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Abstract: We propose a cosmological dark matter production mechanism in the form of
a longitudinal massive vector boson. We build upon the work [1] including non-minimal
couplings of the massive vector with gravity, developing a well motivated set-up from an
effective field theory perspective. We carefully track the dynamics of vector field in passing
from inflation to radiation dominated universe to show that the late time abundance of
longitudinal modes — excited initially by the quantum fluctuations during inflation — can
provide the observed dark matter abundance for sufficiently weak non-minimal coupling
and wide range of vector masses 5 × 10−7 ≲ m [eV] ≲ 5 × 103. The final abundance of
dark matter depends on two parameter, the vector mass and its non-minimal coupling with
gravity. We discuss experimental venues to probe this framework, including the production of
a stochastic gravitational wave background. The latter is especially interesting, as the same
mechanism that generates dark matter can potentially lead to the production of gravitational
waves in the LISA frequency band, through the second-order effects of large dark matter
iso-curvature perturbations at small scales. We take a first step in this direction, identifying
the potential information that gravitational wave experiments can provide on the parameter
space of dark matter within this scenario.
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1 Introduction

The nature of dark matter is one of the most pressing open problems in physics. Current
observations provide convincing evidence for gravitational interactions between dark matter
belonging to a hidden sector, and the visible sector of the Standard Model [2–4]. If gravity is
the only mediator between the hidden and visible sectors, we need some efficient mechanism
to produce dark matter in the early universe. Cosmic inflation is able to do so by means of
the phenomenon of particle production in curved space. See e.g. [5, 6] for classic examples
exploiting this possibility. In this work we consider the recent, compelling scenario [1], in
which dark matter corresponds to the longitudinal components of a massive vector field
created during inflation. The longitudinal vector fluctuations have a distinctive kinetic term
structure, and specific cosmological behaviour during inflation and radiation domination.
Their spectrum grows towards small scales up to a peak, whose position and amplitude
depends on the vector mass. From a cosmological viewpoint, the longitudinal vector fields
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correspond to iso-curvature fluctuations. Their size is small at large cosmic microwave
background (CMB) scales, and satisfy CMB constraints. Besides its elegance, the scenario
is compelling since its predictions depend on two parameters only: the present-day dark
matter abundance depends only on the vector mass and on the energy scale of inflation.
Various developments and further studies of the original scenario [7–15] have been considered.
Additional early cosmological phases different from radiation enlarge the possible ranges for
the vector mass [9, 10], as well as additional couplings with particles in the dark sector [14].
The drawback of these extensions is that often the dark matter abundance depends on
additional free parameters, making the set-up less predictive.

We propose a generalization of [1] with an action including a non-minimal coupling of the
vector field with gravity. The coupling we consider is quadratic in the vector field and it has
dimension four as the vector field strength. It is the only non-minimal coupling with these
characteristics, and which avoids Ostrogradsky instabilities. Hence, from an effective field
theory point of view, once the Abelian symmetry is broken by a vector mass, our scenario
is as minimal and well motivated as the original [1]. Its predictions on the dark matter
density depend on two parameters only: the vector mass and the strength of the non-minimal
vector coupling to gravity. Furthermore, the non-minimal coupling render the DM abundance
insensitive to the details of the inflationary dynamics (such as the Hubble rate HI as compared
to [1], as well as universe’s evolution in the post-inflationary era.1 The resulting cosmological
dynamics of vector longitudinal fluctuations is more complex than [1] due to the presence of
gradient instabilities generated by the non-minimal couplings. We discuss in detail how to
tame such instabilities, and obtain a working scenario with testable predictions.

One interesting aspect of dark matter constituted by longitudinal massive vector fluc-
tuations — a dark photon — is that it can be tested in a variety of ways. From a particle
physics perspective, the dark photon can be tested through its milli-charged couplings with
the Standard Model of particle physics (see e.g. [17–19] for recent comprehensive reviews).
The dark photon cosmological evolution has distinctive properties, see e.g. [20–25]. It can
have testable effects when surrounding black holes, or forming cosmic strings, see e.g. [26–28].
It can be probed with accelerometers [29] and gravitational wave experiments, see e.g. [30–34].
For the range of vector masses allowed by our set-up, we discuss for the first time the
possibility of testing this proposal by means of gravitational waves in the LISA frequency
band, induced at second order in perturbations by the vector longitudinal modes (see e.g. [35]
for a general review on the subject).

We start our discussion with sections 2, 3, and 4 elaborating on our set-up in general
terms, and the dynamics of longitudinal vector fluctuations during inflation and radiation
domination. In section 5 we show that the abundance of dark matter in our scenario depends
on two parameters only. Section 6 discusses phenomenological implications of vector dark
matter in our set-up. Four appendices cover technical aspects of our results.

1For a similar non-minimally coupled vector DM model that utilizes the standard freeze-in/out mechanism
in the post-inflationary era, see [16].
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2 The set-up: Cosmology with non-minimally coupled massive vector field

We study the dynamics of linearized vector fluctuations propagating through a cosmological
space-time, controlled by the quadratic vector action [36, 37]

SGF =
∫

d4x
√

−g

[
− 1

4F µνFµν − 1
2 m2AµAµ + 1

6 α2GµνAµAν

]
, (2.1)

where Aµ is a spin-1 vector field, Fµν = ∇µAν − ∇νAµ its field strength, and Gµν = Rµν −
R gµν/2 is the Einstein tensor. The vector Aµ belongs to a dark sector independent from the
Standard Model of particle physics. In our viewpoint, we consider Aµ a dark photon (see
e.g. [18] for a review on the subject), and we assume that the dark photon (and the dark
sector in general) has only gravity-induced interactions with Standard Model matter.

We use eq. (2.1) to study the generation of longitudinal vector dark matter, extending
the analysis of [1] by including the effects of the α2 contributions. The additional term
enriches the dynamics of vector fluctuations during radiation domination. It enlarges the
parameter space of scenarios leading to the correct dark matter abundance, allowing for
a wider range of vector masses with respect to [1]. In order to do so, there is no need
of introducing non-standard cosmological eras, or to make any hypothesis on the reheating
process occurring between the end of inflation and the onset of radiation domination [9, 10].
Importantly, the final dark matter abundance depends only on the parameters m and α

appearing in eq. (2.1), with no dependence on the underlying cosmology (not even the scale
of inflation). This makes a dark matter scenario based on the theory (2.1) very minimal, and
hopefully easier to test since there are only two parameters to constrain.

The Abelian symmetry Aµ → Aµ + ∂µλ(x) of the field strength is broken by the vector
mass term proportional to m, and by the non-minimal coupling to gravity proportional
to α2 (α being a dimensionless quantity). From an effective field theory perspective, once
the Abelian symmetry is broken by the vector mass, the contribution proportional to α2

in action (2.1) is unavoidable. In fact, it is normally generated by loop corrections, since
it respects the (lack of) symmetries of the system. It has dimension four as the remaining
terms in the Lagrangian density, hence its contributions are in principle as important as
the ones of the other terms, since it is not suppressed by a high-energy scale. Furthermore,
it is the only operator quadratic2 in the vector field that non-minimally couples the vector
system to gravity, without introducing Ostrogradsky instabilities [36, 37]. Such instabilities
are always harmful in any realistic setup, at least for Lorentz invariant Lagrangians like ours:
see e.g. the discussion in [38]. Hence, our set-up is theoretically well motivated, and we can
consider the structure of action (2.1) to be as minimal as the one of the original scenario [1].
We intend to quantitatively determine the physically interesting ranges for the parameter
α which allow us to realize dark matter in this set-up.3

To study the cosmological evolution of vector fluctuations, we expand the action (2.1) in
terms of the vector components Aµ = (A0, Ai). The resulting action is quadratic in these

2In the absence of gauge symmetry, one may also consider the marginal operator, quartic in the vector
fields, ∝ (AµAµ)2 [36, 37]. In the absence of vector field vev (as we assume here), this operator does not
modify the dynamics of vector field at quadratic order in perturbations we are interested in.

3Non-minimal couplings of vector to curvature have been studied in some detail in [39–41] discussing dark
matter production in the early universe through misalignment mechanisms.
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quantities. The time component A0 is non-dynamical, and can be integrated out. We are
left with three dynamical degrees of freedom: two transverse vector modes Aλ (λ = ±), and
one longitudinal mode AL. The dynamics of transverse and longitudinal modes decouple
around a Friedmann-Robertson-Walker (FRW) background, which is sourced by a perfect
fluid parametrized by a constant equation of state P = wρ.

The resulting vector equations of motion in Fourier space read (see appendix A):

A′′
L +

(
1− 3(1+w)α2H2

2m2
eff

)
k2

k2 +a2m2
eff

2aHA′
L +

(
1− (1+w)α2H2

m2
eff

)(
k2 +a2m2

eff
)

AL = 0,

A′′
± +

(
k2 +a2(m2

eff −(w+1)α2H2)
)

A± = 0 .

(2.2)

Each mode depends on conformal time τ and co-moving momentum k = |k|, H is the
Hubble rate evolving as H ′ = −3(1 + w) H2 a/2. We introduce an effective time dependent
mass squared as

m2
eff = m2 + α2H2 . (2.3)

In writing equations (2.2), we indicate with primes derivatives along conformal time. In
the course of this work, depending on what is more convenient, we work with conformal
time τ or cosmic time t, related by dτ = dt/a(t). In the limit of vanishing non-minimal
coupling α → 0, the system of equations (2.2) reduces to minimally coupled Proca set-up
studied in [1]. But, for α ̸= 0, the non-minimal couplings with gravity can affect the vector
longitudinal mode dynamics considerably.

In what follows, we neglect the back-reaction of vector fields on the geometry to analyze
the vector evolution during inflation (w ≃ −1) and the subsequent radiation dominated
universe (RDU) (w = 1/3). We assume that RDU starts after an efficient, nearly instantaneous
reheating process. During inflation the longitudinal vector dynamics is qualitatively very
similar to the original scenario [1], leading to an identical scale dependence of the longitudinal
power spectrum that however exhibits a quantitatively different amplitude due to non-minimal
coupling. On the other hand, a novel vector dynamics can appear at sub-horizon scales during
RDU. In fact, due to the contribution proportional to α2 which multiplies the k2 in the first of
equation of (2.2), the longitudinal mode develops a gradient instability, lasting a short period
of time. Although brief, this phase is sufficient to potentially affect the vector evolution,
and needs to be handled with care. We will do so in what comes next (see section 4.3),
finding conditions to avoid dangerous instabilities.

The resulting cosmological dynamics is rich, and depends on the cosmological epoch one
considers, as well as on the size of the vector co-moving wave-number k with respect to the
remaining parameters of the system. We visually represent the various cosmological phases in
figure 1. Each epoch is denoted by a capital letter in boldface. It has different consequences
for the longitudinal vector evolution, which we study in the next sections. We make use both
numerical and analytical tools, inspired from the important papers [1, 8–10]. The results will
then be used to investigate the properties of dark matter consisting of longitudinal vector
modes associated with the theory of eq. (2.1).
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H

Figure 1. A schematic diagram that summarizes the evolution of the longitudinal mode AL at
different stages of the cosmic history. In the main text we will repeatedly refer to this figure, explaining
the dynamics in each phase denoted by a capital letter.

3 Dynamics of a light vector field during inflation

As we discuss below, the vector dynamics during inflation is qualitatively similar to the results
in [1]. However, for the range of parameters on which we are interested, we will find that the
amplitude of the vector power spectrum is considerably affected by the non-minimal coupling
to gravity. To study the dynamics of AL and A± during inflation, we neglect sub-leading
slow-roll corrections. We work with a constant Hubble rate H ≃ HI, and an equation of
state parameter w = −1. The scale factor is given by a(τ) = 1/(−HI τ) in term of the
(negative) conformal time −∞ < τ ≤ 0 during inflation. The equations of motion (EoM)
satisfied by longitudinal and transverse modes are

A′′
L + k2

k2 + a2m2
eff,I

2aHA′
L +

(
k2 + a2m2

eff,I
)

AL = 0,

A′′
± +

(
k2 + a2m2

eff,I
)

A± = 0 . (3.1)

The effective mass reads

m2
eff,I = m2 + α2H2

I , (3.2)

and is constant during inflation. The structure of these equations is identical to the one
studied in [1]. Only the value (3.2) of the effective mass meff,I changes, since it receives a
contribution proportional to α2 due to the non-minimal coupling with gravity.
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We focus on a region in parameter space where the effects of the non-minimal coupling
with gravity is sizeable. This will make a difference with respect to [1]. For this reason,
we satisfy the inequalities

m2 ≪ α2H2
I , α2 ≪ 1 . (3.3)

The first inequality ensures that the non-minimal couplings to gravity, controlled by α, plays
an important role in our discussion. Furthermore, the second inequality places us in a light-
vector regime during inflation, characterized by meff,I ≪ HI. Hence the co-moving Hubble
horizon (aHI)−1 is always much smaller than the Compton co-moving horizon (ameff,I)−1 of
the vector field during inflation. In this regime, individual modes of the vector are guaranteed
to satisfy the relativistic condition k ≫ ameff,I during inflation, at least until the time of
horizon crossing where k = aHI. This condition is particularly important for understanding
the time evolution of the longitudinal mode AL.

3.1 Dynamics of the transverse modes

We first focus on the transverse vector modes. We can be brief since their dynamics is the
standard one of vector fields during inflation. In a de Sitter limit, the solution to the mode
functions reducing to the standard Bunch Davies vacuum deep inside the horizon gives

A± = 1√
2k

ei(2ν+1)π/4
√

πx

2 H(1)
ν (x), ν2 ≡ 1

4 −
m2

eff,I
H2

I
, (3.4)

where H
(1)
ν is the Hankel function of first kind and we defined x = −kτ . In the light vector

field regime meff,I/HI → 0 we have ν ≃ 1/2, H
(1)
1/2(x) ∝ eix/

√
x and so the transverse modes

remain in their vacuum configuration as they are swept outside the horizon during inflation.
This is expected since their equation of motion (EoM) (3.1) obeys the same equation of
a scalar field conformally coupled to gravity in the small effective mass limit. Hence a
sizeable contribution to the transverse mode population, if any, can only be due to some
dynamics after the end of inflation. We address this topic in appendix D, where we show
that the post-inflationary dynamics does not manage to appreciably increase the amplitude
of transverse vector fields.

3.2 Dynamics of the longitudinal modes

The dynamics of longitudinal modes is definitely more interesting. To understand the evolution
of AL during inflation, we first notice that — due to the hierarchy meff,I ≪ HI — all modes
start their evolution in the relativistic regime k ≫ a meff,I, where they remain until after
horizon crossing. The dynamics of the longitudinal mode is then equivalent to a massless
scalar field, up to an overall (important!) re-scaling. In fact, we define the canonical variable

QL = (ameff,I/k)AL . (3.5)

We rewrite the EoM (3.1) as

Q′′
L +

(
k2 − a′′(τ)

a(τ)

)
QL = 0 , (3.6)
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10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

a/aend

10−1

100

101

102

|AL|
A

(0)
L

→ k < aHI→ k < aHI

a = k/meff,I →

meff,I/HI = 10−2k/kend = 10−5

k/kend = 10−2

Figure 2. Time evolution of two longitudinal modes for meff,I/HI = 10−2 from 4-folds before the
horizon exit until the end of inflation where a/aend = 1. The dashed vertical lines denote the time of
horizon crossing and the dotted vertical line refers to the time when the corresponding mode becomes
non-relativistic. Note that the small scale mode labeled by red color stays relativistic throughout
its evolution.

in a k ≫ ameff,I limit. During inflation a′′/a = 2/τ2; consequently, the solution of eq. (3.6)
matching the Bunch Davies vacuum deep inside the horizon (−kτ ≫ 1) is

QL = aHI√
2 k3

(
1 − ik

aHI

)
eik/(aHI) . (3.7)

Inverting the field redefinition (3.5) by writing AL = (k/ameff,I)QL, the solution for the
longitudinal mode in the relativistic regime is

AL = A
(0)
L (k)

(
1 − ik

aHI

)
eik/(aHI) , (3.8)

where we defined the k-dependent super-horizon amplitude as

A
(0)
L (k) = 1√

2k

HI
meff,I

. (3.9)

Utilizing (3.8) and (3.9), we numerically solve the full mode equation (3.1) during inflation,
by initializing each mode 4 e-folds before they exit the horizon. An example of evolution
for two different modes initialized in the relativistic regime is shown in figure 2. Shortly
after horizon exit, all modes settles into a constant amplitude given by (3.9), irrespective
of a given mode becoming non-relativistic or not. We represent this behaviour in the red
curve of figure 2, which shows the dynamics of a mode that never becomes non-relativistic
during inflation. Hence, all longitudinal modes freeze out quickly on super-horizon scales,
and settle to a constant amplitude given by

|AL| x → 0−−−→ 1√
2k

HI
meff,I

≡ A
(0)
L (k), |A′

L| x → 0−−−→ 0 . (3.10)
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The behaviour of AL we described can be also understood analytically, by studying the mode
evolution in a piece-wise manner during inflation [1, 9, 10]. To do so, it is convenient to
pass from conformal to standard time, dτ = dt/a(t). Recall that m2

eff = m2
eff,I ≃ const.,

∂tmeff = 0 and w = −1 during inflation. The EoM (A.24) of the longitudinal modes, when
expressed in terms of cosmic time, reads

ÄL +
3k2 + a2m2

eff,I
k2 + a2m2

eff,I
HȦL +

(
k2

a2 + m2
eff,I

)
AL = 0 (3.11)

We now focus on the super-horizon relativistic and non-relativistic regimes, by taking the
corresponding limits of (3.11). We follow the analytic methods developed in [1] and in [9, 10].
From now on, capital letters in boldface refer to different evolution phases as represented
in figure 1.

3.2.1 Phase (A): super-horizon relativistic regime, HI ≫ k/a ≫ meff ,I

In the relativistic regime the solution to the longitudinal mode is given by (3.8). Shortly
after horizon exit this solution can be approximated as

AL ≃ A
(0)
L (k)

(
1 + k2

2a2H2
I

)
, (3.12)

which leads to a function containing a (growing) constant mode, plus a decaying mode ∝ a−2:

AL = c1 + c2 a−2, (A) . (3.13)

3.2.2 Phase (B): super-horizon non-relativistic regime, HI > meff ,I ≫ k/a

In this limit, we can approximate the EoM as (Hdt = da/a):

d
da

(
a2 dAL

da

)
≃ −

m2
eff,I

H2
I

AL . (3.14)

We distinguish two situations. In the case of ultralight fields, the mass contribution in the
right hand side can be neglected, m2

eff,I/H2
I = 0. The solution is given by

AL = c1 + c2 a−1, m2
eff,I/H2

I → 0, (B). (3.15)

For not-so-light vector fields however, the right hand side of eq. (3.14) plays a role. We
generate a particular solution of (3.14) using iteratively the growing constant solution derived
from the homogeneous equation. This solution has a secular growth suppressed by the square
of the ratio meff/HI, which leads to the final solution

AL = c1 + c2
m2

eff,I
H2

I
ln a, meff,I ≪ HI, (B). (3.16)

At first sight the secularly growing term might appear as an issue. However, since all the
modes that become non-relativistic evolve through the relativistic regime during inflation,
the contribution proportional to ln a never becomes dominant against the constant term.
This conclusion is confirmed by the behavior of the blue curve in figure 2 where the mode
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enters into the non-relativistic regime (at a = k/meff,I) at an intermediate time denoted by
vertical dotted lines. Therefore, the only influence of the secular term is on the derivative
of longitudinal mode, which changes its behavior from A′

L(a) ∝ a−3 (see e.g. eq. (3.13)) to
A′

L(a) ∝ a−1 (see eq. (3.16)) as the mode evolve from relativistic to non-relativistic regime.
However, in the ultra-light mass limit, eq. (3.15) is still valid in the non-relativistic regime and
the dynamics of AL is captured by eqs. (3.13) to (3.15) as the modes evolve from relativistic
to non-relativistic regime. (There are also modes that never becomes non-relativistic during
inflation, the dynamics of them being described by the solution (3.13).)

3.3 The power spectrum of longitudinal modes at the end of inflation

Collecting the previous results, we conclude that super-horizon longitudinal vector modes
acquire a power spectrum given by

PAL
(τ, k) ≡ k3

2π2
∣∣AL(τ, k)

∣∣2 → PAL
(τend, k) =

(
kHI

2πmeff,I

)2
. (3.17)

We learn, as [1], that the power spectrum at the end of inflation is suppressed at large scales
(k → 0) while it increases as k2 towards large k (small scales). Such a characteristic slope
of the longitudinal spectrum is one of the main findings of [1]. Given that longitudinal
vector perturbations act as iso-curvature modes, we then find negligible contributions from
iso-curvature modes at large cosmic microwave background (CMB) scales. Hence, this scenario
is safe from the point of view of CMB constraints on iso-curvature fluctuations.

Recall that, given the inequality (3.3), we are interested on the regime of small bare mass
m2 ≪ α2 H2

I with respect to the contribution induced by non-minimal couplings to gravity.
Consequently, during inflation, m2

eff,I ≃ α2H2
I , and the longitudinal vector spectrum is given by

PAL
(τend, k) = k2

4π2α2 . (3.18)

Notice that the amplitude of the power spectrum is independent from the vector mass and
from the Hubble parameter during inflation. This remarkable feature, which is associated with
the non-minimal coupling with gravity, makes a difference from the Proca case [1], and will be
important in what follows when computing the dark matter abundance. Starting from these
initial conditions, the behaviour of the power spectrum at later times depends on the post-
inflationary evolution of the fluctuations, as they evolve from super-horizon to sub-horizon
scales after inflation ends. This is the argument of our next discussion, where we explore the
consequences of the non-minimal coupling to gravity for the abundance of vector dark matter.

4 Dynamics of the longitudinal vector mode during radiation domination

During RDU the vector dynamics at small scales is considerably influenced by the non-
minimal coupling with gravity. As we will learn, the latter induces a gradient instability
in the longitudinal vector sector, which must be handled with care to maintain the system
under control. As a consequence, to avoid catastrophic instabilities we will find constraints
on the available parameter space.
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Figure 3. The evolution of the individual modes as they evolve from sub-horizon during inflation to
super-horizon then back into the horizon in the post-inflationary era.

In order to understand the effects of the non-minimal coupling α of the vector with
gravity, we first study the system analytically. We make simplifying assumptions on the
time-dependent profiles of the quantities involved, borrowing from previous studies. Our
analytical findings will then be corroborated by a numerical analysis. Since part of the
dynamics is identical to the Proca case, we can be brief where there is strong overlap with [1].
After our analytical considerations, when turning to numerics, we focus most of our attention
on the epoch (G), which is specific of our set-up, and where the dangerous gradient instability
might develop. See figure 3.

4.1 Analytical considerations

We set w = 1/3, m2
eff = m2+α2H2. We recall that the Hubble parameter during RDU scales as

H = HI

(aend
a

)2
, (4.1)

where HI is the constant Hubble parameter during inflation, and aend the scale factor at the
end of inflation. In writing eq. (4.1), we make the hypothesis of instantaneous transition
from a (quasi) de Sitter inflationary stage to RDU. The evolution equation for the vector
longitudinal mode, when expressed in terms of cosmic time t, is given in eq. (A.24) and reads

ÄL + [3 + 2∂tmeff/(Hmeff)] k2 + a2m2
eff

k2 + a2m2
eff

HȦL +
(

1 − 4α2H2

3m2
eff

)(
k2

a2 + m2
eff

)
AL = 0. (4.2)

Recall that we are interested in the regime where non-minimal coupling dominates during
inflation, see the inequality (3.3). The hierarchy αHI ≫ m implies that time dependent
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effective mass is decreasing in the initial stages of RDU, until it reaches its asymptotic value
m at a critical time denoted by ac:

m2
eff =

α2H2
I

(aend
a

)4
, aend ≤ a ≤ ac ,

m2 a > ac .
(4.3)

The critical scale factor ac sets an important time for the cosmological evolution of longitudinal
modes and is defined by the relation

ac
aend

≃
√

αHI
m

(4.4)

During a fraction of the cosmic evolution aend ≤ a ≤ ac, corresponding to phase (G) in
figure 3, the coefficient of k2 in eq. (4.2) becomes negative, signalling a gradient instability.
This is a new effect of the non-minimal coupling with gravity, that we need to track with care.
Notice that the duration of this phase depends on the size non-minimal coupling or more
precisely on the ratio αHI/m whose amplitude will be important to keep the fluctuations
that re-enter the horizon at this phase under control (see section 4.3).

Given the time dependence of the effective mass in (4.3), we parametrize its time
evolution in a piece-wise manner as

∂tmeff
Hmeff

≃

{
−2, aend ≤ a ≤ ac ,

0 a > ac ,
(4.5)

which constitutes a useful approximation for analytically handling the friction term in eq. (4.2).
At the light of the discussion above, we now study the analytic evolution of the longitudinal
modes both for super and sub-horizon scales, during the different epochs represented in figure 1.

4.1.1 Phases (E, F): super-horizon relativistic regime, H ≫ k/a ≫ meff

In this regime, the EoM (4.2) is reduced to

d
da

(
a2H

dAL

da

)
− 2Ha

dAL

da
≃ 0, aend ≤ a ≤ ac, (E)

H

a2
d
da

(
a4H

dAL

da

)
≃ 0, a > ac, (F) . (4.6)

In writing the second line we assume that the factor multiplying the mass term in eq. (4.2)
quickly reaches an order-one value:(

1 − 4
3

α2H2

m2
eff

)
→ 1, a > ac. (4.7)

This limit can be justified by re-writing the second term inside the parentheses above as
α2H2/m2

eff ≃ (ac/a)4 for a > ac (recall the scaling (4.1)). The solutions of eqs. (4.6) in the
super-horizon relativistic regime of RDU are then given by

AL = c1 + c2 a3, aend ≤ a ≤ ac, (E)
AL = c1 + c2 a−2, a > ac, (F). (4.8)
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Notice that there is a growing mode in epoch (E). However, the inflationary stage drives
the time derivative of the longitudinal mode to extremely small values, and singles out the
constant mode to be the dominant one on super-horizon scales. Therefore in the subsequent
evolution during RDU, the solution in epoch (E) remains constant on super-horizon scales.
We numerically confirmed this behaviour within the parameter space of interest.

4.1.2 Phases (G, H): sub-horizon relativistic regime, k/a ≫ meff , H

Similarly, in the sub-horizon regime, the EoM of longitudinal mode can be reduced to (we
switch back to conformal time for convenience)(

∂2
τ − 2aH∂τ − k2

3

)
AL ≃ 0, aend ≤ a ≤ ac, (G)(

∂2
τ + 2aH∂τ + k2)AL ≃ 0, a > ac, (H). (4.9)

The solutions to these equations can be expressed as

AL = c1

[
1 − csk

aH

]
exp

(
csk

aH

)
+ c2

[
1 + csk

aH

]
exp

(
− csk

aH

)
, aend ≤ a ≤ ac (G),

AL = a−1
(

c1 eikτ + c2 e−ikτ
)

a > ac, (H), (4.10)

where we defined cs = 1/
√

3 since the first line of (4.9) resembles the equation for a driven
harmonic oscillator with an imaginary sound speed. The first exponentially growing solution
in (4.10) is due to the aforementioned gradient instability for the short scale modes within
the horizon (phase (G)) associated with the non-minimal coupling with gravity. See eq. (4.2)
and figure 3. Given its dangerous exponential amplification, we need to be sure to keep
these short-scale modes under control. In fact, soon we will learn that this condition imposes
limitations on the available parameter space. Notice also that after crossing phase (G) the
modes enter in phase (H) (see figure 1) where their amplitude decreases. This behaviour
will be important for the numerical considerations of section 4.3.

4.1.3 Phase (C): Hubble damped non-relativistic regime, H ≫ meff ≫ k/a

In this regime we neglect terms proportional to k in the damping contributions, as well as
the mass term in (4.2) as compared to the damping term. We obtain the evolution equation

H
d
da

(
a2H

d
da

AL

)
≃ 0, (4.11)

with the following solution

AL = c1 + c2 a, (C). (4.12)

Similar to the analysis we made for epoch (F), the growing mode in eq. (4.12) does not
take over, since the initial conditions inherited from the inflationary stage singles out the
constant mode as the dominant one.
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4.1.4 Phase (D): late time non-relativistic regime, meff ≫ k/a, H

In this regime, we can again neglect k2 contributions in the damping term and the mass
term, see (4.2): (

∂2
t + H∂t + m2)AL ≃ 0 . (4.13)

The solution of this equation is

AL = a−1/2(c1 eimt + c2 e−imt). (4.14)

As the modes enter the non-relativistic regime, it starts oscillating with a decaying envelope
a−1/2 (see figure 1 and 3). As first noticed in [1], for light vector fields, the energy density
contained in the longitudinal mode starts to act like a dark matter in this phase.

4.2 Numerical analysis

The analytical considerations of section 4.1 show that during RDU the longitudinal mode
dynamics is quite rich and diverse. We now need a more careful analysis and a numerical
treatment to follow the evolution of modes from inflation deep into RDU, taking into account
the transitions among different epochs, and examining the role of the exponential gradient
instability we anticipated in section 4.1.2. We intend to explore a region in parameter
space where the gradient instability can be tamed, and where at the same time non-minimal
couplings to gravity lead to sizeable, interesting effects for the phenomenology of dark matter.

For this purpose, we follow the cosmological evolution of a dimensionless quantity TL

playing the role of a transfer function:

AL(τ, k) ≡ TL(kτ) A
(0)
L (k), (4.15)

where the initial condition A
(0)
L is given in (3.10) in terms of the value of the longitudinal

mode at the onset of inflation: see section 3.2. To determine accurate initial conditions
for the transfer function at the beginning of RDU, we evolve TL for a given mode k, from
the time of its horizon crossing until the end of inflation. We use the numerical procedure
described in appendix B. This method allows us to determine the initial conditions at the
beginning of RDU. We use them to follow the mode evolution during RDU, to finally find
the longitudinal vector power spectrum at late times. We express the latter as

PAL
(τ, k) = k3

2π2

∣∣∣A(0)
L

∣∣∣2∣∣TL(kτ)
∣∣2 =

(
k∗HI

2πmeff,I

)2 ( k

k∗

)2 ∣∣TL(kτ)
∣∣2, (4.16)

in terms of the transfer function TL. We introduce the quantity k∗ corresponding to the
wave-number that re-enters the horizon at the time when the co-moving Hubble horizon is
equal to the Compton horizon, as set by the bare mass (see figures 1 and 3):

(a∗m)−1 = (a∗H∗)−1 = τ∗ =⇒ τ∗ ≡ k−1
∗ = 1

a∗m
. (4.17)

As the modes evolve from super-horizon to sub-horizon scales, we study the evolution of TL

during RDU. We find convenient for our numerical implementation to introduce a new time
variable y, and a quantity x∗ related with the wave-number k as

y ≡ a

a∗
, x∗ ≡ kτ∗ = k

k∗
. (4.18)
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In terms of these variables, we use the EoM (2.2) for the longitudinal modes to obtain the
evolution equation for TL as

T ′′
L(y, x∗) +

[
1 − (α2H2/m2)
1 + (α2H2/m2)

](
x2

∗
x2

∗ + y2[1 + (α2H2/m2)]

)
2
y

T ′
L(y, x∗) (4.19)

+
[

3 − (α2H2/m2)
3 (1 + (α2H2/m2))

] (
x2

∗ + y2[1 + (α2H2/m2)]
)

TL(y, x∗) = 0 ,

where H is the Hubble rate during RDU (4.1): H(y) = HI (yend/y)2 with

yend ≡ aend
a∗

=
√

m

HI
, (4.20)

denoting the epoch signalling end of inflation, and the onset of RDU. Notice from the terms
proportional to α in (4.19) that, the role of the non-minimal coupling with gravity can be
important at early times during RDU due to the hierarchy αHI/m, but its role quickly
becomes negligible as the universe expands and y ≫ yend.

Using accurate initial conditions we derive on the inflation side (see appendix B), we
numerically evolve (4.19) to obtain the power spectrum (4.16) evaluated at late times
corresponding to yf = e5 (e.g. 5 e-folds after the epoch H = m) and yf ≫ e5. We show
in figures 4 and 5 the resulting (re-scaled) power spectrum yf x∗ |TL|2 for representative
parameter choices. The power spectrum exhibits a peak amplitude at an intermediate
momentum k∗ = a∗m corresponding to the scale that re-enters the horizon when H(a∗) = m.
The k2 rise of the spectrum from large towards small scales is inherited from the inflationary
initial conditions (see section 3.3). It is due to the constant behaviour of the transfer function
TL for long wavelength modes that mostly evolve at super-horizon scales. On the other hand,
smaller scale modes with wave-numbers k ≳ k∗ start to experience sub-horizon evolution
with decaying amplitudes (as in region (H)). At late times, this property causes their power
amplitude to decrease inversely proportional to the wave-number, k−1. It is interesting to
obtain with no fine-tunings a spectrum of fluctuations with a peak structure, a task that
is not easy in the context of adiabatic fluctuations and primordial black hole dark matter
(see e.g. [42] for a recent review).

The profile for the longitudinal mode spectrum shown in figures 4 and 5 shares the same
qualitative behaviour of the Proca model (with α = 0) as introduced in [1]. In fact, for not so
large choices of αHI/m we adopt in figures 4 and 5, the super-horizon dynamics of the vector
modes around the peak k∗ is not much influenced from by the non-minimal coupling (see e.g.
figures 1 and 2), as they go through phases (A)-(E)-(F) or (B)-(C). However, for larger
values of the coupling α we increase the duration of phase (G) (see eq. (4.4)), hence the
range of modes that enter the horizon during this phase. What is the fate of these modes?
Can they contribute to the power spectrum in a dangerous way, especially for small scales
that are not shown in figure 4? What are the conditions we need to impose on the size of
α in order to avoid catastrophic gradient instabilities?
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Figure 4. Re-scaled power spectrum yf x2
∗ |TL|2 (see e.g. (4.16)) of the longitudinal modes evaluated

for two different parameter choices (left and right panels) evaluated at 5 e-folds after H(a∗) = m, i.e.
when ln(yf ) = ln(af /a∗) = ∆N = 5 (top) and much later times yf ≫ e5 (bottom). In the top panels,
modes that reside on the right hand side of the dashed vertical line are still relativistic at the time
af of the evaluation satisfying k > af m → k/k∗ = e∆N = e5. At later times, the re-scaled power
spectrum preserves its amplitude, however more modes shown in the UV tail becomes non-relativistic,
adopting the k−1 behavior of the modes around the peak.
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Figure 5. Same as figure 4, but with different parameter choices.
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4.3 The fate of the modes that re-enter the horizon during phase (G)

We now discuss how to tame the instabilities of short-scale modes going through phase (G)
of figure 1. (Recall the analytical discussion in section 4.1.2.) These modes are dangerous
because they might considerably enhance the spectrum of vector modes at small scales,
generating a second pronounced peak besides the one we met in figure 4. In this section
we discuss how to avoid this fact to occur.

First of all, to understand the behavior of these modes, we compute the range of vector
wave-numbers affected by this epoch. We evaluate the range of scales that re-enter the
horizon between the end of inflation, aend, and the end of the dangerous phase (G), ac. This
range is kend ≤ k ≤ kc. In terms of the coordinate y, the quantity ac is

yc = ac

a∗
= ac

aend

aend
a∗

≃
√

α, (4.21)

where we use eqs. (4.4) and (4.20). Therefore, the duration of the phase (G) is longer for
larger non-minimal coupling. In terms of the quantity yc, the mode kc that re-enters the
horizon at ac can be expressed as

xc
∗ ≡ kc

k∗
= ac HI

a∗ m

(
aend
ac

)2
= y−1

c . (4.22)

Hence, the range of wave-numbers that re-enters the horizon in phase (G) shifts towards
larger and larger scales with increasing non-minimal coupling. Introducing the wave-number
that leaves the horizon right at then end of inflation as

xend
∗ ≡ kend

k∗
= aendHI

a∗m
= y−1

end =
√

HI
m

, (4.23)

we find that the range of wave-numbers that re-enter the horizon during the phase (G) can
be summarized in terms of the model parameters as

xc
∗ < x∗ < xend

∗ ==⇒ 1√
α

<
k

k∗
<

√
HI
m

. (4.24)

This expression indicates that, choosing smaller and smaller values for m/HI, unstable modes
will be pushed more towards UV, at a fixed non-minimal coupling. On the other hand at
fixed vector field mass, the unstable modes have a tendency to shift towards IR by increasing
the non-minimal coupling with gravity.

In figure 6 we represent two different scenarios to show the evolution of modes that
leave the horizon right before the end of inflation. These modes spend the most time within
the unstable phase (G): therefore the gradient instability maximally enhances their size
with respect to modes at larger scales. The unstable short-scale modes enhance their size in
proportion to the duration of phase (G), as determined by eq. (4.4).

The danger — as mentioned above — is that the gradient instability acts on the small
scale modes within the interval (4.24), leading to a second peak in the spectrum more
pronounced than the first peak analyzed in figure 4. We wish to avoid this. Fortunately, the
mode growth stops as soon as they step inside phase (H), characterized by y > yc. (See
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Figure 6. Time evolution of the maximally enhanced longitudinal modes (with colors) that re-enters
the horizon in phase (G), corresponding to very small scales x∗ ≃ 2.8×107 (top-red) and x∗ ≃ 8.5×109

(bottom-orange) that exits the horizon just before the end of inflation, x∗ ≲ xend
∗ . The part of the

graphs highlighted by light blue indicates the time a mode spends in the unstable region as it enters
inside the horizon. The scenario shown in the bottom panel has a larger αHI/m corresponding a
longer (G) phase (see eq. (4.4)) such that a given short mode spends more time in the unstable region
with an increasing amplitude. For α = 0 (black curves), the unstable era is not present and these short
scale modes starts to decay as soon as they re-enter the horizon (the left most vertical dotted line) [1].

section 4.1.2.) It is precisely this property that allows us to tame the instabilities. At this
stage, indeed, they start to decay |TL| ∝ a−2, spending a large amount of in the (H) era,
until they become non-relativistic at very late times:

ynr = anr
a∗

= x∗ = k

k∗
≫ 1. (4.25)

The smaller the bare mass of the vector field is, the larger the amount of time these small scale
modes spend inside the horizon in the decaying oscillatory phase (H). This can be visually
realised by comparing the overall scales in the horizontal axis of figure 6, and by noticing
that for smaller bare mass, i.e. m/HI, individual modes tend to become non-relativistic
later, see e.g. figure 2.

Collecting the previous considerations, we can now estimate whether the size of the
aforementioned second instability peak can be set under control. The parameter choice should
ensure that the instability interval aend < a < ac remains small, and at the same time, we
have a prolonged phase (H) following the unstable phase (G). We consider the examples
studied in figures 4 and 5. We extrapolate the behaviour of the transfer function to late times
by fitting a decaying envelope to the maxima of oscillations of |TL|2, as shown in figure 6. In
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ynr x2
∗ |TL|2 ynr ≡ x∗

α2 = 10−27, m/HI = 10−15 0.002 2.8 × 107

α2 = 10−36, m/HI = 10−20 0.001 8.5 × 109

α2 = 10−45, m/HI = 10−25 0.004 2.6 × 1012

α2 = 10−64, m/HI = 10−35 0.001 2.5 × 1017

Table 1. The peak amplitude of the re-scaled power spectrum for the maximally enhanced mode x∗
that re-enters the horizon during the gradient instability phase (G) for different parameter choices
parametrized by the (α2, m/HI) pairs. See main text for additional explanations.

this way, we compute the re-scaled power spectrum y x2
∗|TL|2 at ynr (defined in eq. (4.25))

for each parameter choices shown in figures 4 and 5. We present these results in table 1,
which informs us that the second peak generated at small scales by the gradient instability is
well smaller than the first peak at k∗. Similar considerations and numerical checks can be
done for other pairs of parameters (α, m/HI), so to circumscribe the region of parameters
which avoid large effects from the gradient instability.4 We will return to this point in the
next section, when discussing the final abundance of longitudinal vector modes.

5 Abundance of longitudinal vector modes

We now collect the previous results, and compute the final abundance of longitudinal vector
modes. We show that they can constitute the entirety of dark matter, for a broad range
of vector masses. The final dark matter abundance depends on two parameters only, m

and α, making this scenario very economical.
First of all, we compute the longitudinal-mode contribution to the universe energy density.

The presence of the non-minimal coupling complicates the computation of the energy density
contained in the longitudinal modes. However, as we show in appendix C, the contributions
due to the non-minimal coupling in the energy-momentum tensor (EMT) becomes negligible
when all the modes associated with the peak in the power spectrum becomes non-relativistic.
In particular, the corrections induced by the non-minimal interactions appear at order
α2H2 O(A′2, A2). Their size is then negligible compared to terms of order m2 O(A′2, A2) for
a ≫ ac, as can be realized by noticing that α2H2 is comparable to m2 at around a ∼ ac, see
eq. (4.4). This situation can also be interpreted as a consequence of the null energy condition,
which ensures that Hubble rate is always decreasing. The effects introduced by to non-minimal
coupling are maximal during inflation (where H decreases very slowly), but subsequently their
size diminishes as the Hubble rate decays fast during the post-inflationary era. Therefore, at
late times the energy density contained in the fluctuations of the longitudinal modes is [1],

ρAL
= 1

2a4

∫
d ln k

{
a2m2

k2 + a2m2 PA′
L
(τ, k) + a2m2PAL

(τ, k)
}

. (5.1)

When all the modes we consider are inside the horizon, the fluctuations are virialized so
that all quantities contribute equally to the energy density in (5.1). Parametrizing these

4A short Python notebook file that can be utilized for this purpose can be reached from github.
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contributions in terms of the power spectrum, and using the time variable y = a/a∗ adopted
in the previous sections, we can therefore re-write ρAL

in terms of the transfer function (4.15)
of the longitudinal modes as

ρAL
= H2

I
4π2

a∗k2
∗

m2
eff,I

m2

a3(t)

∫
d ln x∗

{
y x2

∗ |TL(y, x∗)|2
}

. (5.2)

As can be inferred from the evolution of longitudinal modes deep in phase (D) (see sec-
tion 4.1.4), the integrand in this expression is time-invariant, as far as we evaluate the power
spectrum at epochs when all the modes x∗ are in the non-relativistic regime. Therefore,
considering the peaked profile for the power spectrum (as in figure 4) in (5.2), and using

a∗ ≃
√

Heq
m

aeq, k∗ = a∗m ≃
√

Heq m aeq, (5.3)

the energy density in the longitudinal modes today gives

ρAL
(t0) ≃ 1.2

4π2
H

3/2
eq

(1 + zeq)3
m5/2

α2 , (5.4)

where we assume m2
eff,I ≃ α2H2

I in the αHI ≫ m regime we focus on. Taking into account
the observed dark matter abundance ρdm(t0) = 1.26 × 10−6 GeV/cm3, we adopt the central
value for the red-shift at equality zeq = 3402 [2]. We finally obtain the fraction of longitudinal
modes in dark matter density today as

fAL
≡ ΩAL

Ωdm
≃

(
α

3.7 × 10−22

)−2 ( m

1 eV

)5/2
. (5.5)

Importantly, the final longitudinal vector field abundance of eq. (5.5) is not sensitive to
the energy scale HI during inflation, nor to details of the underlying cosmology. Hence, the
dark matter abundance depends on two parameters only, the same that appeared in the initial
vector action (2.1). The reason of this nice property is summarised in the discussion around
eq. (3.18): thanks to contributions from non-minimal couplings to gravity, cancellations occur
and the amplitude of the inflationary spectrum of longitudinal modes is independent from HI.

Although there is no explicit dependence on HI, the final abundance implicitly depend
on the scale of inflation, since the validity of (5.5) assume a limiting value of αHI/m in
order to tame the instability of the longitudinal modes in phase (G), and to avoid a second
large peak in the power spectrum of the latter at very short scales k ≥ kc ≫ k∗ (see the
discussion in section 4.3 and table 1). Hence, to trust our expression (5.5), we can only
increase the non-minimal coupling by a certain amount at fixed vector field mass m. For the
range of m/HI values we consider in figures 7 and 8, the limiting lines of αHI/m is shown
by the upper dot dashed lines which rules out the gray shaded regions. Moreover, another
limitation on the parameter space (α, m) stems from the fact we are interested in the sizeable
non-minimal coupling regime parametrized by the inequality αHI/m > 1, so to ensure the
validity of eq. (3.18). We indicate this lower bound by the lower dot dashed lines labelled
by αHI/m = 1 in the same figures. Therefore, the region between the dot dashed lines in
figures 7 and 8 indicates the region where (5.5) is applicable and the longitudinal modes
can potentially constitute all of dark matter.
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Figure 7. Dark matter abundance from non-minimally coupled vector field in the α − m plane. The
red region produces too much dark matter and should be excluded. The parameter space we are
interested in lies above lower blue (dotted dashed) line where the non-minimal coupling is sizeable.
The region highlighted by gray is also excluded on the grounds that eq. (5.5) is not valid within that
parameter space where αHI/m > 105 − 104 (see the discussion in the main text). To illustrate these
limitations on the parameter space, we adopted a high scale inflationary model HI = 1014 GeV in
both panels.

To illustrate these constraints, we plot in figure 7 the fractional abundance in the (α, m)
parameter space by focusing on a high-scale inflationary scenario. We find that longitudinal
modes can account for dark matter abundance for a large range of masses between

5 × 10−7 ≲ m [eV] ≲ 5 × 103 , (5.6)

after satisfying the aforementioned requirements. This is in contrast with the Proca field
studied in [1], where the allowed vector field mass depends on the scale of inflation hence it
is limited by constraints from CMB observations. In fact, the non-minimal coupling α we
consider provides additional leverage on the parameter space making vector field a viable dark
matter candidate for a sizeable range of masses, including values with additional promising
venues for detection. At the same time, our scenario is very economical since the dark matter
abundance depends on two parameters only. We stress that for deriving our conclusions we
do not make any special hypothesis on the cosmological behaviour of the universe between
inflation and radiation domination. We only assume a rapid and effective reheating process.

As can be realized from the left panel of figure 7, it is not possible to lower the vector
dark matter mass below m ≲ 5 × 10−7 eV. This remains true if we lower the scale of inflation.
The region of interest αHI/m > 1 tends to be realized for larger values of the non-minimal
coupling α, restricting fAL

= 1 line to lie in the αHI/m < 1 region of the parameter space
where (5.5) does not apply. We illustrate these considerations in figure 8. As shown in the
right panel of the figure, sufficient dark matter abundance can only be realized for relatively
large vector masses. In general, this trend becomes more and more apparent for scenarios
that exhibit smaller inflationary scales.
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Figure 8. Same as figure 7 for an inflationary scenario with HI = 1012 GeV. In the right panel,
the boundary of the excluded region (gray area) is parametrized by the αHI/m = 104 for the shown
mass range.

To summarize this section, by adding non-minimal couplings to gravity to the scenario
of [1], we determined a longitudinal vector dark matter model where the dark matter abun-
dance depends on two parameters only, α and m, see eq. (5.5) (We show in appendix D that
the amplitude of transverse modes remain subdominant). This scenario is very economical;
nevertheless, the expression for the dark matter abundance (5.5) leaves some degeneracy be-
cause the parameters α and m can be chosen arbitrarily, at least within the mass interval (5.6).
In the next section we discuss further phenomenological consequences of our framework,
aimed to distinguish the effects of the two parameters (α, m) on observable quantities, which
might allow us to obtain independent measurements of their size.

6 Phenomenological considerations

We learned in the previous section that our version of the scenario introduced in [1] realizes
dark matter in the form of longitudinal modes of a massive vector non-minimally coupled
with gravity. The dark matter abundance depends on two parameters only, making the model
very economical. In order to provide the totality of dark matter, the non-minimal coupling α

— as appearing in action (2.1) — and the vector mass m are related by (see eq. (5.5))

α ≃ 3.7 × 10−22
( m

1 eV

)5/4
. (6.1)

Hence, for relatively light vector fields (recall the allowed mass range of eq. (5.6)), the non-
minimal coupling of vector to gravity of in action (2.1) acquires very small values.5 At the
same time, the vector mass (for high-scale inflation) can be chosen within the interval (5.6),

5It would be interesting to investigate whether small values of α are stable under loop corrections. In
fact, when working in a decoupling limit, the vector couplings we consider are close relatives to Galileons
(see [36, 37]). The latter are known to satisfy non-renormalization theorems [43, 44], which can also be
extended to curved space [45].
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leaving some degeneracy in parameter space for realizing scenarios where the totality of dark
matter is constituted by longitudinal modes.

Besides cosmological consequences,6 we now ask whether there are any further experimen-
tal avenues to independently probe the parameter m appearing in action (2.1). Let us consider
scenarios whose tree level actions do not contain gauge interactions between visible and dark
sectors, besides gravity. Nevertheless, loop effects inevitably induce portal couplings with the
Standard Model, for example through a kinetic mixing with the SM photon A(γ) µ [46–49]

Lkm = −ε

2FµνF µν
(γ) . (6.2)

F µν
(γ) is the field strength for the SM photon field, while Fµν the dark vector field strength.

This gauge-invariant dimension-four operator is controlled by the dimensionless parameter
ε, which induces milli-charged couplings of dark photons to ordinary matters. Constraints
exist on ε, which depend on the dark photon mass (see e.g. [18] for a comprehensive review).
Even for set-up where there are no tree-level gauge couplings between visible and dark
sectors, it has been demonstrated (see [50]) that loop effects mediated by gravity alone
generate kinetic mixing of the form (6.2). The resulting values of the parameter ε are
very tiny: ε ≃ 10−13; nevertheless such small values can be probed for dark vector masses
in the eV − keV range [51] (see also [52, 53]), which is within the mass interval (5.6) we
found. Hence, direct experiments testing milli-charged couplings with the dark sector can
independently probe the range of vector masses which can be realized through non-minimal
couplings of the dark vector to gravity.

Another option is to make use of gravitational wave7 experiments. As mentioned in the
introduction, it is conceivable to use gravitational wave detectors to directly probe effects
of space-time deformations associated with vector degrees of freedom. See e.g. [31] who
uses a vectorial version of the so-called Khmelnitsky-Rubakov effect [56] in the context of
pulsar timing-array experiments.

Alternatively, one can study primordial black holes [57, 58] or induced stochastic gravita-
tional wave backgrounds (SGWB) [59] produced at second order in perturbations by large-size
iso-curvature modes.8 This is particularly interesting for vector mass ranges in the eV − keV
interval, as we are going to discuss. The subject of scalar-induced SGWB by adiabatic
fluctuations, first investigated in [60–69], is very well developed by now (see the review [35]).
Much less studied are SGWB induced by iso-curvature modes — the case relevant for us since
we study vector longitudinal modes corresponding to iso-curvature fluctuations. A notable

6Although longitudinal modes do not have background evolution, one may treat its density as an effective
background fluid on sufficiently large scales. In this case, CDM perturbations may exhibit an instability for a
certain combination of non-minimal couplings with the vector field, see e.g. [25]. Finding the evolution of the
corresponding perturbations are outside the scope of this work, however the special form of the non-minimal
coupling we consider might suggest that such instabilities are absent in our setup where 2ξ1 + ξ2 = 0 following
the notation of [25].

7We note that following an effective fluid approach in the non-relativistic regime of vector DM, the speed
of GWs has been shown to be modified for which constraints by the recent binary Neutron star merger
event [54, 55] applies, see eq. (3.16) in [25]. We note that these constraints do not effect the parameter space
of our setup because for fAL → 1, (5.5) gives α/m ≃ 3 × 10−22eV−1(m/eV)1/4 satisfying eq. (3.16) of [25] for
all mass (5.6) and α (6.1) values that realize DM abundance in the form of longitudinal modes.

8Recall that the longitudinal vector degrees of freedom correspond to iso-curvature fields, see section 3.3.
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exception is [59], where the authors carry on a detailed analysis of how an enhanced spectrum
of iso-curvature modes at super-horizon scales can induce a stochastic GW background after
re-entering the horizon in a radiation-dominated universe. This is possible because the early
iso-curvature modes can get converted into curvature fluctuations upon horizon crossing,
which in turn source GWs. Therefore, similar to the well studied adiabatic case an enhanced,
peaked spectrum of longitudinal iso-curvature modes (with a maximum at scale k∗) could
lead to a stochastic GW background peaked at scales of the same order of magnitude. Since
in our case the scale of the scalar peak is proportional to the vector mass k∗ = a∗m (see
eq. (5.3)), converting this quantity to the frequency domain (f = k/(2π)), we expect to
generate a SGWB enhanced at a peak frequency

f∗ ≃ 10−3
( m

eV

)1/2
Hz. (6.3)

A choice of vector dark matter mass around the eV − keV range — as can be realized in
our scenario (5.6) — can then enhance the SGWB signal in the milli-Hertz band, making
it potentially detectable by the LISA interferometer [70].

We realize that the formulas developed in [59] can not be directly used in our context,
without some extra work. The derivations of [59] take into due account the back-reaction of
iso-curvature fluctuations to gravity, while in this work we do not consider the back-reaction
of vector fields in the geometry. Moreover, the formulas of [59] assume that the primordial
iso-curvature spectrum is evaluated in a super-horizon regime, while the peaked shape of
the spectrum presented in figures 4 and 5 include also contributions from modes evolving at
sub-horizon scales. Nevertheless, we expect that a future, more careful analysis of energy
fluctuations associated with iso-curvature modes (including back-reaction in the geometry)
again will lead to a spectrum exhibiting a peaked structure, with a peak around the scale
k∗ = a∗m found in the previous section. The analysis of iso-curvature density fluctuations
carried on in [1] indicates that the corresponding spectrum grows as (k/k∗)3 from large
towards small scales, up to a maximum at around k ≃ k∗, to then decrease as (k/k∗)−1

for smaller scales k ≥ k∗. We take such a spectrum profile as representative Ansatz of
longitudinal vector density fluctuations, and denote As as the maximum of the spectrum at
k = k∗. We then numerically compute the integrals of [59], using their kernels and obtain the
profile for the GW density Ωgw as a function of f/f∗ as represented in figure 9. The spectrum
has a peaked structure, with a relatively broad maximum at scales corresponding to the
frequency region around the f∗ of eq. (6.3) detectable with LISA. In the IR scales shown, it
has a relatively mild slope as compared to GWs induced by adiabatic fluctuations (Ωgw ∼ f3)
with a f<2 behavior, while in the UV it decays as fast as f−6. It would be interesting to
perform a more careful analysis on the shape and amplitude As in a physically realistic set-up
as it could potentially provide us information about the couplings and parameters in our
proposal (2.1). We leave this important task to future studies.

7 Conclusions and outlook

We proposed a scenario of dark matter in the form of longitudinal massive vector bosons,
extending the work [1] by including non-minimal couplings of the vector with gravity. Our set-
up, besides being well motivated from an effective field theory perspective, is very economical
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Figure 9. The GW density spectrum induced at second order by longitudinal vector iso-curvature
fluctuations. See the main text, in particular the discussion after eq. (6.3) for a description of the
set-up.

since the final dark matter abundance depends on two parameters only (see eq. (5.5)): the
vector mass and its non-minimal coupling with gravity. We determined and analysed in
detail the rich dynamics of vector fluctuations during inflation and radiation domination.
In particular, we showed that during inflation, quantum fluctuations of longitudinal modes
obtain a large super-horizon power, which depends on the inverse strength of the non-minimal
coupling with gravity. The latter induces gradient instabilities on vector field dynamics during
radiation dominated era, which can nevertheless be tamed. For weak non-minimal coupling
with gravity, the inflationary era thus sets suitable initial conditions for the longitudinal
component of vector field. The resulting post-inflationary vector energy density can account
for the totality of dark matter, for a wide range of vector masses (5.6). We emphasize
that the set-up we described is also minimal in the sense that it assumes standard post-
inflationary history following the inflationary epoch. It would also be interesting to explore
variations of our proposal on dark matter production by utilizing non-trivial post-inflationary
histories beyond the instantaneous reheating approximation we undertake in this work, as
done in [9, 71].

Due to non-minimal coupling, the resulting abundance of dark matter leads to a wider
range of allowed vector masses with respect to [1]. Interestingly, such mass range can be
experimentally probed by means of induced gravitational waves in the LISA frequency band.
We touched this argument in section 6 in a phenomenological way: it certainly deserves
further investigations.

Given the absence of direct evidence of dark matter besides its gravitational interactions
with visible matter, it is perhaps a good idea to focus on gravitational experiments as dark
matter detectors. Gravitational wave experiments can provide new ways to probe light and
feebly interacting dark matter (see e.g. [72] for a review). It will important in the near future
to further explore the opportunities they can provide.
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A Equations of motion and mode functions of the gauge field

In this appendix, we derive the equations of motion of the gauge fields following two different
methods: i) first by expanding the action (2.1) and decomposing the vector field into its
temporal and spatial components ii) by following a covariant approach we will discuss below.
We begin with the former by expanding the kinetic term of the gauge fields as

1
4FµνF µν = 1

2 g00 gij F0iF0j + 1
4 gij gklFik Fjl,

= − 1
2a2 (Ȧi − ∂iA0)2 + 1

4a4 δij δklϵmik(∇⃗ × A⃗)m ϵnjl(∇⃗ × A⃗)n, (A.1)

where we decomposed the non-vanishing component of the field strength tensor as F0i =
−Fi0 = Ȧi − ∂iA0 and Fij = ϵlij(∇⃗ × A⃗)l. Using (A.1) in (2.1), we re-write the action (2.1) as

SGF = 1
2

∫
d4xa3

×

{
(Ȧi −∂iA0)2

a2 − (∇⃗×A⃗)2

a4 +m2
(

A2
0 − AiAi

a2

)
+ α2

3
(
G00A2

0 +GijAiAj

)}
. (A.2)

Notice that the action does not contain time derivatives of the temporal component of the
gauge field which informs us that A0 is a Lagrange multiplier whose equation of motion
indicates a constraint of the system. To derive the latter, we require the knowledge of
the Einstein tensor at the background level. Using the Einstein equation by adopting an
energy momentum tensor of a barotropic perfect fluid with a constant equation of state
P = wρ, we have

Gµν ≡ Rµν − 1
2Rgµν = Tµν

M2
pl

= (1 + w) ρ

M2
pl

uµuν + w
ρ

M2
pl

gµν (A.3)

where uµ = (−1, 0⃗) is the light-like four velocity of the fluid satisfying uµuµ = −1. Finally,
utilizing the Friedmann equation 3H2M2

pl = ρ in (A.3), we found

Gµν = 3H2
[
(1 + w) uµuν + w gµν

]
. (A.4)
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We then plug (A.4) in (A.2) and vary the resulting action with respect to A0 to obtain the
following formal equation for the constraint as

A0 = −
[
a2(m2 + α2H2) − ∇⃗2

]−1
∂iȦi. (A.5)

Re-inserting the constraint back in (A.2), we re-write the action in terms of the Ai that
contains the physical degrees of freedom as

SGF = 1
2

∫
d3x dτ

{
A′

iA
′
i − ∂iA

′
i

[
a2(m2 + α2H2) − ∇⃗2

]−1
∂iA

′
i − (∇⃗ × A⃗)2 (A.6)

− a2(m2 − w α2H2) Ai Ai

}
.

To disentangle the dynamics of the physical longitudinal and transverse modes of the vector
field, we go to the Fourier space and decompose the spatial vector field into its different
polarization states as

Ai(τ, x) =
∫ d3k

(2π)3/2 eik·xAi(τ, k), Ai(τ, k) ≡
∑

λ=L,±
ϵ
(λ)
i (k)Aλ(τ, k) (A.7)

where noting the unit vector along ki as k̂i, the polarization vectors obey

k̂i ϵ
(±)
i (k) = 0, ϵijk kj ϵ

(±)
k (k) = ∓i|k| ϵ

(±)
i (k),

k̂i ϵ
(L)
i (k) = 1, ϵijk kj ϵ

(L)
k (k) = 0, ϵ

(λ)
i (k) ϵ

(λ′)
i (k)∗ = δλλ′

,

ϵ
(±)
i (k)∗ = ϵ

(±)
i (−k) = ϵ

(∓)
i (k), ϵ

(L)
i (k)∗ = ϵ

(L)
i (−k) = ϵ

(L)
i (k), (A.8)

so that

k · A⃗(τ, k) = |k| AL(τ, k) = k AL(τ, k). (A.9)

Note that the relations in the last line of (A.8) imply Aλ(τ, k)∗ = Aλ(τ, −k) for λ = {L, ±} so
that Ai(τ, x) is a real. Inserting the decomposition (A.7) into the action (A.6) and using (A.8),
the quadratic action for mode functions of the transverse and longitudinal mode decouples as

S
(2)
L = 1

2

∫
d3k dτ

{
a2(m2 + α2H2)

k2 + a2(m2 + α2H2)
∣∣A′

L(τ, k)
∣∣2 − a2(m2 − w α2H2)

∣∣AL(τ, k)
∣∣2} ,

S
(2)
T = 1

2

∫
d3k dτ

∑
λ=±

{∣∣A′
λ(τ, k)

∣∣2 −
(
k2 + a2(m2 − w α2H2)

) ∣∣Aλ(τ, k)
∣∣2} . (A.10)

Varying the actions (A.10) above leads to the equations of motion (EoMs) (2.2) we introduced
in terms of the conformal time.

Covariant approach. We can also follow a covariant approach to directly derive the
equations of motion varying the action (2.1) with respect to Aν . In the following, we will
re-write the action (2.1) in a form suitable to derive the equations of motion (EoM) in the
configuration space. For this purpose, we first note that the kinetic terms ∝ FµνF µν in
the action (2.1) can be re-written as

SGF = 1
2

∫
d4x

√
−g

[
− (∇µAν)(∇µAν) − Aν(∇µ∇νAµ) − m2gµν AµAν + α2

3 Gµν AµAν

]
,

(A.11)
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where we utilized

−1
4F µνFµν ≡ −1

2(∇µAν)(∇µAν) + 1
2(∇µAν)(∇νAµ), (A.12)

by integrating by parts the second term in (A.12). Noting the definition of the Riemann
tensor in terms of the commutator of the covariant derivatives

[∇µ, ∇ν ] Aρ = Rρ
σµν Aσ, (A.13)

and the Ricci tensor

Rρ
µρν ≡ Rµν , (A.14)

we can then describe the second term in (A.11) in terms of the latter as

−Aν(∇µ∇νAµ) ≡ −Aν (∇ν∇µ + Rµν) Aµ. (A.15)

Plugging (A.15) back to the action (A.11) and performing a final integration by parts on
the first term in the right hand side of (A.15), we obtain

SGF = 1
2

∫
d4x

√
−g

[
− (∇µAν)(∇µAν) + (∇νAν)2 − m2

µν AµAν

]
(A.16)

where we defined the symmetric mass tensor of the vector field as

m2
µν ≡ m2gµν + Rµν − α2

3 Gµν , (A.17)

where the Einstein tensor given by eq. (A.4). Varying the action (A.6), the EoM of Aν

can be obtained as

□Aν − ∇ν(∇µAµ) − m2
µνAµ = 0, (A.18)

where □ ≡ ∇µ∇µ is the d’Alembert operator. In summary, the equations of motion de-
scribing the dynamics of the vector field components can be derived using (A.17), (A.18) by
noting (A.4) together with the following expressions of Ricci tensor and scalar for a given
FRW background parametrized by a constant equation of state w and Hubble rate H = ȧ/a:

Rµν = 3H2
[
(1 + w) uµuν + (1 − w)

2 gµν

]
→ R = 3H2(1 − 3w). (A.19)

Equations of motion. To derive the equations satisfied by the vector field components,
we work with cosmic time and the background metric gµν = diag(−1, a⃗(τ)2). Using the
standard definitions of the covariant derivative, the ν = 0 component of the EoM (A.18) can
be found to give the constraint equation in (A.5). On the other hand, the spatial components
ν = j of the EoM (A.18) gives

Äk + HȦk −
[

∇⃗2

a2 −
(
m2 − w α2H2)]Ak − ∂kȦ0 + ∂k(∂iAi)

a2 − H∂kA0 = 0. (A.20)
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Helicity decomposition and mode functions. Equation (A.20) contains the information
about the dynamics of both the longitudinal and the transverse mode. The decouple their
dynamics we decompose the components of the full vector field as

Aµ(τ, x) =
∫ d3k

(2π)3/2 eik.x
∑

λ=L,±
A(λ)

µ (t, k), A(λ)
µ (t, k)∗ = A(λ)

µ (t, −k), (A.21)

by defining the following expressions

A
(L)
0 = A0(t, k), A

(L)
i = ϵ

(L)
i (k) AL(t, k),

A
(±)
0 = 0, A

(±)
i = ϵ

(±)
i (k) A±(t, k), (A.22)

where the polarization vectors to obey the same relations (A.8) as before. With these
identifications, the Fourier space expression for the constraint equation (A.5) can be derived as

A0(t, k) = −i
(ki ϵ

(L)
i (k))

k2 + a2m2
eff

ȦL(t, k), m2
eff = m2 + α2H2. (A.23)

Utilizing the decomposition (eqs. (A.21) and (A.22)) we defined above and the constraint (A.23)
in (A.20), dynamics of the different polarization modes λ = {L, ±} decouple by taking into
account orthogonality condition of polarization vectors: ϵ

(L)
i ϵ±

i = k̂iϵ
(±)
i = 0. In particular,

the equations of motion for the longitudinal and the transverse mode can be derived in
terms of the cosmic time as

ÄL + [3 + 2∂tmeff/(Hmeff)]k2 + a2m2
eff

k2 + a2m2
eff

HȦL +
(

1 − (1 + w) α2H2

m2
eff

)(
k2

a2 + m2
eff

)
AL = 0,

Ä± + HȦ± +
(

k2

a2 + (m2
eff − (1 + w) α2H2)

)
A± = 0.

(A.24)

Using (A.24), we present an analytical understanding of mode evolution during the cosmic
history in sections 3 and 4.

B Mode evolution of AL during inflation: numerical procedure

In order to accurately capture the cosmological evolution of the individual AL modes in the
post-inflationary universe, we need to determine their initial conditions at the beginning
of RDU when they are outside the co-moving horizon. For this purpose, we solve for the
transfer function TL (4.15) using the EoM (3.1) during inflation. Working with time variable
y = a/a∗ and noting x ≡ −kτ = −kτ∗(τ/τ∗) = x∗y−1 and x∗ ≡ k/k∗, the dynamics of the
transfer function during inflation can be characterized by the following equation:

T ′′
L(y, x∗) +

[
1 + x2

∗
x2

∗ + y2(1 + (α2H2
I /m2))

]
2
y

T ′
L(y, x∗) (B.1)

+ m2

H2
I

(
x2

∗
y4 + 1 + (α2H2

I /m2)
y2

)
TL(y, x∗) = 0.
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Focusing on sizeable non-minimal coupling regime αHI/m ≫ 1, we work with sufficiently
light longitudinal modes where m2

eff,I = m2 + α2H2
I ≃ α2H2

I ≪ H2
I implying the strength

of the non-minimal coupling to be small, α ≪ 1. In this case, we can initialize the modes
at horizon exit by safely assuming they are in the relativistic regime parametrized by the
solution (3.8). In terms of the new time variable y, we therefore adopt the following initial
conditions during inflation,

TL(yin, x∗) = (1 − i) ei, T ′
L(yin, x∗) = −(x∗ y2

end)−1 ei, (B.2)

where for each mode we have yin = x∗y2
end with yend =

√
m/HI denoting the end of

inflation/beginning of RDU. To determine accurate final conditions that can be used
for the post-inflationary evolution of the longitudinal modes, we solve (B.1) for a grid of
x∗ = k/k∗ values using (B.2) for various α and m/HI ≪ 1 choices. As we mentioned before,
we do so in a regime where effects introduced by the non-minimal coupling is sufficiently
large during inflation, i.e.

α
HI
m

≫ 1 =⇒ m

HI
≪ α ≪ 1, (B.3)

where the final inequality is required to keep the longitudinal mode light during inflation.
This procedure provides us with a pair of {TL(yend, x∗), T ′

L(yend, x∗)} for all x∗ = k/k∗ values
that can be used as an input for the post-inflationary evolution we discuss in section 4.2.

C Energy density of the longitudinal modes

In this appendix, we focus our attention to the energy density and pressure of the vector
fields. For this purpose, we note that the energy-momentum tensor (EMT) of the action (2.1)
can be written as:

Tµν ≡ − 2√
−g

δSGF
δgµν

= T (α=0)
µν + T (α)

µν , (C.1)

where the first term is the well known EMT of the Proca action:

T (α=0)
µν = gρσFµρFνσ + m2AµAν − gµν

(
1
4FαβF αβ + 1

2m2AβAβ

)
. (C.2)

It is quite non-trivial to obtain an explicit expression for T
(α)
µν . Below, we present a detailed

derivation of this contribution by explicitly varying terms ∝ α2 in the action (2.1):

δS(α) = α2

6

∫
d4x

√
−g

[
− 1

2 gµν Gρσ AσAρ δgµν + δGµν AµAν

]
, (C.3)

where we used δ
√

−g = −
√

−g gµν δgµν/2 in the first term above. Utilizing the definition of
the Ricci tensor with upper indices Rµν = gµα gνβRαβ and the variation of the Ricci scalar
δR = Rρσδgρσ + gρσ δRρσ, the variation of the second term of (C.3) can be written as

δGµν = gµαgνβδRαβ − 1
2 gµν gρσ δRρσ − 1

2 (R δgµν + gµνRρσ δgρσ) (C.4)

+ gνβRαβ δgµα + gµαRαβ δgνβ .
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Notice that the last terms in (C.4) are already given as a variation of the inverse metric,
so we only need to obtain the first two using the variation of the Ricci tensor in terms of
the variation of the inverse metric [73]:

δRµν = ∇ρ(δΓρ
νµ) − ∇ν(δΓρ

ρµ), (C.5)

δΓσ
µν = −1

2

[
gλµ∇ν(δgλσ) + gλν∇µ(δgλσ) − gµα gνβ∇σ(δgαβ)

]
.

We label these contributions in the action (C.3) as δS
(α)
1 and δS

(α)
2 . Plugging (C.5) and

performing a couple of integration by parts, for the former we obtain

δS
(α)
1 = α2

12

∫
d4x

√
−g

[
∇ν∇ρ(AρAµ)−∇ρ∇ν(AρAµ)−∇µ∇ρ(AνAρ)+∇ρ∇µ(AνAρ) (C.6)

−∇ρ∇µ(AνAρ)−∇ρ∇ν(AρAµ)+∇ρ∇ρ(AµAν)+gµν∇ρ∇σ(AρAσ)
]
δgµν ,

where for convenience we added and subtracted a term in passing from first to the second line.
Using the product rule and the definition of the Riemann (A.13) and Ricci tensor (A.14),
the first line of (C.6) can be recast as a term without derivatives on the gauge fields:

1st line of (C.6) = −∇ρ∇ν(AρAµ)+∇ν∇ρ(AρAµ)−∇µ∇ρ(AνAρ)+∇ρ∇µ(AνAρ), (C.7)
= −Aµ([∇ρ,∇ν ]Aρ)−Aρ([∇ρ,∇ν ]Aµ)+Aν([∇ρ,∇µ]Aρ)+Aρ([∇ρ,∇µ]Aν),
= −RσνAµAσ −RµσρνAσAρ +RσµAνAσ +RνσρµAσAρ,

= −RσνAµAσ +RσµAνAσ −RµνρσAσAρ,

= −RσνAµAσ +RσµAνAσ,

where in passing from second to third and from third to last line we have used the symmetry
properties of the Riemann tensor.

To derive the contribution to T
(α)
µν from the second term proportional to the variation

of the Ricci tensor in (C.4), we again utilize (C.5) and perform a couple integration by
parts to obtain

δS
(α)
2 = α2

12

∫
d4x

√
−g

[
∇µ∇ν(AσAσ) − gµν∇ρ∇ρ(AσAσ)

]
δgµν . (C.8)

Compiling our findings in (C.3), (C.4), (C.6), (C.7) and (C.8), the energy momentum
tensor (C.1) due to non-minimal coupling can be obtained as

T (α)
µν = α2

6

[
gµν GρσAσAρ+Rµν(AσAσ)+RAµAν −3Rσν AµAσ −Rσµ AνAσ (C.9)

+
([

gµν gρσ −δρ
µδσ

ν

]
gαβ +δα

νδσ
µ gβρ+δβ

µδσ
ν gαρ−δα

νδβ
µ gσρ−gµν gαρ gβσ

)
∇ρ∇σ(AαAβ)

]
,

where

∇ρ∇σ(AαAβ) = Aβ∇ρ(∇σAα) + Aα∇ρ(∇σAβ) + ∇ρAα∇σAβ + ∇σAα∇ρAβ. (C.10)
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Noting that T00 = ρ, we first expand the non-derivative terms explicitly using the components
of Einstein and Ricci tensor in the first line of (C.9) together with the higher derivative terms
in the second line in terms of the temporal and spatial component of the vector field as

ρ
(α)
A = α2

6

[
3H2

(
1+w

2

)(
3A2

0+ AiAi

a2

)
+gij [∇j ,∇0] (A0Ai)+

(
gligkj −gijgkl

)
∇i∇j(AlAk)

]
.

(C.11)
Utilizing the definition of the Riemann tensor (A.13), the second term above read as

gij [∇j , ∇0] (A0Ai) = −3H2
(

1 + 3w

6

)(
3A2

0 + AiAi

a2

)
. (C.12)

Finally unpacking the last term in (C.11) according to the definition (C.10) and after a bit of
algebra, we compile our findings to obtain the energy density due to non-minimal coupling as

ρ
(α)
A = α2

6

[
9H2A2

0 − H2 AiAi

a2 − (∇⃗ × A⃗)2

a4 − (∂iAk)2

a4 + ∂iAi∂jAj

a4 + 2Ai∂i∂kAk

a4 − 2Ai∇⃗2Ai

a4

− 4H
∂i(A0Ai)

a2 + 4H
ȦkAk

a2

]
. (C.13)

On the other hand, energy density in the absence of non-minimal coupling can be obtained
from (C.2) as

ρ
(α=0)
A = 1

2a2

[
(Ȧi − ∂iA0)2 + (∇⃗ × A)2

a2 + m2(a2A2
0 + AiAi)

]
. (C.14)

To obtain the total energy density of the longitudinal modes from (C.13) and (C.14), we first
notice that the curly of the vector field ∇⃗ × A does not contain the longitudinal mode which
is a direct consequence of the property of the polarization vector ϵ

(L)
i noted in the second line

of (A.8). On the other hand going into the Fourier space using the eqs. (A.21)–(A.23), one
can show that the combination of the last four terms in the first line, as well as the first term
in the last line of (C.13) vanishes. Furthermore, as far as the longitudinal mode is concerned,
the envelope of the last term in the non-minimal EMT behaves as ∼ HȦkAk ∼ H2AkAk at
late times, as can be inferred from eq. (4.14). Therefore, in the late time limit the energy
density of the longitudinal modes that stem from the non-minimal coupling behave as

ρ
(α)
AL

≃ 1
2a2

[
3α2H2a2A2

0 + H2AkAk

]
. (C.15)

Comparing the overall scaling of these terms with the last terms in (C.14), we conclude
that the corrections to the energy density due to non-minimal interactions are much less
important in the late time limit at which we are interested to evaluate the abundance of
the longitudinal modes. In particular, for a ≫ a∗ ≫ ac, we have m ≫ αH because αH is
already comparable to m at the end of the phase (G) in the RDU (see figure 3). Therefore,
we can safely adopt the standard energy density (C.14) in order to compute the late time
abundance of the longitudinal modes. Using the Fourier decomposition (A.21), (A.22) and
late time version of the constraint (A.23) (e.g. meff → m):

A0(t, k) = −i
(ki ϵ

(L)
i (k))

k2 + a2m2 ȦL(t, k), (C.16)
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the expectation value of ρAL
(C.14) can thus be written as

⟨ρAL
⟩ = 1

2a4

∫ d3k d3k′

(2π)3 ei(k+k′).x
{[

ϵ
(0)
i (k)ϵ(0)

i (k′)−2(k′
iϵi(k))(k′

iϵ
(0)
i (k′))

k2+a2m2

+
(kik

′
i−a2m2)(kiϵ

(0)
i (k))(k′

jϵ
(0)
j (k′))

(k2+a2m2)(k′2+a2m2)

]
⟨A′

L(τ,k)A′
L(τ,k′)⟩

+a2m2 ϵ
(0)
i (k)ϵ(0)

i (k′)⟨AL(τ,k)AL(τ,k′)⟩
}

, (C.17)

where we switched to conformal time. To evaluate the expectation values inside the integrand,
we follow the canonical quantization procedure of the longitudinal mode via

AL(τ, k) → ÂL(τ, k) = AL(τ, k) âL(k) + A∗
L(τ, k) â†

L(−k) (C.18)

where the annihilation and creating operators satisfy [âL(k), â†
L(k′)] = δ(k − k′). Then

defining the power spectrum of a hermitian operator X̂ as

⟨X̂(τ, k)X̂(τ, k′)⟩ = δ(k + k′)2π2

k3 PX(τ, k), (C.19)

the expectation value of the energy density (C.17) becomes

⟨ρAL
⟩ = 1

2a4

∫
d ln k

{
a2m2

k2 + a2m2 PA′
L
(τ, k) + a2m2 PAL

(τ, k)
}

. (C.20)

D Abundance of transverse vector modes

In the main text we ignored the contribution to the abundance of the vector field from the
transverse modes, relying on the fact that they stay in their vacuum configuration during
inflation in the small mass limit, m/HI → 0. However, post-inflationary evolution of the
transverse modes could potentially provide significant contribution to the abundance since
they obtain a tachyonic mass following inflationary phase in the RDU era for the sizeable
non-minimal coupling regime αHI/m ≫ 1 we are operating. This could be seen from eq. (2.2),
where the mass of the transverse mode in the post-inflationary era behave as

m2
T =

m2 −
α2H2

I
3

(aend
a

)4
≃ −

α2H2
I

3

(aend
a

)4
, aend ≤ a ≤ atc ,

m2 a > atc,

(D.1)

where the end of tachyonic regime with respect to the end of inflation can be identified as

atc
aend

= 3−1/4
√

αHI
m

> 1. (D.2)

Notice that the end of the tachyonic era almost coincides with the end of phase (G) (4.4) during
which the longitudinal modes have gradient type instability. This similarity notwithstanding,
the transverse modes that are affected by the tachyonic instability are different as compared
to the former. To understand this, we rewrite the mode equation of the transverse modes
in terms of the variables we are familiar from the previous sections as

A′′
±(y, x∗) +

(
x2

∗ + y2
[
1 − α2H2

3m2

])
A±(y, x∗) = 0, (D.3)
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where we again note H(y) = HI (yend/y)2 during RDU. From the effective dispersion relation
of the expression above, we infer that the shortest modes that could be affected by the
presence of the tachyonic regime satisfy

x∗ <
1√
3

α

y
=⇒ x∗ <

1√
3

α

yend
= α√

3

√
HI
m

≪ 1. (D.4)

Therefore, as compared to the longitudinal modes, relatively large scale transverse modes
could be potentially amplified during the tachyonic regime aend < a < atc.

To understand if the transverse modes can be amplified in the tachyonic era, we followed
a similar approach we carry in appendix B to first generate initial conditions for the modes
in the post-inflationary era by evolving AT during inflation from deep inside the horizon
until the end of inflation. We then use these initial condition to numerically evolve the mode
equation of the transverse modes (D.3) during RDU until sufficiently late times. In this
way, we found that transverse modes that could potentially exhibit instability do not behave
any interesting way during the tachyonic era as compared with the vanishing non-minimal
coupling case α → 0 for which the tachyonic phase is absent. We will not present these
null results here, however we refer the interested to the Mathematica notebook that lead
us draw this conclusion. As can be inferred from the numerical analysis we provide, the
absence of enhancement can be understood by

• the fact that transverse modes stay in their vacuum configuration (recall the discussion
in section 3) during the inflationary era, reaching the beginning of radiation dominated
phase, with very small velocities |

√
2kA′(y, x∗)| ≈ x∗ for the potentially tachyonic

modes that satisfy x∗ ≪≪ 1.

• the fact that tachyonic era is short and transient and fails to generate sizeable velocity
gradients A′

T (y, x∗) that can trigger amplification for the transverse modes, in particular
for the parameter space that realizes interesting abundance of longitudinal modes as
dark matter.

On the other hand, outside the tachyonic region, particle production solely due expansion
of the universe typically leads to small energy density in the transverse modes as compared
to the longitudinal modes [8, 10, 71]. Therefore, we expect that transverse modes do not
play an important role in our proposal and the final abundance of dark matter is set by the
longitudinal modes parametrized by the expression (5.5).
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