1)pd(d2)pa(a1) = −2× 0.667× 0.667 = −0.890

ud(d2, a2)pd(d2)pa(a2) = 1× 0.667× 0.333 = 0.222

Then sum the equations for the final result of the expected utility of d1 being -1.556.
Game theory involves the study of interactions among rational agents aiming to

maximise their gains. It uses diverse methods to model these interactions, capturing
complex scenarios. In the case of cyber-related responsibilities, instead of replacing
decision-making processes, game-theoretic approaches should compliment and enhance
them.

At the core of game theory is the concept of ‘regret minimisation.’ This strategy
seeks to minimise the gap between the outcomes achieved through a player’s chosen
actions and those achievable by different strategies. Regret minimisation strives to refine
decision-making strategies by learning from past actions and their outcomes. A paper
exploring regret minimisation in games with incomplete information can be found in
[170].
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Within this thesis, several other games are referenced to provide context and illustrate
key concepts. One of these is the Gale-Stewart games, which serve to highlight the
applications of Π0

1-classes. In a Gale-Stewart game, two players take turns selecting
elements ai from the set {0, 1} [145].

Another notable game discussed is the Infinite Repeated Prisoner’s Dilemma. This
scenario involves an infinitely repeated situation where decision-makers continually face
the prisoner’s dilemma. In this dilemma, each individual is incentivised to choose in a
manner that results in a suboptimal outcome for the collective group. Many approaches
have been investigated as to the strategies of the game such as Tit-For-Tat and Grim
trigger [50].

3.2 Machine Learning and Game Theory

3.2.1 Game Theory and Learning

3.2.1.1 Adversarial Learning

Machine learning is a methodology designed to extract meaningful patterns from large
amounts of data. Adversarial learning delves into the connection between a learning
system and the adversary, typically characterised by opposed preferences. In their survey,
Zhou, Kantarcioglu and Xi explore game theoretic models used in adversarial learning
[169]. This area involves two main types of games: simultaneous games and sequential
games.

The simultaneous games are commonly represented as zero-sum games, where the
learner searches for an optimal strategy that maximises their expected payoff while
anticipating the adversary to do the opposite. On the other hand, sequential games offer
the learner opportunities to capitalise on first-mover advantages by controlling the cost
the adversary incurs to evade detection.

To model the roles of both the adversary and the learner, Stackelberg games are
employed. In this framework, the adversary takes on the role of the leader, playing the
most rational strategy at each move. Meanwhile, the learner acts as the leader and
simulates the antivirus software. The adversary is more likely to probe for the software
classifiers.

Bayesian Stackelberg games and Single-Leader-Multifollower games are also consid-
ered, as there may be different adversaries that need to be taken into account, or many
adversaries at the same time.

3.2.1.2 Multi-agent Reinforcement Learning

Reinforcement learning draws inspiration from animal learning, where good behaviours
are rewarded and unfavourable behaviours are punished. Unlike supervised learning,
which involves a teacher, reinforcement learning revolves around the learner making
decisions and evaluating the outcomes. In their study, Tuyls and Nowé explored various
learning techniques and compared them [156]. Their investigation revealed that while
independent learners’ performance deteriorates with increased information, they excel in
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revelation games. However, they are not guaranteed to converge to the Pareto Optimal
Nash equilibrium. In contrast, revelation learners could not overcome penalties in the
penalty game. Frequency Maximum Q technique (FMQ) learners achieved a convergence
rate of 100% in identical payoff games, though assurance was lacking in other game
scenarios. However, when games have an optimal group utility that differs from the
agents’ personal utility, FMQ learners fail to reach the optimal solution. Exploring
Selfish Reinforcement Learning (ESRL) learners, while reaching the Pareto optimal
solution in all games, generally required more time to converge compared to FMQ.

Evolutionary game theory’s insight into multi-agent learning was highlighted by
Tuyls and Parsons [157]. This theoretical framework offers a means to analyse the
behaviour of multi-agent systems, particularly in scenarios where agents lack complete
information about each other’s goals and the game state. Given the dynamic nature of
multi-agent systems, where agents can alter their behaviours over time, evolutionary
game theory provides a robust foundation for understanding these iterative dynamics.
Tuyls and Parsons findings indicate that the normative agenda has limited contributions
to the goals of multi-agent learning, while the descriptive agenda holds the potential for
building systems involving real agents and human interactions.

3.2.1.3 Boosting Learning Algorithms

Boosting stands as a general method for improving the accuracy of any given learning
algorithm, an explanation of this and its connection to game theory was completed by
Schapire [140]. The AdaBoost algorithm maintains a distribution or set of weights over
the training set. Initially, all the weights are equal but in each round, the weights of
incorrectly classified examples are increased. This compels the learner to focus on the
hard examples.

Classical game theory involves two-player zero-sum games which can be presented
as a game matrix. Boosting can be viewed as the repeated play of a particular game
matrix. The boosting algorithm takes on the role of the row player, while the base
learner assumes the position of the column player. A well-known example of boosting
and game theory is von Neumann’s famous minmax theorem. This theorem explains
that the AdaBoost theorem, at least, has the potential for success.

3.2.2 Game Theory and Artificial Intelligence

Both game theory and Artificial Intelligence (AI) revolve around ‘intelligent’ agents
navigating a complex world. Despite their profound connections, the research directions
of the two disciplines have often diverged. Tennenholtz looks into this intriguing
intersection [153]. The discussion encompasses topics such as reasoning within distributed
systems, incorporating communication and rationality constraints, reinforcement learning,
modelling agents as expected utility maximisers and Savage axiomatisation.

Llewyn ventured into the realm of AI by engaging with the classic game rock-paper-
scissors, employing Q-Tables and Markov Chains [102]. The Q-learning approach aims to
assign values to actions associated with specific states by observing their outcomes. The
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resulting Q-table features rows representing states and columns representing available
actions for each state, yielding a 3x3 table. To enhance the agents’ decision-making
abilities, a ‘perception’ element was introduced, allowing them to consider past moves.
This adaption of adding one move backwards leads to a 9x3 table. Meanwhile, Markov
chains, representing events occurring over time, were employed. The study utilised a
finite state space Markov chain, with each starting state initialised at a 33.3% probability.

The implementation of the game was completed by coding a game environment
where each agent had their own modules, enabling the repetition of games multiple times.
It was found that the agents’ ability to change what information is held about their
opponents was the most important aspect for securing victories. Intriguingly, while the
capacity to consider a larger history of past games seemed advantageous, it paradoxically
slowed down agents’ adaptation to shifts in opponents’ strategies.

Attala also explored this game, employing both Markov Chains and Support Vector
Machines (SVM) [6]. SVMs identify the optimal separating Hyperplane that distinguishes
classes in the training data. They utilised n moves from the opponent as training data,
recording both the moves and their outcomes. These were implemented using Python,
where each outcome was represented by 0,1,2. This allows actions to be compared using
+1 (mod 3) for wins and −1 (mod 3) for losses. Notably, SVMs with non-linear kernels
demonstrated heightened effectiveness, adept at accommodating both anomalous and
linear behaviour. Their Python implementation highlighted that first-order Markov
chains, basing decisions solely on the previous game, experienced exponentially reduced
prediction accuracy as block length exceeded 1. Exploring Nash equilibria in SVM
games, C-values generally converged to 1, with occasional occurrences of 0.7, 0.9, and 1
at equal probabilities.

Transforming an extensive-form game into a Partially Observable Markov Decision
Process (POMDP) model for a single player is feasible under the assumption of a
fixed opponent [115]. POMDPs address scenarios rife with state uncertainty, providing
observations that offer hints about the true state. Oliehoek showed how to convert an
8-card poker game into a POMDP under the assumption that the opponent is fixed and
known. The solution process of the POMDP entails generating all possible beliefs and
their transition probabilities, effectively constructing a Markov Decision Process (MDP).
This MDP is solved using exact value iteration.

3.3 Game Theory and Complexity

3.3.1 Polynomial Parity Argument on Directed Graphs

An interesting Total Function in NP is called Polynomial Parity Argument (PPA). PPA
is given a finite graph consisting of lines and cycles, there is an even number of endpoints.
The class Polynomial Parity Argument Directed (PPAD) is defined using directed graphs
based on PPA. It involves solving a problem on an exponential-sized directed graph,
with each node having in-degree and out-degree at most one. This is described through
a polynomial-time computable function f(v) that outputs the predecessor and successor
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of v, and a vertex s with a successor but no predecessors, and finds a t ̸= s that either
has no successors or predecessors.

For an introduction to the complexity class PPAD and the complexity of finding Nash
equilibria, refer to [118]. In this work, Papadimitriou explains the rationale behind not
treating the Nash equilibria problem as an NP-complete problem. Unlike NP-complete
problems, every game is guaranteed to have a Nash equilibrium whereas NP-complete
problems may or may not exist. After introducing succinct and graphical representations
of games, the paper proceeds to present a proof that finding a mixed Nash equilibrium
is PPAD-complete.

The problem of finding a Nash equilibrium in a two-player game with rational payoffs
falls under the complexity class PPAD [40] where it is established to be PPAD complete.
The PPAD is a subset of the class Total Function Problems (TFNP). This can be
extended to show that finding an approximate equilibrium in a non-cooperative game
among three or more players is also in PPAD.

Goldberg and Papadimitriou contribute to the understanding of the complexity
of Nash equilibrium by revealing that it doesn’t form an infinite hierarchy; rather, it
collapses to the fourth level [66]. In their paper, they outline how to reduce graphical
games to strategic form games and vice versa. Therefore, by applying both reductions
to a strategic form or graphical game, they obtain a game of the same type that is at
least as hard to solve, despite having restrictions on its structure.

The search problem for an r-player game in strategic form with a binary integer is
defined as r-Nash within [54], where they demonstrated that r-Nash falls within PPAD.
A search problem is considered PPAD-complete if all problems in PPAD reduce to it.
Daskalakis, Goldberg and Papadimitriou show that 4-Nash is PPAD-complete in their
main theorem of the paper, (these results use sets of mixed strategies which are ϵ-Nash
equilibrium).

The three aforementioned papers establish that the general Nash equilibria problem
for both strategic form games and graphical games can be reduced to two-player games.
Daskalakis, Fabrikant and Papadimitriou extend these results to all known representations
of games and to more sophisticated concepts of equilibrium [53]. They achieve this using
succinct games and expected utility, where the latter involves computing the expected
utility of a player given a mixed strategy profile.

Papadimitriou and Roughgarden provide a constructive proof in [119] that every game
possesses a correlated equilibrium. They also introduced the notion of the polynomial
expectation property. Their work demonstrated that optimal correlated equilibria of
anonymous games can be computed in polynomial time, along with graphical games with
bounded tree width. A corollary shows a contrast to symmetric games with a constant
number of players by combining various results to show that it is PPAD-complete to
compute a symmetric Nash equilibrium.

3.3.2 Fixed-Point Complexity

FIXP, denoting the class of fixed point problems, involves expressing search problems
as fixed point problems for functions represented by polynomial-sized algebraic circuits
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using operations like {+, -, *, /, max, min} along with rational constants.
The Fixed-Point complexity class (FIXP) is a class of real-valued total search

problems introduced within [59]. They show that Nash exactly characterises the search
problems that can be cast as fixed points of functions represented by algebraic circuits.
The computation of Nash equilibria for three or more players is complete for FIXP.

3.4 Hypergame Theory

Hypergames are a system comprised of a set of games with incomplete information.
Each game in the system shows the game from one player’s viewpoint. Bennett [16]
introduces a hypergame.

Definition 3.8 (Bennett’s Definition) An n-person hypergame in normal form is a
system consisting of:

• a set Pn of n elements (the players of the hypergame),

• for each p, q ∈ Pn a non-empty finite set Sq
p (the set of strategies available for p),

• for each p, q ∈ Pn an ordering relationship Oq
p defined over the product space

Sq
1 × · · · × Sq

n, (p’s preference ordering, perceived by q).

The sets Sq
1 , . . . , S

q
n are player q’s strategy matrix. The set Pn and the orderings

P q
1 , . . . , O

q
n are player q’s game within the hypergame, denoted Gq. The hypergame H,

is considered the set of n games G1, . . . , Gn.

Hypergames are valuable for resolving situations characterised by miscommunica-
tions about events or available strategies. Bennett further delved into this concept
by examining various case studies of hypergames [15]. He also provided a schematic
illustration of strategy mappings for a simple two-player hypergame. This includes the
links between the two perceptual strategy spaces, e.g. the links between the two player
versions of the game. Bennett goes over the straightforward hypergame example called
‘The Fall of France’.

Example 3.9 (The Fall of France) In ‘Fall of France’ there are two players, the
Germans and the Allies, resulting in two games within the hypergame (seen in Figure
3.1). The Allies’ game encompasses the evident strategies that both players could pursue.
Conversely, the Germans introduce a ‘surprise’ strategy which the Allies are unaware of.

The values in the cells represent the preferences of the Germans and the Allies in
that order, with higher values indicating stronger preferences. The Nash equilibrium
in the Allies’ game is (AN,MN), while in the German game is (AN,N+C). Despite
the similarity in outcomes between these distinct games, this analysis doesn’t consider
the scenario where the Germans are aware of the Allies’ lack of knowledge about the
extra strategy. In such a situation, the Germans can take this perspective into account,
introducing ‘higher-order’ beliefs. These beliefs enable the Germans to anticipate that
the Allies would most likely take the ‘Move North’ strategy. Consequently, the Germans
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Allies’ game:
AML =Attack Maginot Line
AN =Attack in North
RML = Reinforce Maginot Line
MN = Move North

German game:
AML, AN, RML, MN = As in Allies’ game
AA = Attack through Ardennes
N + C = Go North, but then counterattack
             behind Ardennes 

Figure 3.1: A simple two-player hypergame, ‘The Fall of France’

can deviate from the Nash equilibrium’s ‘Attack in North’ and instead choose ‘Attack
through Ardennes’, securing a robust victory (which indeed happened).

In addition to illustrating the connections between the perceptual space and the ‘basic’
space, which is the ‘standard’ normal-form two-player game, Bennett also emphasises
the need for a systematic framework for hypergames to prevent the occurrence of an
infinite loop that might arise from a series of perception levels. In order to achieve this,
Bennett introduces a comprehensive hypergame definition that encompasses all levels of
strategies, perceptions, and strategy mappings.

Given that hypergames can effectively represent scenarios where different parties
hold varying beliefs about the game, employing them to model conflicts is a logical
progression. Bennett and Huxham pursued this using two phases, involving preliminary
problem-solving and formal model-building and analysis [14]. The preliminary problem-
solving phase aims to get a structured picture of the problem by identifying the players,
interactions, and their respective objectives. The formal model-building and analysis
phase takes this structured overview and considers the simplest possible theoretical
systems of it. This process ensures not only the feasibility of constructing a model for the
situation but also the inclusion of crucial information and known idealisations within this
simplified framework. This simplified structure serves as a foundation for constructing
more intricate models, wherein additional elements are incrementally introduced based
on the outcomes of preliminary problem-solving. Each newly expanded model is then
subjected to analysis.

Sasaki and Kijima extended this research by exploring Hyper Nash equilibria and
introducing stable Hyper Nash equilibria [137], using a straightforward hypergame
definition.

Definition 3.10 (Simple hypergame) A simple hypergame H is given by (N, (Gi)i∈N ),
where:

• N = {1, . . . , n} is a set of agents involved in the situation,
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• Gi = (N i, Si, ui) is the subjective game of agent i, where:

– N i is a set of agents perceived by agent i.

– Si = ×j∈N iSi
j is a set of strategies perceived by agent i, where Si

j is a set of
strategies of agent j perceived by agent i.

– ui = (uij)j∈N i is a profile of utility functions perceived by agent i, where
uij : S

i → R is agent j’s utility function perceived by agent i.

A Hyper Nash equilibrium combines the Nash equilibria from the individual games.
It encompasses player one’s Nash strategy as perceived by player one and player two’s
Nash strategy as perceived by player two. A set of Hyper Nash equilibria is HN(H) =
×i∈NN(Gi)i of hypergame H.

Definition 3.11 (Hyper Nash equilibrium) There exists a Hyper Nash equilibrium,
(sii

∗)i∈N ∈ ×j∈NSj
j , of a hypergame H iff ∀i ∈ N, sii

∗ ∈ N(Gi)i.

Example 3.12 (The Fall of France Cont.) If we make 1 = Germans and 2 = Allies, we
can create a hypergame;
H = (N, (Gi)i∈N ), N = {1, 2}, G1 = (N1, S1, u1), G2 = (N2, S2, u2) where
N1 = {2}, S1 = S1

2 = {RML,MN,N + C}, N2 = {1}, S2 = S2
1 = {AML,AN}, with

the matrices showing the ordinal utility functions. We can then calculate the Hyper
Nash equilibria;
N(G1)1 = {AN,N + C}, N(G2)2 = {AN,MN},
HN(H) = N(G1)1 ×N(G2)2 = {AN,MN}

A stable Hyper Nash equilibrium occurs when the strategies of other players align with
a player’s perceptions. Therefore, the player has no incentive to update their perceptions,
resulting in a ‘stable’ solution that remains robust even in repeated situations.

Definition 3.13 (Stable Hyper Nash equilibrium) There exists a stable Hyper Nash
equilibrium, (sii

∗∗)i∈N ∈ ×j∈NSj
j , of a hypergame H iff

∀k ∈ N, (sii
∗∗)i∈N ∈ N(Gk).

The set of stable Hyper Nash equilibria is represented as SHN(H) = ∩i∈NN(Gi).
Moreover, their research demonstrates that if a stable Hyper Nash equilibria exists, it is
a Nash equilibria of the base game. A stable Hyper Nash equilibrium can only exist
when Hyper Nash equilibria exist within the hypergame, and all of these Nash equilibria
are a part of the base game.

Example 3.14 (The Fall of France Cont.) No stable Nash equilibria exist in this game
as SHN(H) = N(G1) ∩N(G2) = ∅. This means that the hypergame H is an unstable
hypergame.

A level-0 (zero-level) hypergame denotes a scenario where there is no incomplete
information; all players possess full knowledge of the game and are playing the same game.
A level-1 (first-level) hypergame arises when one player has incomplete information or a
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misperception about another player’s preferences. In a level-2 (second-level) hypergame,
a player is aware of the incomplete information of another player or aware that they are
playing different games.

Hypergames serve as models for games with incomplete information, another such
model is Bayesian games, as introduced by Harsanyi in 1967. Sasaki and Kijima explore
the connection between these two models in their work [139]. They discuss both models
and introduce a method to transform hypergames into a Bayesian game, creating a
Bayesian representation. This transformation allows them to establish that the Hyper
Nash equilibria of the hypergame and the Bayesian Nash equilibria of the Bayesian
representation, lead to the same implications, as well as the best response equilibrium
of extended hypergames and the Nash equilibrium of the Bayesian games.

Wang, Hipel, and Fraser [161] have contributed numerous solution concepts, including
Nash stability, Metagame stabilities, Sequential stability, Stackelberg stability, and
Limited-move stabilities. Their work shows that a hypergame will always have at least
one overall solution if each individual game has one. Nash stability offers an outcome
for a player when it represents their best achievable result, while the rest of the players’
strategies are fixed, disregarding player perceptions. As outlined earlier, the overall
outcome of the game is dependent on each player’s perspective.

Players within hypergames benefit by learning or adapting to their opponents’
strategies. One way this can be addressed is by using an Evolutionary approach. Instead
of focusing on repeated games, a ‘one-shot’ hypergame is extended into a more dynamic
form as demonstrated in [152]. A Network-type n-person hypergame is introduced
which expresses a one-shot game that can represent the learning process in hypergame
situations. Network-type Dynamic hypergames involve each player exchanging their
outcomes and each player then improves their perceived strategy sets or payoff. This
cycle continues until a termination criterion is met. Aggregated information and the
principles of the two-person hypergame are shown to be crucial for effective learning.

Sasaki and Kijima proposed a new equilibrium concept called systems intelligent
equilibrium (SIeq) for hypergames [138]. SIeq refines stable Hyper Nash equilibria (SHN)
by considering some off-the-equilibrium plays. The relation between Nash equilibrium,
SHN and SIeq was addressed and it was found that for a hypergame H, SI(H) ⊆
SHN(H) ⊆ N(BGH), where BGH represents the base game of the hypergame. In
some specific situations, the SIeq leads to Pareto-optimal outcomes from an objective
viewpoint. Pareto-Optimisatation occurs when an agent finds more than one Nash
equilibrium, in this case, the agent chooses the Parteo-Optimal one (defined as a Pareto
Nash equilibrium).

Hypergame theory can be extended to encompass both game-theoretic information
and decision-theoretic information, within a table known as the hypergame normal-form
introduced in [158]. Hypergame normal-form presents the payoff matrix in the lower
right-hand corner with the belief of the game captured in the top rows. These belief
models are represented using the Nash Equilibrium mixed strategies. The weighting
of the contributing probability vectors is placed to the left of each row. In order to
summarise the game, Hyperstrategies are used, which take the form of probability vectors
encompassing all the available options. As well as introducing Hypergame Expected
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Utility which accounts for outguessing in a hypergame context.
A new solution concept for hypergames is introduced in [136] called subjective

rationalisability. This concept entails defining a hypergame model with a set of players
and a set of games for each individual subjective game, from a set of viewpoints relevant
to the situation. An action taken by the lowest agent in a viewpoint is called subjectively
rationalisable for the viewpoint if it is the best response in the subjective game to
some of the other agents. Moreover, this action should also be the best response within
the subjective game of a viewpoint one step lower, and so on, for certain actions of
other agents. An outcome in this situation is a combination of each agent’s subjectively
rationalisable action. However, it’s important to note that subjective rationalisability is
specifically a solution concept for one-shot hypergames. It cannot be employed if agents
have the capability to modify their perspectives between decisions.

Conflicts can be categorised as instances of snapshot decision-making. In these
scenarios, the equilibrium is a stable equilibrium [73]. Equilibria in hypergames can fall
into two categories: hypergame-preserving equilibrium (where all players perceive the
same solution) and hypergame-destroying equilibrium (not seen by at least one player).
After establishing a hypergame, each player selects a strategy, and an overall equilibrium
is established. This equilibrium is an element of the Cartesian product space of strategies.
If this equilibrium is a hypergame-destroying equilibrium, then the equilibrium could
be a persistent equilibrium if it’s stable for all players. A snapshot equilibrium is the
conflict in a snapshot decision-making problem, or a transitory equilibrium involving a
dynamic decision or transfer to another phase.

General Meta Rationality (GMR) considers the potential responses of other players
to prevent a given player’s enhanced strategy from leading to a specific outcome. This
allows the players to anticipate and factor in the possible responses of other players to an
improvement by a player. GMR achieves stability through sequential sanctioning if there
is more than one unilateral improvement for an outcome and all of the improvements are
credibly blocked [1]. If a player can be deterred from making a unilateral improvement
from the outcome due to an inescapable move, the outcome is termed Symmetric Meta
Rational (SMR) [61]. In SMR outcomes, the other players have one joint sequential
movement to respond to all the unilateral improvements of the player. This strategic
coordination ensures that the player is always placed in a position that is either less
preferred or equally preferred.

Swap Learning was introduced in [62] where players can update their own perception
based on information contained within the actions of other players. One result proved that
swap learning can only decrease misperception at the cost of experiencing inconsistencies.
Therefore, a modified swap learning method was introduced, which yields constant
beliefs and decreases misperception under certain conditions.

39





Chapter 4

Computability and Game Theory
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4.1 Computability for Strategic Games

Several concepts from non-cooperative game theory are investigated in order to find their
Weihrauch degrees within [122]. The paper establishes the Weihrauch degree of a pure
equilibrium and robust division, which accepts division by zero and returns an arbitrary
value. While robust division is found to be slightly incomputable as it is reducible to
deciding whether a real number is 0 or not. It is demonstrated by Pauly that every
computable bi-matrix game has a computable Nash equilibrium. When the search for
Nash equilibria is limited to games with a unique equilibrium, the problem becomes
computable. The Weihrauch degree of the one-player Nash equilibrium was found to be
equivalent to C∗

2 , whereas the two-player results were proved to be equivalent to robust
division in parallel. Additionally, it’s shown that Nash1 < Nash2.

In the context of bi-matrix games, equilibria and their associated Weihrauch degrees
are investigated in [124]. All-or-Unique Choice, a restriction of closed choice, is proven
to be equivalent to robust division. The paper introduces a multivalued function BRoot,
which maps polynomials to a root if one exists. It’s demonstrated that AoUC ≡W

BRoot2, where BRoot2 is just the task of solving bx = a.
An investigation into robust division is achieved within [86] where they discuss

the strength of the computational problem. The paper examines both sequential and
concurrent applications of robust division, demonstrating that it is not finitely concurrent.
They found that three or more consecutive applications of powers of AoUC reduce to
two. Furthermore, the paper establishes that invoking AoUC in parallel is Weihrauch
reducible to invoking AoUC sequentially.
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Las Vegas computable multivalued functions are introduced within [23]. The paper
also presents the class of Las Vegas computable functions within the Weihrauch lattice,
using probabilistic choice principles. Building on the fact that Nash is Weihrauch
equivalent to AoUC∗

[0,1], Brattka, Gheradi and Hölzl established that there is a Las Vegas
algorithm for computing Nash equilibria. They also established that no fixed positive
success probability is sufficient for robust division.

Monte Carlo computability extends the concept of Las Vegas computability. Las
Vegas machines can recognise the failure of the advice in finite time, whereas Monte
Carlo machines only recognise the failure in the limit. Monte Carlo computability and
machines are defined using ordinary computable functions within [26]. It shows that
Monte Carlo computable functions are closed under composition and that every Las
Vegas computable function is Monte Carlo computable.

Bubelis showed in [35] that given any real algebraic number, there exists a three-
person game with rational data which has a unique equilibrium point. The paper also
introduces a method for reducing an arbitrary n-person game to a three-person one
and shows that a three-player completely mixed game can be constructed with the
equilibrium set being a manifold of dimension one.

4.2 Computability for Sequential Games

The exploration of a subclass of effective Gale-Stewart games which are recursively
bounded and recursively presented games is conducted in [38]. The paper demonstrated
how the set of winning strategies is a recursively bounded Π0

1-class. Additionally,
they show that restricting recursively bounded Gale-Stewart games to polynomial time
presented games have the same set of winning strategies as a recursively bounded,
recursively presented game.

In the context of win/lose games with both closed and open outcomes, transitioning
to two-player games with multiple outcomes introduces complexities to the task of
finding Nash equilibria. This challenge occurs when attempting to employ finitely many
uses of the Limited Principle of Omniscience (LPO) in parallel, as demonstrated in [95].
It also shows that for subgame-perfect equilibria, countably many uses of LPO become
necessary.

The prisoner’s dilemma is a widely examined aspect of game theory. This is a
symmetric, two-player game with two strategies. The notion of repeating this game
infinitely is achieved within [89] where they investigated different strategies and how
computable they are. They discovered an inaccessible strategy which is the best response
to a computable strategy with no computable best response.

The prisoner’s dilemma is an example of a stage game, whose non-computable
strategies were investigated within [109]. The paper’s main theorem asserts that, under
the assumptions regarding the stage game, a strategy computable by a Turing machine
exists. However, no best response to this strategy can be implemented by a Turing
machine. Moreover, the problem of finding a computable best response may not have
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a computable solution, even if it’s restricted to computable strategies that do admit a
computable best response.

A sequential game involving three rounds with moves drawn from N, as demonstrated
by Rabin in [133], showcases a winning strategy for player two which was not computable.
In a scenario where a two-player game is played repeatedly, with player one being aware
that player two consistently employs an effectively computable strategy, it’s shown that
after a finite number of plays, player one can devise a method for ensuring consistent
victory.

4.3 Constructivism in Game Theory and Bounded
Rationality

The exploration of constructive aspects within game theory delving into instances and
non-computability, and the overarching pursuit of a more constructive game theory,
boast a rich historical lineage. Ever since Nash’s groundbreaking contribution, Brouwer’s
Fixed Point Theorem has become integral to the bedrock of game theory. Paradoxi-
cally, Brouwer’s fixed point theorem lacks a constructive proof. In fact, Orevkov [116]
demonstrated its falsehood within the realm of Russian constructivism. The Weihrauch
degree of Brouwer’s fixed point theorem was classified in [27], aligning with the same
classification as Weak König’s Lemma.

The identical Weihrauch degree surfaces in various instances of non-computability
within game theory. Examples include Gale-Stewart games lacking computable winning
strategies [38, 97], and the observation that within the infinite repeated prisoner’s
dilemma, a computable strategy lacks a computable best-response (e.g., [89], [109]).
What unites these examples is their focus on games of infinite duration, in contrast to
the finite normal form games studied in this context.

Rabin presented a sequential game involving three rounds, where moves are drawn
from N. Remarkably, this game showcases a decidable determination of the winning player
in any given play. Paradoxically, the second player possesses a winning strategy, yet this
same player lacks any computable winning strategy [133]. While the Weihrauch degree
inherent in this construction remains largely unexplored, Rabin’s analysis inherently
establishes it to be unequivocally higher than Weak König’s Lemma.

The context of finite games in normal form was constructively explored by Bridges
in [33]. This examination promptly highlighted that the minmax theorem cannot be
established within this framework, given its reliance on the non-constructive principle
LLPO. Bridges, along with coauthors, also delved into the task of constructing utility
functions from preferences within a constructive framework, unearthing numerous
challenges and obstacles [10, 32, 34].

Numerous authors have argued that, in the realm of game theory, the imperative
for constructiveness is even more pronounced than in other branches of mathematics.
This stems from the fact that the solution concepts of game theory explicitly stem from
decision-making processes by agents, which are expected to adhere to the established
principles of computability. As discussed in [124], the necessity of falsifiability inherently
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places constraints on the degree of non-constructiveness that a scientific theory can
embrace. For instance, while the Weihrauch degree of Weak König’s Lemma aligns with
falsifiability, it falls short of the heightened requirement we propose within game theory.
Additional calls for a more constructivist stance in game theory have been articulated,
as exemplified by Velupillai [159, 160].

4.4 Applications of Games to Computability Theory

4.4.1 Wadge Games

A Wadge game is defined as a two-player game with perfect information, where player
one selects a natural number and player two responds by either choosing a natural
number or passing [114]. For generalised Wadge games, when the lower cone forms
a transparent cylinder, they characterise a lower cone within the Weihrauch degrees.
Furthermore, it was found that if a Wadge game has a computable winning strategy,
then it must also possess a computable point of discontinuity.

4.4.2 Reachability Games

The study of Weihrauch degrees of closed choice for finite sets and convex sets is completed
within [87]. This examination enabled the consideration of scenarios where finite choice
is reducible to some finite product of finite choice operators, using a reachability game.
The winner of the game would inform them as to whether the reduction holds. A winning
strategy for player one results in a witness for a non-reduction, whilst a winning strategy
for player two results in witnesses for a reduction. This game was also implemented by
Jones within [82].

4.4.3 Computational Complexity for Discrete Games

Hirschfeldt and Jockusch introduced a two-player reduction game denoted as G(Q → P )
in their work [75]. They established that if P ≤W Q, then player two possesses a winning
strategy for the game G(Q → P ); otherwise, player one possesses a winning strategy
for the same game. This game is further expanded into a generalised reduction game,
denoted as Ĝ(Q → P ), where the game terminates if either player lacks a legal move,
resulting in a victory for the other player. They demonstrated that if RCA0 +Q ⊢ P ,
then player two possesses a winning strategy in the game Ĝ(Q → P ); conversely, if the
implication does not hold, then player one possesses a winning strategy. These winning
strategies correspond to implications and non-implications between Π1

2 principles across
ω-models of RCA0.

This work was extended to other formal systems by Dzhafarov, Hirschfeldt, and
Reitzes within the context of [57]. They establish compactness, which demonstrates
that if an implication Q → P between two principles holds, then there exists a winning
strategy achieving victory in a number of moves bounded by a value independent of the
specific game run. They illustrate how this framework leads to a novel type of analysis for
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logical mathematical problems using Weihrauch reducibility. This comparison allows for
a fine-structural examination of Π1

2 principles encompassing both computability-theoretic
and proof-theoretic aspects.
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This chapter is based on the paper ‘The Weihrauch Degree of Finding Nash Equilibria
in Multiplayer Games’ which can be found [49]. This work is a collaboration with Arno
Pauly.

5.1 Introduction

Is there an algorithm that reads games in strategic form and outputs some Nash
equilibrium? This question is not only relevant for practical applications of Nash
equilibria, whether in economics or computer science, but it also plays a central role
in justifying Nash equilibrium as the outcome of rational behaviour. If an agent can
discern their own strategy in a Nash equilibrium (in order to follow it), then all agents
together ought to be able to compute a Nash equilibrium.

If the payoffs in our games are given as integers, the existence of algorithms to
find Nash equilibria is readily verified. Here the decisive question is how efficient
these algorithms can be. For two-player games, the problem is PPAD-complete [40],
whereas the multiplayer variant is complete for FIXP [59], (the PPAD-completeness
result from [54] is for ε-Nash equilibria, not for actual Nash equilibria). These complexity
classifications are still a challenge for justifying Nash equilibrium as a solution concept
since they are widely believed to be incompatible with the existence of efficient algorithms.
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Our focus here is on payoffs given as real numbers. Essentially, this means that our
algorithm has access to arbitrarily good approximations for the payoffs. However, an
algorithm cannot confirm that two real inputs are equal – and it cannot even pick a true
case between the first input is not smaller and the second input is not smaller. This
is the non-constructive principle LLPO, which is easily seen to correspond to finding
Nash equilibria in single-player games with just two options. We should not stop with
this negative answer to our initial question, but instead, explore how non-computable
the task of finding Nash equilibria is. As usual, this means identifying the degree of the
problem for a suitable notion of reducibility. Here, this notion is Weihrauch reducibility.

Besides satisfying our curiosity, classifying the Weihrauch degree of finding Nash
equilibria lets us draw some interesting conclusions. For example, there is a Las Vegas
algorithm to compute Nash equilibria, but we cannot provide any lower bound for its
success rate. We will discuss these consequences further in Section 5.5. For games with
one or two players, a complete classification has already been obtained in [122], but the
situation for multiplayer games remained open and will be addressed here.

We use the well-known ‘algorithm’ called Cylindrical Algebraic Decomposition (CAD)
with a few modifications to reach our results. The modifications are necessary because in
its original form, CAD assumes the equality of coefficients to be decidable. We explore
the computable content of CAD by investigating each aspect of the algorithm to what
extent they are computable when working with real numbers. The obstacles can be
overcome by moving to suitable over-approximations.

Computability in the countable, discrete realm may be the better-known concept,
through the notion of Turing computability. There is also the algebraic approach to
computability as put forth by Blum, Shub, and Smale [17]. That model does not fit
the justification for why computability is required in game theory. Nash equilibria still
are not computable in the BSS-model though [123] works perfectly well on most spaces
of interest of cardinality up to the continuum. The field that delves into the study of
computability in such settings is referred to as computable analysis, whose introduction
can be seen in Chapter 2.

Turing machines inherently possess infinite tapes, allowing us to employ infinite
binary sequences as their inputs and outputs. Computations then no longer halt but
instead continue to produce more and more output. To get computability for interesting
objects such as the reals, we code them via the infinite binary sequences. This yields
the notion of a represented space. In the case of the reals, an encoding based on the
decimal or binary expansion would yield an unsatisfactory notion of computability (as
multiplication by 3 would not be computable). However, an encoding via sequences of
rational numbers converging with a known rate (e.g. we could demand that |qn−x| < 2−n,
where x is coded real and qn the n-th approximation) works very well [155]. Essentially,
this approach renders all naturally occurring continuous functions computable. The
standard representation of the real numbers is also consistent with assuming that real
numbers are obtained by repeating physical measurements over and over and thus
obtaining higher and higher expected accuracy [121].
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5.2 Our Main Theorem

Once we have established the method for representing real numbers, it is trivial to
obtain a representation for finite games in strategic form and a representation for mixed
strategy profiles. We can then define the multivalued function Nash mapping finite
games in strategic form to some Nash equilibrium. We refer to the restriction of Nash
to two-player games as Nash2. Our main goal is to classify the Weihrauch degree of
Nash. We do this by comparing it to a benchmark principle called All-Or-Unique Choice,
AoUC[0,1] (Definition 2.21).

Definition 5.1 AoUC[0,1] receives an abstract input that expresses which x ∈ [0, 1] are
valid solutions as follows: Initially, all of [0, 1] is a valid solution. This could remain the
case forever (the all -case), or at some point, we receive the information that there is
just a unique correct answer, and we are told what that one is (the unique-case).

We refer to AoUC∗
[0,1] and AoUC⋄

[0,1] within this section which describes AoUC[0,1]

being invoked finitely many times in parallel and invoked any finitely many number of
times, respectively (Definition 2.16).

Definition 5.2 Let BRoot : R[X] ⇒ [0, 1] map real polynomials to a root in [0, 1],
provided there is one, and to arbitary x ∈ [0, 1] otherwise. Let BRootk (BRoot≤k) be
the restriction of BRoot to polynomials of degree (less than -or-equal to) k.

Another highly relevant multivalued function for us is BRoot. Let BRootk (BRoot≤k)
be the restriction of BRoot of polynomial of degree (less-or-equal than) k. In particular,
we see that BRoot≤1 is just the task of solving bx = a. The obstacle for this is that we
do not know whether b = 0 and anything x ∈ [0, 1] is a solution, or whether b ≠ 0 and we
need to answer a

b . Following an observation by Brattka, it was shown as [86, Proposition
8] that AoUC[0,1] ≡W BRoot≤1. The main result from [122] is Nash2 ≡W AoUC∗

[0,1].
The remaining ingredient of our first main result is found in Corollary 5.31 in Subsection
5.3.3:

Theorem 5.3 AoUC∗
[0,1] ≤W Nash ≤W AoUC⋄

[0,1]

As established in [86] AoUC∗
[0,1] <W AoUC⋄

[0,1], so at least one of the two reductions
in Theorem 5.3 is strict. Furthermore, from the outcomes presented in [86] it also follows
that AoUC⋄

[0,1] ≡W AoUC∗
[0,1] ⋆AoUC∗

[0,1], where f ⋆ g lets us first apply g, then do some
computation, and then apply f . Consequently, any finite number of oracle calls to
AoUC[0,1] can be rearranged to happen in two phases, where all calls within one phase
are independent of each other. Drawing upon the outcome in [122], we can conclude
that from a multiplayer game G we can compute a two-player game G′, take any Nash
equilibrium of G′, and compute another two-player game G′′ from that such that given
any Nash equilibrium to G′′ we could compute a Nash equilibrium for G. It seems very
plausible to us that AoUC∗

[0,1] ≡W Nash should hold, but constructing a proof for this
equivalence has posed a challenge. Thankfully, the outcomes discussed in Section 5.5,
stemming from Theorem 5.3, do not hinge on the resolution of these specific details.
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The lower bound in Theorem 5.3 clearly already follows from AoUC∗
[0,1] ≡W Nash2.

For the upper bound, we bring three ingredients together. The first result shows that
a preprocessing step that identifies a potential support for a Nash equilibrium can be
absorbed into the Weihrauch degree AoUC∗

[0,1]. Once we know the support we are going
to use, we have a solvable system of polynomial inequalities whose solutions are all Nash
equilibria.

We are thus led to investigate the Weihrauch degrees pertaining to solving systems
of polynomial (in)equalities. We completely classify the degree of finding (individual)
roots within given bounds of finitely many (univariate) polynomials:

Theorem 5.4 (Proven as Corollary 5.8 below) AoUC∗
[0,1] ≡W BRoot∗

Consequently, disregarding the precise count of required oracle calls, the task of
finding polynomial roots does not pose a greater challenge than solving equations in
the form bx = a. The proof of Theorem 5.4 in turn makes use of a result from [96] on
finding zeros of real functions with finitely many local minima.

To prove Theorem 5.3 we need more, namely we need to solve systems of (in)equalities
for multivariate polynomials. This aspect is addressed in the forthcoming Corollary 5.30.
Through an examination of cylindrical algebraic decomposition, augmented with minor
adaptations, we demonstrate that access to AoUC∗

[0,1] lets us compute finitely many
candidate solutions including a valid one. A comprehensive introduction to cylindrical
algebraic decomposition (CAD) is available in [81]. CAD involves the partitioning of Rn

into semi-algebraic cylindrical cells.

5.3 Roots of Polynomials

We consider the computability aspects of finding the roots of polynomials. Our explo-
ration of polynomial root finding unfolds across three distinct scenarios. In Subsection
5.3.1 we look into monic univariate polynomials. In Subsection 5.3.2 we drop the
restriction to monic, and in Subsection 5.3.3 we handle multivariate polynomials.

In order to conceptualise the task of polynomial root finding, it becomes essential to
establish a clear methodology for representing polynomials. A polynomial is represented
by providing an upper bound to its degree, plus a tuple of real numbers constituting
all relevant coefficients. For example, we could be given the same polynomial as either
0x2 + 3x − 5 or 3x − 5. If we were demanding to know the exact degree, we could
no longer compute the multiplication and addition of polynomials, which would be
clearly unsatisfactory. This matter is discussed in detail in [131, Section 3]. We denote
the represented space of real univariate polynomials as R[X] and the space of real
multivariate polynomials as R[X∗]. For the latter, we assume that each polynomial
comes with the exact information of what finite set of variables it refers to. Both R[X]
and R[X∗] are coPolish spaces, see [141, 31, 36].
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5.3.1 Monic univariate polynomials

It is known since the dawn of computability theory that the fundamental theorem of
algebra is constructive, more precisely, that given a monic polynomial with real (or
complex) coefficients, we can compute the unordered tuple of its complex roots, each
repeated according to its multiplicity. The latter formulation was established by Specker
[146].

Of course, we cannot decide which of the complex roots are real. The task of selecting
a real number from a k-tuple of complex numbers containing at least one real number
is Weihrauch equivalent to Ck (Definition 2.20). A similar task equivalent to Ck is to
identify a 0-entry in a k-tuple of real numbers containing at least one 0. Given real
numbers ε0, ε1, . . . , εk−1 we can construct the monic polynomial Πi<k((x− i

k )
2 + |εi|),

which will have a root at i
k iff εi = 0. This shows that finding real roots of monic

polynomials is Weihrauch equivalent to C∗
2 =

⊔
k∈N Ck.

5.3.2 Univariate Polynomials

In general, we do not know the degree of a polynomial and thus cannot restrict ourselves
to the monic case for root-finding. It has been shown by Le Roux and Pauly [96] that
knowing a finite upper bound k on the number of local extrema lets us find a root of
a continuous function (if it has one in a bounded interval) using C{1,...,3k}. Essentially,
this observation suggests that for polynomial root finding in [0, 1], knowing the precise
degree versus knowing an upper bound makes only a quantitative, but not a qualitative
difference – if we exclude the zero polynomial!

While it may seem counterintuitive that it should be the zero polynomial that makes
root finding more difficult, we will see that this is the case, and explore how much.

We have defined BRoot to be a total map. If the input is a polynomial without a
root in the unit interval, it will return an arbitrary element of the unit interval instead.
However, the restriction of BRoot which is defined only on polynomials with a root in
the unit interval is in fact equivalent to BRoot itself. It’s worth noting that this is a
special case of Lemma 5.11 which we will prove later.

Proposition 5.5. BRoot≤2k+1 ≤W AoUC[0,1] × C3k

Proof. A polynomial p of degree at most 2k + 1 is either the 0 polynomial, or has at
most k local minima. If it is not 0, we will recognize this, and moreover, can find some
a ≤ 0, b ≥ 1 with p(a) ̸= 0 ̸= p(b). In this case, [96, Theorem 4.1] applies and lets us
compute a 3k-tuple of real numbers amongst which all zeros of p between a and b will
occur.

We recall that AoUC[0,1] ≡W AoUC[a,b]n [86, Corollary 12]. We let the input to
AoUC[a,b]n be [a, b]n as long as p = 0 is consistent, and if we learn that p ̸= 0, we
collapse the interval to the 3k-tuple we obtain from [96, Theorem 4.1]. The input to
C3k is initially {0, . . . , 3k − 1}. We only remove elements after we have confirmed p ̸= 0,
and then we remove j if the j-th candidate obtained from [96, Theorem 4.1] is not a
root of p, or falls outside of [0, 1].
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To obtain the answer to BRoot≤2k+1, we just use the answer from C3k to indicate
the answer of which component of the tuple provided by AoUC[a,b]n to use as the final
output.

The following is also a direct consequence of [87, Theorem 12], but its proof is much
more elementary; and a direct consequence of [23, Proposition 17.4], but again with a
simpler proof:

Proposition 5.6. AoUC[0,1] × C2 ≰W BRoot

Proof. Assume that the reduction would hold. We may assume that elements of A([0, 1])
are represented via enumerations of open intervals with rational endpoints exhausting
their complement. Fix some standard name q for [0, 1] ∈ A([0, 1]), which means that q
just never enumerates any interval (without ever providing positive information that no
interval is going to be enumerated in the future). Assume further that there is some
name r for an input to C2 such that (q, r) gets mapped to a non-zero polynomial p
by the inner reduction witness. Since p is ensured to be non-zero already by a finite
prefix of its names, and since the inner reduction witness is continuous, it holds that
there is an M ∈ N such that any (q′, r) with d(q, q′) < 2−M gets mapped to a non-zero
polynomial. Restricting AoUC[0,1] to names from {q′ | d(q, q′) < 2−M} does not change
its Weihrauch degree (as q provides no information at all). By [96, Corollary 4.3], if we
exclude the 0 polynomial from the domain of BRoot, then C∗

2 suffices to find a root. We
can thus conclude AoUC[0,1] ≤W C∗

2, but this contradicts [122, Theorem 22].
Thus, it would need to hold that each pair (q, r) gets mapped to the 0 polynomial.

But since answering constant 0 is a computable solution to BRoot(0), this, in turn,
would imply that C2 is computable, which is absurd. We have thus arrived at the desired
contradiction.

While our preceding proposition shows the limitations of BRoot for solving multiple
non-computable tasks in parallel, the following result from the literature reveals that
the slightly more complex nature of AoUC[0,1] is central. Note that Cn × Cm ≤W Cn·m,
hence Ck has an inherently parallel nature for k ≥ 4.

Proposition 5.7 ([96, Proposition 4.6]). Ck ≤W BRoot2k

Corollary 5.8 AoUC[0,1] <W BRoot <W AoUC∗
[0,1]

Proof. The first reduction follows from AoUC[0,1] ≡W BRoot≤1 ([86, Proposition 8]).
That it is strict comes from [96, Proposition 4.6] showing that otherwise, we would have
C3 ≤W AoUC[0,1] ≤W LPO, contradicting a core result from [163].

The second reduction follows from Proposition 5.5, together with Ck+1 ≤W Ck
2

and C2 ≤W AoUC[0,1] (both from [122]). Its strictness is a consequence of Proposition
5.6.
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5.3.3 Multivariate Polynomials and Cylindrical Algebraic
Decomposition

Our focus now shifts towards multivariate polynomials. Within this domain, two
intriguing problems arise: the pursuit of a root for an individual multivariate polynomial
and the search for a solution to a system of polynomial inequalities (restricting ourselves
to the non-strict case for now). In both scenarios, our emphasis rests on the bounded
case, given its relevance to Nash equilibria. Additionally, the unbounded case promptly
leads us to LPO∗.

Definition 5.9 Let BMRoot : R[X∗] ⇒ [0, 1]∗ map real polynomials to a root in [0, 1]∗,
provided there is one; and to an arbitrary x ∈ [0, 1]∗ otherwise.

Our definition of BMRoot extends to all polynomials, and when confronted with
a lack of roots within the unit hypercube, it provides an arbitrary element from the
unit hypercube as an output. The latter scenario bears lesser significance, Lemma 5.11
detailed below shows that restricting BMRoot to polynomials having roots in the unit
hypercube does not change its Weihrauch degree.

Definition 5.10 Let BPIneq : (R[X∗])∗ ⇒ [0, 1]∗ map a sequence of polynomials
P1, . . . , Pk to a point x ∈ [0, 1]∗ such that ∀i ≤ k, Pi(x) ≥ 0 if such a point exists, and
to any x ∈ [0, 1]∗ otherwise.

Lemma 5.11 There is a computable multivalued map MakeZero : R[X∗] ⇒ R[X∗]
such that whenever g ∈ MakeZero(f), then g has a zero in the unit hypercube; and if f
already had a zero in the unit hypercube, then f = g.

Proof. Given an n-variate polynomial f , we can compute c := min{|f(x)| | x ∈ [0, 1]n}
since the unit hypercube is computably compact and computably overt. Let T be
Plotkin’s T , i.e. the space with the truth values 0, 1 and undefined (⊥). We can compute
sign(f(0n)) ∈ T (where we consider the sign of 0 to be undefined).

The operation Merge :⊆ T×X×X → X is defined on all inputs except (⊥, x, y) for
x ̸= y, and satisfies Merge(0, x, y) = x, Merge(1, x, y) = y and Merge(⊥, x, y) = x = y.
It is easy to see that Merge is computable for X = R. We use it to compute c =
Merge(sign(f(0n)), c,−c) and find that f − c meets the requirements to be an output
to MakeZero(f). Essentially, we just shift f vertically by the minimal amount required
to make it have a zero in the unit hypercube.

Proposition 5.12. BMRoot ≡W BMRoot∗.

Proof. It suffices to show that BMRoot2 : R[X∗]× R[X∗] ⇒ [0, 1]∗ × [0, 1]∗ is reducible
to the map BMRoot : R[X∗] ⇒ [0, 1]∗. We are given two multivariate polynomials P
and Q. We rename variables, in order to ensure that each polynomial uses different
variables. By Lemma 5.11 we can assume w.l.o.g. that P and Q each have a root in the
unit hypercube.

We then apply BMRoot to P (x)2 +Q(y)2 and obtain a root (x0, y0) of the latter
polynomial. Now, x0 is a root of P and y0 is a root of Q.
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We will conclude that AoUC⋄
[0,1] is an upper bound for the Weihrauch degree of

BPineq (and thus BMRoot) as a corollary of the main theorem of this subsection,
Theorem 5.29. The way we obtain Theorem 5.29 is via an analysis of how constructive
CAD is if we do not take the equality test on the reals for granted.

To tackle the task of finding a finite over approximation of the roots in multivariate
polynomials, even in the absence of prior knowledge about the degrees of these polyno-
mials, we implement the CAD algorithm. This approach enables us to systematically
deconstruct multivariate polynomials into lower-variate forms. This can be repeated
until we have a set of univariate polynomials. Subsequently, we can find the roots
of these univariate polynomials in the same way as Section 5.3.2. This establishes a
foundation for determining the set of solutions within a system of polynomial equations
and inequalities. The subsequent step involves ‘lifting’ these univariate polynomials
to the original multivariate setting to pinpoint their roots within the context of the
overarching problem.

The CAD algorithm has three phases; projection, base, and extension. This algorithm
is driven by an input, represented as a set F of n-variate polynomials. In the projection
phase, a sequence of n − 1 steps is executed, each resulting in the creation of new
polynomial sets. The zero set of the resulting polynomials consists of the projection of
the significant points. The base phase isolates the real roots of the univariate polynomials
from the outputs of the projection phase. Each root and one point in the intervals
between roots are then used as sample points in the decomposition of R1. The extension
phase constructs sample points for all regions of the CAD of Rn. This phase also consists
of n− 1 steps which takes the sample points from the base phase and ‘lifts’ them into R2

for each region in the stack. This is repeated until we have sample points to all regions
of the CAD of Rn.

Our version of the CAD algorithm always outputs the maximum amount of sample
points the polynomials could have, regardless of the unknown coefficients or degree. This
does not affect the standard CAD algorithm, as the sample points are always either
from the root or within the intervals between the roots; therefore, we can end up with
extra sample points.

Definition 5.13 • A region R is a connected subset of Rn.

• The set Z(R) = R× R = {(α, x) | α ∈ R, x ∈ R} is called a cylinder over R.

• Let f, f1, f2 be continuous, real-valued functions on R. A f -section of Z(R) is
the set {(α, f(α)) | α ∈ R} and a (f1, f2)-sector of Z(R) is the set {(α, β) | α ∈
R, f1(α) < β < f2(α)}.

Sections and sectors can both be referred to as cells when discussing them as as a
whole group. Within the context of CAD, the regions from R that make an appearance
signify the locations where the n+ 1-variate polynomial possesses a root (with the first
n-variables ranging over R). Specifically, the first n variables range over R in this process.
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Concurrently, the sectors encapsulate the intermediary segments where the polynomial
remains consistently positive or negative. This contributes to a decomposition, which
entails the fragmentation of a given region into smaller, distinct components. Therefore,
a decomposition of R is a set of regions, defined above as sectors and sections.

Definition 5.14 Let R ⊆ Rn. A decomposition of R is a finite collection of disjoint
regions (components) whose union is R: R =

⋃k
i=1Ri, Ri ∩Rj = ∅ whenever i ̸= j.

A stack over R is a decomposition of R×R comprising a combination of fi-sections
and (fi, fi+1)-sectors, where f0 < · · · < fk+1 for all x ∈ R and f0 = −∞, fk+1 = +∞.

The stack decomposition of R0 = {0} is {{0}}. A stack decomposition of Rn+1 is a
decomposition of the form

⋃
R∈D SR, where each SR is a stack over R, and D is a stack

decomposition of Rn.

The initial phase revolves around projecting polynomials from n variables to a
set in n − 1 variables. Within this process, for each section i, a real polynomial
f ∈ R[x1, . . . , xn−1][xn] in n-variables can be deconstructed into the coefficients for every
power of x: f(x1, . . . , xn−1, xn) =

∑d
j=0 f

j(x1, . . . , xn−1)x
j
n, where d signifies the upper

bound for the degree of the polynomial.
We are interested in the coefficient of the highest power of a greatest common divisor

(gcd) as the number of common zeros of two polynomials, f, g ∈ k[x], is deg(gcd(f, g)),
[81, Lemma 4.1]. Also, the number of distinct zeros of f ∈ k[x] is deg(f)−deg(gcd(f, f ′)),
[81, Lemma 4.2]. The principal subresultant coefficient (psc) allows us to know the
degree of the gcd of two polynomials.

Definition 5.15 Let R be a ring and f, g ∈ R[x] with deg(f) = m, deg(g) = n,m ≥ n.
The kth principal subresultant coefficient of f and g is

psck(f, g) = det(M(k)
k ), 0 ≤ k ≤ n

where M0 is the Sylvester matrix of f and g, and then Mk is obtained by deleting certain
rows and columns from M0.

The Sylvester matrix is a matrix of multivariate polynomials within this situation.
The process of finding the determinant of a matrix where each entry can be a multivariate
polynomial remains the same as finding the determinant for any matrix. However, the
determinant will be a polynomial expression involving the variables of the polynomials
within the original matrix. Therefore, if there are two multivariate polynomials with the
variables x1, x2, . . . , xn, the determinant will be a polynomial involving all the variables
x1, x2, . . . , xn. For the psc we require the knowledge of Sylvester Matrices and how Mk

is created.

Definition 5.16 For two polynomials f1(x) = amxm+· · ·+a0 and f2(x) = bnx
n+· · ·+b0

of degrees m and n respectively, the Sylvester matrix is an (m+ n)× (m+ n) matrix
formed by filling the matrix beginning with the upper left corner with the coefficients
of f1(x). Then, shifting down one row and one column to the right and filling in the
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coefficients starting there until they hit the right side. This process is then repeated for
the coefficients of f2(x).

Example 5.17 Let f1 = a4x
4 + a3x

3 + a2x
2 + a1x+ a0 and f2 = b2x

2 + b1x+ b0 where
m = 4 and n = 2. Therefore, M0 is a 6× 6 matrix filled with the coefficients of f1 and
f2.

M0 =



a4 a3 a2 a1 a0
a4 a3 a2 a1 a0

b2 b1 b0
b2 b1 b0

b2 b1 b0
b2 b1 b0


M1 is made from deleting one row from the f1 and f2 coefficients as well as one

column. A divider is placed in the matrix after the (m+ n− 3)-column. This allows for
multiple columns to be used to ensure the matrix is a square, shown as M

(l)
k .

M1 =


a4 a3 a2 a1 a0
b2 b1 b0

b2 b1 b0
b2 b1 b0


Using M

(l)
k , we have k = 1 and l is equal to the column used to guarantee a square

matrix.

M
(4)
1 =


a4 a3 a2 a1
b2 b1 b0

b2 b1 b0
b2 b1

 M
(5)
1 =


a4 a3 a2 a0
b2 b1 b0

b2 b1
b2 b0


Definition 5.18 The reductum, f̂ki

i of a polynomial fi is

f̂ki
i (x1, . . . , xn−1, xn) =

ki∑
j=0

f j
i (x1, . . . , xn−1)x

j
n

where 0 ≤ ki ≤ di. Here, fi is a multivariate polynomial in x1, . . . , xn and f̂ki
i is a

univariate polynomial with multivariate coefficients existing of (x1, . . . , xn−1).

Lemma 5.19 1. The reductum of polynomials is computable.

2. The derivative of a polynomial is computable.

3. Given two polynomials p, q, we can compute a finite tuple where every well-defined
psc appears within the tuple.
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Proof. 1. Calculating the reductum requires the rearrangement of the polynomial
f̂ki
i , in order to group all of the coefficients for every power of xn, xkin , ..., x0n. This

is trivially computable, as no tests on the coefficients need to be performed.

2. Calculating the derivative of a polynomial merely requires the multiplication of
coefficients with natural numbers.

3. As we do not have access to the exact degrees of the polynomials, but merely to
some upper bound, we do not even know which of the psc’s are well-defined. Let
n be the upper bound of deg(p) and m be the upper bound of deg(q). We have a
finite potential number of pairs of polynomials, (n+ 1)× (m+ 1) combinations.
These can be used to calculate the psc, under the assumption that the current
degree of the pair of polynomials are the correct degrees.

We point out that the use of an ‘overapproximation’ in Lemma 5.19 is unavoidable.
If we knew how many principal subresultant coefficients there are for f and g, we would
know the degree of g.

Definition 5.20 Let F = {f1, f2, . . . , fr} ⊂ R[x1, . . . , xn−1][xn] be a set of multivariate
real polynomials and the region R. We say that F is delineable on R if it satisfies the
following invariant properties:

1. For every 1 ≤ i ≤ r, the total number of complex roots of fi(y) remains invariant
as y varies over R.

2. For every 1 ≤ i ≤ r, the number of distinct complex roots of fi(y) remains invariant
as y varies over R.

3. For every 1 ≤ i ≤ j ≤ r, the total number of common complex roots of fi(y) and
fj(y) remains invariant as y varies over R.

Given a set of polynomials F ⊂ R[x1, . . . , xn−1][xn] we can compute another set of
(n− 1)-variate polynomials proj(F) ⊂ R[x1, . . . , xn−1], which characterises the maximal
connected F-delineable sets of Rn−1. The projection can be summarised by

F0 = F ⊂ R[x1, . . . , xn−1, xn],F1 ⊂ R[x1, . . . , xn−1], . . . ,Fn−1 ⊂ R[x1]

Definition 5.21 Given a set of polynomials F ⊂ R[x1, . . . , xn−1][xn] we can compute
another set of (n−1)-variate polynomials proj(F) ⊂ R[x1, . . . , xn−1] which characterises
the maximal connected F-delineable subsets of Rn−1.

Let F = {f1, f2, . . . , fr} then

proj(F) = proj1(F) ∪ proj2(F) ∪ proj3(F)

where proj1 = {fk
i | 1 ≤ i ≤ r, 0 ≤ k ≤ di},

proj2 = {pscxn
l (f̂k

i ,Dxn(f̂
k
i )) | 1 ≤ i ≤ r, 0 ≤ l < k ≤ di − 1},
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proj3 ={pscxn
m (f̂ki

i , f̂
kj
j ) |

1 ≤ i < j ≤ r, 0 ≤ m ≤ ki ≤ di, 0 ≤ m ≤ kj ≤ dj}.

We have a multivariate polynomial over R in terms of x1, . . . , xn. The pscxn
i denotes

the ith principle resultant coefficient w.r.t xn. This is read as a univariate polynomial
in xn with the coefficients being multivariate polynomials in x1, . . . , xn−1. Dxn denotes
the formal derivative operator with respect to xn

Using Definition 5.20 the projections have invariant properties. For proj1(F) this
implies that the degree w.r.t xn of the polynomials is constant over R if proj(F) is
invariant over R ⊂ Rn−1 and hence the number of roots of each polynomial is constant
over R. For proj2(F) it implies that the gcd of each polynomial and its derivative has
a constant degree ([81, Lemma 4.4], [107, Corollary 7.7.9]). This in combination with
proj1(F) shows that the number of distinct zeros of each polynomial in F is constant
[81, Lemma 4.2].

When proj3(F) is considered along with proj1(F) the invariant property implies that
the number of common zeros of each pair of polynomials in F is constant [81, Lemma
4.4]. The set proj(F) characterises the sets over which there are a constant number of
real zeros of the polynomial in F ([81, Lemma 4.5], [107, Lemma 8.6.3]).

The algorithm involves the upward ‘lifting’ of univariate polynomials from Ri−1 to
Ri. This elevation is achieved by evaluating the polynomials in projn−i+1(F) over a
sample point α. This results in a set of univariate polynomials in xi corresponding to
the values of projn−i+1(F) on the ‘vertical’ line xi−1 = α. These univariate polynomials
are treated the same in each ‘lifting’ phase until they reach Rn.

In order to help with the concept of the CAD algorithm and the projections, an
example is provided below.

Example 5.22 An intuitive example of the CAD algorithm using the polynomial
ay2 − bx3 − cx2. First we will look at the polynomial with a, b = 1, c = 0.

Figure 5.1: Graph of ay2 − bx3 − cx2 when a, b = 1, c = 0
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Here there is one root x = 0. Hence the proj to R1 consists of 3 cells x < 0, x =
0, x > 0.

Figure 5.2: Projection onto the x-axis

In order to expand this to the R2 we check each cell of the projection individually.
Lets start with x < 0. This is very simple as there is nothing set in the y-axis, therefore
y is free.

Figure 5.3: x < 0

Next, the root x = 0. This has 3 cells, the root itself and the two intervals on the
y-axis split by the root y < 0, y > 0.
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Figure 5.4: x = 0

The interval x > 0 has 5 cells. Two cells are the lines of the graph itself and the
other three are the intervals between. Therefore, we have:

• Cell 1: x > 0, y2 − x3 − x2 > 0, y > 0

• Cell 2: x > 0, y2 − x3 − x2 = 0, y > 0

• Cell 3: x > 0, y2 − x3 − x2 < 0

• Cell 4: x > 0, y2 − x3 − x2 = 0, y < 0

• Cell 4: x > 0, y2 − x3 − x2 > 0, y < 0

Figure 5.5: x > 0
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Therefore, when c = 0 there are a total of 9 cells. Now, we can look at making c a
small positive number, c = 0.1, altering the graph.

Figure 5.6: Graph of ay2 − bx3 − cx2 when a, b = 1, c = 0.1

Here there are two roots, x = −0.1 and x = 0. Hence the proj to R1 consists of 5
cells x < −0.1, x = −0.1, −0.1 < x < 0, x = 0, x > 0.

Figure 5.7: Projection onto the x-axis

We can expand this to R2 the same way. The interval x < −0.1 is simple as there is
nothing set in the y-axis, therefore y is free (Figure 5.8(a)). The interval between the
two roots −0.1 < x < 0 has 5 cells. Two cells are the lines of the graph itself and the
other three are the intervals between (Figure 5.8(b)). The interval x > 0 has 5 cells
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as well. Two cells are the lines of the graph itself and the other three are the intervals
between (Figure 5.8(c)).

((a)) x < −0.1, y free ((b)) All five cells for −0.1 <
x < 0

((c)) All five cells for x > 0

Figure 5.8: Cells over the intervals

Finally the two roots, x = −0.1 and x = 0. They both have 3 cells, the root itself
and the two intervals on the y-axis split by the root y < 0, y > 0.

((a)) x = −0.1 ((b)) x = 0

Figure 5.9: Cells over the roots

In total, there are 16 cells when c > 0.

Within this example, even if c < 0, there are fewer than 16 cells. The same goes for
the values of a and b; no matter what the three coefficients are, the maximum number
of cells for this polynomial is 16. Our version of the CAD algorithm always outputs the
16 cells with 16 sample points. This does not affect the algorithm, as the sample points
are always either from the root or within the intervals; therefore, we can end up with
extra sample points. Take the graph in Figure 5.1: the interval x < 0 would have one
sample point that is required from that interval. However, if we take all 16 cells from
the graph in Figure 5.6, when x < 0, there would be three sample points: one for the
root x = −0.1 and two from the intervals. Hence, if c = 0 and we take into account
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the 16 cells, we end up with two extra sample points. Although there are extra sample
points, they can still be used in the same way as the other interval sample points.

Corollary 5.23 From a finite tuple of polynomials, we can compute a finite tuple of
polynomials including all their projections.

Proof. In order to check proj is computable we have to check proj1, proj2, proj3 are
computable using Lemma 5.19.

Definition 5.24 For a list of n-variate polynomials f1, f2, . . . , fr, x ∈ Rn. Let
sign(f1, f2, . . . , fr, x) ∈ {0,+,−}r be defined by sign(f1, f2, . . . , fr, x)(j) = + if fj(x) >
0, sign(f1, f2, . . . , fr, x)(j) = − if fj(x) < 0 and sign(f1, f2, . . . , fr, x)(j) = 0 if fj(x) = 0.

If a set of polynomials is delineable over a region R, then the sign vector remains
invariant over R, [83, Lemma 1].

Lemma 5.25 Let F = {f1, . . . , fr} ⊂ R[x1, . . . , xn−1][xn] be a set of polynomials, and
let proj(F) = {q1, . . . , qr} ⊂ R[x1, . . . , xn−1] be the set of its projections. For any
b ∈ {0,+,−}r we find that F is delineable on Rb := {x | sign(q1, . . . , qr, x) = b}.

Proof. Following the structure of [81, Proof to Theorem 4.1] we show that the three
properties (total number of complex roots, number of distinct complex roots, and number
common complex roots) required to be invariant in Definition 5.20 can be expressed by
referring to the signs of polynomials belonging to the projections.

1. Total number of complex roots of fi(y) remains invariant over R.

That ki is the number of roots of fi(y) is equivalent to the following:

(∀k > ki)[f
k
i (x1, . . . , xn−1) = 0] ∧ fki

i (x1, . . . , xn−1) ̸= 0

The formula depends on y only via the signs polynomials from proj(F) take on it,
which demonstrates the claim.

2. The total number of common complex roots of fi(y) and fj(y) remains invariant
over R.

The total number of common complex roots of two polynomials is the degree of
their greatest common divisor. Knowing the psc of two polynomials allows us to
know the degree of their gcd. For fi, fj ∈ R where deg(fi) = di and deg(fj) = dj ,
then for all 0 < m ≤ min(di, dj)

fi and fj have a common factor of degree equal to m

⇐⇒

psct(fi, fj) = 0, t = 0, . . . ,m− 1 and pscm(fi, fj) ̸= 0.
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Therefore, mi,j being the number of common complex roots is expressed by the
following:.

(∀k > ki)[f
k
i (x1, . . . , xn−1) = 0] ∧ fki

i (x1, . . . , xn−1) ̸= 0 ∧

(∀k > kj)[f
k
j (x1, . . . , xn−1) = 0] ∧ f

kj
j (x1, . . . , xn−1) ̸= 0 ∧

(∀m < mi,j)[pscxn
m (f̂ki

i (x1, . . . , xn), f̂
kj
j (x1, . . . , xn)) = 0] ∧

[pscxn
mi,j

(f̂ki
i (x1, . . . , xn), f̂

kj
j (x1, . . . , xn)) ̸= 0]

Again, we observe that the formula only depends on y via the signs polynomials
from proj(F).

3. The number of distinct complex roots of fi(y) remains invariant over R.

We can express the number of distinct complex roots of a polynomial by looking
at the number of common roots between it and its derivative. If ki is the total
number of complex roots of the polynomial and li is the number of common roots
with its derivative, the number of distinct complex roots is ki − li. Reusing ideas
from above, this is expressed by:

(∀k > ki)[f
k
i (x1, . . . , xn−1) = 0] ∧ fki

i (x1, . . . , xn−1) ̸= 0 ∧
(∀l < li)[pscxn

l (f̂ki
i (x1, . . . , xn−1),Dxn(f̂

ki
l (x1, . . . , xn))) = 0] ∧

pscxn
li
(f̂ki

i (x1, . . . , xn),Dxn(f̂
ki
i (x1, . . . , xn))) ̸= 0

For a third time, we observe that the formula only depends on y via the signs
polynomials from proj(F).

Lemma 5.26 For each finite set F of n-variate polynomials, there exists a sign invariant
stack decomposition of Rn.

Proof. The case n = 1 is immediate; we simply partition R into the roots of the
polynomials and the open intervals determined by them.

Otherwise, in the base phase of the CAD algorithm we repeatedly apply the projection
operator n− 1-times. We then obtain a decomposition of R1 which is sign-invariant for
projn−1(F).

We can extend a stack decomposition Di−1 of Ri−1 which is sign invariant for
projn−i+1(F) to a stack decomposition Di of Ri which is sign invariant for projn−i(F):
By Lemma 5.25 projn−i+1(F) is delineable over each region of Di−1 and hence the real
roots of projn−i+1(F) vary continuously over each region of Di−1, while maintaining
their order (cf. [107, Corollary 8.6.5]).

Definition 5.27 A representative sample for a list of n-variate polynomials is a finite
set of points X, such that for every region R of the sign invariant stack decomposition
provided by Lemma 5.26, with R∩ [0, 1]n ̸= ∅ there exists x ∈ R ∩X.
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Lemma 5.28 Let X be a representative sample for proj(f1, f2, . . . , fr). Then there is a
representative sample X ′ for f1, f2, . . . , fr such that
X = {(x1, . . . , xn−1) | ∃xn.(x1, . . . , xn−1, xn) ∈ X ′}. Moreover, X ′ can be obtained as
follows: For each x ∈ X, let Sx be a representative sample for the univariate polynomials
f1(x), . . . , fr(x), and then let X ′ = {(x, xn) | x ∈ X ∧ xn ∈ Sx}.

Proof. In the representative sample X = {a1, . . . , aq}, each ai is a set of points for each
region of the projections, therefore a root or a point within the interval between two
non-trivial roots. We select a set of test points b = (b1, . . . , bp) for each region of the
original polynomials.

We will construct the sample points of the regions of Di which belong to the stack over
the region C ⊂ Di−1. The polynomials in projn−1(F) can be evaluated over the sample
point, resulting in a set of univariate polynomials in xi. These univariate polynomials
can now be treated the same as the projections, where we can isolate the roots and a
representative sample.

In order to extend this to Rn, we can substitute ai into our original polynomial
in order to achieve a set of r univariate polynomials in xn, which we will denote
Fa = {f1(ai), . . . , fn(ai)}. We can also substitute in proj(b) for a second set of r
univariate polynomials, which we will denote Fb = {f1(proj(b)), . . . , fn(proj(b))}. This
will allow us to compare two polynomials, one from each set Fa, Fb, in order to find a
suitable point of xn which will result in the same sign vector. As our test points b are
already in Rn, we already know sign(f1, . . . , fr, b) and hence know what sign we need
the univariate polynomials, Fa to be for the sign vectors to be equal.

By Lemma 5.25, the choice of the points ai makes sure the univariate polynomials
Fa have the same total number of complex roots, and the same number of distinct
complex roots as our original polynomials ([81]’s proof to Theorem 4.1 excludes the zero
polynomial, however, the argument still works). If the total number of complex roots
is odd, the polynomial has at least one real root with an odd multiplicity. If the total
number of complex roots is even, then there could be no real roots or real roots with
even multiplicity.

For an Fb with all three states (positive, negative, and zero sign vector), we would
need to confirm our Fa can also take all three states. This can be achieved by checking
the multiplicity of the roots. The polynomial has a root with an odd multiplicity
iff it crosses the axis. We know what sign the original polynomial will give from
sign(f1, . . . , fr, b) allowing us to find the condition needed on the point xn to give Fa in
order for sign(f1, . . . , fr, (ai, xn)) = sign(f1, . . . , fr, b).

If it is the zero polynomial, we can select any point as our xn and the sign vectors
would be equal.

If the univariate polynomials have an even multiplicity they would either have
a sign vector {0,+} or {0,−}. We would confirm what sign this need to be using
sign(f1, . . . , fr, b), which will allow us to find the condition on the point xn. A similar
occurrence happens when the univariate polynomials are always positive or always
negative, as sign(f1, . . . , fr, b) confirms what sign we require.
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Theorem 5.29 There is a computable procedure that takes as input a finite list of
n-variate real polynomials and outputs a finite list (I0, . . . , Iℓ) of AoUC[0,1]n-instances
such that

{x ∈ [0, 1]n | ∃i Ii = {x}}

is a representative sample for the polynomials.

Proof. The base case is trivial. The unique point 0 ∈ R0 forms a representative sample
for any collection of zero-variate polynomials. We can just output an AoUC[0,1]-instance
{0} ∈ A(R0).

Given a finite list of n+ 1-variate real polynomials, we can compute a finite list of
n-variate polynomials including their projections using Corollary 5.23. By the induction
hypothesis, we can compute finitely many AoUC[0,1]n-instances such that the determined
outputs form a representative sample for the projections.

By considering the upper bounds on the ranks available to us, we can obtain some
upper bound on the number of AoUC[0,1]n+1-instances required in advance.

Corollary 5.30 AoUC∗
[0,1] ≤W BMRoot ≤W BPIneq ≤W AoUC⋄

[0,1].

Proof. The first reduction is a consequence of Proposition 5.12.
Asking for a root of a polynomial P is the same as asking for a solution of P (x) ≥

0 ∧ −P (x) ≥ 0; this shows the second reduction.
For the third, we observe that if there is any solution to

∧
i≤k Pi(x) ≥ 0 within

[0, 1]n, then every representative sample for P0, P1, . . . , Pk contains a solution. By
Theorem 5.29, AoUC∗

[0,1] lets us obtain a representative sample. Non-solutions will
eventually be recognized as such, which is why

⊔
n∈N Cn can identify a correct solution

from finitely many candidates. As shown in [86], it holds that
(⊔

n∈N Cn

)
⋆AoUC∗

[0,1] ≡W
AoUC⋄

[0,1].

We are now prepared to prove our upper bound for the Weihrauch degree of finding
Nash equilibria in multiplayer games:

Corollary 5.31 Nash ≤W AoUC⋄
[0,1].

Proof. A strategy profile is a set of strategies for all players which fully specify all actions
in a game. We say that a strategy profile is supported on a set S of actions if every
action outside of S has probability 0 in the strategy profile, and for every player the
expected payoff for actions in S is at least as much as for every other action. A strategy
profile is a Nash equilibrium if and only if it is supported on some set S.

For a fixed set S (for which there are only finitely many candidates), the property of
being a strategy profile on it can be expressed as a multivariate polynomial system of
inequalities. By compactness, we can detect if such a system has no solution in [0, 1]n.
This means that

(⊔
n∈N Cn

)
can be used to select a set S with the property that some

strategy profile is supported on it. We know from Nash’s theorem that such a set S
must exist.
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Once we have selected a suitable S, we invoke BPIneq to actually get a strategy
profile supported on it. This is a Nash equilibrium, as desired. We thus get (taking into
account Corollary 5.30):

Nash ≤W BPIneq ⋆

(⊔
n∈N

Cn

)
≤W AoUC⋄

[0,1]

5.3.4 Differences Between our Algorithm and the Original

We define sections and sectors in Definition 5.13 which are sets of continuous real-valued
function on the region R. Therefore, the stack decomposition which consists of sections
and sectors (Definition 5.14) is also built around functions. We clarify that we speak of an
algebraic stack decomposition, if these continuous functions are actually all polynomials.

In the original CAD algorithm the decomposition (Definition 5.14) has disjoint
regions. Our algorithm, however, can get multiple copies of the same regions.

Definition 5.32 Let R ⊆ Rn. A weak decomposition of R is a finite collection of
regions (Ri)i∈I whose union is R subject to Ri ∩Rj = ∅ or Ri = Rj for all i, j ∈ I.

A weak algebraic stack decomposition of R0 is just a weak decomposition of R0.
A weak algebraic stack decomposition of Rn+1 is a weak decomposition of the form⋃

R∈D SR, where each SR is an algebraic stack over R and D is a weak algebraic stack
decomposition of Rn.

Definition 5.33 A (weak) algebraic stack decomposition is minimal for a given set of
polynomials F if each p ∈ F is delineable on it, but removing any polynomial from the
(weak) algebraic stack decomposition breaks this property.

If we could test for equality, CAD could produce a minimal algebraic stack decompo-
sition. However, we cannot do this as we do not know the number of pieces/degrees/roots
of the polynomials.

Example 5.34 Consider F = {x2 + ϵ} for some parameter ε ∈ R. If ϵ is positive, a
minimal algebraic stack decomposition for F uses 0 polynomials, if ϵ = 0 we need 1, and
if ϵ is negative we need 2. Therefore, LPO reduces to finding minimal algebraic stack
decompositions already in the simplest case.

An algebraic stack decomposition (not weak) for F consists of a finite tuple of real
numbers (x1, . . . , xk) that are promised to be distinct and contain the roots of x2 + ϵ.
This allows us to check if ϵ is zero or negative: if ϵ < 1

2 mini,j≤k i ̸=j |xi − xj |2, it already
has to be the case that ϵ = 0. So even just asking for a algebraic stack decomposition of
a single univariate polynomial requires solving LPO.

Theorem 5.35 Given a finite set of multivariate polynomials, we can compute a weak
algebraic stack decomposition such that the original polynomials are delineable over the
stack.
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5. The Non-computability of Nash Equilibria in Multiplayer Games

Proof. The basic idea of the CAD algorithm is that for a finite collection F of n-variate
polynomials, we obtain a weak algebraic stack decomposition as projnF , projn−1F , . . . , projF .
Any finite overapproximation of the projections still works, thus Lemma 5.19 yields the
claim.

5.4 An Open Question and a Remark

Our main theorem demonstrates that AoUC∗
[0,1] ≤W Nash ≤W AoUC⋄

[0,1] which im-
mediately raises the question of which of those reductions are strict. As previously
mentioned, according to [86] it is established that AoUC∗

[0,1] <W AoUC⋄
[0,1], implying

that at least one of the two reductions is strict. Since the degrees of AoUC∗
[0,1] and

AoUC⋄
[0,1] exhibit significant similarities in various aspects, only a few of the established

techniques are available to resolve this situation. While the use of the recursion theo-
rem as demonstrated in [86, 88] might be possible, it certainly presents a considerable
challenge.

A similar question was left unresolved in [86, Section 5]. In that work, two variants
of Gaussian elimination were defined as follows:

Definition 5.36 ([86]) LU-DecompP,Q takes as input a matrix A, and outputs permu-
tation matrices P , Q, a matrix U in upper echelon form and a matrix L in lower echelon
form with all diagonal elements being 1 such that PAQ = LU . By LU-DecompQ we
denote the extension where P is required to be the identity matrix.

While LU-DecompP,Q ≡W AoUC∗
[0,1] was demonstrated, for the other variant only

AoUC∗
[0,1] ≤W LU-DecompQ ≤W AoUC⋄

[0,1] could be established. A clearer understand-
ing of situations where sequential uses of AoUC[0,1] are genuinely required to perform
some “algorithm”, and ideally a mathematical theorem or simpler problem which is
equivalent to AoUC⋄

[0,1] both seem to be very desirable.
Should it hold that AoUC∗

[0,1] <W Nash, it would be very interesting to see how
many players are needed to render the Weihrauch degree of finding Nash equilibria
harder than the two-player case. A natural conjecture would be that this already occurs
for three players. An important distinction between two-player and three-player games is
that two-player games with rational payoffs have rational Nash equilibria, while for every
algebraic number α ∈ [0, 1] there is a three-player game where every Nash equilibrium
assigns α as a weight to a particular action, as shown by Bubelis [35]. However, the
construction employed by Bubelis does not yield a reduction BRoot ≤W Nash3, as it
requires a polynomial with α as a simple root as starting point. On the other hand, we
know that even BRoot ≤W Nash2 holds via Corollary 5.8, albeit with a very roundabout
construction. Thus, this particular difference between two and three-player games is
immaterial to the Weihrauch degrees concerned.
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5.4.1 Route not Taken: ‘Potential’ Univariate Polynomials

In the intermediate stages of this research, we explored the CAD procedure from a
different angle to which we achieved our end results. However, the work completed
within this tangent is in itself an interesting subject and is laid out within this section.

Within the CAD algorithm, we can encounter the following scenario: We have an
AoUC[0,1]n-instance and a n + 1-variate polynomial. If the former indeed specifies a
unique point, then we want to substitute that point for the first n variables in the
polynomial and compute the roots of the resulting univariate polynomial. The beauty
lies in the fact that the interplay of addition, multiplication, and the AoUC[0,1] principle
align harmoniously, enabling us to postpone any non-computable operations until the
very last phase. The subsequent portion of this subsection will meticulously expound
upon this concept.

Definition 5.37 A potential univariate polynomial is a vector of AoUC[0,1]-instances
I − i, along with a k ∈ N. If each Ii collapses to some {ai}, the potential polynomial
specifies the “actual” polynomial

∑
i≤n(2kai − k)xi.

The potential polynomials, being an AoUC[0,1]-instance, they are restricted between
[0, 1], while the ‘actual’ polynomials are not. Therefore, to solve this issue we specify them
using

∑
i≤n(2kai − k)xi. We can expand the operations of addition and multiplication

for polynomials to encompass potential polynomials, all the while preserving the integrity
of the specification relation.

Lemma 5.38 There are computable operations ⊕ and ⋆ defined on potential univariate
polynomials such that if the potential polynomial Pi specifies the polynomial pi, then
P0 ⊕ P1 specifies p0 + p1 and P0 ⋆ P1 specifies p0 × p1.

Proof. We are given two potential polynomials P0 and P1, where P0 has the coefficients
bound between [−k, k], while those of P1 are bounded between [−j, j]. We use these as
input, with the output for addition being the full interval [−k − j, k + j].

Our output is the bound plus AoUC[0,1]-instances. The kth AoUC[0,1]-instances
are constructed by looking at the two kthAoUC[0,1]-instances from the input potential
polynomials. If both of these instances do not specify a point, we do nothing. However,
if they both specify a point, the kthAoUC[0,1]-instance we build for the output should
also specify a point within the bounds.

If we have two points a, b where a ∈ [0, 1] and b ∈ [0, 1] which can be scaled up
to the true bounds of P0 and P1, giving (2a − 1)k and (2b − 1)j. These bounds can
be added together, 2(ka + jb) − (k + j) to show the true coordinate of the point. In
order to calculate the non-scaled point within [0, 1], we introduce x which scales to
2x(k+ j)− (k+ j). Therefore, 2(ka+ jb)− (k+ j) = 2x(k+ j)− (k+ j), hence x = ka+jb

k+j .
Multiplication is influenced by all of the coefficients of the potential polynomials. If

we know the degrees of the potential polynomials and we can specify every coefficient
from the input P0 and P1, then we can compute the bounds for the output. This is
achieved by multiplying the coefficients of P0 and P1 together and then summing them.

71



5. The Non-computability of Nash Equilibria in Multiplayer Games

Therefore, the bound would be Mkj where M = max(degP0, P1).
Similarly to the addition, we can take points a0, . . . , am, b0, . . . , bm ∈ [0, 1] from

P0, P1 which relate to the coefficients of each polynomial with m being the bound of
the degree of the polynomials. These can be scaled up to the bounds of P0, P1 giving
(2am − 1)k and (2bm − 1)j. These bounds can be multiplied together to show the true
coordinate of the point, (2am − 1)(2bm − 1)kj. As a way of calculating the non-scaled
point within [0, 1], we can introduce x which scales to (2x− 1)Mkj.

Calculating the non-scaled points within [0, 1] becomes more complex with multipli-
cation, as outputs may need multiple inputs to be summed together. The summation

we are looking at is
m∑
i=0

aibm−i which, once scaled up, becomes
m∑
i=0

(2ai − 1)(2bm−i)kj.

We can rearrange this in order to get the unscaled and mixed construction, and make it
equal to our scaled x:

4kj
( m∑
i=0

aibm−i

)
− 2kj

( m∑
i=0

ai + bm−i

)
+mkj = 2Mkjx−Mkj

x =
2

M

( m∑
i=0

aibm−1

)
− 1

M

( m∑
i=0

ai + bm−i +
M +m

2M

Since we do not require these operations to work in a precise way for non-collapsing
AoUC[0,1]-instances, we do not need to employ interval arithmetic here. We can also
extend root-finding, in the following way:

Lemma 5.39 Given a finite list of potential univariate polynomials, F = {f1, f2, . . . , fr},
we can use AoUC∗

[0,1] to compute a finite list of points, X = {x1, x2, . . . , xl} such that
every root of a determined and non-zero polynomial in F is in the list.

Proof. Similarly to the proof of Proposition 5.5. We have an upper bound on the
degree of each potential polynomial available, and allocate 3k AoUC[0,1]-instances to a
polynomial of degree at most k. We monitor each potential polynomial, until we have
found confirmation that it is an actual polynomial, which furthermore is not constant 0.
If this never happens, the corresponding AoUC[0,1]-instances remain unspecified.

If we know that we have an actual non-constant 0 polynomial p, we identify some
a ≤ 0 and b ≥ 1 such that p(a) ̸= 0 ̸= p(b). We can then invoke the algorithm from [96,
Theorem 4.1] and compute a list of 3k numbers containing all zeros of the polynomial.
We specify the corresponding AoUC[0,1]-instances to take the corresponding values,
defaulting to 0 or 1 if the value falls outside of [0, 1].

5.5 Consequences of the Classification

In this section, we shall explore some consequences of our classification of the Weihrauch
degree of finding Nash equilibria. For this, we consider more permissive notions of
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algorithms and whether or not they are sufficiently powerful to solve the task. The first
important point, however, is that the non-computability of finding Nash equilibria is
inherently tied to the potential of having multiple Nash equilibria.

Corollary 5.40 Let f : X → Y be a function where Y is computably admissible. Then
if f ≤W Nash, then f is already computable.

Proof. By combining Theorem 5.3 with [96, Theorem 2.1] (originally [20, Theorem 5.1]),
since AoUC⋄

[0,1] ≤W C{0,1}N .

An immediate consequence of Corollary 5.40 is that if we restrict our consideration
to games having a unique Nash equilibrium, then computing the Nash equilibrium is
possible. However, this insight goes even further. For example, we could consider the
class of games where Player 1 receives the same payoff in any Nash equilibrium. Then
computing the equilibrium payoff for Player 1 is possible, even if we might be unable to
compute a Nash equilibrium.

As our first extended notion of algorithm, we consider computation with finitely
many mind changes. We begin with a model of computation where the machine continues
to output more and more digits of the infinite code for the desired output. We then add
the ability for the machine to completely erase all digits written so far, and to start over.
To ensure that there is a well-defined output, this ability may be invoked only finitely
many times. It was shown in [20, 28] that a problem f is solvable with finitely many
mind changes iff f ≤W CN.

Corollary 5.41 Nash is solvable with finitely many mind changes.

We can delve a bit deeper and obtain an upper bound for the number of mind
changes required from the dimensions of the game.

Next, we consider various probabilistic models of computation. A Las Vegas machine
can use random coin flips to help with its computation. At any point during the
computation, it can report a fault and abort, but if it continues running forever, it needs
to produce a valid output. For each input, the probability (based on the coin flips) of
outputting a correct output needs to be positive (but we do not demand a global positive
lower bound). This model was introduced in [23]. Since Las Vegas computability is
closed under composition, we obtain the following strengthening to their [23, Corollary
17.3] (by using their [23, Corollary 16.4]):

Corollary 5.42 Nash is Las Vegas computable.

It was previously demonstrated in [23, Theorem 16.6] that even for a Las Vegas
computation solving just AoUC[0,1] it is not possible to compute a positive lower bound
for the success chance from the input – so in particular, there is no global lower bound.

By dropping the requirement that a wrong guess must be reported at some stage
of the computation, we arrive at Monte Carlo machines. They, too, make random coin
tosses and are subject to the requirement that any completed output must be correct
and that a correct output needs to be given with some positive probability. However,
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they can fail by simply stopping to produce output, due to the Halting problem, we
cannot detect whether they have done that. This model was introduced in [26], and
from the characterizations obtained there together with our classification it follows that:

Corollary 5.43 Nash is Monte Carlo computable, and moreover, we can compute a
positive lower bound for the success chance from the dimensions of the game.

Indeed, in the context of probabilistic computation for finding Nash equilibria, we
are confronted with a choice. We can opt for either possessing knowledge of a lower
bound on the success probability or being able to detect when a random guess during the
computation proves to be incorrect. This choice highlights a trade-off between the two
aspects within the confines of probabilistic algorithms aimed at solving this problem.
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Chapter 6

Introduction

Machine learning and cybersecurity have emerged as dynamic and rapidly evolving
research domains, poised to shape the technological landscape of the future. Machine
learning techniques have entered various industries in order to establish systems to learn
from data and improve their performance over time. In the context of cybersecurity,
machine learning plays a crucial role in identifying and mitigating threats [3], detecting
anomalies [111], and adapting to new attack patterns [68]. The vast amounts of data
generated in the digital era have propelled machine learning to new heights, enabling
the development of sophisticated algorithms for enhancing security measures. Digital
data has increased from 2 Zettabytes in 2010 and is predicted to be 175 Zettabytes of
data by 2025 [76], with 87 Zettabytes residing in the public cloud and 79.4 Zettabytes
created by IoT devices.

Furthermore, cybersecurity has become a critical concern as society becomes increas-
ingly dependent on digital platforms. With the rise of cyber attacks, data breaches, and
online vulnerabilities, there is a pressing need to develop advanced solutions to safeguard
sensitive information and digital infrastructures. Microsoft Digital Defense Report
2022 [106] shows how much the nation state groups’ targeting of critical infrastructure
increased in the past year with actors’ focusing on companies in the IT sector, financial
services, transportation systems and communications infrastructure. As well, there is a
900% year over year increase in proliferation of deepfakes since 2019. This has led to a
surge in research efforts focused on enhancing cybersecurity mechanisms to stay ahead of
evolving threats. However, the UK Government’s Cyber Security Breaches Survey 2022
[103] reported that the number of cyber attacks remained consistent with 2021. They
noted that less cyber-mature organisations may be under-reporting, as organisations
with enhanced cybersecurity usually result in a higher identification of attacks. This also
shows how the need for education of cyber attacks for digital platforms is important.

In this landscape, computable analysis and game theory offer fresh perspectives
that can contribute to both machine learning and cybersecurity. Computable analysis
provides a rigorous framework for analysing the computational complexity of algorithms
and their convergence properties. In the context of machine learning, this can help in
understanding the existence, efficiency and reliability of learning algorithms, leading
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to more effective and trustworthy models. Additionally, game theory’s application in
cybersecurity can assist in modelling adversarial scenarios, predicting potential attack
strategies, and designing robust defence mechanisms. By considering interactions
between attackers and defenders as strategic games, researchers can devise strategies
that minimise risks and losses in cyber operations.

In conclusion, the intersection of machine learning, cybersecurity, computable analysis,
and game theory presents a rich avenue for innovative research. The insights gained
from these disciplines can revolutionise the ways we address security challenges, ensuring
the safety and reliability of digital systems in an increasingly interconnected world.
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A Computable Analysis Perspective
on Verified Machine Learning
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This chapter (with the exception of Section 7.3.6) is based on the paper ‘A Computability
Perspective on (Verified) Machine Learning’ published in WADT [47]. It is joint work
with Jay Morgan, Arno Pauly, and Markus Roggenbach.

7.1 Introduction

Machine Learning (ML) involves the creation of predictive and generative models using
optimisation techniques. The remarkable achievements of ML methods across diverse
domains prompt the question of how much confidence one can place in the outcomes
produced by an ML model. Given the application of ML models in critical domains,
some level of verification becomes essential, as eloquently argued by Kwiatkowska [94].

However, the extensive reliance on non-discrete mathematics in ML renders tradi-
tional verification techniques challenging to apply to its artifacts. Moreover, numerous
ML applications lack specifications in forms such as an input/output relationship, which
often serve as foundations for ‘classical’ verification methods. For instance, consider
an ML application designed to determine whether a given image depicts a cat. In
the absence of a clear specification, the question arises: what type of properties can
be effectively verified? In our perspective, akin to classical verification, broadening
the scope of verifiable properties beyond simple input/output relationships can prove
valuable.
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By leveraging the tools of computable analysis, which deals with computation on
continuous data types, we embrace the same realm of continuous mathematics that
underpins the theory of machine learning. This approach not only sidesteps ad-hoc
discretisation but also aligns seamlessly with the continuous nature of ML’s mathematical
foundations.

We embark on an exploration into the realm of verifiable questions concerning ML
models, a pursuit independent of the specific ML framework employed. These questions,
we believe, serve as fundamental components for shaping a future property specification
language dedicated to ML. The task of discretisation, while possibly necessary for
efficiency, can be delegated to the implementation phase, all while preserving correctness.

To formally characterise the computational queries we aim to address, we employ
the language of computable analysis. We establish their general solvability through
algorithmic demonstrations, ensuring their applicability across diverse ML methodologies.
It’s important to note that the semi-decision procedures presented are not designed for
direct implementation purposes. Furthermore, we refrain from making assertions about
computational complexity.

7.2 A Theory of Verified Machine Learning

One fundamental concept in ML is that of a classifier. A classifier takes as input a
description of an object, often in the form of a vector of real numbers, and provides
an output that is either a colour or no response. This notion positions classifiers as a
generalisation of semi-decision procedures. Within the context of computable analysis,
the theory centres around functions defined on real numbers and other sets derived from
analysis, which can be computed by machines. We use the theory from Chapter 2 as
base knowledge for this chapter, utilising represented spaces.

7.2.1 A Theory of Classifiers

We focus exclusively on classification tasks. In this context, a trained model takes a
description of an object as input and produces an output that is either a class (usually
represented as an integer from k = 0, . . . , k − 1, where k > 0) or provides no response.
It’s important to note that the absence of a response might arise due to the algorithm’s
failure to terminate, rather than a deliberate refusal to select a class. This consideration
is significant when dealing with domains like the real numbers, given the continuity of
all computable functions. To formally handle this, we work with the represented space
k⊥, encompassing elements such as 0, . . . , k − 1,⊥, where 0ω exclusively represents ⊥,
and any 0m1ℓ0ω stands for ℓ < k, with m ∈ N.

In the realm of implementable classifiers, they must be computable functions. An
essential observation from computable analysis is that computable functions must
inherently be continuous. Interestingly, the most suitable concept of a function space
within computable analysis is the space C(X,Y), housing continuous functions from X
to Y.
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Definition 7.1 A classifier is a (computable/continuous) procedure that takes some
x ∈ X as input, and either outputs a colour j ∈ k, or diverges (which is seen as
outputting ⊥). The collection of classifiers is the space C(X,k⊥).

Any concrete classifier we would care about will actually be computable. However,
the definition includes also non-computable (but continuous) ones.

Example 7.2 Consider the classifier we would obtain from Support Vector Machine
(SVM) [71]. The relevant space X will be Rn for some n ∈ N. The classifier is described
by a hyperplane P splitting Rn into two connected components C0 and C1. We have
two colours, so the classifier is a map p : Rn → 2⊥. If x ∈ Ci, then p(x) = i. If x ∈ P ,
then p(x) = ⊥.

On the fundamental level, we need the no-answer answer ⊥ as we will never be able
to be certain that a numerical input is exactly on the separating hyperplane, even if we
keep increasing the precision: equality on reals is not decidable.

Practically, computations might be performed using floating-point arithmetic, where
equality is decidable. In this, the use of ⊥ is still meaningful: If we keep track of the
rounding errors encountered, we can use ⊥ to denote that the errors have become too
large to classify an input.

Example 7.3 Neural network classifiers compute a class score for every colour, which,
when these class scores are normalised, share similar properties as a probability dis-
tribution. This translates into our framework by fixing a threshold p ≥ 0.5, and then
assigning a particular colour to an input iff its class score exceeds the threshold p. If no
colour has a sufficiently high score, the output is ⊥. As long as the function computing
the class scores is computable, so is the classifier we obtain in this fashion. If our class
scores can use arbitrary real numbers, we cannot assign a colour for the inputs leading
to the exact threshold.

When considering a classifier, the range of verification questions we can pose is
extensive. These questions aim to validate specific criteria or assess the classifier’s
performance over a designated set or region A. Verification serves the purpose of
ensuring system correctness and identifying potential flaws. Here are concrete examples
of the questions we might ask:

Proposition 7.4. The following maps are computable:

1. existsValue : k× V(X)× C(X,k⊥) → S, which answers true on input (n,A, f) iff
∃x ∈ A f(x) = n.

2. forallValue : k×K(X)× C(X,k⊥) → S, which answers true on input (n,A, f) iff
∀x ∈ A f(x) = n.

3. fixedValue : k× (V ∧K)(X)× C(X,k⊥) → 2⊥, which on input (n,A, f) answers 1
iff ∀x ∈ A f(x) = n, and answer 0 iff ∃x ∈ A f(x) ∈ k \ {n}, and ⊥ otherwise.
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4. constantValue : (V ∧K)(X)×C(X,k⊥) → 2⊥, which on input (A, f) answers 1 iff
there is some n ∈ k such that fixedValue(n,A, f) answers 1, and which answers 0
iff fixedValue(n,A, f) answers 0 for all n ∈ k.

Proof. 1. Given a colour k ∈ k and a classifier f ∈ C(X,k⊥), we can compute
f−1(k) ∈ O(X) due to the discreteness of k. By definition of overtness, given
A ∈ V(X), we can then semidecide whether A ∩ f−1(k) ̸= ∅.

2. As above, we can compute f−1(k) ∈ O(X). By the definition of compactness,
given A ∈ K(X) we can semidecide whether A ⊆ f−1(k).

3. By running the algorithms from 1. and 2. in parallel.

4. Since k is both compact and overt, we can quantify over it both existentially and
universally. Or, more down to earth, we can simply run the algorithm from 3.
for all finitely many cases in parallel, and answer once we have received enough
information from those runs.

Here we can present real-world examples of situations where these questions could
prove useful:

1. existsValue:

Example 7.5 Consider a DDOS-attack detection system realised as a classifier f .
The region A consists of data indicating an attack is happening, and the colour n
means that the system concludes there is no attack. If existsValue(n,A, f) returns
true, we have identified a false negative in f .

2. forallValue:

Example 7.6 Continuing with example 7.5, here we may consider the property
that for every data point in the region A the presence of the attack is successfully
identified. If forallValue(n,A, f) returns true, we have verified that all points in
the set A are classified as expected.

3. fixedValue:

Example 7.7 Consider an automated stock trading system which makes decisions
to buy, sell or hold a particular stock based on its technical indicators. Deciding
to buy or sell is represented as a colour (as it is an active decision), while ⊥ means
to hold the current position. Given a region A of very positive technical indicator
values, we may want to ideally be assured that the system will always buy, while
the decision to sell would be a clear mistake. If fixedValue(buy, A, f) returns 1,
we know that the system meets the ideal requirement. If it returns 0, we have
found a mistake. Answer ⊥ means that the system falls short of its target without
making a clear mistake.
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4. constantValue:

Example 7.8 Assume we have reason to believe that all points in the region A
are very similar, and should thus be classified in the same way by the classifier f .
If constantValue(A, f) returns 1, we have confirmation that this indeed happens.
Obtaining the answer 0 suggests that a mistake might have happened, as two
similar data points get assigned different colours. No answer (i.e. ⊥) means that
some points in A remain unclassified by f .

7.2.2 A Theory of Treating Adversarial Examples

One specific verification task that has caught the attention of the ML community is to
find adversarial examples [150, 67, 78] or to prevent them from occurring. One says
that an adversarial example occurs when a ‘small’ change to the input results in an
‘unreasonably large’ change in the output (i.e. akin to our fourth task above). For
example, given a correctly classified image, small, even unnoticeable changes to the
pixels in the image can vastly change the classification output.

Example 7.9 In particular, image-based Deep Neural Networks (DNNs) can be easily
fooled with precise pixel manipulation. The work in [166] uses a Gaussian mixture
model to identify key points in images that describe the saliency map of DNN classifiers.
Modifying these key points may then change the classification label made by said DNN.
They explore their approach to ‘traffic light challenges’ (publicly available dashboard
images of traffic lights with red/green annotations). In this challenge, they find modifying
a single pixel is enough to change neural network classification.

One useful application of the map constantValue is using it on some small regions
that we are interested in. In ML terms, it addresses the question if there are adversarial
examples for a classifier in the vicinity of x. To characterise small regions, we would have
available a metric, and then wish to use closed balls B(x, r) as inputs to constantValue.

To this end, we need to obtain closed balls B(x, r) as elements of (V ∧ K)(X). The
property that for every x ∈ X we can find an R > 0 such that for every r < R we
can compute B(x, r) ∈ K(X) is a characterisation of effective local compactness of a
computable metric space X [128]. We generally get clB(x, r), the closure of the open ball,
as elements of V(X). For all but countably many radii r we have that B(x, r) = clB(x, r),
and we can effectively compute suitable radii within any interval [128].

Definition 7.10 Let (X, d) be a computable metric space, and C(X,k⊥) the space of
classifiers. The map locallyConstant : X × R+ × C(X,k⊥) → 2⊥ returns 1 on input
(x, ε, f) iff f returns the same colour n ∈ k for all y ∈ X with d(x, y) ≤ ε. It returns 0
if there exists some y ∈ X with d(x, y) < ε such that f returns distinct colours on x
and y. It returns ⊥, if some points ε-close to x remain unclassified by f (such as in the
cases of the global-robustness property [98]), but no distinct colours appear; or if there
is a distinct colour appearing at a distance of exactly ε to x.
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((a)) Output 1 ((b)) Output 0 ((c)) Output ⊥

Figure 7.1: Illustrating the map locallyConstant

The map locallyConstant is illustrated in Figure 7.1. Consider the (closed) ε-ball
around a point x. For a classifier f , locallyConstant outputs 1 if everything in the ball
yields the same answer under f (Figure 7.1(a)). The answer is 0 if there are two points
(depicted as a red and a blue star in the Figure 7.1(b)) that yield distinct answers in
the ball. The answer ⊥ appears in two cases: If there are unclassified points inside the
open ε-ball around x (the white region inside the ball on the right), or if another colour
appears on the boundary of the ball, but not inside it (blue star), both shown in Figure
7.1(c).

We prove in Theorem 7.11 below that locallyConstant is computable under mild
assumptions, namely that every closed ball B(x, ε) is compact (which implies that (X, d)
is locally compact). The Euclidean space Rn is both a typical example for an effectively
locally compact computable metric space where all closed balls are compact, and the
predominant example relevant for ML.

Theorem 7.11 Let X be an effectively locally compact computable metric space with
metric d. There is a computable multivalued function producing on input x ∈ X some
real Ex > 0 as well as an operation locallyConstantx : (0, Ex)× C(X,k⊥) → 2⊥, where
locallyConstantx(r, f) = 1 iff ∀y ∈ B(x, r) f(x) = f(y) ̸= ⊥, and locallyConstantx(r, f) =
0 iff ∃y0, y1 ∈ B(x, r) ⊥ ≠ f(y0) ̸= f(y1) ̸= ⊥.

If (X, d) is such that every closed ball is compact, we can ignore the Ex and have
locallyConstant : X × R+ × C(X,k⊥) → 2⊥ instead, with locallyConstant(x, r, f) =
locallyConstantx(r, f).

Proof. By [128, Proposition 12], given a point x in an effectively locally compact
computable metric space, we can compute a radius Ex and the corresponding closed ball
B(x,Ex) as a compact set. Subsequently, we can obtain every closed ball as a compact
set given a radius less than Ex. If every closed ball is compact, we can even obtain them
computably as elements of K(X) by [128, Proposition 10].

In either case, we have B(x, r) available to us as a compact set, and can thus correctly
answer 1 (if this is the case) by running forallValue from Proposition 7.4 for all finitely
many possible colours and B(x, r).

Without any constraints on the computable metric space X we can obtain clB(x, r) ∈
V(X), and we note that if there are two points assigned to distinct colours in clB(x, r),
there are already such points in B(x, r). Hence, running existsValue from Proposition
7.4 on all finitely many possible colours and clB(x, r) lets us correctly answer 0, if this
is the case we are in.
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To relate back to adversarial examples, locallyConstant tells us whether a classifier
admits an adversarial example close to a given point x.

Example 7.12 In the context of fully-autonomous vehicles that use sensor-captured
data as input for DNN models, [78] explains how lighting conditions and angles, as well
as defects in sensor equipment themselves, yield realistic adversarial examples. Assume
the metric to be chosen to model the impact of these issues on the sensor data. Then
one could deploy locallyConstant on a fully-autonomous vehicle in order to detect if one
can trust the classifier on the current input data (answer 1) or not (answer 0).

An adversarial example is the result of a small change or perturbation to the original
input that results in a change of classification made by, say, a DNN. That is given the
classifier f and an input x, an adversarial example is f(x) ̸= f(x+ r) for ||r|| ≤ ϵ and
ϵ > 0. The question is: what do we call a ‘small’ perturbation, i.e., how does one choose
the parameter r?

Example 7.13 Assume that we want to use our classifier to classify measurement
results with some measurement errors. As an example, let us consider the use of ML
techniques to separate Laser Interferometer Gravitational-wave Observatory (LIGO)
sensor data indicating gravitational waves from terrestrial noise (e.g. [144]). If our
measurements are only precise up to ε, then having an adversarial example for r = ε
tells us that we cannot trust the answers from our classifier. In the example, this could
mean finding that the precise values our sensors show are classified as indicating a
gravitational wave, but a negligible perturbation would lead to a ‘noise’-classification.

We could use domain knowledge to select the radius r [108]. For example, in an image
classification task, we could assert a priori that changing a few pixels only can never
turn a picture of an elephant into a picture of a car. If we use Hamming distance as a
metric on the pictures, stating what we mean with a few pixels gives us the value r such
that any adversarial example demonstrates a fault in the classifier. Another example by
[135] finds the upper and lower bounds of the input space via an optimisation procedure,
following that DNNs are Lipschitz continuous functions and all values between these
bounds are reachable.

So far it was the responsibility of the user to specify a numerical value for what a
‘small’ perturbation is in the definition of adversarial examples. As an alternative, we
can try to compute the maximal value r such that on any scale smaller than r the point
under consideration is not an adversarial example.

Proposition 7.14. Let X be an effectively locally compact computable metric space
with metric d such that all closed balls are compact. Then the map

(x, f) 7→ sup{r ∈ R | ∃i ∈ k ∀y ∈ B(x, r) f(y) = i} : X× C(X,k⊥) → R<

is computable.
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Proof. As k is overt and B(x, r) is uniformly compact by assumption (via [128, Proposi-
tion 10]), it follows that

∃i ∈ k ∀y ∈ B(x, r) f(y) = i

is semidecidable in the parameters x, f and r, thus

{r ∈ R | ∃i ∈ k ∀y ∈ B(x, r) f(y) = i} ∈ O(R)

is an open set computable from x and f . The supremum of a set U ∈ O(R) is computable
as an element of R< as shown in [126, Section 10].

Proposition 7.15. Let (X, d) be a computable metric space. Then the map

(x, f) 7→ inf{r ∈ R≥0 | ∃y ∈ B(x, r) ⊥ ≠ f(x) ̸= f(y) ̸= ⊥} : X× C(X,k⊥) → R>

is computable.

Proof. It makes no difference whether we use ∃y ∈ B(x, r) or ∃y ∈ clB(x, r) here. In a
computable metric space X, we can compute clB(x, r) ∈ V(X) from x and r. In addition,
we observe that ⊥ ≠ f(x) ̸= f(y) ̸= ⊥ is semidecidable in x, y and f . Alltogether, this
gives us access to

{r ∈ R≥0 | ∃y ∈ B(x, r) ⊥ ≠ f(x) ̸= f(y) ̸= ⊥} ∈ O(R≥0)},

and we can then compute the infimum in R>. Since we consider the infimum in the
space R≥0, it is at least 0.

Corollary 7.16 Let X be an effectively locally compact computable metric space
with metric d such that all closed balls are compact. The map OptimalRadius :⊆
X × C(X,k⊥) → R defined by (x, f) ∈ dom(OptimalRadius) iff f(x) ̸= ⊥, ∃y ⊥ ̸=
f(y) ̸= f(x) and ∀r, ε > 0 ∃z ∈ B(x, r + ε) \B(x, r) f(z) ̸= ⊥; and by

OptimalRadius(x, f) = sup {r ∈ R | ∃i ∈ k ∀y ∈ B(x, r) f(y) = i}
= inf {r ∈ R | ∃y ∈ B(x, r) ⊥ ≠ f(x) ̸= f(y) ̸= ⊥}

is computable.

7.2.3 A Theory of Learners and their Robustness

Let’s now delve into the process of training the classifier, considering it as a one-step
procedure without adopting a dynamic view. In this context, we focus solely on supervised
learning, where the dataset comprises labeled examples, and the learning algorithm’s
goal is to establish a function mapping feature vectors to labels. Our understanding of a
learner, formalised in Definition 7.17, is based on its ability to convert finite sequences
of labeled points into classifiers. Shifting from our previous emphasis on pre-trained ML
procedures, we transition to discussing the essence of the learning process itself. This is
where the concept of a learner comes into play, as it takes a set of data points paired
with corresponding labels and produces a trained model.

86



7.2. A Theory of Verified Machine Learning

Definition 7.17 A learner is a (computable/continuous) procedure that takes as an
input a tuple ((x0, n0), . . . , (xℓ, nℓ)) ∈ (X× k)∗ and outputs a classifier f ∈ C(X,k⊥).
The collection of all learners is the space C((X× k)∗, C(X,k⊥)).

Note that we not only consider classifiers to be continuous functions but also assume
that the learning process itself is continuous. This arises due to the requirement that
learning is a computable process. In this context, continuity implies that if the data
sample is modified by substituting some xk with a closely related x′k, the resulting
classifiers f and f ′ cannot assign distinct colors to the same point y (although they
might still vary in the use of ⊥).

We do not prescribe any specific relationship between the training data and the
resulting classifier’s behaviour. While it might seem reasonable to expect that a learner
L accurately reproduces the training data, that is, satisfies L((xi, ni)i≤ℓ)(xm) = nm,
such a criterion is generally impossible to meet. This is because our concept of training
data does not exclude the possibility of having multiple occurrences of the same sample
point with different labels. Furthermore, this criterion would not align with practical
applications, as it’s often desirable for a model to be able to disregard portions of its
training data as potentially flawed.

However, we can inquire whether a learner (such as a Convolutional neural network
(CNN)) will produce a classifier that faithfully reproduces non-contradictory training
data, assuming the following.

Proposition 7.18. Let X be computably overt and computably Hausdorff. The
operation

doesDeviate : C((X× k)∗, C(X,k⊥)) → S

returning true on input L iff there is some input (xi, ni)i≤ℓ ∈ (X× k)∗ with xi ̸= xj for
i ̸= j, and some m ≤ ℓ such that L((xi, ni)i≤ℓ)(xm) ∈ k \ {nm} is computable.

Proof. If X is overt, then so is (X × k)∗. Since the condition for answering true is
defined by existentially quantifying a semidecidable condition over an overt set, it is
semidecidable itself.

Robustness under additional training data Now we can ask how ‘robust’ the
classifier we are learning with the training data actually is. This phenomenon has
recently attracted attention in the ML literature under the term of underspecification
[4]. Whether we view the phenomenon as robustness of learning or underspecification of
the desired outcome is a matter of perspective: A failure of robustness is tied to the
existence of (almost) equally good alternative classifiers.

Generally, our goal will not be so much to algorithmically verify properties of learners
for arbitrary training data, but rather be interested in the behaviour of the learner on
the given training data and hypothetical small additions to it. One question here would
be to ask how robust a classifier is under small additions to the training data. A basic
version of this would be:
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Proposition 7.19. Let X be computably compact and computably overt. The map

robustPoint : X× (X× k)∗ × C((X× k)∗, C(X,k⊥)) → 2⊥

answering 1 on input x, (xi, ni)i≤ℓ and L iff

∀xℓ+1 ∈ X ∀nℓ+1 ∈ k L((xi, ni)i≤ℓ)(x) = L((xi, ni)i≤ℓ+1)(x) ∈ k

and answering 0 iff

∃xℓ+1 ∈ X ∃nℓ+1 ∈ k ⊥ ≠ L((xi, ni)i≤ℓ)(x) ̸= L((xi, ni)i≤ℓ+1)(x) ̸= ⊥

is computable.

Proof. Since X and k are both compact and overt, both universal and existential
quantification preserves semidecidable predicates. Since k is discrete and Hausdorff, the
stem of our predicate definitions for answering 0 and 1 are both semidecidable.

We can lift robustPoint to ask about all points in a given region, or even in the
entire space as a corollary:

Corollary 7.20 Let X be computably compact and computably overt. The map

robustRegion : (K ∧ V)(X)× (X× k)∗ × C((X× k)∗, C(X,k⊥)) → 2⊥

answering 1 on input A, (xi, ni)i≤ℓ and L iff robustPoint answers 1 for every x ∈ A
together with (xi, ni)i≤ℓ and L, and which answer 0 iff there exists some x ∈ A such that
robustPoint answers 0 on input x, (xi, ni)i≤ℓ and L, and which answers ⊥ otherwise, is
computable.

If X is computably compact and computably overt, and we take the regions A to be
themselves compact and overt sets, then both operations are computable.

Corollary 7.21 The map

globallyRobust : (X× k)∗ × C((X× k)∗, C(X,k⊥)) → 2⊥

defined as

globallyRobust((xi, ni)i≤ℓ, L) = robustRegion(X, (xi, ni)i≤ℓ, L)

is computable.

7.2.4 Sparsity of Training Data

Allowing arbitrary additional training data as in the definition of robustness might not
be too suitable – for example, if we add the relevant query point together with another
label to the training data, it would not be particularly surprising if the new classifier
follows the new data. If we bring in a metric structure, we can exclude new training
data which is too close to the given point.
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Definition 7.22 Fix a learner L : (X× k)∗ → C(X,k⊥), some N ∈ N and ε > 0. We
say that (xi, ni)i≤ℓ is sparse at x ∈ X, if there are (yi,mi)i≤j and (y′i,m

′
i)i≤j′ such that

ℓ+N ≥ j, j′ ≥ ℓ, yi = y′i = xi and mi = m′
i = ni for i ≤ ℓ, and d(yi, x), d(y

′
i, x) > ε for

i > ℓ satisfying ⊥ ≠ L((yi,mi)i≤j)(x) ̸= L((y′i,m
′
i)i≤j′)(x) ̸= ⊥.

We say that (xi, ni)i≤ℓ is dense at x ∈ X if for all (yi,mi)i≤j and (y′i,m
′
i)i≤j′ such

that ℓ+N ≥ j, j′ ≥ ℓ, yi = y′i = xi and mi = m′
i = ni for i ≤ ℓ, and d(yi, x), d(y

′
i, x) ≥ ε

for i > ℓ it holds that L((yi,mi)i≤j)(x) = L((y′i,m
′
i)i≤j′)(x) ̸= ⊥.

To put it in words: Training data is dense at a point whose label it determines, even
if we add up to N additional points to the training data, which have to be at least ε
away from that point. Conversely, at a sparse point, we can achieve different labels by
such an augmentation of the training data. If we have chosen the parameters N and
ε well, then we can conclude that based on the training data we can make reasonable
assertions about the dense query points, but unless we have some additional external
knowledge of the true distribution of labels, we cannot draw reliable conclusions about
the sparse query points. We concede that it would make sense to include points under
sparse where the classifiers will always output ⊥ even if we enhance the training data,
but this would destroy any hope of nice algorithmic properties.

Theorem 7.23 Let X be a computably compact computable metric space. The
operation

SprsOrDns : C((X× k)∗, C(X,k⊥))× N× R+ × (X× k)∗ ×X → 2⊥

answering 0 on input L,N, ε, (xi, ni)i≤ℓ and x iff (xi, ni)i≤ℓ is sparse at x, and answers
1 if (xi, ni)i≤ℓ is dense at x is computable.

Proof. Essentially, the claim is that both being sparse and being dense is a semidecidable
property. We show this by examining Definition 7.22 and in particular its quantification
structure.

We note that ⊥ ̸= L((yi,mi)i≤j)(x) ̸= L((y′i,m
′
i)i≤j′)(x) ̸= ⊥ is a semidecidable

property. We are then adding existential quantifications over cl{y ∈ X | d(x, y) > ε},
and this set is always available to us as an overt set when working in a computable
metric space. Thus, being sparse is semidecidable.

For density, note that L((yi,mi)i≤j)(x) = L((y′i,m
′
i)i≤j′)(x) ̸= ⊥ is again semidecid-

able. This time we add universal quantification over {y ∈ X | d(x, y) ≥ ε}. This set is
available to us as a compact set thanks to the demand that X be a computably compact
computable metric space.

Figures 7.2 and 7.3 illustrate the concepts of robustness and sparsity/density using
the same dataset 1. In Figure 7.2, we present a classification example where our algorithm
employs a SVM to establish a separation line between gray and red dots. The left side

1Our overall algorithms are theoretical and not easily translated into code. However, the indi-
vidual concepts can be implemented in code to aid the comprehension of mathematical ideas like
robustness/sparsity and density as seen in Appendix A.
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Figure 7.2: Illustrating lack of robustness. Left: Original data, Right: Changed
separating line due to one added data point (at (18,0)).

Figure 7.3: Illustration of predicates concerning the original classifier. Left: Robustness
(Red: Robustness, Blue: Not Robust), Right: Sparsity/Density (Red: Dense, Blue:
Sparse) – note: ⊥ is at the boundaries between the coloured areas.

displays the original dataset, while the right side depicts the dataset after adding one
more gray data point. Notably, the separation line has shifted significantly.

In the left image of Figure 7.3, one can observe the regions within the input space
that could experience classification changes due to the addition of a single point to the
training data. The algorithm introduces the extra data point, computes the separation
line, and evaluates the position of each point in relation to this line. This process
is repeated for all potential additional data points, revealing the points that remain
consistently on one side of the line (robust) and those that do not. The blue region
encompasses points that lack robustness, meaning they may switch sides of the separation
line depending on the supplementary point. The red region includes robust points, which
consistently remain on the same side of the separation line, regardless of the additional
points.

Moving to the right image of Figure 7.3, we introduce the concept of sparsity/density.
Similar to before, we examine whether a point could change sides of the separation line
with the addition of another sample point. However, our focus is solely on sample points
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located more than 5 units away from the point under consideration. It’s possible for
points to be dense but not robust (as seen in the area directly above (10, 0) and (20, 0)).
This can be clarified as follows: to achieve a steep separation line, the extra data point
must be placed around (15, 0). Consequently, the steep separation lines contribute to
the upper pattern in the image without affecting the red component at the bottom.

Density implies robustness, but the reverse is not necessarily true, as density encom-
passes additional training data that isn’t too close to the point under consideration. The
choice between these notions depends on the specific application. A lack of robustness
when a single data point is added signals an inadequately sized training dataset. However,
if a more substantial portion of supplementary training data is introduced, demanding
robustness might become excessive. In such instances, dense points remain those where
only exceedingly similar counterexamples would contest the classifier’s response.

7.2.5 Sparsity in the ML literature

In the context of this study, the term ‘sparsity’ pertains to the measurement of the input
representation, rather than denoting the representation itself (such as in sparse matrix
forms). Specifically, we can assess the sparsity of sampling from any underlying manifold,
which may subsequently impact how ML algorithms learn and formulate classifications
within these specific spatial regions.

In regions of a manifold characterised by sparsity, the available information for ML
algorithms to learn from is limited. Such regions might consequently accommodate a
higher abundance of adversarial examples [100]. These measurement techniques can
potentially aid in the generation or search for adversarial examples by manipulating
the size of the closed ball B(x, r) in relation to the local sparsity information of the
manifold’s sampling.

A common approach to measuring the sparsity of sampling within data employs
kernel density estimation (KDE), often utilising a Gaussian kernel such as exp

(
||x−x′||2

2σ2

)
,

where σ controls the kernel’s width. For low σ values, the similarity matrix forms an
identity matrix, while high values yield a matrix of all ones. Thus, the optimal bandwidth
parameter choice is context-specific, requiring tuning to effectively quantify the manifold
space’s sparsity.

However, efforts have been made to address this challenge. The work in [100] outlines
two methods for adaptively setting bandwidth parameters in KDE, tailoring them
to the local characteristics of regions. This approach optimally captures the sparsity
measurement with respect to each manifold space sample.

7.2.6 Linear Regression

Regression models are supervised learning models that contain past data with labels
which are then used to build the model, where the predicted output variable is continuous
in nature. Linear regression assumes a linear relationship between two variables, the
independent and dependent, and aims to find the best-fitting line to describe the
relationship.

91



7. A Computable Analysis Perspective on Verified Machine Learning

Definition 7.24 (Linear Regression) Given finitely many points (xi, yi)i≤n in R2, find
some a, b that minimise the summed squared errors

∑
i≤n(axi + b− yi)

2.

Linear regression is computable on ‘reasonable data’. The precise requirement is
that there exist values i and j such that i, j ≤ n and xi ̸= xj (or when n = 1). Without
this constraint, numerous solutions (a, b) are possible, which subsequently leads to
non-computability.

Proposition 7.25. Finding the line of best fit using linear regression is Weihrauch
equivalent to LPO.

If we are dealing with reasonable data, we can perform linear regression in the
‘normal’ manner. In cases where we encounter identical x values, we can calculate the
average of all corresponding y values and derive a line of best fit based on this averaged
data. The slope of this line provides insight into the relationship between y values and x
values close to 0. In scenarios where we lack knowledge of the exact line parameters but
possess the function, we can determine the slope by examining the values at 0 and 1.

Figure 7.4: Two points at (0,0). The line can be anywhere.

For instance, when we have two points located at (0, 0), the relationship between x
and y remains undefined. Consequently, the line could encompass any of the possibilities
depicted in Figure 7.4, or it could essentially be any line passing through (0, 0). This
scenario illustrates an instance where the input of LPO consists of a binary sequence
containing only 0s.

If we consider a point at (0, 0) and another at (1, 1), the line of best fit is simply
y = x, as depicted in Figure 7.5(a). As the subsequent x and y points draw closer to
the origin (0, 0), the slope of the line becomes steeper, demonstrated in Figure 7.5. This
characteristic mirrors the timing of the occurrence of the ‘1’ in the input of LPO; the
later this ‘1’ appears, the more pronounced the steepness of the line.
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((a)) Point at (0,0) and (1,1).
((b)) Point at (0,0) and
(0.5,0.7).

((c)) Point at (0,0) and
(0.05,0.3).

Figure 7.5: The later a 1 occurs in the input of LPO, the steeper the line becomes.

7.3 Related Work

In 2010, Pulina and Tachella introduced an approach for verifying linear arithmetic
constraints in multiplayer perceptions by translating them into SAT instances [132].
Fast forward a decade, a comprehensive systematic review of neural network testing
and verification covered an impressive 91 articles [168]. A dedicated survey specifically
centered around the verification of deep neural networks can be found in [101]. In this
context, we direct our attention to the operation referred to as forallValue (as detailed in
Proposition 7.4) and its broader applicability beyond classification tasks. What sets our
approach apart is its model-agnostic nature. It remains independent of minor specifics,
including choices like the selection of activation functions.

When it comes to neural networks, a broader approach towards the decidability of
verification questions begins with the observation that, given the utilisation of piecewise
linear activation functions and specifications that can be defined in the theory of real
closed fields (i.e., quantified formulas involving +, ×, and ≤), we inherently achieve
decidability. This signifies a binary outcome (yes/no answers) without the need for ⊥.
This stems from the theory of real closed fields and although it is theoretically decidable,
it often comes with infeasible computational complexity. This insight has been pointed
out in prior works, such as [80].

Recently, by employing probably approximately correct (PAC) learning theory (for
background, refer to [142]), a study delving into the intermediate scenario emerged,
where learners are required to be computable without the constraint of resource bounds.
This achievement is attributed to [2]. In their work, they established a concept akin
to our notion of a computable learner. Their approach leveraged key principles of
a computably enumerable representable (CER) hypothesis class, combined with an
empirical risk minimisation (ERM) learner. This enabled them to identify an ERM
learner that maintains computability across every CER class that is PAC learnable
within the realisable case. It’s important to highlight, however, that the study in [2]
does not delve into verification questions as part of its focus.
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7.4 Conclusions

We motivated and presented a number of questions that one might want to ask when
verifying classifiers obtained by ML. These include elementary questions such as whether
any point in a region gets assigned a particular colour, but also more advanced ones
such as whether adversarial examples exist. Finally, we make a contribution to the
phenomenon of underspecification by studying the robustness of learners. Using the
framework of computable analysis we are capable of precisely formalising these questions,
and proving them to be computable under reasonable (and necessary) assumptions.

Regarding the necessity of the assumptions, we point out that dropping conditions
or considering maps providing more information instead, will generally lead to non-
computability. We leave the provision of counterexamples, as well as potentially a
classification of how non-computable these maps are to future work. The notion of a
maximal partial algorithm recently proposed by Neumann [113] also seems a promising
approach to proving the optimality of our results.

There is a trade-off between the robustness of a classifier and its ‘accuracy’. It seems
possible to develop a computable quantitative notion of robustness for our function
locallyConstant, which could then be used as part of the training process in a learner.
This could be the next step to adversarial robustness [37, 67].

Rather than just asking questions about particular given classifiers or learners, we
could start with a preconception regarding what classifier we would want to obtain for
given training data. Natural algorithmic questions then are whether there is a learner in
the first place that is guaranteed to meet our criteria for the classifiers and whether we
can compute such a learner from the criteria.
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Hypergames and Cybersecurity
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This chapter is a collection of different projects. This includes work converting cyber
attack graphs to hypergames which is joint work with Martin Barrere Cambrun and
Chris Hankin (Section 8.1). There is an introduction to using regret minimisation
as a solution concept for hypergames which is joint work with Arno Pauly (Section
8.1.3). The remainder of the chapter is based on a literature review paper ‘Hypergames,
Cybersecurity and RL’ that is pending publication. The lead author is the researcher
with joint work with Andrew Fielder, Paul Jones, and Conor Artman.

8.1 Hypergames and Attack Graphs

Cybersecurity scenarios often manifest as games involving simultaneous moves, commonly
referred to as Nash games. These games frequently fall into the realm of imperfect
complete information games, wherein players lack awareness of each other’s actions.
Nevertheless, all game-related information is widely shared knowledge, thereby ensuring
no information advantage.

However, these conventional games don’t offer a fully realistic depiction of real-world
scenarios. In certain instances, attackers possess system ‘backdoors’, allowing them to
operate undetected by defenders. In such cases, defenders are unaware of the intruders’
movements and cannot preemptively counter their system entry. Yet, defenders still aim
to optimise their defensive strategies. This is precisely where hypergames, along with
their model of incomplete information, come into play as a valuable tool.
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In hypergames, this model of incomplete information proves advantageous for ad-
dressing scenarios where the presence of hidden backdoors challenges the traditional
assumptions of simultaneous moves and shared information.

8.1.1 Attack Graphs

Attack graphs are a visual and analytical tool used in the field of cybersecurity to model
and understand the potential paths that attackers could take to compromise a computer
system or network. They help security analysts identify vulnerabilities, potential attack
vectors, and the possible consequences of successful attacks.

In essence, an attack graph is a graphical representation that maps out the different
steps an attacker might take to reach a specific goal, such as gaining unauthorised access
to a system or extracting sensitive information. Each step in the graph represents a
specific action or attack, and the edges between steps represent the dependencies and
conditions that must be met for one attack to lead to another.

Each node in the graph represents a state or condition of the system. This could be
a configuration setting, a service, a user account, or any other element that is relevant
to the security of the system. Edges between nodes represent the possible attack paths
an attacker could follow. An edge might indicate that an attacker needs to compromise
one element before being able to move on to the next. For example, an attacker might
need to gain access to a user account before being able to escalate privileges.

Each node can have associated attack steps. These are the specific actions an attacker
could take to compromise that element. For instance, compromising a user account might
involve guessing the password or exploiting a vulnerability in the login process. Attack
graphs often include conditions that must be met for an attack step to be successful.
For example, an attacker might need to have gained access to a specific network segment
before attempting to exploit a vulnerability on a particular server.

By analysing the attack graph, security analysts can assess the potential risk and
impact of different attack scenarios. This helps them prioritise which vulnerabilities and
paths need to be addressed more urgently.

Attack graphs are particularly useful for modeling complex systems where there
are multiple paths an attacker could take to achieve their objectives. They provide a
structured way to visualise and understand the interactions between various elements in
the system, helping security teams develop effective defense strategies, prioritise patches
and updates, and enhance overall system security.

8.1.1.1 AND/OR Graphs

AND/OR graphs are another type of graphical representation used in the context of
cybersecurity, particularly for modelling and analysing security scenarios. These graphs
are employed to represent the relationships between attack steps, dependencies, and
possible outcomes in a more structured and organised manner. Simple AND/OR graphs
can be seen in Figure 8.1.
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Start TargetAND

1

2

Start TargetOR

1

2

Figure 8.1: Simple ‘AND’ and ‘OR’ Graphs

In an AND/OR graph, AND nodes represent situations where multiple conditions
must be satisfied simultaneously for an attack to proceed. These conditions could be
multiple vulnerabilities that an attacker needs to exploit in combination to advance in
the attack path. This means both nodes 1 and 2 need to be satisfied for the attacker to
reach the target in Figure 8.1.

OR nodes, on the other hand, signify points in the graph where an attacker has
multiple options or paths to choose from. The attacker only needs to successfully
complete one of the listed options to continue their progression. This means either nodes
1 or 2 needs to be satisfied for the attacker to reach the target.

These two types of nodes, AND/OR, allow for a more nuanced representation of
attack scenarios and dependencies. Attack steps and conditions can be organised in a
way that reflects the complexity of real-world attacks.

8.1.2 Converting Attack Graphs into Hypergames

In order to transform attack graphs into a hypergame, we need to establish the players,
strategies, utilities, and payoffs. Let’s explore a two-player game with an attacker and a
defender1.

8.1.2.1 Defenders Perspective

The attack graph in Figure 8.2 models how the defender comprehends the ways in which
an attacker can compromise a database server within their network. They are only
aware of two hosts that the attacker could exploit.

We need to establish the strategies of each player. For the defender we allow them to
‘remove’ an edge of the graph, which prevents the attacker from progressing, or reaching
that host. This means the defender has three strategies, to block access to Host1, Host2
or the Target.

As for the attacker, their objective is to reach the target, and in this instance, they
have two routes. They can go through Host1 or Host2, both of which allow them to
compromise the target. Therefore, the attacker has two strategies, denoted by the
vulnerabilities they will exploit: V1V3 or V2V3.

1Thanks to Martin Barrere Cambrun and Chris Hankin for providing the attack graphs and project.

97



8. Hypergames and Cybersecurity

Figure 8.2: The Attack graph from the Defenders Perspective

To calculate the final payoffs for the attacker, we must determine the estimated
payoff if the target is compromised via a specific route and the associated cost for the
attacker. For this example, we will use arbitrary numbers for the costs and expected
payoffs. However, we will utilise the probabilities of a successful attack from the graph
itself. The attackers and defenders will have distinct values for these factors, so we will
outline them individually below.

Node Expected Payoff Probability of Success Cost
V1 3 0.8 4
V2 10 0.4 6
V3 10 0.9 3

Table 8.1: Attackers Node Payoffs, Probabilities and Cost

The payoff the attacker receives at the end of the game depends on the expected
payoff and the probability of success. For example, node V1 has a final payoff of 2.4
because 3× 0.8 = 2.4. Moreover, the payoff for the strategy V1V3 is calculated by the
addition of the payoff of both V1 and V3, 2.4 + 9 = 11.4. Additionally, the attacker’s
overall cost for each strategy is the sum of the costs of the nodes they need to exploit.

Strategy Final Payoff Final Cost
V1V3 11.4 7
V2V3 13 9

Table 8.2: Attackers Strategies Payoffs and Costs

For the defenders, to simplify this game, they can only defend one node at a time.
Thus, they can defend Host1, Host2, or the Target. This implies that they only need the
expected payoffs for the individual nodes, as well as the cost associated with defending
them.
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Node Expected Payoff Cost
Host1 6 5
Host2 7 6
Target 10 9

Table 8.3: Defenders Node, Payoffs and Cost

The payoffs and strategies can be seen in the left-hand normal form Game in Figure
8.3. The rows are the defenders strategies, the columns are the attackers. The payoffs
in each box relate to the payoff for the (defender,attacker) if both strategies are played.
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Figure 8.3: The hypergame from the Defenders Perspective (left) and the Attacker
Perspective (right).

These payoffs are created using the costs and expected values. Here are a few
examples:

• If the attacker plays V1V3 and the defender plays Host1, then the attacker gets
nowhere. Therefore, the attackers payoff would be the cost of V1: −4. Then the
defender would be successful and their payoff would be the expected value of all
uncompromised nodes - cost 6 + 7 + 10− 5 = 18.

• If the attacker plays V1V3 and the defender plays Host2, then the attacker would
successfully reach the target. Therefore, the payoff for the attacker would be the
expected value times the probability of success minus the cost = 11.4− 7 = 4.4.
The defender would not be successful in stopping the attack, so their payoff would
be the expected value of all uncompromised nodes minus the cost of their strategy,
hence 7− 6 = 1.

• If the attacker plays V1V3 and the defender plays Target, then the attacker would
not be able to reach the target, but would have been in the system. The attacker
would then have successfully attacked V1 but missed the target making their payoff
2.4 − 7 = −4.6. This makes sense because it would cost a lot in order to hack
in but overall they have missed their target. The defender would be successful,
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therefore their payoff would be the the expected value of all uncompromised nodes
minus the cost of defending the target 7 + 10− 9 = 8.

8.1.2.2 Attacker Perspective

The attack graph models how the attacker perceives the database server and the methods
to compromise it. As depicted in Figure 8.4, there exists a ‘backdoor’ route through
Host3, which can be exploited using vulnerability V10.

Figure 8.4: The Attack graph from the Attackers Perspective

This game is an extension of the defenders’ game shown in Figure 8.2. It includes
the attacker’s strategy V10V3 and the defender’s strategy Host3. As a result, we expand
Tables 8.1 8.2 and 8.3 to incorporate these new additions.

Node Expected Payoff Probability of Success Cost
V1 3 0.8 4
V2 10 0.4 6
V3 10 0.9 3
V10 5 0.7 5

Table 8.4: Attackers Node Payoffs, Probabilities and Cost

Strategy Final Payoff Final Cost
V1V3 11.4 7
V2V3 13 9
V10V3 12.5 8

Table 8.5: Attackers Strategies Payoffs and Costs
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Node Expected Payoff Cost
Host1 6 5
Host2 7 6
Host3 9 7
Target 10 9

Table 8.6: Defenders Node, Payoffs and Cost

The costs and expected values are calculated similarly to Section 8.1.2.1. You can
observe these in the right-hand normal form Game depicted in Figure 8.3.

Further work has been achieved on this by a Masters student Soural Dandothi [52].
Arno Pauly and the researcher supervised his project which used this Section as a
starting basis. The researcher provided the conversion of attack graphs to hypergames
and shared the attack graph json files provided by Martin Barrere Cambrun and Chris
Hankin. His work expanded this project by creating the code required to convert these
json files straight into hypergames using the above method. He successfully achieved
this as well as using some of the researcher’s code (Appendix B) in order to check the
Hyper Nash equilibrium and Stable Hyper Nash equilibrium for the overall games.

The solution presented in Section 3.4 regarding Nash equilibria does not apply to this
situation, as Nash equilibria do not exist in either the defenders’ game or the attackers’
game. This is often the case in most real-world scenarios because the concept of Nash
equilibrium seeks to find a mutually optimal response for both players, which doesn’t
align with the divergent objectives of the attacker and defender.

In order to make these games more realistic, the players could adopt mixed strategies.
Therefore, the defender would have different probabilities of engaging with each host.
This would mean that they are unsure which host the attacker will be targeting; as such,
they would randomly choose a host to defend.

8.1.3 Using Regret Minimisation

A different approach to find a solution to hypergames within cybersecurity is regret
minimisation. This strategy seeks to minimise the gap between the outcomes achieved
through a player’s chosen actions and those achievable by different strategies. Regret
minimisation strives to refine decision-making strategies by learning from past actions
and their outcomes. In the context of hypergames, regret minimisation involves making
decisions that minimise the potential regret associated with those decisions. Players aim
to choose strategies that lead to outcomes with lower regret values, ensuring that they
don’t significantly regret their choices when comparing them to alternative strategies.
There can be multiple layers of interaction and evolving strategies, therefore, regret
minimisation becomes more complex. Players need to consider not only their immediate
regret in a specific subgame but also the potential impacts of their decisions on overall
outcomes if there are moves they are unaware of. This extends the traditional concept
of regret minimisation to a more dynamic and interconnected setting.
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In joint work with Arno Pauly we started looking into achieving this solution in
regards to hypergames. To do this we redefine a game using sources, sinks and non-
increasing functions.

Definition 8.1 1. A D-game consists of a DAG (V,E) with unique source s and
sink t; and furthermore for each vertex v ∈ V a non-increasing continuous function
ιv : [0, 1] → [0, 1].

2. A strategy for defender is an assignment σ : V → [0, 1].

3. A strategy for attacker is a subset A ⊆ V .

4. The success probability p(σ,A) of playing σ against A is computed as follows. A
vertex v ∈ V is attacked if v ∈ A and either v = s or a predecessor of v is already
compromised. If v is attacked, then it is comprised with probability ιv(σ(v)). The
success probability is the expected probability for t to be NOT compromised.

5. The payoff of σ against A is p(σ,A)−
∑

v∈V σ(v).

The idea is that σ(v) denotes the investment the defender makes into the security of
node v, and ιv tells us what the success chance of an attack on v is given a certain level
of investment.

We do not assign payoffs to the attacker, as our approach does not require us to
model the attacker as a rational agent.

Observation 8.2. For each strategy of the attacker, there is a best response by the
defender.

Proof. Payoffs are continuous, and the strategy space of the defender is compact.

Definition 8.3 An extension of a D-game (V,E, (ιv)v∈V , s, t) is another D-game
(V ′, E′, (ι′v)v∈V ′ , s, t) with the same source and target vertex such that V ⊆ V ′, E ⊆ E′,
ι′v = ιv for v ∈ V , and ι′v is constant for v /∈ V .

Note that defender strategies in a D-game naturally extend to strategies in any
extension of it by setting σ(v) = 0 for any v /∈ V . Strategies of this form are the only
best responses; and we will thus ignore all other defender strategies in the extension.

Definition 8.4 Given a defender strategy σ in a D-game G, some extension G′ of the
D-game and an attacker strategy A in the extension, the regret for defender R(σ,G′, A)
is the difference between the payoff achieved by defender playing a best response to A
in G′ and the payoff obtained by playing σ against A in G′.

Conjecture 8.5. For any D-game G there are finitely many extensions (G′
i)i∈I and

finitely many attacker strategies (Ai)i∈I such that for every defender strategy σ in G,
every arbitrary extension G′′ of G and every attacker strategy A′′ in G′′ it holds that

R(σ,G′′, A′′) ≤ max
i∈I

R(σ,G′
i, Ai)
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Assuming that the preceding conjecture holds, we call maxi∈I R(σ,G′
i, Ai) the maxi-

mum regret for σ, and denote it by R(σ).

Observation 8.6. R(σ) (if well-defined) depends continuously on σ, thus for every
D-game there exists a strategy σ0 minimising R(σ0), i.e. satisfying R(σ0) ≤ R(σ) for
all strategies σ.

Conjecture 8.7. The regret-minimising strategy σ0 is unique.

If the two conjectures are indeed true, then the unique regret-minimising strategy
σ0 would seem like a good candidate for rational behaviour when faced with “unknown
unknowns” regarding potential attacks.

8.2 Applications to Cybersecurity

8.2.1 Current Applications

8.2.1.1 Cyber Attack and Defence

House and Cybenko started to apply hypergames to cyber attack and defence [77]. They
achieved this by establishing Nash Equilibria Mixed Strategies (NEMS) for both the
attacker and defender in each subgame of the hypergame. However, the attacker might
lack knowledge of the probabilities associated with each subgame. To address this, House
and Cybenko proposed two methods for learning subgame probabilities through repeated
play; maximum entropy and subgame transitions as Hidden Markov Models (HMM).
The underlying assumption is that the defender always plays their Nash equilibrium
strategy. Both methods can be used in concert and work well together, however, the
attacker’s strategy significantly influences the accuracy of the methods. Furthermore, the
defender could potentially enhance their ability to conceal their subgame probabilities.

Maximum entropy allows the attacker to end up with estimates for the probabilities
by the attacker computing the NEMS and utilities for the defender in each subgame.
For each row/strategy, the variance is calculated as a measure of the dispersion induced
by the defender switching from one subgame to another. The strategy exhibiting the
highest variance is then played against the defender multiple times and the utility is
recorded from each play of the game. To estimate each probability, the maximum
entropy principle is employed using the Lagrange multiplier method.

HMMs can effectively illustrate transitions between subgames, using the Baum-Welch
algorithm. The emissions of the HMM correspond to the utility obtained from a fixed
strategy, a value that the attacker is aware of. To minimise subgame ‘overlap,’ rational
assumptions are often required, alongside the assumption that the defender consistently
adheres to their Nash equilibrium. By minimising this overlap, the strategy’s efficacy
increases, as the utility corresponds to a single possible subgame. One approach would
be to remap the utilities in order for the elements with the swiftest and most accurate
learning to be the highest for the attacker. Consequently, the Nash equilibrium would
represent the attacker’s best learning against the defender’s obfuscation. This method
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can be employed to ascertain a ‘learning vs obfuscation’ Nash equilibrium, by the
attacker learning which subgame the defender is not playing (through repeated plays)
and eliminating it. This equilibrium could offer an improvement in learning to the
attacker or an improvement in obfuscation to the defender.

In analysing games between attackers and defenders, Stochastic Petri Nets (SPNs)
have been applied [42]. SPNs use either Markov or Semi-Markov models where time
follows Poisson distribution or is exponentially distributed in relation to event arrival or
inter-arrival times. A deception game can be modelled using SPNs in order to capture
measures in order to observe the behaviours of the attackers and defenders.

Hypergames can effectively model the strategic interactions between attackers and
defenders, making them applicable to a wide range of information security challenges.
These can be achieved using a two-player first or level-2 hypergame. Analysing this
requires investigating each of the individual games for stability and finding stable
equilibria for the hypergame [79]. First, the attacker’s level-1 game is analysed and
the set of equilibrium points of the hypergame is completed. The same procedure is
then performed for the defender’s game. Finally, the level-2 hypergame is analysed as a
whole in order to compute the full set of equilibrium points of the game, which is at the
intersection of the sets of stable outcomes.

8.2.1.2 Optimisation

Cyber-physical systems are mechanisms designed to be controlled or monitored by
computer-based algorithms. Bakker explores hypergames and cyber-physical security for
control systems in order to provide another layer of robustness [7]. Their study delves
into various aspects, including static problems, dynamic optimisation, and computational
implementation.

A static optimisation problem was formulated and constrained within an operating
envelope. This investigation led to the exploration of two scenarios: objective function
manipulations and constraint manipulation. The first involves the attacker manipulating
the defender’s observation of the objective function parameters by using a deterministic
strategy. This results in a level-2 hypergame, if the defender knows about the attacker
it advances to a higher-level hypergame. On the other hand, constraint manipulation
entails the attacker altering the constraint to be more restrictive, whether that would be
the real constraint or the defender’s perception. For instance, the attacker could induce
the defender to significantly deviate from the operating system’s constraints to provoke
a failure.

Dynamic optimisation links hypergames with the Model Predictive Control (MPC)
problem. The objective is to minimise a cost function subject to state dynamics
constraints and operational constraints. These result in level-2 hypergames. The
study examined both static and dynamic approaches where the defender’s optimisation
is based on perceived values rather than real values. The authors concluded that
manipulating constraints can be a more effective attacker strategy than manipulating
objective functions directly.
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8.2.1.3 Metagames

Hypergames can be expanded further into Metagames by producing a hypergame over
hypergame solutions. These use randomisation over reverse engineering strategies.
Metagames can be used in a single-stage approach for deception-robust control. This
approach has been compared to minmax hypergames within [9]. Minmax hypergames
allow the defender to re-optimise the entire system in a deterministic fashion. Minmax
hypergames are guaranteed to provide an upper bound at least as good as a metagame
solution, under the correct assumptions. However, the metagame method is compu-
tationally cheaper in higher level games. Overall, it shows that both metagame and
minmax hypergames provide performance guarantees and minimal upper bounds on the
attacker’s performance given the information available to the defender.

8.2.1.4 Graph Based Applications

An Attack-Defend (AD) game on a graph combines the attack graph model with the
defence actions available to the defender. An AD game is a tuple G = ⟨G, φ⟩ where; G is
a Game Arena and φ is the Boolean payoff function. AD games can be integrated with
hypergames to develop strategies that guarantee provable security in defense scenarios
[90]. For instance, situations involving the attacker’s misperceptions of payoffs due to
the presence of decoy systems can be effectively addressed using sure-winning strategies
within the hypergame framework.

A zero-sum AD game can be used to model a situation where the attacker’s goal
is specified in linear temporal logic and the defender is to prevent this goal [91]. A
hypergame on a graph model is formulated with the attacker’s incomplete/incorrect
information and the defender’s information about the attackers. The authors designed
algorithms to compute deceptive sure-winning strategies, where the defender can lure the
attacker into encountering decoys. The optimal placement of these decoys is determined
using compositional synthesis techniques, revealing that the problem of optimising decoy
allocation is monotone and non-decreasing.

Hypergames on graphs have also been employed to capture the asymmetrical in-
formation with one-sided payoff misperception. Stealthy deceptive winning strategies
are introduced in [92], where a deceptive strategy is stealthy when their actions are
subjectively rationalisable. It was shown that the deceptive sure-winning and almost-
sure-winning regions are different when a player has incomplete/incorrect information.

8.2.1.5 Cyber Deception

Hypergames are also valuable for cyber deception due to their handling of uncertainty.
In the work by Ferguson and Walter [60], these situations are modeled using a sequential
attack-defence game. Cyber deception games are formulated using hypergame theory,
where the perception of the players is the focus and is differentiated from the true
parameters of the game. The hypergame model presented within this paper is useful
for online learning, as the defender attempts to infer the attacker’s beliefs and apply
them to future decisions. The observation of the attacker interacting with the network
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can be used in order to estimate the attacker’s perceived payoffs. The current game
tree and estimation of the attacker’s perceptions allow the defender to manipulate the
game. This manipulation gradually restricts the strategies available to the attacker in
subsequent moves.

Level-1 hypergames can be altered to change the preference vectors to a utility matrix
[167]. This modification allows the defender to employ a cyber deceptive technique
with the adversary not being aware of the existence of such techniques. The hypergame
unfolds over multiple rounds, with each compromised node initiating a round to establish
equilibrium strategies for the players. The defender possesses full knowledge of the
adversary’s moves and has a finite budget of honeypots with which to place on nodes.
Honeypots make the adversary spend an excessive amount of time on that node. A node
with no honeypot means the adversary takes the amount of time it takes to compromise
the subsequent node. The players both play a different zero-sum matrix game, which is
solved by finding the snapshot equilibrium.

A diagrammatic hypergame representation was introduced in [105] called the hyper-
game Perception Model (HPM) which can help model misperception and deception. It
is introduced using a two-player level-3 hypergame: overall this means there are eight
level-0 games, four level-1 games, two level-2 games, and the final level-3 game within
the hierarchy. The analysis of HPM is similar to traditional hypergames, where the
perspectives and preferences are taken into account as well as the player’s deception
goals. An example is shown when they model the deception during the Cuban Missile
Crisis.

Deception can be harnessed to obstruct attackers’ access to valuable resources.
Hypergames offer a means to analyse how deception can favor the defender. Cyber
conflicts can be divided into three kernels: misinterpretation, over-perception, and
under-perception, which are the building blocks of modeling deception. These have been
used in order to model the ErsatzPassword scheme, a security control that protects
hashed passwords against brute force password-cracking [69]. The study delved into two
techniques: triggering an alarm if an attacker uses a cracked password or redirecting
the attacker to a honeynet. It was found that the scheme works well against both
risk-tolerant and risk-averse attackers, as well as being effective in blocking/catching
attackers under different levels of misperception.

8.2.1.6 Repeated Hypergames

Repeated hypergames can be used to consider the detection of an attacker attempting
to manipulate a system while being undetected. Different monitoring approaches and
learning schemes for the defender were considered in [8]. A static cost minimisation
problem is considered which is constrained within an operating envelope. The attacker
can manipulate the defender’s perception and their goal is to maximise the defender’s
cost. However, the defender can monitor these distributions and try to catch the attacker.

The defender can monitor the distribution and sweep the system if the distributions
differ but this may not be enough. Attackers could resample from the distribution making
the observed values indistinguishable but still return sub-optimal results. Another
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approach would be to monitor the calculated cost; however, this would allow the attacker
to manipulate the defender indefinitely. Finally, the defender could monitor the true cost;
this means consulting an independent source after the optimisation has been performed.

8.2.1.7 Multiplayer Games

Single-leader-multiple-follower (SLMF) Stackelberg security games can be used to de-
scribe the situation between defenders and attackers, such as in a cyber-physical system.
In this game, the leader is the defender, and the followers represent the attackers. Given
that wireless networks often involve numerous attackers with varying capabilities, a
level-2 Stackelberg hypergame is employed to analyse the SLMF game [41]. Using Hyper
Nash equilibria (HNE), both the strategic and cognitive stability of the games has been
provided. Connections between Misperception Strong Stackelberg equilibrium (MSSE),
Deception Strong Stackelberg equilibrium (DSSE), and HNE are also established. MSSE
under certain assumptions is a HNE of the single-leader-single-follower (SLSF) game.
Moreover, under additional assumptions, any DSSE is a HNE of the SLSF game. Under
SLMF games an MSSE is also a HNE if all followers attack the same target, as all
targets are independent in this game.

A two-player hypergame can model a scenario where each player chooses between
cooperative and aggressive strategies, with differing preferences. Both players possess
misperceptions about the preference order of the other player. A third party, an external
observer, can be introduced in order for both players to verify their misperceptions
[39]. This third party knows everything both players know, so the players can ask
them questions. They could inform players that one player has a limited view and
explain which actions they do not see. Consequently, this can change the outcome of the
overall game, as the player with more knowledge can predict a more favourable result
for themselves.

8.2.1.8 Risk Assessment and Risk Management

Dynamic occlusion occurs when autonomous vehicles are in situations with three or more
vehicles. For example, consider a scenario where three cars are at a crossing. Car 1 could
be checking to see if they can proceed, while Car 2 is blocking the view of a third car,
posing a potential collision risk. Evaluating how much dynamic occlusion contributes to
driving risk uses Dynamic Occlusion Risk (DOR), [84]. Various occlusion situations are
generated and level-0 and level-1 hypergames are then used to analyse them in order to
compute the DOR measure for each situation. These are solved using Nash equilibria and
simulate the level-0 hypergame, which would typically result in no crash, as everyone has
all the information. In order to simulate the level-1 hypergame, incomplete information
has to be included. The Nash equilibria of each player is calculated and if a crash occurs
the game is repeated but with an emergency braking maneuver the moment the vehicle
is no longer occluded.
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8.2.1.9 Adversarial Environments

In real-life situations, when an attacker realises they’ve been obstructed, they attempt
to alter their approach. This has been modeled using an adversary environment, where
player one represents an agent and player two represents the adversary. During the
interaction, the adversary can deduce the agent’s intention and adapt its strategy,
creating a more dynamic and realistic scenario [99]. Omega-regular hypergames are
used for this purpose, where omega-regular games involve a zero-sum two-player game
with a controllable player and an uncontrollable player. The dynamic aspect of the
game is introduced using inference, assuming the uncontrollable player has complete
observation capabilities. Consequently, the controllable player has a transition system
for their level-1 hypergame, which captures the changes in actions and evolving game of
the uncontrollable player.

8.2.2 Possible Future Applications

8.2.2.1 Cyber-physical Attack Graphs

Section 8.2.1.4 of this paper showcases the different ways hypergames have already been
used in graph-based applications with AD games and simple attack graphs. Using this
knowledge and the knowledge of AND/OR Graphs or Cyber-physical attack graphs
(CPAG) we feel there exists the potential to enhance the realism of cyber-graphs by
incorporating models of incomplete information. While Section 8.1.2 shows a new
approach to how this conversion can work, however it is still early in its progress.

AND/OR graphs can be used in cybersecurity scenarios serving as tools for solving
problems and problem decomposition. In these graphs, nodes represent states or goals,
with their respective successors marked as either AND or OR branches. The AND
branch means all parents need to be satisfied, while the OR branch requires just one to
be fulfilled. Research has delved into the integration of AND/OR graphs into the realm
of cybersecurity [11], as well as their application in game theory [93]. CPAG are the
class of attack graphs that effectively encompasses both cyber and physical aspects of
an attacker attempting to breach a network’s security [85]. The cyber nodes are used to
represent AND/OR operators, cyber actions and exploits, and preconditions/privileges.
Meanwhile, the physical nodes contain attacks that happen in a physical aspect e.g.
‘open a locked door’.

8.2.2.2 Defence Trees

Attack-defence trees enable the formal evaluation of attack and defence scenarios by
representing them in a graphical and intuitive way. Game theory has been successfully
applied to attack-defence trees by developing them into stochastic two-player games [5].
This is achieved by converting each sub-tree into a game and combining the games using
sequential composition.

It is conceivable that these structures can also be converted into hypergames, thereby
introducing the aspect of incomplete information. Sub-games can be converted to two-
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player games much like before. However, each player may possess different sub-games
dependent on their perception of the game.

8.2.2.3 Multiplayer Applications

Hypergames and cybersecurity have enjoyed limited research within the area of multiple
attackers and defenders (Section 8.2.1.7). However, the majority of situations within
real-world cybersecurity scenarios have numerous attackers or defenders. While research
on multiplayer games is prevalent in general game theory, a potential approach could
involve the transformation of a normal form game into a hypergame.

8.2.2.4 Sociotechnical Cybersecurity

All cyber systems exist within a broader social and environmental context, encompassing
legal frameworks, regulations, and standards. This context can be critical in determining
the best courses of action that correspond to acceptable levels of risk vs potential reward.
Taking into account humans in (or over) the loop in cybersecurity decision-making adds
complexity and uncertainty to game scenarios. Wider organisational structures, culture,
and many other factors may also play into this.

8.2.2.5 Adversarial Machine Learning

Machine Learning and Artificial Intelligence introduce entirely new cybersecurity vul-
nerability classes, which could be analysed in a hypergames context. Hypergame theory
potentially provides a useful tool to devise strategies for defending ML-based systems
through the application of appropriate technical tools and capabilities for defenders.
One example is the modification of data distributions to the extent that deep learning
subsequently misclassifies the altered data distribution [147] (this is commonly known
as an evasion attack). Adversarial data can be generated by solving for optimal attack
policies in Stackelberg games where adversaries target the misclassification performance
of deep learning.

A recent survey of game theoretic approaches for adversarial machine learning [169]
provides further formulations of Stackelberg game variants. These include the ‘adversary
as leader’ (for instance, where an ML model is adapted based on observed attacks);
and ‘learner as leader’ (for instance, a pre-trained spam filter is deployed that is then
attacked). A more realistic scenario is a ‘single-leader-multi-follower’ game, where
multiple different attackers exist and may try different approaches to attack an ML
model. This lends itself to a Bayesian Stackelberg game [45] formulation but finding
optimal strategies in such a game is NP-hard, although shortcuts exist [120]. The
authors identify three important features of ML model security based on game-theoretic
insights: robust attribute selection, conservative strategy (minimising risk tolerance),
and using randomness effectively.

Recent work has proposed an Adversarial Strategic Game for ‘Machine Learning as a
Service’ using System Features [148]. An additional, recent, example of a possible future
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application is in the construction of ‘jailbreaking’ prompts for the latest generation of
large language models.

8.3 Suggested Research Directions

We have observed numerous exciting current and future applications of hypergames to
cybersecurity. However, there are a number of aspects of hypergame theory that need
to be advanced in order to better support these and other potential applications.

8.3.1 Generalisation and Transferability

Within the domain of cybersecurity, diverse use cases come with distinct rules govern-
ing each scenario. To address this diversity, hypergames must be easily and readily
generalised. This allows for proofs to be applicable across desired situations without
the encumbrance of creating individual proofs for each case. This aspect is particularly
relevant when considering the changeable nature of cybersecurity. Depending on the
kind of cybersecurity scenario being presented, the game representation may change
daily, hourly, or even more frequently during an attack. The absence of certainty over
the validity of the scenario or the game as the landscape changes, means that acting on
the results may not be advisable.

An example of this would be the discovery of a new zero-day vulnerability. In such
cases, a general framework is imperative, one that accommodates the addition of a new
attack vector that could depend on attacker properties, methods, or data previously
unknown prior to its identification.

Similarly, the role of transferring the learning from one scenario to another is similarly
required. In many security scenarios, the data needed to make decisions is often sparse or
incomplete. In these cases, the decisions being made are not always correctly informed.
A space where transfer learning can support the decision-making process is beneficial.

Specifically, where there is limited data to support the creation of a new game-
theoretic model, the concept of transferability will be inherently useful. The concept
behind transferability is that there are some domains of security that are better repre-
sented by data, design, or expert knowledge. This means that decisions can be made
with a greater degree of confidence in some domains than others. In these cases, it would
be beneficial to take the learned principles and apply them to domains that have similar
properties but lack the specific data to support the development of a new model.

A potential example would be the design of a new architecture. Not all of the details
of a new architecture may be fully realised as the data on usage would not be known,
however, the security principles need to be tested. The challenge is that new architecture
may not share the same common structures or features of a previous architecture. In
the space of cyber-physical systems, the digitalisation of a system may involve new
components that may have only been seen in another context, such as a different industry
or in a more analogue system. In this case, being able to transfer the knowledge from
the domain of one architecture to that of a different architecture without the need for
creating a game from first principles, becomes invaluable.
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Both the creation of general forms and the adoption of transferable learning ap-
proaches share the common goal of simplifying the process of engaging with new or
evolving scenarios. Applying these principles offers a way to explore intricate scenarios
with the flexibility in strategy development that comes from the hypergames foundation.

8.3.2 Adaptive Games

As highlighted in the previous section, the landscape of cybersecurity is constantly
changing and evolving. The foundations of hypergames are well suited to capturing
some of the nuances of these changes, such as changes in attacker priorities or the
implementation of new known approaches to defence. Whilst this may support the
smaller day-to-day changes of cybersecurity, it does not account for some of the bigger
shifts in the way that attackers and defenders might act.

The most prominent example of this would be threat intelligence. Different threat
intelligence source have sources and foci that will highlight different actors or vectors.
Introducing an additional source or swapping sources can potentially alter the tools,
techniques, and procedures prospective attackers might employ. This, in turn, can
reshape attack pathways, available strategies, and even the rules governing the actors’
interactions. Here, the game is still conceptually the same, but some of the underlying
conditions or assumptions may vary.

By altering the profile of attackers within the game, the rules themselves may need
to be changed to reflect this. In an active security system, the games must have the
most current information to provide trustworthy results. To achieve this, further study
is needed to provide an understanding of the application and limitation of adaptive rule
sets in hypergames.

This aspect holds particular significance for defences that are designed to change or
be non-permanent. The two most common approaches are self-adaptive defences and
cyber-deception. In both domains, employing a game theoretic approach to analyse
the state of the system and making real-time decisions on a given state provides an
alternative to current data-driven approaches. In this case, adaptive games would allow
for the development of defensive scenarios that are tailored to the current security state,
offering options such as the fidelity of different honeypots as a security response. These
strategic options might only be reasonable to include based on the data gathered from
an active attack, such as an attacker’s position in a network. Additionally, by being
able to apply a mixed strategy solution to security checks or the resources allocated to a
deceptive environment, there are efficiencies that can be gained from resource reduction
or maintaining system usability.

8.3.3 Non-Standard Multistage Games

An area of game theory for security that can often be simplified is the level of knowledge
that each player has of the state of the world. This is naturally one benefit of the
hypergames approach to security games. With a constantly evolving set of available
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strategies, the idea is that as more knowledge is gained the possible strategy space
expands to include these new options.

One challenge that exists in this area is that the states of the game might not have
any viable end goals available. For example, an attacker launching an attack against a
system might be able to build a full understanding of the perimeter security of a target
but have limited to no knowledge of what lies beyond and potential end targets. This
means that at best the attacker has a partial mapping of the game and potentially no
known end states.

There is an argument to be made that the two scenarios present different game
formulations, with an attack at the perimeter being a Stackleberg game, where the
defender has committed to an observable defensive strategy that the attacker can observe,
whilst inside the perimeter the same knowledge and observation cannot be applied -
unless considered over a prolonged period of maintained presence, which creates different
challenges for representation.

To illustrate this, consider an attacker who has identified the initial stages of an
attack against a defender considering the breadth of the available perimeter defences
or initial routes of compromise. However, even if this initial stage of attack succeeds,
there’s no guarantee of a predetermined system, set of defenses, or approach that the
attacker can exploit to bring the attack to completion. An entry point gives rise to the
need for further investigation by the attacker to identify subsystems, which can result
in additional subgames, which in themselves need to be accounted for in the design.
Naturally, this requires a determined attacker that has a specific target in mind; realistic
examples of this are in the realms of cyber-espionage and hacktivism. The former might
have specific information they need to uncover in the system, whilst the latter might be
more opportunistic in their approach to the later stages of the game.

To address this challenge, further study is needed into multistage hypergames,
particularly those where there are different rules governing the game at each stage.
Understanding how to perform a game where future stages of the game might not be
mapped or mappable until a later time needs to be understood so as to capture more
realism in attack-defence scenarios.

8.3.4 Multiplayer Games

The examples of hypergames have thus far been limited to 2-player games, but in many
cases with security, there are more actors that are involved. Sometimes these actors
are competitive, such as in target selection; other times they may be collaborative or
neutral, as would be the case with multiple attackers.

For competitive multiplayer games, there is a consideration that different parties
might have different architectures, priorities, and thus strategies, whilst still effectively
acting in similar roles. Thus, having different degrees of understanding and visibility of
the threat landscape can open up different approaches for defenders.

In target selection, there is a single attacker who is looking to perform an attack
against one of a number of targets. A game can be constructed where the defenders
are effectively competing against each other to deter the attacker from targeting them.
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Within a hypergame framework, the potential defenders have to decide how to defend
their vulnerable paths. However, unlike an attacker-defender 2-player game, there is no
guarantee that they will be attacked, as the attacker has a multitude of targets to select
from. As such the game becomes assigning the minimum amount of resources needed to
either no longer be a target, or minimise the probability they are selected as a target.
This would all be done with incomplete information with regard to the number of other
targets and the strategies that they have.

For establishing a collaborative game, there is a requirement for a degree of non-
obvious strategic withholding. This might be aligned with the target selection problem,
where the overall desire is to make the landscape as difficult for an attacker as possible
whilst spending the fewest resources. Thus, by working collaboratively the state of
security as a whole is improved reducing the wider risk, but in the face of a determined
attacker, a target will still be selected. Investing resources should therefore be done to
maximise your own defence at a minimal cost, whilst exploiting resources from other
parties to support their own defence.

A collaborative example can be observed in threat intelligence sharing. Here, the
parties seek to share the minimum amount of information on attacks or threats with a
community whilst getting the greatest possible level of intelligence from the community.
A hypergame formulation can model the range of attacks that adversaries have access
to and present the scope of strategies that are available for defence. The defenders only
have access to a view of the attacker’s strategies that are given by known threats to
them directly or from the community. In this scenario, if nobody shares knowledge then
an attacker will have many paths that are potentially undefended; whereas, through
collaboration, there would be better available strategic coverage of these attacks. Impor-
tantly this also provides data driven insights into common co-operative game strategies
such as freeloading and withholding. In both cases there is potential risk from the
collective from not having better information against a wide range of attackers, where
using hypergames will allow for a more detailed exploration of the impact that this
causes.

By attaining a deeper understanding of the dynamics of multiplayer hypergames,
it becomes feasible to provide enhanced support for assessing more intricate scenarios.
This work would help support a more complete view of how and why threat information-
sharing platforms are not utilised to their fullest, and build further understanding of the
principle of cyber-deterrence.

8.3.5 Exploring Limitations

The preceding research areas have predominantly focused on advancing methods and
approaches to formulate more intricate applied scenarios. Nevertheless, there remain
unresolved questions pertaining to hypergames themselves that must be addressed to
instil confidence in their utilisation.

The most prominent possible limitations concern data requirements. One of the most
considerable issues with any data-driven approach to security is that of data availability
and quality, to which hypergames is no exception. Many of the conventional data-
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related challenges in game-theoretic models persist. Constructing the games hinges on
insights into players’ possible strategies, asset valuations, and the effectiveness of security
measures. Typically, these values are difficult to obtain as they can be conditional or
speculative. As such, there needs to be further study into the degree to which these
conventional challenges are maintained or exacerbated by the added complexity of
hypergames. Similarly, it is not clear the extent to which new data challenges exist that
are hypergames specific.

With additional levels of interaction and strategy being made available using hyper-
games, there is a further question relating to where interdisciplinary research is needed
to help support the application of hypergames. In particular, aspects of psychology
seem to be relevant, with the notion that understanding how to develop structures of
decision and reward such that the games are being played by appropriate rational actors.
Likewise, taking into account economic and business-related research to better inform
decisions surrounding the valuation of assets, losses, and other financial factors would
improve the underlying models being acted upon. Lastly, the overlap with machine
learning topics has many commonalities in design and challenges, which are discussed in
the next section.

8.4 Related Research Areas

While providing an exhaustive review of modern Reinforcement Learning (RL), Multi-
Agent Reinforcement Learning (MARL), and game theory exceeds the scope of this paper,
it’s important to note that (MA)RL constitutes a crucial research area for extending
hypergame research. Indeed, while game theory enjoys major use in RL and MARL
methodologies and applications, hypergame theory has been scarcely explored even in
domains where it may be more appropriate than classical game theory. 2

Informally, the ‘value’ of a state x ∈ S under a policy π represents the expected
future rewards when starting in state x and following the sequence of state and actions
induced by π thereafter. Given Markov Decision Process (MDP), the state-value function
for the policy π is defined as

Vπ(x) = Eπ

[ ∞∑
t=0

βtr(Xt+1, π(Xt+1))|Xt = x
]
,

where β ∈ [0, 1] is a discount factor. Analogously, we define the value of taking action
a ∈ A in state x ∈ S under π as the expected future rewards from taking action a in
state x and then following π:

Qπ(x, a) = Eπ

[ ∞∑
t=0

βtr(Xt+1, π(Xt+1))|Xt = x,At = a
]
.

2We discuss the discounted reward case here to establish intuition about the connections between
value functions.
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Qπ is called the action-value function for policy π. We suppress the dependence on
π for both value functions if there is no risk of confusion.

Let π(a|x) be the probability of choosing a ∈ A in state x ∈ S under policy π. The
foundational concept of optimality in RL, called Bellman Optimality, arises from a
fundamental recursive relationship called the Bellman Equation ([149]).

Vπ(x) = Eπ

[ ∞∑
t=0

βtr(Xt+1, π(Xt+1))|Xt = x
]

=
∑
a

π(a|x)
∑
x′,r

p(x′, r|x, a)

[
r + βVπ(x

′)

]
The Bellman Equation is also called the self-consistency condition ([149]). For any

x ∈ S and a ∈ A, denote the optimal value functions by V ⋆(x) = max
π

Vπ(x) and
Q⋆(x, a) = max

π
Qπ(x, a). V ⋆ and Q⋆ are linked by the following relationship ([149]).

Q⋆(x, a) = Eπ⋆ [r(Xt+1) + βV⋆(Xt+1)|Xt = x,At = a].

Similarly, for V ⋆ we have

V ⋆(x) = max
a∈A

Q⋆(x, a).

To see how we arrive at the Bellman Optimality equation, note that V⋆ is the value
function for π⋆, so V ⋆ must also satisfy the Bellman Equation. Hence, the previous
equation with the self-consistency condition becomes the Bellman Optimality equation,

V ⋆(x) = max
a∈A

Q⋆(x, a)

= max
a∈A

E[r(Xt+1) + βV⋆(Xt+1)|Xt = x,At = a].

The corresponding Bellman Optimality equation for Q⋆ is

Q⋆(x, a) = E[r(Xt+1) + βmax
a′∈A

Q⋆(Xt+1)|Xt = x,At = a].

Conceptually, the Bellman Optimality equation expresses that the value of a state
visited by the optimal policy π⋆ must yield an expected return for the best action
from that state ensuring optimality ([149]). Additionally, note that neither optimality
equation makes a direct reference to a policy. Hence, obtaining optimal policies is
straightforward if we have optimal state-value or value functions: simply choose the
‘greedy’ action, i.e., max

a
, for every state as the optimal policy. Finally, note that because

we can express Q⋆ as an expectation, we can use stochastic approximation methods to
iteratively estimate it ([151]).

In recent years, there has been notable advancement in Deep Reinforcement Learning
(DRL), leveraging deep neural networks to approximate intricate value functions. To
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expedite learning, efforts have concentrated on distributing the training process across
multiple machines. Furthermore, Inverse Reinforcement Learning (IRL) has gained
prominence. In the realm of MARL, the emphasis has been on training multiple agents to
effectively interact and collaborate. This entails tackling challenges such as multi-agent
credit assignment and exploration. Additionally, the incorporation of transfer learning
in MARL empowers agents to extend their knowledge from one task to another.

Agent-Based Models (ABMs) delve into the behaviour and interactions of individual
agents within a larger system. Lately, the link between ABMs and hypergames has
gained significant attention. ABM researchers have embarked on exploring hypergames
to depict intricate scenarios characterised by intricate interactions and dynamic strategies.
While ABM researchers are already venturing into hypergames, an opportunity emerges
for deeper integration between the domains of ABMs and MARL. Hypergames provide
a structured framework for capturing the complexities of multi-layered interactions,
benefiting applications in both ABMs and MARL. As interdisciplinary connections
continue to strengthen, we can anticipate a richer exchange of ideas and methodologies
between these evolving fields. Interestingly, one can show that ABMs are just a subset
of MARL, which means hypergames should have relevance for MARL.

8.4.1 Terminology

We believe the lack of terminological overlap contributes to the gap between modern
(MA)RL work, areas of game theory, and compartmental modelling (CM). For ease, we
offer a table comparing analogous terms in (MA)RL, game theory (GT), evolutionary
game theory (EGT), and compartmental models (CM).

(MA)RL GT EGT ABMs & CMs
Environment Game Game -

Agent Player Population Agent
Action Action (Pheno)Type Compartment/State
Policy Strategy Type Distribution -
Reward Payoff Fitness -

Table 8.7: Domain-Specific Terminologies.

In Table 8.7, we summarise our understanding of the terminological connection
between fields. Where we have marked ‘−’ indicates that there is not a direct parallel
commonly available for that category.

8.5 Conclusions

Hypergames allow situations with incomplete information to be modeled in a simplified
manner. We have found that hypergames have been applied to the area of cybersecurity;
however, the reach has been limited. Even if an area has research, its usually very
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few papers, suggesting the large scope of research which is still available. Within this
Chapter, we have looked into and suggested areas in which hypergames could be useful
to expand upon as well as new areas to delve into, such as multiplayer games and cyber-
physical attack graphs. As well as delving into the first steps at converting AND/OR
graphs into hypergames for the purpose of cyversecurity scenarios.

Game theory and hypergame theory share common principles under favourable
conditions, likely paralleling their applicability across various fields, including RL.
Despite the converging trajectories of RL and other methodologies, particularly in
their pursuit of incorporating computation and uncertainty quantification to address
game-theoretic uncertainties, a notable gap remains. This gap, however, presents an
opportunity for hypergame theory to play a complementary role within RL and other
methodologies.
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Chapter 9

Conclusions and Future Work

In a comprehensive exploration, this work illustrates the foundational principles of
computable analysis and game theory. Building upon this foundation, it explored
practical applications, illuminating how these theories can be harnessed to solve real-
world problems.

This work has encompassed the classification of game theory techniques, shedding
light on how non-computable Nash equilibria is. We were able to demonstrate that
AoUC∗

[0,1] ≤W Nash ≤W AoUC⋄
[0,1], we also know that AoUC∗

[0,1] <W AoUC⋄
[0,1], hence

one of our restrictions must be strict. This is left as an open question in Section 5.4
which would be an interesting topic to research further. Moreover, if AoUC∗

[0,1] <W Nash
then it would be interesting to explore how many players are needed to render the
Weihrauch degree of finding Nash equilibria harder than the two-player case. Additionally,
we explored the consequences of our classifications such as looking into Las Vegas
computability and Monte Carlo computability (Section 5.5).

Moreover, we extended this computable analysis to the domain of machine learning,
dissecting the diverse landscape of classifiers and learners. We presented many questions
about verifying classifiers obtained by ML, starting with elementary questions before
delving deeper into the nuances of topics like whether adversarial examples exist. We
suggest further work in Section 7.4, regarding what classifier we would want to obtain
for given training data, or whether there is a learner in the first place guaranteed to meet
the criteria. Chapter 7 shows that altering conditions or considering maps with more
information will generally render the maps non-computable. A follow-up to address was
thought of via a special session seminar that the researcher conducted at CiE 2023 [48].

Finally, we investigated the emerging concept of hypergames in cybersecurity, looking
into not only how hypergames can provide a new viewpoint to these scenarios, but
also showing how we can convert typical cybersecurity frameworks into hypergames. In
Section 8.5 we explain that even though hypergames are now being applied to the field
of cybersecurity, the reach is limited. Therefore, most areas have not been touched or
still require more research. The researcher and co-authors have started into this research
by combining hypergames with AND/OR cyber attack graphs (Section 8.1.2) as well as
suggesting many research directions (Sections 8.2.2 and 8.3) where hypergames would be
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a good addition such as adaptive games, defence trees and sociotechnical cybersecurity.
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Appendix A

Robust/Sparse Code - Python

The following code was used in order to help the comprehension of the mathematical
ideas robustness/sparsity and density.

###Libraries needed:
import matplotlib.pyplot as plt
import numpy as np
import random
from sklearn import svm
from itertools import chain

def createData():
### Create two random data sets of 5 points, in the range of 0-20
x1 = random.sample(range(0, 20), 5)
x2 = random.sample(range(0, 20), 5)
y1 = random.sample(range(0, 20), 5)
y2 = random.sample(range(0, 20), 5)
data1 = zip(x1,y1)
data2 = zip(x2,y2)
return list(data1), list(data2)

def ModelPlot(data1,data2):
### Use an SVM to model the data and find the best separating line

between the two classes and plot it
X = np.array(data1 + data2)
Y = np.array([0] * len(data1) + [1] * len(data2))
clf = svm.SVC(kernel=’linear’, C=10000) # C is important here
clf.fit(X, Y)
plt.figure(figsize=(4, 4))
# get the separating hyperplane
w = clf.coef_[0]
a = -w[0] / w[1]
xx = np.linspace(0, 100)
yy = a * xx - (clf.intercept_[0]) / w[1]
plt.figure(1, figsize=(4, 3))
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plt.clf()
plt.plot(xx, yy, "k-") #********* This is the separator line ************
plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10,

cmap=plt.cm.Paired,edgecolors="k")
plt.xlim((0, 50))
plt.ylim((0, 50))
return xx, yy

def Model(data1,data2):
### Use an SVM to model the data and find the best separating line

between the two classes
X = np.array(data1 + data2)
Y = np.array([0] * len(data1) + [1] * len(data2))
clf = svm.SVC(kernel=’linear’, C=10000)
clf.fit(X, Y)
w = clf.coef_[0]
#error checking if no separating line can be made
if w[1] == 0:

return [],[]
else:

a = -w[0] / w[1]
xx = np.linspace(0, 100)
yy = a * xx - (clf.intercept_[0]) / w[1]
return xx, yy

def LeftRightLine(xx,yy):
### Function to check if each point is left, right or on the separating

line
LeftRight = [[0 for x in range(50)] for y in range(50)]
x1= xx[0]
x2= xx[-1]
y1= yy[0]
y2= yy[-1]
for i in range(0,50):

for j in range(0,50):
d=(i-x1)*(y2-y1)-(j-y1)*(x2-x1)
if d < 0:

LeftRight[i][j] = -1 #right of line
elif d > 0:

LeftRight[i][j] = 1 #left of line
else:

LeftRight[i][j] = 0 #on the line - would be bottom
return LeftRight

def Robust(data1,data2):
#Create an array to store if a point is non-robust points 1, start with

all points being robust points 0
Robust = [[0 for x in range(50)] for y in range(50)]
#Model orignal data with separating line
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xx,yy = Model(data1,data2)
#Create an array for if each point is left, right or on the separating

line
LeftRight1 = LeftRightLine(xx,yy)
for i in range(0,50):

for j in range(0,50):
#Add one new data point
data1.append([i,j])
#Model new data
xx,yy = Model(data1,data2)
if len(xx)!=0: #Removal of errors

LeftRight2 = LeftRightLine(xx,yy)
for x in range(0,50):

for y in range(0,50):
#Check if the point has switched sides in the new data,

and mark it in robust array
if LeftRight1[x][y] == 1 and LeftRight2[x][y] == -1:

Robust[x][y] = 1
elif LeftRight1[x][y] == -1 and LeftRight2[x][y] == 1:

Robust[x][y] = 1
data1.pop(5)

return Robust

def Sparse(data1,data2):
#Create an array to store if a point is Sparse 1, start with all points

being dense 0
Sparse = [[0 for x in range(50)] for y in range(50)]
#Model orignal data with separating line
xx,yy = Model(data1,data2)
#Create an array for if each point is left, right or on the separating

line
LeftRight1 = LeftRightLine(xx,yy)
for i in range(0,50):

for j in range(0,50):
#Add one new data point
data1.append([i,j])
#Model new data
xx,yy = Model(data1,data2)
if len(xx)!=0: #Removal of errors

LeftRight2 = LeftRightLine(xx,yy)
for x in chain(range(0,i-5), range(i + 5, 50)): #Excluding a

square around the new data
for y in chain(range(0,j-5), range(j + 5, 50)):

#Check if the point has switched sides in the new data,
and mark it in Sparse array

if LeftRight1[x][y] == 1 and LeftRight2[x][y] == -1:
Sparse[x][y] = 1

elif LeftRight1[x][y] == -1 and LeftRight2[x][y] == 1:
Sparse[x][y] = 1
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data1.pop(5)
return Sparse

def ColourGrid(data):
color_map = {0: np.array([255, 0, 0]), # red

1: np.array([0, 0, 255])} # blue
# Transpose data so the grid reads teh axes in correctly
data = np.array(data)
data = data.T
# make a 3d numpy array that has a color channel dimension to be sure the

values are always the same colour.
data_3d = np.ndarray(shape=(50, 50, 3), dtype=int)
for i in range(0, 50):

for j in range(0, 50):
data_3d[i][j] = color_map[data[i][j]]

#plot and invert for comparisons sake
plt.imshow(data_3d)
ax = plt.gca()
ax.invert_yaxis()

### Example
data1,data2 = createData()
xx,yy = ModelPlot(data1, data2) #Plot original data
robust = Robust(data1,data2)
ColourGrid(robust)
sparse = Sparse(data1,data2)
ColourGrid(sparse)
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Appendix B

Hypergames and Hyper Nash
Equilibrium - Python

The following code extends the nashpy library to also generate Hypergames, as well as
the solution concepts of Hyper Nash equilibria and Stable Hyper Nash equilibria.

import nashpy as nash
import numpy as np
import itertools

def NashStrat(NashEq):
#gives nash equilibria as [row number,column number]
# returns Zeros if there is no Nash equilibria
NGs=[]
N=len(NashEq)
first_elements, second_elements = zip(*NashEq)
for n in range(N):

icount , jcount = 0 , 0
iStrat, jStrat = 0 , 0
for i in first_elements[n]:

icount += 1
if i > 0.5: # edit this for likeliness with mixed strategies

iStrat = icount
for j in second_elements[n]:

jcount += 1
if j > 0.5: # edit this for likeliness with mixed strategies

jStrat = jcount
NG = [iStrat,jStrat]
NGs.append(NG)

return(NGs)

def HyperNash(Nash1,Nash2):
# Finds the hyper nash equilibria for the hypergame
Game1 = NashStrat(Nash1)
Game2 = NashStrat(Nash2)
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ifirst_elements, isecond_elements = zip(*Game1)
jfirst_elements, jsecond_elements = zip(*Game2)
HyperNash = []
for element in itertools.product(ifirst_elements,jsecond_elements):

HyperNash.append(element)
return(HyperNash)

def StableHyperNash(Nash1,Nash2):
Game1 = NashStrat(Nash1)
Game2 = NashStrat(Nash2)
Hyper = HyperNash(Nash1,Nash2)
N = len(Hyper)
Stable = []
for n in range(N):

if list(Hyper[n]) in Game1:
if list(Hyper[n]) in Game2:

Stable.append(Hyper[n])
return(Stable)

## Fall of France Example
# Allies Game
Germans1=np.array([[1,2],[4,3]])
Allies1=np.array([[4,3],[1,2]])
AlliesGame=nash.Game(Germans1,Allies1)

# Germans Game
Germans2=np.array([[1,2,2],[4,3,3],[3,5,2]])
Allies2=np.array([[4,3,3],[1,2,2],[2,0,3]])
GermansGame=nash.Game(Germans2,Allies2)

# If you already know the Nash equilibria - Check
StratA1=np.array([0,1,0])
StratB1=np.array([0,0,1])
GermansGame.is_best_response(StratA1,StratB1)

StratA2=np.array([1,0])
StratB2=np.array([1,0])
AlliesGame.is_best_response(StratA2,StratB2)

# Otherwise find the Nash equilibria
NashAllies=AlliesGame.support_enumeration()
NashAllies = list(NashAllies)

NashGermans=GermansGame.support_enumeration()
NashGermans = list(NashGermans)

# Hyper Nash and Stable Hyper Nash
GameG = NashStrat(NashGermans)
GameA = NashStrat(NashAllies)
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HyperNash(NashGermans,NashAllies)
StableHyperNash(NashGermans,NashAllies)

145


	Introduction
	Introduction
	Aims and Contributions
	Published Works
	Thesis Overview


	Background
	Computable Analysis and Weihrauch Degrees
	Represented Spaces and Multivalued Functions
	Topological Properties
	Weihrauch Reducibility
	Choice Principles
	Reverse Mathematics Principles
	Translating Between Spaces of Subsets

	Game Theory and Hypergame Theory
	Game Theory
	Machine Learning and Game Theory
	Game Theory and Complexity
	Hypergame Theory

	Computability and Game Theory
	Computability for Strategic Games
	Computability for Sequential Games
	Constructivism in Game Theory and Bounded Rationality
	Applications of Games to Computability Theory


	Computable Analysis and Game Theory
	The Non-computability of Nash Equilibria in Multiplayer Games
	Introduction
	Our Main Theorem
	Roots of Polynomials
	An Open Question and a Remark
	Consequences of the Classification


	Machine Learning and Cybersecurity Applications
	Introduction
	A Computable Analysis Perspective on Verified Machine Learning
	Introduction
	A Theory of Verified Machine Learning
	Related Work
	Conclusions

	Hypergames and Cybersecurity
	Hypergames and Attack Graphs
	Applications to Cybersecurity
	Suggested Research Directions
	Related Research Areas
	Conclusions


	Conclusions
	Conclusions and Future Work
	Bibliography
	Robust/Sparse Code - Python
	Hypergames and Hyper Nash Equilibrium - Python


