
 Accelerating Towards an Understanding  

of Foraging in Greater Noctule Bats  

(Nyctalus lasiopterus) 

 

Elliot William Dee 

Principal Supervisor: Prof. Rory Wilson 

Secondary Supervisor: Dr. Miguel Lurgi Rivera 

 

Submitted to Swansea University in fulfilment of the requirements for the Degree of MRes 

Biosciences 

 

Swansea University 

2023 

 

 

 

 

 

 

Copyright: The Author, Elliot William Dee, 2023

r.t.lloyd
Cronfa banner



2 
 

Declaration 

This work has not previously been accepted in substance for any degree and is not being 

concurrently submitted in candidature for any degree.  

 

Signed ................. ................... (candidate)  

Date ............ 27/09/2023 ..................................................  

 

This thesis is the result of my own investigations, except where otherwise stated. Where correction 

services have been used, the extent and nature of the correction is clearly marked in a footnote(s). 

Other sources are acknowledged by footnotes giving explicit references. A bibliography is 

appended.  

 

Signed ........ ..................... (candidate)  

Date ............ 27/09/2023 ..................................................   

 

I hereby give consent for my thesis, if accepted, to be available for electronic sharing.  

 

Signed ................ .............. (candidate)  

Date ............ 27/09/2023 .................................................. 

 

 

 

 

 



3 
 

Statement of Contributions  

 

Contributior Role Persons Involved 

Conceptualisation RPW1 

Funding Acquisition DD2 

Data Curation DD, ETL3, MH4, JR5 

Validation RPW 

Formal Analysis RPW, MLR6, JR, EWD7 

Investigation DD, ETL 

Methodology  EWD, RPW, MLR, DD, JR 

Project Administration RPW, EWD 

Resources MH 

Software MH 

Supervision RPW, MLR 

Visualisation RPW, MLR, EWD 

Writing – Original Draft 

Preparation 

EWD 

Writing – Review and Editing  RPW, MLR 

1 Prof. Rory P. Wilson – Biosciences, College of Science, Swansea University, Swansea, UK; Swansea 
Lab for Animal Movement. 

2 Dr. Dina Dechmann – Department of Migration, Max Planck Institute of Animal Behavior, 
Radolfzell, Germany; Ephemeral Resource Adaptations Group. 

3 Dr. Elena Tena Lopez - Departamento de Biodiversidad Ecología y Evolución, Universidad 
Complutense de Madrid, Madrid, Spain 

4 Dr. Mark Holton – Biosciences, College of Science, Swansea University, Swansea, UK 

5 Dr. James Redcliffe - Biosciences, College of Science, Swansea University, Swansea, UK; Swansea 
Lab for Animal Movement  

6 Dr. Miguel Lurgi Rivera – Biosciences, College of Science, Swansea University, Swansea, UK; 
Computational Ecology Lab  

7 Elliot William Dee (Candidate) – Biosciences, College of Science, Swansea University; Swansea Lab 
for Animal Movement 



4 
 

Research Ethics  

 



5 
 

 



6 
 

Contents 

I. List of Tables and Figures ………………………………………………………………………………………… 7 

II. Definitions of Abbreviations …………………………………………………………………………………. 9 

III. Acknowledgements ……………………………………………………………………………………………… 10 

IV. Abstract …………………………………………………………………………………………………………………… 11 

V. Lay Summary …………………………………………………………………………………………………………… 12 

1. Introduction …………………………………………………………………………………………………………….. 13 

2. Methods …………………………………………………………………………………………………………………… 16 

2.1. Data collection 

2.2. Acceleration data 

2.3. Behavioural classification 

2.4. Data analysis 

3. Results ………………………………………………………………………………………………………………………. 25 

 3.1. Presumed feeding behaviour  

 3.2. Patterns in feeding behaviour 

3.3. Feeding behaviour and diet 

  4. Discussion ………………………………………………………………………………………………………………… 34 

4.1. Presumed feeding behaviour  

4.2. Variation in feeding behaviour with respect to diet   

4.3. Limitations  

5. Conclusion ……………………………………………………………………………………………………………….. 40 

VI. References ……………………………………………………………………………………………………………… 41 

 VII. Appendix A ……………………………………………………………………………………………………………. 59 



7 
 

List of Tables and Figures 

Page 17: 

Figure 1: Schematic showing the orientation of accelerometers deployed, superimposed on 

a diagram of a little brown bat (Myotis lucifugus).  

Page 20: 

Table 1: Definitions of accelerometer metrics used in a Boolean classification algorithm to 

identify feeding behaviour.   

Page 21: 

Table 2: Summary of the sequence of criteria used by a Boolean classification algorithm to 

identify feeding behaviour.  

Page 26:  

Figure 2: Example of heave (Z), surge (X), and sway (Y) acceleration signal as shown during 

level flight. 

Page 27:  

Figure 3: Exemplar signals for twelve acceleration metrics (raw and smoothed heave, surge, 

sway, VeDBA, and VeSBA; pitch and roll angles) as shown during presumed feeding events. 

Page 29:  

Figure 4: Frequency and probability density distributions of feeding events with time of 

night.  

Page 30: 

Figure 5: Graphical representation of principal component analysis (PCA) performed on 16 

accelerometer metrics, with scores of principal components (PCs) 1 and 2 plotted 

orthogonally, and variable loadings showing the correlation between each original variable 

and each PC. 

 

 



8 
 

Page 31: 

Figure 6: Kernal Density Estimates (KDEs) for the distributions of three accelerometer 

metrics (mean VeDBA, mean VeSBA, and smoothed heave) as measured during presumed 

feeding events, along with estimates for the distributions of PC1 and PC2, and the duration 

in seconds of individual feeding events.  

Page 32:  

Figure 7: Boxplots showing within-group similarity in feeding behaviour (as represented by 

PC1) at the levels of: (A) individual N. lasiopterus; and (B) roost boxes occupied by multiple 

individual N. lasiopterus.  

Page 33:  

Table 2: Summary of outputs from binomial (logistic) generalised linear models predicting 

the frequency of occurrence (FO) of seven prey taxa in each roost box from the PC1 scores of 

associated feeding events.  

Page 59 (Appendix):  

Table A1: Names and definitions of 16 accelerometer metrics used in Principal Component 

Analysis. 

  

 

 

 

 

 

 

 

 



9 
 

Definitions of Abbreviations 

 

Abbreviation Meaning Definition 

DDMT Daily Diary Multiple 
Trace 

Custom-built software for handling high resolution bio-
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Abstract 

Knowledge of foraging costs is important to understanding the drivers of animal movement, and can 
aid prediction of the energetic implications of environmental perturbation. Here, we characterise 
the feeding behaviour of greater noctule bats (Nyctalus lasiopterus) at the level of individual feeding 
events, with the aims of: (1) quantifying behavioural signatures corresponding with feeding; and, (2) 
examining differences in feeding attributable to prey type. Behavioural data were obtained from 
noctules equipped with accelerometers in Donaña National Park, Spain, along with faecal data 
collected from roosts. Stereotyped postures and movements indicating feeding were identified 
visually, using which thresholds in four metrics were selected for use in Boolean classification 
algorithms delineating individual feeds. The dimensionality of feed accelerometer metrics was 
reduced using Principal Component Analysis (PCA), and the metrics best characterising feeding 
retrieved using variable loadings. We calculated Intraclass Correlation Coefficients (ICCs) at the 
individual and roost levels to test for within-group correlation in feeding behaviour. Finally, binomial 
GLMs were fitted to predict the effect of PC1 on the frequency of occurrence (FO) of seven prey taxa 
in faeces. We identified 422 feeds, comprising significant departures in static and dynamic 
acceleration from normal flight. PCA loadings indicated six metrics characterising feeds, none of 
which showed evidence of clustering attributable to prey type. ICCs indicated individual- but not 
roost-level correlation in PC1, suggesting individual differences independent of proximity to prey 
fields. Additionally, GLMs yielded no evidence that FO varies with PC1. For the first time, we 
quantify feeding behaviour in N. lasiopterus - a threatened insectivorous bat - using accelerometers, 
with implications for reconstructing energy budgets across larger-scale movement trajectories. 
Disentangling the drivers of individual differences may be important to understanding demographic 
influences on bat foraging ecology. However, future studies linking diet and feeding behaviour 
would benefit from more refined behavioural algorithms. 
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Lay Summary 

 
A better understanding of individual animal feeding behaviour, determinant in survival and 
reproduction, may inform population-level responses to resource variability, and therefore 
conservation. To achieve this, behavioural processes must be resolved across a range of relevant 
scales – from the seasonal patterns to its individual feeding events. This study examines fine scale 
feeding behaviour in an endangered bat species (greater noctule, Nyctalus lasiopterus), using 
animal-attached tags to quantify individual feeding attempts. Taking advantage of accelerometers 
that sense three-dimensional body movements at sub-second resolution, we identified presumed 
feeding events based on specific movements and postures known previously from foraging bats. 
Specifically, we developed an algorithm for defining presumed feeding behaviour based on rapid 
and substantial changes in body angle alongside high dynamic body acceleration. These elements 
capture characteristic transitions from level to inverted in-flight postures during prey capture, and 
the high biomechanical effort involved in feeding. We found differences in feeding behaviour at the 
level of individual noctules, perhaps associated with individual traits such as age and sex. A 
combination of our methods and existing larger-scale tracking (e.g. GPS/ satellite telemetry) may 
provide an opportunity to identify preferred feeding habitats in foraging bats. Such studies may 
pertain to questions of conservation interest, such as how changes in the distribution of resources 
as well as human perturbations (e.g. land-use, wind farms) are likely to influence noctule foraging 
movements.   
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1. Introduction 

Optimal foraging theory proposes that organisms seek to forage in a manner that maximises 

energetic profit from trophic resources while minimising the costs – with respect to both time and 

energy - of obtaining them (Pyke, 1978; 1984). Previous studies have used this framework as a basis 

for explaining the fitness implications of various foraging strategies, including consideration of diet 

(Waddington and Holden, 1977; Wells and Wells, 1983), foraging patch selection and residency 

(Charnov 1976; Pyke, Pulliam, and Charnov, 1977), and search trajectories (Humphries, 

Weimerskirch, and Sims, 2013; Pyke, 2015; Campeau, Simons, and Stevens, 2022). However, the 

costs-benefit trade-offs involved in foraging are modulated by inherent constraints associated with 

an organism’s biology and environment (Stephens, Brown, and Ydenberg, 2007), and as such it can 

be difficult to reconcile the realised outcomes of foraging with predictions from optimal foraging 

theory. This is particularly true for organisms foraging in spatiotemporally heterogenous 

environments, which impose the additional metabolic and cognitive costs of searching for 

unpredictable resources given imperfect knowledge of patchy environments (MacArthur and 

Pianka, 1966; Bastos et al., 2020). In such cases, without detailed insights into the energetic 

demands of foraging, from the search phase to prey capture and processing, disentangling the 

cumulative fitness implications of all relevant processes, and how these may change in space and 

time, presents a significant challenge (Weimerskirch et al., 2003). The relevance of these 

considerations for many conservation issues is becoming increasingly obvious (Wilson et al., 2018). 

Only recently, through the advent of bio-logging technology –animal-borne sensors that 

remotely measure a range of biomechanical, physiological, and environmental variables (Naito 

2004)– has it been possible to monitor animal activity at very fine scales, and thus accurately 

approximate the energetic consequences of movement and foraging strategies (Wilmers et al., 

2015). Indeed, advances in the miniaturisation of animal-attached loggers have facilitated the 

integration of increasingly large amounts of spatial and behavioural data through compact, multi-

sensor systems (e.g. ‘Daily Diary’ tags; Wilson, Shepard, and Liebsch, 2008; Wild et al., 2022). This 

includes combinations of bio-logging and GPS telemetry data (Gunner et al., 2022), enabling the 

energetic strategies exhibited by various animals to be examined over a wide range of 

spatiotemporal scales up to and including resource encounter and consumption (Mori, 1998; 

Ropert-Coudert et al., 2004; Del Caño et al., 2021).  



14 
 

Triaxial accelerometers, inertial sensors capable of measuring body posture and movement 

with respect to gravity at sub-second resolution (Gunner et al., 2020), offer unprecedented insights 

into animal foraging behaviour and its associated energetic costs (Wilmers et al., 2015). Distinct 

behavioural states are often associated with stereotyped postural and dynamic elements, 

corresponding to quantifiable signatures in acceleration data (Shepard et al., 2008; Williams et al., 

2015), enabling instances of particular behaviours to be identified across datasets spanning 

relatively long periods. In addition, the sensitivity of devices logging at high frequencies to changes 

in the dynamism of movement (Wilson et al., 2014), and the close adherence of such parameters to 

associated metabolic power requirements (Gómez-Laich et al., 2011; Qasem et al., 2012; Wilson et 

al., 2020) enables the near-continuous approximation of energy expenditure. Such capabilities 

present the opportunity to reliably quantify time and energy budgets over periods and at 

resolutions unfeasible for conventional studies utilising human observers in the field. For example, 

the concept of ‘energy landscapes’, which describe the heterogeneity in the energetic efficiency of 

locomotion through an environment (Shepard et al., 2013), has been advanced through the use of 

coupled accelerometers and magnetometers (measuring animal heading). This has generated 

fundamental insights into the strategies undertaken by animals to minimise the energetic cost of 

movement at the landscape scale: across variable terrain on land (Lempidakis et al., 2018; Redcliffe, 

2021), through dynamic atmospheric conditions (Shepard, et al., 2011; Williams et al., 2020), and 

across depth gradients in the water column (Wilson, Quintana, and Hobson, 2011). Knowledge of 

such strategies is essential if a holistic understanding of foraging is to be reached, because the 

energetic profitability of trophic resources is relative to the costs of transport involved in obtaining 

them, meaning the overall fitness benefit accrued from foraging is contingent on all facets of this 

trade-off (Welham and Beauchamp, 1997; Weimerskirch et al., 2003).   

Bats (Mammalia: Chiroptera, Blumenbach, 1799), and in particular small, insectivorous 

species, are underrepresented in bio-logging studies due to their small size, high mobility, and 

cryptic lifestyles (O’Mara, Wikelski, and Dechmann, 2014). The small size of insectivorous bats 

means that the excess weight of the tags may be critical in affecting their capacity (O’Mara, 

Wikelski, and Dechmann, 2014; Wilson et al., 2021). However, advances in the miniaturisation of 

biologgers offer increasing opportunities for tag deployments on small, volant species, making the 

study of insectivorous bat behaviour by this means more feasible (e.g. Stidsholt et al., 2019). This 

has facilitated an increased focus on understanding spatial patterns of bat behaviour in three-
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dimensional space, as informed by GPS telemetry, capable of measuring both geolocation and 

vertical position in the aerosphere (e.g. O’Mara et al., 2019; 2021). Understanding such facets of bat 

behaviour is compelling for many reasons, not least because they are significant predators of 

arthropods, consuming large numbers of insects including agricultural pests (Boyles et al., 2011), 

but are often threatened by human activities such as deforestation, urbanisation, and wind-energy 

development (Alcadé, Juste, and Paunović, 2016).  

The greater noctule (Nyctalus lasiopterus) is a large, aerial-hawking bat occupying an 

extensive but discontinuous range in mainland Europe, from the Iberian Peninsula in the West to 

European Russia in the East (Paniccia et al., 2023). It is a species of conservation concern across its 

geographical range, a status largely driven by the loss of mature woodland habitat (Juste et al., 

2016). The relatively large size of this species facilitates a broad and flexible diet, including a diverse 

array of taxa and body sizes (Smirnov and Vekhnik, 2013). Although primarily insectivorous, most 

frequently predating upon moths and beetles, it is one of few bat species outside of the neotropics 

believed to actively predate on vertebrates, in particular small migratory birds (Dondini and Vergari, 

2000; Ibáñez et al., 2001; Smirnov and Vekhnik, 2013). The sensitivity of accelerometers to fine-

scale changes in body posture and motion (Wilson et al., 2014) presents the possibility to apply this 

technology in an examination of prey selection in N. lasiopterus, an opportunity augmented by the 

wide range of prey sizes and taxa actively exploited by this species (Ibáñez et al., 2001). Indeed, 

differences in body posture and motion during foraging may be associated with variability in the 

behavioural and morphological traits of prey (Watanabe and Takahashi, 2012; Wilson et al., 2013). 

Therefore, the present study examines the possibility that systematic differences in feeding 

behaviour, as measured in multiple dimensions by accelerometers, may reflect prey selection at the 

level of individual feeding events in N. lasiopterus.   

Limited knowledge of the foraging behaviour of insectivorous bats could impede their 

conservation, because energetic cost-benefit trade-offs associated with foraging may govern their 

interaction with extrinsic threats (e.g. wind turbines; O’Mara, 2023). In addition, knowledge of the 

energetic consequences of foraging could inform an understanding of how bat populations are likely 

to respond to habitat loss and altered prey communities (Rainho and Palmeirim, 2011). Accordingly, 

this study seeks to contribute to our understanding of feeding behaviour at the level of individual 

feeding events in N. lasiopterus, with the specific aims of: 1) characterising the body postures and 

movements (as measured by accelerometers) associated with N. lasiopterus feeding behaviour, 
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thereby enhancing future attempts to identify feeding behaviour across bat movement trajectories; 

and 2) exploring the possible influence of prey selection on N. lasiopterus feeding behaviour, with 

the intention of providing a basis from which to quantify the energetic demands associated with 

given diet compositions. Following the identification of instances of feeding from accelerometer 

data, metrics characterising N. lasiopterus feeding behaviour are compared with diet data to 

explore patterns corresponding to prey selection. Individual dietary differences are expected to be 

associated with differences in feeding behaviour at the level of individual N. lasiopterus. In addition, 

spatial proximity to prey fields is expected to produce more similar feeding behaviour among bats 

from the same roost compared with those from different roosts.    

 

2. Methods 

2.1. Data Collection 

Fieldwork was carried out in Donaña National Park Biological Reserve (Andalucía, southern 

Spain) by researchers from the Max Planck Institute for Animal Behaviour and Estación Biológica de 

Doñana, as part of a wider project studying the species’ behaviour and ecology (E. Tena López, 

personal communication). The reserve comprises a mixture of habitats: pine forest, marshland, 

sand dunes, and Mediterranean shrubland. Fewer than 100 greater noctule bats (Nyctalus 

lasiopterus) occupy the reserve, inhabiting 28 bat roost boxes installed on trees (including stone 

pine, Pinus pinea, river red gum, Eucatlyptus camaldulensis, and white poplar, Populus alba; Popa-

Lisseanu and Ibáñez, 2007; Santos et al., 2016). Bats were captured in April 2018 and October 2019 

using mist nets erected outside of roost boxes, and equipped with compact GPS-triaxial 

accelerometer data loggers (Axytrek, Fleetronics tags). The tags measure acceleration (1 g = 9.81 m 

s2) in three orthogonal axes (dorso-ventral or ‘heave’; anterior-posterior or ‘surge’; lateral or ‘sway’; 

Figure 1) at a resolution of 100 Hz (100 data points s-1), and barometric pressure at 1 Hz. The 

loggers were glued to the dorsal fur (O’Mara, Wikelski, and Dechmann, 2014) over the approximate 

centre of gravity during level flight, and in line with the longitudinal axis of the body. Loggers 

weighed 4.14±0.18 g, representing 8±0.15% of the bats’ body masses. This is in excess of the 

commonly accepted 5 % threshold for animal-borne sensors (Wilson et al., 2021; implications of tag 

burden discussed further in section 4.3). After two to four days, the bats were recaptured directly 

from roost boxes and the tags were removed.  
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Figure 1: Schematic illustrating the orientation of the axes of accelerometer sensors on a back-mounted tag 

with respect to gravity (black dotted arrow) during level flight, superimposed on a diagram of a little brown 

bat (Myotis lucifugus). Smoothed acceleration in the Z (heave) axis closely approximates gravitational 

acceleration, being nearly parallel to the direction of gravity during level flight. The orientation shown 

reflects the logger orientation selected for deployments on N. lasiopterus (see section 2.1). Note that this 

configuration may not be representative of logger deployments in other studies, as the selection of logger 

orientation is species- and study-specific. Image created on www.BioRender.com (BioRender, 2023).   

 

In addition to accelerometer data, faecal samples were collected from roost boxes every day that 

the bats equipped with loggers were active (indicated by the activation of GPS above an 

acceleration threshold of 1.25 g). Faecal pellets were retrieved from mesh guano collectors 

beneath the bottom entry holes of roost boxes. The samples were frozen at -20 °C or dried at room 

temperature in the laboratory. DNA was extracted from the faeces. Prey species in faecal samples 

were identified by amplifying prey DNA, following Ibáñez et al. (2016), and comparing the resulting 

sequences with the GenBank database (http://www.ncbi.nlm.nih.gov/GenBank). This yielded prey 
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ID to species level, and qualitative scores of their relative abundance ('High’, ‘Medium’, ‘Low’) in 

samples from each roost box.    

 

2.2. Acceleration Data 

Acceleration and barometric pressure data were visualised as two-dimensional signals in 

‘Daily Diary Multiple Trace’ (DDMT) – a custom-built software for handling animal behavioural data 

collected at sub-second resolution by accelerometers, magnetometers, and temperature and 

pressure sensors (Wildbyte Technologies, 2023).  

Accelerometer data comprise static (gravitational) and dynamic acceleration components 

(Grundy et al., 2009). The static component (𝑆) is derived for each orthogonal axis by averaging a 

sample (𝑖) of raw acceleration over a moving window of size 𝑤 ('smoothing window’; Bidder et al., 

2015; Gunner et al., 2020): 

𝑆𝑖 =  
1

𝑤
∑ 𝑆𝑗

𝑖+ 
𝑤

2

𝑗=𝑖−
𝑤

2

         (1) 

 

In the present study, the width of the smoothing window, 𝑤, was selected to correspond with the 

approximate duration of two wingbeat cycles as observed in the raw heave acceleration (30 

consecutive data points corresponding to 0.3 s of data at 100 Hz; Figure 2 – see section 3.1.2), 

following Shepard et al. (2008). Dynamic acceleration stems from actions undertaken by the tagged 

animal, and is calculated by subtracting the static acceleration from the raw data (Wilson et al., 

2020).  

In the absence of substantial biomechanical or inertial forces in excess of those experienced 

during linear motion (e.g. centripetal acceleration), ‘smoothed’ (static) acceleration closely 

approximates logger inclination (corresponding to body pitch and roll – equations 2 and 3) with 

respect to gravity (Bidder et al., 2015):  

 

𝑃𝑖𝑡𝑐ℎ = (𝑎𝑡𝑎𝑛2(𝐻𝑒𝑎𝑣𝑒𝑠𝑚, √𝑆𝑢𝑟𝑔𝑒𝑠𝑚𝑠𝑚2 +  𝑆𝑤𝑎𝑦𝑠𝑚𝑠𝑚2 )) ×
180

𝜋
           (2)                         
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𝑅𝑜𝑙𝑙 = (𝑎𝑡𝑎𝑛2 (𝑆𝑢𝑟𝑔𝑒𝑠𝑚, √𝐻𝑒𝑎𝑣𝑒𝑠𝑚
2 +  𝑆𝑤𝑎𝑦𝑠𝑚

2 )) ×
180

𝜋
     (3) 

 

Where heavesm, surgesm, and swaysm represent smoothed acceleration (see equation 1) in the surge 

(X), sway (Y), and heave (Z) axes, respectively, and 180/𝜋 is an adjustment enabling the conversion 

of units from radians to degrees (°; Bidder et al., 2015; Gunner et al., 2020).  

Various derivatives of acceleration were calculated to aid comprehension of both postural 

and dynamic elements of N. lasiopterus movement. Vectorial dynamic body acceleration (VeDBA), 

an indicator of changes in the dynamism of movement across all three axes of acceleration, was 

calculated as follows:  

 

         𝑉𝑒𝐷𝐵𝐴 =  √(𝑆𝑢𝑟𝑔𝑒𝑑𝑦𝑛)2 + (𝑆𝑤𝑎𝑦𝑑𝑦𝑛)2 + (𝐻𝑒𝑎𝑣𝑒𝑑𝑦𝑛)2    (4) 

      

Where surgedyn, swaydyn, and heavedyn represent dynamic acceleration in the surge, sway, and heave 

axes, respectively (Qasem et al., 2011). By taking the square of each acceleration axis separately 

(equation 4), VeDBA captures both positive and negative changes in dynamic acceleration, 

increasing in response to any change across the three axes. Similarly, vectorial static body 

acceleration (VeSBA) varies in response to deviations from 1 g in smoothed acceleration (Surgesm, 

Swaysm, and Heavesm):  

 

𝑉𝑒𝑆𝐵𝐴 =  √(𝑆𝑢𝑟𝑔𝑒𝑠𝑚)2 + (𝑆𝑤𝑎𝑦𝑠𝑚)2 + (𝐻𝑒𝑎𝑣𝑒𝑠𝑚)2     (5)

                            

VeSBA is a measure of the static acceleration (equation 1) across all three axes, so remains close to 

1 g when a body is static or in linear motion (assuming that velocity is constant). However, when a 

body ‘pulls-g’ – that is, experiences inertial forces in excess of gravity (centripetal acceleration) 

during circular motion – VeSBA increases, whereas it decreases to 0 g for bodies in freefall (Williams 

et al., 2015).  
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Deviations in logger placement from the centre of gravity were corrected by generating 

smoothed ‘g-spheres’ (spherical scatter plots representing smoothed acceleration in three-

dimensions; Wilson et al., 2016) for periods of level flight, and manually correcting the 

displacement of datapoints by centring them over the ‘north pole’ of the plot (i.e. 1 g in the heave 

axis an 0 g in the surge and sway axes). In general, the unprocessed data did not depart from 1 g to 

any significant degree, minimising possible source error associated with tag placement.  

 

2.3. Behavioural Classification 

N. lasiopterus feeding behaviour was first identified by visual inspection of acceleration 

traces in DDMT. The basic pattern of feeding was identified and classified based on the author’s 

knowledge of accelerometry, cross-validated using peer-reviewed literature (Siemers and Schnitzler, 

2000; Corcoran and Conner, 2017), high-speed videos of bats feeding found on the internet (Aaron 

Corcoran, 2013), and personal communication with experts in the field (R.P. Wilson and J. Redcliffe, 

personal communication, 27th March 2023). A Boolean-based classification algorithm (Wilson et al., 

2018), outlining requisite criteria for identifying instances of feeding, was then defined based on 

consistent patterns in selected metrics (Table 1).  

 

Table 1: Description of accelerometer metrics used to define instances of feeding behaviour using Boolean 

classification algorithms in DDMT.  

Metric  Definition Source(s) 

Differential of smoothed 

heave acceleration 

Rate of change in smoothed heave acceleration 

over 0.1 s window 

Gunner et al. (2022) 

Variance in surge 

acceleration 

Deviation of raw surge acceleration from the mean 

calculated over a 0.5 s window  

Wildbyte 

Technologies (2022) 

Smoothed Heave Running mean of raw heave acceleration over a 

0.3s window 

Shepard et al. (2008) 

VeDBA Smoothed Running mean of VeDBA (see equation 4) over a 

window of 0.3 s  

Fehlmann et al. 

(2017) 
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Boolean-based algorithms recognise instances in which defined conditions, based on thresholds in 

the relevant metrics, are met, marking these instances as indicative of feeding behaviour (Wilson et 

al., 2018).  Classification of a feeding event by the algorithm was conditional on each criterion being 

met in a specific sequence (Table 2), and within defined time windows following the fulfilment of 

the criterion at the previous step. Using this approach, instances of feeding could be delineated 

automatically over large datasets based on the presence of their basic postural and dynamic 

elements. 

 

Table 2: Sequence of criteria required for the classification of feeding behaviour. The relevant channels are 

shown in the ‘metric’ column, and the corresponding thresholds required for the fulfilment of each criterion 

shown in the ‘condition’ column. ‘IF’ statements indicate that the condition must be fulfilled for a feed to be 

classified, while ‘AND IF’ indicate that the condition must be fulfilled in tandem with the previous ‘IF’ 

statement. For feeding behaviour to be classified, each condition must be met in-turn within a time window 

of 1 s from the previous step.   

 

Step 

 

Metric 

 

Condition 

 

 

1 

IF 

Differential in Heave  

 

< -0.2 g 

AND IF 

Variance in Surge  

 

> 1 g 

 

2 

IF 

 Smoothed Heave 

 

> -0.8 g 

 

 

3 

IF 

VeDBA Smoothed 

 

< 0.9 g 

AND IF 

Variance in Surge 

 

< 1.5 g 

 

The performance of feed classification was assessed by running the behavioural algorithm (Table 2) 

over a subset of accelerometer data, comprising a total of 107 feeding events across six bat nights, 

and comparing the feeding events retrieved by the algorithm to those identified visually. The recall, 

or true positive rate (Del Caño et al., 2021), was calculated as the fraction of all positive 
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classifications considered to be true positives (in this case, the classifications representative of 

presumed feeding behaviour as defined by eye).  

 

2.4. Data Analysis  

 

All statistical analyses were carried out in R version 4.2.2 (R Core Team, 2022).  

 

2.5.1. Principal Component Analysis 

A subset of variables was selected from all available logger metrics, based on intuition 

regarding their relevance to N. lasiopterus feeding behaviour. Principal component analysis (PCA) 

(Bro and Smilde, 2014) was then used to reduce the dimensionality of the selected metrics. This 

method projects data onto new dimensions (principal components: hereafter ‘PCs’), with each PC 

representing the minimum distance between the data and their projection, given the constraint that 

they must be uncorrelated with all previous PCs. Successive PCs thus encode decreasing amounts of 

variability in the data, such that the first PC (PC1) explains the most variability (Lever, Krzywinski, 

and Altman, 2017). The correlation between the original variables and each PC are represented by 

variable loadings. In the present study, variable loadings were used to determine the variables most 

strongly correlated with the first two PCs (PC1 and PC2), and these metrics were considered to be 

the most important in characterising differences in feeding behaviour.  

A K-means clustering algorithm (Altman and Krzywinski, 2017) was applied to PCA scores to 

recover clusters of closely related datapoints. This calculates the Euclidean distance between each 

datapoint and 𝑘 randomly selected datapoints (centroids), assigning each point to one of 𝑘 clusters 

based on their similarity to each centroid. This is repeated using different randomly selected 

centroids within each cluster until the lowest within-cluster distance is reached (Altman and 

Krzywinski, 2017). The number of clusters (𝑘) to be recovered by the K-means algorithm was 

selected initially to correspond with the number of taxonomic groups of prey recovered from faecal 

samples (see section 2.5.4), and the performance of this assessed using average silhouette scores (a 

measure of between-cluster similarity) for different values of  𝑘 (Altman and Krzywinski, 2017).  
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2.5.2. Patterns in the Data 

Probability density functions for PC1 and PC2 were constructed using Kernel Density 

Estimation (KDE), a method for computing smooth probability functions which approximate 

underlying distributions of data (Chen, 2017). This is achieved by summing Gaussian kernel 

functions with specified bandwidths (smoothing parameters), which are centred over each 

datapoint. Individual KDEs were also constructed for each of the logger metrics most strongly 

correlated with PC1 and PC2. 

Generating smooth density estimates was considered more appropriate compared with 

frequency distributions for visualising structure of possible biological relevance in the data. This is 

because the inclusion of a smoothing parameter enables random noise in the data to be filtered, in 

favour of biologically interesting structure (Węglarczyk, 2018). Accordingly, the density estimates 

generated here were examined for evidence of multimodality – the presence of more than one 

distinct peak - indicative of concentrations of datapoints around multiple distinct values 

(Węglarczyk, 2018). Under the expectation that feeding events would differ predictably according to 

prey type, evidence of multimodal structure in each density estimate was thought to reflect 

multiple ‘types’ of feeding event corresponding to different prey types. 

 

2.5.3. Differences in feeding behaviour  

With the expectation that differences in diet would be reflected in individual- and roost-

specific differences in feeding behaviour, group-level correlation in PC1 was calculated using 

intraclass correlation coefficients (ICCs; Altman and Krzywinski, 2015) for two grouping levels 

(individual and roost). GPS fixes corresponding to periods of inactivity (as shown by lack of flight 

behaviour in acceleration data) between successive nights, and corresponding to the locations of 

known roost boxes, were used to ascertain the roost boxes used by each individual N. lasiopterus on 

each night. The individuals associated with given faecal samples were therefore known. This 

enabled accelerometer data to be grouped according to the roost boxes associated with the 

corresponding nights of foraging activity. In each case, it was hypothesised that feeding behaviour 

would exhibit greater similarity within than between groups, on the assumptions that: (1) individual 

differences in diet would lead to individual differences in feeding behaviour; and (2) roost-mates 

would be exposed to the same proximal prey fields, so would differ less in their feeding behaviour 
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compared with non-roost-mates (assuming that feeding behaviour is prey-specific). Based on 

previous animal behavioural studies (Fürtbauer et al., 2014), an ICC score greater than 0.5 with 95 % 

confidence intervals not overlapping zero was chosen as the threshold indicating significant within-

group correlation.   

2.5.4. Predicting diet from logger metrics  

To test the association between selected metrics and N. lasiopterus prey selection, 

generalised linear models were fitted to predict the prevalence of each prey type in faecal samples 

from the characteristics of associated feeding events. Prey recovered from faecal samples from each 

box were first grouped by taxon. Taxonomic groups (hereafter, ‘prey type’) were determined to 

various levels of organisation, resulting in seven groupings: Carabidae (Carabid beetles), Dytiscidae 

(diving beetles), Culicidae (mosquitoes), Lepidoptera (moths), Tipulidae (marsh crane flies), 

Orthoptera (crickets), and birds.  

The prevalence of each prey type in N. lasiopterus diet was then approximated by calculating 

their per-box frequency of occurrence (FO) as follows:  

 

                                                                       𝐹𝑂 =
𝐹𝑟𝑒𝑞𝑖𝑗

𝑁.𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑗
       (6)

  

Where 𝐹𝑟𝑒𝑞𝑖𝑗 is the number of samples recovered from box 𝑖 containing prey type 𝑗, and 

𝑁. 𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑗 is the total number of faecal samples recovered from box 𝑗. Qualitative scores of ‘high’, 

‘medium’, and ‘low’, describing the density of remains of each prey type recovered from each box, 

were also available. However, this metric was found to be strongly correlated with FO (Pearson’s 

correlation = 0.91). Accordingly, only prey prevalence as measured by FO is considered here, as this 

metric was assumed to encapsulate information regarding both the frequency and density of prey in 

N. lasiopterus diet. 

Calculating the exact FO of each species group is challenging in the absence of information 

regarding the identity of faecal samples from which each prey item was recovered. This is because 

multiple prey species belonging to the same group sometimes existed in samples from roost boxes 

housing multiple individuals. Therefore, it is unknown which samples share species from the same 

group. Accordingly, the FO of the most frequently occurring species from each group in a given box 
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was taken as an estimate of the prevalence of its entire group, assuming that remains of this group 

occurred with at least the frequency of its most frequent constituent species. The group-level FOs 

calculated here should therefore be treated as conservative estimates of the prevalence of each 

prey type in N. lasiopterus diet, as this measure likely underestimates their real frequencies.  

With the aim of approximating prey selection from acceleration data, the per-box FO of 

different prey types was modelled as a function of PC1 (see section 2.5.1). Given that FO is a 

proportional response (the fraction of faecal samples containing a given prey type), binomial GLMs 

with logit-links were fitted to predict the FO of each prey type from the PC1 scores of associated 

feeds (Bacallado and Shah, 2021). Models were fitted using the glm() function in the R package 

stats. This function also enabled prior weights corresponding to the total number of faecal samples 

collected from each box to be specified, which were intended to give increased weight to FO values 

derived from greater numbers of faecal samples (R Core Team, 2022).  

 

3. Results 

3.1. Presumed Feeding Behaviour 

 

3.1.2. General pattern and classification  

 

Presumed feeding behaviour (hereafter referred to as ‘feeding behaviour’ or ‘feeding’) was 

characterised by a departure from normal flight behaviour, with normal flight (Figure 2), consisting 

of periods with VeSBA persistently close to 1 g, negligible changes in altitude (as shown by 

barometric pressure), and regular wingbeats (repetitive oscillations of consistent amplitude and 

frequency in the heave axis). 
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Figure 2: Acceleration in three orthogonal axes (surge, sway, and heave) over a 2 s period of level flight. Black 

lines represent raw acceleration, while coloured lines represent smoothed (static) acceleration calculated 

over a moving window of 0.3 s (window width shown by grey shaded area between red dotted lines). Note 

that smoothed acceleration in the heave axis is centred around 1 g (corresponding to the Earth’s gravitational 

field), while smoothed surge and sway are close to 0 g. The oscillatory signal in the raw heave (black line, 

bottom plot) represents repeated vertical displacements of the logger caused by trunk movements during 

individual wingbeats, with wave troughs and peaks corresponding to the apex of wing upstrokes and 

downstrokes, respectively.  

 

By contrast, during periods considered to be indicative of prey capture (or attempted prey 

capture) a distinctive sequence of postural and dynamic changes occurred. In particular, decreases 

in the smoothed heave were consistent across feeding events (Figure 3A) so were considered a 

prerequisite for this behaviour. Substantial changes in the dynamism of movement were also 

evident, reflected as a substantial increase in VeDBA (Figure 3B). Elevated VeDBA appeared to be 

driven primarily by erratic oscillations in the surge axis about 0 g (Figure 3C) and substantial 

decrease in heave below 0 g. Smoothed heave thus decreased considerably (to approximately -2 g 

in Figure 3A) relative to the value observed in level flight (1 g; Figure 2). The changes observed in 

smoothed heave contributed to a characteristic increase in VeSBA above 1 g, albeit often in a ‘W’ 

shape with short periods below 0 g directly preceding and following a central peak frequently 

exceeding 2 g (Figure 3E). Furthermore, feeding was often accompanied by considerable variability 

in pitch and roll, particularly at the start and end of a feeding event (Figure 3F), but the exact nature 

of these patterns varied on a feed-to-feed basis. 



27 
 

Figure 3:  Example traces of various acceleration metrics across the duration (in seconds) of a single N. 

lasiopterus feeding event. In each case, the presence of postures/ movements indicative of feeding 

behaviour is highlighted by shaded areas between vertical dashed red lines, while non-shaded areas 

correspond to level flight preceding/ following the feed. For plots A-E, black lines represent raw values while 

coloured lines represent smoothed values (over 0.3 s). (A) heave; (B) VeDBA; (C) surge; (D) sway; (E) VeSBA; 

(F) pitch (red line) and roll angles (green line). Note that pitch and roll angles are realistic approximations of 

body posture even when the subject is ‘pulling-g’, because these metrics are derived from surge and sway, 

while distortions in smoothed acceleration caused by centripetal force are restricted to the heave axis, acting 
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perpendicular to the load-bearing surfaces of the bat (R. P. Wilson, personal communication, 20th September 

2023).  

 

Based on the patterns previously described, a Boolean classification algorithm capturing the 

changes most characteristic of feeding behaviour was constructed (Table 2). Here, a simultaneous 

decrease in the differential of heave and increase in the variance of surge demarcated the transition 

from normal flight to feeding behaviour. Low absolute values of smoothed heave, high smoothed 

VeDBA, and high variance in surge were maintained for the duration of the feeding event, so the 

return of these metrics towards the values observed in normal flight indicated the termination of 

the behaviour.    

The feeding algorithms used here recalled 67.3% of presumed feeding events identified by 

eye during validation. However, false-positive classifications often resulted primarily from 

movements within the roost (representing 15 out of the 28 false-positives), as indicated by a 

concurrent lack of flight behaviour, meaning many misclassified feeds could be filtered by 

considering only those instances occurring during periods of activity between leaving and returning 

to the roost. This was considered a reasonable constraint given the primarily aerial-hawking hunting 

strategy of N. lasiopterus (Ibáñez et al., 2001; Pineda, 2023). Applying this constraint to feeding 

algorithms improved their recall rate to 78.3%. In addition, a total of seven false-negative 

classifications, representing a false-negative rate of 6.5%, were identified by eye.   

  

3.2. Patterns in Feeding Behaviour  

 

Using the algorithm described in Table 2, and after filtering for false-positive classifications, a 

total of 422 instances of feeding were identified across 17 individual N. lasiopterus, occurring on 

seven separate nights (49 bat nights). The mean number of feeding events identified per individual 

was 24.8±17.7, but the total number of feeds observed per bat ranged from two to 59.  Foraging 

occurred at a range of times both before and after midnight, but never in the afternoon before 

17:25 or in the morning after 03:46. Foraging time was highly variable throughout the night, 

showing two peaks around sunset and approximately three to four hours after sunset (Figure 4).  
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Figure 4: Distribution of feeding events in time relative to the time of sunset (0 hours on the x-axis), as shown 

by frequency (black bars) and continuous density distributions (blue line and shaded area). Time is 

represented over the course of a night, with the smallest values representing 17:24 (first feed observed after 

emergence from roost for a night’s foraging) and the largest representing 03:46 (the last feed observed 

before return to roost from a night’s foraging).   

 

A total of 16 variables were included in PCA characterising variability in N. lasiopterus 

feeding behaviour (see Appendix: Table A1). Accordingly, PCA recovered 16 principal components 

explaining between 0.4 % (PC16) and 32.1 % (PC1) of this variability in, while PC2 accounted for 

15.1% of variation in the data. Mean VeDBA was most strongly correlated with PC1, decreasing as 

PC1 increased (loading = -0.388). This was followed by variance in surge and mean VeSBA, which 

were also negatively correlated with PC1 (loadings = -0.385 and -0.377, respectively). In addition, 

mean smoothed heave was positively correlated with PC1 (loading = 0.373). Mean and maximum 

pitch angles (loadings = 0.538 and 0.513, respectively), and mean smoothed sway (0.487) were 

most strongly correlated with PC2, with no other variables displaying loadings greater than 0.3 in 

this axis (Figure 5).  

According to average silhouette scores of PC values grouped into different numbers of K-

means clusters (𝑘), the best number of clusters was lower (𝑘 = 2; silhouette = 0.16; Figure 5B) than 

would be expected if the similarity between datapoints was consistent with grouping by prey taxon 
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(𝑘 = 7; silhouette = 0.11; Figure 5A). Examination of PC loadings suggest that maximum smoothed 

acceleration in the sway and heave axes, mean VeDBA, mean VeSBA, and the duration of feeding 

events are potentially good descriptors of the grouping of datapoints when 𝑘 = 2 (Figure 5B). 

 

 

Figure 5: Values of the first (PC1) versus the second principal component (PC2) from PCA conducted on 17 

logger metrics characterising N. lasiopterus feeding behaviour. Each datapoint represents one of 422 feeds 

observed across 17 individual N. lasiopterus on seven separate nights. Datapoints grouped into 𝑘 clusters 

(see section 2.5.2) are separated by colour: (A) 𝑘 = 7, and (B) 𝑘 = 2.  Eigenvectors corresponding to each 

variable (labelled) are represented by red arrows and indicate the direction and strength of correlation with 
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PC1 and PC2. The percentages of variance explained by PC1 and PC2 are shown in brackets on the x and y 

axis, respectively.   

 

None of the Kernal Density Estimates (KDEs) generated for the metrics most strongly 

correlated with PC1 showed evidence of multimodality: mean VeDBA (mean = 0.34; SD = 0.38), 

mean smoothed heave (mean = 0.2; SD = 0.22) and mean VeSBA (mean = 0.28; SD = 0.28; Figure 

6A). The same was true for KDEs generated for PC1 and PC2 scores (mean = 0.002; SD = 0.001; 

Figure 6B), as well as the duration of feeding events (mean = 0.67; SD = 0.15).  

 

 

Figure 6: Continuous probability distributions of: (A) three logger metrics describing feeding behaviour; top 

to bottom: mean VeDBA, mean VeSBA, and mean smoothed heave; (B) values of the first (PC1; in red) and 
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second principal components (PC2; in blue) from PCA conducted on 16 variables; (C) the duration in seconds 

of feeding events. Estimates were constructed using Kernal Density Estimation (KDE). 

 

PC1 scores were correlated within individual N. lasiopterus (ICC = 0.51; lower CI = 0.2; upper 

CI = 0.81), suggesting individual differences in feeding behaviour (Figure 7A). However, PC1 was not 

similarly correlated with roost-box ID (ICC = 0.08; lower CI = -0.07; upper CI = 0.23; Figure 7B), 

contrary to the assumption that proximity to the same prey fields would be manifested in roost-

specific differences in feeding behaviour. 

 

 

Figure 7: Comparison of PC1 values of (A) ten individual N. lasiopterus for which associated faecal data exists 

(bat ID is represented by integers 1-10), and (B) different roost boxes, with alphanumeric codes 

corresponding to four boxes (1-4) observed across two time periods (A-B). Datapoints in both plots are 

coloured by individual bat ID (note in plot B that some individuals share the same roost box, and that 

different individuals may occupy a given box across time periods).  
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3.3. Feeding behaviour and diet 

 

PC1 was not a significant predictor of the per-box FO of any of the prey types recovered in faecal 

samples (Table 3).  

 

Table 3: Summary of outputs from binomial GLMs predicting the per-box frequency of occurrence (FO) of 

each prey type (divided into seven taxa listed in the ‘response’ column) from PC1 of associated feeding 

events. In each model, PC1 was not found to be a significant predictor of prey FO, as shown by the estimate, 

standard error, confidence intervals, and p-value columns.  

Response  Intercept Estimate Standard Error 95% Confidence Intervals P-value 

Lower Upper 

Carabidae 1.51 -0.02 0.06 0.88 1.09 0.73 

Culicidae 2.58 0.13 0.07 0.98 1.31 0.09 

Dytiscidae 1.92 -0.05 0.05 0.86 1.06 0.381 

Lepidoptera -0.25 0.07 0.04 0.99 1.17 0.09 

Birds 0.02 -0.04 0.04 0.9 1.04 0.316 

Tipulidae -0.64 -0.02 0.04 0.9 1.07 0.64 

Orthoptera -0.81 0.04 0.05 0.95 1.15 0.35 
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4. Discussion 

This study is a first step to understanding the fine scale feeding behaviour of a cryptic 

species of conservation concern: the greater noctule bat (Nyctaulus lasiopterus; Juste et al., 2016). 

This represents one of only a small number of attempts utilising accelerometers to examine feeding 

behaviour at the level of individual prey captures in insectivorous bats (see Stidsholt et al., 2018). 

Specifically, the stereotyped pattern of feeding in N. lasiopterus was documented, enabling the 

quantification of the inertial (i.e. VeSBA, smoothed heave) and biomechanical forces (i.e. VeDBA) 

associated with feeding behaviour (Gleiss et al., 2011). A biological interpretation of the 

accelerometer signals observed during presumed feeding events is given in the following sections. 

Systematic differences in feeding behaviour at the level of individual N. lasiopterus were also 

observed. By contrast, the lack of evidence for roost-specific foraging behaviour was unexpected, 

given the assumption that individuals sharing the same roost would be exposed to similar prey 

fields, and thus exhibit similarities in feeding behaviour compared with individuals from other 

roosts. The possible drivers of inter-individual differences in feeding behaviour are discussed, along 

with the implications of this for understanding prey selection in N. lasiopterus.   

 

4.1. Presumed feeding behaviour 

The present study takes advantage of the multi-dimensionality of accelerometer data to 

examine possible sources of variability in N. lasiopterus feeding behaviour, and underlines the 

importance of several key metrics as possible descriptors of prey type. That mean VeDBA was the 

main source of variability in N. lasiopterus feeding behaviour is not surprising. Measures of dynamic 

body acceleration (DBA), including VeDBA, are considered robust proxies for the metabolic power 

associated with various body movements (Fahlman et al., 2008; Gómez-Laich et al., 2011; Qasem et 

al., 2012; Wilson et al., 2020), and as such would be expected to vary with prey capture and 

handling effort. The concurrent importance of variance in X-axis acceleration attests to the fact that 

dynamic acceleration in the surge axis is instrumental in driving increased VeDBA during feeding 

(see equation 4). This is perhaps the result of rapid head and neck movements associated with prey 

handling and mastication following capture in the interfemoral membrane, leading simultaneously 

to appreciable but highly variable changes in body attitude, as supported by the secondary 

importance of pitch metrics as descriptors of feeding (postures described in aerial hawking Myotis 
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nattererii by Siemers and Schnitzler, 2000, and shown by high-speed video in Corynorhinus 

townsendii by Corcoran and Conner, 2017). Rapid and erratic wingbeats performed to maintain 

altitude while the body is orientated away from the normal flight posture (Aaron Corcoran, 2013), 

leading the body to rock back and forth, may also explain oscillations in surge. Important variations 

in mean VeSBA and smoothed heave with PC1 are similarly intuitive: the subject pulls-g as it rapidly 

inverts its body preceding and during an attempted prey capture (Siemers and Schnitzler, 2000; 

Aaron Corcoran, 2013), inducing inertial forces in the direction of the heave axis while 

simultaneously reversing its sign (because the heave axis has been inverted with respect to gravity). 

The stooping courtship displays of Anna’s hummingbirds (Calypte anna) are analogous to this 

phenomenon, with this species experiencing centripetal acceleration well in excess of the Earth’s 

gravity (close to 10 g) when pulling out of rapid vertical dives (Clark, 2009). Accordingly, decreases 

in smoothed heave substantially below 0 g (negative by virtue of the directionality of inertia during 

inversion c.f. turning/circling in level flight: see Williams et al., 2015) were found to be a consistent 

feature of feeding behaviour in the present study. The dependence of VeSBA on the square of 

smoothed acceleration (see equation 5, section 2.2) dictates that it changes concurrently with 

smoothed heave acceleration, although with opposite sign, explaining why both metrics were 

correlated with PC1 with similar magnitudes but opposing directions.  

 

4.2. Variation in feeding behaviour with respect to diet   

Despite the importance of parameters with intuitive links to stereotyped patterns in feeding 

behaviour, and the expectation that these should vary in response to prey type, the present study 

detected no evidence of multiple types of feeding event. This is unexpected given the sensitivity of 

acceleration sensors sampling at 100 Hz to small changes in posture and dynamism (Wilson et al., 

2014), combined with the range of prey sizes taken by N. lasiopterus (Smirnov and Vehknik, 2013), 

which should theoretically be associated with systematic differences in handling. Previous studies 

have documented discernible differences in accelerometer metrics according to prey type. For 

example, Wilson et al. (2013) described prey species-specific chase strategies in cheetahs (Acinonyx 

jubatus) based on variation in VeSBA over the course of a hunt. Specifically, sudden changes in 

direction, as indicated by the accumulation of static forces, become important to capture success 

relative to maximum velocity when chasing prey prone to highly angular escape trajectories. 

Similarly, Watanabe and Takahashi (2012) were able to detect Adélie penguin (Pygoscelis adeliae) 
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prey capture events corresponding separately to krill and fish captures (verified using animal-borne 

video) using differences in the vectorial sum of acceleration derived from head-mounted 

accelerometers. Despite the apparent utility of accelerometry to this end, the present study was 

unable to generalise about how the multidimensional configuration of feeding events might relate 

to prey type.  

The inability to discern variation in feeding events attributable to prey type raises questions 

about the validity of the behavioural algorithms outlined here to describing feeding behaviour. 

Confidence that the data analysed herein accurately reflect the behaviour of study subjects is high, 

owing to the fact that loggers attached using glue adhere closely to the body and thus minimise 

logger displacement (and subsequent noise in the data) independent of the subject’s own body 

movements (c.f. collar-mounted accelerometers; Redcliffe, 2021; Wilson et al., 2021; Gunner et al., 

2022). Careful deployment protocols and post-processing of data (see section 2.2) also ensured that 

the data were centred over each subject’s centre of mass, and thus offered biologically meaningful 

insights into deviations in logger, and therefore bat, orientation with respect to gravity (Gunner et 

al., 2020). However, the difficulty of observing nocturnal volant study subjects in the field meant 

that the behavioural algorithm used to define feeding could not be subject to rigorous ground-

truthing in the manner of studies focusing on (semi-) captive, habituated, or more sedentary and 

diurnal species (e.g. livestock: Riaboff et al., 2022; zoo animals: English et al., 2023; habituated 

meerkats; Chakravarty et al., 2019) for which real-time observational data is readily available. The 

attempt to characterise feeding behaviour in the present study therefore represents a ‘best-guess’, 

in need of validation. Future enquiries pertaining to this may seek to compare the behavioural 

signals defined here with accelerometer data collected alongside real-time footage from wind 

tunnels (Hedenström and Johansson, 2015), from high-speed video in the field (Corcoran and 

Conner, 2017), or from animal-borne biosonar detectors (Stidsholt et al., 2018; Hurme et al., 2019). 

Subject to miniaturisation and testing on insectivorous bats, the use of mandibular sensors (e.g. 

IMASEN) may provide a potential avenue to this end (Ropert-Coudert et al., 2004; Iwata et al., 

2011).  

Nevertheless, the choice of algorithm used here is justified to an extent by the biological 

intuition discussed previously. It is possible, however, that the present study neglects feeding 

behaviour atypical of the perceived ‘stereotype’, and is thus overly conservative in its estimation of 

feeding. Indeed, previous studies of aerial insectivores using high-speed video assumed any sudden 
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change in heading to be associated with feeding (e.g. barn swallows, Hirundo rustica; Warrick et al., 

2016), in contrast to the somewhat stricter classification used here. Furthermore, feeding buzzes 

recorded by Stidsholt et al. (2023) indicated a much higher prey attack rate in greater mouse-eared 

bats (Myotis myotis) than was observed in the present study, albeit in an opportunistic species 

which forages flexibly using both gleaning and hawking strategies (c.f. aerial hawking in N. 

lasiopterus; Russo, Jones, and Arlettaz, 2007). This may suggest that the feeding behaviour as 

defined herein fails to encapsulate all manners of prey capture in N. lasiopterus. In support of this, 

rapid increases in VeSBA and decreases in altitude, indicating sharp turning behaviour and rapid 

vertical transits, respectively, were observed incidentally in the data analysed here. While these 

behaviours were not considered to be consistently associated with feeding according to the 

behavioural algorithm defined, it is possible that they represent decisions in response to prey 

encounter (as in Warrick et al., 2016). Indeed, it is thought that deviations from a relatively straight 

movement trajectories are the product of decisions based on environmental stimuli (Potts et al., 

2018; Munden et al., 2021), and optimal foraging theory posits that accepting the increased 

transport cost of turning should be associated with some energetic or fitness benefit (Wilson et al., 

2021). Based on this rationale, it is feasible that the present study overlooks some facets of N. 

lasiopterus feeding behaviour, and it would therefore be beneficial to account for this shortcoming 

in future studies of the species’ foraging ecology.   

It is also possible that variability in feeding behaviour is not driven by prey selection to the 

extent previously hypothesised. Interestingly, the subjects studied here showed individual 

differences in feeding behaviour, but these similarities did not extend to the level of roost boxes. 

Differences in feeding behaviour attributable to prey type were expected to be reflected in 

similarities in feeding behaviour within roost boxes, on the basis that roost-mates should experience 

more similar prey fields than individuals occurring in different, more distant roosts. In addition, 

social foraging, including passive gathering of information from conspecific echolocation, has been 

recorded in other bat species (Dechmann et al., 2009; O’Mara and Dechmann, 2023), suggesting 

that proximal conspecifics may be instrumental in individual foraging decisions. That this was not 

reflected by roost-level differences in feeding behaviour suggests that individual variation may be 

governed more strongly by individual factors such as size, sex, and age. Niche partitioning is thought 

to mediate intraspecific competition in colonial species, and indeed sexual segregation in diet has 

been recorded in marine central-place foragers (Breed et al., 2006; Quintana et al., 2010), as well as 
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European free-tailed bats (T. teniotis; Mata et al., 2016). However, the details of the mechanisms by 

which this occurs have yet to be fully disentangled in bats. Naďo et al. (2019) postulated altitudinal 

partitioning of foraging habitat between male and female N. lasiopterus, but overall, too few 

tagging studies have examined sex-dependent foraging strategies in this species to be confident in 

the generality of patterns observed to-date. Future studies would therefore benefit from 

considering explicitly the role of demography and individual morphology in determining feeding 

behaviour, as well as the role of conspecifics in individual foraging decisions (i.e. social avoidance or 

facilitation). These recommendations are underpinned by the findings of the present study, which 

suggest that processes occurring at the individual level may be more important than spatial 

proximity to resources in shaping feeding behaviour.  

4.3. Limitations  

Compact sensors such as those employed here, while granting access to unprecedented 

insights into the behavioural ecology of a wide range of organisms, are limited by the ethical 

implications of tagging, and indeed by the impact of logger deployments on the behaviour of free-

ranging study subjects (Vandenabeele, Wilson, and Grogan, 2011; McIntyre, 2015). Live trapping 

and handling can have implications for the physical welfare, stress, and survival of tagged 

individuals, not to mention the validity of scientific inference from organisms with disrupted 

behavioural regimens (Wilson et al., 2019; Lennox et al., 2022; Lobato-Bailón et al., 2023). 

Furthermore, the energetic cost of locomotion increases when animals carry an additional load, 

which is especially the case for small, volant species such as bats, where increased weight leads to 

higher wing loadings and lower flight speeds (Hughes and Rayner, 1991).  

Given the difficulty of comparing tagged and unconstrained subjects outside of laboratory 

settings, conventionally accepted upper limits for the weight burden of loggers – quoted variably to 

be between 2-5% of the subject’s body mass (Rerucha et al., 2017; Hurme et al., 2019; Wilson et al., 

2021) - must be evaluated critically on a study-to-study and species-to-species basis. In the present 

study, data were derived from tags weighing in excess of 5 % of N. lasiopterus body mass. In 

addition, the high mobility/ manoeuvrability of N. lasiopterus may necessitate that the  behavioural 

inferences presented here are treated with caution, because acceptable weight thresholds are likely 

reduced in species with highly ‘athletic’ forms of locomotion (Wilson et al., 2021). Increases in N. 

lasiopterus body mass of up to 40% during a single night’s foraging may also complicate the choice 

of appropriate weight thresholds for this species (Vasenkov et al., 2020), as the burden of loggers 
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may increase relative to the level of satiation and could therefore fluctuate drastically over short 

periods (Hughes and Rayner, 1991).  

While not explicitly carried out here, validation of the choice of logger weight would benefit 

future studies of this nature. Some biologging studies attempt to validate the soundness of their tag 

deployments, both before (e.g. by observing the movement of tagged subjects under semi-

restrained conditions) and after data collection (e.g. by evaluating body condition; see Hurme et al., 

2019), but such approaches may be limited by survivorship bias resulting from unpredictable logger 

recovery (Rushing et al., 2021). Some dedicated studies have examined the effects of tagging 

outside of laboratory conditions (e.g. Chivers, Hatch, and Elliott, 2015; Wilson et al., 2019), but to 

the author’s knowledge, no such analyses exist for insectivorous bats. Given the highly specialised 

manoeuvrable flight, relatively small size, and high metabolic requirements of these species 

(Norberg, 1994), examining the effects of bat-borne sensors is a crucial avenue for future research. 

Such research must also take into account the diverse spectrum of foraging strategies (e.g. gleaning, 

aerial hawking, trawling) and corresponding specialisations in wing morphology (e.g. wing loading 

and aspect ratio) exhibited by insectivorous bats (Altringham, 2011), which likely dictate species-

specific tolerances to excess burden.  
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5. Conclusion  

The present study makes a tentative step towards an understanding of feeding behaviour at the 

level of individual prey captures in Nyctalus lasiopterus: a cryptic bat species whose capacity for 

long, fast, high-altitude locomotion is only just beginning to be understood. For the first time in this 

species, or indeed across most insectivorous bats, the details of the physical and biomechanical 

processes occurring during individual feeding events are outlined. The paucity of such information, 

however, attests to the difficulty in interpreting behavioural states at high resolution, so the present 

study should be considered a starting point from which to validate and expand the behavioural 

inference presented herein. Attempts to do so will be facilitated by recent advances in tagging 

technology, enabling the integration of increasingly large amounts of spatial and behavioural data, 

including lightweight on-board ultrasonic sensors. Furthermore, in future, an approach combining 

the methods of the present study with detailed spatial analyses using GPS telemetry will 

foreseeably advance our ability to bridge the gap between bat foraging behaviour at small and 

relatively large scales, and thus build a thorough understanding of the mechanistic basis of bat 

movement patterns. Overall, such information could be instrumental in efforts to protect 

populations of N. lasiopterus – a species of conservation concern across Europe – from extrinsic 

threats such as collisions with wind turbines, urbanisation, and agricultural intensification, as indeed 

it will be relevant to similar efforts in other aerial insectivores.   
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Appendix A 

 

Table A1: Names and definitions of 16 accelerometer metrics derived from N. lasiopterus feeding 

events and used in Principal Component Analysis (PCA; see section 2.5.1).  

Metric name Definition 
Smoothed Pressure (start) Barometric pressure (averaged over a window of 0.3 s) at the 

start of a feeding event, indicative of altitude.  

Mean VeDBA* Mean vectorial dynamic body acceleration (VeDBA; see equation 
4) across a feeding event. 

Max VeDBA Maximum vectorial dynamic body acceleration (VeDBA; see 
equation 4) measured during a feeding event. 

Mean Pitch Angle** Mean angle of logger inclination in the anterior-posterior axis 
(pitch; see equation 2) across a feeding event. 

Max Pitch Angle** Maximum pitch angle (see above; equation 2) measured during 
a feeding event. 

Max Roll Angle Maximum angle of logger inclination in the lateral axis (roll; see 
equation 3) measured during a feeding event.  

Max Smoothed Sway Maximum value measured in the Y (sway) axis, averaged over a 
window of 0.3 s (see equation 1), during a feeding event. 

Mean Smoothed Heave Mean acceleration in the Z (heave) axis, averaged over a window 
of 0.3 s (see equation 1), during a feeding event. 

Mean Smoothed Surge Mean acceleration in the X (surge) axis, averaged over a window 
of 0.3 s (see equation 1), during a feeding event. 

Mean Dynamic Heave Mean residual acceleration after subtracting smoothed from raw 
acceleration in the Z (heave) axis.   

Mean Dynamic Sway Mean residual acceleration after subtracting smoothed from raw 
acceleration in the Y (sway) axis.   

Mean Dynamic Surge Mean residual acceleration after subtracting smoothed from raw 
acceleration in the X (surge) axis.   

Mean VeSBA * Mean vectorial static body acceleration (VeSBA; see equation 5) 
across a feeding event. 

Duration* Total duration in seconds from the beginning to the end of a 
feeding event.  

Variance in Surge* Deviation of acceleration in the X (surge) axis from the mean 
calculated over a moving window of 0.3 s.  

*Correlated with PC1, as shown by variable loadings (see Figure 5, section 3.2) 

**Correlated with PC2, as shown by variable loadings (see Figure 5, section 3.2) 


