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Abstract
It is important to be able to predict the creep life of materials used in power plants. Levi De Oliveira Bueno has suggested

an equivalence between creep and high temperature tensile testing for 2.25Cr-1Mo steel. This offers the potential for

reducing the development cycle for new materials designed to operate at ever higher temperatures. This paper reviews

the literature to identify some suitable statistical tests for this equivalence. When applied to 2.25Cr-1Mo steel, it was

found that this equivalence was only valid if the Monkman-Grant exponent equalled −1. However, this constraint was
not accepted by the data based on the proposed statistical tests, and when this constraint was relaxed the equivalence

between these different types of test data disappeared.
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Introduction
Although complex stresses and temperatures are often
encountered by materials used in power generation,
design decisions are generally based on an “allowable”
tensile creep strength. This strength is commonly taken to
be 67% of the average stress (up to 1088 K).1 Currently,
expensive testing lasting 12–15 years is required to deter-
mine the long-term strengths and lives. A reduction in
this ‘materials development cycle’ was therefore defined
as the No.1 priority in the 2007 UK Energy Materials –
Strategic Research.2 With the aim of reducing this develop-
ment cycle, a number of different approaches have been
investigated. First, a new group of parametric creep
models3,4 have been developed in recent years that are char-
acterised through their use of an S shaped curve to describe
the relationship between the minimum creep rate and a nor-
malised stress at a fixed temperature. These models have
been shown to be stable with respect to time (test duration)
and so have been reasonably successful5–8 in predicting
long term creep life from short term test data. Secondly,
for materials where the Monkman- Grant9 relation is
stable over all test durations, a lifetime prediction can be
made using measured minimum creep rates. As the
minimum creep rate is reached well before rupture, this
approach also offers the potential to reduce the length and
cost of testing programs.

A hypothesis first put forward by Levi De Oliveira
Bueno10 in 2005 also offers the potential to reduce the
time and costs of testing programs required for material

development. This hypothesis was based around the simi-
larities between a uniaxial creep test and a high temperature
tensile test. A creep test involves subjecting a test specimen
to a constant stress σc (or load) and high temperature (T)
until it fails. During this time the specimen will strain at
varying rates and the time at which the specimen fails tcf
and the minimum strain rate ε̇mc are measured. A tensile
test involves subjecting a test specimen to constant high
temperature and a constant strain ε̇ts until it fails. During
this time the specimen will be subjected to a varying
stress σts (to ensure a constant strain rate) and the time at
which the specimen fails tts and the maximum stress σts
(i.e., the ultimate tensile strength) are measured. The
hypothesis made by Levi De Oliveira Bueno based on
their results obtained on 2.25Cr-1Mo steel, was that i. σc
was equivalent to σts, ii. that tcf was equivalent to tts and
that iii. ε̇mc was equivalent to ε̇ts. In fact, Osgerby and
Dyson11 demonstrated in an earlier paper, that the constant
strain rate properties of a material are inextricably linked to
its creep properties. Levi De Oliveira Bueno concluded that
the Monkman-Grant constant was the same in the creep and
tensile data sets which they took as evidence supporting the
above hypothesis.
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If this hypothesis is true, then a prediction of creep life at a
typical operating condition can be quickly obtained. It involves
conducting a number of tensile tests at different stain rates to
estimate the MG relation in the tensile data set. These will
all be cheap and very short-term tests. Then conduct just one
creep test at the operating stress and temperature but discon-
tinue it once the minimum creep rate has been observed.
This will also be a short-term test in relation to how much
time would be required for this specimen to fail. Finally,
insert this minimum creep rate into the tensile MG relation
for the creep strain to predict the creep failure time. This test
program is quicker and cheaper than carrying out many
creep tests at accelerated test conditions lasting several months.

But this identified similarity assumed that the
Monkman-Grant (MG) exponent was equal to −1 (but as
this paper demonstrates this value is larger than this
within the creep data set used by Levi De Oliveira
Bueno). That said, the Monkman-Grant relation provides
an ideal framework within which to study the above
hypothesis in more detail. This relation was first identified
using data on the time to failure tcf and the minimum
creep rate ε̇mc both measured from uniaxial creep tests

tcf = Mc(ε̇mc)
−1 (1a)

where Mc is material dependent. Mc can therefore be inter-
preted as the total strain experienced by a specimen if it
crept at a strain rate of ε̇mc. However, for many materials
– especially high chrome steels12 and Nickel based super
alloys13 – it has been found that the following relation is
more suitable

tcf = Mc(ε̇mc)
−ρc (1b)

where 0 < pc < 1. This deviation (i.e., pc < 1) from the simple
MG relation of Eq. (1a) has been explained in a variety of
different ways. Dobes and Milicka14 attributed this devi-
ation to variation in creep failure strain ϵcf

tcf
εcf

= Mc(ε̇mc)
−1 (1c)

Sklenicka et al.15 found that for Grade 92 steel, the value of
ρc in Eq. (1b) was 0.88, but when tcf is replaced with

tcf
εcf in

Eq. (1b) the value for ρc increased to 0.96. In contrast to
this, Abe16 attributed this deviation to accelerating creep
strain rates during tertiary creep

dln(ε̇c)
dεc

tcf = tcf
(tcf − tm)

( )
(ε̇mc)

−1 (1d)

where tm is the time taken to reach the minimum creep rate,
ϵc is the creep strain and ε̇ c the creep strain rate. However,
when applied to 9Cr-1 W steel, Abe obtained a value for ρc
that was less than 1.

The Levi De Oliveira Bueno hypothesis can be tested
within the MG framework, by assuming the MG relation
of Eq. (1b) applies to the tensile test results as well

tts = Mtsε̇
−ρts
ts (1e)

where tts is the time it takes for the varying stress in a tensile
test to reach its maximum (i.e., the tensile stress) and ε̇ts is

the constant strain under which this tensile test was carried
out. If parts ii and iii of the Levi De Oliveira Bueno hypoth-
esis are true, then this will only be so ifMc =Mts and if ρc=
ρts. When this is the case, data pairings of (tts, ε̇ts) and (tc,
ε̇c) will all fall on the same curve implying that tcf and tts
are equivalent and that ε̇mc and ε̇ts are equivalent. The
hypothesis made by Levi De Oliveira Bueno can therefore
be expressed in terms of parameter restrictions within the
MG relation. This enables some standard statistical tests
to be used.

The Levi De Oliveira Bueno hypothesis is an interesting
hypothesis, because if true, it would enable a reliable creep
life prediction at design conditions to be made from very
short term (minutes) high temperature tensile tests. This
would remove the need for even accelerated creep testing.
The aim of this paper it to apply statistical test to this
hypothesis within the MG framework using the data of
Levi De Oliveira Bueno10 on 2.25Cr- 1Mo steel. To
achieve this aim, the paper is structured as follows. The fol-
lowing section describes this data set in a bit more detail.
This is followed by a section outlining some statistical
tests for this hypothesis (with much of the statistical
theory confined to an appendix). The penultimate section
presents the results from applying these statistical tests
and finally a conclusion section outlines some proposed
areas for future work.

The data
High temperature tensile and creep properties for
2.25Cr-1Mo steel have been published by Bueno &
Sobrinho.10 The steel they used for testing was supplied
in plate form with 25.4 mm thickness according to ASTM
A 387, Grade 22 and in the normalized and tempered con-
dition with the following chemical composition: Fe –
2.09Cr – 1.08Mo – 0.097C – 0.32Si – 0.50Mn – 0.007P
– 0.002S – 0.03Ni – 0.01Cu – 0.05Al. Metallographic ana-
lysis carried out by these researchers indicated the presence
of 30% bainite and 70% ferrite. Test specimens were
extracted from the rolling direction and had a gauge
length of 25 mm and an initial diameter of 6.25 mm.
High temperature tensile testing was carried out on a servo-
hydraulic 8802 model INSTRON machine using five differ-
ent temperatures ranging from 873 K to 973 K and at five
different constant strain rates ranging from 6.67×
10−6 s−1 up to 0.01 s−1. Figure 1 plots the constant strain
rates against the time taken to reach the ultimate tensile
strength in all these high temperature tensile tests (open
squares).

The creep tests carried out by Bueno & Sobrinho were at
constant load, according to ASTM E139,17 using a set of 10
creep machines model STM-MF 1000. (Further information
about this equipment and testing techniques appears in.18

The elongation of the specimens was followed with creep
extensometers having Transtek LVDT transducers -
model DCDT 0243-000. The readings from the transducers
were collected by a Fluke Data Logger, model Hydra
2635A series II, using scan rates varying from 6 readings/
min to 6 readings/h. The creep tests were carried out at
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nine temperatures levels, ranging from 773 K to 973 K,
covering nineteen levels of applied load, varying from
34 MPa to 448 MPa. The resulting minimum creep rates
and rupture lives are also shown in Figure 1 with failure
times ranging from 0.12 to about 1300 h (closed squares).
It can be seen that there seems to be more variability in
the high temperature tensile tests data set.

Methodology
In Figure 1, the MG relation is applied separately to the
creep test data and the tensile test datasets, together with
the fit to the pooled data set. A difference is observed in
the values for the MG constant and exponents in each
data set, but what is required is a test that assesses
whether these observed differences in the parameters of
the MG relation are statistically significant, i.e., that these
observed differences have not occurred by chance.

Testing single parameter restrictions when the
Monkman-Grant exponent is 1
If the Monkman-Grant exponent term is unity, it can be
expressed as follows for both the creep and tensile test
results

tcf (ε̇mc) = Mc (2a)

tts(ε̇ts) = Mts (2b)

If parts ii and iii of the Levi De Oliveira Bueno hypotheses
are true, then this will only be so if Mc = Mts. So, one
approach to testing this parameter restriction is to test

whether the mean values for Mc and Mts are the same.
Existing tests for differences in population means are
heavily reliant on use of the normal distribution or the
central limit theorem, yet it is well established that creep
failure times and minimum creep rates have long tailed dis-
tributions. Taking natural logs can transform such variables
into normal variates – for example if tcf has a long-tailed log
normal distribution, ln(tcf) will be normally distributed.
There is therefore good reason for expressing the above
MG equations in natural logs

ln (tcf )+ ln(ε̇mc) = ln(Mc) (3a)

ln(tts)+ ln(ε̇ts) = ln(Mts) (3b)

Let μc be the population or true mean for ln(Mc) and μts be
the population or true mean for ln(Mts). A test of the null
hypothesis Ho: μc - μts= 0 is then one way to test the
Levi De Oliveira Bueno hypothesis. To conduct such a
test, two samples of data are required. The first is the
tensile test data set to be made up of i= 1 to n1 measure-
ments on ln (tts)and ln(ε̇ts) and the second is a creep test
data set to be made up of i= n1+ 1 to n measurements on
ln(tcf ) and ln(ε̇mc) (such that n > n1). Then let the variables
yi= ln(tcf)i and x1i= ln(ε̇ts)i when n≤ i > n1, but yi= ln(tts)
and x1i= ln(ε̇ts)i when i≤ n1. Eqs. (3) can then be written as

wts,i = yi + xi = ln(Mts)i i = 1 to n1 (4a)

wc,i = yi + xi = ln(Mc)i i = 1+ n1to n (4b)

Section A of the appendix shows that if the variance in each
test data set are the same, σ2c= σ2ts= σ2w, and if wts,i and wc,i

are both normally distributed (if not then the central limit

Figure 1. Variation of the minimum creep rate with the rupture time in creep test data, plotted together with the strain rate and time

to occurrence of the ultimate tensile stress (UTS) in the constant strain rate tensile tests. Straight lines refer to the least squares

estimates of the MG relation in the creep (long dashed), tensile (short dashed) and combined (sold line) test data sets.
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theorem will ensure �wc, �wts will still be normally if calcu-
lated from a large sample) then the following t statistic can
be used to test the null hypothesis Ho: μc - μts= 0

ta = [�wc − �wts −] [μc − μts]����������������
S2w
n1

+ S2w
(n− n1)

√ = [�wc − �wts] − 0����������������
S2w
n1

+ S2w
(n− n1)

√ (5)

because if the null is true, ta has a student t distribution with
n – 2 degrees of freedom. �wc, �wts are the sample means for
wc and wts respectively, and s

2
w is the sample estimate of the

common variance σ2w (Appendix A gives the formulas for
�wc, �wts and s2w).

Values for the probability of observing various values
for ta have been tabulated. For example, there is a 5%
chance of observing a ta value outside the range −2.23 to
+2.23 when the degrees of freedom equals 10. If a calcu-
lated value for |ta| from Eq. (5) then exceeds 2.23 it can
be said that the chances of getting such a value is less
than 5%. As this |ta| value was calculated under the assump-
tion that that μc − μts = 0, it follows that there is also less
than a 5% chance that the true value for μc − μts = 0. The
decision rule is to reject the null hypothesis whenever |ta|
> |tα/2,n−2| as this runs only a α% chance of being wrong
in that rejection decision. |tα/2,n−2| is called the critical
value for t. Alternatively, the p-value is the probability of
observing |ta| or more, and so is equivalent to the probability
of the null hypothesis being true. The null hypothesis is
then rejected when p-value < α%.

The normality assumption required to hold for the above
test is almost guaranteed by the central limit theorem that
states that the distribution for a sample mean tends to a
normal distribution as the sample size from which it’s cal-
culated tends to infinity and from the fact that linear combi-
nations of normal variables [�wc − �wts] are also normal. The
approximation to normality is excellent in samples of size
30 or more. The assumption that σ2wc= σ2wts= σ2w can be
tested using the ratio of the sample estimates of these var-
iances

FV = S2wts

S2wc

(6)

which under the null hypothesis that σ2c= σ2ts has an F distri-
bution with n - n1 - 1 and n1 −1 degrees of freedom (as the
variances are chi squared distributed and the ratio of two chi
square variables has an F distribution). Consequently, if the
value for FV in Eq. (6) exceeds Fα, then the observed value
for FV has less than a α% chance of being observed. If such
a value is then actually observed, this can only then be
explained by FV not having an F distribution – which will
only be so if the null hypothesis is not true. Here Fα is
the value for FV such that there is only a probability of α
that this value or more will be observed. So, the null
hypothesis is rejected only if FV > Fα, i.e., when the
chances of the null hypothesis being true have dropped so
low that it cannot be entertained as a realistic possibility.

Another reason for testing differences between log
means, is that taking logs linearises non-linear equations

like the MG relation. This then enables the technique of
linear least squares to be used to test the Levi De Oliveira
Bueno when the MG exponent is not unity, i.e., when the
above means difference test is no longer suitable. If the vari-
able Ii= 0 when i≤ n1 but Ii= 1when i > n1, then the value
for Ii distinguishes results from the creep and tensile tests.
Given this, it is possible to combine Eqs. (4) into a single
equation where β0= ln(Mts) and β0+ β1= ln(Mc) in

yi + xi = βo + β1Ii + vi for i = 1 to n (7a)

Consequently, testing the Levi De Oliveira Bueno hypoth-
esis boils down to testing the hypothesis that β1= 0. The
variable vi in Eq. (7a) represents the scatter that is measured
around the regression line and reflects the stochastic nature
of creep and tensile testing. The least squares procedure is
one that choses values for βo and β1 that minimises the
Σv2i , where the sum is over all n observations. The solution
to this optimisation problem is

β̂0 =
∑n1

i=1 (yi + xi)

n1
= �wts and

β̂1 =
∑n

i=1+n1
(yi + xi)

n− n1
− β̂0 = �wc − �wts

(7b)

where the hat denotes that these are estimates of the true
population values βo and β1. If the vi are assumed to be nor-
mally distributed and if the variance of the residuals vi is a
constant (i.e., the same value in the creep and tensile data
sets) equal to σ2v, then

tb = β̂j − βj��������������������
s2v

1

n1
+ 1

(n− n1)

[ ]√ j = 1 to 2 (8a)

has a student t distribution with n - 2 degrees of freedom. s2v
is the following unbiased estimate of σ2v

s2v =
∑n

i=1 v̂
2
i

(n− 2)
(8b)

where the v̂2i are calculated from Eqs. (7a) using the param-
eter estimates given by Eq. (7b). Any hypothesised value
for βj can be tested simply by substituting into Eq. (8a)
the hypothesised value for βj. For example, part of the
Levi De Oliveira Bueno hypothesis can be tested by substi-
tuting β1= 0 into Eq. (8a) for the null hypothesis Ho: β1= 0

tb = β̂1 − 0��������������������
s2v

1

n1
+ 1

(n− n1)

[ ]√ (9)

Interestingly, and as discussed in Appendix B, from a stat-
istical perspective, this t test is equivalent to the above t-test
for testing for a difference between two means assuming
constant variance. That is, ta in Eq. (5) is equivalent to tb

in Eq. (8a).
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Testing single parameter restrictions when the
Monkman-Grant exponent is less than 1
When the MG exponent differs from -1, Eq. (7a) needs to be
generalised to account for this

yi = βo + β1Ii + β2xi + β3Iixi + ei for i = 1 to n

(10a)

where β0= ln(Mts), β0+ β1= ln(Mc), β2= ρts and β2+ β3=
ρc. Consequently, testing the Levi De Oliveira Bueno
hypothesis boils down to testing the dual hypothesis that
β1= 0 and β3= 0. The variable ei in Eq. (10a) represents
the scatter that is measured around the regression line and
reflects the stochastic nature of creep and tensile testing.
In matrix form, Eq. (10a) can be written as

y = xTβ+ e

where

y =

ln(tts,1)

..

.

ln(tts,n1)
ln(tc,n1+1)

..

.

ln(tc,n)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
; β =

β0
β1
β2
β3

⎛⎜⎜⎝
⎞⎟⎟⎠; x

=

1 0 ln(ε̇ts,1) 0

..

. ..
. ..

. ..
.

1 0 ln(ε̇ts,n1) 0
1 1 ln(ε̇c,n1+1) ln(ε̇c,n1+1)

..

. ..
. ..

. ..
.

1 1 ln(ε̇c,n) ln(ε̇c,n)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
; e

=

e1

..

.

en1
en1+1

..

.

en

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(10b)

The ordinary least squares procedure estimates the para-
meters β0 to β3 as those values which minimise Σe2i (i= 1
to n). The solution to this least squares problem is

β̂ = (xTx)−1xTy (11a)

where β̂ is the least squares estimator of β, xT is the trans-
pose of x and ()−1 is the inverse of the matrix in the brack-
ets. These least squares estimators are called linear
estimators as they are a linear combination of the yi. They
are sample estimates as collecting a different creep and
tensile sample of the same sizes will result in different

values for β̂o to β̂3. Next assume that the values for xi are
fixed numbers (or alternatively are uncorrelated with the
ei), and that the mean of all the ei values equals zero.
Then, it can be shown that if all possible samples of size
n1 and n-n1 of observations on yi and xi are taken, and for

each sample the estimates β̂o to β̂3 are computed, then a
large number of estimates for each will be obtained and
the means (called the expected value E) of these values
will equal the true (i.e., population) parameter values. For

example, E[β̂o]= βo and E[β̂3]= β3. So, the least squares
estimates are said to be unbiased.

If the residuals ei from both the creep and tensile data
have the same constant variance equal to σ2e , and if the ei
are all independent of each other, then the covariance
matrix for β̂ is given by

Var(β̂) = σ2e (x
⊤x)−1 (11b)

and so Var(β̂) is a 4× 4 square matrix. The diagonal of this

matrix contains the variances of β̂o to β̂3 (for example,

Var(β̂o) is in position (1,1) of the matrix and Var(β̂3) is in
position (4,4) of the matrix). The covariances between
these parameter estimates are then in the of-diagonal posi-
tions. The variance of each least squares estimate - given
by Eq. (11b) - also has the smallest variance amongst the
class of all possible linear estimators. This in combination
with their unbiased nature ensures that the chances of
obtaining an estimate for each β that is different from
their true values is minimised. It is this result that makes
the least squares estimation procedure so popular.

If in addition to the above assumptions, the residuals ei
are assumed to be normally distributed, then the yi and
each β̂j variate will also be normally distributed. Each
β̂j will then have a normal distribution with a mean value
equal to their true value and with minimised variances

β̂j ∼ N[βj, Var(β̂j)] (12)

Unfortunately, σ2e is rarely known in Eq. (11b) and needs to
be estimated from the sample of data. It can be shown that
an unbiased estimate of this residual variance is

s2e =
∑n

i=1 ê
2
i

(n− 4)
(13)

where the ê2i are calculated from Eqs. (10a) using the par-
ameter estimates given by Eq. (11a). If in Eq. (11b), σ2e
is replaced with s2e , then

tg = β̂j − βj����������
Var(β̂j)]

√ (14)

has a student t distribution with n – 4 degrees of freedom.
Any hypothesised value for βj can be tested by simply sub-
stituting into Eq. (14) the hypothesised value for βj. For
example, consider the null hypothesis that the MG exponent
is the same in the creep and tensile data sets. This can now
be tested by expressing the null hypothesis as β3 = 0.
Substituting this value into Eq. (14)

tg = β̂3 − 0���������
Var(β3)

√ (15)

where β̂3 is located in the 4th row of β̂ in Eq. (11a) and

Var(β̂3) is located in position (4,4) of the matrix Var(β̂) in
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Eq. (11b). If the |tg| value is less than |tα/2,n−4| the null
hypothesis is accepted. The Levi De Oliveira Bueno
hypothesis, at least in part, can now be tested by expressing
the null hypothesis as Ho: β3 = 0. To sum up, the t test of a
single parameter restriction requires the following assump-
tions to hold: i. The ei are normally distributed, ii the ei over
all n data points (i.e., in the creep and tensile data sets) have
the same constant variance (homoscedastic residuals) and
iii. the covariance between x1i and ei is zero).

White19 suggested the following test for homoscedastic
residuals. First, estimate values for the squared residuals

ê2i = {yi– [ β̂0 + β̂1Ii + β̂2xi + β̂3 Iixi]}
2 i = 1 to n

(16a)

where the β̂j and found from Eq. (11a). Then carry out the
regression

ê2i = λo + λ1Ii + λ2x1i + λ3Iixi + ei for i = 1 to n

(16b)

ê2i is an estimate of the residual variance (as the residuals are
assumed to have zero mean) when the log strain rate equals
xi. So constant residual variance requires ê2i to be independ-
ent of x1i, i.e., requires λ1= λ2= λ3= 0. This will only be the
case if the R2 value associated with Eq. (16b) is close to
zero. So, if the null hypothesis of homoscedastic residuals
is true, the statistic

χw = nR2 (16c)

has a chi square distribution with n-1 degrees of freedom.
Bowman and Shenton20 and Jarque and Bera21 proposed
the following test for normally distributed variables. It is
based on sample measures of Skewness and Kurtosis and
is given by

χN =
n

m3

m3/2
2

( )2

6
+

n
m4

m2
2

− 3

( )2

24
where mj =

∑n
i=1 [êi]

j

n
(17)

The first term measures the degree of skewness in the
residual distribution which equals zero when the distribu-
tion is symmetric. The second term measures the flatness
of the distribution that again equals zero when it corre-
sponds to the degree of flatness associated with the
normal distribution. Under the null hypothesis of normality,
this test statistic should be close to zero and follows a chi
distribution with 2 degrees of freedom. So, if the value
for χN exceeds the selected critical value for χ, the null
hypothesis of normality is rejected.

Unfortunately, this test has poor small sample properties
and a version of this test with a sample size correction can
be found in Doornick and Hansen.22 This modification has
a chi square distribution with 2 degrees of freedom under
the null hypothesis - even in small samples.

Testing multiple parameter restrictions when the
Monkman-Grant exponent is less than 1
The above t tests can only be used for testing a single par-
ameter restriction, but the Levi De Oliveira Bueno hypoth-
esis involves the two restrictions β1= β3= 0 when the MG
exponent is not known to equal unity. The F test for such
multiple parameter restrictions requires the same assump-
tions as with the above t tests, and is written as

FR = [R2
U − R2

R] / k
(1− R2

U ) / (n− 4)
(18a)

where k equals the number of restrictions. R2
U is the coeffi-

cient of determination associated with the unrestricted
regression given by Eq. (10a)

R2
U = 1−

∑n
i=1 ê

2
i∑n

i=1 (yi − �y)2
(18b)

R2
R is the coefficient of determination associated with the

restricted regression (which is determined by the nature of
the null hypothesis). For example, to test the Levi De
Oliveira Bueno hypothesis, the null hypothesis is β1= β3
= 0 and so k= 2 within Eq. (18a), and R2

R is the coefficient
of determination associated with the regression under this
null hypothesis, which is

yi = βo + β2xi + gi (18c)

and so

R2
R = 1−

∑n
i=1 ĝ

2
i∑n

i=1 (yi − �y)2
(18d)

where ĝ2i are calculated from Eqs. (18c) using the least
squares estimates of the parameters β0 and β2. A well-
known statistical theorem states that the square of a stand-
ard normal variate has a chi square distribution with 1
degree of freedom and the square of two standard normal
variates has a chi square distribution with 2 degrees of
freedom and so on. Further, the ratio of two chi square vari-
ables has an F distribution. So, if the residuals ei and gi are
normally distributed, then given Eq. (18b), R2

U involves the
sum of n squared normal variates and so irrespective of the
null hypothesis, the variable in the denominator of FR has a
chi square distribution with n - 4 degrees of freedom (4
degrees of freedom are lost from n in estimating 4 para-
meters). The numerator of FR also has a chi square distribu-
tion but only if the null hypothesis is true - with the degrees
of freedom equal to the number of restrictions under the null
hypothesis (if the null hypothesis is not true the numerator
has a non-central chi square distribution as it will then
involve the sum of the squared residuals whose mean is
not zero).

If, and only if, the null hypothesis is true, FR will have an
F distribution with k and n – 4 degrees of freedom.
Consequently, if the value for FR in Eq. (18a) exceeds Fα,
then the observed value for FR has less than a α% chance
of being observed. The fact that it is observed can only
then be explained by FR not having an F distribution –
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which will only be so if the null hypothesis is not true. Here
Fα is the value for F

R such that there is only a probability of
α that this value or more will be observed. So, the null
hypothesis is rejected only if FR > Fα, i.e., when the
chances of the null hypothesis being true have dropped so
low that it cannot be entertained as a realistic possibility.

At a more intuitive level, if the null hypothesis is true,
allowing the values for β0 and β2 to be different values in
the tensile data compared to the creep data, should not
explain any more of the variation in all the observed
failure times. That is, under the null hypothesis R2

U − R2
R ≅

0 and FR in Eq. (18a) will be small in magnitude. The larger
it is, the more likely it is therefore that the null hypothesis is
false and when its value exceeds Fα, the chances of the null
hypothesis being true is at least as as low as α%. Given this
low probability, the null hypothesis would then be rejected.

These F tests are uniformly most powerful tests for param-
eter restrictions under the above three assumptions. The
reason for requiring homoscedastic residuals is that if the
residual variance is larger in the tensile data set, it will
deflate the value for R2

U and so inflate the value for FR

even if the null hypothesis is true. These so-called heterosce-
dastic residuals will therefore tend to lead to researchers
rejecting the null hypothesis even when it is true. The hetero-
scedasticity problem can be overcome by adjusting the stand-
ard errors of the parameter estimates in Eqs. (11b) to adjust
for this heteroscedasticity. As discussed above, White19 sug-
gested the variance in ei associated with each value of xi can
be estimated using the estimated squared residuals. If the esti-
mated squared residuals calculated using Eq. (16b) are placed
down the diagonal of square matrix Ω

Ω̂ =

ê21 0 · · · 0
0 ê22 · · · 0

..

. ..
. . .

. ..
.

0 ..
. · · · ê2n

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠ (19a)

then White showed that the standard errors for the parameters

β̂j in Eq. (11a), corrected for any heteroscedasticity in the resi-
duals, is given by

Var(β̂) = n

n− 4
(xTx)−1(xTΩ̂ x)(xTx)−1 (19b)

The square root of the values on the diagonal of this matrix
are often termed heteroscedastic consistent standard errors,
or HCSE for short. Appendix C shows that Eq. (19b) is a con-

sistent or asymptotic estimator of Var(β̂), which implies that
the estimator is valid, strictly speaking, only for very large
data sets. MacKinnon and White23 showed that in small
samples Eq. (19c) produced a better estimate of the true vari-

ance for Var(β̂) (see Appendix C)

Var(β̂) = n

n− 4
(xTx)−1 xT Ω̂ x− 1

m
xT êêTx

[ ]
(xTx)−1

(19c)

where ê is a vector of the ê2i .White andMacKinnon23 showed
that in small samples Eq. (19c) produced a better estimate of

the true variance for Var(β̂). The square root of the values on
the diagonal of this matrix are often termed Jackknife hetero-
scedastic consistent standard errors, or JHCSE for short. The
test statistic tg can now be corrected for any heteroscedasticity
by simply using Eq. (19c) for the denominator in Eq. (14).

Multiple constraints corrected for any heteroscedasticity
can now be tested for by writing multiple constraints in
matrix form

p = Rβ̂ = q (20a)

where vector β̂ is a sample estimate of β and each row of R
corresponds to a single parameter constraint and q contains
the constrained parameter value. For example, Levi De
Oliveira Bueno informally looked at whether β3= 0, when
the restrictions β1= -1 is assumed true. This dual set of
restrictions can be written as

R = 0 1 0 0
0 0 0 1

( )
and q = −1

0

( )
(20b)

Appendix C demonstrates that the matrix p will follow a

normal distribution provided β̂ is normally distributed (as
it is a linear combination of them) which in turn requires
the residuals to be normally distributed with a mean

vector of zero. Given that β̂ is unbiased, the mean value
for p is zero

p ∼ N [0, Var(p)]

with the covariance matrix of p given by

Var(p) = RVar[β̂]RT (21a)

Var[β̂] is given by Eq. (19b) for the asymptotic test or Eq.
(19c) for the finite sample version of this test. So if the null
hypotheses H0: Rβ = q is true, the Wald statistic

Wk = pT[Var(p)]−1p (21b)

has a chi square distribution with k degrees of freedom. k
corresponds to the number of constraints being tested and
so equals the number of rows contained in R and q. This
is because the square of a standard normal variate has a
chi squares distribution (with k degrees of freedom as p is
a kx1 vector containing k standardised variates). There
are two versions of this test. WW

k is the value for Wk in

Eq. (21b) when Var(β̂) is given by Eq. (19b), whilst WJK
k

is the value for Wk in Eq. (21b) when Var(β̂) is given by
Eq. (19c). In either case it is a test for multiple restrictions
adjusted for any heteroscedasticity in the residuals and so is
more flexible than the FR test in Eq. (18a) as that is invalid
for non-constant variance in the residuals. An F variant of
this test is found by dividing through by the number of

restrictions being tests. If the null hypothesis is true, FW =
WW

k
k and FJK = WJK

k
k follow a F distributions with k and n-4

degrees of freedom.
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Predictions
Another approach to assessing the Levi De Oliveira Bueno
hypothesis is to estimate the MG relation using just the
tensile test data. If the hypothesis is true, then the resulting
estimated relation should produce unbiased forecasts of the
failure times associated with the creep data set and the
actual creep failure times should then be within a multiple
of the variability of the predictions given by

s2
ŷi
= s2e 1+ 1

n− n1
+

xi −
∑n

i=1+n1
xi)

n− n1

[ ]2
∑n

1+n1
xi −

∑n
i=1+n1

xi)

n− n1

[ ]2
⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦
(22a)

Eq. (22a) picks up variability due to the residuals ei and
uncertainty about the parameter estimates. An approximate
95% confidence interval for any prediction of yi is then
given by

ŷi = ( β̂0 + β̂2x1i) ∓ 2(ŝ
yi
) (22b)

where β̂0, β̂2 are estimated from

yi = βo + β2xi + ei for i = 1 to n1

using only the tensile data
Evans24 suggested the randomness of the prediction

errors is best measured using the mean percentage absolute
error (MPAE). Following Robeson and Cort,25 the MPAE
is formally defined as

MPAE ≈
1

n− n1

∑n
i=1+n1

|ei| (23a)

where ei is the difference between the actual log time to
failure at creep test condition i and the corresponding log
time to failure predicted by the MG relation estimated
from the tensile data set. As this prediction error is
expressed in terms of (natural) log differences, this repre-
sents an approximate percentage error. Robeson and Cort
showed that the MPAE can be decomposed into three sep-
arate parts. The first component of |ei| is the absolute bias
error |BE| = |(yi − ŷi)|, where the bar indicates the
average values for the actual and predicted value for y).
Robeson and Cort then remove this component by adding
it onto the predictions, ŷ pi = ŷi + |BE|. |BE| is clearly a sys-
tematic prediction error. They then use least squares to
determine the values for δ0 and δ1 in the regression

yi = δ0 + δ1ŷ pi + εi (23b)

The second part is also a systematic prediction error and is
equal to |fi|= |ŷ pi − (δ0+ δ1 ŷ pi)|. This quantity only exists
if δ1 is different from 1 and δ0 is different from 0. Robeson
and Willmott call this component the proportionality error.
The third component is a random prediction error and

equals |ϵi|. On this basis, the decomposition of the MPAE is

MPAEM = 1

n− n1

∑n
i=1+n1

|BE|
|BE| + |f i| + |εi| |ei| (24a)

MPAER = 1

n− n1

∑n
i=1+n1

| fi|
|BE| + |f i| + |εi| |ei| (24b)

MPAED = 1

n− n1

∑n
i=1+n1

|εi|
|BE| + |f i| + |εi| |ei| (24c)

These can be expressed as proportions of MPAE

|UM | = MPAEM /MPAE ; |UR|
= MPAER /MPAE ; |UD|
= MPAED/MPAE (24d)

If the Levi De Oliveira Bueno hypothesis is true, the expect-
ation is that |UD| ≈ 1 or 100%, so that the MG relation in
the tensile test data predicts creep failure times with an
average error of zero - as the 0= MPAEM=MPAER.

Results

What Levi De Oliveira Bueno found
Levi De Oliveira Bueno assessed their hypothesis by fitting
the MG relation to the creep data set and seeing how well it
extrapolated to the lower times (to UTS) associated with the
tensile test data assuming ρc = 1 in Eq. (1b). Using the digi-
tised data from the paper by Levi De Oliveira Bueno,
ln(Mc) was estimated as

�wc = −3.0025

Consequently, the estimate for Mc was found to be
exp(−3.0025)= 0.050. This is very close the value reported
by Levi De Oliveira Bueno10 in Figure 2(a) in Ref [10],
namely, 0.051. This small difference is most likely due to
digitising the results from that paper.

The solid line in Figure 2 plots tcf = 0.05(ε̇mc)
−1 and the

dashed line is the extrapolation of this relation to the tensile
test results. The extrapolation to the tensile test data in
Figure 2 looks reasonable and Levi De Oliveira Bueno
stated “The agreement of the CSR tensile data with the
creep results, according to the Monkman-Grant fit is
evident. Therefore, the scatter observed on the creep data
in this kind of plots could be of the same nature as observed
for the CSR results”. In this quote, CSR refers to the tensile
test data.

This paper expands on this analysis by considering the
following questions:

Does the extrapolation work in the opposite
direction?
Given the benefit of the Levi De Oliveira Bueno hypothesis
being valid, is to predict creep failure times associated with
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typical operating conditions from the very short test times
associated with tensile data, it seems reasonable to fit the
MG relation to the tensile data and see how well it extrapo-
lates to the creep failure times, assuming ρts= 1. The results
are shown in Figures 3. Using the digitised data from the
paper by Levi De Oliveira Bueno, and based on Eq. (4a),
ln(Mts) is estimated as

�wts = −3.1773

Consequently, the estimate for Mts was found to be
exp(−3.1773)= 0.0417. The solid line in Figure (3a) plots
tts = 0.0417(ε̇ts)−1 with the dashed segment of this line
showing the extrapolation of this relationship to the creep
failure times. The predicted creep failure times along this
extrapolated lines look very good. This is confirmed in
Fig. (3b) where these creep failure time predictions are
plotted against the actual creep failure times. The MPAE
in the creep failure time predictions is some 31.11%. The
best fit line to the data points in this figure is slightly
flatter the ideal 45° line – given by the dashed line in
Figure (3b). 24.33% of the MPAE is explained by this phe-
nomenon (=|UD|). The remaining part of the MPAE is
random in nature – some 75.67% (=|UR|).

Despite the reasonable fit shown in Figures (3), are
the MG constants Mc and Mts really equal if ρc= ρts
= 1?
As can be seen from Figure 3 and Figure 2, the values for
Mc and Mts are quite different, and despite this, the predic-
tions made from the tensile test data are quite good. So, are
these differences statistically significant? When ρc= ρts= 1,

then in Eq. (10a) β2=−1 and β3= 0 giving

yi + x1i = βo + β1Ii + vi for i = 1 to n

where the n= 83 observations are from the creep and tensile
data sets combined. Here β0= ln(Mts) and β0+ β1= ln(Mc).
So, given the assumption that ρc= ρts= 1, Mc=Mts, only
when β1= 0. Estimated values for Mc and Mts where

given in the previous sub section, giving the estimates β̂0 =
�wts and β̂1 = �wc− �wts (see Eq. (7b)). So for this sample of
data, ln(Mc) exceeds ln(Mts) by 0.1749. From Eq.(8b), s2v
was found to be 0.2046, which is equal to the pooled vari-
ance s2w in Eq. (A3). Then from Eq. (B1)

Var(β̂o) =
s2v

(n− n1)
= 0.2046

25
= 0.00819

Var(β̂1) = s2v
1

n1
+ 1

(n− n1)

[ ]
= 0.2046(0.0572)

= 0.0117

The null hypothesis that β1= 0 can be tested using the t stat-
istic of Eq. (8a)

tb = β̂1 − β1��������������������
s2v

1

n1
+ 1

(n− n1)

[ ]√ = 0.1749 − 0��������
0.0117

√ = 1.62

At the 5% significance level the critical value for t is |tα/2,n
−2|= |t0.05/2,83−2| = 1.99 and so the null hypothesis of β1= 0
is accepted. Put differently, the p-value of 0.11 suggests that
the probability of the null hypothesis being true is 11%
which is too high to be able to reject the null hypothesis
(with a 5% significance level, the chances of wrongly
rejecting the null hypothesis must be lower than 5%).

Figure 2. Extrapolation of the MG relation fitted to the tensile test data when forcing ρts= 1.
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This test suggests that if ρc= ρts= 1, the Monkman Grant
relation is the same in the creep and tensile data sets, i.e.,
under this condition the Levi De Oliveira Bueno cannot
be rejected with the required degree of confidence. This
supports the conclusion drawn in the previous sub
section. But how reliable is this test?

First it requires the vi to have constant variance or
equivalently for σ2wc= σ2wts=σ2w. Using Eq. (A2), the FV

test of Eq. (6) comes out at

FV = S2wts

S2wc

= 0.3214

0.1555
= 2.07

At the 5% significance level, the critical value for FV is |Fα,
n1,n−n1|= |t0.05,24,57| = 1.71. and so the null hypothesis σ2wc
= σ2wts is rejected at this significance level, i.e., can be
rejected with less that a 5% chance of being wrong. But
at the 1% significance level the critical value for FV=
2.13 and so only at this lower significance level can the
null hypothesis of σ2wc= σ2wts be accepted. Given this, it
seems sensible to use the HCSE (of Eq. (19c) in the tb test

tb = β̂1 − β1���������
Var(β̂1)

√ = 0.1749 − 0��������
0.0159

√ = 1.39

Irrespective of whether there is any heteroscedasticity, the
p-value now increases to 0.17 which suggests that the prob-
ability of the null hypothesis being true is 17% which is too
high to be able to reject the null hypothesis. So provided the
vi are normally distributed, this test is valid. The normality

test given by Eq. (17) comes out at χN = 4.56. At the 5%
significance level, normality requires this value to be less
than 5.99, and so the assumption of normality of the vi is
accepted at this significance level. With a p-value of
0.102 it is also accepted at the 10% significance level.

Taken all together, the fact that the (heteroscedastic
robust) p-value is well above the 10% significance level
and that the normality of vi cannot be rejected at this signifi-
cance level – the hypothesis that the population values for
ln(Mts) and ln(Mc) are the same, cannot be rejected. The
MG constants are not statistically significantly different in
value from each other. This is consistent with the good
creep failure time predictions made from extrapolating the
short time tensile test results.

Are the Monkman-Grant exponents ρc and ρts in
Eqs. (1b,1e) really equal to 1?
The analysis in the previous sub section, is conditional on ρc
= ρts= 1 being true. So, this subsection delves into whether
this assumption is even true. To test the restriction imposed
on the data by Levi De Oliveira Bueno, this restriction is
relaxed by using the general model given by Eq.(10a).
Table 1 shows the results from estimating the parameters
of this model.

For ρc=ρts=1 the parameter β2 must equal −1 (which
makes ρts=1) and the parameter β3 must equal 0 (which
makes ρc equal to ρts, which in turn equals 1 when β2=−1).
The t-value for the null hypothesis Ho: β3=0 is 0.58 from

Figure 3. (a) Variation of the minimum creep rate with the rupture time in creep test data, plotted together with the strain rate and

time to occurrence of the ultimate tensile stress in the constant strain rate tensile tests. Straight lines refer to the least squares

estimates of the MG relation in the creep data (solid line) with extrapolation to the tensile data (dashed line). (b) Creep failure time

predictions given by the dashed line in (a) are plotted against the actual creep failure times.
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Table 1, giving a probability that this null hypothesis is true of
56.32%. Thus, this hypothesis easily accepted at the 5% sig-
nificance level, implying that the Monkman-Grant exponent
is the same in the tensile and creep data sets. The t-value for
testing the null hypothesis Ho: β2=−1 is 0.92 (−0.9629–
−1)/0.0403 so the probability of this constraint being true is
36%. Again, this hypothesis on its own can be easily accepted,
i.e., that that ρc=ρts=1. But can they both be accepted
jointly? Well, one thing to note in Table 1, is the parameter
standard errors adjusted for heteroscedasticity (column 4)
are quite different from the unadjusted standard errors
(column 3). Given this, the assumption of constant variance

in the ei looks unlikely to be true and so there is little point
in forming the FR test of Eq. (18a) for this joint restriction
as it requires this assumption to be true. So, the Wald test
given by Eq. (D11b, D12) that adjusts for heteroscedasticity
in the errors is used and comes out as FJK

2 = 4.81 with a
p-value of 0.011. The chances of ρc= ρts and of ρc= ρts= 1
being true, is only 1.1%. This hypothesis is clearly rejected
at the 5% significance level. The normality of the ei required
for this test to be valid is accepted at the 5% significance level
as χN = 4.13 (with a 5% critical value of 5.99). The best con-
clusion to draw from these results is that the Monkman-Grant
exponent has the same value in the creep and tensile data
sets, but that this value is less than 1. Consequently, the
result shown above that Mc=Mts, cannot be accepted as a
valid result as it was conditional on ρc= ρts= 1 being true.

Is the dual constraint (Mc =Mts and ρc= ρts)
needed for the Levi De Oliveira Bueno hypothesis to
be true accepted by the data?
The equivalence of Mc and Mts therefore needs to be looked
at again with a test that is not conditional on ρc= ρts= 1
being true. For the the Levi De Oliveira Bueno hypothesis
to be true now requires thatMc=Mts, (or β1= 0) and ρc= ρts
(or β3= 0). The Wald statistic for testing this joint restric-
tion comes out at FJK

2 = 5.72 with a p-value of 0.005. So
the chances of ρc= ρts and Mc =Mts being true is only
0.5% and so this hypothesis is clearly rejected even at the
1% significance level. This suggests that the creep failure
times predicted from an extrapolation of the MG relation

Table 1. Least squares estimate of the general model given by Eq.

(10a).

Parameter Estimate

Standard

Errora JHSCEb t -value p-value

β̂o −2.8954 0.2681 0.3422 −8.44 0.0000

β̂1 0.8416 0.4643 0.4678 1.80 0.0758

β̂2 −0.9629 0.0334 0.0403 −23.90 0.0000

β̂3 0.0265 0.0418 0.0457 0.58 0.5632

aThe numbers is this column are given by the square root of the diagonal

elements of matrix Var(β̂) in Eq. (11b) – and so make no adjustment for any

heteroscedasticity present in the residuals ei.
bThe numbers is this column

are given by the square root of the diagonal elements of the matrix Var(β̂)
in Eq. (19c) – and so are the MacKinnon and White23 Jackknife standard

errors that adjuste for the presence of any heteroscedasticity in the

residuals ei. t-value is the t test statistic for the null hypothesis that

the population value for the shown parameters is zero, based on the

jackknife standard errors (=Estimate/JHSCE). p-value is the probability of

this null hypothesis being true based on the shown t-values.

Figure 4. (a) Extrapolation of the MG relation fitted to the tensile test data allowing ρts < 1. (b) Actual v predicted creep failure times.
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estimated from just the tensile data will consistently over
estimate the actual creep failure times as ln(Mc)> (Mts) by
0.8416 when allowing for the MG exponent to differ
from −1.

How random are the errors made in predicting of
creep failure times using only tensile test results?
The section looks at whether such predictions are indeed
biased. The solid line in Figure 4(a), shows a fit of Eq.
(1e) to the tensile test data. This long-dashed line then extra-
polates this relation to the creep data set. The resulting creep
failure time predictions are towards the lower end of the
range of actual creep failure times, suggesting a degree of
average bias. The short dashed lines show the approximate
95% confidence interval for these predictions based on Eq.
(22a). Whilst all the data points are within these limits, the
limits are quite wide and the actual creep failure times tend
to cluster more towards the upper rather than the lower limit.

In Figure 4(b) the MPAE is almost 50% and is some 20
percentage points higher than when the ρts= 1 constraint is
imposed on the tensile data set. What’s more, only a third of
this MPAE is random in nature – down from 75% when the
ρts= 1 constraint is imposed on the tensile data set. As a
result, the average prediction error is 61%, whereas as
when the ρts= 1 constraint is imposed on the tensile data
set, this average error did not exist. So, whilst the ρts= 1
constraint is not the best representation of the tensile data,
it produces substantially better creep failure time predic-
tions. The problem is that if tensile data is to be used to
predict unknown creep failure times at operating condi-
tions, these times will not be known to assess whether
imposing ρts= 1 will produce sensible operating lives.

Conclusion
The Levi De Oliveira Bueno hypothesis offers the possibil-
ity of reducing the cost and length of the development cycle
for new materials operating at high temperatures. This
paper outlined a number of statistical tests for this hypoth-
esis, highlighting clearly the assumptions behind these
tests, together with tests for these assumptions being true.
Whilst it was found that the MG relation fitted to tensile
test data could provide very accurate long term creep life
predictions when this exponent of this relation was forced
to equal 1, this additional constraint was not accepted by
the data using the tests outlines in this paper. When the con-
straint on this exponent was relaxed, the MG relation fitted
to tensile test data was no longer able to predict creep life
without bias, with the mean absolute percentage error
rising from around 30% to nearly 50%. In fact, the
average prediction error made up over 60% of the mean per-
centage absolute error in predicting creep failure times.

One area of future work would include the application of
the statistical tests outlined in this paper to other materials to
assess whether the findings of this paper are material spe-
cific or apply everywhere. Of particular interest would be
an analysis of more ductile materials such as Nickel

based super alloys where the value for ρc is considerably
different from −1 (and so the kinds of equivalence seen in
this paper are less likely to holds). In doing this, some consid-
eration should be given to the nature of the tensile testing. It
should include testing up to the high strain rates that result in
the tensile strength becoming independent of further increases
in the strain rate. In addition to this, tests should be carried out
down to a temperature where the tensile strain becomes strain
invariant. Finally, the sample size should be selected so as to
achieve a confidence interval of the required size - n ≈
(1.96se / E)

2, where E is the required width of the 95% con-
fidence interval for failure time predictions.

Whilst there is quite a lot of creep data in the public
domain on such ductile materials (for example, the NIMS
creep data bases), assessing the reliability of extrapolating
from tensile test data would require additional tensile
testing that takes into account the above considerations on
the test matrix. If it can be demonstrated that such extrapola-
tions produce creep life predictions with a MPAE whose
decomposition has small values for UM and UR then this
could provide the confidence in the technique required for
designers to adopt the approach to developing newmaterials.
A theoretical basis for the equivalence between creep and
tensile test data would also help in this respect – indeed
this would constitute an important area of future research.
A good starting point would be within the theta creep meth-
odology where Evans26 derived the shape of a uniaxial creep
curve in terms on hardening, softening and damage mechan-
isms. Recently, Harrison et al.27 showed that this approach to
accounting for preexisting damage can explain the shape of a
uniaxial creep curve obtained when the stress is varied during
a uniaxial creep test. Given that a tensile test can be viewed
as a creep test in which the stress is continually changed (to
maintain a constant strain rate), this evidence suggests some
sort of equivalence between a creep and a tensile test.
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Appendix

A. Testing differences between two population means
The sample means provide unbiased estimates of the popu-
lation means μc and μts

�wts =
∑n1

i=1 (yi + xi)

n1
and �wc =

∑n
i=1+n1

(yi + xi)

n− n1
(A1)

These are sample estimates of μc and μts, and collecting a dif-
ferent creep and tensile sample of the same size will result in
different values for �wc and �wts. It can be shown that if all pos-
sible samples of size n1 and n - n1 of observations on yi and xi
are taken, and for each sample the estimates �wc and �wts are
computed, then a large number of estimates for each of
these will be obtained, and it is well known that the means
(called the expected value E) of these values will equal the
true (i.e., population) mean values. That is, E(�wc) = μc and
E(�wts) = μts. The sample means are said to be unbiased esti-
mates. It is also well-known that the variance in all these
means is given by σ2wc/(n-n1) and σ2wts/n1, where σ2wc and
σ2wts are the population variances for wc and wts respectively.
Again, these can be estimated unbiasedly from samples of data

S2wts
=

∑n1
i=1 [ wts,i − �wts ]2

n1 − 1
and

S2wc
=

∑n
i=1+n1

[ wc,i − �wc ]2

(n− n1) − 1

(A2)

with E[S2wts
] = σ2wts and E[S2wc

]=σ2wc. The t-test for differences
in population means requires the further assumption that the
variances is each test data set are the same σ2wc=σ2wts=σ2w .
If this assumption is true, then an unbiased estimate of this
common variance is

S2w = (n1 − 1)S2wts
+ (n− n1 − 1)S2wc

(n− 2)
(A3)
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The central limit theorem states that as the sample size of each
dataset increases, the variables �wc and �wts tend towards having
a normal distribution, irrespective of how the data points
making up each mean are distributed. The approximation to
a normal distribution is excellent in samples sizes of 30 or
more. Further, linear combinations of normal variables will
also have a normal distribution. Thus

�wc − �wts ∼ N μc − μts,
σ2w
n1

+ σ2w
(n− n1)

[ ]
(A4)

given that variances are always additive in nature. Eq. (A4)
states that the variable �wc − �wts is normally distributed
(more so in large samples) with a population mean value of

μc − μts and a variance of σ2w
n1

+ σ2w
n1
. It follows from this that

the following Z variate has a standard normal distribution

Z = [�wc − �wts − E] [�wc − �wts]����������������
σ2w
n1

+ σ2w
(n− n1)

√

= [�wc − �wts]− (μc − μts)����������������
σ2w
n1

+ σ2w
(n− n1)

√ ∼ N(0, 1) (A5)

Eq. (A5) is the starting point for testing various hypothesis.
For example, the Levi De Oliveira Bueno hypothesis corre-
sponds to the null hypothesis: μc − μts =0. Then if this
hypothesis is true, the Z statistic

Z = [�wc − �wts]− 0����������������
σ2w
n1

+ σ2w
(n− n1)

√ ∼ N (0, 1) (A6)

has a standard normal distribution. Values for the probability
of observing various values for Z from the standard normal
distribution have been calculated and tabulated. For
example, there is a 5% chance of observing a Z value
outside the range −1.96 to +1.96. If the calculated value for
|Z| from Eq. (6e) then exceeds 1.96 it can be said that the
chances of getting such a value is less than 5%. As these Z
values were calculated under the assumption that μc − μts =
0, it follows that there is also less than a 5% chance that the
true value for μc − μts equals zero. In such a situation the
null hypothesis would be rejected. 1.96 is an example of a crit-
ical value for Z (called Zα) and α= 5% is an example of a sig-
nificance level. Researchers typical work with a small value
for α (1, 5 or 10%) so that if the null hypothesis is rejected
the chances of the null hypothesis actual being true is very
small. The decision rule then is reject the null hypothesis
whenever |Z| > |Zα/2| and run at most an α% chance of being
wrong in a decision to reject the null hypothesis.
Alternatively, the p-value is the probability of observing |Z|
or more, and so is equivalent to the probability of the null
hypothesis being true. The null hypothesis is then rejected
whenever the p-value<α%.

Unfortunately, σw is rarely known and needs to be
estimated from the sample of data. Eq. (A3) is an
unbiased estimate of this variance under the equal

variance assumption, and if σ2w is replaced with s2w in
Eqs. (A6), then

ta = [�wc − �wts]− 0����������������
s2w
n1

+ s2w
(n− n1)

√ (A7)

has a student t distribution with n – 2 degrees of freedom.

B. Least squares version of test for mean differences
β̂0 and β̂1 in Eq. (7b) are unbiased estimates of βo and β1 in
Eq. (7a) provided the variables I and v are independent of
each other. It can again be shown that the variances of β̂0
and β̂1 are given by

Var(β̂o) =
σ2v

(n− n1)
and Var(β̂1)

= σ2v
1

n1
+ 1

(n− n1)

[ ]
(B1)

where σ2v is the variance and the residuals vi in Eq. (7a). If
the vi are further assumed to be normally distributed and if
the variance of the residuals vi is a constant (i.e., the same
value in the creep and tensile data sets) then

β̂j ∼ N [β1j, Var(β̂j)] j = 1 to 2

and so

Z = β̂1 − E(β̂1)���������
Var( β̂1)

√ = β̂1 − β1��������������������
σ2v

1

n1
+ 1

(n− n1)

[ ]√
∼ N(0, 1) (B2)

Unfortunately, σ2v is unknown, but an unbiased estimate of
it is

s2v =
∑n

i=1 v̂
2
i

(n− 2)
(B3)

where the v̂2i are calculated from Eqs. (7a) using the param-
eter estimates given by Eq. (7b). If σ2v is replaced by s2v in
Eq. (B1), then

tb = β̂j − βj��������������������
s2v

1

n1
+ 1

(n− n1)

[ ]√ (B4)

has a student t distribution with n-2 degrees of freedom. The
test statistic ta in Eq. (A7) is equivalent to tb in Eq. (B4).
This is because s2w= s2v and so

Var(β̂1) = s2v
1

n1
+ 1

(m− n1)

[ ]
= s2w

1

n1
+ 1

(n− n1)

[ ]
(B5)

and so the denominator of Eq. (A7) and Eq. (B4) are the

same. Also, from Eq. (7b), β̂1 is the difference between
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the average value for (y+ x) in the tensile and creep data
sets. Thus, the numerator of Eq. (A7) and Eq. (B4) are
also the same. Thus, the t test given by Eqs. (A7) and Eq.
(B4) are the same test. The former test assumes that the
mean values for (y+ x) in both the creep and tensile data
sets are normally distributed and that the variance for (y+
x) in both the creep and tensile data sets are constant
equal to S2w. The latter test assumes, equivalently, that v is
normally distributed with a constant variance equal to s2v .

C. Estimating the variance of the least squares
parameter estimates
The covariance matrices for β̂ when no assumptions are
made about whether the residuals ei are independent or
homoscedastic is given by

Var(β̂) = (x⊤x)−1x⊤Ωx(x⊤x)−1 (C1)

where E(ee⊤)=Ω. To become operational, an estimate ofΩ
is required. Conventionally, it is assumed that the residuals
have a constant variance given by σe2

E(eeT ) = Ω = σ2e

1 0 · · · 0
0 1 · · · 0

..

. ..
. . .

. ..
.

0 ..
. · · · 1

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠ (C2)

When the residuals are independent but heteroscedastic, the
covariance matrix of the residuals takes the form

E(eeT) = Ω =

σ2e1 0 · · · 0
0 σ2e2 · · · 0

..

. ..
. . .

. ..
.

0 ..
. · · · σ2en

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠ (C3)

White19 has proposed estimating Ω in Eq. (C3) using the
squared residuals calculated from Eqs. (10a) using the par-
ameter estimates given by Eq. (11a)

Ω̂ =

ê21 0 · · · 0
0 ê22 · · · 0

..

. ..
. . .

. ..
.

0 ..
. · · · ê2n

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠ (C4)

Under this procedure, Eq. (C1) becomes

Var(β̂) = n

n− 4
(xTx)−1(xTΩ̂ x)(xTx)−1 (C5)

The term n/(n-4) is a degrees of freedom correction sug-
gested by Hinkley,28 that is made to the estimate pro-
posed by White, to take into account the fact that the
least squares residuals tend to be too small in relation
to their population values even in the absence of hetero-
scedasticity. White19 and Hinkley28 have shown that

when Var(β̂) in Eq. (C5) are estimated using larger
and larger samples (i.e., as n → ∞), the probability

that the difference between Var(β̂) and the true or popu-
lation value will become arbitrarily small is close to
1. Thus Eqs. (C5) is a consistent or asymptotic estima-

tor of Var(β̂) which implies that the estimator is valid,
strictly speaking, only for very large data sets. The

square root of the diagonal elements of Var(β̂) in Eq.
(C5) are termed heteroscedastic consistent standard
errors, or HCSE for short. These standard errors are
robust to the presence of heteroscedasticity in the resi-
duals ei.

Horn et al.29 have suggested another consistent
estimator of Var(β̂) using the following estimate of Ω

Ω̃ =

ẽ21 0 · · · 0
0 ẽ22 · · · 0

..

. ..
. . .

. ..
.

0 ..
. · · · ẽ2n

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠ (C6a)

where

ẽi = êi
1− lii

(C6b)

where lii is the diagonal element of the matrix
x(x⊤x)−1x⊤. These authors show that ẽ2i is an “almost”
unbiased estimator of the σ2e .

All of these estimators are related to the jackknife
procedure. Efron30 notes that the White estimator of
Var(β̂) can also be obtained by the infinitesimal jack-
knife method. The Hinkley19 estimator of Var(β̂) can
be obtained using the weighted jackknife. All of this
suggests that the jackknife method can provide
another modified HCSE estimator. The jackknife tech-
nique involves recomputing the estimates of the para-
meters in Eq. (11a) n times, each time dropping one
of the observations. The sample variability of these
computed estimates is then an estimate of the variability
of the original estimator. That is

β̂i = β̂ − (x⊤x)−1x⊤i ẽi (C7)

where β̂i denotes the estimate of β based on all observa-
tions except the ith one, and xi denotes the ith row of x.
Essentially then the jackknife is a form of cross valid-

ation. The Jackknife estimate of Var(β̂) is the sample
variance of all the β(j)

n− 1

n

∑n
i=1

(β̂i − �β)(β̂i − �β)T (C8)

where �β is the sample mean of all the n values for β̂i.
White and MacKinnon23 showed that that the values
given by Eq. (C8) can be obtained without the iterations
necessary in implementing this equation using

Var(β̂) = n− 1

n
(xTx)−1 xT Ω̃ x− 1

n
xT ẽẽTx

[ ]
(xTx)−1

(C9)
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where ẽ is a vector of the ẽi. White and MacKinnon23

showed that in small samples Eq. (C9) produced a

better estimate of the true variance for Var(β̂).

D. Testing multiple restrictions
Various parameter restrictions can be written in the follow-
ing general way

p = Rβ̂ = q (D1)

For example, for the null hypothesis Ho: β2= β3= 0 in Eq.
(10a), R and q take the form

R = 0 0 1 0
0 0 0 1

( )
and q = 0

0

( )
(D2a)

and for the null hypothesis Ho: β1=−1 and β3= 0

R = 0 1 0 0
0 0 0 1

( )
and q = −1

0

( )
(D2b)

The vector β̂ is a sample estimate of β. That is, this is a
random vectors that has a sampling distribution (like the
sampling distribution of the sample mean). Consequently,
the vector p also has a sampling distribution. To progress
further, the residuals ei in Eq. (10a) must be assumed to

have a normal distribution, so that the vectors β̂ and p are
then normally distributed (as any linear combination of
normal variates will also have a normal distribution). The
mean of the sampling distribution of p (E(p)) is found
using the rules associated with the expectations operator E,
and the additional assumption that xi are uncorrelated with

ei (which ensures that E[β̂ = β])

E[p] = RE[β̂]− E[q] = Rβ–q (D3)

as the expected value of a constant is the constant itself. It
follows that E[p]= 0 only if R β = q, i.e only if the null
hypothesis is true (with q= 0 under the null, this requires
Rβ= 0).

The variance of p is found by further assuming that the
residuals ei have constant variance given by σe2. It can be
shown that under these assumption, the following formula
provides an efficient (i.e., no other linear estimator has a
smaller variance or level of uncertainty) estimate for the
variance of β̂

Var(β̂) = σ2e (x
Tx)−1 (D4)

and so the variance of p is

Var[p] = Var[Rβ̂ –q] = Var[Rβ̂]

= RVar[β̂]RT = σ2eR(x
Tx)−1RT (D5)

So under the above-mentioned assumptions, and if the null
hypothesis R β = q is true, the random vector p has a
normal distribution with mean 0 and variance given by
Eq. [D5]

p ∼ N[0, σ2eR(x
Tx)−1RT] (D6)

So if the null hypotheses H0: R β = q is true, the Wald
statistic

Wk = pT [Var(p)]−1p

= 1

σ2e
(Rβ̂ – q)T [R(xTx)

−1
RT ]−1(Rβ̂ – q) (D7)

has chi square distributions with degrees of freedom equal to
the number of rows in q – the number of parameter restrictions,
k. This is because the square of a standard normal variate has
a chi squares distribution (with 2 degrees of freedom if p is a 2
×1 vector containing 2 standardised variates).

When σe2 is not known, it can be replaced by any consist-
ent estimator of it, and then Eq. (D7) become valid asymp-
totically. Under the assumption that the residuals ei have
constant variance (i.e., are homoscedastic), one such con-
sistent estimator is

s2e =
∑n

i=1 ê
2
i

n− 4
(D8)

where ê2i is calculated from Eqs. (10b) using the
parameter estimates given by Eq. (11a). Substituting this
estimator of σe2 into Eq. (D7) and dividing through by
the number of restrictions k gives the test statistic

Fk = {(Rβ̂− q)
T
[R(xTx)

−1
RT−]

−1
(Rβ̂ – q)} / k

s2e
(D9)

If the null hypothesis is true (and the above assumptions
are valid), this F-statistic will follow an F-distribution
with k and n − 4 degrees of freedom. The null hypoth-
esis is then rejected when F exceeds its critical value at
some chosen level of significance (typically a 5%
chance of the null hypothesis being true).

When the residuals ei are heteroscedastic, a lot of the
desirable properties of least squares estimators break
down. The estimator given by Eq. (11a) remains unbiased,
but the estimator given by Eqs. (11b) becomes biased.
When the variance of ei increase with increasing values
for xi, the mean values of the estimated variances of β̂
and p given by Eqs. (11a,D5) under-estimate their true var-
iances. This will also result in the test statistic Wk rejecting
the null hypothesis more frequently than it should. So,
when the residuals are heteroscedastic there are two pos-
sible estimators for Var[p]

Var[p] = Var[Rβ̂–q] = Var[Rβ̂]

= RVar[β̂]RT

= n

n− 4
R(xTx)−1(xTΩ̂ x)(xTx)−1RT (D10a)

which is based on White [19] estimator of Var(β̂) and

Var[p] = n− 1

n
R(xTx)−1 xT Ω̃ x− 1

n
xT ẽẽTx

[ ]
(xTx)−1RT

(D10b)
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which is the White and Mackinnon23 Jackknife estimator.
This gives two versions of the Wald statistic for testing k
parameter restrictions

WW
k = (Rβ̂ – q)T

n

n− 4
R(xTx)

−1
(xTΩ̂ x)(xTx)

−1
RT

[ ]−1
(Rβ̂ – q)

(D11a)

which has a chi square distribution with k degrees of freedom
(χ2k) under the null hypothesis when the sample size is very
large, and
which is much closer to a chi square distribution with k
degrees of freedom (χ2k) under the null hypothesis than

WW
k when the sample size is finite. The F version of these

tests is obtained by simply dividing through by the
number of restrictions being tested

FW
k = WW

k

k
and FJK

k = WJK
k

k
(D12)

which has an F distributionwith k and n - 4 degrees of freedom
under the null hypothesis (the former only asymptotically so).

WJK
k = (Rβ̂ – q)T

n

n− 1
R(xTx)

−1
xTÄΩ x− 1

n
xT ẽẽTx

[ ]
(xTx)

−1
RT

[ ]−1

(Rβ̂ – q) (D11b)
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