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Abstract 
Accurate and efficient forest inventories are essential for effective forest management and conservation. The advent of ground-based 
remote sensing has revolutionized the data acquisition process, enabling detailed and precise 3D measurements of forested areas. 
Several algorithms and methods have been developed in the last years to automatically derive tree metrics from such terrestrial/ground-
based point clouds. However, few attempts have been made to make these automatic tree metrics algorithms accessible to wider 
audiences by producing software solutions that implement these methods. To fill this major gap, we have developed 3DFin, a  novel  free  
software program designed for user-friendly, automatic forest inventories using ground-based point clouds. 3DFin empowers users to 
automatically compute key forest inventory parameters, including tree Total Height, Diameter at Breast Height (DBH), and tree location. 
To enhance its user-friendliness, the program is open-access, cross-platform, and available as a plugin in CloudCompare and QGIS as 
well as a standalone in Windows. 3DFin capabilities have been tested with Terrestrial Laser Scanning, Mobile Laser Scanning, and 
terrestrial photogrammetric point clouds from public repositories across different forest conditions, achieving nearly full completeness 
and correctness in tree mapping and highly accurate DBH estimations (root mean squared error <2 cm,  bias  <1 cm) in most scenarios. 
In these tests, 3DFin demonstrated remarkable efficiency, with processing times ranging from 2 to 7 min per plot. The software is freely 
available at: https://github.com/3DFin/3DFin. 

Keywords: Forestry; Remote sensing; LiDAR; Terrestrial Laser Scanner (TLS); Diameter at Breast Heigh (DBH); Photogrammetry; Mobile 
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Introduction 
Forest inventories (the systematic process of collecting, analysing, 
and reporting data about the characteristics of forest resources, 
such as their location, composition, and distribution; Wulder, 
2004) play a crucial role in the sustainable management and 
conservation of forest ecosystems (Ridder, 2010). Traditional forest 
inventory methods often rely on time-consuming and labour-
intensive field surveys, which are limited in their ability to capture 
detailed spatial information (Van Laar & Akça, 2007). In recent 
years, the utilization of ground-based remote sensing technolo-
gies has emerged as a transformative approach for forest inven-
tory tasks. These technologies comprise Light Detection and Rang-
ing (LiDAR), which includes Terrestrial Laser Scanning (TLS) and 
Mobile Laser Scanning (MLS), as well as the use of terrestrial Pho-
togrammetry (Newnham et al., 2015; Liang et al., 2016). Ground-
based technologies generate dense three-dimensional represen-
tations of objects on the Earth’s surface that can be referred to 
as ‘terrestrial point clouds’. This term can be deceiving, though, 
as ‘terrestrial point clouds’ is commonly used exclusively for 

static laser scanning (i.e. TLS), but should also include other 
systems, as stated above. For this reason, the term ‘ground-
based point clouds’, which has gained popularity over the very 
last years, will be used in this article to refer to this subset of 
close-range remote sensing (Liang et al., 2022), as it conveys 
clearly that there is a diversity of technologies that use a per-
spective from the ground and that produce point clouds. These 
ground-based point clouds are typically composed of millions of 
individual data points, which collectively form a detailed and 
accurate digital representation of the scanned area or object, 
capturing detailed geometric information, including the shape, 
position, and orientation of objects within the scanned area. 

TLS and MLS involve using a laser scanner that emits light 
pulses which measure the distance from the sensor to reflect-
ing surfaces (Dassot et al., 2011; Calders et al., 2020). This pro-
cess generates a dense set of 3D coordinates, forming the point 
cloud. Photogrammetry, on the other hand, utilizes a series of 
photographs taken from different angles to reconstruct the 3D 
structure of the scene (Iglhaut et al., 2019). By identifying com-
mon features in multiple images and applying mathematical
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algorithms, photogrammetry software can calculate the 3D coor-
dinates of points and generate a point cloud. Due to their ability to 
represent geometric information, ground-based point clouds have 
emerged as a valuable tool for storing detailed three-dimensional 
information about forest plots, enabling comprehensive analysis 
and assessment of tree structures (Newnham et al., 2015). 

One of the primary goals in forest inventories is the compu-
tation of tree metrics, such as total Tree Height (TH), Diameter 
at Breast Height (DBH), or tree location, which provide crucial 
insights into forest structure, dynamics, and ecosystem services 
(Van Laar & Akça, 2007; Pascu et al., 2019). Accurate and efficient 
computation of these metrics from ground-based point clouds 
is becoming a key step to automatically retrieve inventory infor-
mation to support for effective forest management, biodiversity 
monitoring, carbon estimation, and ecological research (Liang 
et al., 2016). 

In recent years, numerous tree metrics algorithms have been 
developed utilising ground-based point clouds (Liang et al., 2018; 
Ravaglia et al., 2019; Wang et al., 2021; Sadeghian et al., 2022). 
These algorithms leverage advanced data processing techniques, 
statistical analysis, and geometric calculations to extract mean-
ingful information about individual trees within the point cloud 
data. Each algorithm adopts a unique approach and methodology, 
offering distinct advantages and limitations in terms of accuracy, 
efficiency, and adaptability to different forest types and plot 
characteristics. However, as some authors have pointed out (Liang 
et al., 2018; Krisanski et al., 2021; Montoya et al., 2021), the lack 
of a practical, publicly available software that implements these 
algorithms is currently a bottleneck that limits their use by the 
user community. 

Current non-commercial software implementations specifi-
cally designed to compute tree metrics at plot level from ground-
based point clouds include CompuTree (Piboule et al., 2013), 
3DForest (Trochta et al., 2017), TreeLS (de Conto et al., 2017), 
DendroCloud (Mokros & Koreň, 2019) TreeTool (Montoya et al., 2021), 
FSCT (Krisanski et al., 2021), and FORTLS (Molina-Valero et al., 
2022). In addition, some proprietary commercial options are also 
available, like LiDAR360 (GreenValley International, 2013), AID-
FOREST (López Serrano et al., 2022), or OPALS (Pfeifer et al., 2014), 
which was not initially designed for ground-based point clouds 
but, nowadays, offers enough capabilities to do so. Although able 
to provide tree metrics in a fairly automatic manner, TreeTool and 
FSCT are available solely as Python (Van Rossum & Drake, 1995) 
libraries, which reduces the potential number of users from the 
general public that may employ them. Similarly, TreeLS and FORTLS 
are only available as R packages (R Core Team, 2023). Conversely, 
DendroCloud, 3DForest, CompuTree, LiDAR360, AID-FOREST, and  
OPALS are available as standalone programs, which eliminates 
the burden associated with programmatic access (installing 
requirements, versioning, scripting, etc.). These offer a step-by-
step approach to perform the analysis of the point cloud, which 
has the benefit of a more controlled run. This allows the users to 
check if things are not going as expected at earlier stages. However, 
it leads to a situation where a new learning curve on how to use 
the software tools appears, which may translate into an obstacle 
for non-expert users and deter them from using ground-based 
point clouds. 

Here we introduce a new software, 3DFin: 3D Forest Inventory, 
that has been developed to advance the automatization of forest 
inventories. Thanks to its simplified interface, it allows users, by 
simply selecting a point cloud and pressing a button, to directly 
obtain tree metrics (diameter at different heights including DBH, 
TH, and tree location) and several complementary computations 
(normalized height of the points, distance from any point in the 

cloud to closest tree axis, quality-of-measure indicators) of the 
forest plot. Moreover, 3DFin has been integrated into the larger 
and widely used computer programs CloudCompare and QGIS, to  
simplify its integration into the users’ workflow. We first describe 
the developed algorithm and its implementation into 3DFin soft-
ware, then we evaluate its performance by processing public data 
with 3DFin and we end by discussing its strengths and limitations 
compared with other available software. 

Algorithm 
3DFin’s underlying algorithm leverages state-of-the-art point 
cloud processing techniques to accurately detect and locate 
the trees in ground-based point clouds from forest plots, and 
also calculate essential parameters, such as diameters along the 
stem—including specifically the DBH—and TH. Its application to 
the point clouds is highly parametrizable using 3DFin’s graphical 
user interface (GUI). The algorithm behind the software is an 
updated version of that presented in Cabo et al. (2018) and 
includes some of the extensions developed in Prendes et al. (2021). 
The algorithm is mainly based on rules, although it uses clustering 
in some stages. The algorithm can be divided in four main steps: 

1. Height-normalization of the point cloud. 
2. Identification of stems within user-provided horizontal 

stripe. 
3. Tree individualization based on point-to-stems distances. 
4. Computation of stem diameters at different section heights. 

Height-normalization of the point cloud 
The first step of the algorithm is to normalize the heights of 
the input point cloud. This is depicted in Fig. 1. The height-
normalization is achieved by generating a Digital Terrain Model 
(DTM). From there, the normalized heights for each point in the 
cloud are obtained as the difference between their (z) value and 
the elevation of the DTM in their vertical projection. 

To generate the DTM, a Cloth-Simulation Filter (CSF) as 
described in Zhang et al. (2016) is applied to the point cloud. 
The DTM is stored as a collection of 3D points (the nodes of the 
‘cloth mesh’), and the vertical projections are performed using kd-
tree k-neighbour queries (Bentley, 1975) and weighted averages of 
the (z) values of the DTM points. For each point (pi) in the original 
cloud, the three nearest DTM points are queried. Then, a weighted 
average of their (z) value based on the distance to pi is computed, 
and the normalized height value (z0) of pi is computed as the 
difference between its original (z) value and the weighted average 
(z) value of the three DTM points. Optionally, a denoising step may 
be added prior to the height-normalization when running 3DFin 
to prevent the influence of noise and artifacts below the ground. 
This is achieved by voxelating (Cabo et al., 2014) the point cloud 
using a relatively large voxel size (i.e. 0.15 m), then clustering by 
Euclidean distance the resulting voxels using the Density-Based 
Spatial Clustering of Applications with Noise (DBSCAN) algorithm 
(Ester et al., 1996) and finally filtering clusters smaller than a 
certain cluster size. This process is illustrated in Fig. 2. 

Identification of stems within a horizontal stripe 
In the second step, a horizontal stripe, defined as a subset of 
the normalized point cloud delimited by a lower height Zh(low) 

and an upper height Zh(high), is defined. This horizontal stripe 
represents a region in the 3D-space where it is expected to mostly 
encounter stems (Cabo et al., 2018). The points within the stripe 
are voxelated (using now a smaller voxel size of 0.02–0.06 m) 
and their verticality (Hackel et al., 2016) is computed, based on

D
ow

nloaded from
 https://academ

ic.oup.com
/forestry/advance-article/doi/10.1093/forestry/cpae020/7680458 by Sw

ansea U
niversity user on 04 July 2024



3DFin | 3

Figure 1. The first step of the algorithm is to normalize the input point cloud. (A) Original point cloud. (B) Height-normalized point cloud. 

Figure 2. Effect of denoising the point cloud before computing the DTM through Cloth-Simulation Filter. This allows to generate a more accurate 
DTM, which, in turn, improves the computation of the tree metrics by 3DFin. (A) The original noisy point cloud. (B) The denoised point cloud. 
Note how noise above the canopy is also removed. (C) A faulty DTM, product of applying the CSF to the noisy point cloud. (D) A correctly 
generated DTM produced by applying the CSF filter to the denoised point cloud. 

fixed-radius neighbourhoods. Then, the voxels are filtered based 
on their verticality value: it is reasonable to assume that the 
structure of points that is associated to a scanned stem would 
score a high verticality value, and that any other structure has 
a lower value. Finally, the remaining points (the ones with high 
values) are clustered by Euclidean distance using the DBSCAN 
algorithm, in a similar fashion as the clustering process detailed 
in Section 3. These two filters—eliminating points with low verti-
cality values and removing clusters smaller than a certain cluster 

size—can be conceptualized as akin to ‘limbing the trunks’ and 
they are repeated iteratively, to ensure that the stems are isolated 
appropriately within the horizontal stripe. This step is illustrated 
in Fig. 3. 

Stem extraction and tree height measurement 
Once the bases of the stems have been identified in the horizon-
tal stripe, they are isolated and enumerated, and then, ‘initial’
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Figure 3. Identification of stems within the horizontal stripe from the normalized point cloud, which is the second main step of the algorithm. (A) 
Horizontal stripe is defined by two Z0 values. (B) Verticality is computed for each point in the stripe, using fixed-radius neighbourhoods of points. (C) 
Points with low verticality values are discarded. (D) The remaining points are clustered using DBSCAN algorithm. (E) Small clusters of points are 
discarded. (B), (C), (D), and (E) are repeated iteratively. (F) The points that have not been discarded (those with high verticality and that remained in 
large clusters simultaneously) are regarded as the bases of the stems. 

stem axes are computed. These initial axes are straight, but not 
necessarily vertical representations of the main direction of the 
points of each stem within the stripe. The axes are assimilated as 
the direction of the first principal component of the 

(
x, y, z

)
coor-

dinates of each stem, as in Fig. 4, and are henceforth considered 
as stem axes. This allows to label points along the complete point 
cloud based on their distance to those axes, thus assigning each 
point to a tree. 

During this third step of the algorithm, the TH is computed as 
well. For this, and for each tree, points are voxelated and clustered 
with the DBSCAN algorithm as in Cabo et al. (2018). Any  small  
cluster is then discarded, and from the remaining voxels that 
belong to the main cluster (the one that encloses the tree), a radius 

of voxels around the tree axis is subset and the highest voxel 
among these is selected. The (z) value of this voxel will be then 
considered as the tree height. This process inherently excludes 
from the estimation of the TH the points that are far from the 
tree, which could belong to other trees, and any noise above the 
tree. This is illustrated in Fig. 5. 

It is important to highlight here that the ‘tree individualization’ 
performed during this step does not aim to correctly separate 
tree crowns, which is another task that researchers have shown 
interest in (Windrim & Bryson, 2020; Chen et al., 2021; Carpenter 
et al., 2022; Wang & Bryson, 2023). The purpose of this inter-
mediary step is to enable the efficient extraction of the stems. 
Thus, for each stem that is processed, only the points that are
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Figure 4. The third step of the algorithm, where stem axes are computed and every point in the point cloud is mapped to one of these axes. This serves 
as a proxy to ‘individualize’ the trees and compute tree metrics on each of them. THs are computed at this stage. (A) Computed axes for each stem. (B) 
Mapping of points to the closest axis. 

Figure 5. TH measurement. (A) Set of points that have been mapped to the same tree axis. (B) Voxelization of the points. (C) Clustering and filtering of 
the voxels, discarding small clusters. (D) Voxels further than a certain threshold from the tree axis are discarded. The normalized (z) value of the 
highest remaining voxel is used as TH. 

close enough to it are saved into memory, avoiding unnecessary 
overhead computations. 

Computation of stem diameter at different 
section heights 
In this fourth and final step, the stem diameter is measured at 
different heights around the tree axes. A general overview of this 
process is depicted in Fig. 6. 

Once every tree is ‘individualized’, i.e. every point in the cloud 
is linked to one of the axes, the algorithm extracts their whole 
stems. To do so, points far from any axis (i.e. 1.5 m) are discarded 
temporarily, thus keeping only the points close to the axis. These 
are candidates to belong to the tree stem, and the iterative limbing 
process described in Fig. 5 is applied again, but this time to the 
whole stems. This ensures that branches are removed before 
measuring them. This is depicted in Fig. 7.
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Figure 6. General overview of the fourth and last step of the algorithm, where the stems are identified and their diameter computed. To identify the 
stems, the limbing algorithm detailed in Section 2.2 is applied to every tree to remove branches. To compute the sections, circles are fitted to the stems 
through least-squares minimization. (A) Point cloud after the tree individualization described in Section 2.3. (B) Computed sections for each tree. (C)  
Detail of the computed sections. These are represented as points that form circles. 

Once the whole stems are identified and ‘limbed’, circles are 
fitted to them at several section heights. Those heights are evenly 
separated along the stems and the distances between section 
heights can be defined by the user. The circle fittings are com-
puted for every tree and section by least-squares minimizations. 
This is performed using the (x, y) locations of the points in 
horizontal slices at the specified heights, as initially described 
in Cabo et al. (2018) and improved in Prendes et al. (2021). By  
refining the initial selection of stem points through prefiltering, 
3DFin effectively addresses some of the common sources of error 
encountered in previous circle fitting methods (Koreň et al. 2017), 
such as the presence of understory and branches. Additionally, 
the robustness of the circle fittings and diameter calculations is 
checked in four steps. To accomplish this, the number of points 
inside the fitted circle, the percentage of occupied sectors within 
the circle, the radius of the circle and the vertical deviation from 
the tree axis and other sections are analysed. 

First, a complementary inner circle is placed inside the fitted 
circle, the latter referred henceforth to as ‘outer circle’ for clarity. 
The centre of the inner circle has the same (x, y) coordinates 
than the centre of the outer circle, but its radius is a proportion 
of the latter. The inner circle is used to explore how points are 
distributed in the section, based on the idea that the points 
are expected to be outside the inner circle, as the point cloud 
should only represent the surface of the stems. Depending on 
the technology used to obtain the point cloud, some noise might 
be expected, so a small number of points inside the inner circle 
might not necessarily mean that the outer circle is wrongly fitted. 
However, if there are too many points inside the inner circle 
(i.e. more than what could be expected due to noise), then, it 
probably has been fitted wrongly. Second, the section is divided 
into several sectors to check if there are points within them 
(so that they are occupied). If there are not enough occupied 
sectors, the section fails the test, as the points within itself may 

potentially have an abnormal, non-desirable structure, or the 
diameter of the fitted circle may not be reliable. Third, it is checked 
whether the diameter of the fitted circle lies within a specific 
range to discard anomalies. That is, if there is a priori informa-
tion about the distribution of the diameters within the plot, it 
could be reasonable to discard computed diameters outside the 
range of that distribution. These first three checks are illustrated 
in Fig. 8. 

Finally, the circles fitted along the stems are expected to follow 
an approximately linear sequence which, however, does not nec-
essarily have to be completely straight, nor vertical. To assess that, 
an indicator value based on assumed locally coherent inclinations 
is generated. To derive the indicator value, the tilt angle of each 
section, compared with all other sections, is computed, looking for 
local outlier inclinations. An important property of this approach 
as compared to a simpler approach (i.e. just checking for devia-
tions from a straight standing cylinder) is that it also suitable for 
leaning stems, a common feature in forests. Figure 9 illustrates 
this last step. 

An important feature of these checks is that, regardless of the 
result, the computed diameters are output by 3DFin. This allows 
the users to decide, based on further visual inspection, if the 
diameters adjust well to the stem. 

Software architecture and implementation 
3Dfin implements the custom algorithm described in Section 
2. The program has been written using several popular Python 
libraries to efficiently process the point clouds and compute 
the tree parameters, including numpy (Harris et al., 2020), scipy 
(Virtanen et al., 2020), and scikit-learn (Pedregosa et al., 2011). The 
repository and source code of 3DFin can be found in https://github. 
com/3DFin/3DFin. The repository also contains an online copy of
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Figure 7. Identification of whole stems along tree axes. The limbing algorithm detailed in 2.2 is applied to every tree to remove branches. (A) Points 
that share a common tree axis, which are used as a proxy to the whole tree. (B) A verticality value is assigned to each point based on the geometrical 
structure of its point neighbourhood. (C) Points with low verticality and small clusters of points are disregarded. (B) and (C) may be repeated iteratively. 
(D) Points belonging to the stem. 

the documentation of the software, as well as a link to a tutorial 
on how to use 3DFin. 

3DFin has been bundled into a user-friendly, free and open-
access program equipped with a GUI. This facilitates intuitive 
interaction with the software and makes 3DFin more accessible 
to a wide range of users, including those without a strong tech-
nical background. The GUI is divided in three main tabs: Basic, 
Advanced, and Expert. The tabs offer the users options to modify 
how the data is processed. These options include how the data is 
input and output, and how the algorithm is applied to the data 
through several parameters. 3DFin comes with a set of predefined 
values, which aims to reduce the expertise required to run the 
program successfully. These predefined values have been chosen 
by the developers based on trial and error. The appearance of 
3DFin’s  GUI is depicted in  Fig. 10. 

3DFin is available on Windows and Linux machines as a plugin 
in CloudCompare via the CloudCompare PythonRuntime (Montaigu, 
2024). The latest alpha-version of CloudCompare (version 2.13.1, 
March 2024) including the 3DFin plugin can be downloaded from 
the official site https://www.danielgm.net/cc/release/. 3DFin is 
also downloadable on Windows as a standalone program from 
https://github.com/3DFin/3DFin/releases. Additionally, 3DFin 
and its dependencies may be installed and launched on any 
OS (Windows, Linux and macOS) as a  Python package, available 
in PyPI. A script entry point is also installed by pip in Python 
installation’s bin | script directory. This enables launching 3DFin’s 
GUI from the command line, which avoids the need to write Python 

code to execute 3DFin if it is installed via this method. Finally, a 
plugin in QGIS is also available at https://github.com/3DFin/3 
DFin-QGIS. 

A console is used by 3DFin to prompt details about the 
run when a point cloud is being processed. This can be the 
built-in console of CloudCompare, the default system console 
in the standalone and Python versions, or the built-in console 
of QGIS. 

Inputs and outputs 
3DFin’s main input is a ground-based point cloud from a forest 
plot. It can come from terrestrial photogrammetry, TLS, MLS, a 
combination of those, and/or a combination of those with data 
gathered from aerial platforms (unmanned aerial vehicles -UAV-
and/or airborne photogrammetry or laser scanning -ALS-). In the 
standalone and Python versions of 3DFin as well as in the QGIS 
plugin, the input point cloud must be an LAS/LAZ file. LAS is a 
standardized file format used for storing and exchanging point 
cloud data, while LAZ is a compressed version of the former. LAS 
versions 1.2, 1.3, and 1.4 are accepted by the software. The input 
file may contain extra fields (LAS standard or not). On the other 
hand, the CloudCompare plugin can process any point cloud format 
compatible with CloudCompare. 

The main outputs of the program are point clouds and tabular 
data. Several LAS files are output by the standalone and the 
Python package versions of the program to store the point clouds.
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Figure 8. Quality checks described above. Two sections (A and B) are used to illustrate the quality checks. Section A (top) passes all checks: there are 
not points inside the inner circle (top-left), a large proportion of sectors are occupied by points (13/16 in this example) (top-centre) and the diameter of 
the fitted circle lies within the expected boundaries (in this example, 6 and 50 cm are used as lower and upper boundaries, respectively). Section B 
(bottom) does not pass any of the checks. There are several points inside the inner circle (bottom-left), only a small proportion of the sectors are 
occupied (2/16) (bottom-centre) and the diameter of the fitted circle is larger than the upper boundary (bottom-right). 

Figure 9. Detection of outliers. Two cases are illustrated: Tree A shows stem sections (1, 2, 3 . . .  7) of a tree with no outliers, whilst Tree B shows the 
sections of a tree where there is an outlier section (Section 5). The sections are represented by ellipses. The tilt angles (symbolized by the arrows and 
arcs) of the visualized stem sections of Tree A are all very comparable and hence the indicator would not identify an outlier here. For Tree B, the outlier 
section produces abnormally large/small angles. These will increase the outlier probability described above. 

In the CloudCompare plugin and in the QGIS plugin, several in-
memory entities are produced in the current running instance. 
The tabular data, which contain the numeric results of the com-
putations, are output as a single XLSX file or as several TXT 
files. 

The output point clouds include a point cloud with the detected 
stems in the horizontal stripe, a point cloud containing the com-
puted tree axes, a point cloud containing the THs, a point cloud 
where all the original points are kept, but that is enriched with 
additional scalar fields (distance to closest tree axis, normalized
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Figure 10. 3DFin’s GUI, which consists of three tabs: top left image: basic tab. Top right image: advanced tab. Bottom image: expert tab. 

height, tree ID), a point cloud containing the computed diameters, 
a point cloud containing tree locators, and a DTM. The output 
point clouds produced by 3DFin are illustrated in Fig. 11. 

The numeric outputs include a T × 4 table where T is the 
number of trees, which contains the computed DBH (in m), the 
computed TH (in m), and (x, y) coordinates of each tree; a 1 × S 
table, where S is the number of section heights, which con-
tains the heights at which stem diameters have been computed; 
and several tables displaying information about these diameters. 
These latter tables are of T × S dimensions, and they contain the 
computed diameters, their location, and the quality indicators 
described in Section 2.4. Figure 12 shows a schematic view of the 
numeric outputs of 3DFin. 

Performance 
To evaluate the efficacy and robustness of 3DFin for deriving 
essential tree metrics from ground-based point cloud data, a com-
prehensive testing suite across diverse data has been employed. 
Here we evaluate the program’s performance, assessing its 

accuracy, adaptability, and potential limitations. By subjecting the 
algorithm to a range of scenarios involving distinct environmental 
settings and tree species compositions, we aim to provide a 
comprehensive understanding of its capabilities and ascertain 
3DFin’s utility as a user-friendly yet versatile tool for accurate 
tree attribute estimation. 

This testing has been carried out on an OMEN by HP Laptop 
17-ck1xxx with the following specifications: 12th Gen Intel®Core™ 
i9-12900H, 2500 Mhz, 14 Cores x64-based processor with a NVIDIA 
GeForce RTX 3080 Ti Laptop GPU, with 32 GB of RAM and 8 × 2 GHz  
processing units, Windows®11 Home operating system version 
10.0.22621 64-bit. CloudCompare has been used for the visual-
ization of the point clouds, the processing of the data and the 
extraction of the tree metrics has been done in 3DFin v0.3.2, and  
the analysis of the results has been carried out in the statistical 
computing software R. 

Dataset 
For testing 3DFin, ground-based point clouds from forest plots 
measured during the SilviLaser conference in Vienna 2021
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Figure 11. 3DFin inputs and main point cloud outputs, illustrated with a point cloud of a single tree that has been processed with the software. (A) 
Input, raw point cloud, (B) stems identified in the horizontal stripe. (C) Tree axis. (D) Enriched point cloud and tree height. The enriched point cloud 
includes computed scalar fields (normalized height, distance to closest tree axis, tree ID). (E) Computed diameters, including DBH. Sections coloured in 
blue pass the quality checks detailed in Section 2.4, while sections in red do not. Output point cloud containing the DTM is not illustrated here. 

Figure 12. Schematic view of the numeric outputs produced by 3DFin. 
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Table 1. A summary of the four 25–m radius plots employed to assess 3Dfin’ performance. 

Plot characteristics Plot A1 Plot A2 Plot C1 Plot D1 

N◦ of trees 112 103 67 22 
N◦ of species 6 3 5 4 
Approx. age (years) 50 50 120 120 
Forest type Mixed Coniferous Mixed Mixed 
Other Deadwood Deadwood Natural regeneration Multi-layer 
Standing dead trees Yes No No Yes 
Mean DBH (m) 0.2437 0.2702 0.3624 0.5505 
Min DBH (m) 0.1085 0.1455 0.1030 0.2050 
Max DBH (m) 0.4075 0.4235 0.7680 0.7400 

( Hollaus & Chen; 2023) were used. During the Silvilaser 2021 
conference, over 100 point clouds were acquired in the Vienna 
Woods (Vienna, Austria) and made public (Hollaus & Chen; 2023). 
From these, 10 point clouds from four 25-m radius circular plots 
(A1, A2, C1 and D1; Table 1) were selected. These forest plots 
were scanned using three different ground-based technologies: 
TLS, MLS, and photogrammetry. The TLS points clouds used were 
acquired with a Riegl VZ-400i device (Riegl Laser Measurement 
Systems GmbH, 2023), and the MLS point clouds were captured 
with a GeoSlam ZEB Horizon RT handheld device (GeoSLAM, 
2023). The Riegl VZ-400i has a range of up to 800 m, a field of 
view (FOV) of 100◦ × 360◦, and captures up to 500 000 points per 
second with a relative accuracy of up to 3 mm. The MLS device 
has a range of 100 m, a field of view (FOV) of 360◦ × 270◦, and  
can capture 300 000 points per second with a relative accuracy of 
up to 6 mm. Additionally, for plots A1 and A2, photogrammetric 
point clouds captured from a multi-camera setup were used as 
well to test the capability of 3DFin to process this particular type 
of data. Photos of the forest sites where the four plots were set 
are shown in Fig. 13. 

The selected plots encompass a wide range of forest conditions, 
such as different tree species, forest structures or age classes. 
More specifically, A1 is a dense, mixed forest plot with abundant 
deadwood, where Norway spruce (Picea abies) is the predominant 
species (97 trees), although there are some red beech (Fagus 
sylvatica) (7),  fir  (Abies alba) (4), pine (Pinus spp.) (2), and European 
larch (Larix decidua) (1) trees. The DBH of the trees ranges from ∼10 
to ∼40 cm. A2 is a dense, coniferous forest plot with lower species 
diversity, with the vast majority of individuals being spruce and 
larch trees (102), in addition to one pine tree. The DBH of the trees 
ranges from ∼14 to ∼42 cm. C1 is a natural regeneration, mixed 
forest plot that features trees from five different species, both 
broadleaf and coniferous. It includes red beech (26), spruce (23), 
black alder (Alnus glutinosa) (10), fir (6), and ash (Fraxinus excelsior) 
(1) trees, and the DBH of the trees varies from ∼10 to ∼77 cm. 
Lastly, D1 is a multi-layer, mixed forest plot consisting of mostly 
fir (11) and spruce (7) trees, and four broadleaf trees (two oaks, two 
red beech trees). The DBH ranges from ∼20 to ∼74 cm in plot D1. 
Table 1 presents a summary of the characteristics of each plot. 

Finally, one important consideration about these data is that 
they are already public, and they had been acquired transparently. 
This allows easier replicability of the results presented here 
from any interested user. The dataset is freely available at 
https://researchdata.tuwien.ac.at/records/kndye-egv02 (Hollaus 
& Chen; 2023). It consists of one metadata file, the ground-
based point clouds, ALS data, and corresponding DTMs derived 
from the ALS data. The point clouds are in LAZ 1.4 format and 
the files containing the TLS point clouds are SL21BM_TER_046, 

SL21BM_TER_047, SL21BM_TER_050, and SL21BM_TER_052. 
The MLS point clouds are stored in files SL21BM_TER_001, 
SL21BM_TER_002, SL21BM_TER_005, and SL21BM_TER_007, 
and the photogrammetric point clouds are SL21BM_TER_102 
and SL21BM_TER_103. The field-based reference measures of 
the trees have been kindly made available by the authors 
of the dataset and include the position of the trees using 
(x, y) coordinates, the DBH, the tree species, and a dead-alive 
indicator. 

Performance metrics 
To comprehensively assess the performance of 3DFin, a  set  of  
standard metrics and benchmarks were employed. Specifically, 
to validate the tree mapping, completeness and correctness were 
calculated. Completeness of the tree mapping is a measure of 
how many of the reference trees were detected by the algorithm, 
and correctness measures how many of the trees detected by the 
algorithm were actual reference trees. To match the trees, the (x, 
y) coordinates of the reference trees provided by the authors of 
the dataset were compared to those detected by 3DFin. The latter 
are available in the XLSX file output by the program. The cho-
sen metrics are simple, yet powerful measurements commonly 
employed within the forestry community: examples of their use 
can be found, among others, in Cabo et al. (2018), Liang et al. 
(2018), Prendes et al. (2021), Krisanski et al. (2021), and  Montoya 
et al. (2021). Completeness and correctness were computed using 
the following formulas: 

Completeness = 
nmat 

nref 
∗ 100, 

Correctness = 
nmat 

ndet 
∗ 100, 

where nref is the number of reference trees, ndet is the number 
of trees detected by the algorithm, and nmat is the number of 
matched trees, that is, reference trees that were detected by the 
algorithm. It might happen that the algorithm misses some tree(s) 
or that it mistakes some other objects as a tree. In these two 
situations, both completeness and correctness would be lower 
than 100 per cent. 

Additionally, the accuracy of the extracted DBHs was evaluated 
by comparing them to the field-based reference measures. The 
root mean squared error (RMSE) and the bias were calculated to 
quantify the algorithm’s accuracy. The RMSE gives an idea of how 
much error has been incorporated, in average, into the estimates. 
It is computed using the following formula: 

RMSE =
√

1 
n

∑n 

i=1

(
yi − ŷi

)2 
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Figure 13. Photos of the forest sites in Vienna Woods (Vienna, Austria) where the point clouds were captured from. Plots A1 and A2 are part of Site A 
(Top-left figure). Plot C1 is part of Site C (top-right figure). Plot D1 is part of Site D (bottom figure). Pictures reproduced with permission from Markus 
Hollaus and Yi-Chen Chen. Source: https://silvilaser2021.at/benchmark/. 

where n is the number of observations or data points, yi represents 
the observed or actual value for the ith data point (the true DBH 
of the reference tree), and ŷi represents the predicted or estimated 
value for the ith data point (the computed DBH value for the 
detected tree). 

Bias, on the other hand, refers to the systematic error or 
deviation of the estimator (in this case, 3DFin’s algorithm) from 
the true value of a population parameter (in this case, the true 
DBH). A remark of the bias is that it is signed, where positive values 
indicate that there has been an overestimation of the population 
parameter, and negative values indicate that there has been an 
underestimation. It can be computed using the following formula: 

Bias = 
1 
n

∑n 

i=1

(
yi − ŷi

)

To put the computed RMSE and bias into perspective, two 
complementary metrics were computed. To express the RMSE as a 
percentage of the reference DBH, the following formula was used: 

RMSE
(
%

) = 
RMSE 

y 
∗ 100, 

where y is the mean of the reference DBH. A similar analysis has 
been performed with the bias, using 

Bias
(
%

) = 
Bias 

y 
∗ 100. 

Finally, the time taken by the algorithm to process the point 
clouds and generate tree metrics was recorded. This parameter is 
crucial for real-world applications where efficiency is a concern. 
To provide an estimation of the time needed to obtain the tree 
metrics using 3DFin, every point cloud was processed three times 
using the software, and the mean time computed and rounded 
to the nearest integer. The processing time is automatically esti-
mated by 3DFin and reported (written) in the console when a point 
cloud is processed. 

3DFin settings 
After visual inspection of the point clouds, it was clear that some 
trees were not referenced by the field operators that originally 
measured the trees. These include some partially captured, large 
trees situated at the border of plots A1, C1, and D1, and many thin, 
inconspicuous trees that are disseminated throughout the plots. 
Figures 14 and 15 show examples of these. 

To mimic the criterion followed by the field operators (not 
including such trees), all partially captured, large trees were iden-
tified and removed during the analysis, and the thin trees were 
identified thanks to the setting of 3DFin parameters. Plot A1 was 
processed using default parameters except for ‘Expert > Com-
puting Sections > Minimum expected diameter’, which was set 
to 0.1 m. Plot A2 was processed using default parameters. Plot 
C1 was processed using default parameters except for ‘Expert 
> Computing Sections > Minimum expected diameter’, which 
was set to 0.09 m. Lastly, Plot D1 was processed with default
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Figure 14. Unreferenced trees in plot A1. Marked in blue rectangles, two large, partially captured trees that are not included in the reference data but 
are present in the point clouds. Colours have been assigned according to distance to closest tree axis, which is computed by 3DFin. 

Figure 15. Unrefenced trees in plot C1. Marked in blue rectangles, thin, young trees that had not been included in the field-based reference dataset. 
Colours according to distance to closest tree axis, which is computed by 3DFin. 

parameters except for ‘Basic > Stripe upper limit’, which was set 
to 7.2 m, ‘Basic > Stripe lower limit’, that was set to 4.2 m and 
‘Expert > Computing Sections > Minimum expected diameter’, 
which was set to 0.2 m. The unreferenced trees were discarded 
before computing the metrics. Four (4) trees, clearly visible in the 
point clouds, but unreferenced in the field data, were manually 
removed from plot A1, zero (0) were manually removed from plot 
A2, two (2) trees were manually removed in plot C1, and five (5) 
trees were manually removed in plot D1. However, the correctness 
obtained before removing those trees was computed too. The 
accuracy of the DBH retrieved by 3DFin was calculated employing 
the DBH output in the XLSX file and the in situ measures. All 

ten validation point clouds were processed using the standalone 
version of 3DFin. 

Results 
Table 2 displays the assessment results for the TLS data, Table 3 
shows the results for MLS data and Table 4 displays the results 
from the assessment of the photogrammetric data. In terms of 
tree mapping, 3DFin achieved a completeness near or equal to 
100 per cent across all plots and technologies, and the correct-
ness after removal of unreferenced trees was near 100 per cent 
across the three technologies as well. Moreover, in terms of DBH
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Table 2. Results of the assessment of 3DFin on the point clouds acquired with TLS (Riegl VZ-400i). 

Riegl VZ-400i Plot A1 Plot A2 Plot C1 Plot D1 Average 

Completeness (%) 100 100 100 95.45 98.86 
Correctness (%) 100 99.04 100 100 99.76 
Correctness∗ (%) 96.55∗ 99.04∗ 97.10∗ 80.77∗ 93.37∗ 
DBH RMSE (m) 0.013 0.015 0.019 0.022 0.0175 
DBH RMSE (%) 5.39 5.58 5.42 4.07 5.12 
DBH Bias (m) 0.007 0.008 0.012 0.013 0.0097 
DBH Bias (%) 2.64 3.01 3.27 2.33 2.81 

Correctness∗ is the correctness before removing the unreferenced trees. 

Table 3. Results of the assessment of 3DFin on the point clouds acquired with MLS (GeoSlam ZEB Horizon RT). 

GeoSlam ZEB Horizon RT Plot A1 Plot A2 Plot C1 Plot D1 Average 

Completeness (%) 100 100 100 100 100 
Correctness (%) 100 99.04 98.5 100 99.39 
Correctness∗ (%) 96.55∗ 99.04∗ 95.65∗ 84.61∗ 93.96∗ 
DBH RMSE (m) 0.016 0.012 0.021 0.018 0.0166 
DBH RMSE (%) 6.37 4.49 5.89 3.21 4.99 
DBH Bias (m) −0.012 −0.007 −0.007 −0.007 −0.0083 
DBH Bias (%) −4.73 −2.72 −1.95 −1.30 −2.68 

Correctness∗ is the correctness before removing the unreferenced trees. 

Table 4. Results of the assessment of 3DFin on the point clouds acquired with the multi-camera setup (photogrammetry). 

Multi-camera Plot A1 Plot A2 Average 

Completeness (%) 99.11 100 99.56 
Correctness (%) 98.23 99.04 98.64 
Correctness∗ (%) 95.69∗ 99.04∗ 97.37∗ 
DBH RMSE (m) 0.034 0.045 0.0396 
DBH RMSE (%) 13.93 16.67 15.3 
DBH Bias (m) 0.010 −0.001 0.0041 
DBH Bias (%) 3.96 −0.50 1.73 

Correctness∗ is the correctness before removing the unreferenced trees. 

metrics, 3DFin yielded an average RMSE of under 2 cm in the TLS 
( Table 2) and MLS data, performing the best with MLS (averaging 
a RMSE of 1.66 cm, Table 3). Conversely, a higher average DBH 
RMSE of 0.0396 meters was reported in the photogrammetric data 
(Table 4). Regarding bias on the estimation of DBH, 3DFin achieved 
values under 1 cm across all technologies. A positive average bias 
of 0.97 cm was reported in the TLS data (Table 2), and a negative 
average bias of −0.83 cm was yielded in the MLS data. (Table 3) A  
minimal average bias of 0.41 centimetres was extracted from the 
processing of the photogrammetric data (Table 4). 

The processing times for TLS data are presented in Table 5, the  
processing times for MLS data are shown in Table 6, and  Table 7 
displays the times required to process the photogrammetric data. 
Additional characteristics of the point clouds relevant to this 
measurement (number of points per plot, number of reference 
trees in the plot and plot area) are also given. The processing time 
is notably variable across the plots and technologies. In the case of 
TLS data, 3DFin required the highest time (approximately 5 min) to 
process Plot A1, which had the largest number of trees (112), and 
the fastest processing time (over 2 min) was obtained in Plot D1, 
which had the lowest number of trees (22) (Table 5). For the MLS 
data, where all plots had similar number of points (around 33–38 
million), the plot that took the highest time to process (slightly less 
than 7 min) was Plot A2, whereas the lowest time (over 4 min) was 
obtained in Plot D1 (Table 6). Lastly, the processing time ranged 

from slightly less than 3 min to over 3 min in the photogrammetric 
data (Table 7). 

Discussion 
User-friendliness 
First and foremost, 3DFin can be seamlessly integrated as a plugin 
within the popular point cloud processing software, CloudCompare, 
which is downloaded 200 000–300 000 times annually according 
to its official site. This integration simplifies the user experience 
by embedding the tool directly within an environment that users 
are already familiar with, reducing the learning curve associated 
with adopting a new software. In addition, 3DFin can be used as 
a standalone program, offering independence from specific point 
cloud processing platforms and providing users with the flexibil-
ity to execute tree metric computations in isolation. Furthermore, 
for those users who prefer to work within the Python ecosystem, 
3DFin is available as a Python package, allowing for seamless 
integration with Python-based data analysis pipelines and facili-
tating automation and scripting of tree metric calculations. Lastly, 
recognizing the significance of Geographic Information Systems 
(GIS) in forestry and environmental research, 3DFin has also been 
implemented as a plugin within QGIS, offering geospatial profes-
sionals the ability to incorporate tree metrics directly into their
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Table 5. Time required to process the point clouds acquired with TLS (Riegl VZ-400i) (bold), processing times, the number of points in 
the cloud, the number of trees present, and the area of the plot. 

Riegl VZ-400i Plot A1 Plot A2 Plot C1 Plot D1 

N◦ of points (mil.) 59.27 48.40 72.58 42.48 
N◦ of trees 112 103 67 22 
Area (m2) 1409 1401 1464 1425 
Processing time (s) 292 257 267 140 

Table 6. Time required to process the point clouds acquired with MLS (GeoSlam ZEB Horizon RT) (bold), processing times, the number 
of points in the cloud, the number of trees present, and the area of the plot. 

GeoSlam ZEB Horizon RT Plot A1 Plot A2 Plot C1 Plot D1 

N◦ of points (mil.) 35.74 37.53 33.22 35.89 
N◦ of trees 112 103 67 22 
Area (m2) 1426 1403 1464 1426 
Processing time (s) 390 412 266 253 

Table 7. Time required to process the point clouds acquired with the multi-camera setup (photogrammetry) (bold), processing times, 
the number of points in the cloud, the number of trees present and the area of the plot. 

Multi-camera Plot A1 Plot A2 

N◦ of points (mil.) 67.70 71.04 
N◦ of trees 112 103 
Area (m2) 1404 1397 
Processing time (s) 176 218 

GIS workflows. This multifaceted approach to implementation 
ensures that 3DFin is accessible and adaptable to the preferences 
and requirements of a broad user base, promoting its widespread 
utility in the analysis of ground-based point cloud data for tree-
related research and applications. 

Accuracy 
As shown in Tables 2, 3, and 4, 3DFin has been able to reach 
completeness and correctness of nearly 100 per cent across the 
four plots, which include mixed and coniferous forest that fea-
ture a variety of structural characteristics (Table 1, Fig. 7), and 
three kinds of point clouds (TLS, MLS and photogrammetric). An 
exception is plot D1, where completeness remained under 96 
per cent in the TLS point cloud. Plot D1 features only 22 trees, 
and one was missed by the program. This tree was detected in 
the MLS point cloud, though, where the completeness reached 
100 per cent (Table 3). Regarding the DBH values extracted by 
3DFin, these can be considered very accurate, as the RMSE and 
the bias remained low in all plots and across all data collection 
technologies (Tables 2–4). It should be noted that RMSE is lower 
for MLS than for TLS despite the GeoSlam scanner having a 
lower relative accuracy than the TLS Riegl scanner. A possible 
explanation for this result may lie in the fact that MLS produces 
point clouds where stems are scanned all around, which allows 
the algorithm to determine more clearly which points belong to 
the stems. Another possible cause is that the co-registration of the 
TLS scans into a single point cloud can induce small deformations. 
These deformations might slightly affect the precision of the 
DBH measurements by altering the spatial relationships between 
points that represent the tree stems. It was expected, however, 
that the DBH RMSE would be highest for the photogrammetric 
point clouds, as they are visibly the noisiest among the three 
technologies. The bias on the DBH estimation remained low across 

all point clouds (less than 1 cm, which accounts for less than 3 
per cent). In addition to the results presented here, the capabil-
ities of the initial versions of the algorithm have been assessed 
before. Cabo et al. (2018) showed that the initial version of the 
algorithm was able to achieve nearly 100 per cent tree mapping 
completeness and correctness in the plots that they tested. As 
to DBH and TH, the RMSE of the algorithm estimations ranged 
from 0.8 to 1.3 cm and from 0.3 to 0.7 m, respectively. Similarly, 
Prendes et al. (2021) obtained comparable results presenting 97 
per cent tree mapping completeness and 100 per cent correctness, 
as well as 1.14-cm RMSE in DBH estimation and 1.52-m RMSE in 
TH estimation. In both studies, the point clouds were acquired 
via TLS devices. Although those results are not directly applicable 
to the current version of the algorithm described here, which 
has undergone improvements in the robustness and speed of 
the computations since they were initially published (Cabo et al., 
2018; Prendes et al., 2021), they might be seen as a reinforcement 
of the positive results of 3DFin. 

Other authors have also reported completeness, correctness 
and DBH RMSE values of algorithms that compute tree metrics 
in ground-based point clouds. Liang et al. (2018) compared the 
performance of 18 algorithms that compute tree metrics in 
multiple-scan TLS point clouds. These point clouds were divided 
in easy, medium, and hard difficulty by the authors. Across 
the algorithms that reported completeness and completeness, 
the best performant produced 90.4 per cent completeness with 
93.6 per cent correctness across the easy plots, 88.0 per cent 
completeness paired with 89.2 per cent correctness in medium 
plots and 66.2 per cent completeness coupled to 92.8 per cent 
correctness in the hard plots. Among the 14 algorithms that 
produced DBH measurements, the best performing algorithms 
reported DBH RMSE of 2 cm in the easy plots, which equated to a 
5–15 per cent of the mean DBH value. Nevertheless, the averaged
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Table 8. Comparison of our results (3DFin, TLS; 3DFin, MLS  and  3DFin, Photogrammetry) versus the results presented in Liang et al. 
(2018), Montoya et al. (2021), and  Krisanski et al. (2021). 

Study and dataset Completeness (%) Correctness (%) DBH RMSE (cm) 

Liang et al. (2018), easy  plots 90.4 93.6 5.3 
Liang et al. (2018), medium plots 88 89.2 6.77 
Liang et al. (2018), hard  plots 66.2 92.8 10.17 
Montoya et al. (2021), easy  plots 82 84 2.83–3.25 
Montoya et al. (2021), medium plots 66 86 2.83–3.25 
Montoya et al. (2021), hard  plots 52.5 91 2.83–3.25 
Krisanski et al. (2021) 90.98 Not reported 7.2 
3DFin, TLS 98.86 99.76 1.75 
3DFin, MLS 100 99.39 1.66 
3DFin, photogrammetry 99.56 98.64 3.96 

DBH RMSE obtained by the 14 algorithms in the easy plots was, 
approximately, 5.3 cm (24.97 per cent). This value increased to 
6.77 cm (34.98 per cent) average RMSE in the medium plots and 
up to 10.17 cm (53.70 per cent) in the hard plots. Montoya et al. 
(2021) employed these same plots in their study and reported 
2.83–3.25 cm mean DBH RMSE across all plots, paired with 82.0 per 
cent completeness and 84.0 per cent correctness in the easy plots, 
66.0 per cent completeness and 86.0 per cent correctness in the 
medium plots, and 52.5 per cent completeness and 91.0 per cent 
correctness in the hard plots. Krisanski et al. (2021) reported 7.2-
cm DBH RMSE and 90.98 per cent completeness across 49 point 
clouds of 12 trees each, acquired with multiple scan TLS. Table 8 
shows those results and the results obtained with 3DFin for easier 
comparison. 

While the plots, trees, and point clouds employed in these pre-
vious studies may not offer direct comparability to one another, 
nor to the test data utilized in this investigation, the numerical 
outcomes regarding completeness, correctness, and DBH, calcu-
lations achieved by 3DFin are, at a minimum, on par with the 
top-performing results obtained in the evaluation of previous 
algorithms. 

Processing time 
For our tested dataset, the maximum processing time was under 
7 min, with the lowest processing time being over 2 min. It is 
difficult to compare these results to the processing times achieved 
by other software/algorithms, as the total processing time is rarely 
reported. Only one of the software programs that produce tree 
metrics from ground-based point clouds described in Section 
1 reported processing times. Krisanski et al. (2021) reported a 
processing time using FSCT of up to 60 min in TLS and MLS 
point clouds from forest plots of 12 trees. This was achieved using 
a high-end pc with Intel i9-10900K (overclocked to 4.99 GHz in 
all cores) CPU, NVIDIA Titan RTX (24-GB RAM) GPU, and 128-
GB DDR4 at 3200-MHz RAM. Trochta et al. (2017) did not report 
computing times of the whole process of extracting tree metrics 
with 3DForest; however, in a later study, Klemmt et al. (2021) used 
3DForest and reported that processing a point cloud with this 
software and producing a table with the tree metrics took 3– 
4 h for unexperienced users of 3DForest, and 1 h for experienced 
users. The point cloud used in this study was acquired from 
a 50 × 50 m2 forest plot using a Leica BLK 360 terrestrial laser 
scanner in multiple scan positions and was downsampled to keep 
one of every five points. The specifications of the computer used 
to process the point cloud were not described. Although these 
times are not fully comparable to the processing times obtained 
with 3DFin, as the datasets are different in terms of number of 

trees and the processing power of the computers used in each 
study are different, 3DFin provides the fastest computing times 
among the three tools by a large margin. 

Known limitations 
It is worth noting that 3DFin, while providing powerful tree metric 
computation capabilities, may have certain limitations inherent 
to the problem that it aims to solve. The accuracy of the computed 
tree metrics relies on the quality and completeness of the input 
point cloud data. As a result, noisy or incomplete data may 
affect the accuracy of the results (Liu et al., 2017). This effect 
is noticeable in the results obtained from the photogrammetric 
data, were the RMSE of the computed DBH was much higher than 
from the LiDAR data. Moreover, processing large-scale point cloud 
data may require significant computational resources, including 
memory and processing power. It is recommended to use a system 
with at least 16 GB of RAM to run 3DFin on average-sized point 
clouds (50 million points or lower) and at least 32 GB of RAM to 
process larger clouds. A final limitation is that 3DFin is specifi-
cally designed for processing ground-based point clouds obtained 
through techniques such as TLS, MLS or photogrammetry, as it 
relies heavily on a good representation of the ground and lower 
parts of the stems. Thus, it is not suitable for aerial or satellite-
based point cloud data alone, where the ground and stems are 
often underrepresented in comparison to the tree canopy. 

Future development 
The development of 3DFin highlights an important evolution in 
utilizing terrestrial point clouds for forest inventories, aiming 
for increased automation and precision. Looking into the future, 
research and development efforts will focus on both enhancing 
the existing capabilities of 3DFin and exploring new avenues 
to broaden its application in forest management and ecological 
studies. Progressing with these developments, a central tenet of 
the 3DFin project remains to enhance the usability and accessibil-
ity of our software. Our aim is to ensure that 3DFin is approachable 
and user-friendly, even for those who may not have specialized 
expertise in geomatics or computer science. This commitment to 
inclusivity is reflected in our ongoing efforts to improve 3DFin’s 
integration with open-source platforms, such as CloudCompare 
and QGIS, thereby making advanced geospatial analysis and data 
processing capabilities more accessible to a wider range of users. 

One of the primary objectives in the next phase of the develop-
ment of 3DFin is to include tree volume estimation functionalities. 
Current capabilities such as the computation of DBH, TH, and 
diameters at various section heights, lay a solid foundation for 
estimating tree volume. In this sense, an important aspect of
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ongoing research will be to rigorously test and validate the capa-
bilities of 3DFin in estimating tree height and diameters at various 
heights along the stem, beyond the standard DBH measurements. 
Recognizing the critical role these metrics play in forest inventory 
and ecological research, we aim to conduct extensive field tests 
to compare 3DFin’s outputs with ground-truth data across diverse 
forest types and conditions. This will help to refine the software’s 
algorithms and ensure its accuracy and reliability in capturing a 
full range of scenarios. 

Alongside, we acknowledge the necessity of conducting a com-
prehensive sensitivity analysis of 3DFin’s parameters. Given the 
software’s complex architecture, a step-by-step sensitivity analy-
sis is imperative to understand the influence of each parameter 
on the software’s performance. This analysis will be instrumental 
in optimizing 3DFin’s settings for different forest environments 
and operational conditions, thus enhancing the robustness and 
adaptability of the software. Although this analysis has not yet 
been conducted due to the sheer number of modifiable param-
eters, future research will prioritize this task. By systematically 
evaluating the impact of each parameter, we aim to provide users 
with clear guidelines and optimized presets that facilitate the 
effective application of 3DFin in various forest inventory scenarios. 

Another direction for the research linked to 3DFin is the devel-
opment of a complementary software tool focused on the seman-
tic segmentation of point clouds into different vegetation struc-
tures. This tool will build upon the capabilities of 3DFin, employing 
advanced deep learning techniques to distinguish between var-
ious types of vegetation elements within a forested scene. The 
segmentation results can greatly enhance the accuracy of forest 
inventories, ecological studies, and habitat assessment, provid-
ing valuable insights into forest structure. This advancement, 
together with the volume computations, will enable more com-
prehensive biomass assessments and contribute to carbon stock 
estimation, enhancing the utility of the software in sustainable 
forest management and climate change research. 

Conclusion 
Here we present 3DFin, a user-friendly, free, and open-source soft-
ware designed for automatic 3D forest inventory using ground-
based point clouds. The aim of this program is to offer a flexible 
and accessible set of tools for computing tree metrics, ensur-
ing compatibility with various platforms and software ecosystems. 
3DFin is designed to accommodate diverse user preferences and 
workflows, catering to the needs of researchers and practitioners 
in forestry and environmental sciences. The current implementa-
tion of 3DFin provides reliable and efficient results with minimal 
user input and parametrization. 

3DFin marks a notable progression in the automation and 
accessibility of forest inventories through ground-based point 
clouds. This software simplifies the inventory process, maintain-
ing a ‘two-click software’ approach, while ensuring precision and 
reliability in the results. The streamlined approach offered by 
3DFin holds potential for enhancing forest management efficiency 
and facilitating informed decision-making. Additionally, its inte-
gration with widely used software for processing ground-based 
remote sensing data opens up new possibilities for forest resource 
assessment and monitoring. 

Acknowledgements 
The authors wish to thank Markus Hollaus and Yi-Chen Chen for 
providing the reference data for the point clouds used in this paper 
(Silvilaser 2021 Benchmark Dataset). Additionally, we extend our 
gratitude to Daniel Girardeau-Montaut and Thomas Montaigu for 

their involvement in the development of the CloudCompare plugin. 
Finally, we would like to express our sincere gratitude to the editor 
F.F. and the anonymous reviewers for their insightful feedback 
and constructive suggestions, which significantly contributed to 
improving the quality of this paper. 

Conflict of interest statement: The authors declare no conflict of 
interest. The funders had no role in the design of the study, in 
the collection, analyses, or interpretation of data, in the writing of 
the manuscript, or in the decision to publish the results. 

Funding 
This work was supported by the UK NERC project [NE/T001194/1]: 
‘Advancing 3D Fuel Mapping for Wildfire Behaviour and Risk 
Mitigation Modelling’, the Spanish Knowledge Generation project 
[PID2021-126790NB-I00]: ‘Advancing carbon emission estimations 
from wildfires applying artificial intelligence to 3D terrestrial 
point clouds’, and the Spanish ‘Ramón y Cajal’ programme 
[RYC2018-025797-I]. 

Data availability 
The data underlying this article are available in TU Wien Research 
Data, at https://doi.org/10.48436/afdjq-ce434. 

References 
Bentley JL. Multidimensional binary search trees used for associa-

tive searching. Commun ACM 1975, 1975;18:509–17. https://doi. 
org/10.1145/361002.361007. 

Cabo C, Ordoñez C, García-Cortés S. et al. An algorithm for automatic 
detection of pole-like street furniture objects from Mobile Laser 
Scanner point clouds. ISPRS J Photogramm Remote Sens 2014;87: 
47–56. https://doi.org/10.1016/j.isprsjprs.2013.10.008. 

Cabo C, Ordóñez C, López-Sánchez CA. et al. Automatic dendrometry: 
tree detection, tree height and diameter estimation using terres-
trial laser scanning. Int J Appl Earth Obs Geoinf 2018;69:164–74. 
https://doi.org/10.1016/j.jag.2018.01.011. 

Calders K, Adams J, Armston J. et al. Terrestrial laser scanning 
in forest ecology: expanding the horizon. Remote Sens Environ 
2020;251:112102. https://doi.org/10.1016/j.rse.2020.112102. 

Carpenter J, Jung J, Oh S. et al. An unsupervised canopy-to-root 
pathing (UCRP) tree segmentation algorithm for automatic 
forest mapping. Remote Sens (Basel) 2022;14:4274. https://doi. 
org/10.3390/rs14174274. 

Chen Y, Xiong Y, Zhang B. et al. 3D point cloud semantic seg-
mentation toward large-scale unstructured agricultural scene 
classification. Comput Electron Agric 2021;190:106445. https://doi. 
org/10.1016/j.compag.2021.106445. 

de Conto T, Olofsson K, Görgens EB. et al. Performance of stem 
denoising and stem modelling algorithms on single tree point 
clouds from terrestrial laser scanning. Comput Electron Agric 
2017;143:165–76. https://doi.org/10.1016/j.compag.2017.10.019. 

Dassot M, Constant T, Fournier M. The use of terrestrial LiDAR 
technology in forest science: application fields, benefits and 
challenges. Ann For Sci 2011;68:959–74. https://doi.org/10.1007/ 
s13595-011-0102-2. 

Ester M. et al. A density-based algorithm for discovering clusters in 
large spatial databases with noise. In: Proceedings of the Second 
International Conference on Knowledge Discovery and Data Mining. 
Portland, OR, USA. AAAI Press, 1996, 226–231. 

GeoSLAM (A FARO Technologies, Inc. Company) . Geoslam ZEB Horizon 
RT, 2023. Available online: https://geoslam.com/solutions/zeb-
horizon-rt/.

D
ow

nloaded from
 https://academ

ic.oup.com
/forestry/advance-article/doi/10.1093/forestry/cpae020/7680458 by Sw

ansea U
niversity user on 04 July 2024

https://doi.org/10.48436/afdjq-ce434
https://doi.org/10.48436/afdjq-ce434
https://doi.org/10.48436/afdjq-ce434
https://doi.org/10.48436/afdjq-ce434
https://doi.org/10.48436/afdjq-ce434
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.1016/j.isprsjprs.2013.10.008
https://doi.org/10.1016/j.isprsjprs.2013.10.008
https://doi.org/10.1016/j.isprsjprs.2013.10.008
https://doi.org/10.1016/j.isprsjprs.2013.10.008
https://doi.org/10.1016/j.isprsjprs.2013.10.008
https://doi.org/10.1016/j.jag.2018.01.011
https://doi.org/10.1016/j.jag.2018.01.011
https://doi.org/10.1016/j.jag.2018.01.011
https://doi.org/10.1016/j.jag.2018.01.011
https://doi.org/10.1016/j.jag.2018.01.011
https://doi.org/10.1016/j.rse.2020.112102
https://doi.org/10.1016/j.rse.2020.112102
https://doi.org/10.1016/j.rse.2020.112102
https://doi.org/10.1016/j.rse.2020.112102
https://doi.org/10.1016/j.rse.2020.112102
https://doi.org/10.3390/rs14174274
https://doi.org/10.3390/rs14174274
https://doi.org/10.3390/rs14174274
https://doi.org/10.3390/rs14174274
https://doi.org/10.1016/j.compag.2021.106445
https://doi.org/10.1016/j.compag.2021.106445
https://doi.org/10.1016/j.compag.2021.106445
https://doi.org/10.1016/j.compag.2021.106445
https://doi.org/10.1016/j.compag.2021.106445
https://doi.org/10.1016/j.compag.2017.10.019
https://doi.org/10.1016/j.compag.2017.10.019
https://doi.org/10.1016/j.compag.2017.10.019
https://doi.org/10.1016/j.compag.2017.10.019
https://doi.org/10.1016/j.compag.2017.10.019
https://doi.org/10.1007/s13595-011-0102-2
https://doi.org/10.1007/s13595-011-0102-2
https://doi.org/10.1007/s13595-011-0102-2
https://doi.org/10.1007/s13595-011-0102-2
https://geoslam.com/solutions/zeb-horizon-rt/
https://geoslam.com/solutions/zeb-horizon-rt/
https://geoslam.com/solutions/zeb-horizon-rt/
https://geoslam.com/solutions/zeb-horizon-rt/
https://geoslam.com/solutions/zeb-horizon-rt/
https://geoslam.com/solutions/zeb-horizon-rt/
https://geoslam.com/solutions/zeb-horizon-rt/


18 | Laino et al. 

GreenValley International. LIDAR360, 2013. Available online: https:// 
www.greenvalleyintl.com//LiDAR360/. 

Hackel T, Wegner JD, Schindler K. et al. Contour detection in unstruc-
tured 3D point clouds. 2016 IEEE Conference on Computer Vision and 
Pattern Recognition. Las Vegas, NV, USA. IEEE Computer Society, 
2016, 1610–8. 

Harris CR, Millman KJ, van der Walt SJ. et al. Array programming 
with NumPy. Nature 2020;585:357–62. https://doi.org/10.1038/ 
s41586-020-2649-2. 

Hollaus M, Chen Y-C. SilviLaser 2021 Benchmark Dataset - Terrestrial 
Challenge (1.1) [Data Set]. Vienna, Austria.TU Wien, 2023. https:// 
doi.org/10.48436/afdjq-ce434 

Iglhaut J, Cabo C, Puliti S. et al. Structure from motion photogram-
metry in forestry: a review. Curr For Rep 2019;5:155–68. https:// 
doi.org/10.1007/s40725-019-00094-3. 

Klemmt HJ, Wörle A, Krüger F. et al. Anwendung der software 3D 
Forest auf TLS-basierte Waldmessdaten. AFZ-Der 2021;6:33–7. 
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Trochta J, Krůček M, Vrška T. et al. 3D Forest: an application for 
descriptions of three-dimensional forest structures using terres-
trial LiDAR. PloS One 2017;12:e0176871. https://doi.org/10.1371/ 
journal.pone.0176871. 

Van Rossum G, Drake Jr FL. Python tutorial. Centrum voor Wiskunde 
en Informatica Amsterdam, The Netherlands; 1995. 

Van Laar A, Akça A. Forest Mensuration. vol. 13. Dordrecht, The Nether-
lands. Springer, 2007; 360–83. 

Virtanen P, Gommers R, Oliphant TE. et al. SciPy 1.0: fundamen-
tal algorithms for scientific computing in Python. Nat Methods 
2020;17:261–72. https://doi.org/10.1038/s41592-019-0686-2. 

Wang D, Liang X, Mofack GII. et al. Individual tree extraction from 
terrestrial laser scanning data via graph pathing. For Ecosyst 
2021;8:67. https://doi.org/10.1186/s40663-021-00340-w. 

Wang F, Bryson M. Tree segmentation and parameter measurement 
from point clouds using deep and handcrafted features. Remote 
Sens (Basel) 2023;15:1086. https://doi.org/10.3390/rs15041086. 

Windrim L, Bryson M. Detection, segmentation, and model fitting 
of individual tree stems from airborne laser scanning of forests 
using deep learning. Remote Sens (Basel) 2020;12:1469. https://doi. 
org/10.3390/rs12091469. 

Wulder MA. Encyclopedia of Forest Sciences. RESOURCE ASSESSMENT | 
GIS and Remote Sensing. Amsterdam, The Netherlands. Elsevier. 
2004; 997–1001. 

Zhang W, Qi J, Wan P. et al. An easy-to-use airborne LiDAR data 
filtering method based on cloth simulation. Remote Sens (Basel) 
2016;8:501. https://doi.org/10.3390/rs8060501.

D
ow

nloaded from
 https://academ

ic.oup.com
/forestry/advance-article/doi/10.1093/forestry/cpae020/7680458 by Sw

ansea U
niversity user on 04 July 2024

https://www.greenvalleyintl.com//LiDAR360/
https://www.greenvalleyintl.com//LiDAR360/
https://www.greenvalleyintl.com//LiDAR360/
https://www.greenvalleyintl.com//LiDAR360/
https://www.greenvalleyintl.com//LiDAR360/
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.48436/afdjq-ce434
https://doi.org/10.48436/afdjq-ce434
https://doi.org/10.48436/afdjq-ce434
https://doi.org/10.48436/afdjq-ce434
https://doi.org/10.48436/afdjq-ce434
https://doi.org/10.1007/s40725-019-00094-3
https://doi.org/10.1007/s40725-019-00094-3
https://doi.org/10.1007/s40725-019-00094-3
https://doi.org/10.1007/s40725-019-00094-3
https://doi.org/10.1016/j.jag.2017.07.015
https://doi.org/10.1016/j.jag.2017.07.015
https://doi.org/10.1016/j.jag.2017.07.015
https://doi.org/10.1016/j.jag.2017.07.015
https://doi.org/10.1016/j.jag.2017.07.015
https://doi.org/10.3390/rs13224677
https://doi.org/10.3390/rs13224677
https://doi.org/10.3390/rs13224677
https://doi.org/10.3390/rs13224677
https://doi.org/10.1016/j.isprsjprs.2016.01.006
https://doi.org/10.1016/j.isprsjprs.2016.01.006
https://doi.org/10.1016/j.isprsjprs.2016.01.006
https://doi.org/10.1016/j.isprsjprs.2016.01.006
https://doi.org/10.1016/j.isprsjprs.2016.01.006
https://doi.org/10.1016/j.isprsjprs.2018.06.021
https://doi.org/10.1016/j.isprsjprs.2018.06.021
https://doi.org/10.1016/j.isprsjprs.2018.06.021
https://doi.org/10.1016/j.isprsjprs.2018.06.021
https://doi.org/10.1016/j.isprsjprs.2018.06.021
https://doi.org/10.1109/MGRS.2022.3168135
https://doi.org/10.1109/MGRS.2022.3168135
https://doi.org/10.1109/MGRS.2022.3168135
https://doi.org/10.1109/MGRS.2022.3168135
https://doi.org/10.1016/j.jag.2016.11.003
https://doi.org/10.1016/j.jag.2016.11.003
https://doi.org/10.1016/j.jag.2016.11.003
https://doi.org/10.1016/j.jag.2016.11.003
https://doi.org/10.1016/j.jag.2016.11.003
https://doi.org/10.1016/j.jag.2022.103014
https://doi.org/10.1016/j.jag.2022.103014
https://doi.org/10.1016/j.jag.2022.103014
https://doi.org/10.1016/j.jag.2022.103014
https://doi.org/10.1016/j.jag.2022.103014
online
https://gis.tuzvo.sk/dendrocloud/default.aspx
https://gis.tuzvo.sk/dendrocloud/default.aspx
https://gis.tuzvo.sk/dendrocloud/default.aspx
https://gis.tuzvo.sk/dendrocloud/default.aspx
https://gis.tuzvo.sk/dendrocloud/default.aspx
https://gis.tuzvo.sk/dendrocloud/default.aspx
https://gis.tuzvo.sk/dendrocloud/default.aspx
https://doi.org/10.1016/j.envsoft.2022.105337
https://doi.org/10.1016/j.envsoft.2022.105337
https://doi.org/10.1016/j.envsoft.2022.105337
https://doi.org/10.1016/j.envsoft.2022.105337
https://doi.org/10.1016/j.envsoft.2022.105337
https://tmontaigu.github.io/CloudCompare-PythonRuntime/
https://tmontaigu.github.io/CloudCompare-PythonRuntime/
https://tmontaigu.github.io/CloudCompare-PythonRuntime/
https://tmontaigu.github.io/CloudCompare-PythonRuntime/
https://tmontaigu.github.io/CloudCompare-PythonRuntime/
https://tmontaigu.github.io/CloudCompare-PythonRuntime/
https://doi.org/10.1016/j.softx.2021.100889
https://doi.org/10.1016/j.softx.2021.100889
https://doi.org/10.1016/j.softx.2021.100889
https://doi.org/10.1016/j.softx.2021.100889
https://doi.org/10.1016/j.softx.2021.100889
https://doi.org/10.1007/s40725-015-0025-5
https://doi.org/10.1007/s40725-015-0025-5
https://doi.org/10.1007/s40725-015-0025-5
https://doi.org/10.1007/s40725-015-0025-5
https://doi.org/10.1016/j.scitotenv.2019.06.536
https://doi.org/10.1016/j.scitotenv.2019.06.536
https://doi.org/10.1016/j.scitotenv.2019.06.536
https://doi.org/10.1016/j.scitotenv.2019.06.536
https://doi.org/10.1016/j.scitotenv.2019.06.536
https://doi.org/10.1016/j.compenvurbsys.2013.11.002
https://doi.org/10.1016/j.compenvurbsys.2013.11.002
https://doi.org/10.1016/j.compenvurbsys.2013.11.002
https://doi.org/10.1016/j.compenvurbsys.2013.11.002
https://doi.org/10.1016/j.compenvurbsys.2013.11.002
https://doi.org/10.1080/15481603.2021.1972712
https://doi.org/10.1080/15481603.2021.1972712
https://doi.org/10.1080/15481603.2021.1972712
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.3390/f10070599
https://doi.org/10.3390/f10070599
https://doi.org/10.3390/f10070599
https://doi.org/10.3390/f10070599
http://www.fao.org/3/a-ai074e.pdf
http://www.fao.org/3/a-ai074e.pdf
http://www.fao.org/3/a-ai074e.pdf
http://www.fao.org/3/a-ai074e.pdf
http://www.fao.org/3/a-ai074e.pdf
http://www.fao.org/3/a-ai074e.pdf
http://www.fao.org/3/a-ai074e.pdf
http://www.fao.org/3/a-ai074e.pdf
http://www.riegl.com/nc/products/terrestrial-scanning/produktdetail/product/scanner/48/
http://www.riegl.com/nc/products/terrestrial-scanning/produktdetail/product/scanner/48/
http://www.riegl.com/nc/products/terrestrial-scanning/produktdetail/product/scanner/48/
http://www.riegl.com/nc/products/terrestrial-scanning/produktdetail/product/scanner/48/
http://www.riegl.com/nc/products/terrestrial-scanning/produktdetail/product/scanner/48/
http://www.riegl.com/nc/products/terrestrial-scanning/produktdetail/product/scanner/48/
http://www.riegl.com/nc/products/terrestrial-scanning/produktdetail/product/scanner/48/
http://www.riegl.com/nc/products/terrestrial-scanning/produktdetail/product/scanner/48/
http://www.riegl.com/nc/products/terrestrial-scanning/produktdetail/product/scanner/48/
http://www.riegl.com/nc/products/terrestrial-scanning/produktdetail/product/scanner/48/
http://www.riegl.com/nc/products/terrestrial-scanning/produktdetail/product/scanner/48/
https://doi.org/10.1007/s10661-022-10294-3
https://doi.org/10.1007/s10661-022-10294-3
https://doi.org/10.1007/s10661-022-10294-3
https://doi.org/10.1007/s10661-022-10294-3
https://doi.org/10.1371/journal.pone.0176871
https://doi.org/10.1371/journal.pone.0176871
https://doi.org/10.1371/journal.pone.0176871
https://doi.org/10.1371/journal.pone.0176871
https://doi.org/10.1371/journal.pone.0176871
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1186/s40663-021-00340-w
https://doi.org/10.1186/s40663-021-00340-w
https://doi.org/10.1186/s40663-021-00340-w
https://doi.org/10.1186/s40663-021-00340-w
https://doi.org/10.1186/s40663-021-00340-w
https://doi.org/10.3390/rs15041086
https://doi.org/10.3390/rs15041086
https://doi.org/10.3390/rs15041086
https://doi.org/10.3390/rs15041086
https://doi.org/10.3390/rs12091469
https://doi.org/10.3390/rs12091469
https://doi.org/10.3390/rs12091469
https://doi.org/10.3390/rs12091469
https://doi.org/10.3390/rs8060501
https://doi.org/10.3390/rs8060501
https://doi.org/10.3390/rs8060501
https://doi.org/10.3390/rs8060501

	 3DFin: a software for automated 3D forest inventories from terrestrial point clouds
	Introduction
	Algorithm
	Software architecture and implementation
	Performance
	Results
	Discussion
	Conclusion
	Acknowledgements
	Funding
	Data availability


