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Dilaton effective field theory (dEFT) describes the long distance behavior of certain confining,
near-conformal gauge theories that have been studied via lattice computation. Pseudo-Nambu-
Goldstone bosons (pNGBs), emerging from the breaking of approximate, continuous, internal sym-
metries, are coupled to an additional scalar particle, the dilaton, arising from the spontaneous
breaking of approximate scale invariance. This effective theory has been employed to study possible
extensions of the standard model. In this paper, we propose a complementary role for dEFT, as a
description of the dark matter of the universe, with the pNGBs identified as the dark-matter par-
ticles. We show that this theory provides a natural implementation of the “forbidden” dark matter
mechanism, and we identify regions of parameter space for which the thermal history of dEFT yields
the measured dark matter relic density.

I. INTRODUCTION

The nature of the dark matter of the universe is one of
the most important mysteries in fundamental science [1].
If dark matter takes the form of (non relativistic) new
particles, its non-gravitational interactions with the stan-
dard model (SM) must be very weak. Yet, current con-
straints on cold dark matter (CDM) are compatible with
a vast range of masses and interaction strengths (see
Ref. [2], and references therein).

Global fits of cosmological data within the ΛCDM

paradigm (the standard cosmological model) determine
the present cold dark matter energy density to be
ΩCDMh2 = 0.120± 0.001 [3],1 CDM providing about 26-
27% of the energy content of the universe.

A natural mechanism for populating the universe with
dark matter and explaining the present abundance is
freezeout; in the early universe, the dark matter was in
thermal equilibrium with the SM plasma, decoupling as
the universe expanded, and decreasing its interaction rate
with the SM. When this mechanism is realized, the relic
density, ΩCDMh2, is determined by the annihilation and
replenishment cross sections of dark matter particles.

The dark matter particles could be composite, emerg-
ing in a new strongly coupled dark sector. As discussed
in Ref. [5], and the review [6], this possibility may be rele-
vant to anomalies in small-scale structure [7, 8]. Further-
more, if the new strong dynamics leads to a first-order
phase transition in the early universe, this might yield
a relic stochastic gravitational-wave background [9–11],
detectable in experiments such as LISA [12] or ET [13].

One intriguing extension of the freezeout idea is that,
within the dark sector, CDM particles annihilate into

1 h ≃ 0.674(5) is Hubble’s constant, H0, in units of
100 km s−1Mpc−1, and ΩCDM is the CDM energy density nor-

malized to criticality, ρc ≡ 3H2
0

8πGN
= 1.878 × 10−26h2kgm−3 [4].

heavier states, through a process that would be forbid-
den at zero temperature, but is allowed at finite tempera-
ture. This mechanism is known as forbidden dark matter
(FDM). See Refs. [14, 15], and [16, 17] for applications.
The thermal suppression in the FDM mechanism allows
for realistically large relic densities at freezeout, but with
smaller CDMmasses and a broad range of self-interaction
strengths.
Here, we propose a natural realization of FDM within

dEFT. This effective theory extends the conventional chi-
ral Lagrangian with its pNGB fields, π, to include a
dilaton field, χ. It has been extensively studied, in our
Refs. [18–23] and in Refs. [24–42]. See also the precur-
sors in Refs. [43, 44] and Ref. [45]. dEFT emerges as the
low-energy description of certain underlying gauge theo-
ries amenable to lattice studies. One notable example is
the SU(3) gauge theory with Nf = 8 fundamental Dirac
fermions [46–58]. Lattice studies of this theory have re-
ported evidence for the presence of a light singlet, scalar
particle, along withN2

f−1 pNGBs, in the accessible range
of fermion masses.
Although the SU(3) gauge theory provides a UV-

complete environment in which to implement the for-
bidden dark matter dynamics, we restrict attention to
only the lightest spin-0 states, and describe the dark
matter within dEFT, ignoring all other, heavier, com-
posite states. Our approach therefore can apply to other
gauge theories that admit a dEFT low-energy descrip-
tion [30, 34, 37, 59–61].
We take the dilaton mass, Md, and the pNGB multi-

plet mass, Mπ, to be free parameters, with Md > Mπ.
In the SU(3) gauge theory, throughout the fermion-mass
range explored on the lattice, the dilaton is somewhat
heavier than the pNGBs, which are the dark matter par-
ticles. This hierarchy is expected to persist down to the
chiral limit, since explicit breaking of conformal symme-
try remains even there. Finally, we discuss the coupling
of the dark sector to the standard model, which must
be present to achieve thermal equilibrium between the
sectors.
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The description of a dark sector in terms of pNGB
fields (but no dilaton) has appeared before in the
literature on strongly interacting massive particles
(SIMPs) [62–65]. There, the depletion takes place
through a 3 → 2 process, with the relevant 5-point in-
teraction arising from a Wess-Zumino-Witten term. Our
dEFT contains 3 → 2 processes even at leading order,
but, in the parameter range of interest, they are less im-
portant than the dominant 2 → 2 (forbidden) processes.
Models in which pNGB dark matter is coupled to a

dilaton, but which are not of the FDM type, have been
identified in the literature [66–68]. We also note that
an FDM model including a dilaton has appeared re-
cently [69], though in this case the dark matter is not
a pNGB. All these approaches are rather different from
strongly coupled models in which the dark matter candi-
date is a baryon [70].

In Section II, we summarize dEFT for describing the
dark matter pNGBs, π, and the dilaton, χ. The dEFT
interactions yield the annihilation process ππ → χχ, its
inverse, and also the self-interaction among the πs. In
Section III, we compute the relic density, mapping out
the space of allowed masses and coupling strengths. The
interaction with the SM is discussed in Section IV. We
summarize and discuss open questions in Section V.

II. DILATON EFFECTIVE FIELD THEORY

Our framework is defined by the three-term La-
grangian

L = LSM + LD + Lint , (1)

where LSM describes the standard model and LD de-
scribes a new composite dark sector with a confinement
scale that can be below the electroweak scale. The
(highly suppressed) interaction between the two sectors
is described by Lint.
The dark-sector Lagrangian, LD, is taken to be that

of dEFT. Its form, reviewed in Ref. [23], is given by

LD =
1

2
∂µχ∂

µχ +
F 2
π

4

(
χ

Fd

)2

Tr
[
∂µΣ(∂

µΣ)†
]

+
M2

πF
2
π

4

(
χ

Fd

)y

Tr
[
Σ+ Σ†] − V (χ) , (2)

where Mπ and Fπ are the the mass and decay constant of
the composite pNGBs, Σ includes the multiplet of pNGB
fields with Σ†Σ = 1, and χ is the dilaton field. The
potential, V (χ), includes a term that explicitly breaks
conformal symmetry, and the exponent y is a constant.
The dilaton field has a full potential arising from V (χ)
and the third term of Eq. (2):

W (χ) ≡ V (χ)− M2
πF

2
πNf

2

(
χ

Fd

)y

, (3)

and acquires a nonzero vacuum expectation value (VEV)
⟨χ⟩ = Fd at the potential minimum, breaking approxi-
mate scale invariance spontaneously. Expanding about
the minimum via the redefinition χ = Fd + χ̄ determines
the dilaton mass and self-interactions:

W (χ̄) = constant +
M2

d

2
χ̄2 +

γ

3!

M2
d

Fd
χ̄3 + . . . , (4)

where γ is a constant greater than 2 [45], which depends
on y and the form of the term in V (χ) that explicitly
breaks scale invariance.

To compute the dark-matter relic density, we need to
know the cross section for the forbidden process, ππ →
χχ, and its inverse, χχ → ππ. These depend on the
parameters of dEFT: the masses, M2

d and M2
π , the decay

constants, F 2
d and F 2

π , the number of pNGBs, which we
call Nπ, and the dimensionless parameters y and γ.

Lattice studies of specific gauge theories, which pro-
vide ultraviolet completions for dEFT, yield (model-
dependent) information about some of the dEFT pa-
rameters. For example, in the SU(3) gauge theory with
Nf = 8 fundamental fermions, Nπ = N2

f − 1 = 63 and
fits of dEFT to lattice data constrain the parameter y
to be close to 2 [37–39], a value also supported by the-
oretical arguments [71]. For simplicity, we set y = 2 in
the following, although recovering the more general ex-
pressions is straightforward. The parameter γ is less well
determined, and we keep it general.

The lattice studies of the Nf = 8 theory explore only a
particular range ofMπ values (in lattice units). Through-
out this range, Md is larger than Mπ, but of the same or-
der. We take this to be the case in our description of the
dark sector. In these data sets, fits to dEFT predictions
indicate that the ratio F 2

π/F
2
d ≃ 0.1 [37–39], compatible

with the expectation that F 2
π/F

2
d ∼ N−1

f .

The effective expansion parameter of dEFT, at mo-
mentum scales of order Mπ or smaller, is of order
M2

πNπ/(4πFd)
2. For the range of fermion masses ex-

plored in the most recent Nf = 8 lattice study [58],
Mπ/Fπ ≈ 4, leading to an expansion parameter of order
0.5. By reducing fermion masses in the underlying the-
ory, Mπ/Fπ and the effective expansion parameter can
be made smaller. We assume Mπ/Fπ is small enough for
us to reliably use dEFT to compute the relevant cross
sections at freezeout, where the temperatures at play are
small compared to Mπ. After specifying the parameters
of dEFT, there remains only the question of the overall
mass scale of the dark sector. We consider a range of
possibilities below the electroweak scale.

The dark sector must couple to the standard model,
with enough strength to maintain thermal equilibrium
between the sectors during freezeout, and yet without
enough strength to overwhelm the forbidden mechanism
within the dark sector. We discuss this interaction in
Section IV, noting that a sizable range of very weak cou-
plings satisfy these constraints.
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III. RELIC DENSITY

In the FDM mechanism, the population of the dark
matter pNGBs is depleted through a 2 → 2 scattering
process to dilatons. These then decay into SM particles
through weak contact interactions to be discussed in Sec-
tion IV. The relic density is determined by the Boltzmann
equation

∂nπ

∂t
+ 3Hnπ =− ⟨σ2π→2χv⟩n2

π + ⟨σ2χ→2πv⟩
(
neq
χ

)2
,

(5)

where H is the Hubble scale and nπ is the total number
density of pNGBs (summed over all flavors). We assume
that due to the contact interaction the dilaton remains in
thermal equilibrium with the SM during freezeout. For
the relevant temperatures, T < Mπ, Md, we represent
the pNGB and dilaton number densities using the non-
relativistic equilibrium expression

neq
i = wi

(
MiT

2π

)3/2

e−Mi/T , (6)

where i = π, d, is the pNGB or dilaton, and wi counts
the number of species (wd = 1 and wπ = Nπ). The
quantities ⟨σ2π→2χv⟩ and ⟨σ2χ→2πv⟩ are the thermally
averaged cross section and inverse cross section.

The cross section ⟨σ2π→2χv⟩, vanishing at T = 0 since
Mπ < Md, is nonzero at finite T , and given in terms of
⟨σ2χ→2πv⟩ by

⟨σ2π→2χv⟩ =
(1 +∆)3

N2
π

e−2∆x⟨σ2χ→2πv⟩ , (7)

where x = Mπ/T and ∆ = (Md −Mπ)/Mπ. The forbid-
den rate is exponentially suppressed when T ≪ Md−Mπ.
Equation (7) can be derived by integrating the two cross
sections against the Maxwell-Boltzmann velocity distri-
bution, or by using the principle of detailed balance [15].

Employing Eq. (7) for the thermally averaged ππ →
χχ cross section in the Boltzmann equation yields

∂nπ

∂t
+ 3Hnπ = −⟨σ2χ→2πv⟩

×
(
n2
π

N2
π

(1 + ∆)3e−2∆x −
(
neq
χ

)2)
. (8)

The thermally averaged cross section, ⟨σ2χ→2πv⟩, can
be computed at tree level in dEFT. For the case y = 2,
this cross section is given approximately by

⟨σ2χ→2πv⟩ =
M2

πNπ

36πF 4
d

√
∆(2 +∆)(1 + ∆)(5 + γ)2 , (9)

where we have neglected corrections of order 1/x =
T/Mπ. We note that γ cannot be too large or else the
cross section, Eq. (9), would exceed unitarity bounds,
signaling that the dEFT is outside its domain of validity.

To solve the Boltzmann equation (Eq. (8)), we assume
a radiation dominated universe so that the Hubble scale,
H, is given by the expression

H = π

√
g(T )

90

T 2

Mpl
, (10)

where Mpl = 1/
√
8πG, with G Newton’s gravitational

constant, and g(T ) is a continuous function that counts
the effective number of relativistic degrees of freedom.
It is then convenient to recast Eq. (8) in terms of the

co-moving number density, Yπ = nπ/s, where s is the
entropy density given by the expression

s(T ) =
2π2

45
h(T )T 3 , (11)

and h(T ) is a different function that counts the effective
number of degrees of freedom. Free particles with masses
mi ≪ T contribute equally to the functions h(T ) and
g(T ). However, these functions differ in general due to
mass thresholds and interactions.
We construct h(T ) and g(T ) using tabulated values

taken from micrOMEGAs6.0 [72]. Those values are de-
rived from determinations of the functions presented in
Ref. [73], themselves obtained using lattice QCD calcu-
lations of the equation of state [74].
In terms of x = Mπ/T , the Boltzmann equation for Yπ

takes the form

dYπ

dx
= −ξ(Mπ/x)

x2
e−2∆x (1 + ∆)

3
[
Y 2
π − (Y eq

π )
2
]
, (12)

where Y eq
π = neq

π (T )/s(T ), with neq
π (T ) given by Eq. (6),

while

ξ(T ) ≡ 2π
√
10MπMpl

15N2
π

⟨σv⟩ h(T )√
g(T )

[
1 +

1

3

d lnh

d lnT

]
. (13)

We solve Eq. (12) numerically to obtain the co-moving
number density at late times Yπ(∞), and from it the
relic density of CDM today. A boundary condition must
be provided. We take it to be Yπ at a higher tempera-
ture, before freezeout but with T < Mπ (x > 1) so that
dEFT is applicable and the pNGBs are moving at a non-
relativistic typical speed. At which point we set Yπ to
its non-relativistic, thermal-equilibrium value Y eq

π (the
right-hand side of Eq. (12) causes Yπ to approach Y eq

π in
the range x > 1, independently of its behavior at higher
temperatures). The requisite late time value Yπ(∞) is
then insensitive to the behavior of Yπ at smaller x, ear-
lier in cosmological history.
We plot Yπ(x) in Fig. 1, for an illustrative choice of

dEFT parameters. Its qualitative behavior is similar for
a wide range of parameter choices. The late-time value,
Yπ(∞), which depends on dEFT parameters, determines
the relic density of CDM today through the expression

ΩCDMh2 =
Mπs0Yπ(∞)

ρc/h2
, (14)
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FIG. 1. In red, the numerical solution to Eq. (12) for the
yield function Yπ is shown for the choice Mπ = 1GeV with
model parameters Mπ/Fπ = 4, F 2

π/F
2
d = 0.1, ∆ = 0.3, γ = 3

and y = 2. The equilibrium yield Y eq
π is plotted as the solid

black line for comparison. The freezeout temperature, xf , is
represented as the vertical dashed line. The yield at late times
(large x) is plotted as the dashed horizontal line.

where s0 = 2970 cm−3 is the entropy density today. Set-
ting the relic density to its observed value ΩCDMh2 =
0.120 ± 0.001 [3] allows us to derive a constraint on the
allowed parameter space of dEFT.

The form of this constraint depends on the parameter
sensitivity of Yπ(∞), determined through the numerical
solution to Eq. (12). A range of possible values of the
dark-matter mass scale Mπ emerges depending on the
dEFT parameters. In Fig. 2, we plot the value of Mπ ver-
sus ∆ for three values of the ratio Mπ/Fπ, corresponding
to three values of the effective expansion parameter. For
a wide range of dEFT parameters, we are led to a mass
scale Mπ in the broad GeV range.

Figure 2 can be understood qualitatively by inspec-
tion of Eqs. (12) and (13), which determine Yπ(∞). It
can be argued that this quantity grows approximately lin-
early with Mπ and exponentially with ∆. This behavior
can be exhibited explicitly if Eq. (12) is solved analyt-
ically, which is possible if the evolution takes place at
temperatures T where g(T ) and h(T ) are approximately
constant. These functions however vary rapidly for tem-
peratures around the QCD confinement scale, giving rise
to the kinks visible in Fig. 2 for Mπ ∼ 3 GeV.

As indicated by the shading in Figure 2, the range
of Mπ values is further constrained, from below, by the
strength of elastic dark matter scattering. The behavior
of merging galaxy clusters limits the size of this cross
section to lie below the bound [75, 76]

σ

Mπ
≤ σmax

Mπ
≈ 2 cm2/g . (15)

Mπ/Fπ = 4
Mπ/Fπ = 1
Mπ/Fπ = 1/4

0.1 0.2 0.3 0.4 0.5
0.01

0.10

1

10

100

Δ

M
π
(G

eV
)

Relic Density

FIG. 2. The bands indicate the parts of the parameter space
for which the dark-matter relic density is within 10% of its
observed value. The red, gray and blue colors correspond to
three values of the quantity Mπ/Fπ, which determines the
dark matter self interaction coupling. In the bottom right
corner, there are portions of the bands shaded in paler colors,
for which the dark-matter mass falls below the lower bound
shown in Eq. (17), setting σmax/Mπ = 2 cm2/g. For reference,
we have also set F 2

π/F
2
d = 0.1, γ = 3 and y = 2.

The elastic cross section has the form

σ =
M2

π

128πF 4
πN

2
π

[
a2

4
− b2M2

πF
2
π

(4M2
π −M2

d )F
2
d

+
c2M4

πF
4
π

(4M2
π −M2

d )
2F 4

d

]
, (16)

where the parameters a2, b2, and c2 are listed in Table I.
In the regime F 2

π ≪ F 2
d , the contribution of the dilaton

to Eq. (16) is negligible and the terms proportional to b2

and c2 can be dropped. Our thermal cross section then
coincides with the result of Ref. [62]. For the Nf = 8
theory, the lower bound on Mπ becomes

Mπ ≥ 11.8 MeV

(
Mπ

Fπ

)4/3 (
2 cm2/g

σmax/Mπ

)1/3

. (17)

Using the numerical solution of Eq. (12), we can also
determine the freezeout temperature, Tf . We take this

a2N2
f 8(N2

f − 1)(3N4
f − 2N2

f + 6)

b2Nf 64(N2
f − 1)(2N2

f − 1)

c2 256(N2
f − 1)2

TABLE I. Coefficients that appear in the 2π → 2π scattering
cross section in Eq. (16).
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Mπ/Fπ = 4
Mπ/Fπ = 1
Mπ/Fπ = 1/4

0.01 0.10 1 10 1000
5

10
15
20
25
30
35

Mπ (GeV)

x f
Freezeout Temperature

FIG. 3. Plot of xf = Mπ/Tf as a function of the dark-matter
mass, Mπ, for different choices of Mπ/Fπ. The value of ∆ has
been adjusted to ensure that the dark matter relic density is
equal to its observed value. For reference, we have also set
F 2
π/F

2
d = 0.1, γ = 3 and y = 2.

to be the temperature below which the comoving num-
ber density of pNGBs, Yπ(x), begins to rise significantly
above the value it would have if it were in thermal equi-
librium with the rest of the SM Y eq

π (x), indicating that
the pNGBs have decoupled from the SM bath. Follow-
ing the convention of [77], we take Yπ(xf ) = 2.5Y eq

π (xf ),
where xf = Mπ/Tf . We plot xf as a vertical dashed line
in Fig. 1.

In Fig. 3, we show the dependence of xf on Mπ. The
figure indicates this dependence is approximately linear
when viewed using a log scale for Mπ, which can be ex-
plained using Eq. (14). Since ΩCDMh2 is being fixed to
its observed value, it implies that MπYπ(∞) = 0.4 eV.

Furthermore, Yπ(∞) ∼ neq
π (Tf )/s(Tf ) ∼ x

3/2
f e−xf up

to constants. Inverting this relationship approximately
yields xf ∼ const+log(Mπ/GeV). Note that neq

π (T ) car-
ries no direct dependence on the ratio Mπ/Fπ, explain-
ing the observed lack of variation with this quantity. The
kinks visible around Mπ ≈ 3 GeV arise due to the abrupt
change in relativistic degrees of freedom h(T ) around the
QCD confinement scale.

A. Subdominant 3 → 2 Processes

In addition to the 2 → 2 annihilations of dark-matter
pNGBs to dilatons, the population of pNGBs can also
be depleted through 3 → 2 processes, as in the compos-
ite SIMP models of Refs. [62–65]. There, with the dark
matter described only by pNGBs (no dilaton), the rele-
vant five-point interaction arises from the Wess-Zumino-
Witten term. In our framework, we must also account for
the 3 → 2 process, πππ → χπ, with an outgoing dilaton,
which arises at leading order in dEFT. It is unsuppressed
thermally, as long as Md < 2Mπ.

The relative importance of this process during freeze-
out is given by the ratio

R =
neq
π ⟨σ3π→χπv

2⟩
⟨σ2π→2χv⟩

∣∣∣∣
x=xf

. (18)

The denominator 2 → 2 cross section is given by Eqs. (7)
and (9), which at freezeout, with ∆ and γ in the relevant
range, is of order

⟨σ2π→2χv⟩ ≈
M2

πe
−2∆xf

F 4
dNπ

. (19)

The numerator 3 → 2 cross section, with mass dimen-
sion −5, arises from a tree level amplitude of order
M2

π/(F
2
πFd). The phase-space integral is similar to that

of the 2 → 2 cross section. Thus we expect the cross
section to be roughly of order

⟨σ3π→χπv
2⟩ ≈ Mπ

F 4
πF

2
dNπ

. (20)

Using Eq. (6) for the equilibrium number density, we have

R ≈ Nπ
M2

πF
2
d

F 4
π

x
−3/2
f e−(1−2∆)xf . (21)

Thus R is exponentially suppressed due to the factor
neq
π associated with the 3 → 2 process, provided that

∆ < 0.5. This restriction, implemented in Fig. 2, is sat-
isfied by the LSD lattice data, and for a range of Mπ

values closer to the chiral limit. We note that the rela-
tive importance of 2 → 2 and 3 → 2 processes has also
been discussed in a different set of models [78–82].

IV. INTERACTION WITH THE SM

The FDM mechanism and the form of Eq. (5) incor-
porate thermal equilibrium between the standard model
and the dark-sector dilaton. To provide the necessary
coupling between the dilaton and the standard model,
we introduce weak contact interactions of the form

Lint = ϵF 4−dSM

d

(
χ̄

Fd

)
OSM , (22)

where χ̄ ≡ χ − Fd, and OSM is an SM-singlet opera-
tor with engineering dimension dSM. We envision that
this interaction arises at high scales, well above those of
the dEFT and the SM, leading to a small value for the
dimensionless parameter ϵ. We do not describe the oper-
ators OSM in detail here, noting only two key features.
Firstly, they are built from SM fields that are sufficiently
light after electroweak symmetry breaking to contribute
to the decay of the dilaton. Secondly, since the dilaton, χ,
emerges within only the dark sector, they are not directly
associated with the possibility of spontaneous breaking of
approximate scale symmetry in the SM. Thus the opera-
tors OSM are not constrained to be related to the trace
of the energy momentum tensor of the SM.
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We denote the inclusive decay rate of the dilaton into
SM particles as Γχ→SM. It must be large enough to en-
sure that the dark sector and the SM reach thermal equi-
librium well before the freezeout process begins. We take
this to be at a common temperature of order Mπ, just as
the dark matter is becoming non-relativistic. The lower
limit is taken to be

Γχ→SM ≳ HT=Mπ
. (23)

It is also important that the direct annihilation of
pNGBs to SM particles through a virtual dilaton does
not dominate the forbidden annihilations. This leads to
the inequality

⟨σ2π→SMv⟩ ≲ ⟨σ2π→2χv⟩ , (24)

where the strongest bound comes when the right hand
side is taken to be the cross section at roughly the freeze-
out temperature. There, ⟨σ2π→2χv⟩ ≈ HT=Tf

/neq
π (Tf ).

Equation (24) leads to an upper bound on Γχ→SM

since the dominant contribution to the left-hand side
comes from an s-channel dilaton exchange. The general
“resonance” expression for this cross section is

⟨σ2π→SMv⟩ = M5
dΓχ→SM

4NπM2
πF

2
d (4M2

π −M2
d )

2 , (25)

where we have assumed a narrow width and taken y = 2,
as before. Since 2Mπ > Md throughout the parameter
space we consider, the dilaton is unable to decay to two
pNGBs, and is well off shell. However, the resonance
formula may still be applied in this case [83].

We combine Eqs. (23) - (25), employing Eq. (7) for
⟨σ2π→2χv⟩. This leads to the order-of-magnitude double-
sided bound

HT=Mπ
≲ Γχ→SM ≲ HT=Tf

MπNπF
2
d

neq
π (Tf )

, (26)

where we have disregarded numerical factors in the up-
per bound, anticipating that its relative largeness is de-
termined dominantly by the exponential suppression of
neq
π in the denominator. The two bounds insure a sizable

allowed range for the decay rate Γχ→SM , but restricted
to very small values relative to Md ≈ Mπ.
If the decay rate Γχ→SM arises from a single interac-

tion of the form Eq. (22), we can roughly bound the pa-
rameter ϵ. For the case dSM = 3, and taking the decay to
be into two light SM states, we have Γχ→SM ≈ ϵ2Md/16π.
For the choice Mπ/Fπ = 1 for example, and taking
Mπ ≈ Md = 1 GeV, the forbidden mechanism is vi-
able providing 10−9 ≲ ϵ ≲ 10−4. Both the lower and
upper bounds grow with Mπ, but remain very small for
the range of allowed mass values shown in Fig. 2.

The magnitude of the weak dilaton-SM interactions in
Eq. (22), the structure of the operators OSM, and the
mass scale Mπ will determine possible experimental sig-
natures of the dark matter. These could include dilaton

production and decay in collider searches as well as sig-
nals in direct and indirect detection experiments. It will
be valuable to develop predictions for these phenomena,
which will involve further modeling of the dilaton-SM in-
teractions.

V. SUMMARY AND DISCUSSION

We have proposed a description of composite dark
matter based on dilaton effective field theory (dEFT).
The dark-matter particles are pseudo-Nambu-Goldstone
bosons (pNGBs) arising from an underlying, near con-
formal gauge theory. Lattice studies of near conformal
gauge theories have led also to a relatively light scalar
particle, identified as an approximate dilaton in dEFT. In
the fermion-mass range of the lattice studies, the dilaton
mass Md is of order the pNGB mass Mπ, but somewhat
larger.
Thus the dEFT provides a natural implementation of

the forbidden dark-matter framework [14, 15], in which
freezeout of the dark-matter population is described by
2 → 2 scattering to somewhat heavier particles. The
process takes two pNGBs to two dilatons (which then
transition rapidly to SM particles). Forbidden at zero
temperature by the dilaton-pNGB mass gap, this process
becomes allowed but suppressed at finite temperatures
small compared to Mπ.
The dark-sector dEFT we have employed derives from

an underlying SU(3) gauge theory with Nf = 8 Dirac
fermions. After describing the dEFT, along with an ef-
fective coupling to the SM, we have discussed the com-
putation of the relic dark-matter density in terms of the
late-time, co-moving number density Yπ(∞) (Eq. (14)).
Setting the relic density to its observed value has then al-
lowed us to derive a constraint on the allowed parameter
space of the dEFT.
We have adopted the value F 2

π/F
2
d ∼ 0.1 for the ratio

of pNGB and dilaton decay constants, as suggested by
the lattice computations. We have then considered sev-
eral values for the ratio Mπ/Fπ, which determines the
interaction strength of the dEFT. One, Mπ/Fπ = 4, is
typical of the current range of lattice data. It leads to
an effective dEFT coupling strength of order 0.5 (at the
edge of weak coupling). The other, smaller values for
Mπ/Fπ will emerge from lattice studies closer to the chi-
ral limit, and place the dEFT further inside the weak
coupling range.
With either of these choices for Mπ/Fπ, a correlated

set of values for Mπ and ∆ ≡ (Md −Mπ)/Mπ yields the
measured relic dark-matter density, as shown in Fig. 2.
For the case Mπ/Fπ = 1, for example, Mπ can range up
to roughly 10 GeV without the need to fine tune ∆ close
to 0. It can range down to roughly 10 MeV, keeping ∆
below 0.4, ensuring that the forbidden process dominates
the SIMP (3 → 2) process. Freezeout of the dark matter
takes place at temperatures of order Mπ/25, where the
dEFT is reliable and the dark matter is non-relativistic.
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We have briefly discussed the effective interaction that
must be present between the dEFT dark sector and the
particles of the SM, observing that a range of very weak
couplings are allowed, indicating that the interactions
arise from new physics at a very high scale. The detailed
form of these interactions will dictate possible experimen-
tal signatures of the dark matter.

The particular dEFT we have employed to describe the
dark sector, linked reassuringly to a specific underlying
gauge theory studied on the lattice, should be regarded
as only one possibility. Other underlying gauge theories
that yield a light scalar could lead to other dEFTs de-
scribing all the emergent light bound states.
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