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1. Introduction

In his celebrated paper [35] Segal introduced Γ-spaces and showed that they yield 
infinite loop spaces. In [7] Bousfield and Friedlander defined a model category structure 
for Γ-spaces and showed that its homotopy category recovers connective S1-spectra. 
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They also showed that fibrant objects in this model category are given by very special 
Γ-spaces.

Garkusha, Panin and Østvær [28] have recently introduced and studied motivic Γ-
spaces. They are M-enriched functors in two variables

X : Γop � Smk,+ → M,

where M is the category of pointed motivic spaces and Smk,+ is the M-category of 
framed correspondences of level 0. Special and very special motivic Γ-spaces are defined 
in [28] as M-enriched functors

X : Γop � Smk,+ → Mfr

satisfying several axioms, where Mfr is the M-category of pointed motivic spaces with 
framed correspondences. The axioms are a combination of Segal’s axioms and ax-
ioms reflecting basic properties of framed motives of algebraic varieties in the sense 
of Garkusha–Panin [26] (see [28] for details).

Inspired by [28] we introduce and study additive versions for motivic Γ-spaces in 
this paper. We start with an additive category of correspondences A such that the 
exponential characteristic of the base field k is invertible in A, and replace M by the 
closed symmetric monoidal Grothendieck category ΔopShv(A) of simplicial Nisnevich 
sheaves with A-transfers. The M-category Smk,+ is replaced here by a ΔopShv(A)-
category Sm whose objects are those of Smk. We define enriched motivic A-spaces as 
objects of the Grothendieck category of ΔopShv(A)-enriched functors [Sm, ΔopShv(A)]. 
Special enriched motivic A-spaces are defined similarly to special motivic Γ-spaces with 
slight modifications due to the additive context (see Definition 2.1 for the full list of 
axioms). In particular, the category Γop is redundant in this context (see Section 4).

The category [Sm, ΔopShv(A)] comes equipped with a local and a motivic model 
structure. Denote the model categories by [Sm, ΔopShv(A)]nis and [Sm, ΔopShv(A)]mot
respectively (see Section 7). Let D([Sm, ΔopShv(A)]) be the homotopy category of 
[Sm, ΔopShv(A)]nis. Define SpcA[Sm] as the full subcategory of D([Sm, ΔopShv(A)])
consisting of special enriched motivic A-spaces. It is worth mentioning that D([Sm,

ΔopShv(A)]) is equivalent to the full subcategory of connective chain complexes in the 
derived category D([Sm, Shv(A)]) of the Grothendieck category [Sm, Shv(A)]. Thus 
SpcA[Sm] can be regarded as a full subcategory of D([Sm, Shv(A)]), so that it can 
be studied by methods of classical homological algebra.

The following result is reminiscent of Bousfield–Friedlander’s theorem mentioned 
above for classical Γ-spaces (see Theorem 7.7).

Theorem. The category SpcA[Sm] is equivalent to the homotopy category of the model 
category [Sm, ΔopShv(A)]mot. The fibrant objects of [Sm, ΔopShv(A)]mot are the point-
wise locally fibrant special enriched motivic A-spaces.
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As applications of the preceding theorem we recover connective motivic bispectra with 
rational coefficients SH(k)Q,�0 (respectively very effective motivic bispectra with ratio-
nal coefficients SHveff(k)Q) from special rational enriched motivic A-spaces SpcA[Sm]
(respectively very effective rational enriched motivic A-spaces Spcveff

A [Sm]) — see Theo-
rems 9.2 and 9.4. Here we take A to be the category of finite Milnor–Witt correspondences 
with rational coefficients C̃or ⊗Q.

Theorem. The (S1, Gm)-evaluation functor induces equivalences of categories

evS1,Gm
: SpcC̃or,Q[Sm] → SH(k)Q,�0,

and

evS1,Gm
: Spcveff

C̃or,Q[Sm] → SHveff(k)Q.

In particular, the preceding theorem says that methods of homological algebra and 
Serre’s localization theory for Grothendieck categories become available for SH(k)Q. 
The combination of Bousfield localization and Serre’s localization is of great utility in 
recollements theorems of [24]. Similar technique can also be applied to our context and 
this will be the material of subsequent papers.

Relations to other works. Our approach in this paper is based on the techniques devel-
oped in [6]. In contrast with models for SH(k)�0 and SHveff(k) given by motivic Γ-spaces 
of [28] or the ∞-category of motivic spaces with tangentially framed correspondences 
of [18], we use minimal machinery of homological algebra for enriched Grothendieck 
categories [23] and basic technique of model categories to achieve concrete models for 
SH(k)Q,�0 and SHveff(k)Q. We do not work over a general base scheme as genuine local 
models for SH(S) (in the sense that they avoid the use of A1-localization) seem to be 
available only for S = Spec(k), k is a field. We refer the reader to [27] and [22, Section 6]
for local models of SH(k). In other words, A1-local objects with reasonable correspon-
dences over a general base scheme S are not detected by A1-invariant presheaves of 
homotopy groups in contrast with the case when S is the spectrum of a field. The latter 
property is crucial in our analysis. In addition, it is well known that strict A1-invariance 
fails for every positive dimensional scheme, see [3, Remark 4.9] and [14, Example 14.2]
for details. For model categories theory facts used in this paper we mostly adhere to [16]. 
We also refer to [15] for the theory of additive model categories.

The results of the paper were first presented at the Conference on Motivic and Equiv-
ariant Topology in May 2023 (Swansea, UK). The author expresses his gratitude to his 
supervisor Prof. Grigory Garkusha whose patience and keen insight have been indispens-
able throughout this work.

Notation. Throughout the paper we use the following notation.
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k field of exponential characteristic p

Smk smooth separated schemes of finite type over k

A symmetric monoidal additive V -category of correspondences
Psh(A) presheaves of abelian groups on A
Shv(A) Nisnevich sheaves of abelian groups on A
DMA triangulated category of big motives with A-correspondences
SH(k) stable motivic homotopy category over k

MA(X) A-motive of X ∈ Smk

M category of motivic spaces
fM category of finitely presented motivic spaces

Also, we assume that 0 is a natural number.

2. Preliminaries

Let Smk be the category of smooth separated schemes of finite type over a field k. 
Throughout this paper we work with an additive category of correspondences A that is 
symmetric monoidal and satisfies the strict V -property and the cancellation property in 
the sense of [21]. Basic examples are given by the categories of finite correspondences 
Cor or Milnor–Witt correspondences C̃or. We also assume that in A the exponential 
characteristic p of k is invertible. Note that for any additive category of correspondences 
A we can form an additive category of correspondences A[1/p] in which p is invertible by 
tensoring all morphism groups of A with Z[1/p]. Let Shv(A) be the category of Nisnevich 
sheaves on A with values in abelian groups.

We shall adhere to the following notations from [21]. Let SpS1,Gm
(k) denote the cat-

egory of symmetric (S1, Gm)-bispectra, where the Gm-direction is associated with the 
pointed motivic space (Gm, 1). It is equipped with a stable motivic model category 
structure. Denote by SH(k) its homotopy category. The category SH(k) has a closed 
symmetric monoidal structure with monoidal unit being the motivic sphere spectrum S. 
Given p > 0, the category SpS1,Gm

(k) has a further model structure whose weak equiv-
alences are the maps of bispectra f : X → Y such that the induced map of bigraded 
Nisnevich sheaves f∗ : πA1

∗,∗(X) ⊗Z[1/p] → πA1

∗,∗(Y ) ⊗Z[1/p] is an isomorphism. In what 
follows we denote its homotopy category by SH(k)[1/p]. The category SH(k)Q is defined 
in a similar fashion.

Following [6], we define a Shv(A)-enriched category Sm, whose objects are those of 
Smk, and whose morphism sheaves are defined by

Sm(X,Y ) := HomShv(A)(A(−, X)nis,A(−, Y )nis).

In Section 3 we will define a natural local model structure on ΔopShv(A). Weak 
equivalences in this model structure are the local equivalences.

According to [11, Theorem 4.3.12], if G is a Grothendieck category with a generator 
G, then the category of simplicial objects ΔopG in G is also Grothendieck and the set 
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{G ⊗Δ[n] | n � 0} is a family of generators for ΔopG. In particular, a family of generators 
for the Grothendieck category ΔopShv(A) is given by the set

{A(−, X)nis ⊗ Δ[n] | X ∈ Smk, n � 0}.

Also, the category of enriched functors [Sm, Shv(A)] is Grothendieck by [1]. Its 
family of generators is given by {Sm(X, −) ⊗Shv(A) A(−, Y )nis | X, Y ∈ Smk}. 
Hence Δop[Sm, Shv(A)] is Grothendieck by [11]. Its family of generators is given by 
{Sm(X, −) ⊗Shv(A) A(−, Y )nis ⊗ Δ[n] | X, Y ∈ Smk, n � 0}.

Note that Δop[Sm, Shv(A)] and [Sm, ΔopShv(A)] are equivalent, and we will freely 
pass back and forth between the two.

2.1. Definition. An enriched motivic A-space is an object of the Grothendieck category 
Δop[Sm, Shv(A)]. Similarly to [28, Axioms 1.1], an enriched motivic A-space X is said 
to be special if it satisfies the following axioms:

(1) For all n � 0 and U ∈ Smk the presheaf of homotopy groups V �−→ πn(X (U))(V ) is 
A1-invariant.

(2) (Cancellation) Let G∧1
m denote the direct summand of the 1-section A(−, pt)nis −→

A(−, Gm)nis in Shv(A) and for n � 1 inductively define G∧n+1
m := G∧n

m ⊗G∧1
m . For 

all n � 0 and U ∈ Smk the canonical map

X (G∧n
m × U) −→ HomΔopShv(A)(G∧1

m ,X (G∧n+1
m × U))

is a local equivalence.
(3) (A1-invariance) For all U ∈ Smk the canonical map X (U ×A1) −→ X (U) is a local 

equivalence.
(4) (Nisnevich excision) For every elementary Nisnevich square in Smk

U ′ V ′

U V

the induced square

X (U ′) X (V ′)

X (U) X (V )

is homotopy cartesian in the local model structure on ΔopShv(A).
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For n � 0 and every finitely generated field extension K/k, we have the standard 
algebraic n-simplex

Δn
K = Spec(K[x0, . . . , xn]/(x0 + · · · + xn − 1)).

For every 0 � i � n we define a closed subscheme vi of Δn
K by the equations xj = 0 for 

j �= i. We write Δ̂n
K/k for the semilocalization of the standard algebraic n-simplex Δn

K

with closed points the vertices v0, . . . , vn ∈ Δn
K .

2.2. Definition. Similarly to [28, Axioms 1.1], we say that X is very effective or satisfies 
Suslin’s contractibility if for every U ∈ Sm and every finitely generated field extension 
K/k the diagonal of the bisimplicial abelian group X (G∧1

m × U)(Δ̂•
K/k) is contractible.

Since we assume that p is invertible in A the following lemma is straightforward.

2.3. Lemma. If F : A → Ab is an additive functor, then F factors over the full 
subcategory of Z[1/p]-modules ModZ[1/p] ⊆ Ab. In particular the inclusion functor 
ModZ[1/p] → Ab induces an equivalence of categories Shv(A, Ab) 	 Shv(A, ModZ[1/p]).

For some of our results we will also have to make additional assumptions on the 
category of correspondences A.

2.4. Definition. Let Fr∗(k) be the category of Voevodksy’s framed correspondences (see 
[26, Definition 2.3]). For each V ∈ Smk let σV : V → V be the level 1 explicit framed 
correspondence ({0} × V, A1 × V, prA1 , prV ).

(1) We say that the category of correspondences A has framed correspondences if there 
is a functor Φ : Fr∗(k) → A which is the identity on objects and which takes every 
σV to the identity of V .

(2) We say that A satisfies the Δ̂-property if for every n > 0 and for every finitely 
generated field extension K/k the diagonal of MA(G∧n

m )(Δ̂•
K/k) is quasi-isomorphic 

to 0. Here MA : Sm → Ch(Shv(A)) is the enriched motive functor MA(U) :=
C∗A(−, U)nis.

Basic examples satisfying both items are given by the categories of finite correspondences 
Cor or Milnor–Witt correspondences C̃or.

3. The local model structure

In [6, Section 3] we constructed a model structure on Ch(Shv(A)) that is cellu-
lar, strongly left proper, weakly finitely generated, monoidal and satisfies the monoid 
axiom. In this section we construct a model structure on Ch�0(Shv(A)) that is cel-
lular, strongly left proper, weakly finitely generated, monoidal, satisfies the monoid 



710 P. Bonart / Journal of Algebra 657 (2024) 704–747
axiom, and in which weak equivalences are local quasi-isomorphisms. We construct the 
model structure by taking the right transferred model structure along the inclusion 
Ch�0(Shv(A)) → Ch(Shv(A)). We then transfer the model structure along the Dold-Kan 
correspondence, to get a model structure on ΔopShv(A) that is cellular, strongly left 
proper, weakly finitely generated, monoidal, satisfies the monoid axiom, and in which 
weak equivalences are stalkwise weak equivalences of simplicial sets.

Let us now start by constructing the model structure on Ch�0(Shv(A)). We have an 
inclusion functor ι : Ch�0(Shv(A)) → Ch(Shv(A)). The inclusion functor ι has a left 
adjoint τnaive : Ch(Shv(A)) → Ch�0(Shv(A)), called the naive truncation functor. It 
sends · · · → A1 → A0 → A−1 → . . . to · · · → A1 → A0. The inclusion functor ι also has 
a right adjoint τgood, called the good truncation functor. It sends

· · · → A1 → A0
∂0
A→ A−1 → . . .

to · · · → A1 → ker(∂0
A). So we have τnaive 
 ι 
 τgood.

3.1. Lemma. The endofunctor ιτnaive : Ch(Shv(A)) → Ch(Shv(A)) preserves cofibrations.

Proof. Since ιτnaive is a left adjoint functor, it suffices to check it on the set of generating 
cofibrations

ICh(Shv(A)) = {A(−, X)nis ⊗ SnZ → A(−, X)nis ⊗DnZ | n ∈ Z, X ∈ Smk}.

So take n ∈ Z, X ∈ Smk and consider the map

f : A(−, X)nis ⊗ SnZ → A(−, X)nis ⊗DnZ.

If n � 0 then ιτnaive(f) = f is a cofibration. If n � −2 then ιτnaive(f) = 0 is a cofibration. 
If n = −1 then ιτnaive(f) is the map 0 → A(−, X)nis ⊗ S0Z which is a cofibration, due 
to the following pushout square

A(−, X)nis ⊗ S−1Z A(−, X)nis ⊗D−1Z

0 A(−, X)nis ⊗ S0Z

as required. �
3.2. Definition. Given a model category M and an adjunction L : N � M : R, we say 
that the right transferred model structure along the adjunction L 
 R exists, if there 
exists a model structure on N , such that a morphism f is a weak equivalence (respectively 
cofibration) in N if and only if L(f) is a weak equivalence (respectively cofibration) in 
M .
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3.3. Lemma. The left transferred model structure on Ch�0(Shv(A)) along the adjunction

ι : Ch�0(Shv(A)) � Ch(Shv(A)) : τgood

exists. The resulting model structure on Ch�0(Shv(A)) is cofibrantly generated.

Proof. We use [5, Theorem 2.23]. All involved categories are locally presentable, and 
Ch(Shv(A)) is cofibrantly generated, so the theorem is applicable. We now have to show 
that

RLP(ι−1({cofibrations})) ⊆ ι−1({weak equivalences}).

So take p : X → Y with p ∈ RLP(ι−1({cofibrations})). We want to show that ι(p) is a 
weak equivalence in Ch(Shv(A)). We will show that ι(p) is a trivial fibration, by showing 
that it has the right lifting property with respect to cofibrations. Let f : A → B be a 
cofibration in Ch(Shv(A)) and consider a lifting problem

A

f

ιX

ιp

B ιY .

By adjunction this diagram has a lift, if and only if the following diagram has a lift

τnaiveA

τnaivef

X

p

τnaiveB Y .

Since p ∈ RLP(ι−1({cofibrations})), one has to show that τnaivef ∈ ι−1({cofibrations}). 
One has to show that ιτnaivef is a cofibration. As f is a cofibration, this follows from 
Lemma 3.1. �

We now have a model structure on Ch�0(Shv(A)), in which a morphism f is weak 
equivalence (respectively cofibration) if and only if ιf is a weak equivalence (respectively 
cofibration) in Ch(Shv(A)), and a morphism is a fibration in Ch�0(Shv(A)) if and only 
if it has the right lifting property with respect to all trivial cofibrations. Furthermore, 
the adjunction

ι : Ch�0(Shv(A)) � Ch(Shv(A)) : τgood

is a Quillen adjunction. Since weak equivalences in Ch(Shv(A)) are the local quasi-
isomorphisms, it follows that also weak equivalences in Ch�0(Shv(A)) are the local quasi-
isomorphisms.
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3.4. Lemma. Ch�0(Shv(A)) is a monoidal model category.

Proof. Let us verify the pushout product axiom. Let f, g be two cofibrations in 
Ch�0(Shv(A)), and let f�g be their pushout-product. Since ι : Ch�0(Shv(A)) →
Ch(Shv(A)) is a strong monoidal left adjoint functor, we have an isomorphism of arrows 
ι(f�g) ∼= ι(f)�ι(g). As f, g are cofibrations in Ch�0(Shv(A)), we see that ι(f), ι(g) are 
cofibrations in Ch(Shv(A)). Since Ch(Shv(A)) is a monoidal model category, ι(f)�ι(g)
is a cofibration in Ch(Shv(A)). So f�g is a cofibration in Ch�0(Shv(A)). Also, if f or 
g is a trivial cofibration in Ch�0(Shv(A)), then ι(f) or ι(g) is a trivial cofibration in 
Ch(Shv(A)). Thus ι(f)�ι(g) is a trivial cofibration, hence f�g is a trivial cofibration. 
Therefore Ch�0(Shv(A)) satisfies the pushout-product axiom.

Let us verify the unit axiom. If 1�0 is the monoidal unit of Ch�0(Shv(A)), and 1 is the 
monoidal unit of Ch(Shv(A)), then since ι is strong monoidal we have an isomorphism 
ι1�0 ∼= 1. As 1 = A(−, pt)nis is cofibrant in Ch(Shv(A)) it follows that 1�0 is cofibrant 
in Ch�0(Shv(A)). This implies the unit axiom. �
3.5. Lemma. Ch�0(Shv(A)) satisfies the monoid axiom.

Proof. Let W�0 denote the class of weak equivalences and CW�0 denote the class of 
trivial cofibrations in Ch�0(Shv(A)). Let W denote the class of weak equivalences and 
CW denote the class of trivial cofibrations in Ch(Shv(A)). We need to show that

((CW�0) ⊗ Ch�0(Shv(A))) − cof ⊆ W�0.

Since W�0 = ι−1(W ), this means we have to show that

ι(((CW�0) ⊗ Ch�0(Shv(A))) − cof) ⊆ W.

Since ι is a strong monoidal left adjoint functor we have

ι(((CW�0) ⊗ Ch�0(Shv(A))) − cof) ⊆ (ι(CW�0) ⊗ Ch(Shv(A))) − cof .

Since ι preserves trivial cofibrations we have ι(CW�0) ⊆ CW . Since Ch(Shv(A)) satisfies 
the monoid axiom (see [6]), it follows that

(ι(CW�0) ⊗ Ch(Shv(A))) − cof ⊆ (CW ⊗ Ch(Shv(A))) − cof ⊆ W.

Hence Ch�0(Shv(A)) satisfies the monoid axiom. �
3.6. Lemma. Let ICh(Shv(A)) be a set of generating cofibrations of Ch(Shv(A)). Then the set 
τnaive(ICh(Shv(A))) is a set of generating cofibrations of Ch�0(Shv(A)). In particular, the 
model category Ch�0(Shv(A)) has a set of generating cofibrations with finitely presented 
domains and codomains.
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Proof. By Lemma 3.1 all morphisms from τnaive(ICh(Shv(A))) are cofibrations in
Ch�0(Shv(A)). Let f be a cofibration in Ch�0(Shv(A)). We claim that f ∈
(τnaive(ICh(Shv(A)))) − cof. Since f is a cofibration in Ch�0(Shv(A)), also ιf is a cofibra-
tion in Ch(Shv(A)). Since ICh(Shv(A)) is a set of generating cofibrations for Ch(Shv(A)), 
it follows that ιf ∈ ICh(Shv(A)) − cof. But then

f ∼= τnaiveιf ∈ τnaive(ICh(Shv(A)) − cof) ⊆ (τnaive(ICh(Shv(A)))) − cof .

Therefore τnaive(ICh(Shv(A))) is a set of generating cofibrations for Ch�0(Shv(A)).
Since the set

{A(−, X)nis ⊗ SnZ → A(−, X)nis ⊗DnZ | X ∈ Smk, n ∈ Z}

is a set of generating cofibrations with finitely presented domains and codomains for 
Ch(Shv(A)), it follows that

{A(−, X)nis ⊗ SnZ → A(−, X)nis ⊗DnZ | X ∈ Smk, n � 0}
∪ {0 → A(−, X)nis ⊗ S0Z | X ∈ Smk}

is a set of generating cofibrations with finitely presented domains and codomains of 
Ch�0(Shv(A)). �

Next, we want to show that Ch�0(Shv(A)) is weakly finitely generated. To this end, 
we need to define a set of weakly generating trivial cofibrations J ′. For this we need to 
construct a certain set of morphisms similar to [6, Definition 3.3].

3.7. Definition. For every elementary Nisnevich square Q ∈ Q of the form

U ′ β

α

X ′

γ

U
δ

X

we have a square

A(−, U ′)nis
β∗

α∗

A(−, X ′)nis

γ∗

A(−, U)nis
δ∗ A(−, X)nis

in Ch(Shv(A)). Take the homological mapping cylinder C of the map A(−, U ′)nis →
A(−, X ′)nis, so that the map factors as A(−, U ′)nis C A(−, X ′)nis . De-
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fine an object sQ := A(−, U)nis
∐

A(−,U ′)nis

C. Next take the homological mapping cylin-

der tQ of the map sQ = A(−, U)nis
∐

A(−,U ′)nis

C → A(−, X)nis, so that it factors as 

sQ
pQ

tQ A(−, X)nis . The map pQ : sQ → tQ is a trivial cofibration between 

finitely presented objects of Ch�0(Shv(A)).
Let Q be the set of all elementary Nisnevich squares. Define a set of morphisms 

JQ := {pQ | Q ∈ Q}. Let ICh�0(Ab) be a set of generating cofibrations with finitely 
presented domains and codomains for Quillen’s standard projective model structure on 
Ch(Ab)�0. We define sets of morphisms in Ch�0(Shv(A))

Jproj := {0 → A(−, X)nis ⊗DnZ | X ∈ Smk, n � 0}

and

J ′ := Jproj ∪ (JQ�ICh�0(Ab)),

where JQ�ICh�0(Ab) is the set of all morphisms which are a pushout product of mor-
phisms from JQ and ICh(Ab)�0 .

Note that all morphisms from ICh�0(Ab) are cofibrations and all morphisms from Jproj

and JQ are trivial cofibrations. Since Ch�0(Shv(A)) is a monoidal model category it 
follows that all morphisms from J ′ are trivial cofibrations.

3.8. Lemma. A morphism f : A → B in Ch�0(Shv(A)) has the right lifting property with 
respect to Jproj if and only if for every n � 1 the map fn : An → Bn is sectionwise 
surjective.

Proof. For every n � 0, X ∈ Smk we can solve the lifting problem

0 A

f

A(−, X)nis ⊗DnZ B

in Ch�0(Shv(A)) if and only if fn+1 : A(X)n+1 → B(X)n+1 is surjective in Ab. �
3.9. Lemma. For an object A in Ch�0(Shv(A)) the following are equivalent:

(1) ι(A) is fibrant in Ch(Shv(A)).
(2) A is fibrant in Ch�0(Shv(A)).
(3) A → 0 has the right lifting property with respect to JQ�ICh�0(Ab).
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Proof. (1) =⇒ (2). If ι(A) is fibrant in Ch(Shv(A)), then A ∼= τgood(ι(A)) is fibrant in 
Ch�0(Shv(A)) because τgood is a right Quillen functor.

(2) =⇒ (3). If A is fibrant in Ch�0(Shv(A)), then A → 0 has the right lifting property 
with respect to all trivial cofibrations, hence it has the right lifting property with respect 
to JQ�ICh�0(Ab).

(3) =⇒ (1). Assume that A → 0 has the right lifting property with respect to 
JQ�ICh�0(Ab). We want to show that ι(A) is fibrant in Ch(Shv(A)). By [6, Lemma 3.4]
we have to show that A(∅) → 0 is a quasi-isomorphism, and that A sends elementary Nis-
nevich squares to homotopy pullback squares. Since A is a chain complex of sheaves, we 
have A(∅) = 0. Let us now show that A sends elementary Nisnevich squares to homotopy 
pullback squares. Let Q be an elementary Nisnevich square. For X, Y ∈ Ch�0(Shv(A))
let HomCh�0(Shv(A))(X, Y ) be the internal hom of Ch�0(Shv(A)) and let

mapCh(X,Y ) ∈ Ch�0(Ab)

be defined by

mapCh(X,Y ) := HomCh�0(Shv(A))(X,Y )(pt).

The square A(Q) will be a homotopy pullback square in Ch(Ab) if and only if the 
map

p∗Q : mapCh(tQ, A) → mapCh(sQ, A)

is a quasi-isomorphism in Ch�0(Ab). To show that p∗Q is a quasi-isomorphism, it suffices 
to show that p∗Q is a trivial fibration in Ch�0(Ab). For that we need to show that p∗Q has 
the right lifting property with respect to ICh(Ab)�0 . Now for every map f : M → N in 
ICh(Ab)�0 a square

M

f

mapCh(tQ, A)

p∗
Q

N mapCh(sQ, A)

has a lift in Ch�0(Ab) if and only if the square

tQ ⊗M
∐

sQ⊗M

sQ ⊗N

pQ�f

A

tQ ⊗N 0

has a lift in Ch�0(Shv(A)). This lift exists, because A → 0 has the right lifting property 
with respect to JQ�ICh(Ab)�0 . �
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In what follows, let Ch(Psh(A))proj be the model category Ch(Psh(A)) with standard 
projective model structure. Let Ch(Psh(A))nis be the model category Ch(Psh(A)) with 
local projective model structure. See [6, Section 3] for details. Let Lnis : Ch(Psh(A)) �
Ch(Shv)A : Unis be the adjunction consisting of the sheafification and the forgetful func-
tors.

3.10. Proposition. Let f : A → B be a morphism in Ch�0(Shv(A)) such that B is fi-
brant and f has the right lifting property with respect to J ′. Then f is a fibration in 
Ch�0(Shv(A)).

Proof. Our first claim is that A is fibrant. Since B is fibrant, by Lemma 3.9 B → 0
has the right lifting property with respect to JQ�ICh�0(Ab). Since f has the right lifting 
property with respect to JQ�ICh�0(Ab) it follows that A → 0 has the right lifting property 
with respect to JQ�ICh�0(Ab). Lemma 3.9 implies A is fibrant.

Next, let D−1B0 ∈ Ch(Shv(A)) denote the chain complex

. . . 0 → 0 → B0
id→ B0 → 0 → . . .

that is B0 in degree 0 and −1, and which is 0 everywhere else. We claim that D−1B0
is fibrant in Ch(Shv(A)). Indeed, the map UnisD

−1B0 → 0 is a trivial fibration in 
Ch(Psh(A))proj, hence it is also a trivial fibration in Ch(Psh(A))nis. Therefore D−1B0 → 0
is a trivial fibration in Ch(Shv(A)), and so D−1B0 is fibrant. Note that τgood(D−1B0) = 0
in Ch�0(Shv(A)).

In particular, ι(A) ⊕D−1B0 is fibrant in Ch(Shv(A)) and we have that

τgood(ι(A) ⊕D−1B0) ∼= τgood(ι(A)) ⊕ τgood(D−1B0) ∼= A⊕ 0 = A.

Define g : D−1B0 → ι(B) in Ch(Shv(A)) as the map

. . . 0 B0
id

id

B0 0 . . .

. . . B1 B0 0 0 . . .

Then ι(f) + g : ι(A) ⊕D−1B0 → ι(B) is a map between fibrant objects, and we have 
a commutative diagram where the horizontal maps are isomorphisms

τgood(ι(A) ⊕D−1B0)
∼

τgood(ι(f)+g)

A⊕ 0

f+0

A

f

τgood(ι(B)) ∼
B B
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We want to show that f is a fibration in Ch�0(Shv(A)). Since τgood is a right Quillen 
functor, we now just need to show that ι(f) + g is a fibration in Ch(Shv(A)). For this it 
suffices to show that Unis(ι(f) +g) is a fibration in Ch(Psh(A))nis. Since Unisι(A ⊕D−1B0)
and Unisι(B) are fibrant in Ch(Psh(A))nis, it suffices by [29, Proposition 3.3.16] to show 
that Unis(ι(f) + g) is a fibration in Ch(Psh(A))proj. So we have to show that the map 
ι(f) + g is sectionwise an epimorphism in Ch(Ab). In degree n � 1 the map ι(f) :
ι(A) → ι(B) is sectionwise surjective, because of Lemma 3.8 and the fact that f satisfies 
the right lifting property with respect to Jproj. In degree n � −1 the map ι(f) + g is 
sectionwise surjective, because ι(B)n = 0. Finally, in degree n = 0 the map ι(f) + g is 
sectionwise surjective, because g : D−1B0 → ι(B) is sectionwise surjective in degree 0. So 
Unis(ι(f) +g) is a fibration in Ch(Psh(A))proj. Then ι(f) +g is a fibration in Ch(Shv(A)), 
and then f ∼= τgood(ι(f) + g) is a fibration in Ch�0(Shv(A)). �
3.11. Corollary. Ch�0(Shv(A)) is weakly finitely generated and J ′ is a set of weakly gen-
erating trivial cofibrations for Ch�0(Shv(A)).

Proof. By Lemma 3.3 Ch�0(Shv(A)) is cofibrantly generated, so there exists a set J of 
generating trivial cofibrations. Since every object in Ch�0(Shv(A)) is small, the domains 
and codomains from J are small. By Lemma 3.6 Ch�0(Shv(A)) has a set of generating 
cofibrations with finitely presented domains and codomains. All morphisms from J ′ are 
trivial cofibrations with finitely presented domains and codomains, so Proposition 3.10
implies that J ′ is set of weakly generating trivial cofibrations for Ch�0(Shv(A)). �
3.12. Lemma. The model category Ch�0(Shv(A)) is cellular.

Proof. Due to Corollary 3.11 we just need to show that cofibrations in Ch�0(Shv(A)) are 
effective monomorphisms. If f is a cofibration in Ch�0(Shv(A)), then ι(f) is a cofibration 
in Ch(Shv(A)). Then f is a monomorphism in Ch(Shv(A)) and in Ch�0(Shv(A)). Since 
Ch�0(Shv(A)) is an abelian category, every monomorphism is effective. Hence f is an 
effective monomorphism. �
3.13. Lemma. The model category Ch�0(Shv(A)) is strongly left proper in the sense of 
[16, Definition 4.6].

Proof. If we have a pushout square

A⊗ Z
f

g⊗Z

B

C ⊗ Z
h

D

in Ch�0(Shv(A)) with f a weak equivalence and g : A → C a cofibration, then the square
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ι(A) ⊗ ι(Z) ∼

ι(g)⊗ι(Z)

ι(A⊗ Z)
ι(f)

ι(g⊗Z)

ι(B)

ι(C) ⊗ ι(Z) ∼
ι(C ⊗ Z)

ι(h)
ι(D)

is a pushout square in Ch(Shv(A)). Since ι(f) is a weak equivalence, ι(g) is a cofibration, 
and Ch(Shv(A)) is strongly left proper by [6], it follows that ι(h) is a weak equivalence 
in Ch(Shv(A)). So h is a weak equivalence in Ch�0(Shv(A)). �

In summary, we have a model category Ch�0(Shv(A)) that is cellular, weakly finitely 
generated and where the weak equivalences are the local quasi-isomorphisms. With re-
spect to the usual tensor product of chain complexes ⊗ it is monoidal, strongly left 
proper and satisfies the monoid axiom. We can transfer this model structure along the 
Dold-Kan correspondence

DK : Ch�0(Shv(A)) ∼↔ Δop(Shv(A)) : DK−1.

So we define a model structure on Δop(Shv(A)), where a morphism f is a weak 
equivalence (respectively fibration, cofibration), if and only if DK−1(f) is a weak 
equivalence (respectively fibration, cofibration) in Ch�0(Shv(A)). Then weak equiva-
lences in ΔopShv(A) are the stalkwise weak equivalences of simplicial sets. Furthermore 
ΔopShv(A) is weakly finitely generated and cellular. From now on, weak equivalences 
in ΔopShv(A) be called local equivalences, fibrations in ΔopShv(A) will be called local 
fibrations, and fibrant objects in ΔopShv(A) will be called locally fibrant objects.

Let ⊗ be the degreewise tensor product of ΔopShv(A). We want to show that 
ΔopShv(A) is monoidal, strongly left proper and satisfies the monoid axiom with respect 
to ⊗. Note that the Dold-Kan correspondence is not strongly monoidal with respect to 
the degreewise tensor product ⊗ on ΔopShv(A) and the usual tensor product of chain 
complexes on Ch�0(Shv(A)). For this reason let us define on Ch�0(Shv(A)) the Dold-Kan 
twisted tensor product ⊗

DK
by

A ⊗
DK

B := DK−1(DK(A) ⊗DK(B)).

Then the Dold-Kan correspondence is strongly monoidal with respect to the degree-
wise tensor product ⊗ on ΔopShv(A) and the Dold-Kan twisted tensor product ⊗

DK
on 

Ch�0(Shv(A)). So to show that ΔopShv(A) is monoidal, strongly left proper and satisfies 
the monoid axiom with respect to ⊗, we now just need to show that Ch�0(Shv(A)) is 
monoidal, strongly left proper and satisfies the monoid axiom with respect to ⊗

DK
.

3.14. Lemma. Let f be a cofibration and Z an object in Ch�0(Shv(A)). Then f ⊗
DK

Z is 
a monomorphism.
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Proof. If f : A → B is a cofibration in Ch�0(Shv(A)) then f is a degreewise split 
monomorphism. The functor DK : Ch�0(Shv(A)) → ΔopShv(A) can be explicitly com-
puted in degree n � 0 by

DK(X)n =
⊕

[n]→[k]
surjective

Xk.

So DK(f) is computed as the morphism

DK(f)n =
⊕

[n]→[k]
surjective

fk :
⊕

[n]→[k]
surjective

Ak →
⊕

[n]→[k]
surjective

Bk.

This is a direct sum of split monomorphisms. So DK(f) is a degreewise split monomor-
phism in ΔopShv(A). Hence, if Z is an object in Ch�0(Shv(A)), then the degreewise 
tensor product

DK(f) ⊗DK(Z)

is again a split monomorphism in ΔopShv(A). Since DK−1 preserves monomorphisms, 
this then implies that

f ⊗
DK

Z = DK−1(DK(f) ⊗DK(Z))

is a monomorphism in Ch�0(Shv(A)). �
3.15. Lemma. Ch�0(Shv(A)) satisfies the monoid axiom with respect to ⊗

DK
. So ΔopShv(A)

satisfies the monoid axiom with respect to ⊗.

Proof. Since Shv(A) is a Grothendieck category, we know that injective quasi-
isomorphisms in Ch�0(Shv(A)) are stable under pushouts and transfinite compositions. 
So to prove the monoid axiom we just need to show that for every trivial cofibration 
f : A → B in Ch�0(Shv(A)) the morphism f ⊗

DK
Z is an injective quasi-isomorphism. 

By Lemma 3.14 we know that it is injective. So we just need to show that it is a weak 
equivalence.

By [32] we have for all X, Y ∈ Ch�0(Shv(A)) a natural chain homotopy equivalence

∇ : X ⊗ Y → X ⊗
DK

Y

between the usual tensor product of chain complexes and the Dold-Kan twisted tensor 
product. We then get a commutative diagram
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A ⊗
DK

Z

f ⊗
DK

Z

B ⊗
DK

Z

A⊗ Z
f⊗Z

∇

B ⊗ Z

∇

where vertical maps are chain homotopy equivalences, and the lower horizontal map is a 
weak equivalence because Ch�0(Shv(A)) satisfies the monoid axiom with respect to ⊗. It 
follows that the upper horizontal map is a weak equivalence. So Ch�0(Shv(A)) satisfies 
the monoid axiom with respect to ⊗

DK
. �

3.16. Lemma. Ch�0(Shv(A)) is strongly left proper with respect to ⊗
DK

. So ΔopShv(A) is 
strongly left proper with respect to ⊗.

Proof. Since Shv(A) is a Grothendieck category, quasi-isomorphisms in Ch�0(Shv(A))
are stable under pushouts along monomorphisms. For any cofibration f the map f ⊗

DK
Z

is a monomorphism by Lemma 3.14. So Ch�0(Shv(A)) is strongly left proper with respect 
to ⊗

DK
. �

3.17. Lemma. Ch�0(Shv(A)) is a monoidal model category with respect to ⊗
DK

. So 

ΔopShv(A) is a monoidal model category with respect to ⊗.

Proof. The unit for ⊗
DK

is the chain complex Z concentrated in degree 0. That is a 

cofibrant object, so Ch�0(Shv(A)) satisfies the unit axiom. Let us now show the pushout-
product axiom. The category of simplicial abelian groups Δop Ab is monoidal and satisfies 
the monoid axiom with respect to the degreewise tensor product of chain complexes ⊗. 
If we define a Dold-Kan twisted tensor product ⊗

DK
on chain complexes of abelian groups 

Ch�0(Ab) by

X ⊗
DK

Y = DK−1(DK(X) ⊗DK(Y ))

then Ch�0(Ab) with the standard projective model structure and tensor product ⊗
DK

is 
a monoidal model category satisfying the monoid axiom. Similarly, we can also define a 
Dold-Kan twisted tensor product ⊗

DK
on chain complexes of presheaves Ch�0(Psh(A)), 

and it coincides with the Day convolution product induced by the Dold-Kan twisted 
tensor product on Ch�0(Ab) and the monoidal structure of A. By [23, Theorem 5.5] it 
follows that Ch�0(Psh(A)) with standard projective model structure and the Dold-Kan 
twisted tensor product ⊗

DK
is a monoidal model category. For Ch�0(Shv(A)) the set

{A(−, X)nis ⊗ SnZ → A(−, X)nis ⊗DnZ | X ∈ Smk, n � 0}
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∪ {0 → A(−, X)nis ⊗ S0Z | X ∈ Smk}

is a set of generating cofibrations. All these generating cofibrations are sheafifica-
tions of cofibrations from Ch�0(Psh(A)). So if f and g are generating cofibrations in 
Ch�0(Psh(A)), and f�g is the pushout-product with respect to ⊗

DK
, then we can find 

cofibrations f ′ and g′ in Ch�0(Psh(A)) such that f = Lnis(f ′) and g = Lnis(g′). Then 
f�g ∼= Lnis(f ′�g′), where the pushout-product f ′�g′ in Ch�0(Psh(A)) is taken with 
respect to ⊗

DK
. Since Ch�0(Psh(A)) is a monoidal model category with respect to ⊗

DK
it 

follows that f ′�g′ is a cofibration in Ch�0(Psh(A)), and therefore f�g is a cofibration in 
Ch�0(Shv(A)). All we need to show now is that a pushout-product of a cofibration with 
a trivial cofibration is a weak equivalence in Ch�0(Shv(A)). So let f : A → B be a cofi-
bration and g : C → D be a trivial cofibration in Ch�0(Shv(A)). We need to show that 
the pushout-product f�g with respect to ⊗

DK
is a weak equivalence in Ch�0(Shv(A)). 

Consider the diagram

A ⊗
DK

C

A ⊗
DK

g

A ⊗
DK

D

B ⊗
DK

C
h

B ⊗
DK

g

A ⊗
DK

D
∐

A ⊗
DK

C

B ⊗
DK

C

f�g

B ⊗
DK

D

The map h is a base change of A ⊗
DK

g. Since g is a trivial cofibration and Ch�0(Shv(A))
satisfies the monoid axiom with respect to ⊗

DK
, then h is a weak equivalence in 

Ch�0(Shv(A)). Similarly B ⊗
DK

g is a weak equivalence in Ch�0(Shv(A)). So by the 2-
of-3 property f�g is a weak equivalence, and hence Ch�0(Shv(A)) is a monoidal model 
category. �

We document the above lemmas as follows.

3.18. Proposition. The model category ΔopShv(A) with the usual degreewise tensor prod-
uct is cellular, weakly finitely generated, monoidal, strongly left proper and satisfies the 
monoid axiom.

From now on, weak equivalences (respectively fibrations) in ΔopShv(A) will be called 
local equivalences (respectively local fibrations), and fibrant objects in ΔopShv(A) will 
be called locally fibrant objects.
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4. Relation to Γ-spaces

For every natural number n � 0 let n+ be the pointed set {0, . . . , n} where 0 is the 
basepoint. We write Γop for the full subcategory of the category of pointed sets on the 
objects n+. Γop is equivalent to the category of finite pointed sets. We write Γ for the 
opposite category of Γop. This category is equivalent to the category called Γ in Segal’s 
original paper [35].

In the additive context we do not need the category Γ as a variable in contrast 
to framed motivic Γ-spaces in the sense of [28]. This section is to justify this fact (see 
Proposition 4.6). We also associate framed motivic Γ-spaces to enriched motivic A-spaces 
(see Proposition 4.7).

Let B be an additive model category. By ΓSpcsp(B) we denote the full subcategory 
of the functor category Fun(Γop, B) consisting of those functors X : Γop → B such that 
for every n ∈ N the canonical map X (n+) →

n∏
i=1

X (1+) is a weak equivalence in B. This 

category is called the category of special Γ-spaces in B.
We have a functor EM : B → ΓSpcsp(B) given by the Eilenberg Maclane construction 

EM(A)(n+) :=
n⊕

i=1
A. For a function f : m+ → n+ between pointed finite sets, we define

EM(A)(f) :
m⊕
j=1

A →
n⊕

i=1
A

as follows. For 0 � i � n the i-th component EM(A)(f)i :
m⊕
j=1

A → A is EM(A)(f)i :=

∑
j∈f−1({i}) πj , where πj :

m⊕
i=1

A → A is the j-th projection morphism.

We have another functor ev1 : ΓSpcsp(B) → B given by ev1(X ) := X (1+).

4.1. Lemma. The functor ev1 : ΓSpcsp(B) → B is left adjoint to EM : B → ΓSpcsp(B).

Proof. Given a morphism ϕ : X (1+) → A in B, we get for every n ∈ N a morphism

X (n+) →
n⊕

i=1
X (1+) →

n⊕
i=1

A = EM(A)(n+),

which together assemble into a morphism Φ(ϕ) : X → EM(A) in ΓSpcsp(B). Conversely, 
given a morphism ψ : X → EM(A) in ΓSpcsp(B), we can evaluate it at 1+ to get a 
morphism

Ψ(ψ) : X (1+) → EM(A)(1+) = A.

It is obvious that for every ϕ : X (1+) → A we have Ψ(Φ(ϕ)) = ϕ. Now take a morphism 
ψ : X → EM(A) in ΓSpcsp(B). We claim that Φ(Ψ(ψ)) = ψ. Take n ∈ N and show 
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that ψ(n+) : X (n+) → EM(A) =
n⊕

i=1
A is equal to Φ(Ψ(ψ))(n+) : X (n+) →

n⊕
i=1

X (1+) →
n⊕

i=1
A. By the universal property of the product 

⊕
we need to take i with 0 � i � n and 

show that the following diagram commutes

X (n+)
ψ(n+)

X (πi)

n⊕
i=1

A

πi

X (1+)
ψ(1+)

A

But this just follows from the naturality of ψ : X → EM(A). �
4.2. Definition. (1) Let B be an additive model category. A morphism f : X → Y in 
ΓSpcsp(B) is called a weak equivalence if and only if for every n ∈ N the map f(n+) :
X (n+) → Y(n+) is a weak equivalence in the model category B. We write W for the 
class of weak equivalences in ΓSpcsp(B).

(2) We write Ho(ΓSpcsp(B)) for the localization of ΓSpcsp(B) with respect to the class 
of weak equivalences W : Ho(ΓSpcsp(B)) := ΓSpcsp(B)[W−1].

4.3. Remark. (1) All isomorphisms in ΓSpcsp(B) are weak equivalences. Weak equiva-
lences in ΓSpcsp(B) satisfy the 2-out-of-3 property.

(2) The functors EM : B → ΓSpcsp(B) and ev1 : ΓSpcsp(B) → B preserve all weak 
equivalences.

(3) It is not readily apparent that the Hom-sets of the category Ho(ΓSpcsp(B)) are 
small. However, Proposition 4.6 below implies that they are in fact small.

4.4. Lemma. A morphism ϕ : ev1(X ) → A is a weak equivalence in B if and only if its 
adjoint morphism Φ(ϕ) : X → EM(A) is a weak equivalence in ΓSpcsp(B).

Proof. Let ϕ : ev1(X ) → A be a weak equivalence. Take n ∈ N. Then Φ(ϕ) evaluated at 
n+ is defined as the composite

X (n+) →
n⊕

i=1
X (1+) →

n⊕
i=1

A = EM(A)(n+).

The first map is a weak equivalence, because X is a special Γ-space. The second map 
is a weak equivalence, because ϕ : X (1+) → A is a weak equivalence. Therefore Φ(ϕ) :
X → EM(A) is a weak equivalence.

Conversely, let ϕ : ev1(X ) → A be a map such that Φ(ϕ) is a weak equivalence in 
ΓSpcsp(B). Then ϕ = Φ(ϕ)(1+) is also a weak equivalence. �

The following lemma is folklore.
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4.5. Lemma. Let C, D be categories, each equipped with a class of morphisms, called the 
weak equivalences, satisfying the 2-out-of-3-property. Let Ho(C), Ho(D) be the homotopy 
categories of C, D, i.e. the categories obtained by inverting the weak equivalences. Let 
	C : C → Ho(C) be the localization functor of C, and 	D : D → Ho(D) be the localization 
functor of D. Let F, G : C → D be functors sending weak equivalences in C to weak 
equivalences in D. Let τ : F → G be a natural transformation. Then the functors F, G
induce functors Ho(F ), Ho(G) : Ho(C) → Ho(D) satisfying Ho(F ) ◦ 	C = 	D ◦F , Ho(G) ◦
	C = 	D ◦G, and τ : F → G induces a natural transformation Ho(τ) : Ho(F ) → Ho(G)
such that for every A ∈ C, the component of Ho(τ) at A is given by Ho(τ)A = 	D(τA).

The following statement informally says that Γ-spaces in an additive category B are 
entirely recovered by B itself (up to homotopy).

4.6. Proposition. The adjunction ev1 
 EM induces an equivalence of categories

Ho(ev1) : Ho(ΓSpcsp(B))
∼
� Ho(B) : Ho(EM).

Proof. Since ev1 and EM preserve weak equivalences, they induce two functors Ho(ev1) :
Ho(ΓSpcsp(B)) → Ho(B) and Ho(EM) : Ho(B) → Ho(ΓSpcsp(B)) on the homotopy 
categories. For the adjunction ev1 
 EM there is a unit η : IdΓSpcsp(B) → EM ◦ ev1. By 
Lemma 4.5, applied to F = IdΓSpcsp(B), G = EM ◦ ev1 and τ = η, it induces a natural 
transformation Ho(η) : IdHo(ΓSpcsp(B)) → Ho(EM) ◦ Ho(ev1).

For every X ∈ ΓSpcsp(B) the identity morphism ev1(X ) → ev1(X ) is a weak equiv-
alence, so by Lemma 4.4 applied to A = ev1(X ), the adjunction unit map ηX : X →
EM(ev1(X )) is a weak equivalence. This implies that the natural transformation Ho(η)
is in fact a natural isomorphism of functors.

Furthermore we have a strict equality ev1 ◦ EM = IdB, which implies that Ho(ev1) ◦
Ho(EM) = IdHo(B). So Ho(ev1) is an equivalence with pseudo-inverse Ho(EM). �

Let Fr∗(k) be the category of framed correspondences. For each V ∈ Smk let σV :
V → V be the level 1 explicit framed correspondence ({0} ×V, A1×V, prA1 , prV ). For the 
next result, assume that A has framed correspondences in the sense of Definition 2.4. 
So there is a functor Φ : Fr∗(k) → A which takes every σV to the identity on V . 
Let Mfr be the category of pointed simplicial Nisnevich sheaves on Fr∗(k): Mfr :=
ΔopShv(Fr∗(k), Set∗).

Φ induces a forgetful functor UΦ : ΔopShv(A) → Mfr. The category Mfr is enriched 
in M where for X, Y ∈ Mfr the enriched morphism object Mfr(X, Y ) ∈ M is defined 
on Z ∈ Smk and [n] ∈ Δop by

Mfr(X,Y )(Z)n := HomMfr(X,Y (Z × Δn ×−)).

We have a monoidal adjunction LM : M � ΔopShv(A) : UM, where the right adjoint 
UM is the forgetful functor. For X, Y ∈ ΔopShv(A) we have a canonical map
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UM(HomΔopShv(A)(X,Y )) → Mfr(UΦ(X), UΦ(Y ))

defined on Z ∈ Smk and [n] ∈ Δop by the map

UM(HomΔopShv(A)(X,Y ))(Z)n = HomΔopShv(A)(X,Y (Z × Δn ×−)) UΦ→
→ HomMfr (UΦ(X), UΦ(Y )(Z × Δn ×−)).

Let Sm/k+ be the category of framed correspondences of level 0 as defined in [28, Ex-
ample 2.4]. Its morphism objects are defined by

Sm/k+(X,Y ) := HomM(X+, Y+).

Since LM is lax monoidal, we have for every X, Y ∈ Smk a canonical map LM(Sm/k+(X,

Y )) → Sm(X, Y ) in ΔopShv(A), which induces by adjunction a canonical map 
Sm/k+(X, Y ) → UM(Sm(X, Y )) in M. For every enriched motivic A-space X we can 
now define a M-enriched functor

Sm/k+ → Mfr, V �→ UΦ(X (V )).

It acts on morphism sets via the composite

Sm/k+(X,Y ) → UM(Sm(X,Y )) → UM(HomΔop(Shv(A))(X (X),X (Y ))) →
→ Mfr(UΦ(X (X)), UΦ(X (Y ))).

With this enriched functor we can then also define a framed motivic Γ-space EMfr(X )
in the sense of [28, Definition 3.5] by defining

EMfr(X ) : Γop × Sm/k+ → Mfr, EMfr(X )(n+, U) = UΦ(X (U))n.

4.7. Proposition. Suppose that A has framed correspondences in the sense of Defini-
tion 2.4. For every special enriched motivic A-space X the framed motivic Γ-space

EMfr(X ) : Γop × Sm/k+ → Mfr, EMfr(X )(n+, U) = UΦ(X (U))n,

is a very special framed motivic Γ-space in the sense of [28, Axioms 1.1].

Proof. We verify the axioms 1)-5) and 7) for very special motivic Γ-spaces from [28, Ax-
ioms 1.1]. For Axiom 1) we need to check that EMfr(X )(0+, U) = 0, EMfr(X )(n+, ∅) = 0
and that

EMfr(X )(n+, U) →
n∏

EMfr(X )(1+, U)

i=1
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is a local equivalence. We have that EMfr(X )(0+, U) = UΦ(X (U))0 = 0, and

EMfr(X )(n+, U) = UΦ(X (U))n →
n∏

i=1
EMfr(X )(1+, U)

is an isomorphism. According to [6, Lemma 6.2] we have that X (∅) = 0. This implies 
that EMfr(X )(n+, ∅) = 0, hence Axiom 1) holds.

Axioms 2)-5) for motivic Γ-spaces follow directly from axioms 1)-4) of special enriched 
motivic A-spaces, except that for Axiom 2) we need to explain why the presheaf of stable 
homotopy groups

V �→ πs
nEMfr(X )(S, U)(V )

is radditive and σ-stable. The σ-stability follows from the fact that Φ : Fr∗(k) → A sends 
σV to the identity. Let us now check that it is radditive. For every U ∈ Smk, we have 
that X (U) is a sheaf of simplicial abelian groups. This implies that EMfr(X )(S, U) is a 
sheaf of S1-spectra. So we have isomorphisms of S1-spectra EMfr(X )(S, U)(∅) = 0 and

EMfr(X )(S, U)(V1
∐

V2) ∼= EMfr(X )(S, U)(V1) × EMfr(X )(S, U)(V2).

Since stable homotopy groups πs
n preserve products and zero objects, it follows that

V �→ πs
nEMfr(X )(S, U)(V )

is radditive. Axiom 7) follows from the fact that X lands in sheaves of abelian groups. �
4.8. Lemma. Suppose that A has framed correspondences in the sense of Definition 2.4. 
Let X be an enriched motivic A-space and let EMfr(X ) be its associated framed motivic 
Γ-space from Proposition 4.7. Then X is very effective in the sense of Definition 2.2 if 
and only if EMfr(X ) is very effective in the sense of [28, Axioms 1.1].

Proof. This follows directly from the definitions of effectiveness for X and EMfr(X ). �
5. Enriched functors of chain complexes

In this paper we freely use the canonical isomorphism of categories Ch([Sm, Shv(A)]) ∼=
[Sm, Ch(Shv(A))] constructed in [23]. Likewise, there is a canonical isomorphism of cat-
egories Δop([Sm, Shv(A)]) ∼= [Sm, Δop(Shv(A))]. In what follows we shall freely use this 
isomorphism.

In the previous section we associated framed motivic Γ-spaces to enriched motivic 
A-spaces. In this section we associate Ch(Shv(A))-enriched functors in [Sm, Ch(Shv(A))]
to enriched motivic A-spaces.
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5.1. Definition. Let X be an special enriched motivic A-space and let

DK−1 : Δop[Sm,Shv(A)] → Ch�0([Sm,Shv(A)])

be the normalized Moore complex functor from the Dold-Kan correspondence. Denote 
by Λ the composite functor

Δop[Sm,Shv(A)] DK−1

−−−−→ Ch�0([Sm,Shv(A)]) → Ch([Sm,Shv(A)]).

5.2. Proposition. Let X ∈ Δop[Sm, Shv(A)] be an enriched motivic A-space. Then X is 
special if and only if Λ(X ) is in DMA[Sm], where the latter category is defined in [6, 
Section 4].

Proof. Four axioms defining special enriched motivic A-spaces correspond to four prop-
erties of functors in DMA[Sm]. More precisely, the following four properties are true.

(1) X satisfies axiom (1) of special enriched motivic A-spaces if and only if for every 
U ∈ Smk the complex of sheaves Λ(X )(U) has A1-invariant cohomology sheaves.

(2) X satisfies the cancellation axiom (2) if and only if Λ(X ) satisfies cancellation in 
the sense of [6, Definition 4.6].

(3) X satisfies the A1-invariance axiom (3) if and only if Λ(X ) is covariantly A1-
invariant in the sense that Λ(X )(U ×A1) → Λ(X )(U) is a local quasi-isomorphism.

(4) X satisfies the Nisnevich excision axiom (4) if and only if Λ(X ) satisfies Nisnevich 
excision in the sense of [6, Definition 4.9]. Here the functor DK−1 : ΔopShv(A) →
Ch�0(Shv(A)) preserves homotopy cartesian squares for the following reason: Since 
DK−1 preserves all weak equivalences, it is naturally weakly equivalent to its right 
derived functor RDK−1, and by [2, Proposition 4.10] the right derived functor RDK−1

preserves all homotopy limits, including homotopy pullback squares. �
6. The Röndigs–Østvær Theorem

Throughout this section X is a pointwise locally fibrant special enriched motivic A-
space.

6.1. Definition. We can extend X to an enriched functor

EM(X ) : Γop × Sm → ΔopShv(A) (n+, U) �→ X (U)n.

We can take the (S1, Gm)-evaluation of EM(X ) to get a motivic bispectrum
evS1,Gm

(EM(X )) ∈ SH(k). We define the bispectrum associated to X to be this bis-
pectrum evS1,Gm

(X ) := evS1,Gm
(EM(X )). If A has framed correspondences, then 

evS1,Gm
(X ) is also the evaluation of the framed motivic Γ-space EMfr(X ) from Propo-

sition 4.7. Then by [28, Section 2.7] the bispectrum evS1,Gm
(X ) = evS1,Gm

(EMfr(X ))
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is a framed bispectrum in the sense of [27, Definition 2.1]. In this case we say that 
evS1,Gm

(X ) is the framed bispectrum associated to X .

In this section we prove the following theorem extending Röndigs–Østvær’s Theo-
rem [34].

6.2. Theorem. For every U ∈ Smk we have a natural isomorphism

evS1,Gm
(X ) ∧ Σ∞

S1,Gm
U+

∼→ evS1,Gm
(X (U ×−))

in SH(k)[1/p], where p is the exponential characteristic of k.

To prove it we will need a few lemmas.
For a finite pointed set n+ = {0, . . . , n} and U ∈ Smk let n+ ⊗ U be the n-fold 

coproduct 
n∐

i=1
U . Let fM be the category of finitely presented motivic spaces in the 

sense of [17]. Given an enriched motivic A-space X we can define an extended functor 
X̂ : fM → ΔopShv(A) by

X̂ (A)n := colim
(Δ[m]×U)+→Ac

X (Δ[m]n,+ ⊗ U)n

where Ac is a cofibrant replacement of A in fM. We have for all U ∈ Sm that X̂ (U) ∼=
X (U) in ΔopShv(A).

Let evS1,Gm
(X̂ ) be the (S1, Gm)-evaluation bispectrum of the extended functor X̂ :

fM → ΔopShv(A).

6.3. Lemma. We have a canonical isomorphism of motivic (S1, Gm)-bispectra evS1,Gm
(X̂ )

∼= evS1,Gm
(X ) between the (S1, Gm)-evaluation of the extended functor X̂ , and the bis-

pectrum associated with X in the sense of Definition 6.1.

Proof. By [6, Lemma 6.2] we have for all U, V ∈ Smk an isomorphism X (U
∐

V ) ∼=
X (U) ⊕ X (V ) in ΔopShv(A). This implies that we have for all U ∈ Smk, n � 0 an 

isomorphism X (n+ ⊗ U) ∼=
n⊕

i=1
X (U) = EM(X )(n+, U) in ΔopShv(A). We then compute 

for A ∈ fM that

X̂ (A)n = colim
(Δ[k]×U)+→Ac

X (Δ[k]n,+ ⊗ U)n ∼= colim
(Δ[k]×U)+→Ac

EM(X )(Δ[k]n,+, U)n.

So X̂ naturally extends EM(X ) from Γop × Sm/k+ to fM. This then implies that

evS1,Gm
(X̂ ) ∼= evS1,Gm

(EM(X )) = evS1,Gm
(X )

as required. �
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Proof of Theorem 6.2. Using Definition 5.1 we can associate to X an enriched functor 
Λ(X ) : Sm → Ch(Shv(A)). By Proposition 5.2 the functor Λ(X ) is in DMA[Sm]. By [6, 
Proposition 4.13] this implies that Λ(X ) is strictly ∼-local in the sense of [6, Definition 
4.3]. Since X is pointwise locally fibrant, it follows that Λ(X ) is ∼-fibrant in the sense 
of [6, Definition 4.11].

Using [6, Section 7] we can associate to Λ(X ) an M-enriched functor Λ(X )M : fM →
SpS1(M). We can take the 0-th level of this functor to get a motivic functor Λ(X )M0 :
fM → M. By [6, Lemma 7.7] the motivic functor Λ(X )M0 preserves motivic equivalences 
between cofibrant objects. By [31, Appendix B, Corollary B.2] the suspension bispectrum 
Σ∞

S1,Gm
U+ is strongly dualizable in SH(k)[1/p]. From [6, Lemma 7.2] it follows that we 

have an isomorphism

evS1,Gm
(Λ(X )M0 ) ∧ Σ∞

S1,Gm
U+ ∼= evS1,Gm

(Λ(X )M0 (U ×−))

in SH(k)[1/p]. To prove the theorem, we now just need to show that there is a natural 
isomorphism

evS1,Gm
(Λ(X )M0 ) → evS1,Gm

(X )

in SH(k). For this we need some intermediate steps. Firstly, by Lemma 6.3 we have an 
isomorphism

evS1,Gm
(X̂ ) → evS1,Gm

(X ).

Therefore we only need to find an isomorphism in SH(k)

evS1,Gm
(Λ(X )M0 ) → evS1,Gm

(X̂ ).

In what follows, we let

DK−1 : ΔopShv(A) → Ch�0(Shv(A))

be the Dold-Kan equivalence, i.e. the normalized Moore complex functor, for the 
Grothendieck category Shv(A). We let

DK−1
Ch(Shv(A)) : ΔopCh(Shv(A)) → Ch�0(Ch(Shv(A)))

be the Dold-Kan correspondence for the Grothendieck category Ch(Shv(A)). We also let

DK−1
double : ΔopΔopShv(A) → Ch�0(Ch�0(Shv(A)))

be the Dold-Kan correspondence applied twice. It takes bisimplicial objects to bicom-
plexes.



730 P. Bonart / Journal of Algebra 657 (2024) 704–747
Using [6, Section 6, Equation (1)] we can extend Λ(X ) to a functor

̂Λ(X ) : fM → Ch(Shv(A)),
̂Λ(X )(A) := Tot(DK−1

Ch(Shv(A))( colim
(Δ[k]×U)+→Ac

Λ(X )Δ
op

(Δ[k]+ ⊗ U))).

Now for every A ∈ fM we have a natural quasi-isomorphism

DK−1(X̂ (A)) → ̂Λ(X )(A)

in Ch(Shv(A)) for the following reason: X̂ (A) is the diagonal of the bisimplicial sheaf

colim
(Δ[m]×U)+→Ac

X (Δ[m]+ ⊗ U).

By [10, page 37, equation 24], or [13, Theorem 2.9], for every bisimplicial object S ∈
ΔopΔopShv(A) there is a quasi-isomorphism

DK−1(diag(S)) → Tot(DK−1
double(S))

in Ch�0(Shv(A)). So for every A ∈ fM there is a quasi-isomorphism

DK−1(X̂ (A)) → Tot(DK−1
double( colim

(Δ[m]×U)+→Ac
X (Δ[m]+ ⊗ U))) ∼=

∼= Tot(DK−1
Ch(Shv(A))( colim

(Δ[m]×U)+→Ac
DK−1(X (Δ[m]+ ⊗ U)))) ∼= ̂Λ(X )(A).

By construction ̂Λ(X ) lands in Ch�0(Shv(A)), so we can take the functor

DK ◦ ̂Λ(X ) : fM → ΔopShv(A)

and form the naive (S1, Gm)-evaluation bispectrum

evS1,Gm
(DK ◦ ̂Λ(X )) ∈ SH(k).

The above quasi-isomorphism, then induces an isomorphism

evS1,Gm
(DK ◦ ̂Λ(X )) → evS1,Gm

(X̂ )

in SH(k). So to prove the theorem, we only need an isomorphism in SH(k)

evS1,Gm
(Λ(X )M0 ) → evS1,Gm

(DK ◦ ̂Λ(X )).

By [6, Lemma 7.5] for any A ∈ fM with cofibrant replacement Ac we have an iso-
morphism
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Û ◦ ̂Λ(X )(A) → Λ(X )M(Ac)

in SpS1(M), where Û : Ch(Shv(A)) → SpS1(M) is the canonical functor defined in 
[6, Section 7]. Let ev0 : SpS1(M) → M be the functor taking the 0-th level of a S1-
spectrum. So Λ(X )M0 = ev0 ◦Λ(X )M. By the proof of [6, Lemma 7.4], the functor ev0◦Û
is isomorphic to the composite

Ch(Shv(A))
τ�0→ Ch�0(Shv(A)) DK→ ΔopShv(A) U→ M,

where τ�0 is the good truncation functor and U is the forgetful functor. Since ̂Λ(X )
lands in Ch�0(Shv(A)), it does not get changed by truncation. So we get that

ev0 ◦ Û ◦ ̂Λ(X ) ∼= U ◦DK ◦ ̂Λ(X ).

So for every A ∈ fM we have a natural isomorphism

(U ◦DK ◦ ̂Λ(X ))(A) → Λ(X )M0 (Ac)

in M. Since S1 and Gm are cofibrant in fM, we get an isomorphism

evS1,Gm
(Λ(X )M0 ) → evS1,Gm

(DK ◦ ̂Λ(X ))

in SH(k), as claimed.
Putting it all together, we get a commutative diagram

evS1,Gm
(Λ(X )M0 ) ∧ Σ∞

S1,Gm
U+

∼

∼

evS1,Gm
(Λ(X )M0 (U ×−))

∼

evS1,Gm
(DK ◦ ̂Λ(X )) ∧ Σ∞

S1,Gm
U+

∼

evS1,Gm
(DK ◦ ̂Λ(X )(U ×−))

∼

evS1,Gm
(X̂ ) ∧ Σ∞

S1,Gm
U+

∼

evS1,Gm
(X̂ (U ×−))

∼

evS1,Gm
(X ) ∧ Σ∞

S1,Gm
U+ evS1,Gm

(X (U ×−))

in which all the vertical maps and the top horizontal map are isomorphisms in 
SH(k)[1/p]. It follows that the bottom horizontal map is also an isomorphism in 
SH(k)[1/p]. This completes the proof. �
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7. A motivic model structure for enriched motivic A-spaces

In Section 3 we showed that ΔopShv(A) with the degreewise tensor product ⊗ has a 
model structure that is cellular, weakly finitely generated, monoidal, strongly left proper 
and satisfies the monoid axiom (see Proposition 3.18). We can apply [16, Theorem 4.2]
to this model structure to get a weakly finitely generated model structure on the cate-
gory of enriched functors [Sm, ΔopShv(A)] in which the weak equivalences, respectively 
fibrations, are the Sm-pointwise local equivalences, respectively Sm-pointwise local fi-
brations. We call this the local model structure on [Sm, ΔopShv(A)]. By [16, Theorem 
4.4] the local model structure on [Sm, ΔopShv(A)] is monoidal with the usual Day con-
volution product. By [16, Corollary 4.8] the local model structure on [Sm, ΔopShv(A)]
is left proper. Since [Sm, ΔopShv(A)] is weakly finitely generated, and all cofibrations in 
ΔopShv(A) are monomorphisms, it follows that [Sm, ΔopShv(A)] is cellular. Note that 
for every U ∈ Smk the representable functor Sm(U, −) ∼= Sm(U, −) ⊗ pt is cofibrant in 
[Sm, ΔopShv(A)].

In this section we define another model structure on [Sm, ΔopShv(A)] such that the 
fibrant objects are the pointwise locally fibrant special enriched motivic A-spaces.

7.1. Definition. Similarly to [6, Section 4] we define four families of morphisms in the 
category [Sm, ΔopShv(A)].

(1) We let A1
1 be the family of morphisms consisting of

Sm(U,−) ⊗A1 → Sm(U,−)

for every U ∈ Smk.
(2) We let τ be the family of morphisms consisting of the evaluation map

Sm(G∧n+1
m × U,−) ⊗G∧1

m → Sm(G∧n
m × U,−)

for every n � 0 and U ∈ Smk.
(3) We let A1

2 be the family of morphisms consisting of

Sm(U,−) → Sm(U ×A1,−)

for every U ∈ Smk.
(4) We let Nis be the following family of morphisms: For every elementary Nisnevich 

square Q of the form

U ′ β

α

X ′

γ

X
δ

X
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in Smk we have a square

Sm(U ′,−) Sm(X ′,−)
β∗

Sm(U,−)

α∗

Sm(X,−)
δ∗

γ∗

in [Sm, ΔopShv(A)], which induces a map on homotopy fibers

pQ : hofib(γ∗) → hofib(α∗).

We let Nis be the family of morphisms consisting of pQ for every elementary Nis-
nevich square Q.

Finally, we let ∼ denote the union of all these four classes of morphisms.

∼:= A1
1 + τ + A1

2 + Nis.

7.2. Definition. For X, Y ∈ [Sm, ΔopShv(A)] let

mapΔopShv(A)(X,Y ) ∈ ΔopShv(A)

be the simplicial sheaf of morphisms from X to Y . It is defined by taking the internal 
hom Hom[Sm,ΔopShv(A)](X, Y ) and evaluating it at the point pt ∈ Sm.

mapΔopShv(A)(X,Y ) := Hom[Sm,ΔopShv(A)](X,Y )(pt).

For U ∈ Smk and n � 0 we have

mapΔopShv(A)(X,Y )(U)n = Hom[Sm,ΔopShv(A)](X ⊗ U ⊗ Δ[n], Y )

in Ab.
Similarly to [6, Definition 4.3], given a class of morphisms S in [Sm, ΔopShv(A)] and 

an object X ∈ [Sm, ΔopShv(A)] with pointwise locally fibrant replacement Xf we say 
that X is strictly S-local if for every s : A → B with s ∈ S the morphism

s∗ : mapΔopShv(A)(B,Xf ) → mapΔopShv(A)(B,Xf )

is a local quasi-isomorphism of sheaves.

7.3. Lemma. A enriched motivic A-space X : Sm → Shv(A) is special if and only if it is 
strictly ∼-local.
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Proof. By Lemma 5.2 X is special if and only if Λ(X ) lies in DMA[Sm]. By [6, Propo-
sition 4.13] this is the case if and only if Λ(X ) is strictly ∼-local in the sense of [6, 
Definition 4.3], and this is the case if and only if X is strictly ∼-local in the sense of 
Definition 7.2. �
7.4. Definition. Given a class of morphisms S in [Sm, ΔopShv(A)], we write Ŝ for the 
class of morphisms Ŝ := {s ⊗ Z | s ∈ S, Z ∈ Smk}.

We define the enriched motivic model structure on [Sm, ΔopShv(A)] to be the left 
Bousfield localization of the local model structure on [Sm, ΔopShv(A)] with respect to 
the class of morphisms ∼̂. This model category will be denoted by [Sm, ΔopShv(A)]mot.

7.5. Lemma. Let S be a class of morphisms in [Sm, ΔopShv(A)] with cofibrant domains 
and codomains. Then F ∈ [Sm, ΔopShv(A)] is strictly S-local if and only if its local 
fibrant replacement F f is Ŝ-local in the usual model category theoretic sense of [29, 
Definition 3.1.4].

Proof. Let F f be a pointwise locally fibrant replacement of F . For every s : A → B, s ∈ Ŝ

let sc : Ac → Bc be a cofibrant replacement of s. This means we have a commutative 
square

Ac sc

Bc

A
s

B

such that the vertical maps are trivial fibrations, Ac and Bc are cofibrant and sc is a 
cofibration.

Note that for every s ∈ Ŝ the domain A and codomain B are already cofibrant, but 
s is not necessarily a cofibration.

For X, Y ∈ [Sm, ΔopShv(A)] let mapΔopSet(X, Y ) ∈ ΔopSet denote the non-derived 
simplicial mapping space. It can be defined by

mapΔop Sets(X,Y ) := Hom[Sm,ΔopShv(A)](X,Y )(pt)(pt).

Now F f is Ŝ-local in the usual model category theoretic sense if and only if for every 
s ∈ Ŝ the map

sc,∗ : mapΔop Sets(Bc, F f ) → mapΔop Sets(Ac, F f )

is a weak equivalence.
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We have a commutative square

mapΔopSet(B,F f ) s∗ mapΔopSet(A,F f )

mapΔopSet(Bc, F f ) sc,∗ mapΔopSet(Ac, F f )

Since the functor mapΔop Sets(−, F f ) sends trivial cofibrations to trivial fibrations, it 
follows by Ken Brown’s lemma [30, Lemma 1.1.12], that mapΔop Sets(−, F f ) sends weak 
equivalences between cofibrant objects to weak equivalences. Since the maps Ac → A

and Bc → B are weak equivalences between cofibrant objects, it follows that the vertical 
maps in the above commutative diagram are weak equivalences. Therefore F f is Ŝ-local 
if and only if for every s ∈ Ŝ the map

s∗ : mapΔop Sets(B,F f ) → mapΔop Sets(A,F f )

is a weak equivalence. Every s ∈ Ŝ is of the form t ⊗Z for some Z ∈ Smk and t : C → D

with t ∈ S. We have a commutative diagram in which the vertical maps are isomorphisms:

mapΔop Sets(D ⊗ Z,F f )
(t⊗Z)∗

∼

mapΔop Sets(C ⊗ Z,F f )

∼

mapΔopShv(A)(D,F f )(Z) t∗ mapΔopShv(A)(C,F f )(Z)

So F f is Ŝ-local if and only if for every t : C → D, t ∈ S the map

t∗ : mapΔopShv(A)(D,F f ) → mapΔopShv(A)(C,F f )

is a sectionwise weak equivalence in ΔopShv(A). Since C, D are cofibrant and F f is 
locally fibrant, the domain and codomain of t∗ are fibrant. So t∗ is a sectionwise weak 
equivalence if and only if it is a local weak equivalence. Thus F f is Ŝ-local if and only if 
F is strictly S-local. �

We see that the fibrant objects of [Sm, ΔopShv(A)]mot are the pointwise locally fibrant 
special enriched motivic A-spaces.

7.6. Definition. Let D([Sm, ΔopShv(A)]) be the homotopy category of [Sm, ΔopShv(A)]
with respect to the pointwise local model structure. Define SpcA[Sm] as the full subcat-
egory of D([Sm, ΔopShv(A)]) consisting of special enriched motivic A-spaces.

We document above lemmas as follows.
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7.7. Theorem. The category SpcA[Sm] is equivalent to the homotopy category of the 
model category [Sm, ΔopShv(A)]mot. The fibrant objects of [Sm, ΔopShv(A)]mot are the 
pointwise locally fibrant special enriched motivic A-spaces.

The preceding theorem is also reminiscent of Bousfield–Friedlander’s theorem [7] stat-
ing that fibrant objects in the model category of classical Γ-spaces are given by very 
special Γ-spaces.

8. Reconstructing DM eff
A,�0

8.1. Definition. For U ∈ Smk define MGm

A (U) ∈ DMA by

MGm

A (U) := (MA(U ×G∧n
m ))n�0

with MA(X) := C∗A(−, X)nis the A-motive of X. We call MGm

A (U) the big A-motive of 
U .

Let U : DMA → SH(k) be the forgetful functor with L : SH(k) → DMA its left 
adjoint.

8.2. Lemma. The natural morphism L(Σ∞
S1,Gm

U+) → MGm

A (U) is an isomorphism in 
DMA.

Proof. In weight n this morphism is the motivic equivalence A(−, U)nis→C∗A(−, U)nis =
MA(U). So the map L(Σ∞

S1,Gm
U+) → MGm

A (U) is a levelwise motivic equivalence, and 
therefore an isomorphism in DMA. �

Let DMA,�0 be the full subcategory of DMA consisting of those Gm-spectra of chain 
complexes which are connective chain complexes in each weight. Note that by construc-
tion, for every U ∈ Smk we have MGm

A (U) ∈ DMA,�0.

8.3. Theorem. The naive Gm-evaluation functor evGm
: SpcA[Sm] → DMA,�0 is an 

equivalence of categories.

Proof. Since the exponential characteristic p of k is invertible in A, it follows from [6, 
Theorem 4.14] that the naive Gm-evaluation functor is an equivalence of categories

evGm
: DMA[Sm] → DMA.

Here DMA[Sm] consists of those enriched functors F : Sm → Ch(Shv(A)) which satisfy 
contravariant A1-invariance, cancellation, covariant A1-invariance and Nisnevich excision 
(see [6, Section 4] for details).
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Let DMA[Sm]�0 be the full subcategory of DMA[Sm] on those functors F : Sm →
Ch(Shv(A)) which factor over Ch�0(Shv(A)). The equivalence evGm

restricts to a fully 
faithful functor on connective chain complexes

evGm,�0 : DMA[Sm]�0 → DMA,�0.

The functor evGm
: SpcA[Sm] → DMA,�0 of the theorem will factor through evGm,�0. 

We claim that this restricted Gm-evaluation functor evGm,�0 is an equivalence. Since it 
is fully faithful we only need to show essential surjectivity.

Take F ∈ DMA,�0. Since evGm
is essentially surjective on non-connective chain com-

plexes, there exists G ∈ DMA[Sm] such that evGm
(G) ∼= F . Let

τ�0 : Ch([Sm,Shv(A)]) → Ch�0([Sm,Shv(A)])

be the good truncation functor for chain complexes of the Grothendieck category 
of enriched functors [Sm, Shv(A)]. Also denote by τ�0 : SpGm

(Ch(Shv(A))) →
SpGm

(Ch�0(Shv(A))) the good truncation functor of Ch(Shv(A)) applied in each 
weight.

Consider the commutative diagram

evGm
(τ�0(G)) τ�0(F )

∼

evGm
(G) ∼

F

We know that the bottom horizontal map and the right vertical map are isomorphisms 
in DMA. We claim that τ�0(G) → G is an isomorphism in D([Sm, Shv(A)]). For this 
it suffices to show that for every U ∈ Smk the negative homology sheaves of G(U) are 
zero.

We have a chain of isomorphisms in D(Shv(A))

G(U) ∼= G(U × pt) = evGm
(G(U ×−))(0)

By [6, Theorem 7.1] we have isomorphisms in DMA

evGm
(G(U ×−)) ∼= evGm

(G) ∧MGm

A (U) ∼= F ∧MGm

A (U).

Since DMA,�0 is closed under the smash product of DMA, then F∧MGm

A (U) ∈ DMA,�0. 
Therefore G(U) = evGm

(G(U × −))(0) has vanishing negative homology sheaves. So 
τ�0(G) → G is an isomorphism in D([Sm, Shv(A)]), and then it follows that the com-
posite map

evGm
(τ�0(G)) → evGm

(G) → F
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is an isomorphism in DMA. So evGm,�0 : DMA[Sm]�0 → DMA,�0 is essentially surjec-
tive, and hence an equivalence.

Let D([Sm, Ch�0(Shv(A))]) be the homotopy category of [Sm, Ch�0(Shv(A))] with 
respect to the local model structure. The Dold-Kan correspondence induces an equiva-
lence of categories Λ : D([Sm, ΔopShv(A)]) → D([Sm, Ch�0(Shv(A))]). It follows from 
Proposition 5.2 that we have a commutative diagram

D([Sm,ΔopShv(A)]) Λ D([Sm,Ch�0(Shv(A))])

SpcA[Sm] DMA[Sm]�0

where the vertical maps are the inclusion maps. Proposition 5.2 implies that the bottom 
horizontal arrow is essentially surjective. Since the vertical maps and the top hori-
zontal map are also fully faithful, we know that the bottom horizontal map is fully 
faithful, so it is an equivalence of categories. Thus we get an equivalence of categories 
evGm

: SpcA[Sm] → DMA,�0, as was to be shown. �
From now on assume that A has framed correspondences in the sense of Definition 2.4.

8.4. Proposition. Let X be a special enriched motivic A-space. Let evS1,Gm
(X ) ∈

SH(k)frnis be its associated framed bispectrum, as in Definition 6.1. Then evS1,Gm
(X )

is effective, in the sense of [27, Definition 3.5] if and only if X is very effective, in the 
sense of Definition 2.2.

Proof. Suppose that X is very effective. By Lemma 4.8 the enriched motivic A-space 
X is very effective if and only if the associated framed motivic Γ-space EM(X ) is very 
effective. If EM(X ) is very effective, then this clearly implies that the framed bispectrum 
evS1,Gm

(X ), from Definition 6.1, is very effective in the sense of [27, Definition 3.5].
Now let us prove the other direction. Assume that evS1,Gm

(X ) is very effective in the 
sense of [27, Definition 3.5]. Then for every n > 0 the diagonal of the bisimplicial abelian 
group X (G∧n

m )(Δ̂•
K/k) is contractible.

We need to show that X satisfies Suslin’s contractibility, i.e. that for every U ∈ Sm, 
the diagonal of X (G∧1

m × U)(Δ̂•
K/k) is contractible. So take U ∈ Sm. Then the functor 

X (U × −) : Sm → ΔopShv(A) is again a special enriched motivic A-space, so we can 
form the framed bispectrum evS1,Gm

(X (U×−)). Let evS1,Gm
(X (U×−))f be a levelwise 

local fibrant replacement of evS1,Gm
(X (U × −)). From [27, Lemma 2.8] it follows that 

evS1,Gm
(X (U ×−))f is motivically fibrant.

By Theorem 6.2 we have an isomorphism

evS1,Gm
(X ) ∧ Σ∞

S1,G U+ ∼= evS1,Gm
(X (U ×−))
m
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in SH(k)[1/p]. So after inverting p, the bispectrum evS1,Gm
(X (U ×−))f is a motivically 

fibrant replacement of evS1,Gm
(X ) ∧ Σ∞

S1,Gm
U+.

Since both evS1,Gm
(X ) and Σ∞

S1,Gm
U+ are very effective, this implies that

evS1,Gm
(X (U ×−))f is very effective in SH(k)[1/p].

From Lemma 2.3 it now follows that evS1,Gm
(X (U × −))f is very effective when 

regarded as an object in SH(k). With [27, Lemma 3.2] it follows that the diagonal of 
X (G∧1

m × U)(Δ̂•
K/k) is contractible, so X satisfies Suslin’s contractibility. �

The proof of Proposition 8.4 also implies the following corollary.

8.5. Corollary. Let X be a special enriched motivic A-space. Then X is very effective in 
the sense of Definition 2.2 if and only if for every n � 1 the diagonal of X (G∧n

m )(Δ̂•
K/k)

is contractible.

Let U : DMA → SH(k) be the canonical forgetful functor, and let L : SH(k) → DMA
be its left adjoint. Let DM eff

A be the full triangulated subcategory of DMA compactly 
generated by the set {MGm

A (U) | U ∈ Smk}. See 8.1 for the definition of MGm

A (U). Recall 
that SHeff(k) is the full subcategory of SH(k) generated by the suspension bispectra 
Σ∞

S1,Gm
U+ for U ∈ Smk.

8.6. Lemma. Let C and D be triangulated categories, and let F : C → D be a triangulated 
functor. Assume that F preserves small coproducts. Let SC be a full triangulated subcat-
egory of C compactly generated by a set ΣC. Let SD be a full triangulated subcategory of 
D closed under small coproducts. Assume that for every A ∈ ΣC we have F (A) ∈ SD. 
Then for every A ∈ SC we have F (A) ∈ SD. In particular F restricts to a triangulated 
functor F : SC → SD.

Proof. Consider the full subcategory F−1(SD) in C consisting of all those objects A ∈ C
for which F (A) ∈ SD. We need to show that SC ⊆ F−1(SD). Since ΣC ⊆ F−1(SD), it 
suffices due to [33, Theorem 2.1] to show that the subcategory F−1(SD) is a triangulated 
subcategory closed under triangles and small coproducts in C.

If we have a triangle X → Y → Z → ΣX in C with X, Y ∈ F−1(SD), then

F (X) → F (Y ) → F (Z) → ΣF (X)

is a triangle in D with F (X), F (Y ) ∈ SD. Since SD is closed under triangles it follows that 
F (Z) ∈ SD, so Z ∈ F−1(SD), so F−1(SD) is closed under triangles. Since F preserves 
small coproducts and SD is closed under small coproducts, it follows that F−1(SD) is 
closed under small coproducts. Therefore F−1(SD) is closed under triangles and small 
coproducts. We get that SC ⊆ F−1(SD), which proves the lemma. �
8.7. Lemma. If X ∈ SHeff(k), then L(X) ∈ DM eff

A . So the functor L : SH(k) → DMA
restricts to a functor
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Leff : SHeff(k) → DM eff
A .

Proof. By Lemma 8.2 we have L(Σ∞
S1,Gm

U+) ∼= MGm

A (U) ∈ DM eff
A . Since the Σ∞

S1,Gm
U+

compactly generate SHeff(k) the result now follows from Lemma 8.6. �
8.8. Lemma. The triangulated functor U : DMA → SH(k) preserves small coproducts.

Proof. Let I be a set, and {Ai | i ∈ I} a family of objects. We want to show that the 
canonical morphism 

∐
i∈I

U(Ai) → U(
∐
i∈I

Ai) is an isomorphism in SH(k). The triangulated 

category SH(k) is compactly generated by the set

ΣSH(k) := {Σ∞
S1,Gm

U+ ∧G∧n
m | U ∈ Smk, n ∈ Z}.

Thus to show that the above morphism is an isomorphism, it suffices to show that for 
all G ∈ ΣSH(k) that the map

HomSH(k)(G,
∐
i∈I

U(Ai)) → HomSH(k)(G,U(
∐
i∈I

Ai))

is an isomorphism of abelian groups.
The objects Σ∞

S1,Gm
U+∧G∧n

m are compact in SH(k), and also each L(Σ∞
S1,Gm

U+∧G∧n
m )

is compact in DMA. So for all G ∈ ΣSH(k) we get a chain of bijections

HomSH(k)(G,
∐
i∈I

U(Ai)) ∼=
∐
i∈I

HomSH(k)(G,U(Ai)) ∼=
∐
i∈I

HomSH(k)(L(G), Ai) ∼=

∼= HomSH(k)(L(G),
∐
i∈I

Ai) ∼= HomSH(k)(G,U(
∐
i∈I

Ai)).

Thus 
∐
i∈I

U(Ai) → U(
∐
i∈I

Ai) is an isomorphism in SH(k) and U preserves small coprod-

ucts. �
8.9. Lemma. Assume that A satisfies the Δ̂-property in the sense of Definition 2.4. Then 
for all X ∈ DMA we have X ∈ DM eff

A if and only if U(X) ∈ SHeff(k).

Proof. Our first claim is that U(MGm

A (U)) ∈ SHeff(k) for every U ∈ Smk.
Let 1A ∈ DMA be the monoidal unit. Then

U(MGm

A (U)) ∼= U(MGm

A (U) ∧ 1A).

We can regard SHeff(k)[1/p] as a full subcategory of SHeff(k). From Lemma 2.3 it follows 
that the adjunction U : DMA � SH(k) : L restricts to an adjunction

U : DMA � SH(k)[1/p] : L.
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By [31, Appendix B, Corollary B.2] the suspension spectrum ΣS1,Gm
U+ is strongly du-

alizable in SH(k)[1/p]. So we can apply [4, Lemma 4.6] to get an isomorphism

U(MGm

A (U) ∧ 1A) ∼= U(L(Σ∞
S1,Gm

U+) ∧ 1A) ∼= ΣS1,Gm
U+ ∧ U(1A)

in SH(k)[1/p]. Now ΣS1,Gm
U+ is effective, and SHeff(k) is closed under the ∧ product, so 

to show that U(MGm

A (U)) ∈ SHeff(k), we now just need to show that U(1A) ∈ SHeff(k).
The bispectrum U(1A) is isomorphic to the bispectrum MGm

A (pt) = (MA(G∧j
m ))j�0. 

By construction, the latter bispectrum is a framed bispectrum in the sense of [27], 
because A has framed correspondences. Since A also has the Δ̂-property, the bispec-
trum MGm

A (pt) is effective in the sense of [27, Definition 3.5]. And by [27, Theorem 
3.6] this implies that U(1A) ∈ SHeff(k). So we now have for every U ∈ Smk that 
U(MGm

A (U)) ∈ SHeff(k).
Due to Lemma 8.8 we can now apply Lemma 8.6 to get for every E ∈ DM eff

A that 
U(E) ∈ SHeff(k) (this argument is similar to an argument used in the proof of [4, 
Corollary 5.4]). So the functor U : DMA → SH(k) restricts to a functor

U eff : DM eff
A → SHeff(k).

This shows one direction of the lemma. Let us now show the other direction of the lemma. 
According to Lemma 8.7 the functor L : SH(k) → DMA restricts to a functor

Leff : SHeff(k) → DM eff
A .

The functor Leff is left adjoint to U eff .
By [36, Remark 2.1] the inclusion functors ι : DM eff

A → DMA and ι : SHeff(k) →
SH(k) have right adjoints r0 : DMA → DM eff

A and r0 : SH(k) → SHeff(k).
The following diagrams commute:

DM eff
A

ι

SHeff(k)Leff

ι

DM eff
A

ι

Ueff

SHeff(k)

ι

DMA SH(k)L
DMA

U
SH(k)

From the commutativity of the left diagram it follows by adjunction that also the fol-
lowing diagram commutes:

DM eff
A

Ueff

SHeff(k)

DMA

r0

U
SH(k)

r0
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Take X ∈ DMA such that U(X) ∈ SHeff(k). We need to show that X ∈ DM eff
A . Since 

U(X) ∈ SHeff(k) the counit ε of the adjunction ι : SHeff(k) � SH(k) : r0 is an 
isomorphism at U(X). So

εU(X) : ι(r0(U(X))) ∼→ U(X)

is an isomorphism in SH(k). By the commutativity of the above diagram this implies 
that the composite

U(ι(r0(X))) = ι(U eff(r0(X))) ∼= ι(r0(U(X))) ∼→ U(X)

is an isomorphism in SH(k). But this composite is equal to U(εX) where εX : ι(r0(X)) →
X is the counit map of the adjunction ι : DM eff

A � DMA : r0. Now the forgetful functor 
U : DMA → SH(k) is conservative. So if U(εX) is an isomorphism in SH(k), then also 
εX is an isomorphism in DMA. But this implies that X is in DM eff

A , and our lemma 
follows. �

We have an evaluation functor

evGm
: Ch([Sm,Shv(A)]) → SpGm

(Ch(Shv(A))).

For X ∈ [Sm, ΔopShv(A)] we define

evGm
(X ) := evGm

(Λ(X )).

8.10. Lemma. For X ∈ SpcA[Sm] we have a canonical isomorphism in SH(k)

U(evGm
(X )) ∼−→ evS1,Gm

(X ).

Proof. Let ZSn be the reduced free simplicial abelian group on the pointed simplicial set 
Sn. The bispectrum evS1,Gm

(X ) = evS1,Gm
(EM(X )) can be computed in the (n, m)-th 

level as

evS1,Gm
(X )[n](m) = ZSn ⊗X (G∧m

m )

in M. The bispectrum U(evGm
(X )) = U(evGm

(Λ(X ))) can be computed in the (n, m)-th 
level as U(evGm

(X ))[n](m) = DK(DK−1(X )(G∧m
m )[m]) in M. We claim that there is a 

natural homotopy equivalence

DK(DK−1(X )(G∧m
m )[m]) → ZSn ⊗X (G∧m

m )

in M. The chain complex DK−1(ZSn) is Z in degree n and 0 in all other degrees. It 
follows for every chain complex A that A[n] ∼= A ⊗DK−1(ZSn). By [32] the Dold-Kan 
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correspondence preserves tensor products up to homotopy equivalence. We then get a 
homotopy equivalence

DK(Λ(X )(G∧m
m )[m]) ∼= DK(DK−1(X )(G∧m

m ) ⊗DK−1(ZSn

))

→ DK(DK−1(X (G∧m
m ) ⊗ ZSn

)) ∼=
∼= X (G∧m

m ) ⊗ ZSn

.

These maps assemble together into an isomorphism U(evGm
(X )) ∼−→ evS1,Gm

(X ) in 
SH(k). �

Let Spcveff
A [Sm] be the full subcategory of SpcA[Sm] consisting of the very effec-

tive special enriched motivic A-spaces. By definition it is then also full subcategory of 
D([Sm, ΔopShv(A)]) consisting of the very effective special enriched motivic A-spaces.

8.11. Theorem. Assume that A satisfies the Δ̂-property in the sense of Definition 2.4. 
Then the naive Gm-evaluation functor induces an equivalence of categories

evGm
: Spcveff

A [Sm] → DM eff
A,�0.

Proof. By Theorem 8.3 we have an equivalence

evGm
: SpcA[Sm] → DMA,�0.

So we just need to show for X ∈ SpcA[Sm] that X ∈ Spcveff
A [Sm] if and only if evGm

(X ) ∈
DM eff

A,�0. By Proposition 8.4 we know that X ∈ Spcveff
A [Sm] if and only if evS1,Gm

(X ) ∈
SHfr

nis (k) is effective. By [27, Theorem 3.6] this is the case if and only if evS1,Gm
(X ) lies 

in SHeff(k). By Lemma 8.10 we have a canonical isomorphism

evS1,Gm
(X ) ∼= U(evGm

(X ))

in SH(k). So evS1,Gm
(X ) ∈ SHeff(k) if and only if U(evGm

(X )) ∈ SHeff(k) and by 
Lemma 8.9 this is the case if and only if evGm

(X ) ∈ DM eff
A , which proves the theorem. �

9. Reconstructing SHveff(k)Q

In this section we apply the techniques and results from the previous sections to 
give new models for the stable motivic homotopy category of effective and very effective 
motivic bispectra with rational coefficients. It also requires the reconstruction theorem 
by [21] and the theory Milnor-Witt correspondences [4,8,9,12,19,20].

Let C̃or be the category of finite Milnor-Witt correspondences in the sense of [9]. 
Then C̃or is a strict V -category of correspondences satisfying the cancellation property 
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(see [19] for details). It also has framed correspondences by [12]. It also satisfies the 
Δ̂-property by [4].

Denote by SH(k)Q the category of motivic bispectra E whose sheaves of stable motivic 
homotopy groups πA1

∗,∗(E) are sheaves of rational vector spaces. The category SH(k)Q is 
also called the rational stable motivic homotopy category. It is the homotopy category of 
a stable model structure in which weak equivalences are those morphisms of bispectra f :
E → E′ for which πA1

∗,∗(f) ⊗Q is an isomorphism. Let SH(k)Q,�0 be the full subcategory 
of SH(k)Q on the connective objects. Here a bispectrum object X ∈ SH(k)Q with 
rational stable A1-homotopy groups πA1

p,q(X) ⊗Q is called connective if πA1

p,q(X) ⊗Q ∼= 0
for all p < q.

Throughout this section we assume the base field k to be perfect of characteristic 
different from 2. The assumption on the characteristic is typical when working with 
finite Milnor–Witt correspondences. A theorem of Garkusha [21, Theorem 5.5] states 
that the forgetful functor

U : DMC̃or,Q → SH(k)Q

is an equivalence of categories. This theorem was actually proven under the assumption 
that k is also infinite. The latter assumption is redundant due to [14, A.27] saying that 
the main result of [25] about strict invariance for Nisnevich sheaves with framed transfers 
is also true for finite fields.

9.1. Definition. Define SpcC̃or,Q[Sm] (respectively DMC̃or,Q,�0) to be the category 
SpcA[Sm] (respectively DMA,�0) associated to the category of correspondences A =
C̃or ⊗Q. We call SpcC̃or,Q[Sm] the category of rational enriched motivic C̃or-spaces.

The following theorem says that the special rational enriched motivic C̃or-spaces 
recover SH(k)Q,�0.

9.2. Theorem. The (S1, Gm)-evaluation functor is an equivalence of categories

evS1,Gm
: SpcC̃or,Q[Sm] → SH(k)Q,�0.

Proof. By Theorem 8.3 the Gm-evaluation functor is an equivalence of categories

evGm
: SpcC̃or,Q[Sm] → DMC̃or,Q,�0.

By [21, Theorem 5.5] the forgetful functor U : DMC̃or,Q → SH(k)Q is an equivalence of 
categories, and this implies that the forgetful functor

U : DMC̃or,Q,�0 → SH(k)Q,�0

is an equivalence of categories. By Lemma 8.10 the (S1, Gm)-evaluation functor
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evS1,Gm
: SpcC̃or,Q[Sm] → SH(k)Q,�0

is an equivalence of categories. �
Let SHveff(k)Q be the full subcategory of SH(k)Q on the very effective bispectra. Here 

an object X ∈ SH(k)Q is said to be very effective if it is both effective and connective:

SHveff(k)Q = SHeff(k)Q ∩ SH(k)Q,�0.

9.3. Definition. Define Spcveff
C̃or,Q[Sm] (respectively DM eff

C̃or,Q,�0
) to be the category 

Spcveff
A [Sm] (respectively DM eff

A,�0) associated to the category of correspondences A =
C̃or ⊗Q. We call Spcveff

C̃or,Q[Sm] the category of very effective rational enriched motivic 

C̃or-spaces.

We finish the paper with the following result stating that very effective rational en-
riched motivic C̃or-spaces recover SHveff(k)Q.

9.4. Theorem. The (S1, Gm)-evaluation functor is an equivalence of categories

evS1,Gm
: Spcveff

C̃or,Q[Sm] → SHveff(k)Q.

Proof. By Theorem 9.2 the (S1, Gm)-evaluation functor is an equivalence of categories

evS1,Gm
: SpcC̃or,Q[Sm] → SH(k)Q,�0.

We want to show that it restricts to an equivalence of categories

evS1,Gm
: Spcveff

C̃or,Q[Sm] → SHveff(k)Q.

For this we just need to show that a special enriched motivic A-space X is very effective 
if and only if evS1,Gm

(X ) is very effective in SH(k).
By Proposition 8.4 the special enriched motivic A-space X is very effective if and only 

if the framed bispectrum evS1,Gm
(X ) is effective in SH(k)frnis. By [27, Theorem 3.6] this 

is the case if and only if evS1,Gm
(X ) is effective in SH(k). This concludes the proof of 

the theorem. �
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