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Abstract

With the ongoing emergence of the Fourth Industrial Revolution, often referred to as Indus-
try 4.0, new innovations, concepts, and standards are reshaping manufacturing processes
and production, leading to intelligent cyber-physical systems and smart factories. Steel
production is one important manufacturing process that is undergoing this digital transfor-
mation. Realising this vision in steel production comes with unique challenges, including
the seamless interoperability between diverse and complex systems, the uniformity of het-
erogeneous data, and a need for standardised human-to-machine and machine-to-machine
communication protocols.

To address these challenges, international standards have been developed, and new
technologies have been introduced and studied in both industry and academia. However,
due to the vast quantity, scale, and heterogeneous nature of industrial data and systems,
achieving interoperability among components within the context of Industry 4.0 remains a
challenge, requiring the need for formal knowledge representation capabilities to enhance
the understanding of data and information. In response, semantic-based technologies have
been proposed as a method to capture knowledge from data and resolve incompatibility
conflicts within Industry 4.0 scenarios.

We propose utilising fundamental Semantic Web concepts, such as ontologies and knowl-
edge graphs, specifically to enhance semantic interoperability, improve data integration, and
standardise data across heterogeneous systems within the context of steelmaking. Addition-
ally, we investigate ongoing trends that involve the integration of Machine Learning (ML)
techniques with semantic technologies, resulting in the creation of hybrid models. These
models capitalise on the strengths derived from the intersection of these two AI approaches.
Furthermore, we explore the need for continuous reasoning over data streams, presenting
preliminary research that combines ML and semantic technologies in the context of data
streams.

In this thesis, we make four main contributions: (1) We discover that a clear under-
standing of semantic-based asset administration shells, an international standard within
the RAMI 4.0 model, was lacking, and provide an extensive survey on semantic-based im-
plementations of asset administration shells. We focus on literature that utilises semantic
technologies to enhance the representation, integration, and exchange of information in
an industrial setting. (2) The creation of an ontology, a semantic knowledge base, which
specifically captures the cold rolling processes in steelmaking. We demonstrate use cases
that leverage these semantic methodologies with real-world industrial data for data access,
data integration, data querying, and condition-based maintenance purposes. (3) A frame-
work demonstrating one approach for integrating machine learning models with semantic
technologies to aid decision-making in the domain of steelmaking. We showcase a novel
approach of applying random forest classification using rule-based reasoning, incorporat-
ing both meta-data and external domain expert knowledge into the model, resulting in
improved knowledge-guided assistance for the human-in-the-loop during steelmaking pro-
cesses. (4) The groundwork for a continuous data stream reasoning framework, where both



domain expert knowledge and random forest classification can be dynamically applied to
data streams on the fly. This approach opens up possibilities for real-time condition-based
monitoring and real-time decision support for predictive maintenance applications. We
demonstrate the adaptability of the framework in the context of dynamic steel production
processes. Our contributions have been validated on both real-world data sets with peer-
reviewed conferences and journals, as well as through collaboration with domain experts
from our industrial partners at Tata Steel.

Keywords: Industry 4.0, RAMI 4.0, Semantic Web, Ontology, Machine Learning, Rule-
based Reasoning, Continuous Streaming, Continuous Reasoning, Predictive Analytics, Se-
mantic Interoperability.
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4.4 An ontop mapping for work rolls. . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.5 Ontop mappings for roll grindings and storage rolls. . . . . . . . . . . . . . . . 108

4.6 The SPARQL result from previous listing. . . . . . . . . . . . . . . . . . . . . . 110

4.7 The SPARQL result from previous listing. . . . . . . . . . . . . . . . . . . . . . 111

4.8 The console displaying no inconsistencies or incorrectness messages when starting
the ontop stream reasoner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.9 The class hierarchy of CROS from [55]. . . . . . . . . . . . . . . . . . . . . . . 114

5.1 The methodology of our proposed framework. . . . . . . . . . . . . . . . . . . . 117

5.2 The mapping between SQL data and ontology using Ontop. . . . . . . . . . . . 120

5.3 The structure of a scikit-learn RF in plain text format. . . . . . . . . . . . . . . 121

5.4 The classes, object properties, and data properties of RFO. . . . . . . . . . . . 123

5.5 The SPARQL query results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.6 The methodology of the iterative process with experts for validation. . . . . . . 133

6.1 The methodology of the proposed application. . . . . . . . . . . . . . . . . . . . 141

6.2 The application demonstrating the creation of RDF triples. . . . . . . . . . . . 146

6.3 The application demonstrating the C-SPARQL query creating individuals from
the RDF data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.4 The application demonstrating the classification outputs of inferring the rule
engine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.5 The application demonstrating the final results produced for each generated
individual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A.1 The Times article on the 1.4 million investment for six new computers for the
Port Talbot steelworks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

A.2 The Dragon article on the 1.4 million investment for the six new computers. . . 189

x



List of Tables

1.1 An overview of our contributions. . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 The layers axis of the RAMI 4.0 models. . . . . . . . . . . . . . . . . . . . . . . 34
2.3 The fundamental requirements of an Asset Administration Shell. . . . . . . . . 38

3.1 The domains, information and communication models, and achieved goals of the
reviewed papers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.2 List of application cases, with physical object and purpose. . . . . . . . . . . . 92

4.1 A list of the classes in SCRO, alongside their description. . . . . . . . . . . . . 101
4.2 A list of the object properties in SCRO with their corresponding domains and

ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.3 A list of the data properties in SCRO with their corresponding object and datatype.104
4.4 The different available data, including their types and descriptions. . . . . . . . 105

5.1 The domain expert knowledge rules in a simplified view. . . . . . . . . . . . . . 130
5.2 Two reports from the ‘expected’ category. . . . . . . . . . . . . . . . . . . . . . 134
5.3 Two reports from the ‘unexpected’ category. . . . . . . . . . . . . . . . . . . . 135

6.1 The data properties used for classification. . . . . . . . . . . . . . . . . . . . . . 142
6.1 The data properties used for classification. . . . . . . . . . . . . . . . . . . . . . 143
6.1 The data properties used for classification. . . . . . . . . . . . . . . . . . . . . . 144





Part I

Introduction and Background

1





CHAPTER 1
Introduction
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This chapter introduces the main themes and structure of the thesis, as well as the con-
text and motivations behind the research. The research questions and contributions are
presented, briefly introducing the peer-reviewed journal and international conference pub-
lications in later sections.

1.1 Introduction

Over the years, there have been two distinct approaches to Artificial Intelligence (AI). One
approach, known as logical ‘Symbolic’ AI, focuses on representing knowledge symbolically
for programs to reason on. An example of symbolic AI is Knowledge Representation and
Reasoning (KRR), which utilises Semantic Technologies for these tasks. These technologies,
introduced by the World Wide Web Consortium (W3C) in 2001 [33], transform the tradi-
tional web—originally designed for humans to store and share documents—into a platform
where explicit annotations are embedded into documents, providing semantic meaning to
the information. This concept, pioneered by Tim Berners-Lee, makes the content on the
web interconnected and machine-readable. This form of AI is commonly referred to as
knowledge-driven AI, where the core techniques involve the construction of a knowledge
base, logical rules, and reasoning mechanisms.
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1. Introduction

On the other hand, statistical Machine Learning (ML) models focus primarily on al-
gorithms that enable computers to learn concepts without explicit definitions [8]. ML is
often referred to as data-driven AI, where patterns in data are exploited to produce an
output from a set of input variables, often excluding the context of the data. Both of these
AI approaches have an extensive set of use cases and applications across a wide range of
industries, including the domain of manufacturing.

The modern era of manufacturing, often termed the fourth industrial revolution or
Industry 4.0, is undergoing digital transformation, leveraging AI, among other digitisation
trends such as the Internet of Things (IoT) and Cloud Computing (CC) [112]. In this
vision, physical components are digitally interconnected and contain the capabilities to
comprehend data, share information, and make actionable decisions, autonomously. This
level of digitisation is propelling the manufacturing industry as one of the main contributors
of data creation and is anticipated to grow exponentially with the ongoing transformation
towards Industry 4.0. Figure 1.1 displays different domains and their quantity of data.

Figure 1.1: The 2018 Enterprise Datasphere statistics by the IDC [269].

To provide some statistics, the International Data Corporation (IDC), a global provider
of information technology, estimated that the Global Datasphere, referring to the total
accumulated data in the “digital universe”, would surge from 33 zettabytes in 2018 to 175
zettabytes by 2025 [269]. Visualising the scale of available data, 33 zettabytes equates
to 33 trillion gigabytes, estimating approximately 4,125 gigabytes for each person on the
planet. To further grasp the anticipated growth of 175 zettabytes by 2025, the IDC noted
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that it would take someone approximately 1.8 billion years to download the entire global
datasphere at an average download speed of 25 megabytes per second [269].

Steel production is one important manufacturing process that is undergoing this digital
transformation. On one side, steelmaking involves industrial-size legacy components that
generate vast amounts of dynamic and static data [271]. On the other hand, steelmaking
processes also require an extensive amount of human knowledge to operate which needs to
find its way into the digitisation processes.

These digital trends have enabled a shift toward smart factories, resulting in the pro-
duction of Cyber-Physical Systems (CPS) [184]. While new manufacturers can invest in
Industry 4.0-compliant machinery and CPS-ready equipment, replacing large-scale legacy
systems in manufacturing enterprises remains a significant barrier. Therefore, an integral
aspect of Industry 4.0 is upgrading the legacy systems without the need to replace physical
components [304].

To reach this goal, system integration across three distinct dimensions of manufacturing
has to be addressed [319], this includes:

• Horizontal integration across the entire value creation network: Horizontal integration
involves the integration of data obtained through collaboration between individuals
and their systems such as operators on the shop floor, suppliers, stakeholders, cus-
tomers, and many others.

• Vertical integration and networked manufacturing systems: Vertical integration in-
volves the integration of systems across various hierarchical levels within a factory,
resulting in a large-scale unified network. The primary goal of this integration is to
make data readily available across all levels of the network, e.g., data collected by sen-
sors on the shop floor can be directly accessed by members operating at the enterprise
level.

• End-to-end integration across the entire product life-cycle: Achieving end-to-end inte-
gration of the entire life cycle of a product is a necessary requirement within Industry
4.0. This involves capturing the historical and operational data of an asset, as well as
its purpose. For example, a Programmable Logic Controller (PLC) would encompass
its conception, design, production, utilisation, and termination phases, not simply the
data collected by the PLC.

Attaining this level of integration is a complex task due to the diversity of languages and
formats used by various systems, organisations, and individuals for communication. The
data collected originates from a multitude of sources, resulting in a lack of uniformity. To
address these challenges, data in its heterogeneity state must be uniformly represented and
standardised, and any conflicts between representations must be resolved. This implies that
entities, such as sensors, assets, machinery, etc., must be semantically described in a format
that is comprehensible by both machines and humans, essentially conveying that machines
should not only possess the capability to read and share information but also comprehend
the underlying concepts in the data.
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Thus, to address the Industry 4.0 requirements, reference architecture models have
been developed on a global scale, each introducing new standards and methodologies. This
includes: (1) the Reference Architecture Model Industry 4.0 model (RAMI 4.0) in Europe
[130], (2) the Industrial Internet Reference Architecture (IIRA) initiative from the US [189],
(3) the Industrial Value Chain Reference Architecture (IVRA) led in Japan [226], and (4)
the China Communications Standards Association (CCSA) and China Intelligent Manufac-
turing System Architecture (IMSA) led in China [66, 329].

RAMI 4.0 is one example of a reference architecture model, which introduces new con-
cepts to overcome ongoing challenges. One example is the concept of an Asset Administra-
tion Shell (AAS), a fundamental concept within Industry 4.0 that digitises physical com-
ponents within a manufacturing environment. When an AAS is installed onto a traditional
asset, the asset is considered an Industry 4.0 component, offering enhanced capabilities
within a larger, semantically interconnected network [305]. The requirements of AAS are
segmented into layers. Each layer states the necessary changes and proposes international
standards and technologies for each requirement. In total there are six layers; we primarily
focus on the information and communication layers in this thesis.

The information layer focuses on the encapsulation and representation of industrial data,
while the communication layer centers on enabling ubiquitous and uniform communication
among physical devices. RAMI 4.0 adopts international standards to achieve the specifica-
tions of each layer, utilising OPC Unified Architecture (OPC UA) among other frameworks
to address the communication tasks, and Automation Markup Language (AML) standards
to cover the main foundation of the information layer. However, upon reviewing relevant
literature, it is evident that although these standards excel at enabling data access and
control, they lack complete semantic interoperability between physical components [281].
For instance, the semantics layer provided by OPC UA is defined in an implicit format
inside specification documents, which rely on human comprehension and modification.

To achieve autonomous communication between components, enhanced semantic in-
teroperability is required, prompting the need to explore methods that can capture data
semantics to overcome these limitations. Hence, we propose knowledge-driven AI methods
that focus on leveraging semantics to model and enrich knowledge within the domain of
Industry 4.0. These technologies show promise in addressing Industry 4.0 challenges [237],
and provide many advantages, including: (1) the ability to provide a shared, machine-
understandable vocabulary for data integration and exchange between components [9], (2)
enabling the capability to access and query data at a virtual level without physical data inte-
gration [335], and (3) simulating cognitive decision making tasks through logical inferences,
rules, and reasoning [327].

In this thesis, we explore the use of semantic technologies, such as ontologies and knowl-
edge graphs, in the domain of steelmaking. In addition, we investigate the use of various
traditional machine learning models in the same context. These ML methods have demon-
strated widespread success in diverse industrial domains, but face limitations in the context
of Industry 4.0 [74], mainly due to the lack of context-aware information in dynamic pro-
duction environments and limited incorporation of semantics, where meta-data is often
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excluded from the model [338]. This challenge is particularly evident in steel production,
where processes are heavily reliant on human knowledge. Thus, we investigate the develop-
ment of hybrid models that combine semantic technologies and ML techniques. We propose
new methods that leverage the intersection of the two AI methods, demonstrating how these
technologies can be combined for predictive analytics and predictive maintenance purposes
within the scope of Industry 4.0.

Finally, with the ongoing digitisation of steel production generating a vast amount of
dynamic and static data, we explore possible methodologies for simulating real-world data
using data streams. We utilise semantic technologies to continuously reason on the data
on the fly, applying ML techniques and domain expert knowledge for the application of
predictive maintenance.

1.2 Context of the Thesis and Motivation

This research is an Industrial Case (ICASE) project, which focuses on real-world industrial
scenarios. Our research is conducted in collaboration with Tata Steel, a large-scale enterprise
that is currently undergoing digital transformation. Tata Steel is utilising new industrial
standards to convert traditional legacy systems into intelligent systems, aligning with the
vision of Industry 4.0.

Looking at the broader context of Industry 4.0, one important aspect of this transition
involves achieving semantic data integration between components. The integration goes
beyond simple and traditional exchange of data among hardware components, requiring the
ability for machines on the shop floor to comprehend the context behind the data. This
enables regular components to make actionable decisions autonomously, i.e., without human
intervention.

To address these challenges, especially in data modelling and exchange, semantic tech-
nologies have been proposed and have shown promising results for semantic interoperability
[339]. These technologies offer methods for capturing data in a format interpretable by both
humans and machines.

In this thesis, we address the ongoing challenges of Industry 4.0 and utilise semantic
technologies to bridge the gap in data modelling and exchange. We focus on one particular
aspect of steelmaking: the cold rolling of steel, with a specific emphasis on maintenance
and scheduling. Our industrial partners have shown significant interest in this scope and
direction.

Our research investigates many digitisation trends, specifically for the use cases within
the ICASE project. Although our research is domain-specific to the ICASE project, much
of the research can be generalised for other operations or enterprises. For instance, the
ontology developed in Chapter 4 is constructed specifically for the maintenance of the cold
rolling machines and processes at the Port Talbot steelworks but can be modified and
generalised to fit other processes and enterprises.
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1.3 Research Questions and Contributions

While exploring the literature on Asset Administration Shells (AAS), there were plentiful
resources available. Meanwhile, when specifically investigating semantic-based AAS, the
literature proved to be insufficient, and a clear understanding of the subject was lacking.
Thus, more clarity on the subject was necessary, leading to our first research question:
(RQ1) What are the foundational standards and ongoing challenges in Industry 4.0 that
relate to semantics? To answer this question, we have compiled a survey paper on semantic-
based AAS, examining the standards and ongoing challenges in Industry 4.0 relating to data
semantics.

Additionally, large enterprises with physical sites such as Tata Steel, generate a vast
amount of data, which are often segmented into different data silos. Different departments
from the same business store data in different locations. To extract meaningful insights
from the data, data integration becomes a prerequisite. Generally, this process involves the
collaboration between external integration experts and internal system architects who are
capable of explaining the data schema. While these data silos may not be directly linked,
the data they store may contain semantic connections. For example, two data silos may
share database tables containing similar columns serving as foreign keys, such as Roll_ID.
Hence, our second research question is: (RQ2) How can the data be seamlessly integrated
and understood with the help of semantics within smart manufacturing? To address this
research question, we have developed the Steel Cold Rolling Ontology (SCRO). This ap-
proach showcases how semantic methodologies can be employed to achieve “virtual” data
integration in the context of steelmaking. We demonstrate an example of how traditional
data stored in an SQL database can be converted into a knowledge graph, utilising the
semantic methods to query the data without the need to physically integrate the data silos.

Machine Learning (ML) has played a significant role in advancing predictive analytics
and maintenance tasks. However, in the context of Industry 4.0, the presence of heteroge-
neous and unstructured data requires formal representations of knowledge to enhance data
understanding. This consideration leads to our third research question: (RQ3) Is there
a way to integrate ML with semantic methodologies in smart manufacturing? What are
the existing AI methods available for combining these technologies? In response to this
question, we have developed our own framework, which converts random forest classifica-
tion into rule-based reasoning that can be applied to a knowledge graph. This approach
incorporates meta-data as part of the model, which can be combined with external domain
or expert knowledge to provide enhanced predictive assistance. We illustrate the utility of
the framework through a use-case in cold rolling, where the framework is used for predictive
analytic purposes.

Finally, considering the continuous nature of manufacturing processes and the impor-
tance of predictive analytic and maintenance tasks, we pose the following research question:
(RQ4) Can we apply continuous reasoning on data streams, incorporating both machine
learning classification and domain expert knowledge on the fly? To address this question,
we have developed a framework for continuous reasoning to data streams, which involves
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both machine learning classification and domain expert knowledge in real time. The pro-
posed framework continuously simulates the generation of real-world data, and after specific
timestamps, the data is collected and processed by a semantic reasoner using rule-based rea-
soning to obtain classifications. These classifications are generated on the fly by converting
the random forest into semantic-based rules and applying rule-based reasoning to the data,
without interrupting the ongoing process. These classifications are fed into the reasoner
once more to apply the domain expert knowledge for a final output. We demonstrate the
applicability of the framework in a use case for predictive maintenance purposes.

Table 1.1 provides a structured format that describes the contributions, highlighting the
research question, focus, methodology, results, and publications of each chapter. This table
extends multiple pages.

Table 1.1: An overview of our contributions.

Chapter 3 Chapter 4 Chapter 5 Chapter 6

Research
Questions

(RQ1) What are
the standards
and ongoing
challenges in
Industry 4.0
related to
semantics?

(RQ2) How can
data and
semantics be
integrated and
understood
seamlessly within
smart
manufacturing?

(RQ3) Is there a
way to integrate
ML with
semantic
methodologies in
smart
manufacturing?
What are the
existing AI
methods available
for combining
these
technologies?

(RQ4) Can we
apply continuous
reasoning to data
streams,
incorporating
both machine
learning
classification and
domain expert
knowledge on the
fly?

Focus Understanding
the foundations
and definitions of
the subject.

Knowledge
acquisition, and
using semantic
methods to
achieve data
integration.

Experimenting
with hybrid
methodologies to
assist with
steelmaking
decision-making
tasks.

Experimenting
with semantic
tools for
continuous
streaming and
reasoning.
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Method-
ology

Conduct a
systematic
literature review.

(1) Follow
well-studied
ontology
development
methodologies to
create our own
ontologies.
(2) Investigate
knowledge
acquisition
methods for
interactions with
domain experts.

Multi-case study
and analysis of
topics and tools
available,
including random
forests and
semantic
languages (OWL,
RDF).

A framework
that combines
machine learning
with semantic
querying and
semantic
reasoning.

Main
Results

(1) Identified key
terms and topics.
(2) Found a gap
in research areas.

(1) Developed
the Steel Cold
Rolling Ontology.
(2) Demonstrates
virtual data
integration and
querying
capability of
semantic
technologies.

Developed a
framework for
combining
knowledge-driven
and data-driven
AI for predictive
analytics in
steelmaking.

(1) An
automated and
continuous
simulation of
data.
(2) Autonomous
decision-making
based on random
forest and
semantic
methods.
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Publicat-
ions

Conference paper
Beden S. & Cao Q.
& Beckmann A.,
“Semantic Asset
Administration
Shells in Industry
4.0: A Survey,” 2021
4th IEEE
International
Conference on
Industrial
Cyber-Physical
Systems (ICPS),
Victoria, BC,
Canada, 2021, pp.
31-38

Journal paper
Beden S. & Cao,
Q. & Beckmann, A.
“SCRO: A Domain
Ontology for
Describing Steel
Cold Rolling
Processes towards
Industry 4.0”.
Information 2021,
12, 304.

Journal paper
Qiushi C. & Beden
S. & Beckmann A.,
“A core reference
ontology for
steelmaking process
knowledge modelling
and information
management‘’,
Computers in
Industry, Volume
135, 2022 , 103574,
ISSN 0166-3615

Conference paper
Beden S. &
Beckmann A.,
“Towards an
Ontological
Framework for
Integrating Domain
Expert Knowledge
with Random Forest
Classification” 2023
The 34th
International
Conference on
Database and
Expert Systems
Applications (DEXA
2023), Laguna Hills,
CA, USA, 2023, pp.
221-224

Journal paper
Beden S. &
Lakshmanan K. &
Giannetti C. &
Beckmann A.,
(2023). Steelmaking
Predictive Analytics
Based on Random
Forest and Semantic
Reasoning. Applied
Sciences. 13. 12778.

1.3.1 Publications

This section lists the publications that have been peer-reviewed and accepted since the start
of the ICASE. In total, there are five publications: two international conferences and three
journal publications.

1.3.1.1 Peer-reviewed International Conference Papers

• S. Beden, Q. Cao and A. Beckmann, “Semantic Asset Administration Shells in
Industry 4.0: A Survey,” 2021 4th IEEE International Conference on Industrial Cyber-
Physical Systems (ICPS), Victoria, BC, Canada, 2021, pp. 31-38, doi:10.1109/

ICPS49255.2021.9468266.

Abstract The Asset Administration Shell (AAS) is a fundamental concept in the Ref-
erence Architecture Model for Industry 4.0 (RAMI 4.0), that provides a virtual and
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digital representation of all information and functions of a physical asset in a man-
ufacturing environment. Recently, Semantic AASs have emerged that add knowledge
representation formalisms to enhance the digital representation of physical assets. In
this paper, we provide a comprehensive survey of the scientific contributions to Se-
mantic AASs that model the Information and Communication Layer within RAMI
4.0, and summarise and demonstrate their structure, communication, functionalities,
and use cases. We also highlight the challenges of future development of Semantic
AASs.

• S. Beden and A. Beckmann, “Towards an Ontological Framework for Integrating
Domain Expert Knowledge with Random Forest Classification” 2023 The 34th In-
ternational Conference on Database and Expert Systems Applications (DEXA 2023),
Laguna Hills, CA, USA, 2023, pp. 221-224, doi: 10.1109/ICSC56153.2023.00043.

Abstract This paper proposes an ontological framework that combines semantic-
based methodologies and data-driven random forests (RF) to enable the integration
of domain expert knowledge with machine-learning models. To achieve this, the RF
classification process is firstly deconstructed and converted into semantic-based rules,
which are combined with external rules constructed from the knowledge of domain
experts. The combined rule set is applied to an ontological reasoner for inference,
producing two classifications: (1) from simulating the selected RF voting strategy, (2)
from the knowledge-driven rules, where the latter is prioritised. A case study in the
steel manufacturing domain is presented that uses the proposed framework for real-
world predictive maintenance purposes. Results are validated and compared to typical
machine-learning approaches.

1.3.1.2 Peer-reviewed Journal Papers

• S. Beden; Q. Cao; A. Beckmann “SCRO: A Domain Ontology for Describing Steel
Cold Rolling Processes towards Industry 4.0”. Information 2021, 12, 304. https:

//doi.org/10.3390/info12080304

Abstract This paper introduces the Steel Cold Rolling Ontology (SCRO) to model
and capture domain knowledge of cold rolling processes and activities within a steel
plant. A case study is set up that uses real-world cold rolling data sets to validate the
performance and functionality of SCRO. This includes using the Ontop framework to
deploy virtual knowledge graphs for data access, data integration, data querying, and
condition-based maintenance purposes. SCRO is evaluated using OOPS!, the ontology
pitfall detection system, and feedback from domain experts from Tata Steel.

• Q. Cao, S. Beden., A. Beckmann., “A core reference ontology for steelmaking process
knowledge modelling and information management”, Computers in Industry, Volume
135, 2022, 103574, ISSN 0166-3615, https://doi.org/10.1016/j.compind.2021.

103574.
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Abstract Following the trend of Industry 4.0, the business model of steel manufactur-
ing is transforming from a historical inwardly focused supplier/customer relationship
to one that embraces the wider end-to-end supply chain and improves productivity
more holistically. However, the data and information required for supply chain plan-
ning and steelmaking process modelling are normally distributed over scattered sources
across organisation boundaries and research communities. This leads to a major prob-
lem concerning semantic interoperability. To address this issue, this paper introduces
a Common Reference Ontology for Steelmaking (CROS). CROS serves as a shared
steelmaking resource and capability model that aims to facilitate knowledge modelling,
knowledge sharing and information management. In contrast to most of the exist-
ing steelmaking ontologies which merely focus on conceptual modelling, our work pays
special attention to the real-world implementation and utilisation aspects of CROS.
The functionality and usefulness of CROS are evaluated and tested on a real-world
condition-based monitoring and maintenance task for cold rolling mills at Tata Steel
in the United Kingdom.

• S. Beden & K. Lakshmanan & C. Giannetti & A. Beckmann (2023). Steelmaking
Predictive Analytics Based on Random Forest and Semantic Reasoning. Applied
Sciences. 13. 12778. 10.3390/app132312778.

Abstract This paper proposes a human-in-the-loop framework that integrates machine
learning models with semantic technologies to aid decision-making in the domain of
steelmaking. To achieve this, we convert a random forest (RF) into rules in a Seman-
tic Web Rule Language (SWRL) format and represent real-world data as a knowledge
graph in a Resource Description Framework (RDF) format, capturing the meta-data
as part of the model. A rule engine is deployed that applies logical inference on the
knowledge graph, resulting in a semantically enriched classification. This new clas-
sification is combined with external domain expert knowledge to provide improved,
knowledge-guided assistance for the human-in-the-loop system. A case study in the
steel manufacturing domain is introduced, where this application is used for real-world
predictive analytic purposes.

1.4 Structure of the Thesis

This section displays the structure of the thesis, which is partitioned into four parts:

• Part I: Introduction and Background containing two chapters:

1. Chapter 1: Introduction Introduces the context of the thesis, research ques-
tions, and contributions.

2. Chapter 2: Background Gives the background knowledge of steelmaking with
a focus on cold rolling processes, Industry 4.0 with a focus on the Reference
Architecture Model for Industry 4.0 (RAMI 4.0), semantic technologies, and
machine learning.
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• Part II: Contributions containing four chapters:

1. Chapter 3: Semantic-Web Asset Administration Shells Survey This
chapter presents a comprehensible literature review that employs semantic tech-
nologies for semantics modelling data and data exchange for the creation of asset
administration shells. In the review, we focus on literature that focuses on or
provides ontological implementations.

2. Chapter 4: An Ontology for Steel Cold Rolling This chapter introduces an
ontological framework we have developed that specifically captures and models
domain knowledge of the cold rolling processes. A case study for data access,
data integration, data querying, and condition-based maintenance purposes is
demonstrated.

3. Chapter 5: Steelmaking Predictive Analytics Based on Random For-
est and Semantic Reasoning This chapter introduces a novel framework that
combines machine learning classification with semantic web technologies for pre-
dictive analytic tasks. This framework demonstrates how random forest classifi-
cation can be converted into semantic-based rules and recreated using rule-based
reasoning, providing benefits such as the integration of domain expert rules for
enhanced classifications. A case study is presented that assists plant operators
with critical decision-making tasks.

4. Chapter 6: Towards a Framework for Continuous Streaming with
Neruosymbolic AI This chapter introduces a software prototype that simulates
real-world data streams for predictive maintenance tasks. This framework gen-
erates data in Resource Description Language (RDF) format, a semantic-based
language, which is continuously reasoned on, applying random forest classifica-
tion and domain expert rules to the data stream in order to predict machine
failure in the scenario of cold rolling.

• Part III: Conclusions this section contains one chapter:

1. Chapter 7: Conclusions, Reflections, and Future Work This chapter
concludes the thesis, giving a high-level summary of what has been achieved.
We reflect on the research questions once more and describe possible future
directions.

• Part IV: Appendices This final section contains Appendix A, which includes some
historical articles, and Appendix B, which contains implementation code.
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In this chapter, we introduce the main topics of steel manufacturing, Industry 4.0, semantic
technologies, and touch on machine learning and neurosymbolic AI.

2.1 Brief Introduction and History of Steelmaking

Manufacturing is the process of transforming raw materials into finished products for con-
sumer use [92]. Steelmaking is one example of a well-established manufacturing process.
Steelmaking is the process of producing a robust and versatile alloy known as steel, which
is primarily composed of iron and carbon among other chemicals. The production of steel-
making involves many physicochemical and refining processes such as melting, separation,
chemical reaction, rolling, solidification, and many others [201]. Steel material can be
produced with a variety of mechanical properties including strength, toughness, ductility,
thickness, etc., to meet the specifications of a variety of products.

Numerous inventions and instances of innovations have significantly improved the rate
of production, as well as the quality of steel. Figure 2.1 presents a timeline that highlights
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some key advancements that brought fruition to steelmaking. This thesis covers several of
these developments, including an example of how Wales has left a global impact in this
domain.

These innovations have spanned the globe, expanding over an extended period, from
the Middle Ages with the inventions of bloomery and forging, to modern-day practices
like mass-automated steelmaking [113]. Bloomery involves heating rocks containing iron
with charcoal in a bloomery—an old-fashioned furnace—resulting in chunks of impure iron,
known as iron bloom [280]. These blooms are then hammered into the desired shape.
Between 1983 and 2007, the Snowdonia National Park Study Centre at Plas Tan y Bwlch
conducted nearly 100 experiments that explored the prospects of a bloomery, detailed in
[222].

A pivotal advancement in the iron and steel industry was the invention of the early Heat
Furnace or Blast Furnace, a tall, vertical shaft furnace [239]. This furnace utilised carbon,
typically in the form of coke, to reduce iron from its original oxide ore form, resulting in a
liquid known as Pig iron [239].

An innovation of the heating furnace was the Hot Blast Furnace, patented by James
Beaumont Neilson in 1828 [29]. This variant marked a significant improvement over the
traditional blast furnace. Neilson’s innovation involved equipping a blast furnace with a hot
blast stove, which preheated the air before placing it into the furnace. This process reduced
fuel consumption and lowered the overall processing time. Initially, the furnace primarily
used charcoal and bituminous coal as fuel for smelting iron. Bituminous coal is a soft and
more readily available coal compared to burning wood for charcoal, but sometimes the coal
contains impurities that affect the quality of the iron produced [109].

Around ten years later, Welsh inventor David Thomas made notable implementations
and improvements to this process. He adapted the hot blast furnace to use anthracite coal,
a harder, cleaner-burning coal [340]. Anthracite coal was abundant in mountainous regions
[63], which was ideal for Thomas who worked in Ynyscedwyn near Swansea. It was in this
context that Thomas and his colleague George Crane built the first anthracite-smelted hot
blast furnace on February 7th, 1837 [29]. Thomas soon after moved to Pennsylvania in
1840, where he took these inventions and catalysed the progress of ironmaking in America.
By 1853, there were 121 anthracite blast furnaces in eastern Pennsylvania [63], earning him
the title of Father of the anthracite iron business, which was presented on his obituary,
published in The Philadelphia Inquirer newsletter on Wed, 21st June 1882 [306].

Looking at further advancements, one of the most notable innovations of steelmak-
ing was the Bessemer Process, first introduced by Sir Henry Bessemer in his paper titled
Manufacture of Malleable Iron and Steel without Fuel, which he presented to the British
Association in Cheltenham on Wednesday, 13th August 1856 [103]. The Bessemer process,
also referred to as the converter process, utilised a reactor to blow air through molten iron,
effectively removing impurities from the material, and resulting in higher-quality steel. No-
tably, this was the first process to produce steel as a one-step process, eliminating the need
to preheat the air before smelting [140]. Figure 2.2 displays the principal structure of the
Bessemer converter on the left and a picture of Bessemer’s steelworks in Sheffield in 1859
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from his autobiography [35].

Figure 2.2: Two figures, where: (a) is the principal of the Bessemer converter, adapted from
[140], and (b) an image of the Bessemer Steelworks at Sheffield after 1859 [35].

Subsequently, Bessemer published a more detailed description and formalisation of the
process in his 1859 paper [34], highlighting its importance and significance, contributing
to its widespread adoption. This method was inexpensive, which significantly reduced the
costs of steel production, facilitating mass production of steel, and impacting substantial
growth of the industries that heavily relied on steel for various applications.

Continuing the trajectory of steelmaking advancements, the 1860s saw the introduction
of the Siemens-Martin process [294], also known as the Open Hearth Process. This method
entailed melting a mixture of pig iron and scrap steel in a reverberatory furnace using
air and fuel gas. This method utilised iron ore to oxidise carbon in liquid pig iron [98].
This process enabled more control of the chemical composition of the steel, offering more
flexibility in terms of raw materials used. This method of steelmaking remained prominent
for several decades, before being largely replaced by modern practices and technologies,
including the electric arc furnace and basic oxygen furnace.

The Electric Arc Furnace (EAF), displayed in Figure 2.3, introduced near the end
of the 19th century, significantly advanced steelmaking by leveraging electricity and the
melting of recyclable scrap [28]. The EAF utilised electrical power to achieve the necessary
temperatures for melting, providing a feature that made attaining high-quality steel more
accessible [310]. Standard EAF operations consist of a sequence of four sub-processes [229]:
(1) charging the furnace using one to three scrap buckets for heating, (2) melting, where
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the arc is ignited using electrical power- melting the scrap steel using electrical discharge
between electrodes and utilising coke, lime, and dolomite to preserve slag formation [179],
(3) superheating, wherein, after the scrap has been melted, the desired temperature is
achieved, and alloying elements or additional scrap can be added to attain the desired
steel composition, and (4) tapping, where, once the temperature is ideal, the furnace tilts
into a tapping position, allowing molten steel to be tapped and cast into the desired form.
This method added flexibility in terms of the raw material used, as well as facilitating the
recycling of scrap metal. Moreover, achieving the desired composition of the steel became
more easily manageable, expanding the production of wider ranges of steel grades.

Figure 2.3: Two diagrams: (Top) One of the first EAF by Héroult. (Bottom) An industrial
EAF in Dommeldange, Luxembourg [37].

The contributions and developments of the EAF are attributed to a few pioneers. First,
Sir Humphry Davy, regarded as the father of dry electro-metallurgy [84], discovered the
carbon arc and demonstrated an experiment in 1810 that used an electric arc to melt iron.
Although he did not use it for steelmaking directly, he proved that such methodologies
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were possible. One of the first real attempts to develop an electrothermic furnace was by
M. Pinchon, patented on March 16th 1853 [84]. Pinchon experimented with electric arc
welding, producing a process that differed from the practices mentioned above by mixing
iron and other ores with carbon, which were shaken between two or more pairs of electrodes,
melting and dropping the material into an externally heated receptacle below. Moreover,
the first electric arc furnace for commercial steelmaking use was designed by the French
pioneer, Paul Héroult around 1890 [215], enabling the industrial scale application of EAF
for steelmaking [82]. The first production was in Syracuse, New York, in 1906 [94].

Finally, post-World War II witnessed the development of the Basic Oxygen Furnace
(BOF) [209], leading to the replacement of many open hearth furnaces in the mid-20th

century [231]. This process, often referred to as the oxygen converter process, operates
by injecting oxygen into molten iron to obtain the desired steel composition [231]. The
key distinction of the BOF, compared to EAF or open hearth process, is that no external
heating is required. Instead, the molten iron and scrap metal are charged into a furnace,
employing an oxygen lance to oxidise the iron and reduce its carbon content [83]. Figure 2.4
displays the schematic representation of BOF, highlighting the key inputs and outputs of
the processes. The standard processes involve several steps [83]: (1) charging the blast
furnace with molten iron from iron ore, (2) injecting an oxygen jet at high speed through
a lance onto the surface of the molten iron bath, (3) refining by supplementing alloying
elements to attain the desired steel grades, and (4) tapping, wherein the molten steel is cast
into its desired form.

Figure 2.4: A schematic representation of the Basic Oxygen Furnace (BOF) [83].

BOF provides efficiency in the process of producing large quantities of steel at a relatively
low cost. During the surge of its adoption, BOF began to replace many open hearth furnaces.
For instance, in 1961, the capital cost of opening a new, optimal open hearth furnace was
estimated at $35 per ton, whereas the capital cost of BOF was estimated $17 per ton
[231]. Additionally, tapping time, i.e., the duration for extracting the molten steel from the
surface, was also significantly reduced from eight hours in an open hearth to 45 minutes in
the BOF. Figure 2.5 displays the rise and fall of different steel-making processes between
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1954 and 1974.

Figure 2.5: A graph displaying the rise and fall of the newer steelmaking processes between
1954-1974, from [302].

Furthermore, BOF methods offer precise control over the chemical composition of the
steel produced, enabling the wide production range of steel grades with distinct properties
for various applications. The method has matured in terms of maximising productivity,
stability, and safety [274]. However, one limitation is that the process is limited in automa-
tion, relying heavily on the operational knowledge of the operators. Additionally, compared
to EAF, BOF relies more on the quality and quantity of pig iron or similar raw material
rather than scrap metal.

In summary, the history of steelmaking is rich, marked by numerous iterations of new
inventions and innovations that have shaped modern-day steel production. The authors
in [37] depict the progressions of development as a tree, where each branch represents an
evolution of a particular technology until its promises are exhausted, prompting a shift to
another branch.

At present, there are two main large-scale methods, Electric Arc Furnace (EAF) and
Basic Oxygen Furnace (BOF) that stand at the forefront of the steel industry. According to
the World Steel Association [332], in 2021, approximately 70% of global steel productions
adopt the BOF in a blast furnace, resulting in the annual production of approximately
1.4 billion tonnes of crude steel while EAF methods account for 30% of global production,
yielding around 560 million tonnes annually. The global steel industry utilises both EAF
and BOF methods, each providing unique advantages and applications, contributing to the
versatility of the steel manufacturing industry.

As mentioned, our research is an Industrial Case project in partnership with Tata Steel.
Much of the steelmaking knowledge is obtained from engagement with experts in the Port
Talbot plant. Figure 2.6 displays the layout of the plant when it was first designed by the
Steel Company of Wales in 1947 [136]. In this thesis, the main research and contributions
primarily focus on one specific process of steelmaking known as cold rolling, which we
introduce in the next section.
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Figure 2.6: A diagram of the full Port Talbot power plant, designed in 1947 by the Steel
Company of Wales [136].

2.2 Rolling of Steel

One important process in steelmaking is rolling. Rolling involves applying plastic deforma-
tion to metal through the use of rolls [283]. Plastic deformation refers to the permanent
change in the shape of a material due to the influence of strong, applied forces [3]. In rolling,
the steel material, in the form of a strip, is compressed between two rotating rolls, where
high compressive stresses are applied to the metal strip, resulting in the desired shape. As
the material passes between pairs of rotating rolls, its diameter is incrementally reduced.

Figure 2.7 displays a wide range of different types of mill stands. This figure illustrates
several metal strips decreasing in size as they pass through the rolls. There are two types
of rolls: work rolls, which are in direct contact with the material, and backup rolls, which
apply compressive pressure on the work rolls. These types will be discussed in greater depth
in the next section. These examples represent longitudinal rolling, the most common form
of rolling, where the axis of rotation is parallel to the direction of motion [334]. Alternative
methods include transverse rolling, where the rotation is perpendicular to the direction of
motion, and skew rolling, where the axis of rotation is at an angle to the direction of the
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Figure 2.7: Numerous variations of mill stands with different load and stress distributions
from [283].

motion. Transverse and skew methods are primarily used for hollow products such as tubes
[334].

Rolling can be applied at two different temperatures, each resulting in steel with dif-
ferent sets of properties and advantages. In hot rolling, the process conducted at a high
temperature, typically above the recrystallisation point of the steel– the temperature at
which the grains in the metal structure are replaced by new stress-free grains [288]. On
the other hand, cold rolling involves compressing the metal below its recrystallisation tem-
perature, normally around room temperature. However, the work rolls are significantly
impacted by strong forces and operating conditions due to the nature of plastic deforma-
tion [267]. Consequently, prolonged usage results in wear on the work rolls, requiring them
to be refurbished. Neglecting the refurbishment of worn rolls can result in poor-quality
steel, containing marks and dents. During the refurbishment, the surface of work rolls is
marginally reduced to remove the worn surfaces, combating roll wear.

The resulting products of the rolling process are known as coils, which are very thin
and ductile steel sheets that are subsequently coiled. Coils can have different properties,
making them versatile for various applications in many industries such as manufacturing,
automobiles, and many more. Hot rolled coils are typically used for structural components
such as railroad tracks, whereas cold rolled coils are commonly used for applications that
value precise and smooth surfaces such as automotive parts and electronic components [300].

The first rolling mill is not precisely documented, but Leonardo Da Vinci is credited
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with an early drawing of the concept in the 1480s [270]. Figure 2.8 and Figure 2.9 display
his early drawings of rolling, which notably highlights the need for larger diameter backup
rolls to support the smaller rolls.

Figure 2.8: A sketch by Leonardo Da
Vinci of a rolling Mill published in 1485
[205].

Figure 2.9: Da Vinci’s design of a rolling
mill from Science Museum, London (Sci-
ence & Society Picture Library) [298].

During the 15th to the 17th century, the initial application of rolling was primarily for
the production of gold lace and other soft metals [270]. It wasn’t until the 17th century,
with the invention of the Bessemer process, that rolling was extensively employed for mass
steel production [77].

Figure 2.10: A sheet-metal mill during the Industrial Revolution, from the Metalworking
World Magazine [205].
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2.2.1 Use case of Cold Rolling: Cold Rolling at Tata Steel

In this section, we describe the cold rolling processes at the Port Talbot plant in South
Wales. A large deal of the knowledge of the cold rolling processes presented in this section
and thesis was obtained through live visits and demonstrations of the cold rolling operations
at Tata Steel with experts.

In Port Talbot, home to one Tata Steel plant, cold rolling is divided into two distinct
workstations. First, LINK is the name of the main operations of cold rolling, encompassing
the physical processes of condensing the metal strip into sheets. This process is comprised
of three sections: the pickle line, accumulators, and the rolling mill. Second, an extension
that focuses on the refurbishment of the rolls.

The initial procedure of steelmaking produces undesirable oxidations on the metal. To
address this issue, the metal firstly undergoes surface treatment on the pickle line. Here, the
process of pickling cleanses the metal by using acid to eliminate impurities and oxidations,
resulting in a smoother surface.

Subsequently, the pickled material is transported onto the accumulators. In this stage,
the metal strips are stored and accumulated before entering the rolling mills. The accu-
mulators enable the metal strips to move at varying speeds at different points of the full
process. Thus, the accumulators play a crucial role in balancing the speed between the
pickle line and the rolling mills, ensuring that the whole process is continuous and seamless
from start to finish. For example, when the rolling mill is paused to swap work rolls, the
pickle line can continue to run or vice-versa.

Finally, the material passes through the rolling mills, where its thickness is reduced.
The rolling mill at Port Talbot compromises a total of five stands. However, the amount
of thickness reduced is not uniform across each stand. Each stand is equipped with spe-
cialised machinery to achieve the optimal and precise desired thickness property. Stands 1–3
generally apply the most deformation to the steel strip, resulting in the highest reduction.
Stands 4–5 are often employed to smooth or re-surface the steel strip, ensuring it meets the
specifications of the customer’s order.

In the rolling mill at Port Talbot, each stand is equipped with a set of components,
including two work rolls, two backup rolls, and four chocks. The chocks securely hold the
rolls in place and also incorporate bearings to facilitate rotation. The arrangement is such
that each roll is paired with another of the same condition and diameter– whether it be
two main rolls or two backup rolls. These pairs are expected to undergo their lifecycle
together. Every roll is designated as either having a top or bottom status. In the event of
severe damage to a roll, instead of discarding both rolls in the pair, the undamaged roll is
reassigned to a new pair with the same diametric value. This approach minimises waste
and optimises the use of functional components.

The backup rolls are much greater in size and are placed above and below the work
rolls, applying a great amount of pressure on the work rolls. The work rolls come into
direct contact with the steel material and are responsible for the deformation of the steel.
Due to this direct involvement, they are more susceptible to wear, and thus, are expected
to undergo the refurbishment process at TTL regularly. This process ensures that the worn
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2.3. Modern Steelmaking Architecture

surface of the rolls is removed, maintaining the efficiency of the rolling mills and the quality
of steel produced. Additionally, each roll is crafted with a slight camber at the center to
provide support for the applied pressure during the rolling process.

Work rolls are originally purchased with a diameter of 600mm and repeat the refur-
bishment cycle until they reach a diameter of 512.8mm. At this point, they have reached
the end of their operational life and are ready to be sold as scraps. Each refurbishment
typically removes as little as a quarter of a millimetre, thus, each work roll is expected to
be refurbished hundreds of times. Sometimes mill incidents occur which require removing
greater chunks of diameter, greatly impacting the health of the rolls [266]. Backup rolls, on
the other hand, are significantly larger and don’t require refurbishment as regularly. Their
primary role is to provide support to the work rolls, and their texture is deliberately kept
slightly softer to prevent any potential damage to the work rolls.

2.3 Modern Steelmaking Architecture

With the advent of the Third Industrial Revolution (I3.0), marked by the introduction of
computerisation and large-scale automation, the architectural framework of modern steel-
making adopts a hierarchical structure of systems based on the IEC-62264 standard for
enterprise-control system integration [153]. This hierarchical representation is displayed in
Figure ??, where each layer signifies a distinct and separate system.

Figure 2.12: The Industry 3.0 stack based on the IEC-62264 standard [153].

Many large-scale enterprises in an organisation typically deploy an Enterprise Resource
Planning (ERP) system. The purpose of an ERP system is to integrate business processes
with their associated information and workflows [4]. When a new customer order is gen-
erated, it is incorporated into the ERP system, which subsequently delegates the tasks to
the lower layers of the hierarchy [175]. The ERP system may include one or more work
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centers, to which it dispatches the order. The work centers operate through Manufacturing
Execution System (MES) systems [177], which have control over one or more Supervisory
Control and Data Acquisition (SCADA) systems. Similarly, the SCADA system governs
one or more Programmable Logic Controllers (PLCs), responsible for reading and writing
to the field devices [75].

This hierarchical structure implies that for communication to occur between the top
layer (enterprise system) and the bottom layer (field device), information must traverse
through each intermediate layer [284]. In other words, establishing communication between
the enterprise system and a field device requires interaction with every system within the
hierarchy.

In addition, when adding a new asset or component to the plant, integration is required
at every level of the hierarchy. Adding an asset to the ERP system will not automatically be
included in the MES, SCADA or PLC systems. This is because each system has a unique
namespace, and operates independently. Therefore, numerous separate integrations are
required, with costs accumulating at each level. Integrators, known as experts specialising
in data integration, often focus on a specific system. For instance, an ERP integrator may
not have the necessary skills to integrate an MES or SCADA system, further increasing
costs.

The advancements in digital technologies are propelling the steelmaking industry into
a new industrial revolution. This vision revolves around creating a seamlessly integrated
network where all systems operate under a unified namespace. In this interconnected land-
scape, systems are flexible, enabling direct information exchange between various compo-
nents, such as PLCs sending data directly to the ERP system and vice versa. Instead
of requiring integration efforts at each level, the integration process is streamlined to a
one-time event when introducing a new component into the network.

As a result, this approach will not only significantly improve machine productivity, but
also significantly reduce expenses, minimising the need for numerous integrations. This
example of transformation is one of many benefits that illustrate a more efficient and inter-
connected manufacturing ecosystem.

2.4 Industry 4.0

Digital transformation in manufacturing is forging a shift in paradigm, introducing novel
innovations, technologies, and concepts for organising industrial resources and processes.
A handful of emerging and evolving technologies including Cyber-Physical Systems (CPS),
the Internet of Things (IoT), Artificial Intelligence (AI), Industrial automation, and many
others are interconnected under the umbrella term Industry 4.0 (I4.0) [184].

I4.0 symbolises the fourth industrial revolution, linking to significant advancements
in the industrial world illustrated in Figure 2.13. To briefly mention some history, the
first industrial revolution, starting in the 1750s, marked the introduction of mechanisation
and the adoption of steam and water power. This was the turning point of converting
from human and animal labour to powered machinery, featuring innovations such as steam
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engines, power looms, coke smelting, rolling processes for iron production, and many others
[211]. The second industrial revolution, occurring between 1870 and 1914 (with some earlier
mentions in the 1850s), was characterised by mass production, assembly lines, and the
integration of electricity [212]. The third industrial revolution began around 1969, which
unlocked mass automation, computerisation, and electronics. The steelmaking processes
were substantially improved during this period.

In fact, the first computer in Wales was purchased by the Steel Company of Wales
(SCOW) in 1960 at a price of £49,450 and was used to design the Abbey Steel Works
[13]. This later became the same Port Talbot plant mentioned in our introduction, which
is presently owned by Tata Steel. The device was known as the Ferranti Pegasus Mark I
computer and was designed in the 1950s by former Elliott Brothers Ltd engineers, who sold
around 40 Pegasus computers between 1956–1962 [285]. The first one in Wales was the 27th

manufactured Ferranti Pegasus computer [311]. This machine was used exclusively by the
Operational Research Department, which utilised the computer for production planning
and control in the rolling mills [307]. The success of computerisation during the third
industrial revolution in Wales led to astronomical investments in Steelmaking, for instance,
the £1,400,000 investment by SCOW in 1967 when they purchased six computers [307]. I
have included two articles that document this investment in Appendix A, from The Times
and The Dragon, both published in May 1967.

Figure 2.13: A quick summary of the four industrial revolutions.

Jumping back, the term Industry 4.0 appeared in 2011 at the Hanover Fair in Germany
by a working group from the Research Union Economy-Science of the German Ministry
of Education and Research [71]. Despite its German origins, similar technology-driven
initiatives within manufacturing were also emerging on a global scale. For instance, the
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United States launched the Advanced Manufacturing Partnership was introduced in June
2011 [213], while the European Factories of the Future Program was initiated in 2013 [95].
Furthermore, numerous initiatives from consulting companies, technology providers, gov-
ernmental bodies, and academia have introduced different labels to discuss the same shift
in the manufacturing paradigm [71]. These labels include synonyms such as the Fourth
Industrial Revolution, Smart Manufacturing, Digital Transformation, Industrial Internet,
Smart Factories, and many others. In recent literature, Industry 4.0 has emerged as the
key term that encompasses these labels [71]. While Industry 4.0 initially served as a proof
of concept in the manufacturing domain, it has evolved with multiple implementations and
applications, extending its reach into various disciplines.

The initial vision of Industry 4.0 in smart manufacturing began with designing com-
ponents to use and share data without human input. Meanwhile, a study published by
Acatech describes that the most crucial and difficult aspect of this vision requires achieving
cooperation among the components in a plant [135]. Thus, Industry 4.0 seeks to leverage
the widely interconnected digital trends to achieve “total connectivity” of data, which in
turn, facilitates the cooperation and collaboration among technical objects. [148].

To achieve this level of digitisation, a crucial task involves the installation of sensors on
hardware devices to capture all generated data as logs. Subsequently, the adoption of new
technologies can utilise these logs, enabling devices not only to exchange information but
also to make autonomous decisions, resulting in the transformation from regular shop-floor
components into Industry 4.0 components (I4.0 components).

To achieve this goal, reference architecture models have been developed on a global
scale.

2.4.1 Reference Architecture Models

A reference architecture model is a standardised and abstract framework for understanding
relationships among entities within an environment, which can be applied to guide the de-
velopment of systems, solutions, and application architectures [193]. The primary objective
of the model is to define the overlying architecture of a system, by declaring consistent
standards or specifications to support its necessary environment. For example, consider a
reference architecture for a residential house. For a residential house, it is necessary to pro-
vide one or more bedrooms, bathrooms, kitchens, and living room spaces. The house must
also be accessible through one or more doors, with enough security to detect and prevent
unauthorised access. Additionally, the construction must be resilient against environmental
threats, including fires, hurricanes, and earthquakes [151].

There is a great level of abstraction when creating a reference architecture model. In
the example, the focus was on identifying the fundamental elements of all houses, and not
one particular instance. Additionally, the architecture model does not focus on specific
standards, technologies, or implementations. That is, it does not state that every house
must be constructed using bricks, but instead provides a conceptual structure without
specifying such detailed requirements or limitations.
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Many countries have developed their own reference architecture models to realise In-
dustry 4.0. This includes the Reference Architecture Model for Industry 4.0 (RAMI 4.0)
[130], the European initiative led by the German Electronic and Digital Industry Associa-
tion, ZVEI, in collaboration with the Association of German Engineers consortium, VDI.
Another example is the Industrial Internet Reference Architecture (IIRA) model [189], the
initiative led by the Industrial Internet Consortium based in the U.S. The IIRA focuses
on encapsulating all smart applications, such as smart homes, smart cars, smart manufac-
turing, etc., whereas RAMI 4.0 solely focuses on smart manufacturing and Industry 4.0.
Further models include the Industrial Value Chain Reference Architecture (IVRA) [226],
representing the Japanese conceptual architecture for smart factories, or the China Com-
munications Standards Association (CCSA) architectural model specifically for Internet of
Things (IoT) related models [66], and China Intelligent Manufacturing System Architecture
(IMSA) for smart manufacturing [329]. In this thesis, we primarily focus on the RAMI 4.0
model but briefly touch on the IIRA model in the next section.

2.4.1.1 Industrial Internet Consortium

Firstly, the Industrial Internet Consortium (IIC) based in the U.S., is the leading group
that is investigating Internet of Things and Services (IoTS) [150]. This includes any form of
service that can be improved through the use of IoT. Examples include smartphones, smart
homes, smart mobility, etc. As Industry 4.0 falls under smart manufacturing, it is covered
within their Industrial Internet Reference Architecture (IIRA) model.

IIRA contains the Industrial Internet Architecture Framework (IIAF) [150] which con-
tains all the information identifying the fundamental architecture constructs. These con-
structs are divided into four main categories:

• Concerns: Concerns refer to any topic of interest related to the system.

• Stakeholders: Stakeholders are people or organisations interested in a concern.

• Viewpoint: Viewpoints are conventions framing the description and analysis of specific
system concerns.

• Model Kinds: Model kinds aid the task of describing, analysing, and resolving con-
cerns.

These categories are stored under “frame”, as represented in Figure 2.14, which form
detailed viewpoint-by-viewpoint analysis of potential concerns for adopting Industrial-scale
Internet of Things (IIOT) systems, raised by their stakeholders. We use the business view-
point as an example to describe the process of IIRA. In this viewpoint, stakeholders set
out to identify new visions of how the adoption of a new IIoT system could benefit the
organisation. The stakeholders establish the values and notable experiences this new vi-
sion could accomplish. Afterwards, the stakeholders develop the key objectives that will
drive the implementation of the vision. From these objectives, the fundamental capabilities
required for the system are derived.
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Figure 2.14: The IIC Industrial Internet Architecture Framework [150].

2.4.1.2 Reference Architecture Model for Industry 4.0

As discussed previously, the IIRA focuses on all things that are “smart” which includes
smart manufacturing and smart factories. In contrast, Europe has a specific focus on
Industry 4.0, leading to the creation of their own architectural framework, known as the
RAMI 4.0 mode. RAMI 4.0 is displayed in Figure 2.15.

Figure 2.15: The Reference Architecture Model for Industry 4.0 (RAMI 4.0) model by ZVEI
[318].

RAMI 4.0 is a 3D model framework, resembling the Smart Grid Architecture Model
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(SGAM), and is designed to highlight the most important aspects of achieving Industry 4.0
[2]. SGAM, initially developed to facilitate new communication protocols in networks of
renewable energy sources [345], serves as the basis for RAMI 4.0. This model uses a “divide
and conquer” strategy to address the complex processes of Industry 4.0 by breaking them
down into smaller and more manageable processes.

Like all 3D models, RAMI 4.0 contains three axes: the layers axis, the lifecycle and
value stream axis, and the hierarchy levels axis. We will use examples from the cold rolling
processes to describe some concepts.

Layers Axis Firstly, the layers axis, on the left-most axis of the model, represents the
processes that describe the technical and business perspectives of a product [345]. The
RAMI 4.0 model consists of six architectural layers: Asset, Integration, Communication,
Information, Functional, and Business.

Layer Description

Asset The asset layer encompasses all tangible entities within a manufac-
turing environment that can be digitally connected. In the scenario
of cold rolling, this may involve physical entities such as the rolling
mills, rolls, coils, and other machinery, as well as intangible elements
such as documents, plans, orders, and personnel involved.

Integration The integration layer serves as a link between the physical assets from
the asset layer and their digital representations. The objective of this
layer is to compose a unified way of collecting data from all assets
in the asset layer and digitally storing that information. This can
be achieved with the use of sensors and actuators and other forms
of connections such as QR codes. The collected digital data is then
categorised within the subsequent layers.
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Communication The communication layer is responsible for establishing standardised
communication between the integration and information layers, facil-
itating end-to-end data exchange paths and interconnectivity among
components. Since various components are created by different com-
panies and, thereby, use different communication protocols; this layer
acts as a mediator. For instance, a Siemens machine may commu-
nicate differently than a machine from another manufacturer. The
communication layer is tasked with developing a universal standard
for communication between servers and devices in the field. Addi-
tionally, it defines how data should be packaged within its payload.
There has been extensive discussions on the communication layer, as
the widely used TCP/IP communication standard was found to be
non-compliant with Industry 4.0 requirements. Consequently, alter-
native technologies have been researched to fill this gap. The ZVEI
group has reached a consensus to adopt OPC Unified Architecture
framework for this task, which we define later.

Information The information layer holds the essential data and attributes of an
asset, representing the digitalised information obtained from sensors
in the integration layer. Taking an example of cold rolling, it would
encompass the roll data, which includes the roll’s unique identifier,
position in the mill, initial diameter values, and other relevant infor-
mation.

Functional The functional layer formally describes the functions and services of
an asset, outlining their purposes. This layer acts as a foundation for
the horizontal integration of various services [99]. It is where rules
and decision-making logic are generated and stored.

Business The business layer is the enterprise-level layer, which deals with all
the business models and overarching processes. The purpose of this
layer is designed to uphold the integrity of functions in the value
stream and finalise the rules that the system is required to follow [2].

Table 2.2: The layers axis of the RAMI 4.0 models.

Each layer encapsulates fundamental concepts, and introduces potential technologies to
achieve each goal. In this thesis, we focus primarily on the semantic interoperability issues
within the information and communication layers.

Life-cycle and Value Stream Axis This axis expresses the life-cycle and associated
value stream of products, machinery, factory, and other assets according to the IEC 62890
standard (Industrial-process measurement, control and automation - Life-cycle-management
for systems and components standards) [155]. The purpose of this axis is to record all
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relevant data of a product– from its initial idea and design, until the end of its life. This is
divided into two main sections: type and instance.

• Type: A type is always instantiated with an initial idea. It involves planning the idea
and describing the asset in its most basic and first concept. This branches out to the
development, maintenance, and usage phases of the idea. Examples may include low
or high-fidelity prototypes, simulations, or instruction manuals.

• Instance: Instance describes the concrete assets and their operations, based on the
idea formed in the type stage. This ranges from production to usage and maintenance
of the asset, including product details, usage, and services, until it is scrapped.

An example of this process would be the development of a new roll for the cold rolling
mill, representing the creation of a new type. The roll is designed to meet specific standards,
and undergoes development, sampling, testing, and validation through prototyping and
simulations. This process may involve several iterations, but once the design has been
adequately validated, the roll type is released for sale and assigned its own product code
within a market. Afterwards, series production will begin, where each roll is manufactured
and given a unique serial number for identification and becomes an instance of the asset
design developed in the type stage.

Hierarchy Levels Axis The final axis of the reference architecture model describes the
hierarchy changes required for Industry 4.0. The core structure of this axis is based on
the IEC-62264 (Enterprise-control system integration) [153] and IEC-61512 (batch control)
[152] standards within a manufacturing environment. These standards cover various sectors
of a factory, from the process industry to factory automation. The RAMI 4.0 model incor-
porates key terms from these standards, such as Control Device, Station, Work Centers,
and Enterprise, and introduces additional layers, namely Product and Field Device at the
bottom and Connected World at the top.

The Field Device represents the functional level of an intelligent field device, such as
a smart sensor [2]. Additionally, the product itself is a crucial aspect of Industry 4.0 and
remains integral to the process even after manufacturing and sale. Finally, the Connected
World layer is introduced above the top hierarchical element of ‘Enterprise’ found in the
previous standards. Industry 4.0 aspires to establish a higher level of connectivity compared
to the factory level, emphasising collaboration not only within a single factory but also
extending to other factories, suppliers, customers, and beyond.

2.4.2 The Industry 4.0 Component

Numerous manufacturers are currently developing new components for Industry 4.0 (I4.0
components) [331]. However, the majority of industrial manufacturing still operates under
Industry 3.0, utilising legacy hardware and systems that do not comply with Industry
4.0 standards. The task of replacing these components is not only challenging but also
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exceptionally expensive. Instead, Industry 4.0 aims to transform existing legacy components
into compliant I4.0 components.

An I4.0 component functions as a model designed to encapsulate all data pertaining
to an asset, encompassing properties, configuration parameters, and skills of said asset
[100], essentially constituting a Cyber-Physical System (CPS). More specifically, an I4.0
component serves as a globally and uniquely identifiable participant with communication
capabilities within an I4.0 system [49]. These components comprise two integral parts:

• Asset : Physical or immaterial objects existing in the real world e.g., legacy hardware
or systems.

• Administration shell : Digital representation of the asset, encompassing digitised legacy
hardware or systems and their associated data.

Figure 2.16: A representation of an I4.0 Component by the IEC [119].

Any asset that is equipped with an administration shell is described as an I4.0 compo-
nent; this can range from a module within a machine to a whole production system [119].
Subsequently, communication occurs over an I4.0 network between administration shells,
each of which contains formal and unified methods of storing and transferring information.
The minimal level of communication necessary for an asset to be considered an I4.0 compo-
nent is to provide passive communication capabilities. Passive in this context implies that
the AAS can be a static document or package of files which simply provide all information
related to the asset e.g., RFID or barcodes [250].

Based on the specifications in [49], I4.0 components require the following properties:

• The component is clearly identifiable as an entity: This implies the component requires
a unique identifier in the network, ensuring all assets have their own non-duplicate
ID.

• Categorised as either type or instance: The I4.0 component carries all information of
an asset throughout its lifetime. The asset is either in its initial development stage
(type) or a concrete asset that has its own operations (instance).
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• Capable of active or passive I4.0 communication: The purpose of Industry 4.0 is
the connection and interaction between devices. I4.0 components require secure
I4-compliant communication, services and QoS. I4.0 components communicate on
the basis of a Service-Oriented Architecture (SOA) which will include common I4.0-
compliant semantics.

• A representation of an asset by means of information: AAS represents the data and
dynamic behaviour of an asset. The information stored extends to characteristics
related to the business model, functions, performance, and more [191], which are
stored inside as a partial model within the administration shell.

The concept of an I4.0 component is an enabler to characterise the communication
between virtual and cyber-physical objects and processes [195]. An I4.0 system is comprised
of numerous I4.0 components.

2.4.2.1 Asset Administration Shell

The Asset Administration Shell (AAS), sometimes referred to as an Administration Shell, is
the key enabler of transforming regular components into I4.0 components. It is the virtual
and digital representation of the asset that contains all data shared and functions of an asset
[328]. The data stored contains all the life-cycle data of the asset and provides the status
of the asset, allowing the information to be shared over an I4.0 network. The AAS is able
to provide controlled access to all information of the asset [252], and is developed to sup-
port interoperability between application managing manufacturing systems from hardware
systems to software components [62].

Each embedded system will contain its own administration shell with active I4.0-compliant
communication capabilities [49]. This model enables ubiquitous communication and com-
mon understanding between machine-to-machine (M2M), hardware and software compo-
nents as well as humans-to-machine (H2M) from their accessible virtual interface [101].

Each AAS contained two compartments: a Digital Factory Header and a Digital Factory
Body. The header contains the unique identification and information to identify the asset
of the administration shell. In contrast, the body contains the information and functions
of the asset. The data is represented and categorised as submodels containing hierarchical
properties to specific parts of the information i.e., two submodels may lead to two different
functions of the asset. These property descriptions are required to follow specific standards
such as IEC 61360 (Standard data element types with associated classification scheme)
[154].

The fundamental requirements of an AAS are presented in Table 2.3 [287]. As mentioned
in the requirement, each AAS must contain a manifest and a component manager. A
manifest contains the mandatory information about the asset, structured similarly to a
table of contents, containing all the data of the AAS and component itself, e.g., its data
and functions. The manifest also represents how the AAS is connected to the real asset
through appropriately secure identification [49]. The component manager, on the other
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Table 2.3: The fundamental requirements of an Asset Administration Shell.

ID Requirement Details
1 The AAS must consist of a body and header, where the body contains all information of

the asset and the header contains the meta-data and the utilisation of the asset.
2 The AAS must consist of a manifest and component manager.
3 The information in the AAS should be accessible via service-oriented architecture such

as an API call.
4 The AAS must represent information about different application aspects of the asset.
5 The AAS must be structured in a format that is compatible with existing views (pursuant

to MES ISO/IEC81346, Digital Factory BCFLP etc.)
6 The AAS must have a unique ID.
7 The asset represented by the AAS must have a unique ID.
8 The factory must be considered an asset, and therefore, have its own AAS with a unique

ID.
9 The AAS types and instances must be identifiable.
10 The AAS should be able to include references to other AAS or I4.0 information (i.e., com-

prising of the submodels describing the asset).
11 The AAS must be possible to include additional properties, e. g. manufacturer-specific.
12 Each AAS must contain a reliable minimum number of properties and their definitions.
13 All properties and information captured in the AAS must be suitable for types and

instances.
14 The AAS must provide a hierarchical and countable structure to store its properties.
15 The properties of one AAS must be referenceable by other properties in other AASs.
16 The data and functions of an AAS must be referenceable by properties of the AAS.
17 Security-based measurements e.g., availability, integrity, confidentiality, visibility, and

authenticity must be made available to the properties of the AAS.

hand, provides external access to the data and functions stored in the other components on
the I4.0 network.

2.4.3 Enabling Technologies for the Communication and Information
Layers

To tackle some of the AAS requirements, a joint working group including OPC Foundation,
ZVEI, and VDMA have investigated possible technologies and solutions for the implemen-
tation of AAS. Specifically, we mention the main standards for the communication and
information layers of the RAMI 4.0 model.

OPC Unified Architecture The working group have chosen the OPC Unified Archi-
tecture (OPC UA) as the standard for machine-to-machine communication, [250] covering
the communication layer of the RAMI 4.0 model. The OPC UA protocol follows the IEC-
62541 standards [125], which are derived from the OPC UA’s Core, Access, and Utility
Specifications [133], as shown in Figure 2.17.
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OPC UA is a platform-independent and connection-oriented communication protocol
based on Service-Oriented Architecture (SOA), developed by the OPC Foundation [341].
The purpose of OPC UA is to standardise vendor-independent communications between
machines and smart systems [90] and improve interoperability. Typically, these assets and
systems follow different methods of communication such as SERCOS, ProfNET, or other
ethernet-based fieldbus protocols, which need to be unified under one namespace.

Figure 2.17: The OPC UA specifications from [230].

Similar to many communication protocols, OPC UA operates under a client-server ses-
sion protocol and can be installed on small sensors and programmable machines such as
PLCs, enabling communication over a single thread [199]. Additionally, supervisory sys-
tems such as SCADA, MES, and ERP fall within the scope of integration with OPC UA,
covering the entire automation pyramid [199].

In 2019, OPC UA released a publish/subscribe (PUB/SUB) specification, allowing OPC
UA servers to publish data, where clients can subscribe to specific parts of this data, inde-
pendent of its origin. [257].

The main benefits of adopting the OPC UA standards include interoperability and
machine-to-machine communication, enabling the transmission of low-level signals from field
devices at a semantic level. Additionally, OPC UA provides improvements in performance,
and stability, and incorporates built-in robust security [341]. These features contribute to
its wide adoption in industrial systems. However, despite these improvements, the seman-
tics covered by OPC UA are defined within specification documents, captured in an implicit
format that is only interpretable by human understanding [281]. In other words, OPC UA
does not have the semantic capabilities to satisfy large-scale information-sharing require-
ments fully [110], and thereby, only provides limited capabilities for enabling automated
reasoning and knowledge inference within the OPC UA namespace [17]. Thus, we investi-
gate other technologies to represent and process explicit semantics for the information and
communication layers of RAMI 4.0.
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AutomationML AutomationML (AML) is an XML-based data model and data exchange
language designed specifically for modelling manufacturing systems [341], following the IEC
52424 standards [156]. AML is capable of adapting, extending, and combining existing stan-
dardised industrial data formats, such as CAEX, COLLADA, and PLCopen XML systems
that model a wide range of data, including signals, geometry, kinematics, and sequential be-
haviours [87]. CAEX serves as the top-level core of AML, functioning as an object-oriented
data format that can be utilised for various data formats. AML facilitates systematic man-
agement of data exchange workflows between multi-disciplinary engineering tools.

Figure 2.18: One implementation of a manufacturing system demonstrating the combination
of OPC UA and AML [342].

Figure 2.18 is a snippet from [342] that illustrates one example of how OPC UA and AML
can be interconnected within a manufacturing system. The authors in [342] condense the
RAMI 4.0 model into four layers, where OPC UA was implemented for the communication
layer, and how AML was interconnected to represent the information layer. This approach
demonstrated how data from the field layer could be made accessible at the enterprise
layer by combining these two standards. Specifically, communication with the field devices
occurred over an OPC UA server via different communications, in this case, WiFi and
Powerlink. This server was accessible through an OPC UA interface, interconnected with
the information layer via a pre-set AML data model. This model was reachable by the
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enterprise layer through a graphical user interface (GUI) or API call to the OPC UA server.

2.4.4 Summary

To address the challenges posed by Industry 4.0, several architectural frameworks have
been developed. In this section, we introduced the European initiative, the RAMI 4.0
model, which breaks down complex challenges into smaller and more manageable tasks.
The model consists of six hierarchical layers. The communication and information lev-
els focus on maintaining a unified structure for capturing and autonomously transferring
information between components within a smart manufacturing environment. Many inter-
national standards, such as OPC-UA for data exchange and AutomationML for data access
and storage, have been adopted for this task.

However, in the broader context, while these standards are able to enable the exchange of
information between devices on the shop floor, there exists limited semantic interoperability.
Consequently, there is a need to explore other semantic methodologies as a possible solution
to address the remaining challenges with semantic interoperability, which we aim to realise
through this thesis.

2.5 Introduction to the Semantic-Web: Technologies and
History

The World Wide Web (W3) was founded in 1989 by the World Wide Web Consortium (W3c)
led by Tim Berners-Lee and was initially designed as a medium for storing and displaying
documents for humans [31]. Meanwhile, the Semantic Web is an extension of the W3 in
which information is given explicit meaning and is stored in a structured format that can
be processed automatically by a machine [33]. This structure provides meaningful content
on the web where knowledge-driven and sophisticated tasks can be executed autonomously
and automatically by the computer, while not directly affecting the user.

Consider the following scenario, adapted from [33] to the context of the thesis: pic-
ture a garage owner looking to purchase some steel parts. They search the web for
steel manufacturers, where a list of possible providers is displayed. The search shows
providers within a 30-mile radius of the user’s location, each containing a customer

rating ranging from one to five stars. The user clicks on the manufacturer with the
highest rating, also the nearest to the customer’s home. However, the specific components
the user requires are unavailable. Thus, the user sets stricter preferences for location
and product availability, which instantly displays available suppliers. The second selected
supplier would take longer to deliver, which is less important to the user, while the
stock price was cheaper which is more important. The emphasised keywords relate to
terms whose semantics or meaning are not readily clear for a computerised system but can
be defined through the Semantic Web. Therefore, the next time the same user conducts a
similar search, the software agent can carry out similar sophisticated tasks without or with
minimal human input.
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The W3C has introduced a wide range of different languages and technologies, which
have been innovated over many years to achieve this vision. In this section, we cover the
fundamental technologies and languages for data semantics, including Knowledge Repre-
sentation and Ontologies, which we apply in an Industry 4.0 setting.

2.5.1 Knowledge Representation

The first technology the W3C mentions is the advancement of Knowledge Representation
(KR) [33].

Ian Horrocks, a key contributor within the KR community, defines the term “Repre-
sentation” as the ‘relationship between constructs in a language and entities in the world,
namely the relationship between syntactic constructs in a formal language and objects in
some other formal system that is supposed to be an analogue of (part of) the world.’ [143].

In other words, the notion of KR focuses on how knowledge can be represented sym-
bolically and in a format that can be comprehended and manipulated by both humans and
computers in an automated way. It is the idea of modelling what a human knows in a
systematic and explicit format for logical reasoning [186].

Knowledge itself, in the context of Artificial Intelligence, can be defined using the Data,
Information, Knowledge, and Wisdom (DIKW) hierarchy [291], displayed in Figure 2.19.
In order to define and model knowledge, we must first define data and information. Firstly,
data, in its raw form is an individual fact, which is considered to know nothing by itself [344].
Meanwhile, data can be collected, processed, and transformed into relevant information,
providing useful answers to who, what, where, and when questions. In contrast, knowledge
refers to the know-how and is capable of providing comprehensible insights and patterns
obtained from processed information, enabling intelligent systems to understand, learn,
and infer decision-making. The final layer, wisdom refers to evaluating and reflecting on
decisions, leading to the know why.

The DIKW hierarchy can be applied to many domains, which include artificial intelli-
gence and smart manufacturing. According to a study in [291], the first mention of such a
hierarchical structure is from a poem by T.S Eliot in 1934 named The Rock, which quotes:

Where is the wisdom we have lost in knowledge?

Where is the knowledge we have lost in information?

In contrast, the concept of knowledge representation is not a recent development either.
The practice of using a collection of symbols to represent information dates back to logicians
such as Augustus De Morgan (1806–1871) and George Boole (1815–1864), who made signifi-
cant contributions to propositional logic, or Gottlob Frege (1848–1925) and his introduction
to First-Order Logic (FOL) in his book Begriffsschrift in 1879 [97]. FOL is an extension of
propositional logic which is capable of expressing knowledge using mathematical logic with
quantifies and variables [23].

Knowledge representation played a pivotal role in early AI systems, which utilised knowl-
edge and reasoning methodologies to deduce and provide inference of knowledge (i.e., ob-
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Figure 2.19: The DIKW Hierarchy in the context of the AI.

taining new expressions from old ones). One of the first few examples of this paradigm was
led by Allen Newell and Herbert Simon at the RAND Corporation. In 1956, they created
The Logic Theory Machine, which integrated mathematical logic as formal heuristics in or-
der to automate human problem-solving [225]. Their outlook heavily focused on modelling
a piece of problem-solving behaviour in terms of a generic program, rather than using com-
puters as a “crude analogy to human behaviour” [223]. In 1959, they developed the General
Problem Solver (GPS) whose purpose was to solve a range of different problems. However,
their report claimed that GPS lacked several capabilities, but it highlighted fundamental
challenges that needed to be achieved within the field of AI [224].

Meanwhile, other KR-based systems began to arise around the same period, that were
programmed using the LISP processing language introduced in 1958, which provided fea-
tures for symbolic reasoning [202].

In the following decades, Expert Systems began to arise, which are knowledge-based
systems developed as applications for simple problem-solving tasks [159]. By definition, an
expert system is a computer program that can: (a) reason with symbolic knowledge, (b)
use methods that are heuristic and algorithmic, i.e., plausible and certain, (c) simulate and
perform as well as specialists in the corresponding domain, (d) make understanding of its
output, and (e) retain flexibility [51].

One example of an early expert system was the Project MAC SYmbolic MAnipulator
(MACSYMA) system developed at Massachusetts Institute of Technology (MIT) between
the years of 1960–1980 [198]. MACSYMA was a computer algebra system that focused on
automating mathematical operations. This was achieved by capturing and modelling the
concepts of mathematical operation as knowledge in the form of programming rules [108].
Each mathematical operation was stored as a module, constituting a centralised repository
of knowledge. Users could add their knowledge and definitions into the system, provided
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they followed the correct procedure.
The creators of MACSYMA stated that if such a system could be developed and main-

tained, it could be so impactful that it would succeed books; stating that “books would still
be used, but only for tutorial exposition” [198]. However, MACSYMA did not live up to
that expectation as it faced several challenges including learning, resource knowledge, and
communication difficulties [108]. Users had to mechanically adapt their cognitive thinking
process to accommodate the nature of the system. As an example in [85], picture a user
attempting to define an even number. One user may say “n is even if and only if there
exists an integer, m, such that n = 2m”. Although this is true, a more explicit definition
would be necessary, such as “if dividing n by two returns no remainder, then n is even”.
Often these translations were too challenging or time-consuming for most users.

Overall, these knowledge representation systems were often faced with great difficulty,
requiring sufficiently precise notation for representing knowledge [221]. In these systems,
knowledge has to be centralised, meaning that all people must share exactly the same
definition of common concepts. Thus, the capabilities of such systems were constrained and
limited to asking specific questions that the machine could reliably answer, and increasing
the scope of such a system would be deemed to be unmanageable [33]. Berners-Lee compared
the problem with Kurt Gödel’s incompleteness theorem ([290]), which states that there will
always be true statements that cannot be proven in a formal system [33]. These KR systems
often avoided such conflicts by producing a unique yet limited set of rules, specific to the
task at hand.

Contrastingly, the semantic web accepts that these unanswerable questions exist, and
instead, accepts to decentralise the web to achieve versatility. To obtain this level of versa-
tility, it is necessary to use a language that enables reasoning with sufficient expressivity to
capture the scope of the web and be powerful enough to describe complex properties. This
language needs to (a) express both data and rules for reasoning, and (b) be able to import
any existing forms of knowledge-representations systems into the web. Thus, a wide range
of different languages have been investigated and proposed to achieve these requirements.

2.5.2 The Expressivity of Modelling Languages

There is a wide range of different languages and models available to describe such concepts.
Figure 2.20 displays a spectrum of categories of languages ranging from informal to formal,
which are applicable for capturing knowledge [316]. These languages are split into three
parts. On the left side, there are glossaries and dictionaries which are lightweight but are
restricted in their ability to provide greater specification of the meaning of terms. The
middle section contains technologies that are able to model meta-data using XML schema
and other data models such as databases (DB) that are perfectly sufficient for the exchange
of data between parties but lack the semantics and meaning of the data. Meanwhile, the
final section refers to languages that are able to explicitly formalise logical theories and
describe formal semantics.

Each Language has its own advantages and disadvantages, but generally, as you tra-
verse through the languages mentioned, there is a trade-off between expressiveness and
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Figure 2.20: Different languages for informal and formal specification based on [316].

efficiency. The rightmost languages are superior in terms of expressivity, and are able to
express more concepts symbolically, but subsequently, do not allow for sound or complete
reasoning [128]. Soundness conveys that true statements are always actually true while
completeness reasoning implies that the system can demonstrate and deduce statements to
be true. Thus, using a more restricted yet decidable subset of first-order logic may be more
suitable, e.g., Description Logics (DL) or Logic Programming (LP).

New languages that adopt these logical implementations have surfaced and are built
upon one another, such as the Knowledge Interchange Format (KIF) language in 1992,
Options Configuration Modeling Language (OCML) in 1993, EXtensible Markup Language
(XML) in 1996, Resource Description Framework (RDF) and Resource Description Frame-
work Schema (RDFS) in 1999, and Web Ontology Language (OWL) in 2004 [297]. In the
following sections, we describe RDF and OWL in greater depth.

2.5.3 The Resource Description Framework

The Resource Description Framework (RDF) is a metadata modelling language produced
by the World Wide Web Consortium (W3C) that expresses relationships between entities in
a format that is both human-interpretable and machine-processable [79]. Data is presented
as disjoint resources, each of which contains a unique Uniform Resource Identifier (URI) for
identification. An example of a URI is https://www.ietf.org/rfc/rfc3986.txt, which is used as
a locator, name, or both [32]. These resources join and form tuples consisting of a subject,
predicate, and object, producing a directed graph. Figure 2.21 is a simple representation of
a graph, displaying the subject and object as nodes, which are directly linked by an edge,
representing the predicate that joins them.

To give a formal definition: let G = (S, P,O) be a directed label graph as shown in
Figure 2.21 where:

• S is a set of nodes that represent the subjects in the graph, which identify the resources
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being described.

• P is a set of edges representing the predicates in the graph, which identify the rela-
tionships being asserted about the resources.

• O is a set of objects, of which are either literal values or other resources, identifying
the information or characteristics of the resources of S.

Figure 2.21: A directed graph containing an RDF triple.

Figure 2.22 is an example of an RDF graph representing knowledge in the context of
cold rolling. Each resource in the graph follows the notation of prefix:element where the
prefix refers to the URI for identification. In this example, the resource scro:roll_-

1234 is linked with two other resources: (1) the 1234^^xsd:integer resource node via the
scro:hasRollId resource edge, and (2) scro:Work_Roll resource node via the rdf:type

resource edge. Meanwhile, the scro:Work_Roll resource is linked to the scro:Roll resource
via the rdfs:subClassOf edge. By definition, the language is capable of deriving that the
resource scro:roll_1234 is a resource of which is a subclass of the scro:Roll resource.

Figure 2.22: An example of an RDF graph of a work roll in the context of cold rolling.

RDF can be serialised in different formats, each of which contains its own syntax and
benefits. Most common formats include RDF-based eXtensible Markup Language (RD-
F/XML), Turtle, or Web Ontology Language (OWL). Our contributions are mostly seri-
alised in OWL, which provides the most functionality of the three, and presents the knowl-
edge in a good human-readable format. We explain this language in greater depth in Sec-
tion 2.5.5. However, OWL and RDF/XML contain XML-like structures with opening and
closing tags which are lengthy. Therefore, the listings provided in this thesis are converted
to Turtle syntax1 to save space.

1https://www.w3.org/TR/turtle/
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Meanwhile, Listing 2.1 is an example of the RDF graph in Figure 2.22 serialised in Turtle
format. The top of the listing contains prefixes, which link to external RDF vocabularies.
An RDF Vocabulary is a collection of Internationalised Resource Identifiers (IRIs) intended
for use in RDF graphs [73]. IRIs are extensions of URI protocol, which expands the set of us-
able characters [88]. These have a common substring known as a namespace prefix e.g., RDF,
RDFS, SCRO and a namespace IRI e.g., http://www.w3.org/1999/02/22-rdf-syntax-ns#.

Code Listing 2.1: Turtle serialisation of the RDF graph in Figure 2.7.

@PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

@PREFIX scro: <http://swansea.ac.uk/sadeer/scro#> .

scro:Roll_1234 rdf:type scro:Work_Roll .

scro:Roll_1234 scro:hasRollId 1234^^xsd:integer .

scro:Work_Roll rdfs:subClassOf scro:Roll .

The RDF vocabulary provides simple functionality to model the relationships between
objects within a domain. Features such as rdf:type and rdf:PlainLiteral, among others
are available, which we used previously in Figure 2.22. While RDF serves as a foundational
data model, it does not follow a schema and lacks the inherent capability to define the
meaning of data; it functions purely as a data model [52]. To embed semantics, i.e., meaning,
into the data, explicit vocabularies are essential. The RDF Schema (RDFS) vocabulary is
one example, which facilitates simple descriptions of classes and properties associated with
RDF resources, including their ability to model hierarchical structures [204]. Both RDF
and RDFS are standardised by the W3C. Meanwhile, the Web Ontology Language (OWL)
extends RDFS, providing additional flexibility and capabilities to articulate the semantics
of RDF statements. This requires the creation of an ontology. In the previous example,
SCRO is an ontology that we have developed as a vocabulary for cold rolling processes. We
define the concept of an ontology in Section 2.5.5.

2.5.4 Knowledge Graphs

A collection of RDF triples may be formed together to produce a knowledge graph. A
knowledge graph, in essence, is a domain-specific database in a directed label graph struc-
ture, formed by nodes (representing entities) and edges (representing relationships). The
concept of a directed label graph is not new, but the idea of capturing meta-data and rela-
tionships through edges provides capabilities to represent knowledge, which is not possible
with traditional DB models like SQL.

The term Knowledge Graph was introduced by Google in 2012 when they first in-
troduced the Google Knowledge Graph [346]. An article in 2019 stated that the Google
knowledge graph contained over one billion entities with over 70 billion assertions [227].
Many large-scale enterprise companies such as Microsoft, Facebook, IBM, and Wikipedia
have all adopted knowledge graphs as a medium to represent their data. As mentioned,
knowledge graphs are domain-specific, and thereby, require some form of a knowledge base.
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The knowledge base is required to provide definitions of concepts, and how those concepts
are related to one another. To capture this knowledge, the concept of an Ontology has been
developed, which we introduce in the next section. There are many applications developed
for creating knowledge graphs, including Mastro [54], Morph [255], and Ontop [336]. Within
this thesis, we utilise the Ontop framework to create our domain-specific knowledge graphs.

Querying Language for Knowledge Graphs

SPARQL Protocol and RDF Query Language (SPARQL) is the standard language for query-
ing over RDF data [245]. Tim Berners-Lee, the director of W3C, states that “Trying to
use the Semantic Web without SPARQL is like trying to use a relational database with-
out SQL” [333]. SPARQL contains syntax that offers similar operations to SQL such as
select, where, optional, union, filter, but is specifically designed for querying tu-
ples over graph data.

Code Listing 2.2: An example containing a list
of RDF triples.

1 @PREFIX rdf: <http://www.w3.org/1999/02/rdf#> .

2 @PREFIX scro: <http://swansea.ac.uk/sadeer/scro#> .

3
4 scro:Roll_0001 rdf:type scro:Work_Roll .

5 scro:Roll_0001 scro:hasRollID 0001^^xsd:integer .

6 scro:Roll_0001 scro:hasDiameter 500.0^^xsd:double .

7 scro:Roll_0001 scro:hasPartner scro:Roll_0002 .

8
9 scro:Roll_0002 rdf:type scro:Work_Roll .

10 scro:Roll_0002 scro:hasRollID 0002^^xsd:integer .

11 scro:Roll_0002 scro:hasPartner scro:Roll_0001 .

Figure 2.23: A list of RDF triples in Turtle syntax (left) and in graph format (right).

Listing 2.2 displays a list of RDF tuples that form the knowledge graph presented in
Figure 2.23. In this particular example, there are two vocabularies, rdf representing the
W3C standard RDF library and scro which is an ontology developed by us. The listing
displays two instances being populated with RDF tuples. Roll_0001 and Roll_0002 are
declared as instances of the scro:Work_Roll class via the rdf:type property on lines 4
and 9, respectively. Roll_0001 contains three properties from lines 5–7 and Roll_0002

contains two properties from lines 10–11. The difference between the two instances is that
Roll_0001 contains the hasDiameter property whereas Roll_0002 does not.

Figure 2.24 demonstrates two examples of SPARQL queries based on the knowledge
graph at hand. At the top of each query, different vocabularies are imported via prefixes. We
import the RDF vocabulary in order to use the rdf:type property. Afterwards, SPARQL
provides SQL-like clauses e.g., SELECT to select the variables we wish to retrieve from the
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query. Variables in SPARQL are indicated using a question mark (e.g., ?roll), while the
end of each tuple is separated by a full stop.

In Listing 2.3, we are selecting the ?roll variable as an output. In this case, any instance
of type scro:Work_Roll is stored in the ?roll variable. The result of this query will print
out two results, ?roll=Roll_1 and ?roll=Roll_2. In Listing 2.4, we are selecting the
?roll and ?diameter variables as outputs. In this case, the ?roll object, must contain
both a hasRollID property and a hasDiameter property. Optionally, this object may
contain the hasPartner property. The result of this query will print out ?roll=Roll_0001
and diameter=500.0^^xsd:double.

Code Listing 2.3: A SPARQL query to return
instances of a class.

1 PREFIX rdf: http://www.w3.org/1999/02/rdf# .

2 PREFIX scro: http://swansea.ac.uk/sadeer/scro#

3
4 SELECT ?roll

5 WHERE {

6 ?roll rdf:type scro:Work_Roll .

7 }

8 }

9
10
11 OUTPUT:

12 ?roll=Roll_0001

13 ?roll=Roll_0002

Code Listing 2.4: A SPARQL query to re-
turn rolls with diameters.

1PREFIX rdf: http://www.w3.org/1999/02/rdf# .

2PREFIX scro: http://swansea.ac.uk/sadeer/

scro#

3
4SELECT ?roll ?diameter

5WHERE {

6?roll scro:hasRollID ?id .

7?roll scro:hasDiameter ?diameter .

8OPTIONAL {

9?roll scro:hasPartner ?partner .

10}

11}

12OUTPUT:

13?roll=Roll_0001, ?diameter=500^^xsd:double

Figure 2.24: Two examples of SPARQL queries.

2.5.5 Introduction to Ontologies

The origin of the term Ontology is from a branch of Philosophy known as Metaphysics
and is used to define the study of existence [128]. The term dates back to ancient Greek
philosophy. Plato and Aristotle defined the study of ontology as the science of being and
used it as a term to determine whether something exists [128]. It attempts to seek the
classification and explanation of the nature of things and their properties. The term is
borrowed (sometimes referred to as a formal ontology) and is used in the context of AI for
knowledge representation, exchange, and integration [321].

Before providing a definition of a formal ontology, take a minute to pause and observe
your surroundings. Identify the physical and, perhaps, non-physical things around you.
What are their characteristics, defining traits, and purpose? From a philosophical stand-
point, creations around us are typically manifestations of thought. Things are designed and
built for purpose. For example, consider the ontology of the desk you are working on—it has
legs and a surface designed to fulfil its purpose of holding objects. Additionally, it contains
personalised characteristics such as material, width, and height to fit in its environment.
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The key message is that this desk is one instance of a table—other tables with different
materials, patterns, lengths, widths, shapes, etc., exist, but all tables serve the same funda-
mental purpose. Formal ontologies are structured and systematic representations of these
concepts or objects, which encapsulate the meaning, characteristics, and interrelationships
between each concept.

The most commonly accepted definition of a formal ontology in the context of AI was
given by Thomas R. Gruber [128], the co-founder of Siri Inc. In 1995, Gruber defined an
ontology as an explicit specification of a conceptualisation [124], which was later expanded
to A formal, explicit specification of a shared conceptualization. Defining each word in this
sentence:

• Formal: The representation must be captured and stored in a format that is both
readable by a machine while also interpretable by a human.

• Explicit specification: ‘Specification’ refers to the idea of structurally describing or
identifying something in a precise manner. ‘Explicit’ implies the meaning of the thing
must be clearly defined using formal logic in terms of its concepts, properties, and
relations.

• Shared: The specification must be agreed upon by a larger consensus. An ontology
should also be flexible and reusable across different knowledge-based systems.

• Conceptualization: An abstract, simplified view of the world containing the entities
that are presumed to exist in some domain.

To summarise, an ontology is a knowledge model that defines a set of concepts of a
particular domain, and all the relationships that link those concepts. The ontology must
represent the knowledge in a structured format that is both human-understandable and
machine-interpretable, typically expressed in a logic-based language. The knowledge is
defined precisely, unambiguously, and explicitly, where the definition is agreed upon by a
wider consensus.

2.5.5.1 The Components of an Ontology

There are four core components of any ontology [190], namely:

1. Individuals: Individuals refer to the instances or objects existing in a formal system,
representing some part of the world being modelled. Returning to the previous exam-
ple, the physical things surrounding us are individuals of particular entities. Different
individuals of the same entity may have distinct characteristics, for instance, two peo-
ple share common characteristics of being human but can have different names, ages,
body parts, etc.
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2. Classes: Classes represent the concepts or entities in the domain of interest. Each
class serves as a schema or blueprint for encompassing all the shared characteristics
of a concept. For example, a Human class could model the characteristics specific
to a human e.g., name, age, and body parts. These classes may form hierarchical
structures with other concepts. Formally, if concept C ′ is a subclass of concept C,
then any instance of type C ′ will also be an instance of type C. For instance, the
Human class can be declared as a subclass of the Mammal class, inheriting all defining
features of the mammal class.

Figure 2.25 is a visual representation of a group of classes in their hierarchical struc-
ture. Classes can represent not only physical objects but also include abstract ideas
and concepts. In this example, we present the Animal class, along with subclasses
Mammal, Human, Dog, Frog, Bird, and Duck.

Figure 2.25: An example of classes and subclasses in an ontology.

3. Properties: Properties are binary relations representing the characteristics of classes.
In graph format, properties function as edges, linking the characteristics to their
classes. There are two types of properties: (1) Data Property and (2) Object Property.
A data property is a relation representing a characteristic that links a class with a
literal value, while an object property links two classes together. An example of each
property is displayed in Example 2.1 and Example 2.2. The definition of domain and
range are described after.

Example 2.1 To represent the age of a human, the data property hasAge can be
deployed and linked with a literal value:
Human (class) (domain)→ hasAge (data property)→ integer (literal) (range)

Example 2.2 To represent that humans can have dogs as pets, the object property
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hasPet can be deployed to link the two classes together:
Human (class) (domain)→ hasPet (object property)→ Dog (class) (range)

Domain and Range are restrictions on properties that limit the property to only allow
specific classes or data types. The class at the start of an RDF tuple is the domain,
and the class or literal after the relation is the range. For instance, Example 2.1
defines the domain of the hasAge property as Human, specifying that only humans
have this specific characteristic (age). In reality, all animals have ages, so a more
accurate real-world representation would declare the domain for this property as the
Animal class: Animal → hasAge→ integer. Thus, all subclasses of the animal class
can accurately use this property.

Additionally, the knowledge representation in Example 2.2 states that the hasPet

relationship is strictly between a Human individual and a Dog individual. This implies
that any other classes in the ontology that use the hasPet property will make the
ontology inconsistent. In a real-world scenario, this is factually incorrect as humans
can have other pets that are not dogs.

It is not necessary to specify a domain or range for a data property. For instance,
having the domain of the hasPet property as Human and leaving the range as blank
conveys that humans can have any pets of any class in the ontology, even other
humans. A more accurate knowledge representation of the real world would require
a richer ontology model. For instance, modifying the ontology to include a new class
Pet, with all possible pet animals modelled as subclasses of this class. Thus, the final
representation can be: Human→ hasPet→ Pet.

4. Restrictions: Restrictions are logical constraints that can be applied to classes and
properties. For example, the Human ontology may restrict the hasAge data property
to have a 1 : 1 ratio, stating that a human may only have one age at a time. Other
restrictions can declare constraints such as Male ∩ Female = ∅.

Figure 2.26 depicts a world of discourse containing three individuals: Sam and Harriet,
who are instances of the Human class, and Frank, who is an instance of the Dog class. In
this example, Sam has three data properties: hasName, hasAge, and hasHobby, which are
literal values. Harriet has two data properties, hasName and hasGender, and one object
property, hasPet Frank. Moreover, the Frank individual is instantiated as a type of sausage
dog via the isSpeciesOf property, and is linked to Harriet via the isPetOf property.

2.5.5.2 Ontology: Web Ontology Language

The Web Ontology Language (OWL) is developed by the W3C as the primary language for
formalising ontologies, and a means for giving explicit meaning to information on the web.
OWL is the successor of DAML OIL web ontology language [203]. OWL was specifically
designed as a model that not only presents information to humans in a readable manner but
also processes the content of the information, facilitating greater semantic interpretability
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Figure 2.26: An example of individuals and their data properties in an ontology.

[204]. OWL enables users to create custom vocabulary for any domains of interest, e.g., hu-
man or cold rolling, while also supporting the use of existing languages such as XML, RDF,
and RDF-Schema and their provided functionalities.

Different ontologies are developed for different tasks. Some are used simply to capture
and display knowledge in a semantic way, while others may be used for virtual data integra-
tion, or ontological rules and reasoning. OWL provides three sub-languages, each of which
provides different levels of flexibility and abstraction for versatile ontology purposes. Based
on official W3C standards [204], these are:

• OWL Lite, which is less expressive than OWL DL and OWL Full, but supports simple
classification hierarchy and basic constraints. OWL Lite is aimed primarily at users
who seek quick migration paths for thesauri and other taxonomies.

• OWL DL, which stands for OWL Description Logics, is targeted towards users who
prioritise expressiveness, computational completeness, and decidability. These are
terms that originate from process logic [132], where (1) expressiveness implies the
range and richness of statements that can be expressed within the ontology, (2) com-
pleteness referring to the validity of the ontology, whether every true statement can
be derived or proven, and (3) decidability relating to the systematic determination of
true of false statements in the ontology. OWL DL supports all OWL Lite features, as
well as many other constructs within the formal foundation of OWL that do not affect
completeness and decidability. For example, one class may be a subclass of more than
one class, but a class cannot be an instance of another class.

• OWL Full, has no or very limited restrictions on the language. OWL Full is the most
expressive but does not guarantee the completeness or decidability of a system in
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return. Predefined definitions in vocabularies such as RDF or RDFS can be augmented
and modified to fit new definitions. Although this can be a benefit, it also restricts
some reasoning software for complete reasoning.

All ontologies are designed to serve a purpose. Therefore, each version of OWL is
catered to fit different specifications. It is important for users to select the corresponding
language that best fits the criteria and purpose of their ontology. Meanwhile, every ontology
developed using OWL Lite can be considered a legal OWL DL ontology, and every ontology
developed using OWL DL is considered a legal OWL Full ontology.

2.5.5.3 Ontology Design Criteria

As mentioned before, formal ontologies are designed. Each representation within the ontol-
ogy required making design decisions. In our previous example, Figure 2.25, we have seven
classes that represent different animals. We have chosen to represent each animal as its
own corresponding class, each containing own properties and restrictions. An alternative
and more simple route of implementing such knowledge would be by having one class, the
Animal class, and simply having all other classes as individuals (instances) of the Animal

superclass. This design and implementation is capable of representing similar knowledge
but is less rich. With the chosen approach, we are able to uniquely represent each animal
with its own properties and restriction.

Thus, ontologies should be designed to match a criterion. When Gruber defined what
an ontology is, he also provided a preliminary set of design criteria that ontologists should
consider when designing an ontology [124]. These include:

• Clarity: Definitions within an ontology should be communicated effectively with the
intended meaning of defined terms while also documented with natural language.
When possible, the definition should be stated in logical axioms, and should be inde-
pendent of social or computational context.

• Coherence: the ontology should not contradict or be inconsistent with definitions,
especially the definitions captured as logical axioms. There are semantic tools that
are able to check whether an ontology is consistent to support coherence.

• Extendibility: The ontology is a consensus of shared knowledge. Thereby, it should be
designed with the ability for different users to use and modify any terms. The creation
of new terms should not directly impose any problems with existing definitions.

• Minimal encoding bias: Different knowledge-sharing agents may be developed using
other technologies, thus, any encoding bias should be avoided when possible. This
implies that conceptualisation should not depend on particular symbol-level encoding.

• Minimal ontological commitment: Ontologies should not be overcommited in order to
support their ability to share knowledge. Commitment is based on consistent use of
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vocabulary, and should be minimised, specifying and defining only the terms that are
essential to the concept.

With these design criteria in mind, there have been a wide range of ontology development
methodologies introduced.

2.5.5.4 Ontology Development Methodologies

The purpose of this section is to describe available methodologies for creating ontologies.
Although it is not necessary to follow a specific methodology, many find it beneficial for
ensuring a unified and standardised approach to knowledge representation, especially when
multiple contributors are involved [279].

Ontologies have seen the introduction of new, structured, and rigorous methods over the
years. In this section, we briefly present and survey existing methodologies for developing
formal ontologies. A recent survey paper identified 28 different proposed methodologies for
knowledge-based systems, which are applicable to ontology development [216].

We introduce three fundamental initiatives, dating between 1994 and 1998, which pi-
oneered the development of early ontologies. These methods are TOVE, the Enterprise
Model, and METHONOLOGY, which continue to influence ontology development today,
with many recent approaches being modified iterations of these classical methods.

TOVE Methodology Toronto Virtual Enterprise (TOVE) is an earlier ontology devel-
opment methodology first introduced in 1994 [127], which follows a six-phase formula for
capturing knowledge for enterprise systems. These include:

• Motivating Scenarios: Create stories and scenarios based on realistic events to capture
a set of possible problems that may occur in the domain of the enterprise.

• Informal Competency Questions: Using the scenarios, capture the requirements of the
ontology as information questions that have concrete answers.

• Terminology Specification: Use first-order logic to declare all possible objects, at-
tributes, and relations within the domain of the ontology.

• Formal Competency Questions: The declared requirements captured above must be
formalised using formally defined terminology.

• Axiom Specification: Specify the definition of terms and restrictions of an ontology
as Axioms in first-order logic. The axioms must be able to address the competency
questions sufficiently.

• Completeness Theorems: An evaluation stage which, by defining conditions under
solutions of competency questions, assesses the competency of the ontology.
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The competency questions form the characterisation of the domain knowledge within
an ontology. They are categorised as specific problems that require relevant solutions to be
formed. The core advantages of the TOVE methodology are its evaluation-driven nature,
and its capability to retain formalisations using first-order logic [168]. The evaluation crite-
ria is provided in the form of completeness theorems, which are beneficial for maintaining
and updating an ontology. For example, when extending the ontology with new knowledge,
any new knowledge must be compliant with the validity of the completeness theorems. How-
ever, the drawbacks include a limited support for versioning, and the mapping of properties
in an ontology [263].

The Enterprise Model Approach This methodology is a systematic process firstly
introduced in 1995 by Michael Uschold [317], which was significantly revamped in a later
publication [314]. The newer method consists of four main stages for constructing an on-
tology, including:

1. Identify purpose: This states the level of formality of the proposed ontology, as well as
its intended use. The formality may range from: (1) Highly informal, where expres-
sions are structured informally and captured loosely in natural language, (2) Struc-
tured informal, where expressions are restricted to follow a structured form of natural
language, reduction ambiguity, (3) Semi-formal, where expressions are articulated in
a formally defined language, or (4) Rigorously formal, where terms are meticulously
defined with formal semantics, theorems, and proofs.

2. Identify scope: This identifies the specification of the ontology, clearly visualising the
range of information the ontology must adopt. Unlike TOVE, this is more flexible
and can be achieved using motivating scenarios or information competency question.

3. Formalisation: Develop the formal definitions and axioms of the specification inten-
sified.

4. Formal evaluation: Evaluates the second and third stages of this list using formal
knowledge-based system evaluation methods, and refines the formal definitions itera-
tively until the purpose of the ontology is met.

METHONTOLOGY This methodology was developed by the Ontological Engineering
Group at the University of Madrid in 1998 [69]. This methodology focuses on modelling
the whole life cycle of an ontology, from specification to maintenance. The methodology is
activity-driven and follows seven activities to aid in the development of an ontology. These
are:

• Specification: This first activity covers the scope of the proposed ontology. The
activity focuses on understanding the purpose of the ontology, as well as its intended
uses and end-users. This includes identifying the terms to be represented and their
characteristics, typically formalised in a document in natural language.
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• Knowledge Acquisition: This activity occurs in parallel with the specification, and
searches for accurate and reliable sources of relevant knowledge. Examples include
interviews or questionnaires with experts, as well as analysis of available texts.

• Conceptualisation: The terms identified in the specification are categorised into con-
cepts, instances, properties, and relations using informal representation, which are
then converted into a semi-formal specification using a set of intermediate represen-
tations based on tabular or graph notation.

• Integration: To build a uniform platform between ontologies, definitions should be
incorporated and defined upon using agreed standards.

• Implementation: The implementation activity develops formal models that are repre-
sented using ontology languages such as RDF, RDF Schema, OWL, etc.

• Evaluation: The evaluation activity uses the validation and verification methods of
traditional knowledge-based systems to validate and evaluate the ontology.

• Documentation: This final activity consists of collecting documents that are the results
of all the other activities.

Similar to TOVE, the METHONTOLOGY method focuses on the maintenance of on-
tologies. The clear difference is that METHONTOLOGY comprehensively addresses the
maintenance of all the stages in the life-cycle of an ontology, whereas TOVE focuses more
on formal methods to address more secluded maintenance issues.

Meanwhile, newer methodologies such as NeON [303], typically designed for Waterfall-
based software systems, or the eXtreme design methodology (XMD) [39] and Simplified Agile
Methodology for Ontology Development (SAMOD) [247] methodologies used for agile-based
software systems have been introduced which innovate the older methods introduced in this
section.

Finally, despite the wide range of available development methodologies, ontologies are
dynamic and flexible knowledge bases. Thus, it is perfectly acceptable for an ontology
designer to create their ontology with their own standards. It is not necessary to follow any
predefined methodologies, but highly recommended [279].

2.5.5.5 Ontology Development Tools

A handful of tools have been created to aid the development of formal ontologies. Similar
to how software applications can be programmed using different programming languages
such as Java, Python, etc., or databases can be developed using SQL, Neo4j, etc., ontologies
may also be constructed using different languages. Different tools are available for different
languages [297]. This section will primarily focus on tools available for developing ontologies
that are programmed using the Web Ontology Language, OWL, described previously.
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• Ontolingua: Ontolingua is a web-based ontology software developed at Stanford Uni-
versity. This tool was one of the original tools introduced in 1992 by Gruber, which
supported the creation, distribution, and collaboration of an ontology [123]. Ontolo-
gies were made public via an ontology server which could be distributed globally,
achieving the consensus requirement of an ontology.

• Protégé: Protégé [228] is one of the more popular available ontology editors [173],
which was developed and released in 1999 by Stanford University. It is a free and open
source integrated development environment (IDE) developed in Java, which supports
most languages such as RDF, RDFS, OWL, etc. Protégé contains organised tabs,
which offer the user different elements and functionality, e.g., Entities, Individuals, or
Rules tab. Protégé also offers the ability to import any external ontologies into the
specified ontology, and provides build-in reasoners that allow for the consistency of
knowledge to be checked, as well as the inference of knowledge.

• The Semantic Web Ontology Editor (Swoop): Swoop was developed in 2004 at the
University of Maryland [169], and is an open source project with global contributors.
Swoop is built specifically for OWL-based ontologies, and focuses on providing an er-
gonomic experience for the user. This software provides functionality for creating and
modifying ontologies, but centers on user experience aspects such as having an address
bar, history buttons, navigation side bars, bookmarks, and hypertext navigation.

• Anzo Platform: The Anzo platform is a development tool released by Cambridge
Semantics company in 2011, which focuses on knowledge graph and ontology develop-
ment. Anzo is a privately licensed tool which contains an ontology editor with available
rule engines, web services functionality, and relational database support [297].

• Graphical Framework for OWL Ontologies (Graffoo): Graffoo is an open source,
graphical framework for developing ontologies introduced in 2013 [93]. The main
advantage of using Graffoo is its ability to present classes, properties, and restrictions
of an OWL ontology as simple graph diagrams.

For our research, due to its popularity and active userbase, we have chosen to adopt
Protégé as the primary tool for developing our ontologies.

2.5.6 Semantic Rules and Reasoning

Semantic Reasoners or Semantic Rule Engines are software that provide a mechanism for
inferring logical consequence from a set of asserted axioms using a restricted set of first-order
formulas [327] [192]. Simply put, a rule engine enables the creation of logical rules, which
can be applied to an ontology to obtain new knowledge from existing knowledge [326].
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2.5.6.1 The Semantic Web Rule Language

The Semantic Web Rule Language (SWRL) is a rule language introduced by the W3C in
2004, and is acknowledged as the leading language for rules and reasoning by the W3C
[144]. SWRL is based on a combination of the OWL Lite and OWL DL sub-languages
mentioned previously, in conjunction with the Rule Markup Language (RuleML [41]). These
logical rules appear in the form of IF-THEN statement containing an antecedent (body)
and consequent (head), i.e., antecedent⇒ consequent. These rules state that if the axioms
in the antecedent are true, then the knowledge stored in the consequent of the rule can be
inferred. All rules are expressed in term of OWL concepts, that is, classes, properties and
individuals. Both the antecedent and consequent are formulated as conjunctions of atoms,
for instance:

a1
∧...∧ an

Variables are indicated by question marks (e.g., ?var). Below are a few simple exam-
ples of assertions obtained and adapted from [233]. Providing there is a Person ontology
that contains the classes: Person, Man, Adult and properties hasParent, hasBrother,

hasUncle, and hasAge, we can create the following semantic rules:

Example 2.3 If instance m is a man, then m is also a person:

Man(?m)⇒ Person(?m)

Example 2.4 If a person has a parent, and that parent has a brother, then that person
has an uncle:

hasParent(?x, ?y) ∧ hasBrother(?y, ?z)⇒ hasUncle(?x, ?z)

SWRL also accepts rules that contain named individuals. Following the same example
above, we can create the rule:

Example 2.5 If John has a parent, and that parent has a brother, then John has an uncle:

hasParent(John, ?y) ∧ hasBrother(?y, ?z)⇒ hasUncle(John, ?z)

Additionally, SWRL supports the use of literal values, and provides built-in expressions and
formulas for mathematical expressions; for example:

Example 2.6 If a person is 18 or older, they are considered an adult:

Person(?p) ∧ hasAge(?p, ?age) ∧ swrlb : greaterThanOrEqual(?age, 18)⇒ Adult(?p)

Listing 2.5 displays how SWRL rules are stored in OWL, particularly Example 2.4. This
code can be generated automatically from the ontology development tools mentioned pre-
viously. In this particular instance, the code was generated by using the SWRLTab tab
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available in the Protégé IDE [234]. Each rule is declared as an annotation in XML-like
structure, labelled as rule1 in this example. The rule then contains a Body and Head with
their corresponding values captured as atoms.

Code Listing 2.5: The OWL serialisation of Example 2.4.

<Annotation>

<AnnotationProperty abbreviatedIRI="rdfs:label"/>

<Literal>rule1</Literal>

</Annotation>

<Body>

<ClassAtom>

<Class IRI="#Person"/>

<Variable IRI="#p"/>

</ClassAtom>

<ObjectPropertyAtom>

<ObjectProperty IRI="#hasAge"/>

<Variable IRI="#p"/>

<Variable IRI="#age"/>

</ObjectPropertyAtom>

<BuiltInAtom IRI="http://www.w3.org/2003/11/swrlb#greaterThanOrEqual">

<Variable IRI="#age"/>

<Literal datatypeIRI="http://www.w3.org/2001/XMLSchema#integer">18</Literal>

</BuiltInAtom>

</Body>

<Head>

<ClassAtom>

<Class IRI="#adult"/>

<Variable IRI="#p"/>

</ClassAtom>

</Head>

2.5.6.2 List of Semantic Reasoners or Rule Engines

There are a wide range of semantic reasoners, also known as semantic rule engines, available
for inference tasks. There is extensive literature that review and compare rule languages
and their rule-based inference engines [265], as well as their performances [188]. In this
section, we summarise the most distinguished rule engines available for applying logical
inference.

• Drools: Drools by JDog, is an open-source engine programmed in Java, and is a hybrid
chaining engine, i.e., it can react to changes in data while also providing advanced
querying capabilities [256]. Drools is the default rule engine included in the SWRL
tab in the Protégé IDE, and therefore, is one of the more popular rule engines. Addi-
tionally, it is adopted as SWRL-API’s default rule engine. Drools excels at executing
smaller datasets but is not well optimised for larger data sets.

• Jena Inference Engine: Jena is an open-source Java rule engine, developed by the
Apache Software Foundation [164] to assist in the development of Semantic Web appli-
cations. The rule reasoner supports a forward-chaining execution strategy, backward-
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chaining strategy, or a combination of both [264]. Jena also provides simple built-in
functions that supports users with developing their own functions andd rule creation,
while also providing functionality to trace and explain proofs.

• FuXi: FuXi is a Python-based open-source expert system which includes a rule engine.
The rule engine exploits the pattern matching RETE algorithm [96] for its ability to
process RDF for pattern and object matching. One advantage of adopting FuXi is its
ability to export inferred results as a graph, which can be applied to additional graph
algorithms for optimised reasoning [265].

• Jess: Jess is a standalone rule engine also developed in Java [137]. Jess contains four
components: (1) a rule base, (2) live memory, (3) inference engine, and (4) execution
engine. However, the rules are required to either be Jess rule language or XML rather,
where SWRL formatting is not compatible.

2.5.7 Benefits and Limitations of Ontologies and Knowledge Graphs

In this section, we discuss the advantages and limitations of formal ontologies and knowledge
graphs. Some of the information presented below is derived from the 17th IEEE Interna-
tional Conference on Semantic Computing, during which, keynote speaker Eren Kurshan,
discussed the applications of knowledge graphs.

The advantages include:

• Clear representation of specialised knowledge and use of common vocabulary and gram-
mar: Organisations, people, or software systems may have different interpretations,
definitions, or levels of understanding of the same subject matter [315]. There are vary-
ing viewpoints and assumptions in natural language, as well as jargon or mismatching
definitions of the same subject matter. For example, the concept of a customer for
one organisation could be a person who purchases an item, while for another company
it may simply be a person who enters their store. Ontologies create and provide a
domain-specific, shared, and agreed definition of concepts based on a wider consensus.
Naturally, the knowledge is domain specific as different terms have different meanings
in different contexts. For example, when discussing toppings, a pizza ontology may list
foods such as cheese or pepperoni, whereas an ice cream ontology may list toppings
relevant to ice cream such as whipped cream, chocolate, etc. (hopefully).

• Knowledge is human-readable and machine-understandable: The knowledge is cap-
tured in RDF format, which enables software and machines to interpret the structure
and semantic of the data, while also being readable by a human.

• Choosing the complexity of a system: Ontologies are flexible knowledge base systems
that can cover any domain of interest. There are examples of smaller ontologies for
more basic knowledge representations such as the Pizza Ontology (PO), an introduc-
tory, tutorial example ontology in Protégé, or more complex subject matters such
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as the Gene Ontology (GO) [67]. GO was developed twenty years ago, and is still
actively adopted and managed in the biology community to represent common terms
for genes, with over seven million annotations in the ontology [68].

• Combination of ontologies: Ontologies can be imported and merged together to share
common definitions of concepts. A simple example for this is that we have imported
the Steel Cold Rolling Ontology (SCRO) into the Core Reference of Steelmaking On-
tology (SCRO), so the concepts and relationships in the former are readily available
in the latter ontology. Additionally, there are global ontologies that are made pub-
licly available to use, such as the Temporal Time Ontology (TTO). Therefore, when
modelling a process that uses temporal time in the SCRO ontology, there is no need
to create our own definition.

• Semantic data access and data integration: Companies in many domains generate
vast amounts of data that are typically stored in data silos that are not typically
inter-connected. Despite the data being semantically related, i.e., contain the same
meta-data (e.g., roll_id) in different SQL tables (e.g., Roll_Grinding and Roll_-

Trip), a company would have to hire an expert to physically integrate the data.
Meanwhile, an ontology would automatically link the semantically-related meta-data
as the data would be in RDF format. Thus, when querying a specific roll_id, both
the roll grinding and roll trip data can be virtually accessed through the knowledge
graph [335].

• Logical rules and reasoning: Ontologies contain rule engines that permit inference
tasks to obtain new knowledge from existing knowledge as explained previously.

• Explainability: Ontologies can provide embeddings within a knowledge graph, which
can be leveraged to provide explanations in the context of machine learning.

The limitations of ontologies and knowledge graphs in the present day are as follows:

• Temporal relationships and dynamic data: Data captured within a knowledge graph
may be dynamic whereas knowledge graphs are static. An update in information will
require an update in the knowledge graph, e.g., Joe Biden is the current US president
but this will inevitably change.

• Noisy, unclear, and uncertain data: When populating an ontology with individuals,
the knowledge graph constructed struggles with capturing and filtering fuzzy relation-
ships and data, i.e., the uncertainty and imprecision of information.

• Implicit data: Ontologies excel at capturing explicit knowledge but suffer captur-
ing implicit knowledge. For example, it is not difficult to define that Da V inci →
painted → Mona Lisa. However, it is difficult to precisely describe the implicit
knowledge behind such a concepts, e.g., does painting imply he painted every brush
stroke?
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• Conditional relationships: Within a knowledge graph, it is difficult to create con-
ditional relationships, e.g., a person is considered hungry if they haven’t eaten, or
whether someone isn’t eating because of an illness or diet.

• Complex and probabilistic relationships: Within a knowledge graph, it is easy to say
Smoking → causes → Cancer, and Cancer → kills → Person.. Although it is
true that smoking causes cancer, it is also not true that everyone who smokes has
cancer, or everyone who has cancer smokes. Capturing these probabilistic relations
are challenging.

• Evolutionary relationships: Data can evolve. For example, the stats of COVID were
rapidly changing every week.

Presently, there is much research on overcoming these limitations. For instance, a recent
paper titled Saga: A platform for Continuous Construction and Serving of Knowledge at
Scale [149], published in 2022, demonstrated a novel methodology of acquiring ground facts
about every day things and automatically update the knowledge graph, overcoming the
evolutionary relations limitation.

2.5.8 Summary

To summarise, the Semantic-web started off as a vision, developed by the W3C, which
extends the World Wide Web by adding a semantic layer of meaning to information on the
web. With this vision, software agents and machines are able to understand and comprehend
information, making it easier to automate processes to collect and utilise this information.
The main contributions are the introduction of languages such as RDF and OWL, which
enable standardised representation of data in graph format. These languages are able to
capture meta-data of processes, such as the relationship between entities and concepts,
with the introduction of ontologies. Ontologies provide a shared vocabulary of a particular
domain, which can be expanded and combined with other ontologies to develop greater
knowledge graphs for knowledge representation and reasoning mechanisms.

2.6 Data-driven Statistical AI

Many typical computer problems can be solved by procedural algorithms such as the com-
mon task of sorting an integer array. These algorithms operate on defined inputs, e.g., a list
of integers, and follow a set of computerised instructions to result a new output. Meanwhile,
certain tasks are substantially more challenging for procedural algorithms to compute, and
require a computer to “learn” specialised knowledge to perform the task [6].

For instance, in image classification tasks, where the model aims to determine the con-
tents of an image, it is necessary for the machine to comprehend the features and concepts
within the image to make an accurate prediction. To illustrate this further, in facial recogni-
tion, even with inputs (e.g., images of faces) and expected output (Boolean value of true or
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false), the computer must first grasp the features indicative of a face to make any decisions,
such as eyes, nose, and mouth. Hence, it becomes necessary to precisely define the features
characterising a face, and leverage statistical methods to replicate the cognitive capabil-
ity of accurate facial recognition. This forms the basis for classification tasks in Machine
Learning.

2.6.1 Machine Learning

Machine Learning (ML) refers to the development of algorithms that learn exclusively from
data. While symbolic AI relies on expert knowledge and contextual information, ML ac-
complishes tasks by exploiting patterns within the data.

Drawing an analogy from an anthropological perspective, humans naturally refine their
problem-solving skills over time. For example, Jean Piaget’s theory of assimilation and ac-
commodation states that humans learn through trial and error, devising new approaches to
overcome challenges after experiencing failure [38]. In contrast, unlike traditional computer
tasks that do not consider past outcomes to enhance their behaviour, ML confronts these
limitations.

The idea of computers learning abstract concepts has been present since the 1950s,
including a paper titled “Computing Machinery and Intelligence,” in 1950 by Alan Turing.
In this paper, he posed the question “Can machines think?” [312]. During this period,
the question seemed preposterous, yet Turing was able to indirectly spark an interest by
comparing the notion of machine thinking to a game, encouraging people to think differently
and not jump to conclusion. In this paper, Turing introduced the Turing Test, an alternative
version of the Imitation Game. The Imitation Game involves three participants, with one
acting as an interrogator whose goal is to distinguish between the other two anonymous
players. Player one succeeds if the interrogator correctly identifies them, while player two
succeeds if the interrogator makes an incorrect identification. Turing suggested replacing
one of the two players with an intelligent machine, challenging the interrogator to figure
out which player is human through a series of questions.

In section seven of his 1950 paper, Turing transitioned from the task being a philosoph-
ical question into addressing possible approaches, suggesting three solutions to achieving
machine intelligence: (1) AI by programming, (2) AI by machine learning, or (3) AI us-
ing logic and knowledge. This inspired and motivation interest in the concept of machine
learning, and artificial intelligence as a whole [218].

One early example of machine learning is the development of MARK I, a machine cre-
ated by the RAND Corporation in 1951, which simulated a neural network, with the goal
of learning from experiences [176]. Another notable example is a machine developed by
A. Samuel in 1952, which was able to improve its performance in the game of checkers,
by increasing the number of games played [277]. While these early demonstrations of ma-
chine learning showed promise within the field, they often faced challenges due to technical
limitations. However, it is only in recent times, with the growth of computational power,
increased data availability, and evolution of new learning models, that machine learning
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has made a substantial impact, and achieved breakthroughs in various scientific domains
worldwide [15].

Figure 2.27: An overview of machine learning models based on [15].

In modern times, various machine learning models have been devised to address a wide
range of different tasks, each offering different benefits and limitations. Figure 2.27 displays
the hierarchical structure of some available machine learning methods.

These ML can be broadly categorised into two groups: (1) Supervised learning, where
the model is provided with both input values and corresponding expected output, and (2)
Unsupervised learning, where the model only has access to the input values [15]. Both cate-
gories involve the utilisation of external information, such as attribute values and metadata,
as input for the algorithm. However, in supervised learning, access extends to output val-
ues, which represent specific labels for the class attribute. This signifies that the model
already possesses knowledge about the structure of the data, and the objective is to assign
new data to the correct classes.

In contrast, unsupervised learning models lack access to this labelled information, com-
pelling them to discover inherent structures within the data by autonomously forming their
own classes.
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To conclude, machine learning models exploit patterns in data to accomplish tasks,
which can be applied in maintenance use cases. This approach differs significantly from
traditional symbolic AI, which focuses on constructing a knowledge base to capture the
context behind processes. In ML models, contextual information is not captured, where the
output is often difficult to interpret, raising the questions related to the trust and safeness
of the models [258].

In the following sections, we briefly introduce a list of machine learning models. This
includes Linear Regression, Bayesian Networks, Support Vector Machines, K-Nearest Neigh-
bour, Neural Networks, Decision Trees, and Random Forests. In later chapters we illustrate
the creation of random forests for predictive maintenance tasks.

2.6.1.1 Regression: Linear Regression

Regression analysis refers to statistical machine learning techniques for investigating and
modelling relationships between entities [214]. Regression tasks can be applied across var-
ious fields and are used for forecasting, prediction tasks, as well determining relations be-
tween a dependent variable and a collection of independent variables or features [200].

One example of regression is Linear Regression. Linear regression is one of the first and
more simple machine learning models, which employs a mathematical approach to perform
predictive analysis. This is achieved by modelling the relationships between a pre-defined
dependent variable and independent variables using a simple linear equation. The base
equation with a single independent variable, known as the Simple Linear Regression, can
be defined as Y = β0+β1X+ε, where Y is the dependant variable, and X is the independent
variable, β0 is the intercept, and β1X is the coefficient that determines the slope of the line
[1]. More complex versions such as Multivariate Linear Regression or Polynomial Regression
expand the equation.

Linear regression was independently developed by Sir Francis Galton (a cousin of Charles
Darwin) in the late 19th century [301] while studying the relationships between the heights
of parents and their offspring. However, Galton did not use the term regression – the term
was later popularised by Karl Pearson, who used the term in a series of mathematical papers
published between 1894 and 1896, mainly in “Contributions to the Mathematical Theory
of Evolution” in 1894 [242].

The main advantages of applying linear regression lie in its interpretability and the
clear representation of interpretations of coefficients [183]. It simplifies the understanding
of relationships between the independent and dependent variables, allowing the relations
be visualised on a plot graph. Additionally, linear regression is a straightforward model,
which is advantageous when seeking simplicity in a model. It can be implemented as
a baseline model to assess whether a more complex approach is needed. On the other
hand, the limitations of linear regression include its lack of direct suitability for tasks with
multiple classes. Additionally, linear regression assumes a linear relationship between the
processed variables. In the occurrence where the relationship is non-linear, the model may
underperform.
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2.6.1.2 Bayesian Networks

Bayesian Networks (BN) are probabilistic graphical models designed to illustrate prob-
abilistic relationships among variables in a directed acyclic graph (DAG) [295]. In this
framework, the nodes of the graph correspond to propositional variables of interest, while
the edges represent the direct dependencies between these variables [241].

The term “Bayesian Networks” was introduced by Judea Pearl in the 1980s [22], defin-
ing it as a formalism for reasoning under uncertainly. Pearl illustrates this concept by
demonstrating how a BN can model relationships among medical diagnosis symptoms while
encoding conditional independence assertions in the DAG [240]. In his example, the DAG
contained variables such as “Flu”, “Fever” and “Positive Test Result”as nodes, with directed
edges indicating the probabilistic dependencies among these variables. In this scenario, the
observation of “Fever” removes the need for a direct link between the other two nodes.

Notable advantages of this model include its inherent ability to interpret problems in
terms of structural relationships between predictors, and ability to assess the probability of
an event occurring in relation to a previously observed event [107]. BNs are preferred over
other models for dealing with data characterised by uncertainty and probabilistic relation-
ships. However, the key disadvantage is that the performance tends to decrease with an
increase in data volume [295]. Additionally, the model is not compatible with dimensional
data, posing a limitation in certain analytical contexts.

2.6.1.3 Support Vector Machines

A Support Vector Machine (SVM) is a binary supervised ML model utilised for both clas-
sification and regression tasks [206]. In the context of classification, SVM can be utilised to
categorise data into two distinct groups, for example, determining whether an email is spam
or not. This classification is achieved by identifying the optimal line or hyperplane that
effectively separates the data into the different classes. SVM creates a margin i.e., a small
gap, between the line or hyperplane and the nearest data points for each category. The data
points closest to the line, known as support vectors, are leveraged to determine the optimal
placement of separation boundary [45]. To handle more intricate shapes and non-linear
relations, SVMs use Kernels– functions that transform data points into higher-dimensional
spaces. This flexibility improves the capability of the model, not restricting the hyperplane
to remain as straight lines.

SVMs were firstly introduced in a seminal paper titled “Support-Vector Networks” pub-
lished in 1995 [70] through the combined contributions of Vladimir Vapnik and Corinna
Cortes. SVMs are capable of handling complex functions and can employ different suitable
kernel functions for different tasks. They can provide higher accuracy compared to other
models, where the accuracy and performance are not affected with more features. However,
SVMs are typically complex, and knowledge of different kernels is necessary. The perfor-
mance is not optimal with larger data sets as the training time increases greatly [183, 295].
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2.6.1.4 K-Nearest Neighbour

K-Nearest Neighbour (KNN) is a supervised machine learning method extensively applied
in pattern recognition and classification tasks [217]. KNN operates as a straightforward
classifier, which identifies the nearest neighbours to a given query, and utilises their char-
acteristics to assign a class to the query itself [72]. For example, if something walks, looks,
and quacks like a duck, then the likelihood is that it belongs to the duck category. [170].
K, in this context, refers to the quantity of nearby neighbours to the query. There are
three distance metrics available, that can be applied to measure the similarity between data
points. This includes the Euclidean, Manhattan, or Minkowski distances [296]. The deter-
mination of the class assignment is obtained by selecting the most prevalent class between
all the neighbours– a process known as a decision rule.

The advantages of employing KNNs lie in its transparency and simplicity of imple-
mentation and validation [72]. As a non-parametric classification algorithm, KNNs are
well-equipped for scenarios involving multi-modal classes and applications where objects
may belong to more than one class. However, some disadvantages include the algorithm’s
runtime nature, making it prone to performance issues with larger training data sets. Also,
the performance relies on selecting the optimal value of the parameter K, which often re-
quires the need for computational expensive methods such as cross-validation to obtain such
a value [295].

2.6.1.5 Neural Networks

A Neural Network (NN) or Artificial Neural Network is a mathematically intensive machine
learning model designed to simulate the cognitive structure and functionalities of a biological
brain [180]. The NN is composed of artificial neurons– simple mathematical models that
perform functions such as multiplication, summation, or activation. All inputs in the NN
model traverse these artificial neurons as layers. The first layer employs the multiplication
neuron, assigning weightings to each input. Afterwards, the sum artificial neuron is applied
in the next layer, aggregating all weighted inputs and bias. These new values then pass
through an activation function, producing a final output.

The primary advantage of NNs lies in their capability to effectively classify complex
scenarios when compared to other models in this category. The flexibility of the model
allows the incorporation of numerous layers in the NN to cover deeper layers of data and
relations. NNs can also employ non-linear mathematical equations to establish weightings
between relations between input variables and capture complex relations [343]. Nevertheless,
there is a trade off concerning interpretability, as NNs are inherently complex and function
as black-box models. This complexity stems from the stacked layer architecture, where all
the layers, except the initial input layer, remain concealed, presenting challenges for human
interpretability.
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2.6.1.6 Decision Trees

Decision Trees (DT) are a versatile and interpretable supervised machine learning technique
that is applicable for both classification and regression tasks [261]. In classification, data
is collected and segmented into distinct groups based on features, enabling instances to
be categorised into different classes. The algorithm uses a divide-and-conquer approach,
utilising recursive partitioning of data according to attribute values, resulting in a tree-
like structure [220]. Each path within a tree consists of one or more nodes representing
decisions based on specific conditions, leading to a leaf node containing a class label. Each
path essentially represents a simple rule that assigns a unique categories to each instance.

DTs are advantageous due to their interpretable and transparent format of representing
data in a tree-like structure. This format can be easily interpretable by humans while also
being understandable for machines. However, they are prone to over fitting, which is the
concept of capturing unwanted noise of the data.

2.6.1.7 Random Forests

Random Forests (RF) were introduced as a classifier to address the limitations of individual
decision trees by Leo Breiman in 2001 [47]. The RF algorithm constructs an ensemble of
decision trees, where each tree is trained using random subsets of the dataset. These decision
trees are obtained through bootstrapping sampling, a method developed in 1982 [91]. As a
result, each tree is trained on a diverse set of instances, making each decision tree unique.

To determine the final predicted category for each instance, the output from each indi-
vidual tree is combined. This ensemble technique lowers the variance and enhances model
accuracy. Afterwards, the predictions of each individual tree are combined by adopting
either a “majority voting” strategy or a “soft voting” strategy to compute the final classi-
fication from the DTs. In the majority voting strategy, the final classification is computed
by calculating the modal value of all DT predictions, while in the soft voting strategy, the
final classification is derived by calculating the average value of all DT predictions.

Random forests offer several advantages over other models. This includes generally
higher accuracy as the techniques applied are less prone to overfitting compared to individual
decision trees [30]. In addition, the ensemble nature of RFs provide greater robustness and
less sensitivity to noise in the data. They can be applied for both classification or regression
tasks, making them versatile for different problems and datasets. Furthermore, RFs provide
a wide range of techniques to improve model accuracy, including features such as bagging,
node splitting, feature importance, and so forth. Taking feature importance as an example,
this feature allows enables you to discover which features have the greatest weighting and
impact on the output, indicating the contribution of each feature to the model’s predictive
capabilities. Finally, unlike some of the other models mentioned that suffer from increasing
the quantity of features, RFs are not sensitive to scaling the input features.

In contrast, some of the limits of random forests are notable. First, despite being a
collection of white-box decision trees, they are still considered of black-box nature. This is
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because increasing the quantity of decision trees in the RF also increases the complexity,
compromising the interpretability of the model.

2.6.2 Machine Learning in the Context of Industry 4.0

In the context of Industry 4.0 and smart manufacturing, machine learning techniques have
been widely adopted, providing applications to optimise, control, troubleshoot, and enhance
process operations and automation [74]. For instance, they can play an important role in
predictive analytics and predictive maintenance purposes within cyber-physical systems.

However, their success in the context of Industry 4.0 has varied. A recent review has
outlined challenges in this domain [74], highlighting issues such as the dynamic nature of op-
erating environment and the necessity for context-aware information, including operational
conditions in a production environment [338, 282]. These challenges are particularly notable
in the steel manufacturing industry, where a substantial amount of both human knowledge
and data-intensive processes intersect. Meanwhile, machine learning models lack the capa-
bilities to capture and include domain knowledge in their data mining processes as the data
is not context-aware.

Additionally, one major concern of machine learning models is their lack of interpretabil-
ity due to their “Black Box” nature. Black box models refer to models that are either too
complicated for any human to comprehend, or are proprietary [275]. Frequently, the results
produced from such models cannot be traced or explained, regardless of their accuracy.
Consequently, this raises concerns about the reliability of machine-generated outputs in the
setting of smart manufacturing.

The trade-off between machine performance and interpretability becomes especially crit-
ical. Generally, an increase in complexity results in the decrease of interpretability. For
instance, simple models such as linear regression are treated as white boxes as they provide
transparency in their functioning, but have limited capabilities. Meanwhile, more complex
models such as deep neural networks are considerably more complex and can achieve greater
performance and accuracy, but are not interpretable.

To address this concern, novel tools have been introduced to assist in the interpretation
of black box models, collectively falling under the term “Explainable AI” [337]. Examples
of such tools include LIME and SHAPLEY [141]. In essence, these tools employ a second,
post-hoc model to explain the workings of the initial black box model. While these models
have demonstrated success in explaining black box models, ongoing discussions emphasise
the importance of designing and utilising models that are inherently interpretable from the
beginning, especially in domains such as criminal justice, healthcare, and computer vision
[275]. These interpretable models refer to rule-based systems and knowledge-based systems
where important decisions can be tracked, offering an alternative to black box models.
Consequently, the development of hybrid models that combine semantic technologies and
ML has been proposed to address these challenges.
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2.6.3 Summary of ML

In summary, with the advancements of processing powers, data collection tools, etc., ma-
chine learning models have made significant advancements in artificial intelligence. ML
models have demonstrated many prosperous capabilities and achievements in all sorts of
domains and applications such as biology, healthcare, manufacturing etc. In the domain
of manufacturing, they can be applied for predictive tasks which play a pivotal role on
maintenance and analytic tasks during processes.

There are a diverse range of machine learning models that focus on either classification
or regression tasks while some provide the ability to achieve both, i.e., predicting an output
based on a set of inputs using either categorised or numerical labels. These ML models can
be employed for different tasks. It is important to note that the performance of each ML
model depends on the specific characteristics of the dataset and the specifications of the task
at hand. Important factors such as computational resources, interpertability requirements,
and the nature of the data play a significant part in selecting a ML model.

In this thesis, we have chosen to adopt random forests over other methodologies because
of their advantages and few limitations. We explain our reasoning in greater depth in the
relevant chapters.

2.7 The Idea of Combining Semantic Reasoning with ML
Models

Machine learning and knowledge representation are two distinct approaches for artificial
intelligence. Machine learning emphasises the identification of patterns in data for classifi-
cation and regression tasks, while the knowledge representation methods are more focused
on the acquisition and utilisation of knowledge for reasoning.

In recent years, notable progress has been made in machine learning and GPT-like
models, but are often faced with non-factuality and non-reliability challenges. Sam Altman,
the CEO of OpenAI, the organisation who developed ChatGPT, acknowledges the current
limitations, stating that “It’s a mistake to be relying on it for anything important right now.
It’s a preview of progress; we have lots of work to do on robustness and truthfulness.” [260].

Concurrently, discussions in AI emphasise the semantic limitations of ML, and the
significance of adopting knowledge representation and reasoning mechanisms for specific
tasks. Many contributing figures from both AI backgrounds, such as Benjamin Grosof, a
major contributor to the SWRL rule language and the description logic programs [121],
or Gary Marcus, a prominent figure in deep learning [196], argue that a hybrid approach
combining both AI approaches will be necessary for achieving robust AI [197].

The core idea behind these hybrid systems involves extracting knowledge from the data
and applying symbolic reasoning to produce interpretable results, overcoming the black-
box behaviour of traditional machine learning methods [89, 138]. This has led to a growing
movement to integrate these two methods, leveraging the strengths of each approach, ad-
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dressing their respective limitations, and enhancing the overall capabilities of intelligent
systems [178, 48].

In the domain of steelmaking and smart manufacturing as a whole, many processes are
very knowledge-driven, typically requiring a human expert in the centre of operations. As
mentioned, ML models are not able to capture this human knowledge and are restricted
to only utilising patterns in the data. Thus, there is motivation to investigate this hybrid
approach in the context of this thesis.

Sometimes, the combination of machine learning and semantic technologies is referred
to as the third wave of AI, with knowledge representation and reasoning constituting the
first wave, and ML representing the second wave [106]. However, the term Hybrid-AI
can be ambiguous and interpreted in various ways, such as expressing the combination of
two statistical ML methods. Consequently, a more specific term, Neuro-symbolic AI, has
emerged to denote the combination of semantic technologies with machine learning [106].

IBM is just one example of an active and growing community in the research and devel-
opment of neuro-symbol AI. They held the 1st IBM workshop with over 1,500 registrations
in January 2022, which increased to over 6,000 registrations by the IBM summer school
in August 2022. The second summer school, held in 2023, included talks from two Turing
award winners: Leslie Valiant from Harvard University, recognised for his major contribu-
tions to the theory of computation and Probably Approximately Correct (PAC) learning 2,
and Yoshua Bengio from Université de Montréal, acknowledged for his major contributions
in artificial neural networks and deep learning (with over 730,000 citations) 3.

Figure 2.28: Neurosymbolic AI presented by Benjamin Grosof at 2nd IBM Neuro-Symbolic
AI Summer School, 2023.

Figure 2.28 displays an illustration by Benjamin Grosof, which was captured during the
2nd IBM Neuro-Symbolic AI Summer School in 2023 4, stating that neuro-symbolic AI is

2https://scholar.google.com/citations?hl=en&user=H509xdsAAAAJ
3https://scholar.google.com/citations?user=kukA0LcAAAAJ
4https://neurosymbolic.github.io/nsss2023/
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necessary to advance the currently state of AI.
However, this research area is still in its infancy. There are many overheads associated

with incorporating semantics into machine learning, particularly in the context of predic-
tive maintenance and real-time processing. For instance, traversing semantic structures
during inference adds latency, making real-time responses more computationally demand-
ing and challenging [129]. Also, semantic models need to scale in order to handle large data
sets, which requires more hand-crafted domain knowledge, increased complexity, and higher
computational costs [129].

Despite these overheads, semantic models provide valuable contextual information to
data and improve interpretability, which is necessary for interoperability within the Industry
4.0 setting.

Because of the growing interest and potential of neuro-symbolic AI, this thesis explores
the integration of random forest classification, a machine learning technique, with semantic
technologies. We focus on developing a hybrid method that will assist steel operators with
critical decision-making tasks. This research direction aims to bring the strengths of both
AI approaches, presenting a solution with several novel contributions.
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The Asset Administration Shell (AAS) is a fundamental concept in the Reference Architec-
ture Model for Industry 4.0 (RAMI 4.0), that provides a virtual and digital representation
of all information and functions of a physical asset in a manufacturing environment. Re-
cently, Semantic AASs have emerged that add knowledge representation formalisms such
as RDF or OWL, to enhance the digital representation of physical assets. In this chapter,
we provide a comprehensive survey of the scientific contributions to Semantic AASs that
model the information and communication layers within RAMI 4.0 and summarise their
structure, communication, functionalities, and use cases. We also highlight the challenges
of future development of Semantic AASs.

This chapter was a manuscript that was initially published in 2020 in [27]. We have
modified the manuscript to include up-to-date findings.
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3. Semantic-Web Asset Administration Shells Survey

3.1 Introduction

Digital transformation in manufacturing is enabling a shift in paradigm towards smart
manufacturing, which makes use of new technologies and concepts. The advancements
in Cyber-Physical Systems (CPS), Industrial Internet of Things (IIoT), Cloud Comput-
ing, Artificial Intelligence (AI), and other key enabling technologies, have led to a vision
that machines, processes, and products are connected via intelligent networks that utilise
information and communication technologies. This vision is called the fourth industrial
revolution, commonly referred to as Industry 4.0 [145]. To realise this paradigm shift, there
are many initiatives developing architecture models to support Industry 4.0. The Reference
Architecture Model for Industry 4.0 (RAMI 4.0), developed by Plattform Industrie 4.0 and
other associations including ZVEI and VDMA [2], includes the fundamental concept of an
Asset Administration Shell (AAS), serving as the virtual and digital representation of all
information and functions of a physical asset in a manufacturing environment. Within an
AAS, big industrial data is stored in a strict format through one or more sub-models to
enable real-time condition monitoring of machines and machine tools.

As the manufacturing domain is highly data and knowledge-intensive, uniform knowl-
edge representation of physical resources and seamless integration of heterogeneous data for
analytic tasks are needed as the basis to automate decision-making processes for produc-
tion systems. To address these challenges, knowledge-driven manufacturing methods have
received significant attention in recent years. Normally, these methods involve knowledge
models during decision making processes in order to provide rich data semantics through-
out the manufacturing activities [65]. This trend has enabled the adoption of Semantic
Asset Administration Shells. A Semantic AAS uses knowledge representation formalisms
such as Resource Description Framework (RDF) and Web Ontology Language (OWL) to
create digital representations of physical assets [118]. Semantic AASs enable interoperable
communication among machines, and compatibility with diverse digital frameworks and
architecture.

In this chapter, we provide a comprehensive survey on semantic-based AASs. The aim
of the survey is to provide a vision and outlook on the critical and cutting-edge technologies
used within Semantic AASs.

The rest of the chapter is structured as follows. First, Section 3.2 gives a brief intro-
duction to RAMI 4.0 and Industry 4.0 components. In Section 3.3, we introduce the survey
methodologies used in this chapter. Afterwards, in Section 3.4, we present an in-depth
construct of semantic-based AAS, by introducing their structure, communication technolo-
gies, characteristics, and functionalities. Section 3.5 demonstrates some typical application
use cases of semantic AASs. Finally, Section 3.6 concludes the chapter and outlines open
challenges within this research field.
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3.2 Background

This section recaps the RAMI 4.0 model, providing a brief description of relevant topics
and concepts coined within Industry 4.0.

3.2.1 Reference Architecture Model for Industry 4.0

To recap from the background section, the Reference Architecture Model for Industry 4.0
(RAMI 4.0) is a 3D model frame that highlights the most important and key aspects of
achieving Industry 4.0 [2]. The model uses a divide-and-conquer approach to tackle the
complex technical to business processes and architecture of Industry 4.0.

Firstly, the Layers axis, represents the six processes that describe the technical and
business perspectives of a product [345]. The asset layer represents the things that are in
the physical world whereas the communication, information, functional, and business layers
represent the asset’s form in the digital world. The integration layer is responsible for
bridging these two worlds together by reading and storing all digital information of assets,
typically through sensors.

The second axis is the Life-cycle and Value Stream axis. This axis expresses the lifecycle
and associated value stream of products, machinery, factories, and other assets according
to the IEC 62890 standard. The purpose of this axis is to record all data of an asset, from
its first idea and initial design, all the way until the asset is scrapped.

The final axis, the Hierarchy Levels axis, describes the necessary advancements in hier-
archy required for achieving Industry 4.0. The core structure of this axis is based on the
IEC-62264 (Enterprise-control system integration) and IEC-61512 (Batch control) standards
within a manufacturing environment. These two standards cover many sectors of a factory,
from process industry to factory automation. The RAMI 4.0 model adds two additional
layers:

• Product: The product itself is a key aspect of Industry 4.0 and is still part of the
model even after it has been manufactured and sold.

• Connected World: Connected world portrays cloud storage and collaboration beyond
one factory, between other factories, suppliers, customers, and so forth, to achieve
greater connectivity than at the factory level.

3.2.2 Industry 4.0 Component

An Industry 4.0 component (I4.0 component) serves as a model, the purpose of which is to
hold all data of assets that can describe properties, configuration parameters, and functions
of other assets [102].

The British Standards Institution (BSI) group, known for developing standards in Man-
ufacturing and Engineering, defines an I4.0 component as a globally and uniquely identifiable
participant that is capable of communication within an I4.0 system [2, 50]. This can range

79



3. Semantic-Web Asset Administration Shells Survey

from a module within a machine to a whole production system [118]. In general, an I4.0
component is composed of an Asset and an Asset Administration Shell as described below:

The Asset layer, as previously mentioned, represents all real, physical things within a
manufacturing environment that can be connected digitally. Taking cold rolling mills as
an example, this will include physical equipment or products such as the rolling mills, the
rolls, the coils, and other machinery. This also includes immaterial items such as documents,
plans, orders, and even the shift workers involved.

An Asset Administration Shell (AAS) serves as a virtual and digital representation
of all information and functions of an asset, and acts as an administration interface acces-
sible within an Industry 4.0 network [111]. Communication between assets occurs between
their AAS, whereby the AAS provides and moderates controlled access to the data [251].
Additionally, an AAS contains an administration interface where its data may be accessed
through external application services, e.g., by calling an Application Programming Interface
(API) from an Enterprise Resource Planning (ERP) system. The data itself is stored in a
strict format through one or more sub-models e.g., a security sub-model would store all the
security-related information. The sub-model approach of storing data is expandable and
flexible, and storage location is of free choice [322]. This means that assets from different
vendors may contain different sub-models where the AAS simply acts as the data manager
of the asset [322]. The data set should contain the full lifecycle of the asset, from its early
stages of being planned and manufactured until it is scrapped.

The stored data is processed by data-driven methods for understanding manufacturing
processes, thus enabling real-time condition monitoring and maintenance of the physical
assets. The AAS is the key enabler of transforming legacy industrial components into I4.0
components.

As knowledge-based frameworks, Semantic AASs equip traditional AASs with knowl-
edge representation formalisms to allow semantic metadata modelling. Resource Description
Framework (RDF) and Web Ontology Language (OWL) are prime examples used for stan-
dardising metadata and semantics [78]. Benefiting from the explicit data semantics specified
in semantic models, these Semantic AASs enable interoperable machine-to-machine data ex-
change and communications [118].

3.3 Survey Methodology

3.3.1 Research Questions

This survey chapter will investigate research literature related to Semantic AAS as an
I4.0 component. There is much literature on Industry 4.0 and I4.0 components, but the
understanding of Semantic AASs is often overlooked. This review aims to provide a clearer
and more concrete understanding of this topic.

The work of this survey chapter is guided by answering the following research questions:

• What are the key characteristics of Semantic AASs?
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• What sub-domains of manufacturing have been studied in the literature?

• What are the typical application cases?

In section 3.4, we address the first two research questions by reviewing the existing
literature on Semantic AASs. In section 3.5, we address the third research question by
summarising the application cases of Semantic AASs.

3.3.2 Inclusion & Exclusion Criteria

In this chapter, we focus on the Semantic AASs that model the information and communi-
cation layers within RAMI 4.0. These two layers are essential for the digital representation
and real-time data analytics of physical assets. Although there are Semantic AASs that
address the challenges in other layers, the amount of papers found are almost negligible
compared to the two layers mentioned above. Because of this, research papers that focus
on other layers are excluded from this study.

During this study, research papers, technical reports, and white papers are considered
valuable resources. However, duplicates among these resources are excluded. This survey
primarily focuses on English papers only.

3.3.3 Corpus & Web Search Engine

To derive greater understanding of Semantic AASs, an analysis of all relevant publications
was carried out. This topic contains strong blends of scientific literature and engineering
principle. Because of this, this survey used different bibliographic databases, including
Institute of Electrical and Electronics Engineers (IEEE) Xplore for the engineering side,
and ACM for the scientific literature side. Finally, Scopus was used which provided a
combination of literature found in both IEEE and ACM, as well as other valid sources.

3.3.4 Initial Survey Results: 2017-2020

At the initial stage, the main keywords searched were Asset Administration Shell. Scopus
provided a result of 61 unique hits from 2017 to 2020; 70.4% of which were conference papers,
26.2% Articles and 3.4% categorised as others. The vast majority of these publications were
from IEEE and only a handful from ACM. Very few results were from other bibliographic
databases, such as Science Direct and Web of Science. As a result, this chapter includes all
relevant results but will primarily focus on the results found from IEEE as well as ACM.
These keywords resulted in 37 papers on IEEE Xplore from the years 2017 to 2020. This
small number conveys that this field of research is new and upcoming. From 2017 to 2020,
the average annual number of papers are nine. In 2017, four papers mentioned “Asset
Administration Shell”, followed by eight papers in 2018. This value jumped to 16 papers in
2019 and dipped to seven from January to October 2020. Furthermore, there are no papers
prior to 2017 which further emphasises that this field is in early stages of research.
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In comparison, ACM only contained six papers from 2017 to 2020. This conveys that
most research is happening from an engineering point of view.

When expanding the search to include Semantic AASs, RDF-based AASs, knowledge-
based AAS, we found under ten relevant papers from the above digital libraries. Thus, we
extended our search with Google Scholar and other available sources, discovering a total of
seventeen relevant papers in total.

3.3.5 Extended Survey Results: 2021-2024

Following the same approach as the initial search, we searched for Asset Administration
Shell in Scopus, which resulted in 271 documents from 2021 to 2024. 180 papers are
published as conference papers, whereas 71 are articles, and 20 are labeled as ‘other’. The
increase in papers emphasises the growing interest of the topic. Once more, we refined
these papers to include semantic methods using the same search: (“semantic” OR “RDF”
OR “knowledge-based”) AND (“asset administration shells” OR “AAS”). This search query
returned a total of 47 papers from 2021 to 2024. After applying the exclusion criteria and
reviewing the abstracts of each paper, we refined the search to prioritise manuscripts with
application implementation, expanding the scope of the survey to cover 25 relevant papers.

3.4 Semantic Asset Administration Shells: The State of the
Art

This section gives a detailed description of the Semantic AASs that appear within the
papers mentioned in the previous section. The papers are categorised according to which
layer the Semantic AASs serve within the RAMI 4.0 architecture. In this chapter, we focus
on two layers: the Information Layer and the Communication Layer. Most of the reviewed
literature contribute to these two layers.

3.4.1 The Information Layer: RDF-based AASs

Normally, Semantic AASs use formal knowledge modelling languages such as RDF and OWL
to create digital representations of physical assets. These type of AASs enable industrial
devices to communicate and understand each other, for the goal of semantic interoperability.

The first RDF-based data model for AAS was introduced by Grangel-González et al. in
2016 [118]. This chapter proposed to add a semantic layer to AAS, stating the advantages
of adopting an RDF-based approach. The developed AAS benefited from the traits of
RDF schema as it provided decentralised and extensible global Identification, unified data
Integration, and Coherence among new taxonomies, vocabularies, and ontologies. Because
of the uniform information representation, existing standards and asset data could easily
be integrated and referenced. To access relevant asset information, SPARQL was used as a
query language to retrieve data captured by the Semantic AAS. The authors demonstrated
the Semantic AAS using a motor controller as a use case. This Semantic AAS was extended
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by the same authors later in [117]. Here, they proposed three improvements: 1) A significant
extension of the RAMI 4.0 vocabulary for describing sensor data, units of measurement, and
product information; 2) An RDF-based vocabulary which incorporated the international
standard IEC 62264 that aligned with the RAMI 4.0 vocabulary; 3) A real-world use case
on black carbon monitoring in industry. The prominent characteristic of their work is
the translation of IEC 62264 standard-based RAMI 4.0 model to an RDF-based uniform
vocabulary. This translation provided a common description of I4.0 components using a
unified knowledge representation language.

Similarly, Bader et al. introduced Semantic AASs in more detail [14]. In their paper,
the authors filled the gap between industrial reference frameworks and semantic description
of the physical world. To achieve this goal, the authors mapped the latest AAS data
models into RDF format, and used Shapes Constraint Language (SHACL) shapes to enable
schema validation. Firstly, when mapping to RDF, they stated that the AAS object is
the root of every AAS. Thereby, it could also be the entry for traversing the Semantic
AAS graph. To cover the semantics of an asset, the authors created rdf:type, rdfs:label,
rdfs:comment to cover the class assertions, name, description, and kind attributes of the
asset. Secondly, a fundamental requirement of an AAS is to have a unique identifier—the
authors declared that it is possible to use the RDF’s URI as a possible identifier. Otherwise,
custom formats such as International Registration Data Identifiers (IRDI) are allowed.
Submodels and SubmodelElements of AAS were realised and modelled using Operations,
ReferenceElements, Files, binary objects and Properties classes. rdf:property was developed
to align the Property class with RDF’s graph model. To execute this mapping, the authors
used an open-source tool named RMLMapper. They also illustrated how the transformation
to the semantic data model was able to decrease the amount of required storage space.

Tantik and Anderl aligned the Plattform Industrie 4.0 AAS guidelines with the World
Wide Web Consortium (W3C) specifications in [305]. W3C provides the Object Memory
Model (OMM) which contains block-based digital object memories (DOMe) to present
highly standardised meta-information. Combining OMM with an integrated component
data model produces a new data model: the Component Data Model (CDM). The authors
used CDM to present data of nested I4.0 components. Using a robot arm as a use case,
they presented an integrated data model that used a central remote maintenance platform
(CRMP) as a form of communication between AASs.

Hua and Hein investigated AutomationML from a semantic point of view in [146]. They
argued there was a lack of semantic support for automated machine processing, and thereby,
used OWL to transform AutomationML data to a formal and declarative semantic repre-
sentation. They combined Inductive Logic Programming (ILP) techniques with automated
reasoning to obtain meaning of system unit classes. To demonstrate this, they used a
machine learning example using OCEL and CELOE algorithms to demonstrate concept
learning in AutomationML using DL-Learner.

Thuluva et al. dive into the Web of Things (WoT) and semantic web technologies to
address cross-domain interoperability problems in Automation Systems (AS) [308]. The
WoT standard provides an interface named Thing Description (TD) that was developed to
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describe an object, as well as its meta-data and interaction. This paper employed SWT in
WoT and used TD as the basis to model a WoT-enabled AAS.

Rongen et al. [273] highlight the benefits of employing AAS models in the context of
digital twins, and how an RDF-based approach can enhance semantic expressiveness and
advanced querying within the digital twin framework. The authors propose two meta-model
methods for integrating RDF and AAS: (1) the first method involving the generation of an
AAS template based on RDF-based data models, ensuring robust semantic interoperability,
and (2) a method involving the direct mapping of RDF classes and relationships to sub-
models within an AAS, utilising the domain and range of RDF to serve as search indexes.
The paper introduces the MAS4AI project as a use case, which focuses on the development of
agent-based digital twins for modular production environments. The methodology leverages
RDF and is implemented in collaboration with pilot lines, showcasing the proposed methods
in real-world scenarios [293].

3.4.2 The Information Layer: OWL Ontology-based AASs

As another type of semantic models, OWL-based ontologies also play an important role for
describing manufacturing entities within a Semantic AAS. In computer science, an ontology
is considered as “an explicit specification of a conceptualisation for a domain of interest”
[122]. Within this definition, specification refers to an act of describing or identifying some-
thing precisely. This requires the concepts and relationships in ontologies to be clearly
defined by using formal logic. Since ontologies are developed based on formal logic founda-
tions, they have been pervasively used in industry to ensure the semantic interoperability
among different systems and users. In the manufacturing domain, ontologies play a key role
in many distributed intelligent systems as they provide a shared, machine-understandable
vocabulary for information exchange among dispersed agents [59, 115, 104, 58]. Large on-
tologies are designed in a modular structure to enhance their re-usability, extendability, and
easy maintenance.

To model the concepts and relations within ontologies, the W3C developed a formal
ontology language named OWL. OWL is a component of the Semantic Web, that explicitly
represents the meaning of terms in vocabularies and the relationships between those terms.
The representation of terms and their interrelationships form an ontology. In the following
section, we review the existing OWL ontologies and their rule-based extensions that are
relevant to Semantic AASs.

The first group of studied ontologies were developed to model product-related concepts
for manufacturing. Vegetti et al. [320] proposed a PRoduct ONTOlogy (PRONTO) for
the domain of Complex Product modelling. With primary focus on product structure, this
ontology considered different abstraction levels of product concepts such as Family and
Variant. It also extended the conventional product structure representations (BOMs) with
considering composition and decomposition structures of products within a variety of man-
ufacturing environments. However, PRONTO was not capable of referring to the existing
international standards related to the modeling of product structure, processes, and fea-
tures. To address this weakness, Panetto et al. [236] developed ONTO-PDM, which is an
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ontological model considered as a facilitator for interoperating all application software that
shared information during the physical product lifecycle. The distinctive merit of this ontol-
ogy was its incorporation of standardisation initiatives, such as International Organisation
for Standardisation (ISO) and International Electrotechnical Commission (IEC) standards.
This nature of ONTO-PDM allowed the management of heterogeneous information scat-
tered within organisations, by formalising the knowledge related to product technical data
[236]. The MASON ontology [185], developed by Lemaignan et al., is another prominent
ontology for manufacturing. This OWL ontology was developed to draft a common se-
mantic net in manufacturing. It conceptualised three core concepts: Entities, Operations,
and Resources. In more detail, the product information was specified by three sub-concepts:
Geometric Entities, Raw Material, and Cost Entities. The representation of product-related
concepts were linked to the description of manufacturing processes and resources under the
proposed semantic net in manufacturing.

The second group of reviewed ontologies focused on process-related concepts for man-
ufacturing. A manufacturing process is a sequence of activities through which the raw
materials are assembled, integrated, and transferred into a final product. To model man-
ufacturing processes, Grüninger et al. [126] proposed the Process Specification Language
(PSL) Ontology, which is a semantic model to facilitate correct and complete exchange of
process information among manufacturing systems. Within the PSL ontology, the authors
formalised the concept of process in the form of first-order logic theories. This formalisation
has been widely used in domain applications such as process modeling, process monitoring,
process planning, simulation, project and workflow management [126]. Another process-
related OWL ontology is the one developed by Cao et al. [56]. In their work, a domain
ontology was developed to formalise essential concepts and relations about condition mon-
itoring. The ontology was structured into three sub-modules, namely the Manufacturing
module, the Context module, and the Condition Monitoring module. This ontology was
used within a Cyber Physical System to enable real-time predictive maintenance. A case
study on a conditional maintenance task of bearings in rotating machinery was performed
to evaluate the proposed ontology. This ontology was extended by the same authors in their
recent work [57]. The extended new ontology was named Manufacturing Predictive Main-
tenance Ontology (MPMO). MPMO was used together with Semantic Web Rule Language
(SWRL) rules to enable ontology reasoning, for detecting and predicting possible anoma-
lies that may happen within manufacturing processes. The effectiveness and usefulness of
MPMO was tested on a real-world data set collected from a semi-conductor manufacturing
process.

The third group of ontologies addressed resource-related concepts for manufacturing. In
general, the concept Resources is defined as physical objects that can execute a range of
operations during a manufacturing process. Borgo and Leitão [44] formalised the concept
of Resources by developing a core ontology for manufacturing scheduling and control envi-
ronments. In their work, a Resource was defined as “an entity that can execute a certain
range of jobs, when it is available, as long as its capacity is not exceeded” [44]. The core
ontology was implemented as part of a multi-agent manufacturing control system by using
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the Java Agent Development Framework (JADE) framework. The author concluded that an
established foundational ontology plays an important role in handling heterogeneous data
generated by manufacturing control applications, especially those built upon distributed
approaches such as multi-agent systems. The notion of Resources was also studied in the
MASON ontology [185], where Resources are further classified into four sub-notions: 1)
Machine-tools (e.g., turning machines, drilling machines, milling machines); 2) Tools (e.g.,
forging die and punch, turning tool, founding pattern and mould); 3) Human Resource
(e.g., procedure expert, handling operator, programming operator); and 4) Geographical
Resources (e.g., plants, workshops). The modelling of manufacturing resources was of vi-
tal importance for estimating the total cost for manufacturing activities. [147] et al. also
developed the Manufacturing Resource Capability Ontology (MaRCO) that describes the
capabilities of manufacturing resources, and leverages semantic querying using SPARQL,
to retrieve the needed resources in an AAS-based plant model. The authors demonstrate
ontology-based capability checking in AAS to improve the semantic interoperability of AAS-
based digital twins. The authors implement a use case of a robotic cell, demonstrating how
their ontology can be combined with the “Papyrus4Manufacturing” tools to effectively show
the capability of checking protocols in a manufacturing use case.

3.4.3 The Communication Layer: Semantically-enhanced OPC-UA

To tackle the Communication layer of RAMI 4.0, a joint working group including OPC
Foundation, ZVEI and VDMA have chosen the OPC Unified Architecture (OPC-UA) as the
standard for machine to machine communication [250]. OPC-UA is an enhanced, platform-
independent, connection-oriented communication protocol based on service-oriented archi-
tecture (SOA) developed by the OPC Foundation [341]. The OPC-UA protocol follows the
IEC 62541 standards [125] which are derived from the OPC-UA’s Core, Access and Utility
specifications [134].

Within RAMI 4.0, the Communication Layer provides components for the communi-
cation between machines, devices, production lines, and products. To enable this goal,
data communication standards are used to offer required communication between sensors,
actuators, and smart devices. In Industry 4.0, OPC-UA has emerged as a widely used
standard for data exchange and communication in smart factories [131]. Recently, seman-
tic technologies are considered as a solution to annotating data and provide unambiguous
data semantics. The provided data semantics are machine-readable information that allows
AASs to perform required actions intelligently without human intervention.

When tackling the communication aspects, Grangel-González et al. used RDF, and STO
ontology to describe I4.0 communication standards in [116]. They provided building blocks
for the implementation of knowledge graphs for Smart Factory Standards to enable mapping
and semantic integration. They used existing ontologies such as MUTO (for tagging), FOAF
(to represent agents & linking documents), and DCTERMS (for document meta-data and
RAMI (for vocabulary). Afterwards, they described the main STO classes. Some examples
included sto:Standard, sto:SDO, sto:Domain, sto:isPartOf, sto:relatedTo e.t.c.. They used
VoCol as an integrated environment to view and explore these ontology classes. Using
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these classes, the authors provided a semantic description of the OPC Foundation as well
as OPC-UA. They also provided a use case for searching standards and their metadata.

Katti et al. [172] focused on the concept of the Semantic Web Services (SWS), well
known for allowing machines to connect without human intervention. The authors inte-
grated Semantic Markup for Web Services (OWL-S) concepts into the OPC-UA specifica-
tion, expanding to the last layer of the automation pyramid, the shop floor. To achieve this,
they integrated the edge component GeSCo, which also tackled the connectivity and net-
work latency challenges in Cloud MES manufacturing systems. GeSCo communicated with
the manufacturing resources through the OPC-UA protocol. This approach added flexibil-
ity in generating orchestration plans, to overcome any unpredicted events in production.
Their work was further developed in [171] where they introduced Semantic Annotations
(SAWSDL) concepts for more added benefit. They named this approach Semantically An-
notated OPC-UA (SA-OPC-UA). They stated that the underlying enabling technology for
SAWSDL was WSDL. WSDL contains extension attributes that enable semantic annota-
tions to describe the syntax of the web services and their operations. They stated that
there was no equivalent facility in OPC-UA that could achieve the same goal.

Weiss et al. [330] present a method for representing an OPC UA server as a generic
enterprise knowledge graph, resulting in an ‘enhanced OPC UA digital twin’. The au-
thor highlights the similarities between OPC UA’s ‘node-and-references’ data model and
semantic languages such as RDF. Thus, to address the semantic interoperability challenges
inherent to OPC UA, the authors propose modelling the OPC UA information models as
knowledge graphs. The authors develop a software tool capable of representing an OPC
UA server into RDF. However, the tool is designed to support RDF representations only,
excluding RDFS and OWL languages. This restriction aims to preserve original semantics
and enable users to query the graph without prior knowledge of ontologies. The authors
demonstrate the ability to query the AAS digital twin object using SPARQL.

Wang et al. [324] demonstrate one example of incorporating ontologies with OPC UA to
achieve greater semantic interoperability in the domain of Water Conservancy Equipment
(WCE). WCE faces inherent challenges in achieving semantic interoperability in smart water
conservancy due to the vast quantity of generated information, structural heterogeneity, and
complex relationships within the data. To address these challenges, the authors develop
the Smart Water Conservancy Ontology, specifically designed for representing WCE. This
ontology focuses on numerical representation, data semantics, and capturing the relationship
within the data. Afterwards, a network information model is constructed to capture the
structural aspects of water conservancy, resulting in a tree model that is capable of realising
semantic expressions. The authors implement a use case that deploys an OPC UA server to
read and collect water pumps and sluices data, proving the feasibility of the WCE ontology
model.

3.4.4 The Communication Layer: the Semantic Web of Things

In Industry 4.0, the Internet of Things (IoT) aims to create a network of physical objects
that are embedded with smart sensors, actuators, and software. To enable real-time data
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analytics, AASs are required to be equipped with low-latency data exchange and commu-
nication capabilities. IoT is a promising solution for this task. However, IoT suffers from
a lack of interoperability which leads to its weakness in data management in pervasive and
heterogeneous environments [286, 60].

One of the earliest contributions to the Semantic Web of Things was proposed by Pfis-
terer et al. in [248]. In their work, a service infrastructure named SPITFIRE was developed
as an architecture of the Semantic Web of Things. SPITFIRE provides uniform vocabu-
laries to integrate descriptions of sensors and physical objects with the linked open data
(LOD) cloud, by which the analysis of data is accomplished on the web. It also provides a
comprehensive representation and integrated abstractions for physical objects, their high-
level states, and how they were linked to sensors. By this, users were able to access the
current status of real-world entities. This vision was achieved by embedding a semantic
search engine in the architecture which integrated different static and dynamic data sources
in a seamless way [248].

Another framework for the Semantic Web of Things was developed by Ruta et al. in
[276]. To associate semantic annotations to real-world objects, locations, and events, the
authors outlined a novel general framework for the Semantic Web of Things. The framework
ubiquitous Knowledge Base (u-KB) is based on an evolution of the classical Knowledge Base
model [276]. To enable data annotation, domain ontologies were used as conceptual models
for a particular domain of interest. The data annotation allows semantic-based dynamic
resource dissemination and discovery within a mobile communication network.

In more recent work, Jara et al. analysed the IoT convergence issue by presenting the
different architecture levels of the Semantic Web of Things [163]. The focus was addressed
on the trends for capillary networks and for cellular networks with standards such as IPSO,
ZigBee, OMA, and the oneM2M initiative [163]. The work paved the way for developing
a semantic layer for the IoT by giving a comprehensive analysis of each technology. The
analysed technologies are mainly the common internet protocols, including IPv6, Hypertext
Transfer Protocol (HTTP), Constrained Application Protocol (CoAP), and the Internet
Engineering Task Force (IETF) protocols.

The reviewed articles in this section mainly contributed to the information and commu-
nication layers of RAMI 4.0. Table 3.1 summarises our survey results regarding the domains,
information and communication models, and achieved goals of the reviewed papers. This
table highlights the significance of adopting RDF, OWL, and ontologies for the information
model requirements, as well as how semantic technologies can be leveraged for the commu-
nication layer. This solidifies our research direction towards building steelmaking-related
ontologies for improved data integration and semantic interoperability without our chosen
domain.

88



3.4. Semantic Asset Administration Shells: The State of the Art

Ref Domain Information
Model

Communication
Model

Achieved Goals

[118] Automation
control

RDF, RDFS,
OWL.

OPC-UA Present the initial concept
of Semantic I4.0
Component.

[117] Industry
sensors

RDF, D2RQ,
SPARQL

Semantic
Sensor
Network (SSN)

Translate the IEC 62264
standard into RDF.

[14] Automation
control

RDF, SHACL RMLMapper Map the latest AAS data
models into RDF.

[305] Production
robotics

Object
Memory Model
(OMM)

Central remote
maintenance
platform

Align AAS guidelines with
W3C specifications.

[146] Engineering
systems

OWL AutomationML Transform AutomationML
data to OWL.

[320] Complex
product
modelling

Ontology - Model product information
in different abstraction
levels.

[236] Complex
product
modelling

Ontology - Incorporate international
standards in product
modelling.

[185] Smart
manufacturing

Ontology - Draft a common semantic
net for manufacturing.

[126] Process
modelling

PSL - Use PSL to enable the
exchange of process
information.

[56],
[57]

Smart
manufacturing

Ontology, logic
rules

- Enable ontology-based
predictive maintenance.

[44] Smart
manufacturing

Ontology,
JADE
framework

- Handle heterogeneous
manufacturing data.

[116] Smart
manufacturing

RDF,
Standards
Ontology
(STO)

OPC-UA, Au-
tomationML

Facilitate the structuring,
selection, and integration
of standards.

[172],
[171]

Smart
manufacturing

OWL-S,
SAWSDL

OPC-UA,
GeSCo

Add flexibility in
generating production
plans.

[248] Semantic
sensor web

SPITFIRE Linked Open
Data (LOD)
cloud

Link semantic sensor
models to the cloud.
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[276] Semantic web
of things

Ontology ubiquitous
Knowledge
Base (u-KB)

Link semantic web to a
mobile communication
network.

[163] Semantic web
of things

Ontology IPSO, ZigBee,
OMA,
oneM2M

Pave a way for developing
a semantic layer for the
IoT.

[273] Digital twins RDF - Discussed and integrated
RDF and AAS
meta-models for semantic
interoperability.

[147] Digital twins RDF, Ontology - Implement semantic
interoperability using an
ontology, transforming
AAS-based models into
ontology instances, where
semantic reasoning can be
applied to retrieve the
necessary resources.

[330] Digital twins RDF RDF,
OPC-UA,
knowledge
graph

Represent an OPC UA
server as a comprehensive
enterprise knowledge
graph, resulting in an
“enhanced OPC UA
digital twin.”

[324] Semantic
interoperability

RDF, Ontology OPC-UA,
XML

Combine the semantic
interoperability benefits of
OPC UA and ontologies

Table 3.1: The domains, information and communication models, and achieved goals of the
reviewed papers.

3.5 Semantic Asset Administration Shells: Application
Cases

In this section, we abstract from technologies and focus on application cases of Semantic
AASs.

Grangel et al. demonstrated the semantic implementation of a Servo Motor Controller
used for automation within an Engineering and Manufacturing domain in [118]. The same
authors also semantically described industry sensors in legacy systems in [117]. Within
these legacy systems, the authors used the industrial data set AirProbe from an SQL dump.
This dump contained sensor information such as geospatial locations and measurements of
black carbon concentrations, temperature and humidity [117]. From this data, they were
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able to query active sensors within a given time interval and display them as geographical
coordinates on an interactive map.

Similarly, Pfisterer et al. also used sensors as a use case [248]. However, their application
focused on connecting sensors to the internet and the web, as well as searching for specific
semantic entities from the sensors. Their application valued and attempted to derive real-
world entities and their high-level status (e.g., meeting room that is occupied) over simply
displaying the sensor and its raw data (sensor 536 with motion detection at time T ). To
realise this, appropriate technologies or mechanisms that establish an explicit mapping
between sensors and real-life entities were looked into.

Katti et al. [171] made use of a manufacturing production scenario of a shop floor.
Their example included a production routing consisting of three unique operations: welding,
colour spraying, and quality checking. Firstly, these three tasks published their meta-
data to the appropriate server that could send and retrieve routine details from a Cloud
Manufacturing Execution System (MES), then back to the server. The server then assigned
tasks and acknowledgements to each operation starting with welding.

Bader et al. [14] developed three examples of mapping Asset Administration Shells into
Semantic Asset Administration Shells. The first AAS represented a Raspberry Pi (Pi 3B+)
that contained three sub-models that stored technical characteristics data, documentation
materials (product sheet and usage manual) and asset descriptions, constructed by a total of
52 SubmodelElements. In contrast, the second AAS represented an electronic Automation
Controller for automation facilities, constructed by three sub-models with more than 100
SubmodelElements. Finally, the third AAS represented a Multi-Protocol controller; this
AAS contained eight submodels and over 150 SubmodelElements. When evaluating the
mappings, they discovered that some expressions were not able to be transported from AAS
to Semantic AAS as RDF struggled to sufficiently present some constructs e.g., the Property
class in[14]. This also occurred as many input entities contained redundant information in
their example.

Hua et al. [146] used DL-learner framework to adopt the OCEL and CELOE learning
algorithms for concept learning in AutomationML. The authors were primarily interested
in the accuracy and efficiency of these algorithms and thereby developed three scenarios
that follow typical system unit class structures, each of which has unique complexities. The
data set (AutomationML data) contained 222 classes, 63 properties and 61 individuals.
Their tests derived that CELOE is much slower than OCEL, and not determined by the
complexity of the target concept. This was verified when their most simple test case in
OCEL was the most computationally intensive.

Thuluva et al. [308] used an embedded micro reasoner to demonstrate the FESTO
process on an automation workstation. The micro reasoner ran on resource-constrained
devices with Unix/Linux OS and consisted of two main parts: a micro event processing
engine and a datalog reasoner. The former managed event rules that were accessible over
a RESTful API and were directly deployed on the automation system devices. The latter
provided datalog reasoning, and was embedded in the edge device. The edge device itself
was embedded on an automation system and acted as a gateway between the automation
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system and the cloud. The author’s demo included a binary float sensor that included liquid
level values on a tank to ensure the tank did not overflow.

Jacoby etl al. [160] integrate AAS with the Apache StreamPipes application to establish
a digital twin of steel production. Their use case involves creating a virtual representation
of the steel production process, which can provide accurate recommendations of optimal
timing of steel ladle repairs. The AAS metamodel was formulated using various serialisa-
tion formats, including RDF, XML, and AutomationML to capture the schematics of the
data, while OPC UA and Apache StreamPipes were set up to configure the digital twin
environment.

Table 3.2 summarises our survey results including the purpose for each application, as
well as the physical objects used for each use case.

Ref Physical Object Application Purpose

[118] Festo AG Motor Controller Semantically describe an I4.0 component
and some of its basic relations.

[117] Industry Sensors in Legacy
Systems

Display sensors on a global interactive
map based on time stamps.

[14] Raspberry Pi, Electronic &
Multi-protocol Controllers

Map AASs into Semantic AASs.

[305] Robot Arm Simulate the adaptation and remote
maintenance of a production robot.

[146] KUKA Robot Adopt OCEL and CELOE learning
algorithms for concept learning.

[308] Embedded Micro Reasoner Detect overflow of water in a tank using
sensors.

[171] Shop Floor Production
Machines

Welding, color spraying and quality
testing processes on shop floor.

[248] Sensors Connect, search and display sensors to
the web & internet.

[273] Robotic arm Provides additional functionality
required by the pilot lines specifications
in the MAS4AI project.

[147] Robotic cell Automate the entire capability checking
process on the shop floor.

[324] Water conservancy equipment Simulates typical WCE information
space based on water pumps and sluices.

[160] Steel production ladles Simulates steel production as a digital
twin, generating recommendations in a
steelmaking use case.

Table 3.2: List of application cases, with physical object and purpose.
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3.6 Conclusion and Open Challenges

The Plattform Industrie group developed a reference architecture model named RAMI 4.0
to tackle the ongoing questions of Industry 4.0. This model introduces a new key technol-
ogy known as the AAS that is the key enabler for providing a unified way of storing and
communicating information between components.

From our survey, we have discovered that there is plenty of ongoing research looking
at the RAMI 4.0 model but only some contain implementations of AASs. It is clear that
there is a lack of formal standardisation when implementing AAS as many papers use
different standards and technologies for their AAS implementations. Furthermore, a key
fundamental of Industry 4.0 that needs to be addressed is the semantic interoperability
between machines.

Many of the AAS implementations mentioned in this survey display ways of storing
and communicating data between industrial devices but these devices lack to demonstrate
the ability to understand the data itself. Thus, the direction towards Semantic-based AAS
with the use of RDF, OWL and other semantic approaches has been investigated to achieve
greater interoperability. In this chapter, we have demonstrated existing research contribu-
tions regarding Semantic AASs, under the framework of RAMI 4.0. The main characteris-
tics, functionalities, frameworks, and use cases have been covered in this survey.

The survey results expose three main open challenges. The first challenge is the lack
of standardised information models for Semantic AASs. Most of the reviewed papers pro-
posed fragmented frameworks or models with a focus on a specific sub-domain of manu-
facturing, while only a few of them addressed the standardisation issue at a high level.
For future works, standardised information models need to be developed with referring to
formal ontologies and international standards. The second issue is the need for statisti-
cal data processing capabilities for Semantic AASs. As semantic technologies mainly use
logic formalisms to describe a certain domain of interest, they have an inherent weakness
in processing numeric data. To address this issue, statistical methods such as machine
learning and big data technologies are required to equip Semantic AASs with strong math-
ematical data processing functionalities. The third open challenge is the lack of human
behaviour modelling within Semantic AASs. Although fundamental machine operations
can be executed autonomously without human intervention, many decisions for complex
tasks need the involvement of humans. However, only a few of the existing research works
have considered human behaviour within a decision-making cycle. In the future, data from
social perspectives need to be considered to improve the decision-making of manufacturing
systems.
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This chapter introduces the Steel Cold Rolling Ontology (SCRO), which models the domain
knowledge of the cold rolling processes and activities within a steel plant. A case study is set
up that uses real-world cold rolling data sets to validate the performance and functionality
of SCRO. This includes using the Ontop framework to deploy virtual knowledge graphs for
data access, data integration, data querying, and condition-based maintenance purposes.
SCRO is evaluated using OOPS!, the ontology pitfall detection system, as well as feedback
from domain experts from Tata Steel.

4.1 Introduction

Presently, large-scale industrial machines follow rigid automation protocols, resulting in the
generation of a vast amount of data. This data is often stored in a format that is not
understandable by a machine, and stored in data silos that are not often interconnected yet
contain data that is semantically related [335].

A fundamental task to enable Industry 4.0 is to enrich data with semantics to make
the data interoperable and machine-understandable. In this chapter, we propose applying
ontologies for this task in the domain of cold rolling.
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As mentioned previously, cold rolling is one of many steel-making processes. Rolling, in
general, processes the greatest tonnage of metals than any other metal working technique
[271].

Due to the strong forces involved, the work rolls are affected by roll wear, impacting
the service life of the rolls and the quality of the product produced [283]. To avoid this,
the rolls are refurbished regularly, where the diameter of each roll is marginally reduced
to remove the worn surface. One long-term aim of our research is to utilise semantic
technologies for improved data interoperability and combine these methods with traditional
machine learning models to optimise the life of the work rolls, improving the total tonnage
and yield. In addition, accidents and anomalies that occur, such as overloading, spalling,
and incorrect grinding operation [266], can be avoided preemptively once achieving better
semantic interoperability.

The goal of this chapter is to develop an ontology that focuses on modelling the cold
rolling processes that occur during steelmaking. This chapter introduces the Steel Cold
Rolling Ontology (SCRO) that acts as a knowledge base for cold rolling processes within a
steel manufacturing plant. This includes the relevant systems, facilities, hardware, software,
and inventory of a cold rolling mill. To validate and evaluate the usefulness and accuracy
of SCRO, we perform a case study that aligns the ontology with real-world data sets of
a cold rolling mill provided by Tata Steel1. In this case study, we employ the Virtual
Knowledge Graphs (VKG) framework to enable the creation of domain-specific knowledge
graphs, which we use for data access and querying.

The remainder of the chapter is structured as follows. In Section 4.2, we provide a
literature review that focuses on two key topics: ontologies for Industry 4.0, and ontologies
for the steel industry. We also introduce our selected design methodology of ontology
development. In Section 4.3, we describe SCRO in detail, including its classes and main
concepts. This section also highlights the usefulness of the ontology on an application that
uses real-world data. In Section 4.4, we discuss the validation of SCRO to ensure that the
knowledge is accurate. Finally, we reflect over our work and end with a conclusion and
future work in Section 4.5.

4.2 Literature Review

The W3C have developed a formal ontology language named The Web Ontology Language
(OWL)2 to model concepts and relations within ontologies. OWL is a component of Se-
manticWeb that allows for explicit representations of the meaning of terms in vocabularies
and the relationships between those terms. These representations and their interrelations
form an ontology. In the following subsections, we review relevant existing OWL ontologies
and their rule-based extensions.

1https://www.tatasteeleurope.com/ts/
2https://www.w3.org/TR/owl2-overview/
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4.2.1 Ontologies for the Steel Industry

In the steel industry, ontologies are used as an effective and intelligent knowledge man-
agement tool for conceptual modelling and information integration. Leveraging the strong
modelling and reasoning capabilities of ontologies, process knowledge regarding steelmaking
is structured and inferred to facilitate decision making.

Developed as a core component of a Big Data Knowledge Management System (BDAKMS),
the ontology introduced in [18] is used to model domain knowledge of steelmaking and en-
hance the usability and interoperability of BDAKMS. The developed ontology is further used
together with SWRL [144] rules to infer knowledge regarding the demand of raw materials.
In [325], a shared global supply chain ontology is designed to manage the heterogeneous
internal and external decision knowledge of steel companies. Similar to the previous liter-
ature, semantic rules are also used to perform ontology reasoning. The goal of ontology
reasoning is to facilitate the decision making of business strategies of steel companies. In
this way, senior managers can use the ontology to retrieve useful implicit decision knowledge
such as pricing strategies, partner selection strategies, and product development strategies.

Ontologies are also used for planning and scheduling of steel production. In [86], an
ontological approach is proposed for the goal of optimal planning and scheduling. Within
the proposed approach, a set of ontologies are integrated to form an ontological framework.
A core meta-ontology and different domain specific ontologies for primary steelmaking are
integrated with ANSI/ISA-S95 standard to construct the main body of the framework.
Another ontology is introduced in [313] to help with the conceptual design of steel struc-
tures. During the ontology design phase, required knowledge elements are identified using
intelligent agents. The proposed ontology is reused in other projects such as Agent-Based
Collaborative Design of Light Industrial Buildings (ADLIB) and Automated Agent Learning
(AAL).

4.2.2 Ontology Development Methodology

Over the years, several methodologies have been introduced to support the development and
engineering of ontologies. [168] provides a comprehensive survey of different methodologies
available for ontology engineering, including: the Toronoto Virtual Enterprise (TOVE),
Methontology, and ONtologic Integration Of Naive Sources (ONIONS) as examples. Each
methodology follows unique engineering principles and have different benefits and draw-
backs.

For the design and development of SCRO, we have concluded to use the Ontology De-
signing Patterns (ODPs) [105] methodology. We have chosen this methodology for its
recognition in modelling solution that support re-usability of good design practices and ex-
periences to solve ontology design problems [105]. There are different types of ODPs that
cover different problems such as structural, correspondence, content, reasoning, presenta-
tion, and lexico-syntactic. More specifically, when developing SCRO, we chose to the use
eXtreme Design methodology (XD) [254] which is an extension of the Content ODPs. This
methodology is inspired by eXtreme Programming (XP), which is an agile methodology in
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software engineering. In XP, the client is involved in the development of the product by
providing feedback in cyclical iterations [25]. This was necessary when developing SCRO
as most of the domain knowledge obtained was provided by involvement and feedback with
experts from Tata Steel. Other XD principles include: collaboration and integration, task-
oriented design, and test-driven design which are explained in [254].

We conclude that this design approach offered numerous evident advantages for devel-
oping ontologies, including: a faster ontology design process, more flexible design choices,
improved interoperability, and ontology quality [40].

4.3 SCRO: Steel Cold Rolling Ontology

Most of the domain knowledge mentioned in this section was obtained from a case study
with domain experts from Tata Steel at the Port Talbot plant. One report is mentioned in
Section 2.2.1 (Use case of Cold Rolling: Cold Rolling at Tata Steel).

SCRO models the fundamental structure and operations of the rolling processes in the
case study, which a focus on maintenance. There are other focus points that we have
excluded from the coding, such as economics and production rate, which fall out of scope
for this chapter. This level of granularity can be added as future direction.

Additionally, Although SCRO is initially designed for the processes and machines at
Tata Steel; the ontology could be modified and reused by other steel manufacturers for
knowledge modelling of other cold rolling processes.

In this section, we describe SCRO in detail, beginning with the encoding and classes.

4.3.1 Coding

SCRO was developed using the free, open-source ontology editor and framework called
Protégé [219]. We used the latest version to date, Protégé 5.5.0, that offers a unique
interfaces for creating and maintaining ontologies for intelligent systems. Protégé supports
the commonly used ontology language, OWL, which enables us to model concepts, as well
as their relations and attributes through classes, object properties, and data properties [12].
Figure 4.1 displays the structure and the architecture of SCRO, whereas Figure 4.2 displays
the classes, object properties, and data properties.

4.3.2 Reusing Existing Ontologies

An extensive amount of data within the domain of steel manufacturing is generated and read
through sensors. Generally, these sensors run on timestamp data to record the continuous
flow of dynamic data. Therefore, we have imported the Time ontology created by W3C
that supports the use of timestamp data [139]. These are excluded from Figure 4.2 but play
an important role in SCRO.

98



4.3. SCRO: Steel Cold Rolling Ontology

Figure 4.1: The structure of SCRO.

4.3.3 Classes

There are many processes and components on the shop floor that are fundamental for cold
rolling, depicted in Figure 2.11 in Section 2.2.1. We create classes for each one respec-
tively. The cold rolling mill processes are divided into three sub-processes: the pickle line,
accumulators, and the mill.

Firstly, the process of steelmaking creates undesirable oxidations on the material. To
counter this, the material, entry coil, undergoes surface treatment on the pickle line. The
process of pickling cleanses the entry coil by using acid to eliminate impurities and oxida-
tions, providing a smoother surface. The class :Pickle Line denotes this process whereas
the superclass Pickle Line Component contains the necessary pickle line components on
the shop floor as subclasses; these components are defined in Table 4.1.

Both the pickling and mill processes are continuous and run at different speeds. Often
one of these processes is required to stop while the other is still in operation. For example,
when introducing a new coil into the pickling process, the pickle line is paused to weld/stitch
the new coil while the mill process is still running at a constant speed. An Accumulator
between these two processes is able to facilitate such activities through movable rolls that
are able to control the amount of material in that intermediate section, ensuring the whole
cold rolling process to be continuous from beginning to end. The class :Accumulator
denotes this process.

Finally, the material is passed through the mills where its thickness is reduced. The
class :Mill denotes this process whereas the superclass :Mill Component contains the
necessary mill components on the shop floor as subclasses; these components are also defined
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Figure 4.2: The classes, object properties, and data properties of SCRO.

in Table 4.1.

The rolls are fundamental components of the cold rolling process. The rolls are the
physical entities that rotate to reduce the thickness of the steel trip. These are denoted
by the superclass :Roll and its two nodes :Work Roll and :Backup Roll . These rolls
are assigned some chocks which allow for rotation within a mill; these chocks are denoted
as :Chocks in the ontology. In addition, we have included :Storage Roll which are rolls
that are out of the mill and are in the storage area. This storage area is denoted by the
class :Storage , and the superclass :Storage Component contains the components of the
storage as subclasses.

Finally, the ontology contains other classes such as :Steel Plant , :Cold Rolling Mill ,
:Roll Refurbishment and Roll Grinding which are briefly described in Table 4.1. Fig-
ure 4.3 displays the hierarchy of all the classes, generated by the Protégé tool. All the
class relations in SCRO follow a is-a relationship. We have decided on this approach for
its simplicity as it provides provides enough granularity for our research goals. There are
alternative methods for capturing the domain knowledge using other relationship types,
such as, has-a or part-of compositions, which can always be implemented as future work
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to enrich the ontology.

SCRO Classes Description

Accumulator Manage the speed of the rolling processes to ensure flow is
continuous

Chocks Attached to rolls and contain bearings that allow rotation
Coil Superclass of the material and final product

Entry Coil Denotes the steel strip that enters the cold rolling mill
Final Product Coil The final product sold to customers

Cold Rolling Mill Denotes the shop floor of the cold rolling mill
Mill Process of the cold rolling mill for reducing steel thickness
Mill Component Superclass of all Mill component

Cobble Guard Component that reduces the chance of producing cobbles
Damming Roll Component that restrains the outward flow of coolants
Mill Stand Stand that fits two work rolls and two backup rolls
Stressometer Roll Measures the flatness of the steel strip
Tensiometer Roll Measures the tension of the steel strip
X-Ray Guage Measures the thickness of the steel strip

Pickle Line Process where the entry coil undergoes surface pickling
Pickle Line Component Superclass of all Pickle component

Bridle Welder Exit Equipment that the strip uses to exit the pickle line
Coil Preparation Station Station where the entry coils are entered
Debanding Station Station where the entry coils are debanded
Entry Walking Beam Conveyor Conveyor where entry coils are first placed
Flash Butt Welder Machine that presses and welds the ends of the workpiece
Pickle Entry Shear Machine that cuts rolls to desired size
Pickle Processor Machine that processes the coil, minimising coil breakage
Pinch Roll Machine that holds and moves the strip
Strip Dryer Removes excess water from the strip to prevent rusting

Roll Superclass of the rolls at a cold rolling mill
Backup Roll Larger roll that support a work roll during milling
Work Roll Smaller roll that rotates to reduce the thickness of steel

Roll Grinding Contain previous grinding data of rolls
Roll Refurbishment Process where rolls are sent to be refurbished
Steel Plant Denotes the whole steel plant
Storage Inventory where assets (e.g unused rolls) are stored
Storage Component Superclass of the Storage component

Rack Contain stands for rolls to be stored
Rack Stand Store one storage roll
Storage Roll A roll that is not currently being used and stored away

Table 4.1: A list of the classes in SCRO, alongside their description.
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Figure 4.3: The hierarchy of all the classes in SCRO, generated by OWLViz plugin in
Protégé.

102



4.3. SCRO: Steel Cold Rolling Ontology

4.3.4 Object and Data Properties

To semantically describe the properties of the cold rolling processes, it is important that
we specify the domain and ranges of each property. The domain and range are constraints
that limit the subjects and objects that are allowed for specific relationships. The domain
refers to the set of classes in which the property can be applied to as a subject, whereas the
range defines the set of classes in which the property can be applied to as an object, e.g.,
domain → property → range. These properties are presented in Table 4.3.4:

Object Property Domain Range

entersLineOn Entry Coil Entry Walking Beam
entersPickleOn Entry Coil Pickle Entry Shear
exitsPickleOn Entry Coil Bridle Welder Exit
hasComponent undefined undefined
hasAccumaltorComponent Cold Rolling Mill Accumulator
hasColdRollMillComponent Steel plant Cold Rolling Mill
hasMillComponent Cold Rolling Mill Mill
hasMillStandComponent Mill Mill Stand
hasPickleComponent Cold Rolling Mill Pickle Line
hasRackComponent Storage Rack
hasRackStandComponent Rack Rack Stand
hasStorageComponent Steel Plant Storage
hasGrinding Roll Roll Grinding
holds Mill Stand Storage Roll
isAssigned Roll Chocks
isComponentOf undefined undefined
isDebandedOn Entry Coil Debanding station
isDriedBy Entry Coil Strip Dryer
isFrstPinchedBy Entry Coil Pinch Roll
isFlashWeldedBy Entry Coil Flash Butt Welder
isPreparedOn Entry Coil Coil Preparation Station
isProcessedBy Entry Coil Pickle Processor
MeasuresThicknessOfRollIn X-Ray Guage Mill Stand
stores Rack Stand Storage Roll

Table 4.2: A list of the object properties in SCRO with their corresponding domains and
ranges.

Similarly, Table 4.3.4 displays the data proprieties in the ontology:

Data Property Object Datatype

hasDiameter Roll xsd:double
hasGrindingDate Time instant xsd:date

Continued on next page
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Data Property Object Datatype

hasGrindRoll Roll Grinding xsd:integer
hasInitDiameter Roll xsd:double
hasPartner Roll xsd:integer
hasPosition Roll xsd:string
hasRackID Rack xsd:integer
hasStackStandID Rack Stand xsd:integer
hasRollDescription Storage Roll xsd:String
hasRollID Roll xsd:integer
hasSteelPlantLocation Steel Plant xsd:String
hasSteelPlantName Steel Plant xsd:String
isAssignedToStand Roll xsd:integer
isWorkOrBack Roll xsd:string
lastLocatedDate Time instant xsd:dateTime
minDiameter Roll xsd:double

Table 4.3: A list of the data properties in SCRO with their corresponding object and
datatype.

4.3.5 Dataset

We test and evaluate SCRO through a real-world industrial application. Within this in-
dustrial application, a collection of real-world data sets have been provided by Tata Steel.
These data sets come specifically from the five-stand Tandem Cold Rolling Mill at their
Port Talbot plant.

Firstly, static data related to the rolls, roll storage, and roll refurbishment have been
collected. These data sets are stored in a database where the values of these rolls are always
updated manually from someone at the plant. This data is considerable in quantity and
located in different tables within their database. For our research, we focused on three
specific tables: the Roll, Roll Grinding andRoll Storage tables. These tables contain
many fields that we have chosen not to include in SCRO, following the design criteria to
not overflow the ontology. Instead, we limit our interest to core fields such as RollID and
diameter, abstracting from less relevant data. The domain experts from Tata Steel agreed
with this approach. Table 4.4 describes the these fields, along with their data types and
descriptions.

Secondly, the data sets also contain dynamic data from the cold rolling mills that are
read by sensors and stored in a database. These sensors record the condition of rolls in short
intervals, thus, creating huge amounts of industrial data. The data includes the chemical
composition, temperature, and pressure of the rolls, among others.
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Table and fields Data
type

Description

Rolls Table Contains static data relevant to the Rolls
Roll ID Integer Unique identifier of the roll. Primary Key
Diameter Double Stores the value of the diameter of the roll.
Position String Top or Bottom to denote position of roll in mill
Partner ID Integer Unique identifier of the roll’s partner
Work Backup String Identifier to specify whether a roll is a work or backup roll
Last Loc Date Time Date Timestamp of the date when the roll was last located
Last Stand ID Integer The last stand this roll was placed in

Roll Grinding Table Table that stores the previous grindings of rolls
Roll ID Integer Non-unique identifier to specify which roll
Diameter Double Stores the value of the diameter of the roll
Grind date Date Timestamp of the date when that roll was ground
Stand ID Integer The last stand this roll was placed in

Roll Storage Table Table of rolls that are currently not in use
Rack Location Integer Non-unique identifier of the location of the racks
Single Rack ID Integer Unique identifier of the rack
Roll ID Integer Unique identifier of the roll that is stored on a rack
Status description String The status of the roll, i.e., it’s a new roll or damaged roll
Actual Diameter Double Stores the value of the diameter of the roll

Table 4.4: The different available data, including their types and descriptions.

Note: these tables are not interconnected but contain fields that are semantically related.
For example, Roll ID appears in all three tables. To effectively use the data, data integra-
tion is required. However, it can be costly to join, clean, and homogenise the data. To avoid
this, as mentioned previously, Virtual Knowledge Graphs (VKG) exploit data virtualisation
to create domain-specific knowledge graphs [335], which we employ for data integration and
data access. This is achieved by creating graphs on top of relational databases where the
data is not physically moved to another database and instead kept and viewed at a virtual
level [336].

Virtualisation is achieved by creating an ontology, and linking the data sources to the
ontology via Mappings. We provide examples of this process in the next subsection. These
mappings enable the ability to query data at a virtual level without paying the cost of
integration. Numerous applications have been developed to support the VKG approach.
Some examples include Mastro [54], Morph [255], and Ontop [336]. For our approach, we
have adopted the Ontop framework.
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4.3.6 Ontop Framework

The Ontop Framework3 is an open-source VKG (previously known as Ontology-based Data
Access) framework developed by the Free University of Bozen-Bolzano. We have chosen
Ontop over the other VKG approaches as Ontop supports all the W3C languages and
recommendations including RDF, OWL, SPARQL, R2RML, and SWRL [53]. Additionally,
it supports widely used standards including: (1) Ontologies: Ontop supports OWL 2 QL
ontology language which runs on description logics; (2) Mappings: Ontop supports its own
Ontop Mapping Language as well as the W3C recommendation R2RML mapping language;
(3) Data Source: Ontop supports the major commercial and free structured databases such
as MySQL, H2, and PostgreSQL; (4) Querying: Ontop supports the latest version of the
SPARQL querying language, which includes many features such as aggregation and negation
[16].

4.3.7 Mappings

Mappings are created to link ontology classes and properties with data from the relational
data sources to produce RDF triples. R2RML is the standard mapping language used in the
semantic web [272]. For our mappings, as mentioned above, we used the Ontop mapping
language which is fully interoperable with R2RML [53].

Mapping engineering is considered a difficult and time-consuming activity that requires
strong knowledge of not only the domain of interest, but also the rigid structure of databases
and their schemas. Presently, there are several contributions working towards this direction
to automate the process. There are two main approaches to mapping engineering. The
first is using Mapping Bootstrappers (MB) which automatically generate a mapping for a
data source [335]. These mappings follow a set of rules based on the W3C Direct Mapping
specification to generate RDF graphs [289]. Ontop bootstrapper and BootOX [165] are
two examples of existing MBs. A benchmark suite named Relational-to-Ontology Data
Integration (RODI) [249] has been developed to evaluate and compare MBs. Using an MB
has both benefits and drawbacks. The key benefit is that it is fast and automatic; whereas
the biggest drawback is that it lacks flexibility when having numerous data sources as the
generated vocabulary becomes restricted to data-source specific data. The second approach
is to use mapping editors to manually write mappings. For our approach, we manually
wrote our mappings using a text editor that is available in the Protégé IDE.

Figure 4.4 shows a mapping between the Work Roll class in SCRO and the Rolls table
in the SQL database. The bottom half of the figure illustrates the source, in the form of an
SQL query that allows us to specify and filter the data we want to map. Like with all SQL
queries, we use the SELECT clause to select the necessary fields from the database, followed
by the FROM clause to select the table name. Finally, we use the WHERE clause to refine the
query. As seen in Figure 4.4, we are interested in the roll id, position, diameter, partner id,
work backup, last loc date time, and last stand id values from the rolls table where the
work backup field is ’W’ which denotes work rolls. We use the AND clause to further refine

3https://ontop-vkg.org//
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Figure 4.4: An ontop mapping for work rolls.

the query to restrict the last loc date time timestamp value to a seven day period. We
can then click the “Execute the SQL query” provided by the Ontop Mappings plugin in
Protégé to print and verify the results of the query. To conclude, the SQL query returns all
work rolls that were last located between the 10th-17th of January 2020.

Secondly, we create a mapping target which maps the selected fields from the database
onto the classes in SCRO. The target section is written using Turtle-like syntax4. The first
part :roll {roll id} is a variable name of the individual, and the subject of the RDF triples
being generated. Here, we used the primary key roll id from the SQL query to create a
unique IRI for each individual roll. For example, the roll with roll id of 500 in the database
will be named roll 500. The second part a :Work Roll specifies that this individual and
RDF triple will be an instance of the Work Roll class, followed by a semi-colon. Note, by
using a semi-colon instead of a fullstop, Ontop is able to map numerous fields from the SQL
query to the data properties in the ontology without having to specify the initial subject
and class each time. The syntax for these mappings are shown in Figure 4.4. For example,
:hasPosition {position} implies :hasPosition is a data property from the ontology where
the value of this property is mapped to the {position} field from the SQL source.

Similarly, we have a comparable mapping for the backup rolls. The key difference
is the :roll {roll id} a :Work roll becomes :roll {roll id} a :Backup roll and the

4https://www.w3.org/TR/turtle/
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work backup field in the SQL WHERE clause is set to equal ‘B’.

Figure 4.5: Ontop mappings for roll grindings and storage rolls.

Figure 4.5 depicts two other mappings. The mapping on the left manages and links
SCRO with the roll storage data set, containing the data properties: hasRackID, hasRack-
StandID, hasRollID, hasRollDescription, hasDiameter and isWorkOrBack. The selected
data values with roll ID with zero is to be ignored as these are invalid data entries in
the data. Meanwhile, the mapping on the right manages historical grinding values of rolls
from the roll grinding data set, containing the data properties hasGrindRoll, hasRollID,
isAssignedToStand, hasDiameter, and hasGrindingDate.

Once these queries have been created, Protégé provides the ability to materialise these
mappings to generate RDF tuples for each data entry, populating a knowledge graph. Once
this data is in this format, we are able to query the data.

4.3.8 Querying on Knowledge Graphs

We use SPARQL5 to query the data for condition-based maintenance of rolls and informa-
tion retrieval purposes. SPARQL is a well known querying language within the semantic
web. The difference between SPARQL and SQL is that SQL queries on structured databases,
whereas SPARQL queries on RDF triples [272]. As described above, the RDF triples are
generated by the Ontop mappings that are depicted in Figure 4.4 and Figure 4.5, which
enable us to query the data with SPARQL.

There are applications being developed to aid the assistance of SPARQL query for-
mulation. An example includes the OptiqueVQS tool [299], which provides an interactive
interface that generates components to build SPARQL queries. However, the Protégé soft-
ware we used to create the SCRO ontology also provides a built-in text editor to create
SPARQL queries, which we opted to use for easier convenience. The queries we demon-
strate below did not require the assistance for external software. However, when writing
more complex queries in the future, end users may opt to use OptiqueVQS or other tools.
Below are some queries that we developed to query the knowledge graph.

Listing 4.1 is a query that outputs the diameter values that have three or more rolls
that share that diameter. Rolls in operation are always paired with other rolls that have

5https://www.w3.org/TR/sparql11-overview/
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the same diameter value, thus, each diameter should appear twice in the rolls data set. In
contrast, rolls from the storage data set have yet to be paired. By limiting our search to
only return diameter values that appear three or more times, this type of query can be used
to discover rolls that have matching diameter values to other rolls from either data set. This
is important because if a roll gets damaged, we can use this query to see if other rolls with
the same diameter in both the storage data set and roll data set exist, and quickly replace
the damaged roll for maintenance purposes.

Code Listing 4.1: Diameter values which appear in more than two rolls.

PREFIX : http://www.semanticweb.org/sadee/ontologies/2021/1/SCRO#

PREFIX time: http://www.w3.org/2006/time#

SELECT ?diameter

WHERE {

?roll :hasDiameter ?diameter .

MINUS {

?roll :hasGrindRoll ?grind .

}

}

group by ?diameter

having (count(?diameter) > 2)

To construct this query, it is a requirement to specify the prefixes of the ontologies we
wish to use. As shown in the first two lines of Listing 4.1, and for most of our queries, we
have declared two prefixes: an empty prefix to denote SCRO and a time prefix to denote
the time ontology that we have imported.

The main body of a SPARQL query is structured similarly to an SQL query. We start
the query with the Select clause to select the fields we are interested in. In SQL, this
would be one or more fields from a specific table. In SPARQL, we simply enter a variable
name that will hold our results. Note that all variables begin with a question mark. As
shown in Listing 4.1, we have chosen to select a variable called ?diameter to denote the
result of the SPARQL query will be related to the diametric value of the rolls. Then,
we use the WHERE clause to condition our results. In our query, we specify that we are
interested in the RDF triples whose subject contain the property :hasDiameter, where the
:hasDiameter property can be any value. This subject is then stored in the ?roll variable,
and the actual :hasDiameter property values are stored in the ?diameter variable. The
Minus clause removes the subjects that also contain the :hasGrindRoll property as we are
not interested in the historical rolls grindings data that previously contained this diameter.
We then use “Group by” which creates columns for the fields we have selected. Generally,
these will always be the same variables in the Select clause. In this example, we are only
printing out the diameter variable.
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Figure 4.6: The SPARQL result from previous listing.

Figure 4.6 displays the results of this SPARQL query. The results show that 572.8 is
the only diameter value that has three or more rolls that were last located between the
10–17th of January 2020. We create another query to print out these rolls in Listing 4.2.

Listing 4.2 is a query written to display all the rolls that have the specific diameter of
572.8. Similarly, we first select the ontologies we wish to use by declaring their prefixes.
These are identical to our previous query. This time, however, our Select and Group By

clauses contain the variables ?roll, ?rollid, ?partner, and ?diam which will be the
columns containing our results. Once more, we use the Where clause to filter our results.

We created the variable ?roll to store all the subjects that contain both the :hasRollID
and :hasDiameter properties. The value of these properties are not specified and thereby
can be any value. Each of these ?roll subjects may contain the optional property :hasPartner,
but must not contain the :hasGrindRoll property.

Code Listing 4.2: All rolls that have the diameter of 572.8.

PREFIX time: http://www.w3.org/2006/time#

PREFIX : http://www.semanticweb.org/sadee/ontologies/2021/1/SCRO#

SELECT ?roll ?rollid ?partner ?diam

WHERE {

?roll :hasRollID ?rollid .

?roll :hasDiameter ?diam .

OPTIONAL {

?roll :hasPartner ?partner .

}

MINUS {

?roll :hasGrindRoll ?grind .

}

FILTER (?diam = "572.8"^^xsd:double)

}

GROUP BY ?roll ?rollid ?partner ?diam

Then, we filtered the ?diam value to only return rolls that contained the diameter value
of 572.8 which was the result from the first SPARQL query in Listing 4.1. Figure 4.7
displays the query result. Here we can see that roll 1678 and roll 1679 are partners that
contain the diametric value of 572.8. We can also see that there is a roll in storage with ID
of 4631 that has the same diametric value and has no assigned partner. This type of query
can be used to identify replacement rolls in case a roll gets damaged or needs replacing.
Storage roll data is stored separately from active roll data, so this query skips the need for
integration.
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Figure 4.7: The SPARQL result from previous listing.

4.4 Ontology Validation

Ontology validation is a fundamental requirement when developing ontologies. It is essential
to ensure that the quality of an ontology is adequate and the knowledge representation is
accurate. There are many ways to validate ontologies; examples include task-based valida-
tion, criteria-based validation, data driven validation and expert knowledge validation [46].
In addition, a well known ontology validation tool known as “OntOlogy Pitfall Scanner”
(OOPS) [253] has been developed to validate ontologies by detecting common pitfalls aligned
to a dimension classification developed in [114]. We use a combination of these approaches
to validate SCRO. Additionally, the Protégé IDE includes stream reasoning mechanisms
that check the consistency and correctness of an ontology. As we have adopted the Ontop
framework, we have opted to use the Ontop stream reasoner (version 4.1.0), which includes
these validation checks, and will not allow query answering until these validation checks
have been reached. Figure 4.8 displays that there are no inconsistency or correctness errors
in the console log when running the stream reasoner, allowing us to query the data.

Figure 4.8: The console displaying no inconsistencies or incorrectness messages when start-
ing the ontop stream reasoner.
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4.4.1 OntOlogy Pitfall Scanner

Different pitfalls have different impacts and importance. Because of this, OOPS cate-
gorises the evaluated results into three different levels: critical, important and minor.
When evaluating SCRO, OOPS displayed zero critical pitfalls, two important pitfalls, and
a handful cases of minor pitfalls. The two important pitfalls are results from the P11
specification “missing domain or range in properties”. These include our object proper-
ties ‘‘hasComponent’’ and ‘‘isComponentOf’’. However, according to [142], when using
OWL, it is best practice not to specify the domain and ranges of superclasses but instead
mention them in their respected subclasses. This is because the domain and ranges in OWL
should not be viewed as constraints as this may cause unexpected classification and side
effects [142], but rather viewed as axioms for reasoning. As a result of this, we have con-
cluded to explicitly not specify the domain and ranges of these properties, but have included
the domain and ranges of all the subclasses of these properties. For example, the object
property hasComponent does not include a domain and range, but its subclass hasPick-
leComponent contains the domain Cold Rolling Mill and the range Pickle Line. On
the other hand, Minor pitfalls include some elements missing annotations, or not explicitly
declaring the inverse relationships of such object properties. These minor pitfalls do not
affect the usability and consistency of the ontology and thus, remain as low-priority future
changes.

4.4.2 Expert Knowledge Validation

As this work in linked closely with industry, we have also validated SCRO with domain
experts from Tata Steel. We set up a demonstration and presented the ontology to ensure
that our understanding of the cold rolling processes were accurate and aligned with the
knowledge from the domain experts. This demonstration clarified the questions and am-
biguity we had related to some of the cold rolling processes, e.g., how some components
in the pickle line were linked and operated, as well as their details and purpose. This was
done over a few face-to-face interview-style meetings. Additionally, we gained better under-
standing of the future goals that the steel industry are working towards and their current
limitations, one of which being data integration. One benefit of using ontologies is to use
the knowledge graph paradigm to exploit data virtualisation which we also presented in the
demonstration.

4.5 Conclusions

To conclude, this chapter presents a novel ontology that models and structures domain
knowledge of cold rolling processes and activities within a steel plant. The purpose of
the ontology is to improve data semantics and interoperability within the domain of smart
manufacturing and a step closer to accomplishing Industry 4.0 standards. To our knowledge,
this work is the first to develop an ontology for the cold rolling processes within a steel
plant. We focus on capturing the knowledge for the pickle line, accumulators, and mill sub-
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processes which are core to a cold rolling mill. The domain knowledge we have captured
comes primarily from a case study with Tata Steel at their plant in Port Talbot in the UK.

We have demonstrated how knowledge representation methods can be applied to create
virtual knowledge graphs from the data set, integrating data from multiple databases and
sources using the semantics of the data. This integration can be produced without an on-
tology, however, an ontology enhances the clarity and consistency of the data, and provides
greater inference capabilities to produce more powerful and richer knowledge graphs.

The ontology was developed using the eXtreme Design Methodology which includes
using Ontology Design Patterns. We set up a case study that used real-world cold rolling
data sets that were provided by the domain experts which validated the performance and
functionality of SCRO. These data sets included roll data, roll refurbishment data, and
roll storage data, all of which were in different tables and not integrated. We used the
Ontop framework to deploy virtual knowledge graphs for data integration, data access,
data querying, and condition-based maintenance purposes. SCRO was evaluated by both
the ontology pitfall detection system OOPS! and domain experts from Tata Steel. OOPS!
confirmed that there were no critical errors or inconsistencies in SCRO, and the domain
experts confirmed that the knowledge in SCRO was uniform and accurate.

The domain knowledge encoded in SCRO is aligned with the processes and assets from
the Port Talbot plant, which may differ from other plants from other companies. A key
future goal will be to look at more cold rolling plants and compare any differences in
processes and machinery to generalise the ontology and add flexibility. Another future goal
is to add more complex logic axioms formalisations and relationships of the knowledge to
enrich the knowledge base. Presently, we have only mentioned basic axioms that show
the relationships between classes and their properties. This chapter does not include any
logical constraints or logical connectives, whereas the ontology currently contains a few
constraints, such as work rolls and backup rolls classes being disjoint. One future goal is to
finish developing a full set of constraints for SCRO classes and properties. Finally, another
future goal is to use SWRL rule reasoning techniques together with SCRO to perform
rule-based reasoning for predictive maintenance purposes.

4.6 Core Reference Ontology for Steelmaking (CROS)

The novelty of SCRO lead to collaborative work between Dr. Qiushi Cao and myself, where
we expanded the scope to capture the wider consensus of steelmaking [55]. In this paper,
we introduced The Core Reference Ontology for Steelmaking (CROS), an ontology that
formally describes the broader and essential concepts of steelmaking.

The knowledge obtained was acquired through collaboration with domain experts from
Tata Steel, as well as from publicly available literature, including international standards
and existing steel domain ontologies. CROS comprises a total of 276 classes, encompassing
a wider array of steelmaking processes, materials, facilities, tools, products, byproducts,
and any humans involved in the processes. Figure 4.9 displays a handful of these concepts.
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Figure 4.9: The class hierarchy of CROS from [55].

CROS also showcased more ways of applying ontology-based systems in an industrial
setting, offering examples of condition-based maintenance for cold rolling mills.

The evaluation of CROS included assessment using the Ontology Pitfall Detection Sys-
tem, OOPS!, alongside similar validation methodologies with domain experts at Tata Steel.
Further detail and conclusions can be found in [55].
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Steelmaking Predictive Analytics

Based on Random Forest and
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This chapter introduces a human-in-the-loop framework that integrates machine learning
models with semantic technologies to aid decision-making in the domain of steelmaking.
To achieve this, we convert a random forest (RF) into rules in a Semantic Web Rule Lan-
guage (SWRL) format and represent real-world data as a knowledge graph in a Resource
Description Framework (RDF) format, capturing the meta-data as part of the model. A
rule engine is deployed that applies logical inference on the knowledge graph, resulting
in a semantically enriched classification. This new classification is combined with external
domain expert knowledge to provide improved, knowledge-guided assistance for the human-
in-the-loop system. A case study in the steel manufacturing domain is introduced, where
this application is used for real-world predictive analytic purposes.
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5.1 Introduction

Ontologies and knowledge graphs have become a well-established and recognised way of
modelling and enriching knowledge within a particular domain. In the context of smart
manufacturing, semantic technologies have become a promising solution for addressing In-
dustry 4.0 challenges [237] and have many advantages including (1) the ability to provide a
shared, machine-understandable vocabulary for data integration and exchange among com-
ponents [9], (2) the capability to access and query data at a virtual level without physical
data integration [335], and (3) simulating cognitive decision-making tasks through logical
deductions, rules, and reasoning [327].

Meanwhile, machine learning (ML) models have been widely adopted in manufacturing
to optimise, control, troubleshoot, and improve process operations and automatisation [74].
Random Forests (RFs) are one popular and recognised ML model. RFs have a wide range of
applications and benefits as mentioned in Chapter 2.6.1.7. We have chosen RFs as our ML
model for this chapter for a few reasons. First, the tree-like structure of the decision trees
within a random forest can be captured in IF-THEN format, which resembles semantic-
based rules. Second, some of this work is in collaboration with peers from the material
science department, as well as our industrial partners at Tata Steel. Thus, after some
discussion, we agreed on following a standardised model among the work, where RFs were
deemed the most appropriate model for this research due to their simplicity and accuracy.

However, these ML models are typically faced with challenges including the lack of
context-aware information within dynamic production environments and semantic interop-
erability [338]. Thus, the development of hybrid models that combine semantic technologies
and ML has been proposed to address these challenges.

In this chapter, we demonstrate a hybrid model for predictive analytic purposes in the
domain of steelmaking. Presently, work rolls during cold rolling operations are refurbished
based on the quantity of steel coils produced rather than their physical conditions. One
motivation of this chapter is to develop an application to aid operators on the shop floor
with critical decision-making tasks in order to optimise the yield, efficiency, and overall life
of work rolls. The scheduling of the refurbishment process can then be targeted based on
the condition of the rolls rather than an estimation based on the total tonnage produced.
Additionally, anomalies and accidents within a steel plant such as spalling and overloads
[266] can be identified and avoided pre-emptively with greater semantic interoperability.

To achieve this goal, we propose a human-in-the-loop framework, represented in Fig-
ure 5.1, that leverages knowledge representations and reasoning mechanisms and random
forests to provide semantically enriched classifications. These classifications are then further
combined with expert knowledge to support with decision-making tasks. The support pro-
vided by the framework is similar to that of an expert system in the domain of steelmaking;
however, the framework itself is not exactly an expert system and serves a more significant
purpose. Figure 5.1 is explained further in the methodology section of this chapter.

The contributions of this chapter are twofold: (1) we introduce the Random Forest
Ontology (RFO) that captures and models a random forest at a conceptual level, which
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Figure 5.1: The methodology of our proposed framework.

can represent and perform RF classification using rule-based reasoning, where the features
are represented within a knowledge graph; and (2) we demonstrate an iterative process
to integrate external domain—expert knowledge with RF classification to provide more
comprehensible decision-making assistance for the human-in-the-loop system.

The outline of this chapter is as follows. Section 5.2 introduces the related works explor-
ing existing hybrid models that combine semantic reasoning with ML. Section 5.3 introduces
the methodology of our proposed approach. In Section 5.4, a use case is presented, where
the framework is applied to assist steel operators, and the results of the application are
utilised to validate the framework in Section 5.5. Finally, we end with the conclusions in
Section 5.6 and future work in Section 5.7.

5.2 Related Work

There exists a significant amount of research that employs both semantic reasoning for
inference tasks and ML for predictive tasks, but there are few works that combine the two
paradigms. This section investigates the existing literature that combines ML models with
semantic reasoning.

Rajbhandari et al. [262] introduced a hybrid model that combines ontology with random
forest classification to address the lack of formalisation in systematic models for image object
identification. Their model combines two sets of rules: (1) generalised domain knowledge
rules from the literature and domain experts, and (2) localised rules obtained from an RF
classification to classify landslides. In this chapter, we re-create the RF classification using
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rule-based reasoning, where each rule denotes a path of an RF that is later combined with
expert rules.

Similarly, Shoaip et al. [292] proposed an interpretable model to detect Alzheimer’s dis-
ease using rule-based reasoning by combining the Alzheimer’s Disease Diagnosis Ontology
with a combination of different ML models. The Semantic Web Rule Language (SWRL)
rules were obtained by combining a decision tree with the Java repeated incremental pruning
model to produce a classification with enhanced reasoning efficiency. The rules were pro-
duced in a non-technical manner so that domain experts such as doctors could understand
them and provide feedback without prior technical training. Meanwhile, in our framework,
two distinct rule sets are employed. The first set comprises expert rules that represent the
paths within the RF utilised for rule-based reasoning. The second set consists of domain-
expert rules that are applied on top of any newly acquired classifications. Neither of these
rule sets are displayed to domain experts.

Jabardi et al. [157] used ontological engineering and SWRL rules to identify and classify
fake accounts on Twitter. The authors evaluated their ontology-based classifier results
with different machine learning techniques, including naive bayes, logistic regression, and
Support Vector Machine (SVM), using the Waikato Environment for Knowledge Analysis
(WEKA) tool. For this approach, the SWRL rules were manually written. The same
authors expanded their research to cover DTs in [158] but did not cover how the rules were
created. In contrast, the SWRL rules representing the RF in this chapter are systematically
generated through an algorithm introduced in Section 5.3, while our domain-expert rules
are translated from natural language manually.

Johnson et al. [166] developed a method to model ontological-based knowledge into a DT
through a generic and interactive process involving domain experts. Their method follows
a data-driven rule-learning model that iteratively implements qualitative knowledge from
the ontology into the DT until a complete DT is formulated. The authors exemplified the
model through a case study focused on predicting food quality. Meanwhile,our framework
integrates domain-expert knowledge with RF classification without the need to recreate
the RF each time. Additionally, we follow an iterative process to access and validate our
domain-expert rule set.

Sarkar et al. [278] introduced CHAIKMAT 4.0, a hybrid AI model that integrates se-
mantic reasoning and machine learning paradigms to advance trusted flexible manufactur-
ing aligned with Industry 4.0 goals. Their approach involves deploying deep learning and
machine learning models for predicting machine capability and text analysis, and utilises
semantic reasoning to capture common-sense knowledge, enabling the generation of ex-
planations for general tasks within a manufacturing production line. While the authors
acknowledge existing technologies capable of achieving such goals, the implementation is
left for future work.

Ammar et al. [10] introduced a proof-of-concept recommendation system that leverages
machine learning and semantic technologies for explainability in AI. In their paper, the
authors developed a hybrid prototype featuring a knowledge-driven recommendation system
aimed at improving mental health surveillance based on adverse childhood experiences.
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The authors placed significant emphasis on ontological aspects and employed a question-
answering agent from the Google DialogFlow engine to serve as a semantic knowledge base.
The results in their prototype were compared to those of an ML classification, showcasing
the added advantages of explainability. However, the hybrid method was still in the proof-
of-concept phase and no concrete implementation was provided.

Bettini et al. [36] introduced proCAVIAR, a hybrid model that combines semi-supervised
machine learning models with probabilistic knowledge-based reasoning for activity recog-
nition. In their approach, the authors developed an ontology to capture the knowledge of
various activities, including running, sitting, cycling and standing. Afterwards, probabilis-
tic semantic reasoning was applied to comprehend these activities, and the outputs of the
reasoner were combined with a ML classifier to generate a final prediction of the user’s
activity. In our work, we replicate the ML classifier itself using semantic reasoning.

Tofighi-Shirazi et al. [309] proposed a novel approach that combines semantic reasoning
and ensemble machine learning classification for a framework designed to detect obfuscation
transformations. The authors generated obfuscated samples and used semantic reasoning
to extract raw data from these samples. The extracted data were then utilised to train
various ensemble models for classification. In our study, we differ in approach, as we do
not employ semantic reasoning to extract raw data. Instead, we utilise it to recreate the
ensemble classification process of the RF using symbolic methods.

Pukkhem et al. [259] employed decision trees as the basis for generating an ontology
with the objective of predicting the number of students graduating at a University. The
DTs were created using C4.5/J48 algorithms. The authors emphasised how ontological
representations play a key role for predictive purposes and the possibility of using SWRL
rules to infer knowledge. However, the implementation details were not included and are
unidentified as part of future work.

Finally, Cao et al. [61] integrated symbolic and statistical AI technologies for automation
and predictive analysis within the domain of smart manufacturing. The authors adopt
ontological reasoning with statistical AI techniques using real-world datasets to generate a
rule set in SWRL format. These rules were able to automatically detect machine anomalies
within a shop floor. Meanwhile, our contribution focuses on utilising different methodologies
to develop a framework for assisting steel operators on the shop with decision-making tasks.
Our research focuses on integrating domain expert knowledge within a framework, where
the assistance provided can be validated against the knowledge of the steel operator.

5.3 Methodology

Figure 5.1 displays the methodology of the proposed framework. There are three key com-
ponents: Ontology, Machine Learning, and Semantic Reasoning which are described in the
next sections.
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5.3.1 Ontology

Ontologies have the capability to explicitly define concepts within a specific domain, along
with their semantics [194]. In this chapter, we utilise the Steel Cold Rolling Ontology
(SCRO) ontology introduced in the previous chapter.

The initial step of the framework involves converting the dataset from a Structured
Query Language (SQL) database into the Resource Description Framework (RDF) format
to produce a knowledge graph. To achieve this, we employ the Ontop framework to auto-
matically translate data into an RDF format [336] via mappings, following similar methods
in the previous chapter.

Ontop Mappings

There are two key components of an Ontop Mapping: (1) the Source containing an SQL
query that allows the user retrieval of specific data through a Select clause, (2) the Target
which precisely maps the selected columns of a table to the chosen data or object property
of an ontology.

Figure 5.2: The mapping between SQL data and ontology using Ontop.

Ontop Mappings are constructed manually and therefore require some knowledge of the
syntax of the language. Figure 5.2 provides an example of an Ontop Mapping. In the
source, we select which columns to include in the knowledge graph, while the target maps
those features to the corresponding data properties in the ontology. The knowledge graph
is then automatically generated by the materialisation process in the Protégé IDE. The
creation of the knowledge graph is the initial step in enabling semantic reasoning in our
framework.

5.3.2 Machine Learning Models

Decision trees (DT) are capable of inferring rules from historical data to classify data
points as belonging to one of a predefined set of categories. They require relatively minimal
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data pre-processing steps and generate a definite set of simple rules that assign a unique
category to each instance. During the training process, the DT progressively splits the
dataset according to the value of a certain feature until a classification is reached for each
resulting subset of the dataset. Thus, a DT can be viewed as a set of discrete rules.
Each rule is composed of a logical conjunction of elementary formulae, accompanied by a
class attribution. Any unseen instance satisfies precisely one of those rules, so that the
classification performed by a DT is both human and machine interpretable. They are also
advantageous as they have similar constructs to semantic web-based rules. However, DTs
suffer from high variance and can quickly overfit the training set.

Meanwhile, a Random Forest (RF) [47] was introduced as a classifier to overcome these
shortcomings. An RF classifier is formed by several DTs, each built using a randomly
sampled subset of the training set, containing a random subset of features. The predicted
category for each instance is determined by combining the output from the trees, which
reduces the variance and hence improves the accuracy of the model. An algorithm known
as a voting strategy is then used to calculate the final classification from the DTs. There are
two main approaches: (1) using a majority voting strategy where the final classification
is the modal value of all the DT predictions, or (2) using a soft voting strategy where
the final classification is derived by calculating the average value of all the DT predictions.

We chose RFs over other ensemble methods due to their advantageous and easily compa-
rable rule-like structure, which aligns well with the structure of semantic rules. This is par-
ticularly noticeable when contrasted with other machine learning models. Random Forests
have been extensively studied, demonstrating high accuracies across various complexities
of classification and regression tasks [5]. Additionally, RFs provide a versatile set of tech-
niques such as node splitting and various feature selection methods, further contributing to
their suitability for our application [7]. These are some reasons why our industrial partners
preferred this ensemble methods over bagging, boosting, XGBoost, and other models.

Figure 5.3: The structure of a scikit-learn RF in plain text format.

The structure of a random forest is displayed in Figure 5.3, presents a concise snippet
in plain text that highlights the straightforward rule-like structure. Each line within the
representation contains precisely one condition involving one specific feature. If the condi-
tion is met, the traversal continues to the next line, recursively. In case the condition is not
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satisfied, the traversal instead travels down the pipe into a new line, typically involving the
same feature with a reversed condition. This iterative process is repeated until a leaf node
is reached, where weightings and classification information are stored.

In this specific example, each leaf node is characterised by three potential weighted
classifications enclosed in square brackets. The weighted values represent the number of
training samples that satisfied all the conditions along that path up to the respective leaf
node for each class. In a Breiman RF, the final classification is determined by selecting
the maximum value among the three values, and simulating a hard voting strategy. In
contrast, a soft voting strategy would involve calculating the average of the three values
to derive the final classification. This distinction in voting strategies adds to the flexibility
and adaptability of the RF model.

Example 5.1 To illustrate the determination of a class, we consider the first leaf node
in Figure 5.3. Such node is represented by the following information: weights : [0,7,1]

class 1.0. This indicates that a total of 8 records from the training set satisfy that exact
set of inequalities associated with this node. Among these, 0 belong to class 0, 7 belong
to class 1, and 1 belong to class 2. Hence, in this example, class 1 is prioritised for
both voting strategies, indicating its higher prevalence in the training set.

Within the framework, after training a RF for a classification task, the RF is stored
in plain text format using the export_tree method provided by sci-kit learn [244]. There
are also other tools available for the exporting process but the built-in functionality by
sci-kit learn is sufficient for this task. However, the exported format is stored in plain
text which needs to be converted into a standardised semantic format. Thereby, we have
developed an algorithm, described in the next section, to convert the RF from plain text
into semantic-based rules formatting.

5.3.2.1 Random Forest Ontology and Algorithm

Random Forest Ontology (RFO) was developed to capture, model, and label the generic
concepts of a random forest at a conceptual level. RFO includes fundamental classes of a
random forest, such as Random_Forest, Decision_Tree, Path, Voting_Strategy, and
others, displayed in Figure 5.4. RFO can be imported and combined with an existing
ontology containing a knowledge graph to reproduce the RF classification process using
semantic methods.

The first step of achieving RF classification based on ontological rule reasoning is by
converting the RF into a format that supports logical inference and reasoning. We chose to
adopt the Semantic Web Rule Language (SWRL) developed by the W3C consortium [144]
to represent our rules as it is recognised as the leading rule language, which is well studied
in the literature. In the framework, all paths of a RF are translated into SWRL rules by
an algorithm we developed, displayed below as Algorithm 1, first introduced in [26].
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Figure 5.4: The classes, object properties, and data properties of RFO.

Algorithm 1: An algorithm for SWRL-Rule generation based on an existing RF.

1: I ← 0 {index of trees}
2: L← [ ] {list of features}
3: for each tree in forest do
4: for each node in tree do
5: d← depth of node in tree
6: if node ̸= leaf node then
7: L[d]← node
8: else
9: R← “ ” {string variable for forming a rule}

10: for i = 0 to d do
11: if i > 0 then
12: R += “ ∧ ”
13: end if
14: R += “L[i]”
15: end for
16: p← prediction {based on weightings}
17: R += “→ ” + result(node, p, I)
18: end if
19: end for
20: I += 1
21: end for

The algorithm feeds in two lists as input, which creates a mapping between the features
in the training set and their corresponding data properties in the ontology, e.g., trip_-
tonnage as hasTripTonnage. The algorithm then traverses through the random forest,
creating a new rule for each path it finds and storing it in RFO.

Each SWRL rule contains the MakeOWLThing method from the SWRL-X library. When
the rule is triggered, this method instantiates a new instance of the Decision_Tree class,
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and the resulting prediction is added to the knowledge graph. Additionally, a Random_-

Forest instance is generated and incorporated into the knowledge graph, establishing the
connections between all the Decision_Trees in the RF, capturing their index.

5.3.3 Semantic Reasoning

Semantic Reasoners or Semantic Rule Engines are software that provides a mechanism for
inferring logical deductions from a set of asserted axioms using a restricted set of first-order
formulas [327, 192]. In simple terms, a rule engine enables the creation of logical rules,
which can be applied to a dataset to derive new knowledge from the existing knowledge
[326].

The reasoning process involves two inputs: (1) an ontology containing a knowledge
graph and (2) a rule set in an SWRL format. When the rule engine is executed, these
rules are applied to the data entries in the knowledge graph, leading to the inference of
new knowledge.

Thus, in the context of the framework, we are deploying a reasoner to capture the
operation of the RF classification process. Thus, when the rule engine is inferred, each data
entry yields N uniquely generated DT instances, where N corresponds to the size of the
random forest. Afterwards, a voting strategy is applied for each data entry by calculating
the average or modal value of the generated DT predictions. Algorithm 2 is an example
of applying the rule engine onto a Breiman RF containing three possible classifications,
determining the modal value of these classifications. Initially, each class is declared with
having zero entries. Then, each decision tree instance generated contains a class value,
which gets incremented to the counter of that class. Finally, the modal value between all
classes are calculated to produce the final classification.

Example 5.2 We consider a random forest with N = 10 decision trees. This can be
explicitly represented in the RFO ontology with one instance of the RF class RF 001 and
N instances of the DT class, DT 001 to DT N . These DT instances are acquired by
executing the rule engine on a rule set generated by Algorithm 1. Each instance of the
DT class is linked to the RF individual via the isDecisionTreeOf relation, as well as its
inverse relation hasDecisionTree. Furthermore, each instance of the DT class contains
the data property hasPrediction to carry its classification. Afterwards, a voting strategy
is executed to calculate the final classification of each individual by calculating the modal
value or average of the hasPrediction values, as outlined in Algorithm 2.

Afterwards, domain expert knowledge can be integrated to produce a more comprehen-
sible output that provides greater decision-making assistance for the human-in-the-loop.
The expert knowledge takes the classification as input, and based on the condition of the
rolls at a given interval, provides a recommendation for the operator, where the output
can be validated against the knowledge of the operator. To achieve this, the domain expert
knowledge has to be acquired from domain experts using well-studied knowledge acquisition
methods, and translated into an SWRL format so that logical reasoning can be applied.
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In essence, we are embedding the capabilities of a simplified expert system as part of the
framework. These results are displayed using the SPARQL Protocol and the RDF Query
Language [246].

Algorithm 2: An ontological classifier for a Breiman RF with classes 0, . . . , n.

1 Input: Ontology file incl. knowledge graph with individuals
2 Text file containing a list of SWRL rules generated from a RF
3 Output: Updated Ontology file with new acquired knowledge

1: load Ontology
2: let I1 be a set of individuals relating to the relevant data instances
3: read in SWRL rules into rule engine
4: apply the rule engine
5: let I2 be a set of individuals relating to Decision_Tree instances
6: for all r in I1 do
7: for all i from 0 to n do
8: C[i]← 0 {initialise count for class i}
9: end for

10: for all t in I2 do
11: if t is instance of Decision_Tree class for r then
12: let p = prediction value of t
13: C[p] += 1
14: end if
15: end for
16: P ← mode(C[0] & C[1] & . . . & C[n]) {compute mode of highest class}
17: store P as the hasClassification property for r
18: end for
19: delete all intermediate rules
20: delete all intermediate Decision_Tree individuals
21: return new ontology file

5.4 An Application of the Framework: Use Case of Cold
Rolling

This section demonstrates the applicability of the framework, and introduces an exam-
ple where the hybrid approach that uses real-world industrial data is used for predictive
analytics purposes.
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5.4.1 Use Case

This section demonstrates the applicability of the framework and introduces an example
where the hybrid approach, utilising real-world industrial data, is employed for predictive
analytics purposes. Specifically, we present a use case illustrating how the framework can
be applied in a cold rolling environment to assist operators in the crucial task of predicting
the optimal time to stop operations to refurbish the rolls, providing helpful and actionable
advice for the operator.

5.4.2 Application Use Case

As mentioned, work rolls are often refurbished prematurely or belatedly; hence, their ef-
ficiency and yield are suboptimal. Therefore, it is important for operators on the shop
floor to halt operations at an optimal point in time in order to maximise the yield of the
work rolls, while simultaneously not overworking the work rolls, which in turn results in the
production of defective steel adding additional refurbishment costs. Typically, in our study,
work rolls begin their life with a diameter of 600mm and are scrapped when approaching
520mm. An average refurbishment on a healthy work roll removes approximately 0.2mm of
stock. Meanwhile, if a work roll is damaged or over-worn, it may result in a significantly
greater stock reduction. In extreme cases, an over 10mm stock removal may be necessary,
which is a significant cut in lifespan.

The acquisition of this knowledge involves active engagement with domain experts and
stakeholders. Additionally, further interviews with domain experts are conducted to gather
insights regarding the optimal timing to stop operation and refurbish the work rolls. Using
this acquired knowledge, we construct a static set of expert rules designed to encapsulate
these insights. This rule set is an essential component within the application, as these
rules are applied to the real-time condition of the work rolls, influencing the final decision
produced by the framework.

Thus, at any given point during cold rolling operations, the real-time conditions of the
work rolls can be captured as a timestamp and input into the application. During this
process, the data is integrated into a knowledge graph containing historical information
about the work rolls, including details such as their previous grindings and stock reduction
values. Subsequently, the knowledge graph is passed through a semantic reasoner, which
applies logical deduction to predict the live condition of the work rolls. This prediction is
accomplished through the application of a rule-based random forest classification, following
the steps mentioned in the proposed methodology.

Once this classification is obtained, it is combined with the expert rule set, generating
a status for the operator and offering clear advice on whether to proceed with the cold
rolling operations, along with insights into the recommended tonnage. Ultimately, the
decisions produced by the application are intended to assist the human in the loop with
their decision-making process and can be utilised as guidance.

In this use case, we apply the framework to the last 100 roll unit trips of our industrial
partners and perform a comparison with domain experts if the assistance provided is useful
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and accurate.

5.4.3 Producing a Random Forest

For this study, we deploy a supervised RF model to predict the condition of the work rolls
at a given interval. The outcome can be one of three classifications: class 0, implying
the condition of the work roll is Bad, i.e., the roll requires a considerable amount of stock
reduction to remove the worn surface; class 1, where the condition of the work roll is
considered as Best, and thus requires minimal stock removal; or class 2, implying the
condition of the work roll is Good and an average stock reduction value is necessary.

There are many impacting factors that affect the rolls, which are collected and used
for training and testing the RF model. This includes a combination of dynamic sensory
and historical static data of the work rolls. The dynamic data contains live data read
from sensors, which include the total tonnage and meterage rolled during a trip, speeds,
temperature, as well as coil usage data. This coil usage contains information regarding the
steel grades and full chemical composition for each coil processed, e.g., its carbon or silicon
values. Meanwhile, the static data provide information regarding the roll historical data,
such as their previous grindings, stock reductions, positioning, tons and length rolled, etc.
This wide collection of data was explained by domain experts and data scientists from our
industrial partners, who assisted in the data collection and aggregation aspects to build our
random forest model.

To build the RF classifier in our application, 80% of the original dataset (9781 samples)
was used as the training set. The train–test split was performed randomly and in such
a way that the original proportion was respected. The value of the hyperparameters n_-

estimators and max_depth was set using grid search and validated through the performance
of the metrics. Finally, the optimised values for n_estimators and max_depth were 20 and
22, respectively.

The RF contained a total of 20 decision trees that contained a total of 25,657 paths.
The majority voting strategy technique was applied to calculate the final classification by
computing the modal value of all the decision trees in the RF. The RF was exported to
plain text using the export tree method mentioned previously. The accuracy of the random
forest is measured in terms of precision, recall and f1-score and their weighted values are
displayed below.

Precision: 0.78 Weighted Precision: 0.78

Recall: 0.75 Weighted Recall: 0.78

F1-score: 0.76 Weighted F1-score: 0.77

When running Algorithm 1 for this particular RF, the 25,657 different paths produced
an equal amount of SWRL-rules that were passed to the semantic reasoner for inference.
We discovered that one limitation of this approach is the capability of our selected semantic
reasoner to reason on such a large scale. Thus, we iteratively cut down the reasoning process
into chunks of 100 data entries at a time.
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5.4.4 Reasoning

To build our knowledge graph, we created an Ontop Mapping that correlated the last 100
cold rolling trips from our local database into individuals in the ontology. These data entries
were an instance of the Roll_Unit_Trip class.

First, the 25,657 rules and the 100 data entries were input into the reasoner, initiating
the application of rules to the knowledge graph for logical inference. Listing 5.1 displays the
syntax and format of one of the 25,657 rules as an example. As shown, the antecedent of
every rule starts with Roll_Unit_Trip(?trip) to target the corresponding instances of the
Roll_Unit_Trip class in the knowledge graph that the rule is applied to. Each instance
must be linked to an instance of the RF class via the RFO:hasRandomForest property
provided by RFO (which is typically mapped automatically). Then, each rule contains
the features and conditions of the path, in this case hasGrindNr, hasDiamBefore and

hasSurfaceRA and their conditions, respectively. The end of the antecedent exploits the
makeOWLThing method from the SWRL-X library to instantiate a new, unspecified instance
in the knowledge graph, which is declared in the consequent of the rule to be of type
RFO:Decision_Tree. The consequent also contains the RFO:hasPrediction data property
to store the classification and the RFO:treeIndex data property to store the index of the
tree in the RF.

Code Listing 5.1: Example of an SWRL rule.

Roll Unit Trip(?trip) ˆ RFO:hasRandomForest(?trip, ?rf) ˆ
hasGrindNr(?trip, ?GrindNr) ˆ swrlb:greaterThan(?GrindNr, 53.50) ˆ
hasDiamBefore(?trip, ?DiamBefore) ˆ swrlb:lessThanOrEqual(?DiamBefore, 573.40)ˆ
hasSurfaceRA(?trip, ?SurfaceRA) ˆ swrlb:lessThanOrEqual(?SurfaceRA, 0.81) ˆ
swrlx:makeOWLThing(?DT, ?trip) −> RFO:Decision Tree(?DT) ˆ RFO:isDecision
TreeOf(?DT,?rf) ˆ RFO:hasPrediction(?DT, 1) ˆ RFO:hasTreeIndex(?DT, 1)

After the rule engine completed its process, each Roll_Unit_Trip individual accumu-
lated a total of 20 unique instances of the RFO:Decision_Tree class, each containing a
prediction. Afterwards, as this RF utilised a majority voting strategy, the modal value
of the 20 classifications was computed to derive the final classification for each Roll_-

Unit_Trip individual. This final classification was then stored in the ontology. Finally, all
intermediate values, including the decision tree instances, were purged from the ontology,
resulting in a streamlined and concise representation of the final classifications.

5.4.5 Limitations and Validation

The proposed method is computationally expensive for large RFs or large datasets. In our
study, the sci-kit learn model was using the remaining 20% of the dataset (1957 samples)
for validation, which, when converted into rule-base reasoning, was too large for the default
SWRL-API reasoner Drools. Therefore, we instead compared the accuracies of a batch
of 100 data points iteratively, which overall produced identical results for all data points
to the sci-kit learn validation, validating our approach. More concretely, a total of 25,657
paths in the RF translated to 25,657 SWRL rules that were passed to a rule engine. Each

128



5.4. An Application of the Framework: Use Case of Cold Rolling

rule was applied to the batch of 100 instances, producing a total of 2,565,700 inferences.
Meanwhile, the authors in [187] compared the performance of different rule engines and
concluded that Drools is optimised for smaller datasets and has the worst performance with
larger datasets when compared to other reasoners. A possible solution for this performance
issue is to investigate the use of a different rule engine that is compatible with SWRL-API
or investigate optimisation methods to the rule generation process.

5.4.6 Integrating Domain Expert Knowledge

As mentioned, numerous industrial processes within the steel domain heavily rely on knowl-
edge, where plant operators constantly make important decisions based on the scenario and
their expertise. Meanwhile, the framework combines domain expert knowledge with ML
classification to offer decision-making assistance for the human in the loop. The initial step
involves acquiring expert knowledge through one or more well-known knowledge acquisition
methods. This knowledge must be captured in a format that is translatable into an SWRL
format for compatibility with the rule engine.

Although experts can be wrong, in the context of expert-based systems, expert rules are
treated as highly accurate [120].

Knowledge Acquisition Methods

Domain expert knowledge is often considered to be of implicit and tactic nature which
contradicts ontologies explicit modelling behaviour [167]. In the context of manufacturing,
tacit knowledge refers to the concept of informal learning by simply performing actions
and experiences, often where the knowledge is unconsciously retained in individual memory
rather than being formally recorded or shared [167]. To overcome this phenomenon, many
different ways of extracting tacit knowledge have been widely studied over the years. This
includes techniques such as interviewing, questionnaires, protocol analysis, inferential flow
analysis, and many more [174].

For our study, we conducted interviews and questionnaires with domain experts and
plant operators to construct our domain expert knowledge rule set. Presently, we obtained
a small sample of domain expert rules which we aim to increase in quantity and quality over
time. Meanwhile, the small sample of domain expert rules demonstrates the capabilities of
the framework. Table 5.1 displays some expert rules in a categorised format before they
are translated into the SWRL format. Example 5.3 displays a domain expert knowledge
obtained during the knowledge acquisition sessions which we translate as rules. As these
rules come directly from knowledge acquisition sessions with domain experts, the validity
and accuracy of these rules are treated as absolute. In the event that a rule creates an
incorrect status, it is reviewed with experts and updated accordingly.

Example 5.3 ‘For any trips considered to have the ‘Bad’ condition, if that trip reaches a
high level of tonnage and the work rolls recently had severe grindings in their last five trips,
then the stopping of operation should be considered.’
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ID Classif-
ication

Recent
Severe

Grinding

Tonnage
Limit

Tonnage
Reached

Status

1 Best False 4500 False Continue rolling: predicted condition is best on a
healthy roll. Recommended tonnage of 4500.

2 Best False 4500 True Stop rolling: predicted condition is best on a
healthy roll. Recommended tonnage of 4500 has
been exceeded.

3 Best True 4000 False Continue rolling: predicted condition is best but
recent high stock removal may affect roll. Recom-
mended tonnage of 4000.

4 Best True 4000 True Stop rolling: predicted condition is best but recent
high stock removal may affect roll. Recommended
tonnage of 4000 has been exceeded.

5 Good False 4000 False Continue rolling: predicted condition is good on a
healthy roll. Recommended tonnage of 4000.

6 Good False 4000 True Stop rolling: predicted condition is good on a
healthy roll. Recommended tonnage of 4000 has
been exceeded.

7 Good True 3500 False Continue rolling: predicted condition is good but
recent high stock removal may affect roll. Recom-
mended tonnage of 3500.

8 Good True 3500 True Stop rolling: predicted condition is good but re-
cent high stock removal may affect roll. Recom-
mended tonnage of 3500 has been exceeded.

9 Bad False 3000 False Continue rolling: predicted condition is bad on a
previously healthy roll. Recommended tonnage of
3000.

10 Bad False 3000 True Stop rolling: predicted condition is bad on a previ-
ously healthy roll. Recommended tonnage of 3000
has been exceeded.

11 Bad True 2500 False Stop rolling: predicted condition is bad on a roll
that was previously damaged.

12 Bad True 2500 True Stop rolling: predicted condition is bad on a roll
that was previously damaged. Recommended ton-
nage of 2500 has been exceeded.

Table 5.1: The domain expert knowledge rules in a simplified view.

Here, we have to explicitly define ‘high tonnage’ and ‘severe grindings’ with the help
of domain experts. In this case, high tonnage is a dynamic value that changes thresholds
depending on the condition of the roll. Meanwhile, the condition of the work roll can be
calculated by looking at the previous grindings and whether it has recently had any severe

grindings. A roll grinding is considered severe if any of the last five grindings of the work
roll had a stock removal value greater than 0.5 mm and therefore require a lower tonnage
threshold. Additionally, the historical data of roll change reasons are also considered as
part of the domain expert rule set. A severe grinding could be caused by a mill incident
where the impact on the health of the roll is much greater. This knowledge is not captured
in the RF but is included as expert rules.

Listing 5.2 displays the rule in Example 5.3 in its SWRL format. These rules are man-
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ually translated into the SWRL format. Afterwards, they were passed into the rule engine,
which combined the RF prediction with the expert knowledge, producing new knowledge
stored in the data property hasStatus. The status produced is displayed using SPARQL, a
well-known semantic-based querying language that enables querying based on RDF triples
and graph data [246]. Listing 5.3 is a SPARQL query, which when executed, prints the
operational trips and their corresponding classification and status.

Code Listing 5.2: Example of a domain expert SWRL rule.

Roll(?r) ˆ hasRollUnitTrip(?r, ?trip) ˆ hasInferredCondition(?trip, ?condition) ˆ
swrlb:equal(?condition, ”Bad”) ˆ hasRecentSevereGrinding(?r, ?severe) ˆ
swrlb:equal(?severe, true) ˆ hasTripTonnage(?trip, ?tonnage) ˆ swrlb:lessThan
(?tonnage, 2500) −> hasStatus(?trip, ”Highest risk: predicted condition is
bad on a roll that was previously damaged. Recommended tonnage of 2500.”)

Code Listing 5.3: SPARQL query to retrieve results.

PREFIX : <http://www.semanticweb.org/new/ontologies/2023/1/SCRO#>

PREFIX rf: <http://www.semanticweb.org/sadeer/ontologies/2023/0/RF#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX swrl: <http://www.w3.org/2003/11/swrl#>

SELECT ?trip ?classification ?status

WHERE {

?roll :hasRollUnitTrip ?trip .

?trip :hasRollRefurbConditionInferred ?classification .

?trip :hasTripTonnage ?tonnage_of_trip .

#if any of the last 5 trips contain a stock removal value >0.5

?roll :hasRecentHighStockRemoval ?high_stock_removal .

?trip :hasStatus ?status .

}

GROUP BY ?trip ?classification ?status

5.5 Results and Validation

The purpose of this section is to validate the framework by contextualising it with the
results obtained from the application, as illustrated in the use case presented in the pre-
ceding section. This validation process aims to assess the effectiveness and reliability of the
proposed framework in practical scenarios, providing an evaluation of its performance and
utility.

Figure 5.5 is a snippet that displays some results from the last 100 operational trips,
which are used to test and validate the framework. These results display the knowledge-
guided decisions through the Status column, as well as the classifications from semantic-
based reasoning in the classification column, which are both displayed to the operator.
As shown, each classification may be one of three categories, where the status provides a
decision on what to do based on expert knowledge and the collected data at the specific
timestamp of operation. The accuracy of the RF model is 78%, whereas the accuracy of
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the decision-guided assistance is calculated and validated with the help of domain experts
in the following subsection using qualitative methods.

Figure 5.5: The SPARQL query results.

Validation

The purpose and contribution of the framework is to provide improved assistance for the hu-
man in the loop. The classifications of the RF model produced good, bad, and best outputs,
whereas the final status output provided new decision-making knowledge on whether to
continue the rolling process, with an estimation of how much more rolling was recommended
based on classification and expert knowledge.

Because of this, there was no ground truth or direct labels to compare for validation.
However, there are many well-studied validation techniques for situations where no ground
truth is available, often deployed during unsupervised learning models, such as interval val-
idation, external validation, domain expertise, twin-sample validation, and cross-validation
[235]. In our use case, we adopt external validation and domain expertise validation method-
ologies to validate our framework. These validation methods have been applied in various
domains [268, 76].

Similarly, we followed an iterative screening and refinement process with domain experts
and stakeholders to share results and obtain valuable feedback, as highlighted in Figure 5.6.

Within the iterative cycle, the results are displayed, discussed, and validated with the
domain experts. The expert rules are refined with any newly obtained knowledge from these
instances. Once the rule set is recompiled, it is passed through the semantic reasoner again,
producing new results which are displayed to the experts once more, repeating the iterative
cycle. By utilising domain experts for validation, we can ensure the accuracy, relevance, and
robustness of the framework, providing insights and tactic knowledge that are not apparent
from data alone.
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Figure 5.6: The methodology of the iterative process with experts for validation.

With each iteration, we displayed the one hundred data entries. These entries contained
the status, classification, expert rules, sensory data, and the actual stock reduction of the
roll. Furthermore, we categorised the entries into two groups: (1) expected output consisting
of 80% of the entries where the status of the entry matched the amount of stock reduction
for that roll, e.g., “stop rolling” for entries where the stock reduction was greater than the
expected average value, and (2) unexpected output where 20% of entries where the opposite
interaction occurred. All entries were displayed to the experts; however, it would be revealed
to be a time consuming task to iterate through all the entries, so we further refined and
handpicked the most interesting results and compared the predictions with those of domain
experts.

For the expected output category where the majority of data points were, ten entries
were displayed to the experts. All entries were studied and approved by the experts, stating
that they would have made the same decision based on the data. Two out of the ten entries
are displayed in Table 5.2. This confirmed that the support provided by the framework was
accurate for the expected category.

Similarly, ten entries from the unexpected output category were also displayed to the
experts. In three of those cases, the status was ‘stop rolling’ despite a low diameter reduction
and an accurate ‘good’ classification. In these cases, an expert rule was triggered that
prioritised stopping operation if there was a high tonnage produced on a pair of work rolls
that were recently damaged. Having investigated these results with domain experts, we
discovered that there was a ‘pinch’ on one of the rolls, which is required to be removed
before further operation. This positive feedback confirmed that the framework was able to
provide accurate results in these cases.

Meanwhile, there were three instances where the status produced was ‘stop rolling’ by a
similar expert rule. However, the experts stated that although the expert rule was correct,
some knowledge was missing, stating that work rolls in Stand 3 are expected to handle
more work load and pressure. The experts began to describe the refinement process in more
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Table 5.2: Two reports from the ‘expected’ category.

Report ID 01
Roll and Trip ID roll 1728 trip 67496
Category Expected.
Trip details (1) Trip has a high tonnage threshold; (2) Work roll had a high

stock reduction in the last five refurbishments.
Classification Bad condition.
Status Stop rolling: predicted condition is bad on a roll that was previ-

ously damaged. Recommended tonnage of 2500 is exceeded.
Expert comment ‘The status is accurate. The roll has done high tonnage in the

current trip and should be taken out. Looking at the historical
data of roll 1728, it had a significant cut in stock recently and
should be treated carefully. If it was removed earlier, the stock
reduction would be lowered.’

Report ID 02
Roll and Trip ID roll 1609 trip 67249
Category Expected.
Trip details (1) Trip had medium tonnage; (2) Work roll is brand new and had

no recently high stock reductions.
Classification Best condition.
Status Continue rolling: predicted condition is best on a healthy roll.

Recommended tonnage of 4500.
Expert comment ‘The status is accurate to continue rolling. This roll is new and

is expected to roll the maximum amount possible. The recom-
mended tonnage could have been slightly higher than 4500 before
being refurbished.’

detail, explaining how work rolls in different stands have different tonnage expectations and
require different handling, which we adapt into our expert knowledge rule base for the next
iteration. Finally, the remaining four instances provided an inaccurate status as the ML
classification inaccurately predicted the roll condition. Two entries from the unexpected
category are displayed in Table 5.3.

For the second iteration, we refined our expert knowledge rule set to include the newly
obtained knowledge of stand information, which we displayed to the domain experts again.
Once more, we produced two categories of results in the same manner as the first iteration.
We first revisited the same entries from the first iteration. This time, the entries that were in
Stand 3 produced a more accurate ‘continue rolling’ status, aligning with the expectations of
the experts. Additionally, we continued to review ten new outputs for the second iteration
for each category. This process established new knowledge regarding grinder stone diameter
and roll hardness that can be used to improve the quality of the expert rules, followed by
further iterations of the process if required.

From the qualitative validation, the accuracy of the expected category results for the
first and second iterations were both 100%. Although each iteration had ten entries, it
offered confidence to the experts using the system as 80% of the overall entries were in the
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expected category. Meanwhile, the accuracy of the unexpected column improved after the
refinement of the expert rules in the second iteration, and it can be improved with further
refinement.

Table 5.3: Two reports from the ‘unexpected’ category.

Report ID 03
Roll and Trip ID roll 1534 trip 67845
Category Unexpected.
Trip details (1) Trip had high tonnage; (2) Work roll had a significant stock

reduction in the last five refurbishments.
Classification Good condition.
Status Stop rolling: predicted condition is good but recent high stock

removal may affect roll.
Expert comment ‘The status is accurate. After investigating roll 1534, there was a

pinch on the work roll which needed to be removed before further
operations.’

Report ID 04
Roll and Trip ID roll 1647 trip 65846
Category Unexpected.
Trip details (1) Trip had high tonnage; (2) Work roll had a significant stock

reduction in the last five refurbishments.
Classification Good condition.
Status Stop rolling: predicted condition is good but recent high stock re-

moval may affect roll. Recommended tonnage of 3500 is exceeded.
Expert comment ‘The status is not completely accurate for this roll. This is because

the roll is in stand three. Rolls in stand three are expected to do
more total tonnage than other stands before being refurbished,
and are expected to withstand stronger forces. The expected re-
sult in this situation is to continue rolling for a few hundred more
tons.’

In addition, the experts we engaged with provided overwhelming positive feedback of
the framework in general. One expert said that it is reassuring having a second opinion
on difficult decision-making situations, where usually they may consult a fellow worker or
manager for a second opinion. Meanwhile, another expert claimed that the framework has
very good potential with the improvement of stronger expert rules and machine learning
models. Finally, the iterative process itself was perceived as useful: it enabled interaction
and continuous improvement of the decision-making tool for the experts, while also provid-
ing us as non-experts with greater domain knowledge and understanding of the cold rolling
processes.

Overall, the results demonstrated the capabilities of the framework, and its ability to
assist operators with decision-making tasks. One fundamental contribution of the proposed
framework is the ability to encode RF classification semantically so that the meta-data is
also included in the model, which can be combined with external knowledge for further
assistance in decision-making. Our results used real-world examples to demonstrate that
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such an approach is possible and advantageous. Ultimately, the knowledge is provided to
assist and support the operator with their decision-making tasks.

5.6 Conclusions

This chapter introduces a human-in-the-loop framework that combines a random forest
model with semantic technologies where the resulting semantic ML classification is en-
hanced by domain expert knowledge. There are two key contributions and components of
the framework: (1) the Random Forest Ontology that models the concepts of a random
forest, where an RF-based knowledge graph can be generated as an alternative way to en-
code the RF classification process and knowledge using rule-based reasoning, and (2) the
integration of expert knowledge with the classification to provide semantically enriched,
knowledge-guided decisions as recommendations for the human in the-loop system . A use
case for predictive analytics in smart manufacturing is demonstrated that uses real-world
data from industrial partners, which displays the capabilities, applicability, advantages, and
limitations of the proposed framework.

Within smart manufacturing, a fundamental goal is to improve machine interoperability
and interpretability; this chapter proposes a method of improving machine interpretability
via semantic technologies, providing one example of how ML models can be represented
using semantic technologies.

5.7 Future Work

The major constraint of the proposed approach was the capabilities of the chosen rule engine.
Drools, the default reasoner of SWRL-API, struggled to provide logical inferences on a very
large dataset and hence limited the size of the knowledge graph. One future goal is to
investigate the different available reasoners that have stronger inference capabilities to speed
up and stabilise the inference process. On the other hand, the quality of the framework
depends on the quality of the ML model and the quality of the training set, as well as
the quality of the domain expert knowledge. Presently, we aim to hold more knowledge
acquisition sessions to improve the quality of the expert rules. It is also necessary to take
the time to evaluate and further validate the impact and effectiveness of the framework
with the industrial partners after extended usage.
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This chapter displays the early work towards developing a semantic framework for simulat-
ing data streams, where reasoning is applied onto data streams in real-time, incorporating
a range of rules and classifications.

In particular, we demonstrate a use case for steelmaking predictive maintenance, where
random forest classification and expert knowledge is integrated and applied onto the data
stream semantically, enabling reasoning on the fly.

6.1 Introduction

The continuous production of dynamic data collected from data streams, including sensors
and networks, is known as stream data [80]. Due to the widespread adoption of digitisation
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in manufacturing, many processes generate a surplus amount of data, generally captured
and stored for various purposes, such as predictive tasks, monitoring, checks, and many
others. These data elements are derived from time-varying unbounded sequences of data
[80], often obtained from heterogeneous data sources. Reasoning with this kind of data is
known as Stream Reasoning (SR) [19].

In many cases, domain knowledge is necessary for extracting meaningful insights from
the data streams [42]. We have previously demonstrated how knowledge-driven AI tech-
nologies, such as ontologies, play a significant role for modelling domain knowledge and
enable the integration of heterogeneous data within a manufacturing system [43]. In this
chapter, we aim to expand our finding, and apply novel methodologies on data streams,
simulating the real-world nature of operations in steelmaking.

In SR, input data is dynamic and can be infinite. To manage the unboundedness of
the data, stream reasoners require a window operation, typically in the form of snapshots,
which collect and segment the generated data [208]. There are two fundamental windows,
Time-based windows, where input data is calculated within a fixed amount of time, or
Tuple-based windows, where input is limited by a specific quantity of input data [238].

In this chapter, we utilise semantic methodologies for applying reasoning on data streams,
specifically for predictive maintenance purposes in cold rolling. Predictive maintenance is
an important aspect in manufacturing, attempting to predict errors or future faults of sys-
tems, enabling actionable maintenance before failure occurs [210]. With the ongoing trends
of Industry 4.0, the ability to collect and process sensor data has significantly enhanced
many predictive maintenance operations [243]. Given the inherent nature of operations and
strong forces involved in cold rolling, work rolls inevitably suffer from roll wear and will
eventually need refurbishing.

There exist machine learning models that are designed for data streams, including Ho-
effding Trees [182]. These models apply incremental learning, where the dataset is updated
incrementally. However, in this chapter, we aim to deploy the methods we developed in our
previous chapter in a continuous manner. Thus, we stick with the deployment of random
forests.

We set up a use case, providing one example of how random forest classification, as well
as domain expert knowledge can be applied on data streams to predict the optimal timing
to replace the work rolls before exceeding the limit of the work rolls. This novel approach
enables real-time condition monitoring based on dynamically generated data streams, which
conventionally require pausing operations for manual checks. The contributions of this
chapter lie in the development of a framework, specifically for applying neuro-symbolic AI on
data streams, that is, the combination of statistical machine learning methods with semantic
technologies. To the best of our knowledge, there is currently no existing framework that
seamlessly applies machine learning classification, while also incorporating domain-expert
knowledge on top of the resulting classification on the fly. We demonstrate a method where
these two models are combined for reasoning, without the need of pausing operations.
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6.2 Related Work

In this section, we look at related literature that have demonstrated success in continuous
streaming and reasoning, highlighting the key technologies and languages used for each
implementation.

Chandrasekaran et al. [64] were among the first to develop a framework for processing
continuous dataflow. They introduced TelegraphCQ, a dataflow system designed for pro-
cessing continuous queries over data streams. Developed at the University of California
at Berkeley in 2003, TelegraphCQ showcased the ability to (1) create data streams, (2)
establish sources for simultaneously pushing data to the same data stream, (3) create wrap-
pers enabling user-defined functions such as init, next or done to process the data from
external sources, and (4) support continuous queries, allowing users to issue long-running
continuous queries over defined time windows [181].

Walavalkar et al. [323] deployed the reasoning capabilities of TelegraphCQ and combined
them with the Jena Rule Engine for reasoning in 2008. The authors demonstrated how
this combination of technologies can perform RDFS inferences, utilising the Spire project
ontology to classify different plants and invasive species.

Barbieri et al. [20] have developed the Continuous-SPARQL (C-SPARQL) framework in
2009, an extension of SPARQL that supports continuous queries over RDF data streams.
The main features include continuous queries, where a data stream can be continuously
monitored, and any results are printed as the data changes [21]. In the paper, the authors
introduce Windowing, a feature that allows for temporal constraints on the data. For
example, the user can specify a time window that specifically looks at the last five minutes
of data that moved over the data stream.

Anicic et al. [11] has developed the Event Processing-SPARQL (EP-SPARQL) frame-
work in 2011, a unified language for event processing and stream reasoning. This language
extends the SPARQL language, providing features for event processing and stream reason-
ing capabilities using Logical Programming. EP-SPARQL is able to model complex events
by leveraging temporally situating real-time streaming data, deploying ontologies to enable
stream reasoning. EP-SARQL focuses more on detecting RDF triples in a specific temporal
order compared to C-SPARQL, which is typically determined on a static RDF based on a
query.

Özçep et al. [232] developed the Spatial and Temporal ontology Access with a Reasoning-
based Query Language (STARQL) framework for accessing and querying heterogeneous
sensor data through ontologies. The initial research focused on creating a querying tool for
Ontology Based Data Access (OBDA), while STARQL is extends the OBDA framework
by integrating traditional data queries with stream processing. STARQL consists of two
main components: (1) an ontology that models the semantics of data and (2) an Embedded
Constraint Language (ECL) for composing queries [81]. As part of this extension, the
authors expand on the sliding window concept, providing window operations such as clauses
for expressing event matching and the integration of static and streamed data. Inference
relies on temporal annotations of the streamed data, created using a sequence of time-
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annotated ontologies.

Mileo et al. [207] developed StreamRule, a non-monotonic stream reasoning system
for the semantic web. Their methodology first adopts a stream query processor, which
abstracts and filters the raw streaming data using declarative query patterns as filters. The
filtered stream is passed onto a middle-layer processor, which processes matching patterns
to generate input facts. These facts are subsequently passed onto a non-monotonic stream
reasoner, along with a declarative encoding of the problem at hand, producing a set of
solutions as output. The filtering process uses the Continuous Query Evaluation over Linked
Stream (CQELS) Java engine, which supports continuous query evaluation over streams of
RDF data.

Beck et al. [24] developed the Logic-based framework for Analysing Reasoning over
Streams (LARS) framework for stream reasoning. The LARS framework provides a formal
model of streams with built-in modalities and window constructors that can be applied to
streams. LARS also provides two languages for reasoning over streams, (1) LARS Formu-
las, a language using first-order formalism to reason over extensional data only, and (2)
LARS Programs, for more involved applications that necessitate reasoning over auxiliary
or intentional predicates, expressing and analysing stream reasoning.

Jajaga et al. [162] developed a stream reasoning framework for monitoring the quality of
water on the fly. They propose a conceptual architecture named StreamJess, which consists
of four layers: data, ontology, stream filter and aggregation, and rules layer. StreamJess is
implemented using Java, allowing users to import an ontology, build a working memory, and
provides a rule engine for inference tasks. The rules in this framework have to be in Jess for-
mat instead of SWRL, as the authors state that SWRL rules lack the required expressivity
level to reason over stream data. Their streaming process adopts C-SPARQL querying, en-
abling filtering and aggregating of the data streams. Once the stream data has been filtered
and aggregated, the rule engine applies the Jess rules to the newly published temporary
observation facts, producing an output for classifying individual pH observations into ap-
propriate Water Framework Directive (WFD) statuses. The authors extend their work in
[161], where they replaced the JessRule engine with the Continuous-SWRL (C-SWRL) en-
gine, leveraging SWRL-API, a Java library that extends OWL-API, to continuously apply
SWRL rules. In this chapter, we follow a similar process of adopting C-SPARQL to query
the data stream, and use SWRL-API to capture and continuously apply our rule sets to
the data streams. In our application, we have two rule sets, one denoting random forest
classification and another denoting expert rules which are applied on top of the generated
classification. Both rule sets are applied to the streamed data on the fly for predictive
maintenance purposes.

6.3 Methodology

The methodology of the proposed application can be divided into two main sections, as
displayed in Figure 6.1. On the left-hand side, we have the static elements of the framework.
This includes the process of training a Random Forest (RF) model for classification. To

140



6.3. Methodology

Figure 6.1: The methodology of the proposed application.

achieve this, the real-world dataset must be collected, aggregated, and passed as training
data to the RF model. Once this RF is trained, it is converted into a set of SWRL rules
using the semantic methods mentioned in the previous chapter. Once the RF is represented
as a set of rules in SWRL format, the RF classification process can be applied to the
generated individuals in the ontology in real-time using rule-base reasoning. Additionally,
the remaining part of the static section is the acquisition of expert rules. These additional
rules can be applied on top of the RF classification to generate new insights and actionable
decisions.

On the other hand, the dynamic section illustrates the continuous streaming and reason-
ing process. The first step involves setting up a continuous streamer, which in our case, is
achieved by setting up a Java project and utilising available online libraries. This streamer
automatically generates data in Resource Description Language (RDF) format, simulating
realistic real-world data to replicate the ongoing operational processes. In our example, this
process replicates the cold rolling process and data, attempting to determine when a work
roll is considered “damaged”. Subsequently, we employ the C-SPARQL engine, capable of
collecting the generated RDF triples and converting them into unique individuals. This
is achieved by capturing a snapshot within a time window e.g., 40-second intervals, and
accumulating the RDF triples within that timestamp using a SPARQL query. Finally, we
use the SWRL-API library, which contains a SWRL rule engine, to apply the RF rule set
to the individuals, generating a classification for each. Once this classification is produced,
it undergoes another round of inference in the rule engine, combining the external set of
SWRL rule representing the domain and expert rule set. This entire process is continuous;
while the C-SPARQL engine and the SWRL-API rule engine are executing, the streamer
continually generates a new batch of RDF data for the next iteration.
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6.4 Use Case and Data

Work rolls get worn during cold rolling processes. When they are worn, they are considered
as damaged and need to be refurbished to remove the worn surface. To adapt to the roll
wear, it is necessary to predict the optimal maintenance schedule for the rolls.

To accurately predict the optimal, automated maintenance schedule for the rolls, it is
essential that all the impacting factors that contribute to roll wear are properly understood.
To achieve this, several datasets have been collected from Tata Steel UK, and aggregated
with the aim of linking the production information and chemical compositions of the coils
to the reasons for changing the rolls. This new dataset, we call Roll Unit Trips aggregated
(RUTA), contains: (1) sensor information recorded with high resolution, (2) production
data including the chemical composition of the coils, (3) historical refurbishment records,
and (4) tracking of the life-cycle of each roll. The semantics of these values can be viewed
in Table 6.1.

RUTA contains a trip sequence as the primary key, as well as the trip time start and
trip time finish in the form of a date. These dates are used to link dynamic sensory data
with existing static data from the specifications of the coil suppliers. Other key features
include roll data, trip tonnage and meterage, as well as all the chemical compositions of
the coils. All these features are captured and integrated into the SCRO ontology as data
properties. In total, there are 120 properties that are used as features for the RF classifier
which will be used on the generated individuals. Some of these are displayed in Table 6.1.

Table 6.1: The data properties used for classification.

Property Min Value Max Value

hasMillID 1 2
hasStandID 2 7
hasTopRollID 5 2000
hasTopRollGrindingSequenceNo 1 300
hasTopRollChockingSequenceNo 1 300
hasBottomRollID 5 200
hasBottomRollGrindingSequenceNo 1 300
hasBottomRollChockingSequenceNo 1 300
hasTripTonnage 0 9000
hasTripMeterage 0 1000
hasRollChangeReason 1 200
hasChangeReasonID 1 200
hasDamageID 1 13
hasCoilpartLengthExit 100 5000
hasCoilpartThickExit 0.3 3
hasGradeFiltered 2500 5000
hasExitGauge 0.3 3
hasExitWidth 800 2000

Table 6.1: Properties table, continued on next page
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Table 6.1: The data properties used for classification.

Property Min Value Max Value

hasExitWeight 0.7 30
hasInputCoilID 1114000 9000000
hasHRGauge 2 5
hasCRGauge 0.3 3
hasInputWidth 850 2000
hasInputWeight 0 28
hasHeatNumber 51000 70000
hasC 0.001233333 0.158000007
hasSI 0.001 0.273749996
hasS 0.002 0.02
hasP 0.006 0.035075472
hasMN 0.066333331 1.785333316
hasNI 0.008 0.028
hasCU 0.00625 0.059
hasSN 0.001 0.017000001
hasCR 0.009666667 0.560000002
hasArsenic 0.001 0.005
hasMO 0.001 0.00325
hasN2 0.00175 0.007866667
hasALT 0.024 0.056333333
hasALS 0.0225 0.052333333
hasTI 0.001 0.062
hasB 0.000197619 0.003
hasCA 0.0003 0.004033333
hasCE 0.0015 0.00777
hasCO 0.002090909 0.008
hasNB 0.0005 0.02915625
hasV 0.001 0.006875
hasCEV1 0.0178 0.543612506
hasCEV2 0.015699999 0.543100003
hasCEV3 0.0127 0.429125007
hasFREEC1 0 0.167400003
hasFREEC2 0.001033333 0.157900006
hasXSTI1 0 0.0353
hasXSTI2 0 0.042811111
hasXSTI3 0 0.052700001
hasALN2 5.131599903 25.3366998
hasCUP 0.671450004 6.555600166
hasBN2 0.025625 1.515475005

Table 6.1: Properties table, continued on next page
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Table 6.1: The data properties used for classification.

Property Min Value Max Value

hasSP 0.011255556 0.046555554
hasCUNICRMOSN 0.043333334 0.671000004
hasCREQ 92.08333333 2344.958333
hasSIFORM 0.017000001 0.322187502
hasMNS 9.260187929 648.1547668
hasMNSI 6.461200237 246
hasFREEC3 0 0.157900006
hasFE 97.09173965 99.79535711
hasLIQUIDUS 1510.02948 1535.459961
hasTonsRolledComputed 0 1300000
hasLengthRolledComputed 8.74 800000
hasCoilsRolledComputed 1 65000
hasWidthReducedComputed 0 300000
hasWeightReducedComputed 0 25000

In this framework, we apply constraint checking to ensure the generated instances con-
tain realistic values between the min and max value for each data property.

6.5 Random Forest Creation

To build the RF classifier in our application, 75% of the original dataset (conformed by
3629 samples) was used as the training set. The train-test split was performed randomly
and in such a way that the original proportion of damaged rolls to not damaged rolls (20%
- 80%) was respected. The value of the hyperparameters n_estimators, max_depth and
min_samples_leaf was set using grid search and validating the out-of-bag (OOB) score
over the training set. The performance reached in terms of both standard and weighted
metrics, where the positive class is the damaged class is as follows:

Precision: 0.83 Weighted Precision: 0.85

Recall: 0.41 Weighted Recall: 0.86

F1-score: 0.54 Weighted F1-score: 0.84

Lastly, the output generated a RF consisting of 200 DTs, which is stored in plain
text format using the export_tree method provided by sci-kit learn. This RF has to be
converted into a set of SWRL rules in order to be applied on data streams in real-time.
Therefore, we utilise the same algorithm introduced in the previous chapter to automatically
apply this conversation. One example of a path in the forest forest in SWRL format is
represented in Listing 6.1. The antecedent of the rule states the necessary conditions for
the consequent to apply, which provides the prediction.
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Code Listing 6.1: Example of an SWRL rule.

Roll Unit Trip(?trip) ˆ hasMillID(?trip, ?MillID) ˆ swrlb:lessThanOrEqual(?MillID, ”1.50”ˆˆxsd:double) ˆ
hasC(?trip, ?C) ˆ swrlb:lessThanOrEqual(?C, ”0.06”ˆˆxsd:double) ˆ hasTripMeterage(?trip, ?
TripMeterage) ˆ swrlb:greaterThan(?TripMeterage, ”52.33”ˆˆxsd:double) ˆ hasP(?trip, ?P) ˆ swrlb:
greaterThan(?P, ”0.02”ˆˆxsd:double) ˆ swrlx:makeOWLThing(?DT, ?trip) −> Decision Tree(?DT) ˆ
isDecisionTreeOf(?DT,?trip) ˆ hasPrediction(?DT, ”1.0”ˆˆxsd:double) ˆ hasTreeIndex(?DT, 1)

6.6 Application

This use case demonstrates the deployment of our framework in a cold rolling setting.
Here, sensor data is simulated through a continuous data stream, which is collected using
C-SPARQL querying at timed intervals, and then passed into a rule engine for reasoning.
Algorithm 3 outlines the operational flow.

Algorithm 3: Speudocode of the streaming and reasoning process.

1: Import ontology
2: Create SWRL rule engine
3: Import RF rule set into rule engine
4: Import expert rule set into rule engine
5: Initialise C-SPARQL Engine
6: Define Query to retrieve specific streamed data
7: Register an RDF Stream
8: Start streaming
9: while streaming is running do

10: Start timer for C-SPARQL window
11: Generate RDF tuples continuously every 3 seconds
12: if timer reaches 40 seconds then
13: Use C-SPARQL query to filter RDF tuples {produces individuals}
14: Apply SWRL-API rule engine to individuals {applies RF classification}
15: Apply SWRL-API rule engine to individuals {applies expert rules}
16: Reset timer
17: end if
18: end while

Figure 6.2 displays the Java console that prints the output when the application is initiated.
In this figure, we can see the two rule sets being imported before the streamer starts. After-
wards, a new message appears every few seconds for each batch of RDF triples generated.
This happens continuously.

When starting the streamer, the C-SPARQL window is instantiated with a time frame
set to 40 seconds. This value is flexible but we have chosen 40 seconds to provide enough
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Figure 6.2: The application demonstrating the creation of RDF triples.

time to generate a handful of instances while also limiting this value to ensure the capacity
of the reasoner is not reached. During this period, the streamer generates a batch of RDF
tuples every few seconds, representing the generated RUTA data set. This conveys that a
total of 120 RDF tuples are generated every few seconds, one for each data property. The
value of each data property is randomly selected between the min and max values displayed
in Table 6.1.

After the time window elapses, the application invokes the SPARQL query to retrieve
all newly generated RDF triples from the data stream. A snippet of the SPARQL query is
displayed in Listing 6.2. Instead of presenting all 120 properties, we reduce the size of the
query in the listing to save space.

This SPARQL query introduces a new variable, represented by a question mark, for each
property to be queried. This variable, such as ?MillID for the :hasMillID data property
or ?StandID variable for the :hasStandID, is linked to the generated individual stored in
the ?trip variable. The query ensured that all 120 data properties are selected for each
?trip individual, preventing any missing data.

Code Listing 6.2: SPARQL query to retrieve RDF triples.

REGISTER STREAM query AS

PREFIX : <http://www.semanticweb.org/sadee/ontologies/2021/1/Tatatology#>

SELECT ?trip ?MillID ?StandID ?TopRollID ?TopRollGrindingSequenceNo ?TopRollChockingSequenceNo ?

BottomRollID ?BottomRollGrindingSequenceNo ?BottomRollChockingSequenceNo ?TripTonnage ?

TripMeterage ?RollChangeReason ?InMill ?ChangeReasonID ?DamageID ?CoilpartLengthExit ?

CoilpartThickExit ?GradeFiltered ?ExitGauge ?ExitWidth ?ExitWeight ?InputCoilID ?HRGauge ?

CRGauge ?InputWidth ?InputWeight ?HeatNumber ?C ?SI ?S ?P ?MN ?NI ?CU ... ?TonsRolledComputed ?

LengthRolledComputed ?CoilsRolledComputed ?WidthReducedComputed ?WeightReducedComputed

FROM STREAM <http://www.semanticweb.org/sadee/ontologies/2021/1/Tatatology#> [RANGE 40s TUMBLING]

WHERE {

?trip :hasMillID ?MillID .

?trip :hasStandID ?StandID .

?trip :hasTopRollID ?TopRollID .
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.

. *snipped to save space

.

?trip :hasLengthRolledComputed ?LengthRolledComputed .

?trip :hasCoilsRolledComputed ?CoilsRolledComputed .

?trip :hasWidthReducedComputed ?WidthReducedComputed .

}

GROUP BY ?trip ?MillID ?StandID ?TopRollID ?TopRollGrindingSequenceNo ?TopRollChockingSequenceNo ?

BottomRollID ?BottomRollGrindingSequenceNo ?BottomRollChockingSequenceNo ?TripTonnage ?

TripMeterage ?RollChangeReason ?InMill ?ChangeReasonID ?DamageID ?CoilpartLengthExit ?

CoilpartThickExit ?GradeFiltered ?ExitGauge ?ExitWidth ?ExitWeight ?InputCoilID ?HRGauge ?

CRGauge ?InputWidth ?InputWeight ?HeatNumber ?C ?SI ?S ?P ?MN ?NI ?CU ... ?TonsRolledComputed ?

LengthRolledComputed ?CoilsRolledComputed ?WidthReducedComputed ?WeightReducedComputed

The results of the query are displayed in Figure 6.3. In this particular instance, from
starting the streamer until the first time window, elapsing a total of forty seconds, a total
of 13 unique individuals were generated and displayed. Each of these individuals have 120
data properties, enabling the simulation of the real-world dataset during cold rolling.

Figure 6.3: The application demonstrating the C-SPARQL query creating individuals from
the RDF data.

Following the methodology workflow, the generated individuals are then passed into the
rule engine, applying the two distinct set of SWRL rules. The first rule set processes the
120 data properties of each individual, employing rule-based reasoning to execute the RF
classification. This results in a binary output indicating whether each roll is considered
damaged, determined by the model. Afterwards, the rule engine is invoked once more
to apply the domain expert rule set. These rules incorporate additional, domain-specific
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knowledge, leveraging the RF classification output as an input. Hence, two successive
iterations of the rule engine are essential: the first for RF classification and the second for
the application of domain expert rules which incorporate the classifications as input.

In the background, simultaneous with the rule engines, new RDF triples are being
generated for the next time window. Following the completion of the first round of rule
engine execution, each created instance of the roll_unit_trip received a damage flag
prediction: either a 0 for no damage or 1 for suspected damage. Figure 6.4 illustrates this
output.

Figure 6.4: The application demonstrating the classification outputs of inferring the rule
engine.

Subsequently, the domain expert rules are incorporated and executed by the rule engine.
These expert rules use the previously generated classifications as input, integrating them
with domain-specific knowledge to offer guidance or advice. In this instance, three expert
rules are defined: (1) any damage flag of 0 shall return the result of “Continue rolling”,
(2) any damage flag of 1 with low tonnage shall also return “Continue rolling”, (3) any
damage flag 1 with high tonnage shall return “Stop rolling”. This configuration is depicted
in Figure 6.5.
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Figure 6.5: The application demonstrating the final results produced for each generated
individual.

6.7 Conclusion and Future Work

This brief chapter introduces a novel proof-of-concept framework designed for processing
a continuous data stream. We highlight a methodology for the continuous application of
reasoning random forest classification and additional expert knowledge to data streams. The
dynamic nature of the data stream simulates real-world dynamics in cold rolling processes,
where these techniques find practical application for predictive maintenance purposes.

This chapter presents a use case of the framework’s application in cold rolling, specifically
in the continuous monitoring of roll conditions to predict potential issues. The purpose of
such an application is to assist operators on the shop floor with enhanced knowledge and
support for efficient decision-making.

The future work of this chapter entails further collaboration with domain experts to
acquire a robust set of expert rules to replace the dummy rules employed to present this
proof-of-concept. Additionally, upon obtaining these expert rules, the next step involves
validating the framework.
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CHAPTER 7
Conclusions, Reflections, and

Future Work
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7.1 Conclusions and Reflections

In the context of Industry 4.0, ongoing challenges are associated with achieving semantic
interoperability among components and systems. For effective machine communication, a
certain level of understanding of data and available data exchange protocols is necessary.
While some international standards like OPC Unified Architecture or Automation Markup
Language have been developed to address these requirement, achieving complete autonomy
of operation remains an unsolved challenge.

To tackle these requirements, we have introduced the Semantic Web, an extension of
the World Wide Web capable of converting web document contents into a machine-readable
format, and applied it within an Industry 4.0 setting. The integration of semantic-based
technologies, including ontologies and knowledge graphs, have enabled the interconnection
of data, while also incorporating semantic meaning into the model.

A part of this work, the development of the Steel Cold Rolling Ontology (SCRO) has
been introduced, developed to capture and model the underlying concepts associated with
cold rolling. The creation and adoption of SCRO brings many benefits and usages, providing
a structured and standardised representation of knowledge in the domain of cold rolling
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processes. Additionally, the novelty of SCRO led to further efforts in developing another
ontology, designed to capture and represent the broader processes of steelmaking.

Furthermore, this thesis has explored the intersection of machine learning with semantic
web technologies, emphasising the need and benefits of integrating these two AI methods.
Our findings highlights the potential to utilise data-driven insights from ML, coupled with
the knowledge representation and reasoning capabilities inherent in semantic methods. We
demonstrated one contribution, which exemplified how this hybrid combination can enhance
decision support for steel operators. Finally, the foundational blocks of applying a similar
hybrid approach in the context of continuous reasoning on data streams has been illustrated.

7.2 Reflecting Over the Research Questions

In this section, we reflect over and recall the research question and contributions of the
thesis.

• (RQ1) What are the foundational standards and ongoing challenges in Industry 4.0
that relate to semantics? In Chapter 3, a comprehensive survey was presented, ad-
dressing a gap of knowledge concerning semantic-based implementations for the Asset
Administration Shell (AAS). The focus was specifically on adopting semantic method-
ologies to capture and model the communication and information layers of RAMI 4.0.
The initial survey was presented at a conference in 2020 and has been updated to
include relevant papers between 2021–2024.

This survey identified three open challenges in the context of semantic-based AAS
implementations. These include (1) the lack of standardised information models for
semantic-based AAS, (2) inherent limitations in statistical data processing functional-
ities when compared to machine learning models, and (3) the lack of human behaviour
considerations withing AAS implementations. The insights derived from this chapter
shaped the direction of the thesis, guiding the focus on three main objects. Specifi-
cally, these are: (1) employing the application of semantic technologies in an Industry
4.0 setting to ensure consistent and uniform representation of processes and compo-
nents in steelmaking, (2) the integration of machine learning models with semantic
technologies to address the statistical data processing limitations identified in the sur-
vey paper, and (3) the development of a framework for incorporating humans factors,
giving an example of how to to AI can be deployed to support with decision-making
tasks for steelmaking operators on the shop floor.

• (RQ2) How can the data be seamlessly integrated and understood through the use of
semantics within smart manufacturing? In Chapter 4, we presented two ontological
frameworks to capture and model steel processes. The central contribution was the
creation of the Steel Cold Rolling Ontology (SCRO), which further led to the de-
velopment of the Core Reference Ontology for Steelmaking (CROS). Through these
frameworks, we demonstrated how data can be integrated at a virtual and seman-
tic level, transforming unconnected SQL databases into a cohesive knowledge graph
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using SWRL and SPARQL. The presented use case illustrated how these methods
can be deployed for data access, data integration, data querying, and condition-based
maintenance purposes in the context of steel processes.

• (RQ3) Is there a way to integrate ML with semantic methodologies in smart manufac-
turing? What are the existing AI methods available for combining these technologies?
Before exploring a hybrid approach, it was necessary to investigate statistical meth-
ods. The outcome of this investigation led to the creation of a random forest model
deployed to predict the condition of work rolls during cold rolling operations, as de-
tailed in Chapter 5. Once this model was established, we presented a framework that
utilised semantic methodologies to apply rule-based reasoning. This approach repli-
cated the RF classification process on knowledge graph data in RDF format, instead
of the traditional CSV or SQL data used to train the RF model. This framework
incorporated meta-data as part of the model, and was enriched with domain expert
knowledge obtained through iterative knowledge acquisition session with domain ex-
perts from Tata Steel. The resulting hybrid method provided enhanced classification
capabilities and provided valuable assistance for the operators on the shop floor.

The initial motivation for this hybrid model was to use the domain expert knowl-
edge to modify and prune the semantic-based random forest rule set before invoking
the rule engine, with the ultimate goal of improving the accuracy of the RF model.
However, several challenges including the “Knowledge acquisition bottleneck”, where
acquiring tacit knowledge of processes was inherently time consuming, and external
factors such as reduced engagement with domain partners due to COVID, made ob-
taining a robust set of domain expert rules within the required time frame impossible.
Despite these challenges, the study successfully demonstrated a method of combin-
ing expert rules with semantic rule-based random forest classification, resulting in
enhanced classification capabilities for operators on the shop floor during cold rolling
processes.

• (RQ4) Can we apply continuous reasoning to data streams, incorporating both ma-
chine learning classification and domain expert knowledge on the fly? In Chapter 6, we
showcased the preliminary development of a framework that seamlessly integrated ran-
dom forest classification with external domain expert knowledge, enabling enhanced,
real-time classification continuously, without interrupting ongoing real-world opera-
tions. Future work includes replacing the dummy set of expert rules to produce more
meaningful results.

7.2.1 Reflecting Over the RAMI 4.0 Model

The role of the RAMI 4.0 model has been critical in guiding the scope of the thesis. However,
in my opinion, the sheer scale of the vision of Industry 4.0 made the RAMI 4.0 model
overwhelming and difficult to comprehend.
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The overall requirements were difficult to understand because they are segmented into
different layers. For instance, taking the semantic requirements as an example, these re-
quirements fall under three separate layers: (1) Integration, stating how industrial data can
be defined and conceptualised, (2) Communication, defining the data exchange protocols
between different systems and assets, and (3) Information, which states how the data should
be structured and represented, ensuring that the information is adequately interpretable by
the numerous systems.

I found this especially the case with the introduction of the asset administration shell
as the standardised interface to describe every asset, which encompasses all the standards
mentioned in each layer. Most literature available on the topic of AAS were theoretical and
not concrete implementations. In our case too, it was unrealistic to implement an AAS as
there are many other requirements to take into consideration which fall out of the scope of
our research.

7.3 Future Directions

This ICASE research introduced a broad spectrum of concepts, technologies, and method-
ologies within the scope of the Semantic Web and Industry 4.0. The beauty of doing
research lies in the many loose threads and undiscovered territories. In this thesis, we have
intertwined concepts and technologies that are not conventionally interconnected.

The primary future direction is to continue the trajectory of the continuous stream
reasoner in Chapter 6. While the foundational work of the framework has been laid, the
domain expert rules are currently hypothetical—enabling the fundamental capabilities for
the proof-of-concept—but lacking real-world applicable results. The future goal requires
more interaction with domain experts to obtain a robust set of domain expert rules. Addi-
tionally, there is room to expand the knowledge representations in the ontologies introduced,
or improve the random forest models through improved data filtering and aggregation tech-
niques, or by exploring and comparing alternative ML methods within this specific setting.
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[119] I. Grangel-González, L. Halilaj, G. Coskun, S. Auer, D. Collarana, and M. Hofmeister.
Towards a Semantic Administrative Shell for Industry 4.0 Components. In 2016 IEEE
Tenth International Conference on Semantic Computing (ICSC), pages 230–237, 02
2016.

[120] C. Grosan, A. Abraham, C. Grosan, and A. Abraham. Rule-based Expert Systems.
Intelligent Systems: A Modern Approach, pages 149–185, 2011.

[121] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description Logic Programs: Com-
bining Logic Programs with Description Logic. In Proceedings of the 12th International
Conference on World Wide Web, pages 48–57, 2003.

[122] T. Gruber. Ontology, pages 1963–1965. Springer US, Boston, MA, 2009.

[123] T. R. Gruber. Ontolingua: A Mechanism to Support Portable Ontologies, 1992.

[124] T. R. Gruber. Toward Principles for the Design of Ontologies used for Knowledge
Sharing? International Journal of Human-Computer Studies, 43(5):907–928, 1995.
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[191] A. Lüder, M. Schleipen, N. Schmidt, J. Pfrommer, and R. Henßen. One Step Towards
an Industry 4.0 Component. In 2017 13th IEEE Conference on Automation Science
and Engineering (CASE), pages 1268–1273, 2017.

[192] A. I. Maarala, X. Su, and J. Riekki. Semantic Reasoning for Context-aware Internet
of Things Applications. IEEE Internet of Things Journal, pages 461–473, 2016.

[193] C. M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, R. Metz, and B. A. Hamilton.
Reference Model for Service Oriented Architecture 1.0. OASIS Standard, 12(S18):1–
31, 2006.

[194] A. Maedche and S. Staab. Ontology Learning for the Semantic Web. IEEE Intelligent
Systems, 16(2):72–79, 2001.

[195] P. Marcon, C. Diedrich, F. Zezulka, T. Schröder, A. Belyaev, J. Arm, T. Benesl,
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Figure A.1: The Times article on the 1.4 million investment for six new computers for the
Port Talbot steelworks.
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Figure A.2: The Dragon article on the 1.4 million investment for the six new computers.
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Code for the Algorithms Introduced in the Thesis

The following code is the source code for converting a plain text random forest into a set of
semantic-web based rules. The code is written in Java.

Code Listing B.1: Java code for converting a RF into SWRL rules.

1 package algorithm1;

2

3 import org.apache.commons.lang3.StringUtils;

4

5 import java.io.FileDescriptor;

6 import java.io.FileOutputStream;

7 import java.io.IOException;

8 import java.io.PrintStream;

9 import java.nio.file.Files;

10 import java.nio.file.Paths;

11 import java.nio.file.StandardOpenOption;

12 import java.util.ArrayList;

13 import java.util.Arrays;

14 import java.util.List;

15 import java.util.regex.Matcher;

16 import java.util.regex.Pattern;

17

18 import static com.google.common.base.CaseFormat.LOWER_UNDERSCORE;

19 import static com.google.common.base.CaseFormat.UPPER_CAMEL;

20

21 public class GenerateRules2023 {

22

23

24 //in db as

25 // private final static ArrayList<String> features = new ArrayList<>(Arrays.asList("

Grade_filtered", "trip_sequence_no", "date_time_trip_start", "

date_time_trip_finish", "mill_id", "stand_id", "top_roll_id", "

top_roll_grinding_sequence_no", "top_roll_chocking_sequence_no", "bottom_roll_id",

"bottom_roll_grinding_sequence_no", "bottom_roll_chocking_sequence_no", "

trip_tonnage", "trip_meterage", "roll_change_reason", "in_mill", "change_reason_id

", "damage_flag", "damage_id", "coilpart_length_exit", "coilpart_thick_exit", "

grade_filtered", "exit_gauge", "exit_width", "exit_weight", "input_coil_id", "

hr_gauge", "cr_gauge", "input_width", "input_weight", "heatnumber", "c", "si", "s

", "p", "mn", "ni", "cu", "sn", "cr", "arsenic", "mo", "n2", "alt", "als", "ti", "

b", "ca", "ce", "co", "nb", "v", "cev1", "cev2", "cev3", "freec1", "freec2", "

xsti1", "xsti2", "xsti3", "aln2", "cup", "bn2", "sp", "cunicrmosn", "creq", "

siform", "mns", "mnsi", "freec3", "fe", "liquidus", "width_reduction", "

weight_reduction", "c_weighted", "si_weighted", "s_weighted", "p_weighted", "

mn_weighted", "ni_weighted", "cu_weighted", "sn_weighted", "cr_weighted", "

arsenic_weighted", "mo_weighted", "n2_weighted", "alt_weighted", "als_weighted", "

ti_weighted", "b_weighted", "ca_weighted", "ce_weighted", "co_weighted", "

nb_weighted", "v_weighted", "cev1_weighted", "cev2_weighted", "cev3_weighted", "

freec1_weighted", "freec2_weighted", "xsti1_weighted", "xsti2_weighted", "

xsti3_weighted", "aln2_weighted", "cup_weighted", "bn2_weighted", "sp_weighted", "

cunicrmosn_weighted", "creq_weighted", "siform_weighted", "mns_weighted", "

mnsi_weighted", "freec3_weighted", "fe_weighted", "liquidus_weighted", "

tons_rolled_computed", "length_rolled_computed", "coils_rolled_computed", "

width_reduced_computed", "weight_reduced_computed"));

26 private final static ArrayList<String> features = new ArrayList<>(Arrays.asList("

trip_tonnage", "trip_meterage", "grind_nr", "stand_id", "tons_rolled_computed"

, "length_rolled_computed", "coils_rolled_computed", "meas_camber", "

surface_ra","diam_before"));
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27 // private final static ArrayList<String> newFeatures = new ArrayList<>(Arrays.asList

("tripTonnage","tripMeterage","grind_nr","stand_id","tons_rolled_computed","

length_rolled_computed","coils_rolled_computed","meas_camber","surface_ra"));

28 // private final static ArrayList<String> newFeatures = new ArrayList<>(Arrays.asList

("GradeFiltered", "TripSequenceNo", "DateTimeTripStart", "DateTimeTripFinish", "

MillID", "StandID", "TopRollID", "TopRollGrindingSequenceNo", "

TopRollChockingSequenceNo", "BottomRollID", "BottomRollGrindingSequenceNo", "

BottomRollChockingSequenceNo", "TripTonnage", "TripMeterage", "RollChangeReason",

"InMill", "ChangeReasonID", "DamageFlag", "DamageID", "CoilpartLengthExit", "

CoilpartThickExit", "GradeFiltered", "ExitGauge", "ExitWidth", "ExitWeight", "

InputCoilID", "HRGauge", "CRGauge", "InputWidth", "InputWeight", "HeatNumber", "C

", "SI", "S", "P", "MN", "NI", "CU", "SN", "CR", "Arsenic", "MO", "N2", "ALT", "

ALS", "TI", "B", "CA", "CE", "CO", "NB", "V", "CEV1", "CEV2", "CEV3", "FREEC1", "

FREEC2", "XSTI1", "XSTI2", "XSTI3", "ALN2", "CUP", "BN2", "SP", "CUNICRMOSN", "

CREQ", "SIFORM", "MNS", "MNSI", "FREEC3", "FE", "LIQUIDUS", "WidthReduction", "

WeightReduction", "CWeighted", "SIWeighted", "SWeighted", "PWeighted", "MNWeighted

", "NIWeighted", "CUWeighted", "SNWeighted", "CRWeighted", "ArsenicWeighted", "

MOWeighted", "N2Weighted", "ALTWeighted", "ALSWeighted", "TIWeighted", "BWeighted

", "CAWeighted", "CEWeighted", "COWeighted", "NBWeighted", "VWeighted", "

CEV1Weighted", "CEV2Weighted", "CEV3Weighted", "FREEC1Weighted", "FREEC2Weighted",

"XSTI1Weighted", "XSTI2Weighted", "XSTI3Weighted", "ALN2Weighted", "CUPWeighted",

"BN2Weighted", "SPWeighted", "CUNICRMOSNWeighted", "CREQWeighted", "

SIFORMWeighted", "MNSWeighted", "MNSIWeighted", "FREEC3Weighted", "FEWeighted", "

LIQUIDUSWeighted", "TonsRolledComputed", "LengthRolledComputed", "

CoilsRolledComputed", "WidthReducedComputed", "WeightReducedComputed"));

29

30 public static enum Type {

31 SCIKITLEARN,

32 BRIEMAN,

33 FULLWEIGHTING

34 }

35

36 // private static final String FILE_NAME = "files/rules_77b.txt";

37 private static final String FILE_NAME = "files/rules_77_0409.txt";

38 // private static final String FILE_NAME_OUTPUT = "files/rules_swrl_77b.txt";

39 private static final String FILE_NAME_OUTPUT = "files/rules_swrl_77_0409.txt";

40

41 public static ArrayList<String> getNewFeatures(ArrayList<String> features) {

42 ArrayList<String> newFeatures = new ArrayList<>();

43 for (String feature : features) {

44 String result = LOWER_UNDERSCORE.to(UPPER_CAMEL, feature);

45 // System.out.println("result: " + result);

46 newFeatures.add(result);

47 }

48

49 return newFeatures;

50

51 }

52

53 public static void main(String[] args) throws Exception {

54 // getNewFeatures(features);

55

56 //read the file

57 String content = new String(Files.readAllBytes(Paths.get(FILE_NAME)));

58

59 //select the RF

60 Type type = Type.BRIEMAN;

61
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62 System.out.println("Type of tree: " + type);

63 //split the file

64 String temp = split(content, type, FILE_NAME_OUTPUT);

65

66 // String newfile = new String(Files.readAllBytes(Paths.get(temp)));

67 toSPARQL(temp, FILE_NAME_OUTPUT);

68 }

69

70 public static void convertRulesToSPARQL(Type rfType, String inputFileName, String

outputFileName) throws IOException {

71 System.out.println("Converting Random Forest into SPARQL rules...");

72 String content = new String(Files.readAllBytes(Paths.get(inputFileName)));

73 String temp = split(content, rfType, inputFileName);

74 toSPARQL(temp, outputFileName);

75

76 }

77

78 public static String split(String file, Type type, String outputFileName) throws

IOException {

79 String[] lines = file.split("\n");

80 //send all print statements to output.txt file instead of console

81

82

83 /* This section loops through each line in the file and stores each decision

tree in an arraylist.

84 Then store all those decision trees in a forest arraylist.

85 * */

86 List<String> decisionTree = new ArrayList<>();

87 List<List<String>> forest = new ArrayList<>();

88

89 for (String line : lines) {

90 StringBuilder temp = new StringBuilder();

91 while (line.contains("|")) {

92 temp.append("|");

93 line = line.replaceFirst("\\|", "");

94 }

95 if (line.contains("---")) {

96 line = line.replace("---", "");

97 }

98 if (!line.contains("******")) {

99 temp.append(line.trim());

100 decisionTree.add(temp.toString());

101 } else if (line.contains("*****")) {

102 forest.add(decisionTree);

103 decisionTree = new ArrayList<>();

104 }

105 }

106 /* This section of code loops through each tree in the forest array until it

finds a leaf node.

107 It then creates the path to that leaf node and stores that path in a <tree

path> arraylist.

108 Then we store all those paths in a <paths> arraylist. Each tree will have a

list of <tree paths>

109 We then have one arraylist for all the trees and their paths <forest paths>

110 * */

111 int count = 0;

112 PrintStream printStream = new PrintStream(new FileOutputStream(outputFileName))

;
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113 System.setOut(printStream);

114 int treeIndex = 1;

115 for (List<String> tree : forest) {

116

117 StringBuilder rule;

118 List<String> previousConditions = new ArrayList<>();

119 /* a node looks either like:

120 ||| trip_meterage <= 52.33

121 |||| weights: [0.00, 31.00] class: 1.0

122 */

123 for (String node : tree) {

124 //depth counts the number of pipes |

125 int depth = (countChar(node, ’|’)) - 1;

126 node = node.replace("|", "");

127 //if node is a condition, remove pipes and add ^ sign afterwards. Then

store it in an arraylist with index

128 if (!(node.contains("class: 1.0") || node.contains("class: 0.0") ||

node.contains("class: 2.0")) || node.contains("*****")) {

129 previousConditions.add(depth, node);

130 //if node is leaf node, add

131 } else if (node.contains("class: 1.0") || node.contains("class: 2.0")

|| node.contains("class: 0.0")) {

132 count++;

133 rule = new StringBuilder();

134 rule.append("Roll_Unit_Trip(?trip) ^ rf:hasRandomForest(?trip, ?rf)

^ ");

135 //only add the conditions up to the depth

136 for (int i = 0; i < depth; i++) {

137 rule.append(previousConditions.get(i));

138 rule.append(" ^ ");

139 }

140 if (node.contains("class: 1.0")) {

141 if (type.equals(Type.SCIKITLEARN)) {

142 double[] classes = getClasses(node);

143 rule.append("swrlx:makeOWLThing(?DT, ?trip) -> rf:

Decision_Tree(?DT) ^ rf:hasDataFrom(?DT, ?trip) ^ rf:

isDecisionTreeOf(?DT,?rf) ^ rf:hasPrediction(?DT, \"").

append(getProbability(classes[1], classes)).append("\"^^

xsd:double) ^ rf:hasTreeIndex(?DT, ").append(treeIndex).

append(")");

144 System.out.println(rule);

145 } else if (type.equals(Type.BRIEMAN)) {

146 rule.append("swrlx:makeOWLThing(?DT, ?trip) -> rf:

Decision_Tree(?DT) ^ rf:hasDataFrom(?DT, ?trip) ^ rf:

isDecisionTreeOf(?DT,?rf) ^ rf:hasPrediction(?DT,

\"1.0\"^^xsd:double) ^ rf:hasTreeIndex(?DT, ").append(

treeIndex).append(")");

147 System.out.println(rule);

148 }

149 } else if (node.contains("class: 0.0")) {

150 if (type.equals(Type.SCIKITLEARN)) {

151 double[] classes = getClasses(node);

152 rule.append("swrlx:makeOWLThing(?DT, ?trip) -> rf:

Decision_Tree(?DT) ^ rf:hasDataFrom(?DT, ?trip) ^ rf:

isDecisionTreeOf(?DT,?rf) ^ rf:hasPrediction(?DT, \"").

append(getProbability(classes[0], classes)).append("\"^^

xsd:double) ^ rf:hasTreeIndex(?DT, ").append(treeIndex).

append(")");
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153 System.out.println(rule);

154 } else if (type.equals(Type.BRIEMAN)) {

155 rule.append("swrlx:makeOWLThing(?DT, ?trip) -> rf:

Decision_Tree(?DT) ^ rf:hasDataFrom(?DT, ?trip) ^ rf:

isDecisionTreeOf(?DT,?rf) ^ rf:hasPrediction(?DT,

\"0.0\"^^xsd:double) ^ rf:hasTreeIndex(?DT, ").append(

treeIndex).append(")");

156 System.out.println(rule);

157 }

158 } else if (node.contains("class: 2.0")) {

159 if (type.equals(Type.BRIEMAN)) {

160 rule.append("swrlx:makeOWLThing(?DT, ?trip) -> rf:

Decision_Tree(?DT) ^ rf:hasDataFrom(?DT, ?trip) ^ rf:

isDecisionTreeOf(?DT,?rf) ^ rf:hasPrediction(?DT,

\"2.0\"^^xsd:double) ^ rf:hasTreeIndex(?DT, ").append(

treeIndex).append(")");

161 System.out.println(rule);

162 } else if (type.equals(Type.SCIKITLEARN)){

163 double[] classes = getClasses(node);

164 rule.append("swrlx:makeOWLThing(?DT, ?trip) -> rf:

Decision_Tree(?DT) ^ rf:hasDataFrom(?DT, ?trip) ^ rf:

isDecisionTreeOf(?DT,?rf) ^ rf:hasPrediction(?DT, \"").

append(getProbability(classes[2], classes)).append("\"^^

xsd:double) ^ rf:hasTreeIndex(?DT, ").append(treeIndex).

append(")");

165 System.out.println(rule);

166

167 }

168 }

169

170 }

171 }

172 treeIndex++;

173 }

174 System.err.println("Total leaf nodes found: " + count);

175 return new String(Files.readAllBytes(Paths.get(outputFileName)));

176 }

177 private static double getProbability (double clas, double[] classes) {

178 double sum = 0;

179 for (int i = 0; i < classes.length; i++) {

180 sum+= classes[i];

181 }

182

183 return clas/sum;

184 }

185

186 public static double[] getClasses(String input) {

187 Matcher m = Pattern.compile("\\[(.*?)(])").matcher(input);

188 while (m.find()) {

189 String vals = m.group(1);

190 double val1 = Double.parseDouble(StringUtils.substringBefore(vals,","));

191 double val2 = Double.parseDouble(StringUtils.substringBetween(vals, ",", ",

"));

192 double val3 = Double.parseDouble(StringUtils.substringAfterLast(vals,","));

193 return new double[]{val1, val2, val3};

194

195 }

196 return new double[]{999.0};
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197 }

198

199 public static void toSPARQL(String input,String output) throws IOException {

200 ArrayList<String> newFeatures = getNewFeatures(features);

201 // for (String newFeature : newFeatures) {

202 // System.err.println(newFeature);

203 // }

204 input = input.replaceAll("^\\R", "");

205 input = input.replaceAll(" {2}", " ");

206 input = input.replaceAll(" && ", " ^ ");

207

208 for (int i = 0; i < newFeatures.size(); i++) {

209 //less than or equal

210 input = input.replaceAll(" " + features.get(i) + " <= (-?\\d*\\.\\d*)",

211 " has" + newFeatures.get(i) + "(?trip, ?" + newFeatures.get(i) + ")

^ swrlb:lessThanOrEqual(?" + newFeatures.get(i) + ", \"$1\"^^xsd
:double)");

212 input = input.replaceAll(" " + features.get(i) + " > (-?\\d*\\.\\d*)",

213 " has" + newFeatures.get(i) + "(?trip, ?" + newFeatures.get(i) + ")

^ swrlb:greaterThan(?" + newFeatures.get(i) + ", \"$1\"^^xsd:
double)");

214 }

215

216 input = input.replaceAll("\\)\\)", ")");

217 input = input.replaceAll("-> class: (\\d).0", "-> hasDamageFlag(?trip, \"$1
.0\"^^xsd:double)");

218 // System.err.println(newfile);

219 //write back data to file

220

221 // PrintStream printStream = new PrintStream(new FileOutputStream("files/RF-output-

Kayal.txt"));

222 // System.setOut(printStream);

223 Files.writeString(Paths.get(output), input, StandardOpenOption.CREATE);

224 System.setOut(new PrintStream(new FileOutputStream(FileDescriptor.out)));

225 System.out.println("total features: " + features.size());

226 System.out.println("--- Done ---");

227 // FileUtils.writeStringToFile(new File("RF-output-Kayal2.txt"), newfile,

StandardCharsets.UTF_8);

228 }

229

230 public static int countChar(String str, char c) {

231 int count = 0;

232

233 for (int i = 0; i < str.length(); i++) {

234 if (str.charAt(i) == c) {

235 count++;

236 }

237 }

238 return count;

239 }

240 }

The following code uses the SWRL-API library, which is an extension of the OWL-API
library to provide a semantic reasoning. We utilise this library and reasoning for applying
random forest classification. This code is written in Java.

Code Listing B.2: Java code for applying RF classification.

1 package algorithm2;

197



B. Appendix B

2

3 import algorithm1.GenerateRulesNew;

4 import com.google.common.collect.Multimap;

5 import org.semanticweb.owlapi.apibinding.OWLManager;

6 import org.semanticweb.owlapi.model.*;

7 import org.semanticweb.owlapi.search.EntitySearcher;

8 import org.semanticweb.owlapi.util.OWLEntityRemover;

9 import org.semanticweb.owlapi.util.SimpleIRIMapper;

10 import org.swrlapi.core.SWRLAPIRule;

11 import org.swrlapi.core.SWRLRuleEngine;

12 import org.swrlapi.exceptions.SWRLBuiltInException;

13 import org.swrlapi.factory.SWRLAPIFactory;

14 import org.swrlapi.parser.SWRLParseException;

15

16 import java.io.BufferedReader;

17 import java.io.File;

18 import java.io.FileReader;

19 import java.io.IOException;

20 import java.nio.file.Files;

21 import java.nio.file.Path;

22 import java.nio.file.Paths;

23 import java.nio.file.StandardOpenOption;

24 import java.util.*;

25 import java.util.regex.Matcher;

26 import java.util.regex.Pattern;

27

28 public class RFClassification {

29 protected static IRI iri() {

30 return IRI.create("http://www.semanticweb.org/sadee/ontologies/2021/1/

Tatatology#");

31 }

32 protected static IRI iri_rf() {

33 return IRI.create("http://www.semanticweb.org/sadeer/ontologies/2023/0/RF");

34 }

35

36

37 private static final String SPARQL_FILE = "files/rules_swrl_77b.txt";

38

39 public static void main(String[] args) throws OWLOntologyCreationException,

OWLOntologyStorageException {

40

41 GenerateRulesNew.Type type = GenerateRulesNew.Type.BRIEMAN;

42

43

44 //dataFactory for later

45 OWLDataFactory df = OWLManager.getOWLDataFactory();

46

47 OWLOntologyManager ontologyManager = OWLManager.createOWLOntologyManager();

48

49 ontologyManager.getIRIMappers().add(new SimpleIRIMapper(iri_rf(),IRI.create(new

File("Ontologies/RF.owl"))));

50 OWLOntology ontology = ontologyManager.loadOntologyFromOntologyDocument(new

File("Ontologies/scro.owl"));

51

52

53 OWLDocumentFormat format = ontologyManager.getOntologyFormat(ontology);

54 assert format != null;

55 if (format.isPrefixOWLOntologyFormat()) {
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56 //mappings

57 Map<String, String> map = format.asPrefixOWLOntologyFormat().

getPrefixName2PrefixMap();

58 System.out.println("map: " + map);

59 }

60

61 // Create a SWRL rule engine using the SWRLAPI

62 SWRLRuleEngine swrlRuleEngine = SWRLAPIFactory.createSWRLRuleEngine(ontology);

63 swrlRuleEngine.importAssertedOWLAxioms();

64

65

66 System.out.println("Generating a Random Forest individual...");

67 OWLClass tClass = df.getOWLClass(IRI.create(iri_rf()+"#Random_Forest"));

68 OWLIndividual rf = df.getOWLNamedIndividual(IRI.create(iri_rf()+"#RF_001"));

69 OWLClassAssertionAxiom classAssertion = df.getOWLClassAssertionAxiom(tClass, rf

);

70 ontologyManager.addAxiom(ontology, classAssertion);

71

72

73 OWLObjectProperty hasRF = df.getOWLObjectProperty(IRI

74 .create(iri_rf()+"#hasRandomForest"));

75 OWLObjectProperty hasDataFrom = df.getOWLObjectProperty(IRI

76 .create(iri_rf()+"#hasDataFrom"));

77 OWLObjectProperty parsesDataTo = df.getOWLObjectProperty(IRI

78 .create(iri_rf()+"#parsesDataTo"));

79 ontologyManager.addAxiom(ontology,

80 df.getOWLInverseObjectPropertiesAxiom(hasDataFrom, parsesDataTo));

81 ontologyManager.saveOntology(ontology, IRI.create(((new File("Ontologies/

main1311output.owl")).toURI())));

82 Set<OWLNamedIndividual> individuals;

83 individuals = ontology.getIndividualsInSignature();

84 for (OWLNamedIndividual individual : individuals) {

85 if (individual.toString().contains("roll_") && (individual.toString().

contains("_trip"))) {

86 OWLObjectPropertyAssertionAxiom axiom1 = df

87 .getOWLObjectPropertyAssertionAxiom(hasRF, individual, rf);

88 OWLObjectPropertyAssertionAxiom axiom2 = df

89 .getOWLObjectPropertyAssertionAxiom(hasDataFrom, rf, individual)

;

90 AddAxiom addAxiom1 = new AddAxiom(ontology, axiom1);

91 AddAxiom addAxiom2 = new AddAxiom(ontology, axiom2);

92

93 //apply changes using the manager

94 ontologyManager.applyChange(addAxiom1);

95 ontologyManager.applyChange(addAxiom2);

96 ontologyManager.saveOntology(ontology, IRI.create(((new File("

Ontologies/main1311output.owl")).toURI())));

97 }

98 }

99 System.out.println("Done...");

100

101 //read all rules from rules file

102 ArrayList<SWRLAPIRule> ruleList = new ArrayList<>();

103 System.out.println("---READING TREES FROM FILE---");

104 try (BufferedReader br = new BufferedReader(new FileReader(SPARQL_FILE))) {

105 for (String line; (line = br.readLine()) != null; ) {

106 ruleList.add(swrlRuleEngine.createSWRLRule("temprule"+ ruleList.size(),

line));
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107 if(ruleList.size()%10000==0){

108 System.out.println("10000 new rules found...");

109 }

110 }

111 System.out.println("Rules size: " + ruleList.size());

112 System.out.println("Type of RF: " + type);

113

114 System.out.println("---INFERRING ENGINE---");

115 swrlRuleEngine.infer();

116 System.out.println("---INFERRING ENGINE COMPLETED---");

117

118 individuals = ontology.getIndividualsInSignature();

119 OWLDataProperty hasPrediction = df.getOWLDataProperty(IRI.create(iri_rf()+"

#hasPrediction"));

120

121 OWLDataProperty hasDiamDifference = df.getOWLDataProperty(IRI.create(iri()

+ "hasRollRefurbConditionInferred"));

122 System.out.println("---COMPUTING PROBABILITY FOR EACH INDIVIDUAL---");

123

124 //loop through roll_unit_trip individuals

125 for (OWLIndividual individual: individuals) {

126 System.out.println("indivdual: " + individual);

127

128 if (individual.toString().contains("roll_") && (individual.toString().

contains("_trip"))) {

129 Multimap<OWLObjectPropertyExpression, OWLIndividual> temp =

EntitySearcher.getObjectPropertyValues(individual, ontology);

130 if(type.equals(GenerateRulesNew.Type.SCIKITLEARN)){

131 double sum = 0.0;

132 int probCount = 0;

133 //temp.values(): [<http://www.semanticweb.org/sadee/ontologies

/2021/1/Tatatology##ddd2f432_d492_49f6_8408_97c4c5a2bc5f>,

134 // <http://www.semanticweb.org/sadee/ontologies/2021/1/

Tatatology##193dfacb_451b_4fc4_9b25_241c92099767>,

135 // <http://www.semanticweb.org/sadee/ontologies/2021/1/

Tatatology##63f96f18_6e2d_4b06_bc1e_1cb6194b1ad8>,

136 // <http://www.semanticweb.org/sadee/ontologies/2021/1/

Tatatology##a1a7f900_405e_44f8_a1e6_83d10a6d07a7>,

137 // <http://www.semanticweb.org/sadee/ontologies/2021/1/

Tatatology##70d13e18_c865_43a1_bd81_98dd65ae94e1> etc

138 for (OWLIndividual i : temp.values()) {

139 probCount++;

140 //hasDamageFlagProbability2: ["0.13836017569546122"^^xsd:

decimal]

141 String hasDamageFlagProbability = EntitySearcher.

getDataPropertyValues(i, hasPrediction, ontology).

toString();

142 String probStart = hasDamageFlagProbability.substring(

hasDamageFlagProbability.indexOf("\"") + 1);

143 double probEnd = Double.parseDouble(probStart.substring(0,

probStart.indexOf("\"")));

144 sum += probEnd;

145

146 }

147

148 double finalProbability = sum / probCount;

149 String outcome = "";

150 if (finalProbability > 0.5){
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151 finalProbability = 1.0;

152 outcome = "Bad";

153 } else if (finalProbability <= 0.25){

154 finalProbability = 0.0;

155 outcome = "Best";

156 } else if (finalProbability > 0.25 && finalProbability <= 0.5) {

157 outcome = "Good";

158 }

159 OWLDataPropertyAssertionAxiom dataPropertyAssertion = df.

getOWLDataPropertyAssertionAxiom(hasDiamDifference,

individual, outcome);

160

161 AddAxiom addAxiom1 = new AddAxiom(ontology,

dataPropertyAssertion);

162 ontologyManager.applyChange(addAxiom1);

163 } else if (type.equals(GenerateRulesNew.Type.BRIEMAN)){

164 //temp.values(): [<http://www.semanticweb.org/sadee/ontologies

/2021/1/Tatatology##ddd2f432_d492_49f6_8408_97c4c5a2bc5f>,

165 // <http://www.semanticweb.org/sadee/ontologies/2021/1/

Tatatology##193dfacb_451b_4fc4_9b25_241c92099767>,

166 // <http://www.semanticweb.org/sadee/ontologies/2021/1/

Tatatology##63f96f18_6e2d_4b06_bc1e_1cb6194b1ad8>,

167 // <http://www.semanticweb.org/sadee/ontologies/2021/1/

Tatatology##a1a7f900_405e_44f8_a1e6_83d10a6d07a7>,

168 // <http://www.semanticweb.org/sadee/ontologies/2021/1/

Tatatology##70d13e18_c865_43a1_bd81_98dd65ae94e1> etc

169 HashMap<String,Integer> map = new HashMap<>();

170 int classAs0 = 0;

171 int classAs1 = 0;

172 int classAs2 = 0;

173 System.out.println("temp.val" + temp.values());

174 for (OWLIndividual i : temp.values()) {

175 String classOutput = EntitySearcher.getDataPropertyValues(i,

hasPrediction, ontology).toString().trim();

176 for (OWLDataProperty owlDataProperty : i.

getDataPropertiesInSignature()) {

177 System.out.println("owldataprop: " + owlDataProperty);

178 }

179 System.out.println("classoutput: " + classOutput);

180 if(classOutput.contains("\"1.0\"^^xsd:double")){

181 classAs1++;

182 } else if(classOutput.contains("\"2.0\"^^xsd:double")){

183 classAs2++;

184 } else if(classOutput.contains("\"0.0\"^^xsd:double")){

185 classAs0++;

186 }

187 }

188 map.put("Bad",classAs0);

189 map.put("Best",classAs1);

190 map.put("Good",classAs2);

191

192 System.out.println("-------");

193 System.out.println("for individual " + individual);

194 String finalResult= Collections.max(map.entrySet(), Comparator.

comparingInt(Map.Entry::getValue)).getKey();

195

196 System.out.println("has class0(bad): " + classAs0 + ". class1(

best): " + classAs1 + ". class2(good): " + classAs2 + ".
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output: " + finalResult);

197

198 OWLDataPropertyAssertionAxiom dataPropertyAssertion = df.

getOWLDataPropertyAssertionAxiom(hasDiamDifference,

individual, finalResult);

199 AddAxiom addAxiom1 = new AddAxiom(ontology,

dataPropertyAssertion);

200 ontologyManager.applyChange(addAxiom1);

201 }

202

203

204

205 }

206 }

207

208 System.out.println("---DELETING ALL INTERMEDIATE AND TEMPORARY DATA---");

209 //delete all temp data properties and temp rules

210 deleteAllTempRules(swrlRuleEngine, ruleList);

211

212 System.out.println("---SAVING ONTOLOGY---");

213 //save and update the ontology

214

215 //remove intermediate values and decision tree individuals from ontology

216 deleteTempIndividuals(df,ontology,ontologyManager);

217

218 //add expert knowledge to the roll individuals (recent roll refurbish

knowledge)

219 temp(individuals,ontology,df,ontologyManager);

220

221

222 //expert rules

223 ruleList.add(swrlRuleEngine.createSWRLRule("expertrule"+ ruleList.size(),"

Roll(?r) ^ hasRollUnitTrip(?r, ?trip) ^ hasRollRefurbConditionInferred

(?trip, ?cond) ^ swrlb:equal(?cond, \"Best\") ^

hasRecentHighStockRemoval(?trip, ?stock) ^ swrlb:equal(?stock, false) ^

hasTripTonnage(?trip, ?tonnage) ^ swrlb:lessThan(?tonnage, 4500) ->

hasStatus(?trip, \"Continue rolling: predicted condition is best on a

healthy roll. Recommended tonnage of 4500.\")"));

224 ruleList.add(swrlRuleEngine.createSWRLRule("expertrule"+ ruleList.size(),"

Roll(?r) ^ hasRollUnitTrip(?r, ?trip) ^ hasRollRefurbConditionInferred

(?trip, ?cond) ^ swrlb:equal(?cond, \"Best\") ^

hasRecentHighStockRemoval(?trip, ?stock) ^ swrlb:equal(?stock, false) ^

hasTripTonnage(?trip, ?tonnage) ^ swrlb:greaterThanOrEqual(?tonnage,

4500) -> hasStatus(?trip, \"Stop rolling: predicted condition is best

on a healthy roll. Recommended tonnage of 4500 has been exceeded.\")"))

;

225 ruleList.add(swrlRuleEngine.createSWRLRule("expertrule"+ ruleList.size(),"

Roll(?r) ^ hasRollUnitTrip(?r, ?trip) ^ hasRollRefurbConditionInferred

(?trip, ?cond) ^ swrlb:equal(?cond, \"Best\") ^

hasRecentHighStockRemoval(?trip, ?stock) ^ swrlb:equal(?stock, true) ^

hasTripTonnage(?trip, ?tonnage) ^ swrlb:lessThan(?tonnage, 4000) ->

hasStatus(?trip, \"Continue rolling: predicted condition is best but

recent high stock removal may affect roll. Recommended tonnage of

4000.\")"));

226 ruleList.add(swrlRuleEngine.createSWRLRule("expertrule"+ ruleList.size(),"

Roll(?r) ^ hasRollUnitTrip(?r, ?trip) ^ hasRollRefurbConditionInferred

(?trip, ?cond) ^ swrlb:equal(?cond, \"Best\") ^

hasRecentHighStockRemoval(?trip, ?stock) ^ swrlb:equal(?stock, true) ^
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hasTripTonnage(?trip, ?tonnage) ^ swrlb:greaterThanOrEqual(?tonnage,

4000) -> hasStatus(?trip, \"Stop rolling: predicted condition is best

but recent high stock removal may affect roll. Recommended tonnage of

4000 has been exceeded.\")"));

227

228 ruleList.add(swrlRuleEngine.createSWRLRule("expertrule"+ ruleList.size(),"

Roll(?r) ^ hasRollUnitTrip(?r, ?trip) ^ hasRollRefurbConditionInferred

(?trip, ?cond) ^ swrlb:equal(?cond, \"Good\") ^

hasRecentHighStockRemoval(?trip, ?stock) ^ swrlb:equal(?stock, false) ^

hasTripTonnage(?trip, ?tonnage) ^ swrlb:lessThan(?tonnage, 4000) ->

hasStatus(?trip, \"Continue rolling: predicted condition is good on a

healthy roll. Recommended tonnage of 4000.\")"));

229 ruleList.add(swrlRuleEngine.createSWRLRule("expertrule"+ ruleList.size(),"

Roll(?r) ^ hasRollUnitTrip(?r, ?trip) ^ hasRollRefurbConditionInferred

(?trip, ?cond) ^ swrlb:equal(?cond, \"Good\") ^

hasRecentHighStockRemoval(?trip, ?stock) ^ swrlb:equal(?stock, false) ^

hasTripTonnage(?trip, ?tonnage) ^ swrlb:greaterThanOrEqual(?tonnage,

4000) -> hasStatus(?trip, \"Stop rolling: predicted condition is good

on a healthy roll. Recommended tonnage of 4000 has been exceeded.\")"))

;

230 ruleList.add(swrlRuleEngine.createSWRLRule("expertrule"+ ruleList.size(),"

Roll(?r) ^ hasRollUnitTrip(?r, ?trip) ^ hasRollRefurbConditionInferred

(?trip, ?cond) ^ swrlb:equal(?cond, \"Good\") ^

hasRecentHighStockRemoval(?trip, ?stock) ^ swrlb:equal(?stock, true) ^

hasTripTonnage(?trip, ?tonnage) ^ swrlb:lessThan(?tonnage, 3500) ->

hasStatus(?trip, \"Continue rolling: predicted condition is good but

recent high stock removal may affect roll. Recommended tonnage of

3500.\")"));

231 ruleList.add(swrlRuleEngine.createSWRLRule("expertrule"+ ruleList.size(),"

Roll(?r) ^ hasRollUnitTrip(?r, ?trip) ^ hasRollRefurbConditionInferred

(?trip, ?cond) ^ swrlb:equal(?cond, \"Good\") ^

hasRecentHighStockRemoval(?trip, ?stock) ^ swrlb:equal(?stock, true) ^

hasTripTonnage(?trip, ?tonnage) ^ swrlb:greaterThanOrEqual(?tonnage,

3500) -> hasStatus(?trip, \"Stop rolling: predicted condition is good

but recent high stock removal may affect roll. Recommended tonnage of

3500 has been exceeded.\")"));

232

233 ruleList.add(swrlRuleEngine.createSWRLRule("expertrule"+ ruleList.size(),"

Roll(?r) ^ hasRollUnitTrip(?r, ?trip) ^ hasRollRefurbConditionInferred

(?trip, ?cond) ^ swrlb:equal(?cond, \"Bad\") ^

hasRecentHighStockRemoval(?trip, ?stock) ^ swrlb:equal(?stock, false) ^

hasTripTonnage(?trip, ?tonnage) ^ swrlb:lessThan(?tonnage, 3000) ->

hasStatus(?trip, \"Continue rolling: predicted condition is bad on a

previously healthy roll. Recommended tonnage of 3000.\")"));

234 ruleList.add(swrlRuleEngine.createSWRLRule("expertrule"+ ruleList.size(),"

Roll(?r) ^ hasRollUnitTrip(?r, ?trip) ^ hasRollRefurbConditionInferred

(?trip, ?cond) ^ swrlb:equal(?cond, \"Bad\") ^

hasRecentHighStockRemoval(?trip, ?stock) ^ swrlb:equal(?stock, false) ^

hasTripTonnage(?trip, ?tonnage) ^ swrlb:greaterThanOrEqual(?tonnage,

3000) -> hasStatus(?trip, \"Stop rolling: predicted condition is bad on

a previously healthy roll. Recommended tonnage of 3000 has been

exceeded.\")"));

235 ruleList.add(swrlRuleEngine.createSWRLRule("expertrule"+ ruleList.size(),"

Roll(?r) ^ hasRollUnitTrip(?r, ?trip) ^ hasRollRefurbConditionInferred

(?trip, ?cond) ^ swrlb:equal(?cond, \"Bad\") ^

hasRecentHighStockRemoval(?trip, ?stock) ^ swrlb:equal(?stock, true) ^

hasTripTonnage(?trip, ?tonnage) ^ swrlb:lessThan(?tonnage, 2500) ->

hasStatus(?trip, \"Stop rolling: predicted condition is bad on a roll
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that was previously damaged.\")"));

236 ruleList.add(swrlRuleEngine.createSWRLRule("expertrule"+ ruleList.size(),"

Roll(?r) ^ hasRollUnitTrip(?r, ?trip) ^ hasRollRefurbConditionInferred

(?trip, ?cond) ^ swrlb:equal(?cond, \"Bad\") ^

hasRecentHighStockRemoval(?trip, ?stock) ^ swrlb:equal(?stock, true) ^

hasTripTonnage(?trip, ?tonnage) ^ swrlb:greaterThanOrEqual(?tonnage,

2500) -> hasStatus(?trip, \"Stop rolling: predicted condition is bad on

a roll that was previously damaged. Recommended tonnage of 2500 has

been exceeded.\")"));

237 // ruleList.add(swrlRuleEngine.createSWRLRule("expertrule"+ ruleList.size(),"Roll(?r)

^ hasRollUnitTrip(?r, ?trip) ^ hasRollRefurbConditionInferred(?trip, ?cond) ^

swrlb:equal(?cond, \"Bad\") ^ hasRecentHighStockRemoval(?trip, ?stock) ^ swrlb:

equal(?stock, false) ^ hasTripTonnage(?trip, ?tonnage) ^ swrlb:lessThan(?tonnage,

1000) -> hasStatus(?trip, \"Stop rolling: predicted condition is bad on a roll

that was previously damaged. Recommended tonnage of 3000.\")"));

238

239

240

241 Path path2 = Paths.get("Ontologies/scro.owl");

242 String file2 = new String(Files.readAllBytes(path2));

243 file2 = file2.replaceAll("<Literal>Bad</Literal>", "<Literal datatypeIRI=\"

http://www.w3.org/2001/XMLSchema#string\">Bad</Literal>");

244 file2 = file2.replaceAll("<Literal>Good</Literal>", "<Literal datatypeIRI

=\"http://www.w3.org/2001/XMLSchema#string\">Good</Literal>");

245 file2 = file2.replaceAll("<Literal>Best</Literal>", "<Literal datatypeIRI

=\"http://www.w3.org/2001/XMLSchema#string\">Best</Literal>");

246 Files.writeString(path2, file2, StandardOpenOption.CREATE);

247

248 swrlRuleEngine.infer();

249

250 ontologyManager.saveOntology(ontology, IRI.create(((new File("Ontologies/

main1311output.owl")).toURI())));

251 System.out.println("---SUCCESS---");

252 } catch (SWRLParseException | IOException | OWLOntologyStorageException e) {

253 e.printStackTrace();

254 } catch (SWRLBuiltInException e) {

255 throw new RuntimeException(e);

256 }

257 }

258

259 private static void temp(Set<OWLNamedIndividual> individuals, OWLOntology ontology

, OWLDataFactory df,OWLOntologyManager manager) throws

OWLOntologyStorageException {

260

261 /** example of RDF triple

262 //subject -> predicate -> object

263 //roll_1234 -> hasRollGrinding -> 1234_grind_1

264 */

265

266 for (OWLIndividual individual: individuals) {

267

268 //loop through individuals that contain "roll" but not "_trip" (subject)

269 if (individual.toString().contains("roll_") && (!individual.toString().

contains("_trip"))) {

270 System.out.println("indivdual: " + individual);

271

272 //loop through the triples of that individual

273 Multimap<OWLObjectPropertyExpression, OWLIndividual> objects =
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EntitySearcher.getObjectPropertyValues(individual, ontology);

274 boolean output = false;

275 //loop through the objects (third part of the RDF triple)

276 outerloop:

277 for (OWLIndividual value : objects.values()) {

278 if (value.toString().contains("trip")) {

279 Set<OWLDataPropertyAssertionAxiom> properties=ontology.

getDataPropertyAssertionAxioms(value);

280 //loop through the data properties of that grinding

281 for (OWLDataPropertyAssertionAxiom ax: properties) {

282 //if the data property is the diam difference then retrieve

the value as a double

283 if (ax.getProperty().toString().contains("hasGrindNr")) {

284 Matcher m = Pattern.compile("\\d+\\.\\d+").matcher(ax.

getAxiomWithoutAnnotations().toString());

285 double val = 0;

286 while (m.find()) {

287 val = Double.parseDouble(m.group(0));

288 System.out.println("val@@@ is " + val);

289 }

290 }

291 }

292 }

293 //String[] parts = value.toString().split(".", 4); // Split into at

most 3 parts

294 if(value.toString().contains("grind")){

295 System.out.println("grind: " + value);

296 String[] parts = value.toString().split("_", 3); // Split into

at most 3 parts

297 if (parts.length >= 3) {

298 String remainingString = parts[2];

299 System.out.println(remainingString);

300 } else {

301 // Handle case when there are fewer than 3 parts

302 System.out.println("No second occurrence of ’_’ found.");

303 }

304 Set<OWLDataPropertyAssertionAxiom> properties=ontology.

getDataPropertyAssertionAxioms(value);

305

306 //loop through the data properties of that grinding

307 for (OWLDataPropertyAssertionAxiom ax: properties) {

308 //if the data property is the diam difference then retrieve

the value as a double

309 if(ax.getProperty().toString().contains("DiamDifference")) {

310 Matcher m = Pattern.compile("\\d+\\.\\d+").matcher(ax.

getAxiomWithoutAnnotations().toString());

311 double val = 0;

312 while (m.find()) {

313 val = Double.parseDouble(m.group(0));

314 System.out.println("val is " + val);

315 }

316 //if any of the diam difference data properties for this

individual (subject) value

317 // is greater than 0.5 then it’s considered high stock

removal and flagged as so

318 if (val >= 2) {

319 output = true;

320 System.out.println(" damage is " + output);
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321 break outerloop; //exit nested loop all together

322 } else {

323 output = false;

324 System.out.println(" damage is " + output);

325 }

326 }

327

328 }

329 }

330 }

331 //store the high stock removal flag in the "hasRecentHighStockRemoval"

data property

332 OWLDataProperty hasRecentHighStockRemoval = df.getOWLDataProperty(IRI.

create("hasRecentHighStockRemoval"));

333 System.out.println("output: " + output);

334 OWLDataPropertyAssertionAxiom dataPropertyAssertion =

335 df.getOWLDataPropertyAssertionAxiom(hasRecentHighStockRemoval,

individual, output);

336 manager.addAxiom(ontology, dataPropertyAssertion);

337 manager.saveOntology(ontology, IRI.create(((new File("Ontologies/

main1311output.owl")).toURI())));

338

339 }

340

341 }

342 }

343 // }

344

345 private static void deleteTempIndividuals(OWLDataFactory df, OWLOntology ontology,

OWLOntologyManager ontologyManager) throws OWLOntologyStorageException {

346 System.out.println("Removing all intermediate individuals and decision trees...

");

347 OWLClass decisionTreeClass = df.getOWLClass(IRI.create(iri_rf()+"#Decision_Tree

"));

348 OWLEntityRemover remover = new OWLEntityRemover(Collections.singleton(ontology)

);

349 int i = 0;

350 for (OWLClassAssertionAxiom classAssertionAxiom : ontology.

getClassAssertionAxioms(decisionTreeClass)) {

351 classAssertionAxiom.getIndividual().asOWLNamedIndividual().accept(remover);

352 i++;

353 }

354 System.out.println(i+" individuals removed.");

355 ontologyManager.applyChanges(remover.getChanges());

356 // ontologyManager.saveOntology(ontology);

357 remover.reset();

358 }

359

360 private static void deleteAllTempRules(SWRLRuleEngine swrlRuleEngine,List<

SWRLAPIRule> ruleList) {

361 for(int i = 0; i< ruleList.size(); i++){

362 swrlRuleEngine.deleteSWRLRule("temprule"+i);

363 }

364 }

365

366 private static void deleteObjectPropertyAssertions(OWLOntologyManager

ontologyManager,

367 OWLDataFactory df,OWLOntology
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ontology,

368 OWLObjectProperty property,

OWLIndividual name1,

OWLIndividual name2) {

369

370 OWLObjectPropertyAssertionAxiom assertion = df.

getOWLObjectPropertyAssertionAxiom(property, name1, name2);

371 ontologyManager.applyChange(new RemoveAxiom(ontology, assertion));

372

373 }

374

375 private static void deleteExistingHasDamageFlagValues(OWLDataFactory df,

OWLDataProperty hasDamageFlag,

376 OWLIndividual name,OWLOntology

ontology,OWLOntologyManager

ontologyManager) {

377 OWLDataPropertyAssertionAxiom dataPropertyRemove0 = df.

getOWLDataPropertyAssertionAxiom(hasDamageFlag, name,0.0d);

378 OWLDataPropertyAssertionAxiom dataPropertyRemove1 = df.

getOWLDataPropertyAssertionAxiom(hasDamageFlag, name,1.0d);

379 OWLDataPropertyAssertionAxiom dataPropertyRemove2 = df.

getOWLDataPropertyAssertionAxiom(hasDamageFlag, name,0);

380 OWLDataPropertyAssertionAxiom dataPropertyRemove3 = df.

getOWLDataPropertyAssertionAxiom(hasDamageFlag, name,1);

381

382 RemoveAxiom removeAxiom0 = new RemoveAxiom(ontology,dataPropertyRemove0);

383 RemoveAxiom removeAxiom1 = new RemoveAxiom(ontology,dataPropertyRemove1);

384 RemoveAxiom removeAxiom2 = new RemoveAxiom(ontology,dataPropertyRemove2);

385 RemoveAxiom removeAxiom3 = new RemoveAxiom(ontology,dataPropertyRemove3);

386 ontologyManager.applyChange(removeAxiom0);

387 ontologyManager.applyChange(removeAxiom1);

388 ontologyManager.applyChange(removeAxiom2);

389 ontologyManager.applyChange(removeAxiom3);

390 }

391

392

393 }

Code for the Continuous Streamer

The following code is the source code for initialising the continuous streamer in the context of
cold rolling.

Code Listing B.3: Java code for setting up the continuous streamer.

1 import eu.larkc.csparql.cep.api.RdfQuadruple;

2 import eu.larkc.csparql.cep.api.RdfStream;

3 import org.apache.commons.lang3.StringUtils;

4

5 import java.io.*;

6 import java.math.BigDecimal;

7 import java.math.RoundingMode;

8 import java.util.ArrayList;

9 import java.util.Random;

10

11 public class Streamer extends RdfStream implements Runnable {

12
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13 private boolean keepRunning = false;

14

15 //ontology string

16 private String scro = "http://www.semanticweb.org/sadee/ontologies/2021/1/

Tatatology#";

17

18 public Streamer(final String iri) {

19 super(iri);

20 System.out.println("Streamer running...");

21 }

22 public void pleaseStop() {

23 keepRunning = false;

24 }

25 @Override

26 public void run() {

27 keepRunning = true;

28 long timeStamp;

29 int randomVal;

30

31 ArrayList<String> featureList = new ArrayList<>();

32 try (BufferedReader br = new BufferedReader(new FileReader("features.txt"))) {

33 for (String line; (line = br.readLine()) != null; ) {

34 featureList.add(line);

35 }

36 } catch (IOException e) {

37 e.printStackTrace();

38 }

39

40 while (keepRunning) {

41

42 try {

43 Thread.sleep(3000); //3000 = 3 seconds

44 } catch (InterruptedException e) {

45 e.printStackTrace();

46 }

47 timeStamp = System.currentTimeMillis();

48 RdfQuadruple rdfQuad;

49 randomVal = (int) randomWithRange(900000, 999999);

50

51 for (int i = 0; i < featureList.size(); i++) {

52 String featureName = StringUtils.substringBefore(featureList.get(i),

",");

53 double min = Double.parseDouble(StringUtils.substringBetween(

featureList.get(i), ",", ","));

54 double max = Double.parseDouble(StringUtils.substringAfterLast(

featureList.get(i), ","));

55

56 if (((featureName.endsWith("id") || featureName.endsWith("ID")) && !

featureName.endsWith("InputCoilID"))) {

57 rdfQuad = (new RdfQuadruple(super.getIRI() + "roll_unit_trip_" +

randomVal,

58 this.scro + featureName, "\"" + wholeNumberWithRange(min,

max) + "\"" + "^^http://www.w3.org/2001/XMLSchema#

double", timeStamp));

59 } else {

60 rdfQuad = (new RdfQuadruple(super.getIRI() + "roll_unit_trip_" +

randomVal,

61 this.scro + featureName, "\"" + randomWithRange(min, max)
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+ "\"" + "^^http://www.w3.org/2001/XMLSchema#double"

, timeStamp));

62 }

63 //System.out.println(rdfQuad); //each RDF can be printed here

64 this.put(rdfQuad);

65 }

66 System.err.println(" New RDF triples found...");

67

68

69 }

70 }

71

72

73 double wholeNumberWithRange(double min, double max) {

74 return (int) (Math.random() * (max - min)) + min;

75 }

76

77 double randomWithRange(double min, double max) {

78 Random r = new Random();

79 double num = min + (max - min) * r.nextDouble();

80

81 return new BigDecimal(num).setScale(3, RoundingMode.HALF_UP).doubleValue();

82 }

83 }

The following code is the source code for the main application for the streamer.

Code Listing B.4: Java code for running the continuous streamer application.

1 import eu.larkc.csparql.core.engine.CsparqlEngine;

2 import eu.larkc.csparql.core.engine.CsparqlEngineImpl;

3 import eu.larkc.csparql.core.engine.CsparqlQueryResultProxy;

4 import org.semanticweb.owlapi.apibinding.OWLManager;

5 import org.semanticweb.owlapi.model.*;

6 import org.semanticweb.owlapi.reasoner.InferenceType;

7 import org.semanticweb.owlapi.reasoner.OWLReasoner;

8 import org.semanticweb.owlapi.reasoner.OWLReasonerFactory;

9 import org.semanticweb.owlapi.reasoner.structural.StructuralReasonerFactory;

10 import org.semanticweb.owlapi.util.DefaultPrefixManager;

11 import org.semanticweb.owlapi.util.OWLEntityRemover;

12 import org.swrlapi.core.SWRLAPIRule;

13 import org.swrlapi.core.SWRLRuleEngine;

14 import org.swrlapi.exceptions.SWRLBuiltInException;

15 import org.swrlapi.factory.SWRLAPIFactory;

16 import org.swrlapi.parser.SWRLParseException;

17 import org.swrlapi.sqwrl.SQWRLQueryEngine;

18

19 import java.io.*;

20 import java.text.ParseException;

21 import java.util.*;

22

23 public class StreamerMain {

24 protected static IRI iri() {

25 return IRI.create("http://www.semanticweb.org/sadee/ontologies/2021/1/

Tatatology#");

26 }

27

28 public enum Type {

29 SCIKITLEARN,
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30 BRIEMAN

31 }

32 public static void main(String[] args) throws OWLOntologyCreationException,

SWRLParseException, SWRLBuiltInException, OWLOntologyStorageException,

FileNotFoundException {

33

34 Type type = Type.SCIKITLEARN;

35

36 // Create OWLOntology instance using the OWLAPI

37 OWLOntologyManager manager = OWLManager.createOWLOntologyManager();

38 OWLOntology ontology = manager.loadOntologyFromOntologyDocument(new File("

Ontologies/scro.owl"));

39 String ontologyIRI = "http://www.semanticweb.org/sadee/ontologies/2021/1/

Tatatology";

40 DefaultPrefixManager prefixManager = new DefaultPrefixManager(null, null,

ontologyIRI);

41

42

43 OWLReasonerFactory reasonerFactory = new StructuralReasonerFactory();

44 OWLReasoner reasoner = reasonerFactory.createReasoner(ontology);

45 reasoner.precomputeInferences(InferenceType.CLASS_HIERARCHY);

46

47

48 // Create a SWRL rule engine using the SWRLAPI

49 SWRLRuleEngine swrlRuleEngine = SWRLAPIFactory.createSWRLRuleEngine(ontology);

50 swrlRuleEngine.importAssertedOWLAxioms();

51

52 SWRLRuleEngine expertRuleEngine = SWRLAPIFactory.createSWRLRuleEngine(ontology)

;

53

54 ArrayList<SWRLAPIRule> expertRuleList = new ArrayList<>();

55 expertRuleList.add(expertRuleEngine.createSWRLRule("expertRule" +

expertRuleList.size(),

56 "Roll_Unit_Trip(?trip) ^ hasDamageFlag(?trip, ?DamageFlag) ^ swrlb:

equal(?DamageFlag, \"1.0\"^^xsd:double) " +

57 "^ hasTonsRolledComputed(?trip, ?TonsRolledComputed) ^ swrlb:

greaterThanOrEqual(?TonsRolledComputed, \"50000\"^^xsd:

double) -> hasStatus(?trip, \"Stop Operation\"^^xsd:string)"

));

58 expertRuleList.add(expertRuleEngine.createSWRLRule("expertRule" +

expertRuleList.size(),

59 "Roll_Unit_Trip(?trip) ^ hasDamageFlag(?trip, ?DamageFlag) ^ swrlb:

lessThan(?DamageFlag, \"1.0\"^^xsd:double) " +

60 "^ hasTonsRolledComputed(?trip, ?TonsRolledComputed) ^ swrlb:

lessThan(?TonsRolledComputed, \"50000\"^^xsd:double) ->

hasStatus(?trip, \"Continue Operation\"^^xsd:string)"));

61 expertRuleList.add(expertRuleEngine.createSWRLRule("expertRule" +

expertRuleList.size(),

62 "Roll_Unit_Trip(?trip) ^ hasDamageFlag(?trip, ?DamageFlag) ^ swrlb:

lessThanOrEqual(?DamageFlag, \"0.0\"^^xsd:double) -> hasStatus(?trip

, \"Continue Operation\"^^xsd:string)"));

63 SQWRLQueryEngine queryEngine = SWRLAPIFactory.createSQWRLQueryEngine(ontology);

64 OWLDataFactory owlDataFactory = manager.getOWLDataFactory();

65

66 //read all rules from rules file

67 ArrayList<SWRLAPIRule> ruleList = new ArrayList<>();

68

69 System.out.println("---READING TREES FROM FILE---");
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70 try (BufferedReader br = new BufferedReader(new FileReader("rules_proba_output.

txt"))) {

71 for (String line; (line = br.readLine()) != null; ) {

72 ruleList.add(swrlRuleEngine.createSWRLRule("temprule" + ruleList.size()

, line));

73 }

74 System.out.println("Rules size: " + ruleList.size());

75

76

77 } catch (IOException | SWRLParseException | SWRLBuiltInException e) {

78 e.printStackTrace();

79 }

80 OWLClass RUTclass = owlDataFactory.getOWLClass(IRI.create(iri() + "

Roll_Unit_Trip"));//

81 Set<OWLNamedIndividual> individuals;

82 individuals = ontology.getIndividualsInSignature();

83 HashMap<OWLIndividual,Set<OWLDataPropertyAssertionAxiom>> test = new HashMap

<>();

84 for (OWLIndividual individual: individuals) {

85 if (individual.toString().contains("roll_unit_trip")) {

86 Set<OWLDataPropertyAssertionAxiom> properties=ontology.

getDataPropertyAssertionAxioms(individual);

87 test.put(individual,properties);

88 }

89 }

90

91 String query;

92 Streamer testGenerator;

93

94 // init C-SPARQL Engine

95 CsparqlEngine engine = new CsparqlEngineImpl();

96 engine.initialize(true);

97

98 //query is large so stored externally. Timer set to 40s

99 query = new Scanner(new File("query.txt")).useDelimiter("\\Z").next();

100

101 testGenerator = new Streamer("http://www.semanticweb.org/sadee/ontologies

/2021/1/Tatatology#");

102

103 // Register an RDF Stream

104 engine.registerStream(testGenerator);

105

106 // Start the stream

107 final Thread t = new Thread(testGenerator);

108 t.start();

109

110 // Register a C-SPARQL query

111 CsparqlQueryResultProxy c1 = null;

112

113 try {

114 c1 = engine.registerQuery(query, false);

115 } catch (ParseException e) {

116 e.printStackTrace();

117 }

118

119 // Attach a Result Formatter to the query result proxy

120 if (c1 != null) {

121 c1.addObserver(new SPARQLResults(swrlRuleEngine,expertRuleEngine, ontology,
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reasoner, prefixManager, manager, owlDataFactory, queryEngine));

122 }

123

124 try {

125 Thread.sleep(300000);// run streamer for this long

126 } catch (InterruptedException e) {

127 e.printStackTrace();

128 }

129

130 // unregister query and stream afterwards

131 if (c1 != null) {

132 engine.unregisterQuery(c1.getId());

133 }

134 engine.unregisterStream(testGenerator.getIRI());

135 testGenerator.pleaseStop();

136

137 //engine.unregisterStream(testGenerator.getIRI());

138

139 //remove all RF rules

140 deleteAllTempRules(swrlRuleEngine,ruleList);

141

142 //delete any new roll_unit_trips

143 OWLEntityRemover remover = new OWLEntityRemover(Collections.singleton(ontology)

);

144 for (OWLClassAssertionAxiom classAssertionAxiom : ontology.

getClassAssertionAxioms(RUTclass)) {

145 classAssertionAxiom.getIndividual().asOWLNamedIndividual().accept(remover);

146 manager.applyChanges(remover.getChanges());

147 remover.reset();

148 }

149 //re-add all roll_unit_Trip individuals and their data properties

150 for(Map.Entry<OWLIndividual, Set<OWLDataPropertyAssertionAxiom>> entry : test.

entrySet()) {

151 OWLIndividual key = entry.getKey();

152 Set<OWLDataPropertyAssertionAxiom> value = entry.getValue();

153

154 OWLClassAssertionAxiom classAssertion = owlDataFactory.

getOWLClassAssertionAxiom(RUTclass, key);

155 manager.addAxiom(ontology, classAssertion);

156 for (OWLDataPropertyAssertionAxiom owlDataPropertyAssertionAxiom : value) {

157 manager.addAxiom(ontology, owlDataPropertyAssertionAxiom);

158 }

159 }

160

161 // if(input.equals("yes")){

162 // for(Map.Entry<OWLIndividual, Set<OWLDataPropertyAssertionAxiom>> entry :

RDFResultsFormatter.returnData().entrySet()) {

163 // OWLIndividual key = entry.getKey();

164 // Set<OWLDataPropertyAssertionAxiom> value = entry.getValue();

165 //

166 // OWLClassAssertionAxiom classAssertion = owlDataFactory.getOWLClassAssertionAxiom(

RUTclass, key);

167 // manager.addAxiom(ontology, classAssertion);

168 // for (OWLDataPropertyAssertionAxiom owlDataPropertyAssertionAxiom : value) {

169 // manager.addAxiom(ontology, owlDataPropertyAssertionAxiom);

170 // }

171 // }

172 //
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173 // }

174 System.out.println("Saving ontology...");

175 manager.saveOntology(ontology, IRI.create(((new File("Ontologies/cswrloutput.

owl")).toURI())));

176 }

177 private static void deleteAllTempRules(SWRLRuleEngine swrlRuleEngine, List<

SWRLAPIRule> ruleList) {

178 for(int i = 0; i< ruleList.size(); i++){

179 swrlRuleEngine.deleteSWRLRule("temprule"+i);

180 }

181 }

182

183 }

The following code is the source code for the SPARQL results formatting.

Code Listing B.5: Java code for the SPARQL results formater during streaming.

1 import com.google.common.collect.Multimap;

2

3 import eu.larkc.csparql.common.RDFTable;

4 import eu.larkc.csparql.common.RDFTuple;

5 import eu.larkc.csparql.core.ResultFormatter;

6 import org.apache.commons.lang3.time.StopWatch;

7 import org.semanticweb.owlapi.model.*;

8 import org.semanticweb.owlapi.reasoner.OWLReasoner;

9 import org.semanticweb.owlapi.search.EntitySearcher;

10 import org.semanticweb.owlapi.util.DefaultPrefixManager;

11 import org.semanticweb.owlapi.util.OWLEntityRemover;

12 import org.swrlapi.core.SWRLRuleEngine;

13 import org.swrlapi.sqwrl.SQWRLQueryEngine;

14

15 import java.text.DateFormat;

16 import java.text.SimpleDateFormat;

17 import java.util.*;

18

19 public class SPARQLResults extends ResultFormatter {

20

21 private final SWRLRuleEngine ruleEngine;

22 private final SWRLRuleEngine expertRuleEngine;

23 private final OWLOntology ontology;

24 private final OWLReasoner reasoner;

25 private final DefaultPrefixManager prefixManager;

26 private final OWLOntologyManager manager;

27 private final OWLDataFactory owlDataFactory;

28 private final SQWRLQueryEngine queryEngine;

29

30 SPARQLResults(SWRLRuleEngine ruleEngine, SWRLRuleEngine expertRuleEngine,

OWLOntology newOnto, OWLReasoner reasoner,

31 DefaultPrefixManager prefixManager, OWLOntologyManager manager,

OWLDataFactory owlDataFactory, SQWRLQueryEngine queryEngine) {

32 this.ruleEngine = ruleEngine;

33 this.expertRuleEngine = expertRuleEngine;

34 this.ontology = newOnto;

35 this.reasoner = reasoner;

36 this.prefixManager = prefixManager;

37 this.manager = manager;

38 this.owlDataFactory = owlDataFactory;

39 this.queryEngine = queryEngine;
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40 }

41

42 private static HashMap<OWLIndividual,Set<OWLDataPropertyAssertionAxiom>> test =

new HashMap<>();

43 public static HashMap<OWLIndividual,Set<OWLDataPropertyAssertionAxiom>> returnData

(){

44 return test;

45 }

46

47 protected static IRI iri() {

48 return IRI.create("http://www.semanticweb.org/sadee/ontologies/2021/1/

Tatatology#");

49 }

50 @Override

51 public void update(Observable o, Object arg) {

52 RDFTable res = (RDFTable) arg;

53 System.out.println("\nres: "+res.getTuples());

54 //System.out.println("C-SPARQL output");

55 System.out.println("Data stream found " + res.size() + " new result(s) at

timestamp: " + System.currentTimeMillis() + ".");

56 System.out.println("-------");

57 int numrator = 1;

58 long totProcTime = 0;

59

60 ArrayList<String> featureNames = new ArrayList(res.getNames());

61 //start timer

62 StopWatch stopWatch = new StopWatch();

63 OWLClass RUTclass = owlDataFactory.getOWLClass(IRI.create(iri() + "

Roll_Unit_Trip"));//

64

65 //temporarily delete all individuals of RUT class

66 OWLEntityRemover remover = new OWLEntityRemover(Collections.singleton(ontology)

);

67 for (OWLClassAssertionAxiom classAssertionAxiom : ontology.

getClassAssertionAxioms(RUTclass)) {

68 classAssertionAxiom.getIndividual().asOWLNamedIndividual().accept(

remover);

69 manager.applyChanges(remover.getChanges());

70 remover.reset();

71 }

72

73 for (final RDFTuple t : res) {

74 // System.out.println("--------");

75 Set<OWLDataPropertyAssertionAxiom> axiomList = new HashSet<>();

76 String rut = t.get(0);

77 DateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd’T’HH:mm:ss");

78 Date date = new Date();

79 String obsTime = dateFormat.format(date);

80

81 //print C-SPARQL results

82 System.out.println("#" + numrator + " time: [" + obsTime + "] found: " +

rut + ". ");

83

84 //create roll_unit_trip individual as part of rut class

85 OWLIndividual newRUT = owlDataFactory.getOWLNamedIndividual(IRI.create(rut)

);

86 OWLClassAssertionAxiom tmpClassAxiom = owlDataFactory.

getOWLClassAssertionAxiom(RUTclass, newRUT);
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87 manager.applyChange(new AddAxiom(ontology, tmpClassAxiom));

88

89 //add tripSeeqnumber on roll_unit_trip individual

90 String tripSeqNum = t.get(0);

91 String tripSeqNumString = tripSeqNum.substring(tripSeqNum.indexOf("

roll_unit_trip_"));

92 tripSeqNumString = tripSeqNumString.replaceAll("[^\\d]*","");

93 int tripSeqNumDouble = Integer.parseInt(tripSeqNumString);

94 OWLDataProperty hasTripSeq = owlDataFactory.getOWLDataProperty(IRI.create(

iri() + "hasTripSequenceNo"));

95 OWLAxiom dataTypeAssertionTrip = owlDataFactory.

getOWLDataPropertyAssertionAxiom(hasTripSeq, newRUT, tripSeqNumDouble);

96 manager.applyChange(new AddAxiom(ontology, dataTypeAssertionTrip));

97

98 axiomList.add(owlDataFactory.getOWLDataPropertyAssertionAxiom(hasTripSeq,

newRUT,tripSeqNumDouble));

99

100 for (int i = 1; i < res.getNames().size(); i++) {

101 String feature = featureNames.get(i);

102 String featureValue = t.get(i).substring(t.get(i).indexOf("\"") + 1);

103 double featureValueDouble = Double.parseDouble(featureValue.substring

(0, featureValue.indexOf("\"")));

104

105 OWLDataProperty dataProperty = owlDataFactory.getOWLDataProperty(IRI.

create(iri() + "has" + feature));

106 OWLAxiom dataTypeAssertion = owlDataFactory.

getOWLDataPropertyAssertionAxiom(dataProperty, newRUT,

featureValueDouble);

107

108 manager.applyChange(new AddAxiom(ontology, dataTypeAssertion));

109 axiomList.add(owlDataFactory.getOWLDataPropertyAssertionAxiom(

dataProperty,newRUT,featureValueDouble));

110

111 }

112 test.put(newRUT,axiomList);

113 numrator++;

114

115 }

116 stopWatch.start();

117 System.out.println("-------");

118 //RUN SWRL engine

119 System.out.println("Inferring rule engine...");

120 //remove any existing decision_tree individuals

121 deleteTempIndividuals(owlDataFactory, ontology, manager);

122 ruleEngine.infer();

123 System.out.println("Inferring rule engine complete");

124

125 try {

126 fromOtherCode(ontology, owlDataFactory, manager, StreamerMain.Type.

SCIKITLEARN);

127 } catch (OWLOntologyStorageException e) {

128 e.printStackTrace();

129 }

130 System.out.println("Applying Expert Rules to new data...");

131 expertRuleEngine.infer();

132 try {

133 returnStatus(ontology,owlDataFactory,manager, StreamerMain.Type.SCIKITLEARN

);

215



B. Appendix B

134 } catch (OWLOntologyStorageException e) {

135 e.printStackTrace();

136 }

137 stopWatch.stop();

138 totProcTime = totProcTime + stopWatch.getTime();

139 System.out.println("(Total time)"

140 + ": " + totProcTime + " ms"

141 );

142 stopWatch.reset();

143

144 }

145

146 private static void deleteTempIndividuals(OWLDataFactory df, OWLOntology ontology,

OWLOntologyManager ontologyManager) {

147 OWLClass decisionTreeClass = df.getOWLClass(IRI.create(iri() + "Decision_Tree")

);

148 OWLEntityRemover remover = new OWLEntityRemover(Collections.singleton(ontology)

);

149 for (OWLClassAssertionAxiom classAssertionAxiom : ontology.

getClassAssertionAxioms(decisionTreeClass)) {

150 classAssertionAxiom.getIndividual().asOWLNamedIndividual().accept(remover);

151 }

152 ontologyManager.applyChanges(remover.getChanges());

153 remover.reset();

154 }

155

156 private double randomWithRange(double min, double max) {

157 double range = (max - min) + 1;

158 return (double) (Math.random() * range) + min;

159 }

160

161 private static void returnStatus(OWLOntology ontology, OWLDataFactory df,

OWLOntologyManager ontologyManager, StreamerMain.Type type) throws

OWLOntologyStorageException {

162 Set<OWLNamedIndividual> individuals;

163 individuals = ontology.getIndividualsInSignature();

164

165 OWLDataProperty hasStatus = df.getOWLDataProperty(IRI.create(iri() + "

hasDamageFlag"));

166 for (OWLIndividual individual : individuals) {

167 if (individual.toString().contains("roll_unit_trip")) {

168 // System.out.println("individual: " + individual);

169 Multimap<OWLDataPropertyExpression, OWLLiteral> temp = EntitySearcher.

getDataPropertyValues(individual, ontology);

170 for (OWLLiteral i : temp.values()) {

171 if(i.toString().contains("^^xsd:string")){

172 System.out.println("Result says: " + i + " for individual: " +

individual);

173 }

174 //hasDamageFlagProbability2: ["0.13836017569546122"^^xsd:decimal]

175 // System.out.println("DT "+probCount+" " +i.toString()+" for " +individual+": ");

176 // String hasStatusText = EntitySearcher.get

177 // System.out.println("status val: " + hasStatusText);

178 }

179 }

180 }

181

182 }
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183

184 private static void fromOtherCode(OWLOntology ontology, OWLDataFactory df,

OWLOntologyManager ontologyManager, StreamerMain.Type type) throws

OWLOntologyStorageException {

185 Set<OWLNamedIndividual> individuals;

186 individuals = ontology.getIndividualsInSignature();

187

188 OWLDataProperty hasPrediction = df.getOWLDataProperty(IRI.create(iri() + "

hasPrediction"));

189 OWLDataProperty hasDamageFlag = df.getOWLDataProperty(IRI.create(iri() + "

hasDamageFlag"));

190

191 System.out.println("---COMPUTING PROBABILITY FOR EACH INDIVIDUAL---");

192

193 //loop through roll_unit_trip individuals

194 for (OWLIndividual individual : individuals) {

195 if (individual.toString().contains("roll_unit_trip")) {

196 Multimap<OWLObjectPropertyExpression, OWLIndividual> temp =

EntitySearcher.getObjectPropertyValues(individual, ontology);

197

198 if (type.equals(StreamerMain.Type.SCIKITLEARN)) {

199 double sum = 0.0;

200 int probCount = 0;

201 //temp.values(): [<http://www.semanticweb.org/sadee/ontologies

/2021/1/Tatatology##ddd2f432_d492_49f6_8408_97c4c5a2bc5f>,

202 // <http://www.semanticweb.org/sadee/ontologies/2021/1/Tatatology

##193dfacb_451b_4fc4_9b25_241c92099767>,

203 // <http://www.semanticweb.org/sadee/ontologies/2021/1/Tatatology

##63f96f18_6e2d_4b06_bc1e_1cb6194b1ad8>,

204 // <http://www.semanticweb.org/sadee/ontologies/2021/1/Tatatology##

a1a7f900_405e_44f8_a1e6_83d10a6d07a7>,

205 // <http://www.semanticweb.org/sadee/ontologies/2021/1/Tatatology

##70d13e18_c865_43a1_bd81_98dd65ae94e1> etc

206 for (OWLIndividual i : temp.values()) {

207 probCount++;

208 //hasDamageFlagProbability2: ["0.13836017569546122"^^xsd:decimal

]

209 // System.out.println("DT "+probCount+" " +i.toString()+" for " +individual+": ");

210 String hasDamageFlagProbability = EntitySearcher.

getDataPropertyValues(i, hasPrediction, ontology).toString()

;

211 String probStart = hasDamageFlagProbability.substring(

hasDamageFlagProbability.indexOf("\"") + 1);

212 double probEnd = Double.parseDouble(probStart.substring(0,

probStart.indexOf("\"")));

213 sum += probEnd;

214

215 }

216

217 double finalProbability = sum / probCount;

218

219 if (finalProbability > 0.5) {

220 finalProbability = 1.0;

221 } else {

222 finalProbability = 0.0;

223 }

224 deleteExistingHasDamageFlagValues(df, hasDamageFlag, individual,

ontology, ontologyManager);
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225 OWLDataPropertyAssertionAxiom dataPropertyAssertion = df.

getOWLDataPropertyAssertionAxiom(hasDamageFlag, individual,

finalProbability);

226 System.out.println("damageFlag prediction: " + finalProbability + "

for individual " + individual);

227

228 AddAxiom addAxiom1 = new AddAxiom(ontology, dataPropertyAssertion);

229 ontologyManager.applyChange(addAxiom1);

230 } else if (type.equals(StreamerMain.Type.BRIEMAN)) {

231 //temp.values(): [<http://www.semanticweb.org/sadee/ontologies

/2021/1/Tatatology##ddd2f432_d492_49f6_8408_97c4c5a2bc5f>,

232 // <http://www.semanticweb.org/sadee/ontologies/2021/1/Tatatology

##193dfacb_451b_4fc4_9b25_241c92099767>,

233 // <http://www.semanticweb.org/sadee/ontologies/2021/1/Tatatology

##63f96f18_6e2d_4b06_bc1e_1cb6194b1ad8>,

234 // <http://www.semanticweb.org/sadee/ontologies/2021/1/Tatatology##

a1a7f900_405e_44f8_a1e6_83d10a6d07a7>,

235 // <http://www.semanticweb.org/sadee/ontologies/2021/1/Tatatology

##70d13e18_c865_43a1_bd81_98dd65ae94e1> etc

236 int classAs0 = 0;

237 int classAs1 = 0;

238 for (OWLIndividual i : temp.values()) {

239 //hasDamageFlagProbability2: ["0.13836017569546122"^^xsd:decimal

]

240 String classOutput = EntitySearcher.getDataPropertyValues(i,

hasPrediction, ontology).toString();

241 // System.out.println("hasDamageFlagProbability2:" + classOutput );

242 if (classOutput.contains("1")) {

243 classAs1++;

244 } else {

245 classAs0++;

246 }

247 // String probStart = hasDamageFlagProbability2.substring(hasDamageFlagProbability2.

indexOf("\"") + 1);

248 // double probEnd = Double.parseDouble(probStart.substring(0, probStart.indexOf("\""))

);

249 // sum += probEnd;

250

251 }

252 System.out.println("-------");

253 System.out.println("for individual " + individual);

254 System.out.println("has class0: " + classAs0 + ". class1: " +

classAs1);

255

256 // double finalProbability = sum / probCount;

257 deleteExistingHasDamageFlagValues(df, hasDamageFlag, individual,

ontology, ontologyManager);

258 double finalResult;

259 if (classAs0 >= classAs1) {

260 finalResult = 0.0;

261 } else {

262 finalResult = 1.0;

263 }

264 OWLDataPropertyAssertionAxiom dataPropertyAssertion = df.

getOWLDataPropertyAssertionAxiom(hasDamageFlag, individual,

finalResult);

265 System.out.println("damageFlag prediction: " + finalResult + " for

individual " + individual);
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266 AddAxiom addAxiom1 = new AddAxiom(ontology, dataPropertyAssertion);

267 ontologyManager.applyChange(addAxiom1);

268

269 }

270 }

271

272 }

273

274 }

275

276 private static void deleteExistingHasDamageFlagValues(OWLDataFactory df,

OWLDataProperty hasDamageFlag,

277 OWLIndividual name, OWLOntology

ontology, OWLOntologyManager

ontologyManager) {

278 OWLDataPropertyAssertionAxiom dataPropertyRemove0 = df.

getOWLDataPropertyAssertionAxiom(hasDamageFlag, name, 0.0d);

279 OWLDataPropertyAssertionAxiom dataPropertyRemove1 = df.

getOWLDataPropertyAssertionAxiom(hasDamageFlag, name, 1.0d);

280 OWLDataPropertyAssertionAxiom dataPropertyRemove2 = df.

getOWLDataPropertyAssertionAxiom(hasDamageFlag, name, 0);

281 OWLDataPropertyAssertionAxiom dataPropertyRemove3 = df.

getOWLDataPropertyAssertionAxiom(hasDamageFlag, name, 1);

282

283 RemoveAxiom removeAxiom0 = new RemoveAxiom(ontology, dataPropertyRemove0);

284 RemoveAxiom removeAxiom1 = new RemoveAxiom(ontology, dataPropertyRemove1);

285 RemoveAxiom removeAxiom2 = new RemoveAxiom(ontology, dataPropertyRemove2);

286 RemoveAxiom removeAxiom3 = new RemoveAxiom(ontology, dataPropertyRemove3);

287 ontologyManager.applyChange(removeAxiom0);

288 ontologyManager.applyChange(removeAxiom1);

289 ontologyManager.applyChange(removeAxiom2);

290 ontologyManager.applyChange(removeAxiom3);

291 }

292 }

Code for the Creation of a Random Forest Using the Sci-kit
Learn Library

The following code uses the sci-kit learn library to create a random forest based on the input
data we provide. This code is written in Python using Jupyter Notebook IDE and with the
Numpy library.

Code Listing B.6: Python code to create a random forest and update
hasRecentHighStockRemoval flag.

1 {

2 "cells": [

3 {

4 "cell_type": "code",

5 "execution_count": null,

6 "id": "176dcdfb",

7 "metadata": {},

8 "outputs": [],

9 "source": [

10 "import numpy as np\n",

11 "import pandas as pd\n",

12 "import seaborn as sns\n",
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13 "import datetime as dt\n",

14 "import matplotlib.pyplot as plt\n",

15 "import re\n",

16 "from pandasql import sqldf\n",

17 "from sklearn.model_selection import train_test_split\n",

18 "from sklearn.metrics import r2_score\n",

19 "from sklearn.metrics import mean_squared_error, mean_absolute_error,

mean_absolute_percentage_error\n",

20 "from sklearn.tree import DecisionTreeRegressor\n",

21 "\n",

22 "import sys\n",

23 "\n",

24 "sys.path.insert(0,’..’)\n",

25 "from src.utils import *\n",

26 "from src.models import *\n",

27 "from src.preprocess import *\n",

28 "\n",

29 "from sklearn.tree import export_text\n",

30 "from sklearn.preprocessing import StandardScaler\n",

31 "from sklearn.tree import export_text\n",

32 "import seaborn as sns\n",

33 "from sklearn.tree import DecisionTreeRegressor\n",

34 "from sklearn.utils import check_array\n",

35 "from sklearn.utils.validation import check_is_fitted\n",

36 "import joblib\n",

37 "from sklearn.ensemble import RandomForestClassifier\n",

38 "from sklearn.tree import export_text"

39 ]

40 },

41 {

42 "cell_type": "code",

43 "execution_count": null,

44 "id": "02d96498",

45 "metadata": {},

46 "outputs": [],

47 "source": [

48 "df = pd.read_csv(’../raw_data/main_data.csv’)\n",

49 "filtered_df = df[~df[’damage_flag’].isin([1])]"

50 ]

51 },

52 {

53 "cell_type": "code",

54 "execution_count": null,

55 "id": "6a141f0f-2eba-401e-bdb6-e9774101a683",

56 "metadata": {},

57 "outputs": [],

58 "source": [

59 "\n",

60 "df = pd.read_csv(’../raw_data/main_data.csv’)\n",

61 "values_to_remove = [1]\n",

62 "df = df[~df[’damage_flag’].isin(values_to_remove)]\n",

63 "\n",

64 "df = df[df.diam_difference <= 5]\n",

65 "\n",

66 "\n",

67 "# mill_id 2 has only 71 entries so drop all \n",

68 "df = df[df.mill_id != 2]\n",

69 "\n",
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70 "df.dropna(subset=[’diam_difference’])\n",

71 "df.reset_index(drop=True, inplace=True)\n",

72 " \n",

73 "labels = []\n",

74 "\n",

75 "#output labels\n",

76 "for row in range(len(df.diam_difference)): \n",

77 " if df.diam_difference.iloc[row] > 0.5:\n",

78 " labels.append(’Bad’)\n",

79 " elif df.diam_difference.iloc[row] <= 0.25:\n",

80 " labels.append(’Best’)\n",

81 " elif df.diam_difference.iloc[row] > 0.25 and df.diam_difference.iloc[row] <=

0.5:\n",

82 " labels.append(’Good’)\n",

83 " else:\n",

84 " continue\n",

85 "\n",

86 "df[’labels’] = pd.DataFrame(labels)\n",

87 "\n",

88 "#features for RF \n",

89 "dff = df[[\n",

90 " ’trip_sequence_no’,\n",

91 " ’roll_id’,\n",

92 " ’trip_tonnage’,\n",

93 " ’trip_meterage’,\n",

94 " ’grind_nr’,\n",

95 " ’stand_id’,\n",

96 " ’tons_rolled_computed’,\n",

97 " ’length_rolled_computed’,\n",

98 " ’coils_rolled_computed’,\n",

99 " ’meas_camber’,\n",

100 " ’surface_ra’,\n",

101 " ’diam_before’,\n",

102 " ’labels’]]\n",

103 "dff.set_index([’trip_sequence_no’,’roll_id’],inplace=True) #set id for index\n",

104 "df_corr = dff.corr()\n",

105 "\n",

106 "target = [’labels’]\n",

107 "predictors = [feat for feat in dff.columns if feat not in target and feat !=

’labels’]\n",

108 "\n",

109 "X = dff[predictors]\n",

110 "y = dff[target]\n",

111 "\n",

112 "\n",

113 "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=42) #split and train data\n",

114 "\n"

115 ]

116 },

117 {

118 "cell_type": "code",

119 "execution_count": null,

120 "id": "fbfb7bfb",

121 "metadata": {},

122 "outputs": [],

123 "source": [

124 "#retrieve test data\n",
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125 "X_test_with_id =

X_test.rename_axis([’trip_sequence_no’,’roll_id’]).reset_index()\n",

126 "test_data = np.concatenate((X_test_with_id,y_test), axis = 1)\n",

127 "test_data = pd.DataFrame(test_data)\n",

128 "test_data.rename(columns={0:’trip_sequence_no’,

1:’roll_id’,2:’trip_tonnage’,3:’trip_meterage’,4:’grind_nr’,5:’stand_id’,6:’tons_rolled_computed’,7:’length_rolled_computed’,8:’coils_rolled_computed’,9:’meas_camber’,10:’surface_ra’,11:’diam_before’,12:’roll_refurb_condition’},

inplace=True)\n",

129 "test_data.trip_sequence_no = test_data.trip_sequence_no.astype(np.int64)\n",

130 "test_data.roll_id = test_data.roll_id.astype(np.int64)\n",

131 "test_data.to_csv(’test_data_0409.csv’, index=True, encoding=’utf-8’)"

132 ]

133 },

134 {

135 "cell_type": "code",

136 "execution_count": null,

137 "id": "3b485cbe-888b-4380-8ed5-8cef3241d429",

138 "metadata": {},

139 "outputs": [],

140 "source": [

141 "clf = RandomForestClassifier(n_estimators=20, max_depth=22)\n",

142 "clf = clf.fit(X_train, y_train)\n",

143 "\n",

144 "#Predict the response for test dataset\n",

145 "y_pred = clf.predict(X_test)\n",

146 "\n",

147 "error_analysis(y_test, y_pred)"

148 ]

149 },

150 {

151 "cell_type": "code",

152 "execution_count": null,

153 "id": "a69ab45d",

154 "metadata": {},

155 "outputs": [],

156 "source": [

157 "# confusion matrix\n",

158 "from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay\n",

159 "import seaborn as sn\n",

160 "labels = [’Bad’, ’Best’, ’Good’]\n",

161 "cm = confusion_matrix(y_test, y_pred)\n",

162 "cmd = ConfusionMatrixDisplay(cm, display_labels= [’Bad’, ’Best’, ’Good’])\n",

163 "#sn.heatmap(cmd, annot=True)\n",

164 "cmd.plot()\n",

165 "cmd.ax_.set(xlabel=’Predicted’, ylabel=’True’)\n"

166 ]

167 },

168 {

169 "cell_type": "code",

170 "execution_count": null,

171 "id": "dbe96958",

172 "metadata": {},

173 "outputs": [],

174 "source": [

175 "from sklearn.tree import export_text\n",

176 "#expert rf into plain text file\n",

177 "rules = ’’\n",

178 "line = ’*********************************************** \\n’\n",

179 "for t in clf.estimators_:\n",

222



180 " rules += export_text(t, feature_names=predictors, max_depth=22,

show_weights=True)\n",

181 " rules += line"

182 ]

183 },

184 {

185 "cell_type": "code",

186 "execution_count": null,

187 "id": "89baf8cb",

188 "metadata": {},

189 "outputs": [],

190 "source": [

191 "with open(’rules_77_0409.txt’,’w’) as f:\n",

192 " f.write(rules)"

193 ]

194 },

195 {

196 "cell_type": "code",

197 "execution_count": null,

198 "id": "c9b0632a",

199 "metadata": {},

200 "outputs": [],

201 "source": [

202 "#the following code is for checking the last five grindings for a list of

rolls\n",

203 "\n",

204 "#list of rolls we want to check\n",

205 "roll_list = pd.read_csv(’mycsv0409.csv’) \n",

206 "#full data set including the historical grindings of each roll\n",

207 "df = pd.read_csv(’../raw_data/main_data.csv’)\n",

208 "values_to_remove = [1]\n",

209 "df = df[~df[’damage_flag’].isin(values_to_remove)]\n",

210 "\n",

211 "\n",

212 "# mill_id 2 has only 71 entries so drop all \n",

213 "df = df[df.mill_id != 2]\n",

214 "\n",

215 "df.dropna(subset=[’diam_difference’])\n",

216 "df.reset_index(drop=True, inplace=True)\n",

217 "\n",

218 "L = roll_list[’roll_id’].tolist()\n",

219 "df = df.sort_values([’roll_id’, ’grind_nr’], ascending=[True, True])"

220 ]

221 },

222 {

223 "cell_type": "code",

224 "execution_count": null,

225 "id": "3c23c558",

226 "metadata": {},

227 "outputs": [],

228 "source": [

229 "roll_list = pd.read_csv(’mycsv0609.csv’) \n",

230 "roll_list.set_index(’trip’, inplace=True)"

231 ]

232 },

233 {

234 "cell_type": "code",

235 "execution_count": null,
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236 "id": "a1a686c4",

237 "metadata": {},

238 "outputs": [],

239 "source": [

240 "df2 = pd.DataFrame()\n",

241 "\n",

242 "#loop through the roll list, and match it with the bigger data set to find the

last five grindings of each roll in roll list\n",

243 "for (id,nr) in roll_list.itertuples(index=False):\n",

244 " data = df[ (df[’roll_id’] == id) & (df[’grind_nr’] < nr) ]\n",

245 " data = data.sort_values([’roll_id’, ’grind_nr’,’diam_difference’],

ascending=[True, True,False])\n",

246 " data2 = data.groupby(’roll_id’).tail(5) #get last 5 entries for each roll\n",

247 " \n",

248 " if data2[’diam_difference’].max() > 1: #if any of the entries are greater than

specific value\n",

249 " roll_list.loc[roll_list[’roll_id’] == id, ’hasRecentHighStockRemoval’] = True

#set flag to true\n",

250 " else:\n",

251 " roll_list.loc[roll_list[’roll_id’] == id, ’hasRecentHighStockRemoval’] =

False#flag to false\n",

252 "print(roll_list)\n",

253 "\n",

254 "print(data2[[’roll_id’,’grind_nr’,’diam_difference’]])\n",

255 "\n",

256 "roll_list.to_csv(\"highStockRemoval1509.csv\", encoding=’utf-8’, index=True)"

257 ]

258 },

259 {

260 "cell_type": "code",

261 "execution_count": null,

262 "id": "a66ad127",

263 "metadata": {},

264 "outputs": [],

265 "source": [

266 "#test with one data vlaue example \n",

267 "df2 = pd.DataFrame()\n",

268 "data = df[ (df[’roll_id’] == 1524) & (df[’grind_nr’] < 137) ]\n",

269 "data = data.sort_values([’roll_id’, ’grind_nr’,’diam_difference’],

ascending=[True, True,False])\n",

270 "data2 = data.groupby(’roll_id’).tail(5)\n",

271 " \n",

272 "if data2[’diam_difference’].max() > 1:\n",

273 " roll_list.loc[roll_list[’roll_id’] == 1524, ’hasRecentHighStockRemoval’] =

True\n",

274 "else:\n",

275 " roll_list.loc[roll_list[’roll_id’] == 1524, ’hasRecentHighStockRemoval’] =

False\n",

276 "\n",

277 "print(data2[[’roll_id’,’grind_nr’,’diam_difference’]])\n",

278 "\n",

279 "#roll_list.to_csv(\"highStockRemoval1509.csv\", encoding=’utf-8’, index=True)"

280 ]

281 }

282 ],

283 "metadata": {

284 "kernelspec": {

285 "display_name": "Python 3.10.6 64-bit",
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286 "language": "python",

287 "name": "python3"

288 },

289 "language_info": {

290 "codemirror_mode": {

291 "name": "ipython",

292 "version": 3

293 },

294 "file_extension": ".py",

295 "mimetype": "text/x-python",

296 "name": "python",

297 "nbconvert_exporter": "python",

298 "pygments_lexer": "ipython3",

299 "version": "3.10.6"

300 },

301 "vscode": {

302 "interpreter": {

303 "hash": "eac9142a4fc6ce54a1c61b3fe7360112b2e67278aa489ff13858b47584317d1f"

304 }

305 }

306 },

307 "nbformat": 4,

308 "nbformat_minor": 5

309 }
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